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1.1 Interaction between lipids and graphene 

The focus of this thesis is to explore the capabilities of small amphiphilic molecules, 

such as lipids, to form stable assemblies on top and below a macroscopic sheet of 

graphene via non-covalent interactions. The first hypothesis tested during this 

work was that a sheet of graphene can reside, in a stable manner, in the 

hydrophobic core of a lipid bilayer, the main constituent of biological cell 

membranes.1 Non-covalent functionalization of graphene with lipids has the 

advantage of not altering the intrinsic electrical properties of graphene.2 Also, non-

covalent interactions, as opposed to covalent modifications of the graphene basal 

plane, preserve the aromatic sp2 conjugation, and do not disturb to a large extent 

the electronic mobility of charge carriers in graphene. Typical short range 

interactions involved in the functionalization of graphene include π-π stacking, 

hydrophobic, electrostatic and van der Waals interactions.3-4 

Graphene is a two dimensional (2D) allotrope of carbon with sp2 hybridized 

carbon atoms arranged in a honeycomb lattice.5 The exceptional electron 

mobility,2 mechanical flexibility,6 and large surface/volume ratio7 promotes 

graphene as an excellent material for sensing applications, particularly through the 

functionalization of its surface with specific molecules. In fact, pristine graphene is 

relatively inert chemically, and unselective towards the binding of particular 

molecules. A lipid layer on the surface of graphene however can represent a 

sensitizing layer susceptible to integrate lipid-specific biomolecules such as 

olfactory proteins, receptor proteins, pore forming proteins, to name a few, 

allowing to electrically probe – using graphene – the activity of these proteins. 

Additionally, graphene can be used as a sensor to study and characterize the 

process of assembly of lipids onto the graphene surface, or a change in the lipid 

conformation.8-10 Therefore, it is vital to understand the interaction between lipids 

and graphene. Although a lipid coated graphene sheet resembles at first sight a 

simple system, several parameters influence the interactions between lipids and 

graphene which make it a highly complex system to study. In fact, the properties 

of graphene are strongly influenced by the preparation method used,11 the level of 

contamination,12 the transfer method13 and the nature of the substrate 

underneath.14 Also, the size and composition of the graphene sheet play a large 

role in determining how lipids interact with the basal plane of the 2D materials. 
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Furthermore, the chemical structure of the lipids and the assembly method also 

affect how the lipids interact with graphene.10 

Recently, a growing number of publications reported on the interactions 

between lipids and graphene.8-10, 15-19 However, at the start of this PhD work, little 

was known about the most basic structural features of lipid-graphene assemblies, 

principally the orientation and conformation of the lipid layer(s). Particularly, the 

most widely used technique to characterize lipids – namely infrared (IR) 

spectroscopy – had never been applied to monitor lipid-graphene interactions.20 

Additionally, very few papers discuss the interaction of pristine graphene with 

lipids. Instead graphene oxide (GO) and reduced graphene oxide (rGO) were largely 

used as model graphene materials, particularly because of the ease of producing 

enough quantities of those. In this section of the thesis, we discuss the interactions 

of GO and rGO with lipids, the use of the field effect in graphene to study lipid-

graphene interactions, molecular dynamic simulations, and discuss the studies 

involving lipids and pristine graphene.  

1.1.1 Graphene oxide 

GO is obtained by oxidizing graphite in the presence of sulfuric acid (H2SO4) and 

potassium permanganate (KMnO4), i.e. the so-called Hummers method.21 During 

the chemical reaction, the aromatic sp2 carbon in graphite are converted into sp3 

carbon atoms covalently bonded to oxygen functional groups generating structural 

defects on the basal plane and edges of graphene.22-23 The large fraction of oxidized 

carbon atoms (i.e., C–OH, –COOH, C–O–C and C=O) yields graphite oxide flakes 

highly soluble in water. Furthermore, the functional groups facilitate covalent 

conjugation of biomolecules onto the GO surface.24  

GO is negatively charged due to the presence of carboxylic acid groups favoring 

the adsorption of positively charged lipids. Hence, using the Langmuir-Blodgett 

technique25 (explained in detail in section 1.1.5), the oxidized edge of GO dispersed 

in the aqueous sub-phase underneath a lipid monolayer, interacts in a vertical 

orientation with the lipid monolayer. The presence of negative charges on GO 

therefore allows the favorable interaction of GO with positively charged lipids, at 

least compared to neutral or negatively charged lipids (Figure 1.1a).26 However, if 

instead of lipids, cationic surfactants interact with GO at the air-liquid interface, 

GO sheets will contact in a horizontal manner27 with the basal plane of GO facing 



10 
 

the head groups of the cationic surfactant (Figure 1.1b). Therefore, several studies 

claim that positively charged lipids/surfactants have a higher affinity with GO 

compared to negatively charged lipids/surfactants, due to attractive electrostatic 

interactions.26, 28-29  

Alternatively, using vesicle fusion, GO can be encapsulated between lipid 

bilayers, sandwiched between the head groups of the lipids (Figure 1.1c) benefiting 

from the electrostatic attraction between the positive charge on the lipid head 

groups and the negative charge on GO.28 GO sheets have been shown to induce 

the rupture of the pre-adsorbed liposomes promoting the assembly of stable lipid 

membranes.  

 

Figure 1.1. Illustrations of the interactions between graphene oxide (GO) and lipids. a) GO 

interacting in an vertical orientation with the cationic dioctadecyldimethylammonium 

bromide (DODAB) lipid at an air-liquid interface in a Langmuir trough.26 b) Surface of a GO 

flake interacting with head groups of the cationic octadecylamine (ODA) surfactant in a 

Langmuir trough.27 c) Rupture of lipid vesicles on a SiO2 substrate and the formation of 

lipid-graphene multilayer stacks.28 d) Lipid bilayer being desorbed from a mica substrate 

through the interaction of a GO sheet with a zwitterionic lipid bilayer in the presence of 

Ca2+ ions.32 

 

Studies involving quartz crystal microbalance with dissipation monitoring 

(QCM-D)30 (explained in detail in section 1.1.5) have revealed that large GO sheets 

placed above supported lipid bilayers (SLBs) induce the rupture of small pre-

adsorbed liposomes and the subsequent assembly of SLBs.31 Contrarily, a different 

study has revealed that zwitterionic SLBs detach from mica substrates in the 
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presence of GO sheets where divalent ions are used to previously stabilize the SLBs 

in solution (Figure 1.1d).32 Although GO is suitable to study lipid-graphene 

interactions, GO is by far not chemically identical to graphene. GO is an oxidized 

analog of graphene, and upon reduction (rGO) resembles more carbon black than 

graphite/graphene.33 Studies have shown that zwitterionic liposomes do not 

rupture on GO and only partially on reduced graphene oxide (rGO). In contrast, full 

rupture is observed on pristine graphene (Figure 1.2b).34 It is therefore crucial to 

consider the chemical nature of graphene, GO, and rGO (Figure 1.2a) to 

understand and/or predict how would lipids interact with the basal plane of these 

materials. 

 

Figure 1.2. Differences in the chemical composition between graphene, graphene oxide 

(GO) and reduced graphene oxide (rGO) and their interactions with liposomes. a) Chemical 

structures of graphene, GO and rGO.42 b) Schematic illustration of 1,2-dipalmitoyl-sn-

glycero-3-phosphocholine (DPPC) liposomes interacting with GO (no liposomes ruptured), 

with rGO (~20% liposomes ruptured), and with graphene (~70% liposomes ruptured).34 
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1.1.2 Reduced graphene oxide 

Oxygenated groups in GO can be reduced to partially recover the conjugated 

aromatic structure in a highly defective graphene, so called reduced graphene 

oxide (rGO).35-36 rGO can be obtained by treating GO with strong chemical reducing 

agents such as hydrazine,37 other non-toxic chemicals such ascorbic acid,38 

thermally,39 electrochemically40 or by photo-irradiation.41 rGO has better 

properties compared to GO (i.e., rGO resembles more graphene compare to GO), 

such as increased electrical conductivity and improved carbon to oxygen ratio. 

Depending on the reduction method used, the properties of the rGO sheets, such 

as the chemical structure, thickness and electrical performance can be tuned.35, 37 

However, rGO does not have the same properties as pristine graphene due to the 

large variety of basal plane chemical compositions present in rGO (particularly the 

presence of a large range of grain boundaries and defects, i.e. non sp2 carbons). In 

addition, rGO is often prepared as a dispersion, and the obtained sheets are small 

(~500x500 nm) which makes the fabrication of devices cumbersome and difficult. 

After reduction, the initial oxygenated sp2/sp3 defects are converted into non-

aromatic structures. This yields a poorly defined conjugation system which is by far 

lower than in pristine graphene. 

Lipids interact differently with distinct forms of rGO, depending on the degree 

of reduction of GO and on the number of reduced graphene oxide layers 

constituting the rGO sheets. For multilayers (> 5 layers) rGO sheets, the lipids self-

assemble as lipid bilayers whereas monolayer-few layers (< 5 layers) rGO sheets 

lead to intact vesicle structures on the surface of rGO.43 In contrast, other studies 

have shown that lipids form a monolayer structure on rGO with the hydrocarbon 

chains facing the rGO sheets.44-45 Alternatively, a separate study reported the 

encapsulation of rGO in a lipid bilayer, with minimal perturbation of the electrical 

properties of rGO upon encapsulation.46 

1.1.3 Chemical vapor deposition (CVD) of graphene 

Pristine graphene can be obtained by different methods such as chemical and 

mechanical exfoliation of graphite,47-48 epitaxial growth on SiC surfaces49 or by 

CVD.50 The most common route to produce large graphene sheets is by CVD as it 

yields high quality graphene samples in comparison to rGO or GO. Here, it is 

important to note that many parameters such as the composition of the seed gas, 
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temperature, cooling time and the substrate catalyst, results in graphene of 

different crystallinity, grain boundaries, homogeneities and defects.50-51  

Typically, hydrocarbon gases such as methane or ethylene are used for the CVD 

process where the gases are dehydrogenated at very high temperatures (> 800°C) 

prior to graphene growth.52 This procedure typically consists of two steps. The 

chemisorption/incorporation of the decomposed hydrocarbons on the catalyst 

and thereafter the segregation of carbon on the surface during the cooling step to 

form a graphene sheet. Metal substrates are used to catalytically enforce the 

growth process. The catalyst substrate plays an important role during the 

nucleation and the growth of graphene due to the fact that different substrate 

catalyst have different carbon solubility and surface-carbon affinities.53 The 

solubility of carbon on metals such as nickel54 or ruthenium50 is very high which 

typically results in carbon to dissolve and then nucleate and grow as a graphene 

layer on the surface of the catalyst.51 Copper, however, shows a very low solubility 

of carbon which enables the continuous growth of graphene on its surface. During 

the CVD process involving a copper surface, the carbon atoms instead of diffusing 

and segregating on the metal surface, adsorb and successively nucleate graphene 

growth via expanding local graphene-domains.55 Graphene is deposited uniformly 

over the copper surface, reaching a single monolayer of graphene. To date, copper 

substrates are by far the most used catalysts to grow graphene.56 The different 

growing procedures available to obtain single layer graphene lead to variations in 

graphene crystallinity which in turn affects the electrical properties of the obtained 

graphene. Although graphene can also be grown on non-metallic substrates such 

as Si/SiO2, catalysts are important because they allow to significantly reduce the 

temperature needed for the growth of graphene.50 CVD graphene on copper was 

used in all the projects of this PhD work. 

1.1.4 Graphene field effect transistors  

In its simplest architecture, a field effect transistor (FET), is generally composed of 

a conductive channel connected to a pair of electrodes, namely source and drain 

electrodes across which an electrical potential is applied (Vsd). In such device, the 

conductivity is modulated by an electric field, commonly referred to as a gate 

potential (Vg). This gate potential is applied on the conductive channel through 
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either a solid state electrode via an insulating material (Figure 1.3a), a gate 

electrode, or through an electrolytic solution (Figure 1.3b).57 

 

 

Figure 1.3. Graphene field effect transistors (GFET). a) Schematic of a liquid-gated GFET 

with a gate potential (Vref) applied through an electrolytic solution. b) Schematic of a back-

gated GFET with a gate potential applied (Vg) to SiO2 substrate. c) Current-voltage curve of 

graphene with different charge carriers (holes and electrons) with a minimum at the charge 

neutrality point of graphene.3 

 

Due to the linear dispersion of its electron band structure, susceptible to 

external gate electrical fields, graphene can be used as the conductive channel in 

a field effect transistor architecture. In fact, the conductivity of graphene can be 

modulated by a gate potential, which perturbs the density of charge carriers in its 

band structure, resulting in the so-called Dirac cone, with a minimum of 

conductance at the Dirac point (Figure 1.3c, at the charge neutrality point – CNP – 

the amount of electrons and holes carriers is equivalent). Notably, due to its 2D 

nature, the electronic band structure of graphene is extremely sensitive to external 

perturbations, such as molecular interactions which introduce perturbations in the 

band structure of graphene, and a variation of the change of its conductivity. 

Particularly, any small variation in the chemical composition of the environment in 

the vicinity of graphene primarily (dipole fluctuations) induces a change in charge 

carrier.3, 7 For instance, it has been reported that using an electrolyte-gated 

graphene field effect transistor (GFET), charged lipid bilayers modulate the 

electronic properties of graphene, yielding different responses for cationic, anionic 

and zwitterionic lipids. (Figure 1.4a).8, 10  
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Figure 1.4. GFETs functionalized with lipids. a) Electrical properties of a GFET upon 

functionalization of the graphene conducting channel with neutral, negatively, positively 

charged lipids.10 b) Lipid bilayer membrane with a protein pore (gramicidin A) on top of a 

GFET used to measure the activity of an array of ion channels.8 c) GFET coated with a lipid 

bilayer for the detection of cholera toxin B.58 d) X-ray reflectivity measurements of a lipid 

monolayer on a solution-gated GFET used to determine in real time the spreading and 

rupture of lipid vesicles (by vesicle fusion) forming a lipid monolayer.19  

 

To fabricate a GFET, graphene is grown on a metal catalyst such as copper, and 

is transferred onto a Si/SiO2 substrate. The transfer method as well as the choice 

of the substrate are equally important during the fabrication of GFETs. A 

suboptimal transfer can degrade the quality of the graphene by leaving 

contaminations, inducing stress or cracks. The substrate on which graphene is 

transferred also affects the electrical properties of graphene.59 In Chapter 2, a lipid 

monolayer was proposed as a substitute to the usual hard inorganic Si/SiO2 

support for graphene. Remarkably, the lipid monolayer ameliorated the electrical 

properties of graphene compared to graphene on a Si/SiO2 substrate. In addition, 

in Chapter 6 a clean transfer method was developed where amphiphilic lipids were 

used as a scaffold that clamps graphene at the edges yielding a controllable 

manipulation of graphene and a clean transfer to arbitrary substrates. 
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Graphene has been demonstrated to be sufficiently sensitive to detect changes 

in the properties of a lipid membrane. Particularly, the modification of a lipid 

membrane by a gram-negative bacteria10 or by the incorporation of individual ion 

channel proteins8 yielded changes in the electrical properties of graphene, namely 

fluctuations of the conductance of the conductive graphene channel (Figure 1.4b). 

Similarly, protein interactions with a lipid bilayer (Figure 1.4c) could also be 

detected by a solution-gated GFET.8, 58  

A GFET is able to detect electrically the dynamics of vesicle rupturing on the 

graphene surface, in situ, and in real time (Figure 1.4d).19 While some studies claim 

the formation of a lipid monolayer16, 18-19, 60-61 (upon vesicle rupture) others report 

the formation of a lipid bilayer.8, 10, 15, 58 Typically, lipids such as 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC) self-assemble on graphene as a lipid bilayer while, lipids 

such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) rearrange as a monolayer on graphene. 

Thus, since graphene of different quality crystallinities is expected to yield a range 

of different interactions with lipids, in Chapter 5, the interactions of several distinct 

lipids with different graphene materials were systematically investigated to 

identify the most important parameters regulating lipid-graphene interactions.  

1.1.5 Assembly of lipids on pristine graphene 

Vesicle fusion (VF) 

Lipids can be deposited on graphene surfaces using different experimental 

techniques. The most common methods used are the vesicle fusion (VF, Figure 

1.5a), lipid dip-pen nanolithography (L-DPN, Figure 1.5c) and the Langmuir-

Blodgett technique (LB, Figure 1.5b). In the previous section, GFET functionalized 

with lipids were prepared by lipid self-assembly on graphene using the VF method. 

The VF is the most convenient approach to form SLBs, as it does not require 

advanced setups such as a LB trough or an atomic force microscopy (AFM) 

apparatus, but only a dispersion of liposomes. This method is based on the 

spontaneous adsorption, spreading and rupture of vesicles on a solid support. The 

drawback of the VF method is that there is no precise control over the formation 

and assembly of the lipids on the surface of a substrate, at least if compared to the 

LB transfer method where any steps of the transfer method can be precisely 
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controlled: surface pressure of the lipids, transfer kinetics, calculation of the 

amount of lipids transferred, to name a few.62-63  

Using the VF method, it was reported that the edges of graphene pattern were 

used as a geometrical barrier to study the lateral mobility of fluorescent SLBs. The 

SLBs were assembled on glass which was surrounded by graphene patterns (made 

by an electron ion beam), that restricted the spreading of the lipids (Figure 1.6a).17 

Separately, in another study lipids self-assembled differently on graphene 

supported by a hydrophilic or hydrophobic substrate,64 suggesting that graphene 

is transparent to the wetting properties of the substrates, i.e. the so-called wetting 

transparency of graphene.14, 65 

Lipid dip-pen nanolithography (L-DPN) 

L-DPN uses the tip of a cantilever in an AFM setup, where the tip is coated with 

lipids which are directly transferred to arbitrary substrates such as SiO2 or 

graphene to form micro-sized lipid patterns (Figure 1.5c).66 This technique has 

emerged as a suitable platform for the rapid construction of precise patches of 

lipids on graphene. The patches are inked on graphene from a chloroform solution 

containing the lipids and these patches can be located with nanoscale precision 

using the imaging mode of the AFM instrument.9 

Remarkably, it has been shown that as opposed to lipids on SiO2 substrates, 

lipids on graphene spread rapidly over the graphene surface and form inverted 

lipid bilayers (as determined from the AFM height profiles, Figure 1.6b). Also, 

another study investigated lipids that were deposited using L-DPN on confined 

arrays of graphene patterned on Si/SiO2 substrates. The graphene prevented and 

simultaneously confined the spreading of lipids to the hydrophilic SiO2 substrate 

on the surroundings (Figure 1.5d).18 



18 
 

 

Figure 1.5. Vesicle fusion (VF), Langmuir-Blodgett (LB) and lipid dip-pen nanolithography 

(L-DPN) techniques used to form and study lipid-graphene interactions. a) Fusion of 

liposomes on a hydrophilic surface and formation of a supported lipid bilayer. b) Illustration 

of the LB technique where lipids are deposited at the air-liquid interface of a Langmuir 

trough, compressed using two lateral barriers (top) and transferred to a substrate by 

withdrawing the lipid monolayer from the surface of the trough (bottom). c) Artistic 

rendering illustrating the L-DPN method where an AFM tip coated with lipid molecules 

(from chloroform solution containing lipids) is used to transfer the lipids on graphene.9 d) 

Schematic design of L-DPN tips coated with lipid mixtures which were deposited on 

graphene squares and formed inverted lipid bilayers.18  

 

Langmuir-Blodgett (LB) technique 

Surprisingly, only few papers describe the use of the LB method to assemble a well-

defined lipid structure on graphene. Most studies focus on the production and 

transfer of large sheets of GO or rGO using the LB method,67-70 or study the 

interactions between GO that is placed in the Langmuir trough sub-phase with the 

lipids at the interface.26-27 In a typical experiment, the LB technique is used to 

compress lipids at the air-water interface (hydrophilic head groups facing the 

water) using a Langmuir trough with two lateral barriers continuously compressing 

the lipids to a desired surface pressure. Next, the lipids are transferred at a 

constant surface pressure (pressure hold at a fix value using a feed-back loop on 
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the LB barriers) to a substrate (Figure 1.5b).25 In Chapters 2 and 3 lipid monolayers 

were transferred vertically by the LB method onto hydrophilic Si/SiO2 substrates 

and graphene was deposited on top of the lipid monolayer by bringing into contact 

with each other. The assemblies, lipids on top or below graphene were analyzed in 

detail by IR spectroscopy, ellipsometry, AFM and Raman spectroscopy.  

 

Figure 1.6. Assembly of lipid molecules on the surface of graphene. a) Fluorescence images 

of fluorescent SLBs (bright) deposited by vesicle fusion on glass substrates patterned with 

graphene (black). The SLBs spread over time through the glass channels into new reservoirs 

(see white arrows) that were patterned with graphene.17 b) Atomic force microscopy (AFM) 

images of lipid dip-pen nanolithography (L-DPN) patches of phospholipids on graphene (left 

panel) and on SiO2 substrate (right panel) and the corresponding height profiles below. The 

lipids spread more uniformly and faster on graphene than on Si/SiO2 substrate.9  

 

Molecular dynamics (MD) simulation studies 

In contrast with experimental studies, MD simulation studies allow a wide variety 

of conditions and situations to be tested due to the large amount of parameters 

that can be tested with computational approaches. With MD simulations, the 

interaction between lipids and graphene can be investigated at a molecular level, 

varying the shape of graphene, numbers of layers, sizes and oxidation degrees, all 

with a range of distinct lipids.  

MD simulations reported that small (< 7 nm) graphene sheets can easily 

penetrate and be hosted within the hydrophobic core of a lipid bilayer whereas 

large graphene sheets (> 8 nm) tend to destabilize the membrane.75-79 In fact, large 

graphene sheets induce a perturbation in the lipid membrane by adsorbing on top 



20 
 

of the bilayer surface76 or forming vesicles due to the contrast in size between the 

large graphene sheet and the small lipid molecules (Figure 1.7d).75 For small 

graphene sheets (which encapsulate in the hydrophobic core of a lipid bilayer), the 

insertion is preferably initiated from an edge of the graphene sheet, perpendicular 

to the membrane.80-81 Some studies demonstrate that prior to inserting into the 

hydrophobic core of the lipid bilayer, first a small fraction of lipids adsorb on the 

graphene basal plane forming a micelle in which graphene is encapsulated into. 

The lipid micelle then interacts with the head groups of the lipid bilayer inducing 

fusion where graphene enters the hydrophobic core of the lipid membrane (Figure 

1.7a).77 Additionally, the MD simulations revealed that graphene with different 

shapes (i.e., circle, square) and with few graphene layers can also enter and be 

hosted in the hydrophobic core of the lipid bilayer.75, 77 

Instead of sandwiching graphene in a lipid bilayer, several lipid molecules can 

also be extracted from the lipid membrane when interacting with graphene (Figure 

1.7b). If graphene is placed perpendicularly to the lipid membrane, a large number 

of lipid molecules from the bilayer are withdrawn by being dragged (i.e. lipid 

diffusion) on both sides of the graphene surface, due to the strong van der Waals 

and hydrophobic interactions between the graphene and the lipids. Subsequently, 

the lipid membrane is then deformed, which causes a loss of its integrity.82-83 

Alternately, if curved graphene sheets are inserted perpendicularly to the lipid 

bilayer, mainly the concave side (which is exposed to a higher amount of water) 

induces the extraction of the lipid molecules from the lipid membrane. This process 

is probably caused by the complete wetting of graphene through the lipids in 

water.83-84 

Interestingly, also GO sheets tend to induce the extraction of lipid molecules 

from the lipid membranes.82 In fact, contradictory with the previous studies, 

different results concluded that only GO (and not pristine graphene) tends to 

perturb the lipid membrane by extracting several lipid molecules due to the 

interaction between the oxygen groups on GO surface and the hydrophilic lipid 

head groups,79, 85 or instead by lying perpendicular across the lipid bilayer.77-78 In 

comparison, small pristine graphene sheets can easily enter the lipid membrane 

without disturbing its integrity.  
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Figure 1.7. Molecular dynamic simulation studies of graphene interacting with lipids. a) 

Graphene sheet surrounded by a lipid micelle which enters and lies parallel to the lipid 

bilayer.77 b) Lipid extraction by a graphene sheet placed perpendicular to a lipid bilayer.82 

c) Lipids assembly by dip-pen nanolithography on graphene and graphene oxide leading to 

an ordered inverted bilayer and to three lipid layers structure (lipid monolayer + inverted 

bilayer), respectively.60 d) Four types of graphene sheets interacting with a lipid membrane: 

i) small pristine graphene hosted in a lipid bilayer; ii) large graphene sheet inducing an 

hemisphere vesicle on its surroundings; iii) small graphene oxide sheet lying parallel on the 

surface of the lipid membrane; iv) large graphene oxide crossing and disturbing the lipid 

membrane.85 

 

Another set of MD simulations studies considered graphene and GO as 

substrates for the deposition of lipids. For GO substrates, a “1.5 lipid bilayer” 

(monolayer + inverted bilayer) tends to form on the GO surface due to its 

hydrophilic nature, whereas inverted bilayer structures – lipid tails facing graphene 

– are orderly arranged on the hydrophobic pristine graphene basal plane (Figure 

1.7c).60-61 Particularly, the interaction between lipids and pristine graphene induces 

ordering and rigidity of the lipid hydrocarbon chains that are close to the surface 
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of graphene.61, 86-87 These results were also confirmed experimentally in Chapter 2. 

The lipids showed a more ordered (extended lipid tails) and compact structure 

when a graphene sheet was transferred on top of the lipid monolayer supported 

by a Si/SiO2 substrate, compare to a lipid monolayer without graphene on top. The 

heterostructure was characterized by attenuated total reflectance infrared (ATR-

IR), ellipsometry, AFM, fluorescence and optical microscopy. Additionally, Chapter 

3 described the complete transfer of a second lipid monolayer on top of graphene, 

encapsulating graphene within the hydrophobic core of the lipid membrane, 

confirming the MD predictions that a graphene monolayer is stable within a lipid 

bilayer.77 

In summary, the physicochemical properties of graphene, such as the distinct 

size and oxidization degree, influence how graphene interacts and disturbs a lipid 

membrane (Figure 1.7d and Figure 1.8b).85 In general as described above, small 

pristine graphene (PG) sheets are hosted within the lipid bilayer (Figure 1.7d, i and 

Figure 1.8b) whereas large sheets tend to disturb the membrane by forming 

hemispheric vesicles surrounding the graphene sheets (Figure 1.7d,ii and Figure 

1.8b). Increasing the oxidation at the edges of graphene (eGO, Figure 1.8a) shows 

that the GO sheets (independently of the size) preferably lie across the membrane 

disturbing locally the structure of the lipid bilayer (Figure 1.7d, iv and Figure 1.8b). 

The same behavior is observed for large sparsely (sGO, Figure 1.8a) and densely 

(dGO, Figure 1.8a) oxidized graphene sheets. Instead, small sGO and dGO sheets 

tend to horizontally adsorb on the surface of the lipid bilayer head groups (Figure 

1.7d, iii and Figure 1.8b).  
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Figure 1.8. Molecular dynamic simulations of the interaction between graphene and lipid 

membranes. a) Illustration of different oxidation degrees of graphene: pristine graphene 

(PG, yellow beads of unoxidized graphene), edge oxidized graphene (eGO, blue beads of 

the oxidized edges), sparsely oxidized graphene (sGO, 20% of the carbon atom on the basal 

plane oxidized, red beads of oxidized basal plane), densely oxidized carbons (dGO, 40% of 

the carbon atom on the basal plane oxidized). b) Phase diagram summary of the effects of 

various graphene sizes and oxidation degree interacting with lipid membranes. The 

different colours represent the typical states written on the diagram (i.e, yellow: 

hemisphere vesicle; green: graphene-sandwiched structure; blue: lying across the 

membrane; red: adhering to membrane surface). 85 

 

1.2 Aim and outline 

The literature described in this chapter covers the main studies currently involving 

the interactions between lipids and graphene. A major aim of the research 

activities over the last 10-20 years focused on studying how lipids interact with 

graphene oxide (> 24), reduced graphene oxide (> 8) and with pristine graphene (> 

20). This thesis aims to understand and characterize for the first time the 

mechanism of lipid-graphene interactions and to characterize the resulting 

structure using methods widely applied for studying lipids. The interactions of 

lipids with pristine graphene were investigated by assembling ordered lipid layers 

using the LB method, interfacing the hydrophobic lipid chains with the 

hydrophobic basal plane of CVD graphene and characterizing the assembled 

structures using mainly IR spectroscopy, ellipsometry, AFM, QCM and neutron 

reflectometry. In Chapter 2, lipids are used to replace conventional inorganic 

graphene substrates (such as silicon wafer). The lipids underneath graphene 
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presented a more ordered and organized structure compared to lipids not in 

contact with graphene. IR spectroscopy showed that lipids undergo a change in the 

lipid acyl chains conformation from gauche to trans, leading to a more compact 

monolayer in the presence of graphene. The heterostructure was furthermore 

characterized by ellipsometry, AFM, and Raman spectroscopy. In addition, lipids 

demonstrated to enhance the electric performances of graphene in comparison to 

graphene deposited on plain Si/SiO2.  

Accordingly, the lipid monolayer with graphene revealed a very stable and 

organized structure enabling the encapsulation of graphene in a lipid bilayer if 

another monolayer was transferred on top of graphene. In Chapter 3, graphene 

was sandwiched in between two monolayers of lipids (i. e., in the hydrophobic core 

of a lipid bilayer) where the lipid layers were assembled and transferred using the 

LB and LS techniques respectively, and characterized by IR spectroscopy, 

ellipsometry and neutron reflectometry.  

As the stability and organization of lipid layers is also influenced by changes of 

temperature, in Chapter 4, the morphology and lateral organization of the lipid 

layers was analyzed below and above the phase transition temperature of the 

lipids, before and after graphene was transferred on top, by AFM. Above the phase 

transition, the thickness of the assembled lipid monolayer decreased adopting a 

fluidic state, which was confirmed by IR spectroscopy. Notably, the lipids 

underneath graphene remained intact and stable after the sample was rinsed with 

chloroform or with a hexadecyltrimethylammonium bromide (CTAB) solution, 

suggesting that a graphene monolayer can act as a shield protecting the lipids 

underneath from harsh environments.  

The interactions of distinct lipids on graphene materials were systematically 

studied in Chapter 5. Cationic, anionic and zwitterionic lipids with different tail 

lengths and saturations were used and assembled with the LB or VF techniques. 

The structure and organization of the lipids on CVD graphene on copper and on 

highly oriented pyrolytic graphite (HOPG) substrates were analyzed by IR 

spectroscopy. QCM-D measurements monitored the dynamics and interactions of 

the distinct liposomes (assembled by the VF method) on graphene transferred on 

SiO2 and on gold substrates. The results revealed that graphene was transparent 

to the substrates underneath by forming a lipid bilayer on graphene transferred to 
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a hydrophilic SiO2-coated quartz crystal substrate and that the liposomes remained 

intact on graphene transferred to a hydrophobic gold-coated quartz crystal 

substrate.  

Separately, a clean and continuous graphene surface is critical for the sensitivity 

of graphene in devices and therefore for the electrical detection of adsorbed 

molecules on the surface of graphene using a GFET. Chapter 6 introduced lipids as 

a scaffold to clamp graphene from the edges while floating at the air-water 

interface. Clamping graphene from the edges with lipids provided a clean graphene 

surface upon transfer to Si/SiO2 substrates.  

This thesis systematically analyzes the physical-chemistry of lipid-graphene 

interactions with the major objective of reconciliating the variety of results 

reported in the literature. By using five major characterization techniques typically 

used to study lipids, namely IR spectroscopy, ellipsometry, AFM, neutron 

reflectivity and QCM-D, this thesis characterizes – in details – layered structures of 

graphene and lipids (so called superstructures) and separately studies the 

dynamics of the interaction between lipids and graphene. The most remarkable 

result is that through the systematic construction of i) a lipid monolayer on a silicon 

substrate; ii) the subsequent coating with graphene and iii) the deposition of a last 

lipid monolayer on top of the two layers stack; graphene could be encapsulated in 

the hydrophobic core of a lipid bilayer for the first time, promising a range of 

applications to sense biological processes occurring near or inside a lipid bilayer. 
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CHAPTER 2  

Graphene-stabilized lipid monolayer heterostructures: a 

novel biomembrane superstructure 

 

  

Chemically defined and electronically benign interfaces are attractive substrates 

for graphene and other two-dimensional materials. Here, lipid monolayers are 

introduced as an alternative, structurally ordered, and chemically versatile support 

for graphene. Deposition of graphene on the lipids resulted in a more ordered 

monolayer than regions without graphene. The lipids also offered graphene a more 

uniform and smoother support, reducing graphene hysteresis loop and the average 

value of the charge neutrality point under applied voltages. Our approach promises 

to be effective towards measuring experimentally biochemical phenomena within 

lipid monolayers and bilayers. 

This chapter was published as a full article: Lia M. C. Lima, Wangyang Fu, Lin Jiang, 

Alexander Kros and Grégory F. Schneider, Nanoscale, 2016, 8, 18646-8653 



38 
 

2.1 Introduction 

Graphene1 is typically supported – sometimes sandwiched – with other two-

dimensional (2D) materials to promote higher mobility,2 to ensure the 

reproducibility in electrical performances,3 and to prevent environmental 

contamination.4 Frequently composed of inorganic, hard and crystalline materials, 

the so called van der Waals heterostructures have emerged as a route to design 

new and remarkably complex layer-by-layer films of 2D materials, including 

graphene.5 For example, the atomically flat hexagonal boron nitride (hBN) is 

frequently used as a support for graphene yielding a very high graphene electron 

mobility, in comparison with a Si/SiO2 substrate which has a high surface 

roughness.6 Alternatively, removing the hard substrates underneath graphene, 

i.e., suspending graphene, also improves the electron mobility of graphene, 

although the architecture and the methods of characterization are still limited.7 

Nevertheless, one challenge associated with 2D materials as supporting and 

sandwiching layers is their limited chemical diversity, functions, and inherent 

inorganic nature. The possibility of combining graphene with soft, dynamic and 

molecular self-assembled monolayers is therefore of high interest as an organic 

alternative to inorganic 2D materials and could provide a versatile platform for 

applications, such as biosensors, drug delivery systems or cellular devices.8 

Lipids – the main constituents of cell membranes – are amphiphilic molecules 

that can self-assemble and form stable quasi two dimensional fluidic membrane 

structures.9 Lipids can spread on graphene,10 however little is known on the 

formation, stability and molecular structure of lipid molecules surrounding 

graphene.10-17 Mainly, studies focused on graphene oxide (GO), as both lipid 

vesicles and GO form stable suspensions in aqueous environments.18 GO is an 

easily accessible form of graphene, suitable to study the influence of oxidation 

states on the chemical characteristics of GO-lipid assemblies, at the cost of lower 

electron mobility, higher chemical reactivity, oxygen doping, and surface/edge 

inhomogeneities. Being negatively charged, GO has a particular affinity with 

positively charged lipid head groups,19 highlighting the importance of electrostatic 

interactions in the assembly process.20 Pristine graphene, however, does not 

contain charges on the basal plane therefore minimizing electrostatic interactions 

and favoring hydrophobic interactions between lipid tails and graphene at the 
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interface.21 To understand and quantify the interactions between lipid tails and 

graphene, an approach is that graphene crowd surfs directly on the lipid chains, 

and measure at the same time the electrical properties of graphene and the 

molecular structure of the lipids, for example, using infrared spectroscopy. 

In this chapter we investigate the stability and structure of the lipid monolayer 

placed underneath graphene and report that graphene affects the conformation 

of a lipid monolayer, yielding a rearrangement of the lipids into a more ordered 

and more compact supramolecular conformation. Remarkably, attenuated 

transmission reflectance infrared spectroscopy (ATR-IR) and ellipsometry 

demonstrate an increase of the absorbance intensity and of the thickness of the 

lipid monolayer in presence of graphene, respectively. Our finding suggests a high 

affinity between the lipid tails and the graphene basal plane promoting a favorable 

heterostructure for biosensing applications, and represents the first step towards 

embedding graphene experimentally into the hydrophobic core of a lipid bilayer as 

proposed by recent molecular dynamics simulations reporting the favorable 

stabilization of such sandwiched structure.22-23 

2.2 Results and discussion 

One straightforward approach to form and study a graphene-lipid monolayer 

interface is to pre-form a well-packed monolayer of lipids on a known substrate, 

such as Si/SiO2 and transfer a graphene layer on top. A well-established route to 

build an ordered lipid monolayer is by applying the Langmuir-Blodgett technique24 

using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1% of 1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B 

sulfonyl) (Liss Rhod PE) (Figure 2.1). First, the mixture of lipids is dissolved in an 

organic solution of chloroform/methanol (3:1) and is subsequently deposited 

dropwise at the air-water interface of the Langmuir trough. By further compressing 

this unordered lipid phase (i.e. in a gas phase (G), Figure 2.1a) to specific surface 

pressures, a very compact lipid monolayer can be formed and transferred to any 

arbitrary substrate.25 In this study, the lipids were compressed to a surface 

pressure (π) of 30 mN/m – to form a compact and stable monolayer – and 

thereafter transferred to a Si/SiO2 substrate by retracting the substrate out of the 

trough at maximum compression. A chemical vapor deposition (CVD) graphene 

layer was then transferred above the lipid film by bringing into contact the lipid 
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film with graphene floating on ammonium persulfate solution (APS, 0.5 M). The 

sample was immediately rinsed with ultrapure water to remove traces of APS (see 

Appendix I). 

Figure 2.1a shows the surface pressure (π) – area isotherm of DPPC:Liss Rhod 

PE (99:1) (solid line) on a pure water sub-phase and the subsequent decompression 

of the Langmuir film (dashed line) after the transfer of the lipid monolayer onto 

the Si/SiO2 substrate.  

 

Figure 2.1. Lipid monolayer assembly and transfer of graphene. a) Surface pressure – area 

(π-A) compression isotherm of DPPC:Liss Rhod PE (99:1) monolayer (solid line) and the 

subsequent decompression (dashed line) after the transfer of the lipid monolayer on a 

Si/SiO2 substrate (see top inset, step i). The different lipidic phases are: G, gaseous state; 

LE, liquid expanded state; LC, liquid condensed state; and S, solid state. In a last step 

graphene is transferred on top of the lipid monolayer from an ammonium persulfate 

solution (APS) (see top inset, step ii-iii). b) Molecular structure of the two lipids used in this 

work: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-

3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Liss Rhod PE). 

 

The lipid monolayer was compressed until a π of 30 mN/m passing through 

distinct separate phases characteristic of phospholipid molecules. In the first step, 

the lipids spread at the air-water interface yielding a gaseous state (G) due to the 

small intermolecular forces between the individual lipid molecules resulting from 

the large distance between molecules. As the mobile barriers of the Langmuir 
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trough start to compress, the available area per molecule and the intermolecular 

distance between the lipids decreases, resulting in the transition from the gaseous 

to a liquid expanded state (LE). After further compression, the molecules undergo 

a phase transition from a fluidic to a condensed phase. This liquid expanded (LE) – 

liquid condensed (LC) phase transition is characterized by a different aggregation 

state where the lipids present a strong lateral cohesion and a well-defined 

orientation. Finally, when the available area of the monolayer is further reduced, 

the lipid molecules self-organize in a perfectly ordered and stable monolayer, 

called the solid state (S).26 At this stage, the well-packed lipid monolayer is 

transferred to the Si/SiO2 substrate, resulting in a shift in the compression 

isotherms from which the transfer ratio of the lipids on the substrate is determined 

(Figure 2.1a, dashed line, red arrow; see Appendix I). 

Optical and fluorescence microscopy measurements of the lipid monolayer and 

the subsequent lipid-graphene assembly are shown in Figure 2.2. A homogenous 

and continuous fluorescence layer is observed on Si/SiO2 substrate (Figure 2.2a). 

Next, graphene was transferred onto the lipid monolayer resulting in a strong 

fluorescence quenching of the rhodamine B dye.27 Note that millimeter sized 

graphene domains are observed, even without the need of a polymer such as 

PMMA for the transfer, as shown by Figure 2.2b and 2.2c.28 The cracks on the basal 

plane of graphene are advantageous to image graphene using fluorescence 

quenching microscopy.29 Remarkably, after rinsing with ultrapure water (to 

remove APS traces), the lipids underneath the graphene area remained intact, as 

confirmed by infrared spectroscopy and ellipsometry (Figure 2.3a), suggesting that 

graphene acts as a shield that prevent the lipids from getting rinsed off and 

protecting them from the environment (Figure 2.2b). 
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Figure 2.2. Microscopy imaging of the lipids and of the lipid-graphene heterostructure. a) 

Fluorescence image of DPPC:Liss Rhod PE (99:1) monolayer on Si/SiO2 substrate. b) 

Fluorescence image after transferring graphene on top of the lipid monolayer. c) The 

corresponding optical image on the same graphene area of 2.2b. 

 

In order to characterize the molecular structure and organization of the lipids, 

we performed attenuated total reflectance infrared (ATR-IR) spectroscopy 

measurements. Figure 2.3a shows the absorption bands characteristic for the 

stretching vibrations of the lipid acyl chains for the lipid monolayer (black line) and 

for the lipid-graphene assembly (red line).30 The presence of these peaks confirms 

that the lipids remained underneath the graphene even after the extensive rising 

steps. Depending on whether the lipids are in contact or not with graphene, a shift 

in the wavenumber of the peak maximum is observed, characteristic for changes 

in the lipid conformation (i.e., a shift to lower wavenumber is often observed when 

the lipids within the monolayer are becoming more ordered).31 Additionally, a shift 

was observed in the asymmetric methylene vibration (CH2) from ~2915 to 2912 

cm-1 and in the symmetric methylene vibration (CH2) from ~2848 to 2844 cm-1, 

respectively. Furthermore the intensity of the asymmetric and symmetric CH2 

bands of the lipid-graphene assembly increased. The observed shift is attributed 

to a change of the physical properties of the lipids film, where the frequencies of 

CH2 stretching vibrations are known to decrease if lipids are well packed. An 

elongation of the lipid acyl chains will also yield an increase of intensity of the band. 

As the CH2 frequency decreases, the lipid hydrocarbon chain order increases, 

suggesting a change from gauche to trans conformation of the lipid chains.32 The 

molecules are closer to each other, have less freedom to vibrate and therefore lead 

to a decrease of the wavenumber. Thus, the lipids underneath graphene present a 

crystalline structure with presumably very restricted diffusional mobility.31-33 At 
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this stage of the experiment, we therefore considered that graphene enters into – 

what we call – a ‘crowd surfing’ mode, either static or dynamic. 

 
 

Figure 2.3. Attenuated total reflectance infrared (ATR-IR) and atomic force microscopy 

(AFM) characterization of the lipid-graphene heterostructure on a Si/SiO2 substrate. a) 

ATR-IR absorption bands of CH2 stretching vibrations of the lipid acyl chains before (black) 

and after (red) transferring graphene on top of a lipid monolayer transferred by Langmuir-

Blodgett onto a Si/SiO2 substrate. b) AFM intermittent contact mode image in air at room 

temperature of a DPPC:Liss Rhod PE (99:1) monolayer on Si/SiO2 substrate and c) after 

transferring graphene on top of the lipid monolayer. The insets are the corresponding 

height profiles (green lines). 
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To obtain further information on the change of conformation of the lipid 

molecules upon their interaction with graphene, we determined the thickness of 

the different layers composing the thin film by ellipsometry (see Appendix I). The 

thickness of the SiO2 layer was determined to be 282.9 ± 1.4 nm.34 Then, after 

depositing the lipid monolayer, the total thickness increased by 2.5 ± 0.4 nm, as 

expected for a lipid monolayer.35 After transferring graphene on top of the lipid 

monolayer, the thickness of the lipid monolayer increased to 3.9 ± 0.9 nm. This 

expansion of the lipid acyl chains, as confirmed previously by ATR-IR, corresponds 

to the formation of a more ordered structure. The interactions of the hydrophobic 

lipid tails with the hydrophobic graphene transferred on top are most probably 

remarkably favorable.10, 22 This increase of 1.4 nm, could also be expected if a 

bilayer would form, but this hypothesis is excluded as no more lipids were in 

contact with the sample during the sample preparation. Although an absolute 

increase in thickness of 1.4 nm is surprising giving the expected head-to-tail length 

of DPPC, it is evident that the lipids re-arrange in a more organized layer after 

interacting with graphene, as confirmed previously by ATR-IR. The graphene 

thickness measured was 0.4 ± 0.2 nm, in agreement with the transfer of a single 

monolayer graphene. 

The atomic force microscopy (AFM) images and the corresponding height 

profiles of the lipid monolayer in air at room temperature before and after 

transferring graphene showed the presence of an homogenous monolayer of lipids 

(Figure 2.3b), and for this reason, no significant step height differences could be 

measured on the lipid monolayer. These results confirm the formation of a stable 

and compacted lipid layer on Si/SiO2 substrate (Figure 2.1a). The transferred 

graphene sheet on top of the lipid monolayer showed very flat and continuous 

domains (Figure 2.3c) with only a few wrinkles and cracks, as shown by 

fluorescence microscopy (Figure 2.2b).36 

Figure 2.4a shows the averaged Raman spectra for graphene on a Si/SiO2 

substrate (black line) and for graphene transferred above the lipid monolayer in 

air at room temperature (red line). The sharp, symmetric and intensive 2D peak 

(~2680 cm-1) and G peak (~1580 cm-1) indicates the presence of single layer 

graphene.37 The weak D peak at 1350 cm-1 is commonly present in CVD graphene, 

revealing a reasonable graphene quality. Specifically, the G band has been 

generally considered as an important indicator of doping effect in graphene.38-39 In 
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Figure 2.4b, the G peak of graphene (1585.8 cm-1) blue shifts if lipids are present 

underneath (1589.0 cm-1). Such blue shift can be attributed to the known p-doping 

of lipids,37 or due to the presence of an adsorbed water layer40 at the interface 

between graphene and the substrate. 

The imaging of the G peak position, its full width at half maximum (FWHM) and 

the intensity ratio of I(2D)/I(G) are summarized in the mapping data shown in 

Figure 2.4c. The G peak shows a larger blue shift and a much narrower width in the 

presence of the lipids as seen by the overall more reddish plots. Furthermore, the 

ratio of I(2D)/I(G) decreases for the lipid-graphene assembly compare to graphene 

on Si/SiO2 substrate. All of these evidences confirm the p-doping effect from the 

lipids underneath graphene.41-42 It is also worth to notice that the lipid-graphene 

assembly presents a more evenly color distribution than those of graphene on 

Si/SiO2, which demonstrates that the lipid monolayer underneath supplies a more 

uniform and smooth support to graphene. 
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Figure 2.4. Raman spectroscopy and imaging of graphene and of lipid-graphene assembly. 

a) Raman spectra of graphene (black line) and of the lipid-graphene heterostructure (red 

line) on a Si/SiO2 substrate. b) The Lorentz fitted G peak of the Raman spectra. c) Raman 

imaging of the G peak position, of its FWHM and the intensity ratio of I(2D)/I(G) for 

graphene (top) and for lipid-graphene heterostructure (bottom).  

 

For electrical characterization of the lipid-graphene assembly, metal electrodes 

(chromium, 30 nm) were deposited on the CVD graphene above the lipid 

monolayer using a physical mask. As a control, we fabricated another graphene 

device directly on the Si/SiO2 substrate using a PMMA assisted transfer method.28 

The graphene device on bare Si/SiO2 substrate exhibits a hysteresis of 10 V with 

an average charge neutrality point (CNP), VCNP of about +30 V (Figure 2.5a, black 

line). The relatively large hysteresis and VCNP can be ascribed to the well-known 

charge trap and p-doping effect of the Si/SiO2 substrate.43 Remarkably, the lipid 

monolayer favored the screening of the silicon substrate (Figure 2.5a, red line). As 
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a result, the electrical performances of the lipid-graphene device were improved 

with a reduced hysteresis loop (4 V) and a smaller average VCNP (23 V). We note 

here that the decrease of the estimated carrier mobility of graphene on the lipid 

monolayer (430 cm2/Vs compared to 640 cm2/Vs on bare substrate) most likely 

originates from the incomplete surface coverage of graphene on the lipid 

monolayer. Another possible origin of this lower mobility is maybe the presence of 

more wrinkles as depicted in Figure 2.3c. The graphene coverage with the lipid-

assisted transfer method was below 80%, whereas the graphene coverage on bare 

substrate was larger than 95% (observed by optical images). In addition, 

occasionally we also observed in our experiments that defective lipids (Langmuir-

Blodgett transfer ratio < 1) degraded the performance of graphene device by 

introducing even more p-doping effect (with VCNP > 80 V) and larger hysteresis (> 

25 V) (Figure 2.5a, green line). We have repeated the electrical measurements for 

another lipid-graphene sample. This sample exhibited a carrier mobility of 570 

cm2/Vs, a hysteresis of 1.5 V, and a VCNP of 8 V, closely resembling what we showed 

in Figure 2.5a. We noted here that we tested also a few defective samples. The 

carrier mobility, hysteresis, and VCNP of these defective samples demonstrated a 

wide distribution of ~ 100-700 cm2/Vs, ~ 6-11 V, and ~ 11-45 V, respectively. 

In Figure 2.5b, the intensity ratio between the D peak and G peak I(D)/I(G) 

revealed the disorder and defects on graphene, which can be ascribed to effects 

of the substrate. These substrate effects are primarily due to the roughness of 

Si/SiO2 substrate, the strain induced by the lipid monolayer underneath, and the 

possible adsorbed water layer at the Si/SiO2-lipid interface. Compare to graphene 

on the lipid monolayer (Figure 2.5b, middle), the I(D)/I(G) ratio of graphene on 

defective lipids (Figure 2.5b, bottom) is more intense. A higher I(D)/I(G) ratio is in 

line with the larger field-effect hysteresis (25 V in case of defective lipids 

supporting graphene compared to 4 V in case of graphene on lipid monolayer) and 

the higher p-doping (i.e., larger average VCNP of 80 V compared to 23 V for graphene 

on lipid monolayer). We note here that the I(D)/I(G) ratio of graphene on a bare 

Si/SiO2 substrate (Figure 2.5b, top) was indeed less intensive than the one for 

graphene on a lipid monolayer (Figure 2.5b, middle). Nevertheless, we observed a 

less pronounced field-effect hysteresis (4 V in case of lipid monolayer supporting 

graphene compared to 10 V in case of graphene on the bare substrate) and a 

smaller average VCNP (23 V compared to 30 V for graphene on the bare substrate), 
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which could be ascribed to the PMMA assisted transfer method we used for 

transferring graphene on bare substrate. 

 
 

Figure 2.5. Effect of the lipid monolayer on the electrical measurements of graphene. a) 

The back gate voltage (Vg) dependent sheet resistance (R) of graphene on Si/SiO2 substrate 

(black line), lipid-graphene assembly (red line), and on graphene with defective lipid 

monolayer (green line). b) Raman imaging of the intensity ratio of I(D)/I(G) for graphene on 

Si/SiO2 substrate (top), lipid-graphene assembly (middle), and graphene with defective 

lipid monolayer (bottom). 

 

2.3 Conclusions 

The observation of a unique re-ordering of lipid molecules in the presence of 

graphene reveals an increase in the packing of the lipid monolayer as graphene 

crowd surfs on the lipid monolayer. Remarkably, lipids ameliorated the electrical 

performances of the graphene, which is of high interest for using lipids as 

alternative soft substrates for graphene. Additionally, the direct contact between 

graphene and lipids is particularly attracting for measuring biochemical 

phenomena, for example in-situ a lipidic layer. Future experiments investigating 
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different lipids with different charges, different phase transition temperatures, 

and different lipid packing will be essential to elucidate the potential sensitivity of 

graphene to even more subtle changes in (bio)molecular conformations. A 

practical benefit of the lipid monolayer is also that large millimeter sized and 

continuous graphene domains are supported, avoiding polymers or any 

contaminants usually used during typical graphene transfers. 

Interfacing graphene with lipid molecules will offer a new sensing platform to 

chemically modulate the electrical properties of graphene by varying the lipids 

structure and is the first step towards sandwiching graphene within the 

hydrophobic core of a lipid bilayer (Chapter 3). 
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CHAPTER 3  

Encapsulation of graphene in the hydrophobic core of a lipid 

bilayer 

  

Publication in preparation: Lia M. C. Lima, Liubov A. Belyaeva, Hadi Arjmandi-Tash, 

Tetiana Mukhina, Giovanna Fragneto, Alexander Kros, Thierry Charitat, and 

Grégory F. Schneider. 

Theoretical simulations predicted that a lipid bilayer forms a stable superstructure 

when a sheet of graphene is inserted in the hydrophobic core of the bilayer. In this 

chapter – for the first time – a lipid-graphene-lipid assembly was experimentally 

constructed. By applying the Langmuir-Blodgett method, a monolayer of lipid was 

first deposited on a Si/SiO2 substrate and covered with a graphene monolayer 

transferred on top. A second lipid monolayer was transferred with the Langmuir-

Schaefer method on top of the existing lipid-graphene heterostructure, resulting in 

graphene sandwiched within the hydrophobic core of a lipid bilayer. The lipid-

graphene-lipid assembly presented a very stable and organized structure compared 

to a lipid bilayer without graphene. Using infrared spectroscopy, ellipsometry and 

neutron reflectometry the assembly process was characterized at every step, to 

demonstrate the stability of the superstructure. In the future, if graphene could be 

electrically probed in such an architecture, this work could yield to the 

measurement of biochemical phenomena occurring in situ a lipid bilayer. 
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3.1 Introduction 

Lipid bilayers are stable thermodynamic structures obtained from the self-

assembly between individual lipid molecules.1-2 The assembly process is driven by 

the amphiphilic behavior of the lipids that have a hydrophilic head group and 

hydrophobic tails. Depending on the method of preparation, a variety of lipid 

assemblies can be achieved, such as liposomes,3 supported lipid bilayers,4 or lipid 

monolayers.5 

Graphene is well known for having outstanding electrical properties and for 

being atomically flat.6-7 Here, we experimentally compare the morphology of a 

supported lipid bilayer and its counterpart with graphene encapsulated in the 

hydrophobic core, with the lipid tails facing graphene on both sides. Previous 

studies8-11 using molecular dynamic simulations predicted that graphene can be 

hosted in principle, inside of a lipid bilayer with no effects on the structural 

integrity of the bilayer.  

Chapter 2 demonstrated that upon coating a lipid monolayer (on Si/SiO2, lipid 

tails facing up) with graphene, the lipids underneath graphene showed a more 

ordered and organized structure compare to the plain lipid monolayer without 

graphene on top. In this Chapter, another lipid monolayer was transferred on top 

of the lipid-graphene structure described in Chapter 2 using the Langmuir 

Schaefer12 (LS) method.  

Graphene was encapsulated within the hydrophobic core of a 1,2-distearoyl-sn-

glycero-3-phosphocholine (DSPC) bilayer using a three step protocol: i) first a DSPC 

monolayer is transferred on top of a Si/SiO2 using the Langmuir-Blodgett13 method 

(LB, Figure 3.1a); ii) second, a graphene monolayer was deposited on top of the 

Si/SiO2-supported DSPC monolayer (Figure 3.1b, see Appendix II for experimental 

details), and iii) finally a last DSPC monolayer was transferred by LS on the lipid-

graphene heterostructure (Figure 3.1c). After each step of the assembly process, 

the construct was characterized systematically using infrared reflection absorption 

spectroscopy (IRRAS), ellipsometry and neutron reflectometry.  
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3.2 Results and discussion 

The saturated lipid DSPC (Figure 3.1d) was deposited at the air-water interface of 

a Langmuir trough and compressed to obtain a stable monolayer with a surface 

pressure (π) of 40 mN/m. Next, the lipid monolayer was transferred on a Si/SiO2 

substrate by retracting the substrate from the trough at a constant π. For the 

transfer of graphene on top of the lipid monolayer, the ordered lipids on the 

substrate were brought into contact with graphene floating on an ammonium 

persulfate solution which was used to etch the copper substrate, as described in 

Chapter 2. The LS method was used to transfer a final (second) DSPC lipid layer on 

top of graphene by carefully and controllably lowering the graphene horizontally 

into contact with the compressed lipid monolayer (π = 40 mN/m) at the air-water 

interface, obtaining a lipid-graphene-lipid structure. By this method, graphene was 

successfully sandwiched into the hydrophobic core of two lipid monolayers, 

leading to a lipid-graphene-lipid structure. 

 

Figure 3.1. Illustration of the lipid structure and schematics of the lipids assembly with 

graphene. a) Lipid monolayer transferred with the Langmuir-Blodgett method. b) Lipid 

monolayer with graphene on top. c) Graphene encapsulated in the hydrophobic core of a 

lipid bilayer. d) Chemical structure of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) 

lipid. 

 

After each step of the assembly process, the conformation of the lipid layers 

was studied using IRRAS at room temperature. Figure 3.2a shows the IRRAS spectra 

of the DSPC lipid monolayer deposited on a Si/SiO2 substrate (black line), after the 
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deposition of graphene on top of the monolayer (red line), and after the deposition 

of the second DSPC monolayer (green line). 

The absorption bands in Figure 3.2 correspond to the symmetric and 

asymmetric methylene (CH2) stretching vibrations of the lipid acyl chains. The 

peaks were fitted with a Gaussian model. A shift to lower wavenumbers in the 

symmetric CH2 vibration from 2911.0 ± 0.1 to 2909.3 ± 0.1 cm-1 and in the 

asymmetric CH2 vibration from 2844.1 ± 0.1 to 2842.1 ± 0.1 cm-1 is observed after 

the deposition of graphene above the DSPC lipid monolayer (Figure 3.2a). In 

addition to this red shift, an increase of the absorption band intensity was 

observed, corresponding to an expansion of the lipid chains which, as already 

discussed in Chapter 2, is unexpected as no more lipids were in contact with the 

sample. The shift is due to an increase of the trans conformation within the lipid 

chains,14 yielding an overall re-ordering of the lipids, in line with the results 

described in Chapter 2. Upon the transfer of a second lipid monolayer on top of 

graphene, the intensity of the absorbance bands increased even further, 

associated to an increase of the amount of lipids, i.e., the complete transfer of a 

DSPC monolayer on top of graphene.  

In order to understand how the second lipid monolayer structurally organizes 

on top of graphene and whether graphene does not destabilize two individual 

DSPC monolayers (i.e., the one on top and the one below graphene), a DSPC lipid 

bilayer on Si/SiO2 substrate without graphene was prepared as a control and 

compared to the DSPC-graphene-DSPC assembly (Figure 3.2b). Compared to the 

DSPC bilayer, the introduction of graphene in the hydrophobic core of the lipid 

bilayer showed a shift of the CH2 vibration peaks to higher wavenumbers 

(symmetric CH2 vibration from 2909.8 ± 0.1 to 2911.0 ± 0.1 cm-1 and in the 

asymmetric CH2 vibration from 2843.0 ± 0.1 to 2845 ± 0.2 cm-1), suggesting that 

the presence of graphene yields a slightly less ordered lipid bilayer than a plain 

lipid bilayer (Figure 3.2b). Nevertheless, according to the similarity in IRRAS 

spectra, graphene does not significantly disturb the IRRAS fingerprint of the lipid 

bilayer, suggesting the formation of a well-organized and still stable lipid-

graphene-lipid structure.  
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Figure 3.2. Sequential infrared reflection absorption spectroscopy (IRRAS) spectra of the 

stepwise assembly of DSPC monolayer and graphene yielding the encapsulation of 

graphene in a DSPC bilayer. a) DSPC monolayer deposited on Si/SiO2 substrate (black line), 

the DSPC monolayer after the deposition of graphene on top (red line), and the subsequent 

transfer of the second DSPC monolayer in the DSPC-graphene stack (green line). b) DSPC 

bilayer (black line) and DSPC with graphene in air in the hydrophobic core of the lipid bilayer 

(red line). 

 

Ellipsometry measurements were performed in order to determine the 

thickness of the phospholipid monolayer on Si/SiO2 substrates both in the 

presence and absence of graphene. The thickness of the SiO2 substrate was 

determined to be 289.2 ± 1.5 nm. Next, the first deposited DSPC monolayer had a 

thickness of 3.3 ± 0.3 nm (h1, Figure 3.3a), which is in agreement with the neutron 

reflectometry data for the thickness of a single DSPC monolayer with the 

contribution of a layer of water between the SiO2 substrate and the lipid head 

groups (see Appendix II, Table II.1) . After deposition of graphene on top of the 

DSPC monolayer, the thickness increased from 3.3 ± 0.3 to 4.8 ± 0.2 nm (h2, Figure 

3.3a). Similar to the results obtained with DPPC (Chapter 2), this increase in 

thickness indicates that the lipids adopted a more compact and well-organized 

structure, supporting the IRRAS data (Figure 3.2a). Nevertheless, an increase to 4.8 

nm is unexpected for a single DPSC monolayer, due to the head-to-tail length of 

DSPC. As discussed in Chapter 2 for DPPC, this unrealistic absolute value for the 

thickness of a lipid monolayer called for the necessity of in-depth analysis of each 

layer thicknesses using an alternative method, here the neutron reflectometry (see 

next section). The graphene layer thickness obtained was 0.4 ± 0.1 nm, proving the 
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successful transfer of a single graphene monolayer (see Appendix II for the details 

on the fitting procedure). 

Finally, a second DSPC monolayer was transferred on top of the graphene-lipid 

monolayer assembly. Such a transfer always results in the presence of a small 

water layer at the surface of the assembly. After drying in air, still some water could 

have remained at the surface. The ellipsometry data was therefore analyzed with 

and without a water layer in between the lipid head groups. In the absence of a 

water layer, the thickness obtained for the second DSPC monolayer was 2.6 ± 0.1 

nm (h3, Figure 3.3a), whereas adding the water layer, DSPC monolayer reached a 

thickness of 3.7 ± 0.1 nm (h4, Figure 3.3a), suggesting that the lipid head groups 

still retained some water in its vicinity, as the obtained value is comparable to the 

thickness measured for the first DSPC monolayer. Nevertheless, the neutron 

reflectometry data showed a thickness of 2.6 nm for the second DSPC monolayer 

transferred on top of graphene. 

 

Figure 3.3. Illustration of the lipid-graphene assembly and the corresponding ellipsometry 

data. a) Stepwise assembly of lipids with graphene yielding the encapsulation of graphene 

in the hydrophobic core of a DSPC bilayer: DSPC monolayer on a Si/SiO2 substrate, 

deposition of a graphene monolayer on top of the DSPC monolayer and transfer of the 

second DSPC monolayer (with and without water on top). b) Ellipsometry data thicknesses 

of DSPC monolayer (h1), DSPC with graphene on top (h2), and DSPC with graphene and the 

transfer of a second DSPC monolayer without (h3) and with water (h4) on top.  
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In addition to the IRRAS and ellipsometry studies, neutron reflectometry 

measurements were also performed. Neutron specular reflectivity is a non-

destructive technique which provides information about the thickness, roughness, 

hydration and composition of the lipid layers at atomic scales.15-16 Similar to 

ellipsometry, it resolves several different layers each one with a specific scattering 

length density (SLD). For this purpose, instead of the standard Si/SiO2 substrates, 

the samples were prepared on 5x5 cm2 silicon blocks (see Appendix II for 

experimental methods). The silicon blocks were cleaned and measured with three 

different contrasts (H2O, D2O and silicon matched water, SMW). The silicon block 

had a SiO2 layer thickness of 1 nm.15 

The neutron reflectivity measurements of the DSPC in the absence and 

presence of graphene on the silicon blocks (5x5 cm2) were stored at all times in a 

liquid environment (hydrophilic lipid head groups of the second lipid monolayer 

were always facing water) by placing the sample inside a liquid cell for the duration 

of the measurements. The specular reflectivity profiles (Figure 3.4a) of DSPC lipids 

at two different contrasts, D2O (green) and SMW (blue) and the corresponding SLD 

data (Figure 3.4c), revealed the formation of a lipid bilayer on top of the Si/SiO2 

block. Particularly, the specular reflectivity profiles of the DSPC bilayer with 

graphene at three different contrasts, H2O (blue), SMW (green) and D2O (red), 

demonstrated that the integrity of the lipid bilayer was preserved when graphene 

was present in between the lipid monolayers (Figure 3.4b). The comparison of SLD 

profiles for the lipid bilayer with graphene encapsulated (solid lines, Figure 3.4b 

and Figure 3.4d), and the SLD profiles of a lipid bilayer without graphene (dashed 

lines, Figure 3.4b and Figure 3.4d), showed similar profiles suggesting that 

graphene does not strongly affect the structure of the lipid bilayer (Figure 3.4b and 

Figure 3.4d), in line with the IRRAS measurements (Figure 3.2b). The results 

showed no off-specular signal even if the lateral coverage of graphene was not 

homogeneous and continuous all over the sample.  The graphene monolayer does 

not significantly alter the reflectivity curve, most likely due to the inherent one 

carbon atom thickness and the low graphene surface coverage (<50%), resulting in 

a SLD value lower than expected (Figure 3.4d). Therefore, the neutron reflectivity 

results do not prove the presence of the graphene sheet in the lipid bilayer, but 

clearly demonstrate that the integrity of the bilayer is preserved. Nevertheless, the 

transfer of graphene on top of the lipid monolayer is confirmed with the 
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ellipsometry measurements and with the Raman spectroscopy measured in 

Chapter 2, Figure 2.4. 

 

Figure 3.4. Neutron reflectivity (q4R) characterization of a supported DSPC bilayer on a 

silicon block with and without graphene encapsulated in the hydrophobic core of the 

bilayer. a) DSPC bilayer at 25 °C with two different contrasts, D2O (green line) and silicon 

matched water (SMW, blue line). b) DSPC bilayer at 25 °C with graphene in the hydrophobic 

core of the lipid bilayer with three different contrasts: H2O (blue), SMW (green) and D2O 

(red). The black lines correspond to the best fit and dashed black lines correspond to a fit 

without graphene (only the lipid bilayer). c) The corresponding SLD for the DSPC bilayer 

with two different contrasts, D2O (green line) and SMW (blue line). d) The corresponding 

SLD for the DSPC-graphene-DSPC assembly with three different contrasts: H2O (blue line), 

SMW (red line) and D2O (green line). The dashed black lines correspond to a fit without 

graphene (only the lipid bilayer). 
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3.3 Conclusion 

The successful assembly of graphene within the hydrophobic core of a DSPC bilayer 

was demonstrated and characterized in detail using IRRAS, ellipsometry and 

neutron reflectivity measurements. The characterization techniques are in 

agreement and confirmed the stable arrangement of lipids bellow and above 

graphene, with no significant perturbation compared to a plain lipid bilayer. The 

neutron reflectivity yielded data on the fine structure of the assembly, and 

concluded that the presence of graphene preserved the integrity of the lipid 

bilayer. The demonstration of placing graphene within the hydrophobic core of a 

lipid bilayer opens up a route of directly probing biological membrane related 

processes in situ using graphene as an electrical sensor.  
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CHAPTER 4  

Effect of temperature on the structure of lipids in the 

presence of graphene 

 

  

Understanding how lipids respond to changes in temperature is important to design 

stable and well-defined lipid-graphene assemblies. Here, the effect of temperature 

on the structure and stability of a lipid monolayer with and without graphene on 

top was studied. Above the phase transition temperature, lipids presented a fluidic 

phase resulting in a decrease in layer thickness and order as measured by atomic 

force microscopy (AFM) and infrared spectroscopy. Furthermore, graphene acts as 

a protecting layer preventing the lipids underneath graphene from being removed, 

after a washing step using the surfactant hexadecyltrimethylammonium bromide 

(CTAB). Infrared spectroscopy studies revealed that upon cooling the temperature 

from above to below the phase transition temperature, the lipids underwent the 

expected conformation changes from a more ordered to a less ordered structure. 

The changes in lipid conformation with graphene transferred on top, above and 

below the phase transition temperature, revealed a stable heterostructure 

enabling the design of well-defined biosensors with graphene. 

Manuscript in preparation: Lia M. C. Lima, Hadi Arjmandi-Tash, Grégory F. 

Schneider.  
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4.1 Introduction 

In Chapter 2 and 3 the formation of lipid-graphene assemblies were characterized, 

i.e. namely graphene on a lipid monolayer and graphene encapsulated within the 

hydrophobic core of a lipid bilayer. In this Chapter, the effect of temperature on 

the stability of lipid-graphene assemblies is investigated. 

A lipid assembly can exist in different phases characterized by the 

conformational order and lateral diffusion of the lipids, depending on 

temperature, composition, concentration, pressure and pH.1 More specifically, 

phospholipids undergo a gel-to-liquid phase transition temperature (Tm) which is 

dependent on the chemical composition of the lipid head group, lipid size, and 

structure of the hydrocarbon chain.2 At very low temperatures, the phospholipids 

are typically packed in a sub-gel phase (Lc) with a well-organized and compact 

structure. Upon heating, a transition to a gel-phase (Lβ’) occurs where the 

hydrocarbon chains start to present some degree of flexibility. After increasing the 

temperature further, the phospholipids undergo a pre-transition with a rippled 

arrangement (Pβ’) in the structure and, above the Tm, a liquid-crystalline phase (Lα) 

is formed (Figure 4.1). The lipids display a trans to gauche conformation change in 

the acyl chain with a high increase on the mobility.3-4  

The phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) used in 

this study exhibits mainly two distinct phase transitions. At room temperature (RT), 

DPPC presents a Lβ’ phase with a tilted arrangement. Upon increasing the 

temperature, the lipids undergo a Pβ’ pre-transition at ~35 °C followed by the main 

phase transition Tm (gel-to-liquid crystal) at ~41 °C, resulting in a fluidic phase Lα.5-

6 
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Figure 4.1. Schematic illustration of the molecular organization of lipid bilayers at different 

phase temperatures: crystalline (Lc), tilted (Lβ’), rippled (Pβ’) and fluid (Lα) phase. 

 

Atomic force microscopy (AFM) was used here to image the surface of the lipid 

monolayer with and without graphene on top and study the morphology and 

lateral organization of the lipids at a nanometer resolution.7 Furthermore, AFM 

was performed to monitor the effect of temperature on the structure of the 

membrane.8 In fact, the temperature influences the packing and the lateral 

interactions between the lipid molecules, resulting in AFM images from which the 

step heights were extracted.9-11 Increasing the temperature of the lipids 

destabilizes the lipid membrane with a concomitant decrease of the thickness of 

the lipid monolayer, suggesting a lateral expansion of the lipids on the surface. 

Complementary to AFM, infrared reflection absorption spectroscopy (IRRAS) 

was used to study the structure of the lipid monolayer, particularly to monitor the 

phase transition temperatures.12-13 As already mentioned in Chapter 3, IRRAS also 

yields information on the vibrational frequency of the lipid hydrocarbon chains.12 

Depending on the temperature state of the lipids, i.e., the phase transition 

temperature Tm, a variation on the absorption bands can be observed and 

monitored by IRRAS spectroscopy. Above the Tm, the absorption bands show 

typically a broadening of the vibration peak and a decrease of the peak intensity.13  
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In this study, AFM and IRRAS measurements were dually performed to 

investigate the effect of temperature on the structure and stability of lipids with 

and without a graphene layer on top of the lipid monolayer. Lipids tend to decrease 

their thickness above the Tm and lipids covered with graphene cannot be removed 

even after a washing step involving organic solvents, such as chloroform or an 

aqueous solution of hexadecyltrimethylammonium bromide (CTAB). Additionally, 

IRRAS revealed a decrease in peak intensity and a shift to higher wavenumbers 

with increasing temperature, characteristic of a lower lipid molecular order. 

Remarkably, the lipids underneath graphene are less susceptible to phase 

transitions than lipids not covered with graphene.  

4.2 Results and discussion 

On the air-water interface of a Langmuir trough DPPC lipids were deposited, 

compressed to a surface pressure (π) of 30 mN/m and transferred to Si/SiO2 

substrates using the Langmuir-Blodgett method (Figure 4.2a). A chemical vapor 

deposition (CVD) graphene layer was then transferred on top of the DPPC 

monolayer (Figure 4.2b), as described previously in Chapter 2. 

For AFM experiments, the samples were treated with one heating-cooling cycle 

(RT – 60 °C – RT, above the Tm of DPPC) and left at 60 °C for five minutes using a 

hot plate. Prior to imaging, the samples were cooled down to RT. Upon imaging, 

the samples were subsequently subjected to five heating-cooling cycles (RT – 60 °C 

– RT) and subsequently scanned by AFM. After that, a second heating-cooling cycle 

(RT – 100 °C – RT) was performed five times for five minutes each time and the 

topography of the samples was measured again.  

Afterwards, a second DPPC lipid monolayer was transferred using the Langmuir-

Schaefer (LS) method14 at π = 30 mN/m on top of the graphene layer, forming a 

lipid-graphene-lipid assembly (Figure 4.2c). The sample was characterized by AFM 

and subsequently cleaned with chloroform by dipping the sample into the 

chloroform several times and scanned again by AFM. As a control measurement, a 

plain DPPC monolayer (π = 30 mN/m) on Si/SiO2 substrate was also characterized 

by AFM.  
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Figure 4.2. Schematic illustration of graphene-lipid constructs studied in this chapter. a) A 

DPPC lipid monolayer assembled on Si/SiO2 substrate. b) The DPPC monolayer with a layer 

of graphene deposited on top. c) A graphene monolayer encapsulated in between two 

DPPC layers (tails facing towards the graphene). 

 

A transfer ratio (Tratio) of approximately one for the DPPC monolayer transferred 

on Si/SiO2 substrate was obtained, indicative of complete transfer of a well-

ordered lipid monolayer. Optical images of graphene transferred on top of the 

DPPC monolayer are shown in Figure 4.3. The graphene layer stayed intact on top 

of the lipids (in purple) during the heating cycles (Figure 4.3a, b, c). At 100 °C (Figure 

4.3d), graphene became unstable and folded in some parts of the sample. 

Graphene remained intact after the transfer of a second DPPC monolayer on top 

(Figure 4.3e). When the sample was rinsed with chloroform, the graphene sheet 

was partially removed from the sample (Figure 4.3f).  

To investigate whether the heating-cooling cycles and the transfer of a second 

lipid monolayer affected the morphology of the DPPC layer(s), AFM imaging was 

performed. Analysis of height step profiles in the AFM images of a DPPC monolayer 

transferred using the LB method at π = 30 mN/m on a Si/SiO2 substrate (Figure 

4.4a) revealed a thickness of 1.8 ± 0.2 nm, which is slightly smaller compared to 

literature data (i.e., 2.4 – 2.8 nm).15 The lower thickness could be associated to the 

hardness of the AFM tip (70 kHz nominal resonance frequency, due to the rigid 

graphene surface) used in this work compared to softer tips typically used for 

scanning lipid membranes.16  
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Figure 4.3. Optical bright field imaging of graphene on a lipid monolayer transferred on 

Si/SiO2 substrate. a) Graphene transferred above a DPPC lipid monolayer. b) DPPC-

graphene assembly after one cycle of heating-cooling (RT – 60 °C – RT). c) DPPC-graphene 

assembly after five cycles of heating-cooling (RT – 60 °C – RT). d) DPPC-graphene assembly 

after five cycles of heating-cooling (RT – 100 °C – RT). e) After transferring a second DPPC 

lipid monolayer on top of graphene. f) DPPC-graphene assembly after rinsing the sample 

with chloroform. 

 

After one heating-cooling cycle the DPPC monolayer above the Tm, a decrease 

of the thickness to 1.2 ± 0.2 nm is observed, corresponding to a change from a gel 

Lβ’ to a liquid Lα phase (Figure 4.4b). After five heating-cooling cycles (RT – 60 °C – 

RT), the lipid patches became more uniform and formed a continuous lipid 

monolayer on the surface of the substrate, rendering impossible to measure the 

lipids step height (Figure 4.4c). The roughness measured on flat sections of the 

image was 0.26 ± 0.10 nm. The same uniformity was observed after five heating-

cooling cycles (RT – 100 °C – RT, Figure 4.4d), however the roughness decreased to 

0.22 ± 0.10 nm.  

After the transfer of a second lipid monolayer on top of the first DPPC 

monolayer assembly, the lipids tended to form small agglomerates instead of 

spreading evenly over the surface (Figure 4.4e). Indeed, the transfer ratio of the 

second lipid monolayer using the LS method was < 1, indicative of an incomplete 
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lipid monolayer transfer. This lower transfer ratios is in agreement with the 

formation of lipid agglomerates with thicknesses ranging from 2.1 ± 0.3 to 4.9 ± 0.3 

nm, as measured by AFM. In addition, the sample was not kept in a liquid 

environment, leading to a less stable lipid bilayer as the hydrophilic lipid head 

groups are forced to face the air in these dry samples, as observed previously.17 

Next, the sample was rinsed with chloroform (Figure 4.4f) with a decrease of the 

roughness to 0.21 ± 0.10 nm. Surprisingly, the lipid agglomerates disappeared from 

the surface, probably due to the instability of the second lipid layer in air. 

 

Figure 4.4. AFM intermittent contact mode images in air and the corresponding step 

heights of 5x5 µm2 of DPPC on Si/SiO2 substrate. a) DPPC monolayer transferred by the LB 

method at 30 mN/m on Si/SiO2. b) DPPC monolayer after one cycle of heating-cooling (RT 

– 60 °C – RT). c) DPPC monolayer after five cycles of heating-cooling (RT – 60 °C – RT). d) 

DPPC monolayer after five cycles of heating-cooling (RT – 100 °C – RT). e) Second DPPC 

monolayer transferred on top of the first DPPC monolayer. f) DPPC lipids after rinsing the 

sample with chloroform. 

 

Next, graphene was deposited on top of a DPPC monolayer on Si/SiO2 and a 

heating-cooling cycle was performed. AFM was used to study whether the lipids 

underneath and surrounding graphene (i.e., lipids not covered with graphene, for 

example at cracks) change in morphology upon a temperature cycling and upon 
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rinsing the sample with chloroform and an aqueous solution of CTAB. Surprisingly, 

the lipid monolayer on the surroundings of graphene showed less lipid patches 

(Figure 4.5a) compared to the lipid monolayer on Si/SiO2 (Figure 4.4a). The 

measured graphene thickness was 1.3 ± 0.1 nm. After a heating cooling cycle (RT – 

60 °C – RT), the lipids on the surroundings of graphene rearranged in lipid patches 

and the graphene decreased slightly its thickness to 0.9 ± 0.1 nm (Figure 4.5b). 

After five heating-cooling cycles (RT – 60 °C – RT), the lipid patches spread more 

evenly over all the surface (Figure 4.5c) and a similar thickness for the graphene 

layer was measured, i.e., 1.0 ± 0.1 nm. After five more heating-cooling cycles (RT – 

100 °C – RT), the lipids presented a more uniform and continuous layer with some 

parts of the graphene folded on itself or partially removed from the substrate 

(Figure 4.5d), as also confirmed by optical microscopy (Figure 4.3d). The graphene 

thickness measured on a monolayer remained unchanged, i.e. 1.0 ± 0.2 nm. Upon 

transferring the second lipid layer on top of DPPC coated with graphene, small lipid 

agglomerates formed (Figure 4.5e). The thickness of graphene increased to 1.5 ± 

0.3 nm, as some lipid aggregates were also present on the graphene surface, 

yielding a thicker graphene. As also observed on the optical images, Figure 4.3f, 

rinsing the sample with chloroform also yielded the folding and the partial removal 

of the graphene from the surface (Figure 4.5f). The small lipid agglomerates were 

also removed from the sample, as observed for Si/SiO2 (Figure 4.4f). 
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Figure 4.5. AFM intermittent contact mode images in air and the corresponding step 

heights of 5x5 µm2 of graphene transferred on top of DPPC on a Si/SiO2 substrate. a) 

Graphene transferred above a DPPC monolayer. b) Graphene on a DPPC monolayer after 

one cycle of heating-cooling (RT – 60 °C – RT). c) Graphene on DPPC monolayer after five 

cycles of heating-cooling (RT – 60 °C – RT). d) Graphene folded on DPPC monolayer after 

five cycles of heating-cooling (RT – 100 °C – RT). e) Second DPPC monolayer transferred on 

top of a monolayer of DPPC coated with graphene. f) DPPC-graphene-DPPC after rinsed 

with chloroform. 

 

In order to confirm whether the lipids remained at the surface of the substrate 

after a chloroform washing step, fluorescence microscopy experiments were 

performed. For this, 1 mol% of 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Liss Rhod PE) was 

added to the DPPC lipids prior to compression. A lipid monolayer on Si/SiO2 with a 

graphene layer on top was obtained and imaged with fluorescence microscopy 

before and after a washing step with chloroform (Figure 4.6a and b, respectively). 

The lipids (bright areas) underneath graphene (black areas) and on the 

surroundings of graphene, presented a continuous and uniform layer, but after 

being rinsed with chloroform, large lipid agglomerates formed on the surface 

(Figure 4.6b). Surprisingly, these large agglomerates were not observed on the 

AFM images (Figure 4.5f). Nevertheless, the chloroform does not completely 
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remove the lipids from the surface of the substrate. To test whether it is possible 

to completely remove the lipids, the substrate was rinsed with a 10 mM CTAB 

aqueous solution known to solubilize lipids efficiently.18 For this, the sample was 

dipped vertically up and down seven times in a CTAB solution and finally washed 

with ultrapure water to remove the excess of surfactant. The sample showed no 

traces of the fluorescent lipids anymore, confirming that CTAB successfully 

dissolved all the lipids from the surface (Figure 4.6c). However, it is not possible to 

conclude at this stage whether graphene was also removed by CTAB, as graphene 

quenches the fluorescence of the lipids underneath. AFM imaging was performed 

to investigate whether graphene was still present (Figure 4.6d, e, f). 

 

Figure 4.6. Fluorescence and AFM images (5x5 µm2) in air of graphene-lipid assemblies. a) 

Fluorescence image of graphene (black areas) transferred above a DPPC:Liss Rhod PE (99:1) 

monolayer (light areas). b) Fluorescence image of graphene (black areas) transferred above 

a DPPC:Liss Rhod PE (99:1) monolayer (light areas) after being rinsed with chloroform. c) 

Fluorescence image of a clean surface – no lipid fluorophores – after being rinsed with 

CTAB. d) AFM image of graphene transferred above a DPPC Liss Rhod PE (99:1) monolayer. 

e) AFM image of graphene transferred above a DPPC Liss Rhod PE (99:1) monolayer after 

being rinsed with chloroform. f) AFM image of graphene transferred above a DPPC Liss 

Rhod PE (99:1) monolayer after being rinsed with CTAB. 
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The AFM images of graphene deposited on a DPPC:Liss Rhod PE (99:1) 

monolayer revealed a graphene thickness of 1.4 ± 0.2 nm (Figure 4.6d), in 

agreement with the thickness of the previous sample with only DPPC lipids (Figure 

4.5a). Again, after rinsing the sample with chloroform, some parts of the graphene 

folded and others were partly removed from the sample. However, graphene was 

present at different positions (Figure 4.6e) with an equivalent thickness of 1.3 ± 0.2 

nm. After rinsing the sample with CTAB, the thickness of graphene (which was 

again partially removed from the surface) decreased to 0.8 ± 0.1 nm (Figure 4.5f). 

Such a lower height for graphene suggests that CTAB removed the lipids near the 

edges of graphene (as observed by the fluorescence image in Figure 4.6c). In 

addition, this lower step height indicates the presence of a shield–graphene layer 

where graphene is on top of the lipid monolayer until the edge where graphene is 

in direct contact with the Si/SiO2 substrate with no lipids underneath, therefore 

resulting in a slight decrease of the measured thickness of graphene at the edge 

on the AFM step profiles (Figure 4.7c). AFM could not quantify how far from the 

edges the lipids underneath graphene were removed. The assumption here is that 

if all the lipids underneath graphene would have been removed by CTAB, graphene 

would have desorbed from the substrate. The step heights for all the samples 

analyzed are shown in Figure 4.7a and b. 

 



78 
 

 

Figure 4.7. Step heights of graphene and lipids measured by AFM. a) Thickness of graphene 

on a DPPC monolayer before and after one cycle heating cooling (RT – 60 °C – RT); after 

five cycles of heating-cooling (RT – 60 °C – RT); after five cycles of heating-cooling (RT – 100 

°C – RT); after the transfer of a second lipid monolayer on top of DPPC-graphene; after 

being rinsed with chloroform and; finally cleaned with an aqueous solution of 10 mM of 

CTAB. b) Thickness of the lipid monolayer before and after one cycle heating cooling (RT – 

60 °C – RT); and after the transfer of a second lipid monolayer on top without graphene. c) 

Illustration of the shielded-graphene where graphene acts as a protective layer for the lipid 

monolayer underneath assembled on a Si/SiO2 substrate. 

 

For IRRAS experiments, temperature cycles were carried using a resistive heater 

positioned on the sample holder used for IRRAS. The sample (Si/SiO2, DPPC 

monolayer and graphene on top) was mounted on the resistor using silver paste 

(see Figure III.1a, Appendix III). Direct current (DC) biasing the resistor heated up 

the sample. A commercially available probe thermometer including a 

thermocouple glued onto the sample was used to monitor the temperature. The 

sample was subjected to heating-cooling cycles (RT – 78 °C – RT) by slowly 

increasing or decreasing (respectively) the voltage applied to the sample step by 

step (see Appendix III for experimental details). The shifts on the absorption bands 

of the symmetric and asymmetric methylene stretching vibrations of the lipid 
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chains for different temperatures indicated a change in lipid conformation, from a 

gel Lβ’ to a liquid Lα phase (Figure 4.8). The slow increase of the temperature step-

by-step (see Figure III.1b, Appendix III) resulted in melting of the hydrocarbon lipid 

chains, as shown by the decreasing intensities of the symmetric and asymmetric 

CH2 vibration peaks and the shift of the peak maximum to higher wavenumbers 

(Figure 4.8a). Decreasing the temperature to RT showed the same trend but in 

opposite directions (Figure 4.8b): the absorption bands showed increased 

intensities and shifted to lower wavenumbers upon cooling, characteristic of a 

higher molecular order of the lipids. Notably, around the Tm of DPPC (42 °C), the 

absorption peak revealed a slightly higher shift compared to lower temperatures 

(34 °C). This peculiar behavior was also observed in previous studies, suggesting an 

“atypical softening”, i.e. a sudden unexpected decrease in the ordering of the lipids 

around the Tm.10 

 

Figure 4.8. Infrared reflection absorption spectroscopy (IRRAS) spectra of a DPPC 

monolayer underneath graphene. a) Absorption bands of the symmetric and asymmetric 

methylene stretching vibrations of the lipid chains with increasing temperatures, 34, 42, 

55, 67, 78 °C. b) Absorption bands of the symmetric and asymmetric stretching vibrations 

of the lipid chains with decreasing temperatures steps: 78, 67, 55, 42, 34 °C.  

 

4.3 Conclusions 

In this work the effect of temperature on the lipids structure and lateral 

organization was studied by AFM and IRRAS spectroscopy. By AFM, topographies 

and step heights of the supported DPPC monolayer with and without graphene on 

top were analyzed in detail. The lipids decreased their thickness upon increasing 

the temperature to 60 °C – above the Tm of DPPC, 41 °C – and laterally diffused on 
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the surface of the Si/SiO2 substrate. Upon cycling the temperature five times 

between room temperature and 60 °C (respectively 100 °C), the lipids covered all 

the substrate surface forming a continuous lipid monolayer, characteristic of the 

Lα fluidic phase. Heating to 100 °C yielded graphene to fold, at best to be partially 

removed from the surface. The transfer of a second lipid monolayer yielded the 

formation of lipid agglomerates both on the lipid monolayer and on graphene 

which could be subsequently removed by rinsing the sample with chloroform.  

Additionally, the surfactant solution (CTAB) removed all the lipids from 

underneath the edges of graphene, while minimally affecting the lipids underneath 

graphene. Furthermore, IRRAS experiments demonstrated that the lipid 

monolayer was re-organized upon temperature variations as evidenced from the 

shifts of the wavenumbers on the intensity of the symmetric and asymmetric CH2 

vibrations bands, attributed to a variation of the conformational order and 

organization of the lipids. 

In conclusion, covering a lipid monolayer with graphene yields a graphene 

heterostructure that is stable upon temperature variations (here up to 100 °C), 

allowing the construction of temperature stable sensors based on graphene.  
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CHAPTER 5  

Assembly and structural characterization of lipids on graphite 

and on graphene 

  

Lipids organize in distinct molecular assemblies on graphene, depending on their 

chemical structure, the substrate underneath graphene and the experimental 

conditions used for lipid deposition. Using infrared (IR) spectroscopy and quartz 

crystal microbalance with dissipation monitoring (QCM-D), the formation and 

structure of lipids with different charges, saturations and chains lengths deposited 

on graphene was studied systematically. The IR study revealed that saturated lipids 

exhibited a higher molecular order structure on the graphene surfaces compare to 

unsaturated lipids, where cationic unsaturated lipids yielded a more organized lipid 

assembly in comparison to the zwitterionic and anionic unsaturated lipids. QCM-D 

measurements revealed the wetting transparency effect on the assembly of 

zwitterionic lipids on graphene with different supporting materials: the formation 

of a lipid bilayer on graphene transferred on SiO2 and the adsorption of intact 

liposomes on graphene transferred on gold. Understanding how a set of different 

lipids interact and assemble on the surface of graphene transferred on different 

substrates revealed that the wetting transparency phenomena also impact how 

lipids interact with graphene.  

Publication in preparation: Lia M. C. Lima, Xiaoyan Zhang and Grégory F. Schneider. 
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5.1 Introduction 

Several discrepancies exist regarding how lipids of different molecular composition 

assemble on the basal plane of graphene.1-8 Some papers claim the formation of 

lipid bilayers,1-2, 4, 6 whereas others report the formation of a lipid monolayer3, 5, 7-8 

with hydrophobic chains facing graphene. Moreover, very few lipids were studied, 

limiting the scope of understanding of what chemical building blocks in lipids drive 

their assembly on graphene. So far, lipids were typically assembled on graphene 

using the vesicle fusion (VF) method1-6 or using the so-called dip-pen 

nanolithography technique,7-8 where lipids such as 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) or 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC) tend to form a lipid bilayer, while 1,2-dioleoyl-sn-glycero-

3-phosphocholine (DOPC) and 1,2-dioleoyl-3-trimethylammonium-propane 

(DOTAP) lead to the formation of a lipid monolayer. Notably, the wetting 

transparency of graphene9 was suggested to play a role on the formation of a lipid 

bilayer on graphene particularly in the case where graphene has been transferred 

on hydrophilic substrates.2 In addition, the typical characterization methods used 

to characterize the lipid-graphene structures only comprise fluorescence 

microscopy and atomic force microscopy (AFM) techniques.  

Here, four different lipids were incubated on graphite and graphene using the 

VF and the Langmuir-Schaefer (LS) methods and were characterized by infrared 

(IR) spectroscopy and quartz crystal microbalance with dissipation monitoring 

(QCM-D).10 In the VF method,11 liposomes are formed, deposited and adsorbed on 

solid substrates until the lipid vesicles rupture and form a stable layer on the 

surface of the substrates.12 The formation and rupture of the lipids on a surface 

depends on several parameters such as temperature,13 vesicle size,14 buffer 

solution,15 vesicle-vesicle interactions16 and the interactions between the vesicles 

and the substrate.11 In the LS technique however, the lipids are compressed on a 

Langmuir trough until a desired surface pressure is reached, and then transferred 

onto a solid substrate by contacting the substrate horizontally with the lipid 

monolayer floating at the surface of the Langmuir trough (see Appendix IV for 

experimental details). IR spectroscopy was used to analyze the structure, order and 

stability of the lipids assembled using LS and VF methods on chemical vapor 

deposition (CVD) graphene-on-copper, and on highly oriented pyrolytic graphite 

(HOPG) substrates. 
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QCM-D is a unique technique that allows to study dynamic processes at the 

interface between a solid and a liquid. Over the past two decades, QCM was largely 

used to study, for instance the formation of lipid monolayers and bilayers on 

metals, SiO2 or gold substrates.10 QCM-D has however not yet been systematically 

used to study lipid-graphene interactions.3, 17 As described in Chapter 2 and 3, lipids 

can form stable structures using the Langmuir-Blodgett technique if graphene is 

assembled on top, particularly graphene on monolayers of lipids and graphene 

encapsulated in the hydrophobic core of a lipid bilayer. Dynamic studies (i.e., the 

kinetics of lipids interacting with graphene, for example with the VF method) are 

best accessible using QCM-D. In addition, the effect of the wetting transparency 

on how lipids – from liposomes – rupture on graphene transferred onto different 

substrates was investigated systematically. CVD graphene was transferred on SiO2 

and on gold QCM crystal sensors using the standard PMMA assisted transfer 

method.18 Distinct lipids presented different assemblies on graphene and the 

wetting transparency also played a role on how lipids arranged on the surface of 

graphene.  

5.2 Results and discussion 

In a Langmuir trough, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phospho-L-

serine (DOPS) lipids were dropwise deposited at the air-water interface from a 

chloroform-methanol solution, and compressed to a surface pressure (π) of 30 

mN/m and transferred using the LS method to different substrates (Figure 5.1a), 

namely HOPG and graphene-on-copper. DPPC is in a gel phase at room 

temperature and presents characteristic phase states upon compression: a 

gaseous state for π close to 0 mN/m, a solid state for π ~ 30 mN/m, passing through 

a plateau – π ~ 10 mN/m – where the lipid molecules undergo a transition from a 

fluidic to a condensed phase (Figure 5.1a, solid line).19 DPPC has a phase transition 

temperature of 41 °C, DOPC of -20 °C, DOTAP of 0 °C and DOPS of -11 °C all with 

chains composed of 18 carbons, except for DPPC (16 chains composed of 

carbon).20-22 In the VF method, the liposomes are deposited and ruptured (or 

adsorbed) on the surface of different substrates forming e.g., supported lipid 

bilayers (Figure 5.1b, top) or supported lipid monolayers (Figure 5.1b, bottom), 

depending on the properties of the substrates (for instance, gold vs SiO2).17  
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Figure 5.1. Different experimental protocols, namely Langmuir-Schaefer (LS) and vesicle 

fusion (VF) yielding the formation of a lipid monolayer and bilayer on solid substrates. a) 

Surface pressure-area isotherms of DPPC, DOPC, DOTAP and DOPS lipids and the 

subsequent transfer of the compressed lipids to a substrate by the LS method. b) Schematic 

representation of the possible formation of supported lipid bilayers (top) or supported lipid 

monolayers (bottom) by VF on substrates.  

 

To study the lipid assembly, different parameters were investigated. The 

chemical structure of the lipids (Figure 5.2a), the influence of the hydrophobicity 

of four different substrates (graphene-on-copper, HOPG, graphene-on-SiO2 and 

graphene-on-gold), and the difference on the experimental protocol to deposit the 

lipids (LS or VF). 

To assess the structural information and organization of the four types of lipids 

on graphene-on-copper and HOPG, attenuated total reflectance infrared 

spectroscopy (ATR-IR) was performed. ATR-IR data was collected for the four 

different lipids transferred on graphene-on-copper, and on HOPG by the LS and VF 

methods (black and red respectively, Figure 5.2b). The absorbance peaks of the 

symmetric and asymmetric CH2 stretching vibration band were fitted with a 

Gaussian model and the wavenumbers of the maximum were plotted against the 

experimental conditions (for at least seven different samples for each condition, 

see Appendix IV and Figure IV.1 for details). All the samples were measured in a 

dry state. The absorption bands of the lipid acyl chains are known to vary if the 
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physical properties of the lipids change.23 An upward wavenumber shift of the 

absorption bands corresponds to an increase in disorder of the hydrocarbon 

chains, and consequently an increase of the lipid mobility within the 

monolayer/bilayer.24 As expected, the saturated DPPC presented a more ordered 

structure in comparison with the other three unsaturated lipids independently of 

their charge (zwitterionic, cationic or anionic), due to the well-organized lipid 

chains all in a trans configuration.25 Unsaturated alkene bonds in the lipid chains 

promoted a higher degree of disorder due to an increase of the gauche conformers 

in the lipid chains26 and therefore an upward shift of the wavenumbers (Figure 

5.2b). Notably, the cationic unsaturated DOTAP lipid presented a higher molecular 

stability in comparison with the zwitterionic unsaturated DOPC and the anionic 

DOPS. The unsaturated lipids studied here possess the same chains length and two 

unsaturated alkene bonds, thus the difference can only be attributed to the 

composition of the head groups and particularly their charges. A previous study5 

highlighted that the cationic DOTAP lipid forms a continuous and stable lipid layer 

on graphene on Si/SiO2 using the VF method, whereas negatively charged lipids did 

not interact (i.e. no assembly) on graphene. In fact, in this work the anionic DOPS 

showed in general a lower structural order compared to the other lipids studied, 

independently of the substrate or the experimental assembly protocol, as revealed 

by the shift of the CH2 stretching bands to higher wavenumbers (Figure 5.2b). 
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Figure 5.2. Lipid structures and wavenumbers of the CH2 vibrations infrared absorbance 

peaks for the four lipid studied and deposited on graphene-on-copper and on highly 

oriented pyrolytic graphite (HOPG) using vesicle fusion (VF) and Langmuir-Schaefer (LS). a) 

Molecular structure of DPPC, DOPC, DOTAP and DOPS. b) Mean distribution of the ATR-IR 

wavenumbers of the symmetric and asymmetric CH2 vibration peaks for DPPC, DOPC, 

DOTAP and DOPS lipids transferred by the Langmuir-Schaefer (LS) and the vesicle fusion 

(VF) methods on graphene-on-copper and HOPG. 

 

The lipids deposited on HOPG presented a higher molecular packing compared 

to the lipids on graphene-on-copper, independently of the experimental method 

used (i.e. LS or VF, Figure 5.2b). This is attributed to the disparity in roughness 

between the supporting substrates.27-28 In fact, graphene grown on a copper foil 

has a considerable high roughness29 in comparison with HOPG, which is atomically 

flat although constituted of small different layered terraces.30 The AFM topography 

image of graphene-on-copper presented a roughness of 28.3 nm with folds and 

pleats (Figure 5.3a), whereas HOPG showed a roughness of 2.3 nm with very flat 

and continuous flakes (Figure 5.3b). The solid support, particularly the 

roughness,11, 31-32 the surface charge of the substrate and consequently also the 

ions and pH of the buffer solution,33-34 among others,35-36 influence the morphology 

of the resulting lipid layer. Additionally, the wetting properties, i.e. 

hydrophobic/hydrophilic12, 37 have also a very important role on the formation of a 

lipid layer. 
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Figure 5.3. AFM intermittent contact mode images in air at room temperature. a) Graphene 

on a copper foil. b) Highly oriented pyrolytic graphite (HOPG) freshly exfoliated. 

 

In order to investigate and understand the dynamics of vesicle fusion at the 

interface of a graphene layer, QCM-D experiments were performed. SiO2-coated 

and gold-coated QCM crystals were used as substrates for the measurements. CVD 

graphene was transferred on top of both QCM crystals to investigate the 

interactions between the different liposomes and graphene. The influence of the 

substrates underneath graphene were also studied.  

Liposomes in a phosphate buffer solution (PBS) were injected 20 minutes 

(Figure 5.4i) after preparation and were in contact with the substrate using a 

continuous flow (60 µL/minute) of liposomes for ~1 hour. After, the assembly on 

graphene was rinsed with PBS (Figure 5.4ii). The change in the resonance 

frequency of the quartz crystal (Δf) was used to quantify the amount of lipids 

adsorbed on the graphene.  

The zwitterionic saturated DPPC liposomes showed a drop of the resonance 

frequency, indicating the adsorption of the liposomes on the surface which 

ruptured to formed a lipid bilayer (based on Sauerbrey fitting the layer thickness 

was 3-4 nm, see appendix for details) on top of graphene-on-SiO2 (Figure 5.4a). The 

lipid bilayer was stable for ~6 minutes but at ~26 minutes a sudden drop to a lower 

frequency (-70 Hz) was observed, indicating that other liposomes or even small air 

bubbles adsorbed on the surface, also creating a high increase on the energy 

dissipation values (in red). In contrast, liposomes composed of the cationic 

unsaturated DOTAP, showed an instant frequency drop to ~-220 Hz with the exact 
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opposite direction of the energy dissipation values. This indicates that the 

liposomes did not rupture on top of graphene-on-SiO2, but rather remained as 

intact vesicles adsorbed on the graphene surface (Figure 5.4b). The anionic DOPS 

liposomes showed an increase in frequency and a decrease of the energy 

dissipation values, indicating that the liposomes did not interact with the surface 

of graphene (Figure 5.4c). The non-adsorption of DOPS liposomes was also 

observed in previous studies, where negatively charged liposomes could not 

deposit on the surface of graphene.5  

Surprisingly, the QCM-D data showed different results compared to the ATR-IR 

experiments primarily due to the differences of the solid supports (graphene-on-

copper and HOPG are not available as substrates for the QCM measurements), and 

additionally, the samples for ATR-IR experiments were measured in air (and not in 

liquid as for QCM-D), likely changing the conformation structure of the lipids. 

Finally, the wetting transparency of graphene was investigated using DOPC 

liposomes deposited on graphene transferred on SiO2 and on gold substrates. As 

control experiments, DOPC liposomes were first tested on plain SiO2 and on plain 

gold, without the transfer of graphene on top. Liposome rupture resulted in the 

formation a lipid bilayer on the surface of SiO2, with a layer thickness of around 4 

nm based on Sauerbrey fit. In contrast, DOPC liposomes adsorbed and remained 

intact on the surface of gold without rupturing (Appendix IV, Figure IV.2). These 

results are in agreement with literature.17 For a graphene transferred on a SiO2 

substrate, the liposomes ruptured and formed a lipid bilayer with a layer thickness 

of 3-4 nm based on Sauerbrey fit (Figure 5.4d), on a graphene-on-gold substrate, 

the liposomes adsorbed on the surface of graphene without rupturing (Figure 

5.4e). The results are similar for graphene-on-SiO2 and graphene-on-gold 

compared to SiO2 and gold alone, suggesting the wetting transparency of 

graphene, where graphene is transparent to the wetting properties of the 

substrate underneath.  

All graphene sheets transferred on the sensors were characterized by Raman 

spectroscopy, before and after the QCM-D measurements in order to confirm the 

transfer of a single layer graphene and the integrity of graphene after the 

measurements (see plots on Appendix IV, Figure IV.3). 
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Figure 5.4. Dynamics of liposomes interactions with graphene monitored by quartz crystal 

microbalance with dissipation monitoring (QCM-D). a) Assembly of the zwitterionic 

saturated DPPC lipids on graphene-on-SiO2. b) Assembly of the cationic unsaturated DOTAP 

lipids on graphene-on-SiO2. c) Assembly of the anionic unsaturated DOPS lipids on 

graphene-on-SiO2. d) Assembly of the zwitterionic unsaturated DOPC lipids on graphene-

on-SiO2. e) Assembly of the zwitterionic unsaturated DOPC lipids on graphene-on-gold.  
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5.3 Conclusions 

This study elucidates how distinct lipids (DPPC, DOPC, DOTAP and DOPS) assemble 

on graphite (in the form of HOPG), graphene-on-copper, graphene-on-SiO2 and 

graphene-on-gold. ATR-IR results showed that saturated DPPC lipids presented a 

more ordered structure on the surface of graphene compared to unsaturated 

lipids, due to a higher rigidity of the lipid acyl chains. For the unsaturated lipids, 

the cationic DOTAP yielded a higher packed assembly in comparison with the other 

two unsaturated lipids, i.e. DOPC and DOPS. The anionic DOPS showed a higher 

fluidity compared to the other lipids. Nevertheless, all the samples were dried in 

air before the measurements, possibly changing the molecular conformation of the 

lipids.  

Using QCM-D the interactions of the same lipids from liposome solutions were 

studied for graphene-on-SiO2 and graphene-on-gold substrates. DPPC liposomes 

ruptured on the surface of graphene-on-SiO2 primarily forming a lipid bilayer 

(similarly to control experiments with plain SiO2). The cationic DOTAP liposomes 

adsorbed and remained intact on the surface of graphene whereas the anionic 

DOPS liposomes did not interact nor adsorbed on graphene-on-SiO2. The wetting 

transparency of graphene therefore played a role on the conformational structure 

of DOPC liposomes, forming a lipid bilayer on graphene transferred on SiO2 (i.e. 

hydrophilic), and adsorbed without rupturing on graphene transferred on 

hydrophobic gold substrate.  

In conclusion, distinct lipids interact differently with graphene materials 

depending on their charge, saturation, structure, on the experimental method 

used, and on the wetting properties of the solid supports. This work now unifies all 

the studies reported so far for lipids interacting with graphene transferred on 

different substrates. 
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CHAPTER 6  

Lateral non-covalent clamping of graphene at the edges using 

a lipid scaffold 

 

  

Developing a clean handling and transfer process, capable to preserve the integrity 

of two-dimensional materials, is still a challenge. Here, a flexible, dynamic and 

molecular lipid-based scaffold clamps graphene at the edges providing a practical, 

simple and clean graphene manipulation and transfer method. Lipid films with 

different surface pressures of lipids are deposited at the air/copper-etchant 

interface immediately after placing the graphene samples. At surface pressures 

above 30 mN/m, the lateral support prevents the movement and cracking of 

graphene during all etching and transfer. The method provides new insights into 

the critical handling of graphene and can yield efficient, sensitive and clean 

graphene-based devices. 

This chapter was published as a full article: Lia M. C. Lima, Hadi Arjmandi-Tash and 

Grégory F. Schneider, ACS Applied Materials & Interfaces, 2018, 10, 11328-11332 
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6.1 Introduction 

Over the last years, a growing interest in graphene led to the development of novel 

sensing devices.1-5 However, for the achievement of such devices, graphene has to 

pass through several fabrication steps.6-9 Large scale graphene sheets are typically 

synthesized on metallic catalysts10-11 and then transferred to target substrates such 

as Si/SiO2.12-13 The transfer process can highly degrade the properties of graphene 

and its performance in the final applications.14 The immobilization of two-

dimensional (2D) materials (e.g. graphene) by Langmuir films is a strategy to 

controllably manipulate graphene directly in an aqueous environment, without 

using polymeric scaffolds.15 Langmuir films of amphiphilic lipid molecules are 

insoluble at an air-liquid interface generating a lateral pressure profile due to the 

intermolecular forces in the lipid monolayer. The film is stable and 2D, 

guaranteeing a strictly lateral compression (no perpendicular component which 

may cause out-of-plane deformation) of graphene. The molecules act to decrease 

the surface tension of the subphase, therefore creating a dynamic clamp which 

adjust itself according to the geometry of graphene. For the first time, lipids are 

introduced as molecular springs clamping graphene from the side at an air-liquid 

interface. The flexible lipid-based scaffold prevents graphene movement and 

cracking during copper etching and later on, during transfer onto a target 

substrate. The reliability of lipid clamps compared to existing polymer-free transfer 

methods was also investigated.16-18 

In a Langmuir-Blodgett (LB),15 the lipids are deposited on an air-water interface 

and compressed passing through different characteristic phases, namely the 

gaseous (G) state, the liquid expanded (LE) state, the liquid condensed (LC) state 

and the solid (S) state (Figure 6.1a).19-21 In the presence of graphene, as the 

intermolecular distance between the lipid molecules decreases during 

compression, the force exerted by both the hydrophobic acyl chains and the 

hydrophilic polar groups induces a pressure on the graphene edges; the increase 

in the surface pressure (π) is directly linked to how closely the lipids are packed. 

Therefore, the dynamic pressure of the lipid monolayer can keep the domains of 

graphene together and intact, preventing the growth of already existing cracks 

(e.g. through grain boundaries).22  
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The most common transferring method includes a temporarily coating of 

graphene with a polymer while etching the metal substrate in an etchant solution. 

The coating acts as a mechanical support and prevents graphene cracking. The 

coating is thereafter removed by suitable chemicals once graphene is transferred 

onto the target substrate. Leftovers of polymer residuals are the important 

limitation of the technique which may degrade the ultimate quality of the 

graphene.23-26 Therefore, in the recent years, novel polymer-free transfer methods 

have been developed most of which, use physical supports such as graphite 

holders16 or TEM grids,17 limiting the flexibility of the process. Alternatively, 

graphene is also covered with organic solvents such as cyclohexane9 or hexane,18 

avoiding polymer contaminations. 

In this work, as the surface of graphene is not in contact with any physical 

support, the basal plane remains uncontaminated allowing the realization of clean 

devices directly on water. With this non-covalent bonding, graphene can be 

manipulated from the edges, leading additionally to an optimal transfer to 

arbitrary substrates. Increasing the lateral pressure of the lipids decreases the 

number of cracks and further preserves the quality of the transfer. The 

development of a lateral support damps vibrations on the surface of the etchant 

(happening during etching or transfer) which may induce cracks. This 

immobilization by Langmuir films establishes a novel strategy for fundamental 

studies of graphene and also for transfer purposes. 

6.2 Results and discussion 

The 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer was 

compressed up to π = 50 mN/m in a Langmuir trough (Figure 6.1a). The recorded 

isotherms were used to reproduce the same lipids π/area conditions in six different 

Petri dishes (see Appendix V). All the experiments were carried out at room 

temperature (~ 25 ̊C) where DPPC is in the gel phase. Note that DPPC has a main 

phase transition temperature (Tm) of 41 ̊C. Below the Tm, the DPPC monolayer 

presents different phases during compression, as observed in Figure 6.1a. Figure 

6.1b illustrates the concept of the molecular edge clamp. Sufficiently high π 

prevents any noticeable movement of graphene during all the etching procedure 

and forms a well-ordered and compact layer that holds the graphene in place 

through all the processes. Figure 6.1c and d shows overlapped snapshots at 
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different copper etching stages of two samples with and without the lipid clamp at 

the edges. Clearly, the graphene without any lateral support moves randomly, 

which may eventually promote its cracking. Instead, lipids on the surroundings of 

graphene hold the graphene in place during all the etching and transfer, preserving 

its integrity. 

 

Figure 6.1. Lipidic molecular edge-clamping of graphene. a) Surface pressure-area 

compression isotherm of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid 

monolayer on ammonium persulfate solution (APS) at 25 °C showing different phase 

separations. G: gaseous state; LE: liquid expanded state; LC: liquid condensed state; S: solid 

state. b) Illustration of the molecular edge clamp concept. c-d) Time-lapse photographs of 

a piece of graphene-on-copper floating on a solution of 0.5 M APS in water without (c) and 

with (d) the lipid clamp. 
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Figure 6.2 shows the optical images of graphene samples transferred onto 

Si/SiO2 substrates with different lateral pressures. In fact, the sample without any 

lipid lateral support is unsteady and dramatically loses its integrity. The low-

amplitude vibrations of the surface of the etchant and the transfer could be 

responsible for such damages. The graphene sheets transferred in the presence of 

the lipid edge clamp, however, are continuous to a large extend: increasing the π 

prevents the formation of the cracks, showing the advantage of the lateral clamp 

support. Particularly, at the LC state (π > 30 mN/m), the interaction between the 

lipid molecules at the interface is large enough to induce a high pressure on the 

edges of graphene and promotes a stable clamp while transferring to the Si/SiO2 

substrates. 

 

Figure 6.2. Integrity of graphene as a function of the lipid clamping pressure. Optical 

micrographs of graphene on Si/SiO2 substrates transferred at different clamp pressures (0, 

5, 10, 30, 40 and 50 mN/m). Scale bars are 500 µm. 

 

The rupture index (RI) provides a quantitative measure of the integrity of 

graphene samples.27 The emission of the fluorophore molecules in close vicinity to 

graphene is quenched via a peculiar energy transfer mechanism, leading to an 

outstanding contrast between cracked and continuous graphene areas in 
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fluorescence microscopy (see the images in the top row in Figure 6.3). The RI is 

determined by counting the number of pixels localized at the border of the cracks 

(white pixels visible in the bottom row in Figure 6.3) and divided by the total 

number of pixels corresponding to graphene multiplied by one thousand. In 

application, the median of different RI values measured at several spots on the 

sample is reported to exclude the effect of any local inhomogeneities (see Figure 

6.4). Remarkably, increasing the surface pressure using the lipid-edge clamp has a 

direct effect on the integrity of graphene. Particularly, π ≥ 40 mN/m provides a 

negligible RI, comparable to graphene transferred with a PMMA coating. The RI 

results are in line with the optical microscopy studies. At higher π, the lipid 

monolayer becomes more compact with smaller intermolecular areas reflecting on 

a more confined lipid clamp, therefore preserving the original state of graphene 

upon transfer to the Si/SiO2 substrate. 
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Figure 6.3. Quantification of crack in graphene transferred using a lipid clamp by 

fluorescence quenching microscopy. Fluorescence quenching microscopy images of 

graphene on Si/SiO2 substrates with different surface pressures of the lipids (top row) and 

the corresponding images after processing (bottom row). All the scale bars correspond to 

50 µm. 
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The π also affects the duration of the copper foil etching (𝑡𝑒𝑡𝑐ℎ). Figure 6.5a 

plots the estimated etching time (𝑡𝑒𝑡𝑐ℎ) as the function of π: we use the time span 

between the moment some parts of the foil started to be transparent up to the 

moment the foil turns to be fully invisible. Generally, increasing the π increases 

𝑡𝑒𝑡𝑐ℎ. Indeed, the very high intermolecular interactions between lipid molecules 

most probably drives lipids towards the foil/etchant interface resulting in delays of 

the etching as migrated lipids may form a layer between the copper and the 

etchant. The delay depends on the concentration of the intercalated lipid 

molecules, the latter being proportional to the π. At the highest π (50 mN/m), 

presumably a considerable amount of the lipids collapsed (reducing the effective 

π), in line with what is observed in Figure V.2, Appendix V. 

 
 

Figure 6.4. Characterization of graphene samples using the rupture index method. a) 

Quantitative characterization of crack formation at different lateral clamping strengths for 

surface pressures ranging from 0 to 50 mN/m. G-LE: gaseous to liquid expanded state; LE-

LC: liquid expanded to liquid condensed state; LC-S: liquid condensed to solid state. 

Dimensionless rupture index estimated for a maximum of 18 different arbitrarily selected 

windows (test areas, x axis) on the sample. b) Median rupture index values in (a) as a 

function of the surface pressure; the solid line is the fit using a polynomial function. 
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Infrared absorption reflection spectroscopy (IRRAS) was used to probe the lipid-

graphene interactions after the transfer onto Si/SiO2 substrates. As showed in 

Figure 6.5b, no significant absorption bands characteristic for the stretching 

vibrations of the lipid acyl chains were detected. The lack of lipid traces suggests 

that during the transfer, the affinity between the lipid molecules intercalated 

underneath graphene and the water is stronger than the lipids-graphene 

interaction, allowing the molecules to remain at the interface. Alternatively, the 

step of rinsing with ultrapure water after the transfer of graphene – to remove the 

remaining etchant residues – could have rinsed the lipids away. For the purpose of 

comparison, we measured the infrared spectra of a well-organized lipid monolayer 

transferred onto a Si/SiO2 substrate using Langmuir trough at π = 30 mN/m with a 

graphene sheet above (Figure 6.5b, orange line – LB DPPC).28 The results show an 

intense absorbance for the symmetric (~2844 cm-1) and asymmetric (~2912 cm-1) 

methylene vibrations of the lipid acyl chains even for a single layer of lipids, further 

confirming the assumption that the lipids from the clamp were not transferred. 

Additionally, the black line corresponding to the graphene without any lipids at the 

interface is comparable to any other spectra of graphene transferred with different 

surface pressures, further emphasizing that the lipids were indeed not transferred 

with the graphene to the Si/SiO2 substrates. Such observations further confirm that 

the molecular edge clamp provides a clean transfer to realize sensitive graphene-

based devices.  

Separately, the quality of the graphene transferred at different π was analyzed 

by Raman spectroscopy after transfer on Si/SiO2 substrates (Figure 6.5c). 

Remarkably, Raman spectra are insensitive to π and feature a 2D peak (~2680 cm 
-1) characteristic of a single layer graphene, a weak D peak at ~1350 cm-1 and a 

sharp G peak (~1590 cm-1), confirming the outstanding quality of graphene after 

transfer. Similarly, Figure 6.5d shows an AFM image of continuous graphene on 

Si/SiO2 substrate transferred with a π = 30 mN/m. In line with what was mentioned 

above, graphene is fully immobilized by the lipid molecules when the lipids are in 

the LC state or above, because of the increasing intermolecular interactions in the 

monolayer that reduces the surface tension and creates a flexible scaffold on the 

edges of graphene. This prevents graphene from cracking during all etching time 

prevents also graphene to crack during its transfer onto Si/SiO2 substrates. 
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Figure 6.5. Characterization of graphene with different surface pressures of lipids. a) 

Etching time of the copper foil as a function of the lipid surface pressure. b) IRRAS spectra 

of graphene transferred at different surface pressures. A control spectra corresponding to 

the transfer of a DPPC lipid monolayer by Langmuir-Blodgett with graphene sheet above is 

also presented. c) Raman spectra of different graphene samples on Si/SiO2 substrates 

transferred with different surface pressures (0, 5, 10, 30, 40 and 50 mN/m). d) AFM 

intermittent contact mode image in air at room temperature for graphene transferred to a 

Si/SiO2 substrate with a surface pressure of 30 mN/m. 

 

6.3 Conclusions 

A molecular lipid-based scaffold that laterally clamps graphene from the edges was 

developed leading to an optimal manipulation and transfer of graphene to solid 

substrates, preventing polymeric contamination and cracking of graphene. The 
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method is based on laterally supporting graphene with a lipid monolayer on the 

surface of an etchant.  

The uniformity of the graphene was investigated by means of optical images 

and RI. The integrity of graphene increases by increasing the lipid lateral pressure. 

The surface of graphene is clean without process residuals. Compared to other 

existing polymer-free transfer methods, this process benefits from the fact that 

the surface of graphene is not in contact with any physical support during transfer 

and etching, the process is flexible and straightforward. One immediate possible 

application would be to study the electrical and mechanical properties of graphene 

with lateral compression of the lipid scaffold. 
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CHAPTER 7 

Conclusions, Challenges and Outlook 
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7.1 Summary and general conclusions 

The main focus of this thesis was to understand how amphiphilic lipid molecules 

interact with the hydrophobic surface of graphene. Lipid bilayers have a 

hydrophobic core, so the first thought was to encapsulate graphene in the center 

of a lipid bilayer. Thus, the electrical properties of graphene could be used to 

monitor any environmental change on its surroundings through lipid interactions 

with proteins, DNA or any specific biomolecule. Furthermore, the functionalization 

of graphene with lipids renders graphene more hydrophilic and more compatible 

with a biological environment, particularly if graphene is inserted within the 

hydrophobic core of a lipid bilayer. Graphene is atomically flat with sp2 hybridized 

carbon atoms with conjugated pz orbitals, where the electrons are directly exposed 

to the environment in which graphene is exposed, therefore very sensitive to any 

perturbation or variations, particularly changes in dielectric properties. Lipids, as 

the main constituents of cell membranes, participate in numerous biological 

processes, thus graphene can be used as a sensor to monitor those processes.  

This project work started by characterizing the structure of a lipid monolayer 

with graphene transferred on top, as described in Chapter 2. A lipid monolayer was 

assembled on a Si/SiO2 substrate using the Langmuir-Blodgett (LB) method and a 

graphene layer was transferred on top. The lipids were characterized by infrared 

(IR) spectroscopy and ellipsometry in the absence and in the presence of graphene. 

The monolayer adopted a more compact and organized structure with a graphene 

layer deposited on top and the presence of the lipid monolayer underneath 

graphene improved the electrical performances of graphene which were 

measured with a graphene field-effect transistor (GFET). 

The re-ordering of the lipids upon the transfer of graphene represented the first 

step towards encapsulating graphene within a lipid bilayer. In Chapter 3, a second 

lipid monolayer of lipids was transferred on top of graphene – lipid acyl chains 

facing the graphene. The lipid-graphene-lipid assembly presented a well-defined 

and stable structure similar to a lipid bilayer without graphene; i.e. graphene in the 

hydrophobic core of the lipid bilayer did not disturb the integrity of the lipid 

bilayer. In addition, neutron reflectometry experiments provided information on 

the thickness, structure, roughness and stability of the lipid-graphene assemblies. 

IR spectroscopy and ellipsometry measurements complemented and confirmed 
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the same results as neutron reflectometry: the successful assembly of a stable 

lipid-graphene-lipid construct, never achieved experimentally. 

Lipids can exhibit different phases which influence the mobility, molecular 

order and lateral organization of the lipids assembly. In Chapter 4, temperature 

variations were applied to a lipid monolayer assembled using the LB technique 

with a graphene monolayer transferred on top, below and above the phase 

transition temperature of the lipids. Atomic force microscopy (AFM) studies 

showed that the lipid monolayer decreased its thickness and formed a continuous 

monolayer after increasing the temperature above the phase transition of the 

lipids. Additionally, graphene acted as a protective layer, shielding the lipids from 

environmental variations. The lipid monolayer underneath graphene remained 

intact after rinsing the assembly with chloroform or with an aqueous solution of 

the surfactant CTAB.  

Lipid assemblies depend on the chemical structure like charge, acyl chain length 

and degree of unsaturation, and parameters such as temperature and solid 

support used. In Chapter 5, zwitterionic, cationic and anionic lipids with different 

chain lengths and degree of saturation were investigated by IR spectroscopy on 

HOPG and graphene. The lipids were assembled on top of a chemical vapor 

deposition (CVD) graphene-on-copper and on graphite (in the form of HOPG) 

supports using the Langmuir-Schaefer (LS) and vesicle fusion (VF) methods. IR 

spectroscopy showed that saturated lipids presented a higher structural order on 

the substrates in comparison with the unsaturated lipids. For a range of 

unsaturated lipids with the same chain length, cationic lipids yielded a more 

organized lipid structure on graphene and graphite. Separately, liposomes of the 

different lipids were prepared for quartz crystal microbalance dissipation 

monitoring (QCM-D) measurements. Lipids were deposited using the VF method 

on CVD graphene transferred on SiO2 and on gold-coated QCM sensors, 

respectively. Depending on the lipid charge, saturation and chain length, lipids 

assembled differently on graphene-on-SiO2 and on graphene-on-gold. Importantly, 

the results suggested that graphene is transparent to the wetting properties of the 

substrates on which it has been transferred and thereby on how lipids (from 

liposomes) interact with the graphene surface. In fact, the results showed that a 

lipid bilayer was formed on graphene transferred to a SiO2 substrate, i.e. graphene-
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on-SiO2 is hydrophilic, and that instead liposomes remained intact on graphene-

on-gold (hydrophobic).  

After studying the lipids-graphene interactions in assemblies where graphene 

was positioned on top or deposited underneath a lipid layer, in Chapter 6, the 

interactions of lipids with graphene edges were investigated. Remarkably, a 

compressed lipid monolayer in a Langmuir trough prevented graphene to crack 

during etching and transfer, therefore acting as molecular clamps on the edges of 

the 2D material. For applications such as biosensors, graphene has to be pristine, 

thus, without contaminants. Using this approach, lipids were only interacting with 

the edges of graphene, therefore promoting a basal plane free of contaminants. 

7.2 Challenges and outlook 

Despite all the promising potential applications of lipid-graphene assemblies, 

studying the interactions between pristine graphene and lipids encountered 

several difficulties. Lipids are dynamic systems while graphene is static and very 

difficult to handle when is not supported by a polymer/substrate. As mentioned in 

Chapter 6, the surface of graphene has to be pristine and without contaminants to 

preserve its electrical properties. We successfully managed to transfer a very clean 

graphene surface of ~1x1 cm2 to a Si/SiO2 substrate, but for large graphene sheets 

(> 3x3 cm2), the method was less efficient, facing a variety of issues. For instance, 

to assemble the samples for the neutron reflectometry experiments in Chapter 3 

where 5x5 cm2 samples were needed. Graphene transfer (without a polymer) to 

the 5x5 cm2 silicon blocks typically induced the folding and cracking of graphene, 

making the handling and consequently the transfer of graphene very difficult. In 

general, using graphene without a polymer yields very clean graphene surfaces but 

still remains a big challenge to overcome for large graphene sheets, a major 

technical problem to still overcome in the future. 

Additionally, amphiphilic lipids are comprised of a hydrophilic head group and 

hydrophobic acyl chains which interact with the hydrophobic basal plane of 

graphene. When graphene is used as a substrate for the lipids assembly, the 

hydrophilic lipid head groups will face the outer environment (the hydrophobic 

tails will face graphene) which tend to be very unstable thermodynamically (most 

probably changing their conformation after drying) if they are not constantly kept 

in a liquid environment, as depicted in Chapter 5. The continuous exposure to 
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liquid environments therefore limits the handling, reproducibility and the 

characterization methods that can be used to study the structure and monitor how 

lipids and graphene interact. 

Nevertheless, we successfully encapsulated graphene in the hydrophobic core 

of a lipid bilayer. The characterization by neutron reflectometry allowed to 

measure and estimate the thickness, structure and stability of the lipid bilayer with 

graphene encapsulated in its hydrophobic core which was never realized 

experimentally so far. As mentioned above, although the handling of such a large 

graphene monolayer (5x5 cm2) still induced cracks on the graphene surface after 

transfer, the structure could be well characterized by neutron reflectometry.  

Now would be interesting to study whether lipid-graphene assemblies are a 

useful platform to study the formation of molecular imprints of (bio)molecules (Lei 

Ye, Molecular Imprinting, Pan Stanford Publishing, 2013) or a lipid film (with 

graphene underneath or sandwiched in the hydrophobic core of the lipid bilayer). 

In addition, removing the Si/SiO2 substrate from the lipid-graphene-lipid assembly 

in a liquid environment (hydrophilic lipid head groups facing the liquid and 

graphene in the hydrophobic core) could also provide a new concept of sensing 

device where graphene would be circulating inside of the body – stabilized by the 

lipids – acting as a in situ sensor of any environmental modification or binding to 

the lipids. Such a platform could yield potential biosensing applications taking 

advantage of the excellent electrical properties of graphene and the affinity of 

lipids with other biomolecules. The major challenge lies in how to sense the 

graphene: remote sensing using radio frequency or Raman for in vitro 

experiments. 

Another challenge would be to fabricate graphene liquid cells functionalized 

with lipids. Graphene liquid cells are very small pockets of liquid sandwiched 

between two graphene sheets deposited on TEM grids. Graphene is one atom 

thick, and ultimately allows a better contrast on the TEM images compared to 

currently used SiN cells (which are at least two orders of magnitude thicker). 

Imaging dynamic biological processes with nanometer resolution, in liquid, in situ 

for instance, lipid interactions with other biomolecules, vesicle fusion and/or 

rupture and ultimately membrane fusion in biomimetic graphene liquid pockets, is 

a challenge that may overcome a reality based on the first results of this thesis. 
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I. Materials and Methods 

 

Langmuir-Blodgett technique 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1% of 1,2-dipalmitoyl-sn-

glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Liss Rhod 

PE) (99:1) lipids (Avanti Polar Lipids Inc.) with a concentration of 1 mg/mL were 

prepared in CHCl3/CH3OH 3:1 vol %. The lipid solution was deposited dropwise at 

the interface of air-ultrapure water in a Langmuir trough at 25 °C using a glass 

microliter syringe, and the organic solvent was left to evaporate for 15 min. The 

measurements were performed in a Minitrough 2, KSV Instruments using the KSV 

Research Lab v2.01 software. The Teflon trough was equipped with hydrophilic 

barriers made of Delrin. The surface pressure (π) was measured with a 

microbalance platinum plate, with the lipids passing through different phases upon 

compression. The Si/SiO2 substrate was primarily inserted in the ultrapure water 

and after compressing the lipids to π = 30 mN/m, the substrate was slowly 

retracted from the trough while simultaneously keeping the surface pressure of 

the lipids constant. Consequently, the lipid monolayer was transferred onto the 

Si/SiO2 substrate and the lipids transfer ratio was determined. The transfer ratio is 

defined by the ratio between the change on the barriers area and consequently 

the drop in the monolayer area during the transfer to the substrate, and the area 

of the substrate. In all the samples prepared, the transfer ratio was 1.0 ± 0.1, in 

agreement with the transfer of a homogeneous lipid film. Multiple (> 10) 

measurements confirmed the reproducibility of the experiments. 

Lipid-assisted transfer method 

A monolayer of graphene was grown on a copper foil (chemical vapor deposition 

(CVD) graphene from Graphenea) and placed on an ammonium persulfate solution 

(0.5 M) (APS) – copper etchant – and after etching, the graphene was transferred 

above the lipid monolayer on a Si/SiO2 substrate by bringing both into contact. 

Subsequently, the sample was rinsed with ultrapure water to remove the etchant 

residues. A Si/SiO2-lipid-graphene assembly was obtained.  
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Imaging set-up 

Optical images were obtained using a Leica DM 2700 M microscope. Bright field 

fluorescence images were obtained using a Zeiss Axiovert 200 with a 5x objective. 

For the fluorescence microscopy studies, a fluorescent 1,2-dipalmitoyl-sn-glycero-

3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (1 mol %) lipid was 

mixed with DPPC, to characterize the lipid monolayer assembly and the 

fluorescence quenching of graphene after the transfer on top of the lipid 

monolayer. 

Attenuated total reflectance infrared spectroscopy (ATR-IR) 

Infrared spectroscopy determines the conformation and orientation of lipid 

molecules by measuring the frequency of the absorbed molecules and recording 

the difference before and after the physical perturbations induced by graphene on 

the molecules. The chemical bonds of lipid molecules present mainly different 

vibrational modes: symmetric and asymmetric stretching, scissoring and rocking. 

The frequency of the methylene (CH2) stretching vibrations is responsible for 

conformational changes in the lipid acyl chains. A shift of the symmetric and 

asymmetric CH2 stretching vibrations (~2850 cm-1 and ~2920 cm-1, respectively) to 

higher wavenumbers is observed if a transition of the lipids from a gel to a fluidic 

phase occurs (i.e. typically gauche to trans conformational change).1-3 

Spectra were collected with a BIO-RAD Excalibur Series spectroscopy apparatus 

using a silicon ATR crystal 25 reflections (4x2 cm) with an angle of incidence of 45° 

(Specac) and a spectra range of 6000-400 cm-1. For each spectrum 128 scans with 

a resolution of 2 cm-1 were averaged and the chamber was continuously purged 

with dry air. The data was processed with Origin-Pro software. The spectrum of a 

clean silicon ATR crystal was subtracted as background. The sample preparation on 

the ATR crystal was the same as on the Si/SiO2 substrate, using a larger piece of 

CVD monolayer graphene on copper (60x40 mm from Graphenea). All lipid spectra 

were measured before and after the transfer of the graphene layer on top of the 

lipid monolayer. 

Ellipsometry  

The thicknesses of the lipid monolayer before and after graphene transfer were 

determined using a WVASE ellipsometer M-2000F EC-400 from J.A. Woollam Co. 
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Inc. The data were collected using the WVase32 software. Each sample was 

measured at least in three different positions with five angles of incidence (65°, 

70°, 75°, 80° and 85°), at a wavelength ranging between 250 and 1000 nm. The 

thicknesses values were measured step-by-step, using layer-by-layer models: i) the 

SiO2 layer on the Si/SiO2 substrate, ii) the transferred Langmuir DPPC monolayer 

and, iii) the graphene layer transferred on top. The collected data were fitted with 

models specific for each material. Each material has a set of optical constants 

containing the refractive index n and the extinction coefficient k. Plain SiO2 

substrate data were fitted with SiO2.JAW model (n = 1.4554-1.5157; k = 0) and the 

lipid monolayer with a CAUCHY model.4 The CAUCHY optical constants were n = 

1.46-1.615 and k were set at 0. An, Bn and Cn (constants determined for the 

material, i.e. the lipids) were 1.45, 0.01 and 0, respectively. An, Bn and Cn were kept 

constant. The model for graphene was taken from the literature.5 

Atomic force microscopy (AFM) 

AFM images were obtained with a JPK NanoWizard Ultra Speed apparatus and the 

images were processed using JPK SPM Data Processing software. AFM images were 

recorded by scanning the sample with a silicon probe (AC240TS, Asylum Research) 

with 70 kHz nominal resonance frequency. The images were scanned in an 

intermittent contact mode in air at room temperature with 512x512 pixels. 

Raman spectroscopy  

Raman spectra and imaging were measured using a WITec confocal spectrometer 

with a 532 nm laser and a 100x objective with a lateral resolution of 200-300 nm. 

The laser power was finely tuned to be below 1 mW to avoid damages to the 

graphene and the lipid monolayer. 

Electrical measurements  

The transistor characteristics of the graphene field-effect transistor devices on a 

Si/SiO2 substrate and on a lipid monolayer were tested using a home-made setup. 

A SR830 DSP lock-in amplifier with narrow filters was used to recover weak signal 

from a noisy background. The back gate voltage Vg (up to 200 V) was applied using 

a Keithley 2400 multimeter. The defective lipid monolayer yielded a transfer ratio 

of 0.5 on the Langmuir-Blodgett technique, meaning that the surface of the Si/SiO2 

substrate was not fully covered with the lipid monolayer. 
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II. Materials and Methods 

 

Langmuir-Blodgett and Langmuir-Schaefer techniques 

The measurements were performed in a Minitrough 2, KSV Instruments equipped 

with hydrophilic barriers made of Delrin. The 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC) lipids (Avanti Polar Lipids Inc.) were first dissolved in a 

CHCl3/CH3OH mixture (3:1 vol%) with a concentration of 1 mg/mL in lipids. Next, 

the lipids were deposited at the air-ultrapure water interface in a Langmuir trough 

at 25 °C and compressed to a surface pressure (π) of 40 mN/m. The lipid monolayer 

was transferred to a Si/SiO2 substrate at a constant lipid compression of π = 40 

mN/m. Subsequently, a chemical vapor deposition (CVD) graphene on copper (1x1 

cm2, Graphenea) was transferred on top of the lipid monolayer by bringing the 

graphene into contact with the substrate coated with the lipid monolayer, as 

described in detail in Appendix I. The Langmuir-Schaefer1 method was used to 

transfer a second DPSC monolayer on top of graphene. The lipids were compressed 

in a Langmuir trough to π = 40 mN/m and the Si/SiO2-lipid monolayer-graphene 

sample was horizontally lowered into contact with the lipid monolayer at the air-

ultrapure water interface and immediately retracted from the interface, 

encapsulating graphene in the hydrophobic core of a DSPC lipid bilayer. The sample 

preparation for the neutron reflectometry experiments is described below. 

Infrared reflection absorption spectroscopy (IRRAS) 

IR spectra were collected with a BIO-RAD Excalibur Series infrared spectrometer in 

external reflectance mode. The chamber was continuously purged with dry air and 

a sample of plain Si/SiO2 substrate was taken as reference. The angle of incidence 

was measured at 45° with a spectra range of 6000-400 cm-1. Each spectrum was 

collected for an average of 128 scans with a resolution of 2 cm-1. The data were 

processed using Origin-Pro software. All samples were dried in air before the 

measurements. 
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Ellipsometry 

The thicknesses of the lipid monolayer before and after graphene transfer were 

determined using a WVASE ellipsometer M-2000F EC-400 from J.A. Woollam Co. 

Inc. The data were collected using the WVase32 software. Each sample was 

measured at least in three different positions with five angles of incidence (65°, 

70°, 75°, 80° and 85°), at a wavelength ranging between 250 and 1000 nm. The 

thicknesses values were measured step-by-step, using layer-by-layer models: i) the 

SiO2 layer on the Si/SiO2 substrate, ii) the transferred Langmuir DSPC monolayer, 

iii) the graphene layer transferred on top and, iv) the second DSPC monolayer 

transferred above graphene. The collected data were fitted with models specific 

for each material. Each material has a set of optical constants containing the 

refractive index n and the extinction coefficient k. Plain SiO2 substrate data were 

fitted with SiO2.JAW model (n = 1.4554-1.5157; k = 0) and the lipid monolayer with 

a CAUCHY model.2 The CAUCHY optical constants were n = 1.46-1.615 and k were 

set at 0. An, Bn and Cn (constants determined for the material, i.e. the lipids) were 

1.45, 0.01 and 0, respectively. An, Bn and Cn were kept constant. The model for 

graphene was taken from the literature.3 All samples were dried in air before the 

measurements. 

Neutron reflectometry 

Neutron reflectivity measurements were performed at the Institut Laue-Langevin 

(ILL, Grenoble, France) at the D17 reflectometer,4 in Time-of-Flight (TOF) mode, 

with wavelengths between 2 and 20 Å at two incident angles (0.8 and 3.2°). 

Different water contrasts were used to measure the silicon blocks and the lipid 

layers with graphene – H2O, silicon matched water (SMW), and D2O. SMW is a 

mixture of H2O and D2O to give different scattering length density (SLD, Table II.1). 

The samples were prepared with different freshly polished silicon blocks (5x5 cm2), 

cleaned with solvents (chloroform, acetone and ethanol) and then with five 

minutes of oxygen plasma. DSPC lipids were prepared, deposited and compressed 

on a Langmuir trough to π = 40 mN/m, at ILL (NIMA, Warwick, UK) at 19 °C and 

transferred to the silicon blocks as described above. For the deposition of the 

second DSPC monolayer by the Langmuir-Schaefer method, the silicon block (with 

the graphene on the lipid monolayer) was horizontally moved downwards and 

pushed through the lipids at the air-ultrapure water interface onto a Teflon cell 
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placed primarily inside the trough. The sample was then sealed in a liquid cell with 

a small volume of enclosed water inside to keep the second lipid monolayer 

hydrated, as described previously.5 The reflectivity data was fit by dividing each 

sample into different layers with distinct SLD, thickness and roughness (Table II.1). 

The SLD profiles were modeled using MOTOFIT,6 where the specular reflectivity 

was calculated with the Abeles matrix method for stratified interfaces.7 For 

example, for the lipid-graphene-lipid assembly, the layers were divided as 

following: 1) SiO2, 2) solvent, 3) inner lipid head groups, 4) inner lipid tails, 5) 

graphene, 6) outer lipid tails, and 7) outer lipid head groups. Large sheets of CVD 

graphene on copper were transferred above the silicon blocks (with the lipid 

monolayer) after the copper was etched in a solution of ammonium persulfate (0.1 

M). The graphene (without any support) floating on water was transferred from 

the top inducing some cracks and folding of the graphene surface due to the very 

large piece of graphene transferred. The coverage of the graphene on the silicon 

block was ~31%, as observed in Figure II.1. 

Table II.1. Parameters obtained from the fits for the lipid-graphene-lipid assembly at 25 °C. 

The SLD, thickness, roughness and percentage of water of the different layers. 

Layers SLD x10-6 (Å-2) Thickness (Å) Roughness (Å) 
% of 

water 

Si 2.07 - 4 - 

SiO2 3.47 11 3 15 

Solvents 
H2O SMW D2O 

4.5 - 100 
-0.56 2.07 6.35 

Lipid head 
groups 

1.5 8 3 15 

Lipid tails -0.45 18 4 4 

Graphene 7.3*0.31 1.5 3 10 

Lipid tails -0.4 17 4 8 

Lipid head 
groups 

1.5 8.8 5 17 

Solvents 
H2O SMW D2O 

- - - 
-0.56 2.07 6.35 
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Figure II.1. Image of the 5x5 cm2 silicon block showing the graphene transferred on top 

with a coverage of ~31%. 
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III. Materials and Methods 

 

Langmuir-Blodgett and Langmuir-Schaefer techniques 

As described in detail in Appendix I, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

(DPPC) lipids were deposited at the interface of a Langmuir trough with ultrapure 

water, compressed until a surface pressure (π) of 30 mN/m and transferred to a 

Si/SiO2 substrate. Next, a chemical vapor deposition (CVD) graphene layer on 

copper (Graphenea) was transferred on top. The Langmuir-Schaefer method was 

used to transfer the second DPPC monolayer on top of graphene deposited on the 

first DPPC monolayer. The transfer ratio of the first DPPC monolayer was ~1, 

obtaining an uniform and continuous lipid monolayer on the Si/SiO2 substrate, but 

the transfer ratio of the second DPPC monolayer was incomplete (0.5), suggesting 

that the transfer of a second lipid monolayer did not yield a continuous and intact 

layer.  

Atomic force microscopy (AFM) 

AFM images were obtained using a JPK NanoWizard Ultra Speed instrument 

apparatus, and the images were processed with a JPK SPM Data Processing 

software. The experiments were performed using a silicon probe (AC240TS, 

Asylum Research) with 70 kHz nominal resonance frequency. The images of 5x5 

µm2 were scanned in an intermittent contact mode in air at room temperature 

with 512x512 pixels. 

Temperature-controlled AFM measurements 

For the AFM experiments, heating-cooling cycles were performed. First the sample 

was heated at 60 °C on a hot plate (IKA® RCT basic), stabilized for 5 min, and then 

cooled down to room temperature (RT). After AFM scanning, the sample was 

subjected to five heating-cooling cycles (RT – 60 °C – RT) and scanned again by 

AFM. Afterwards, the sample was cycled five times to 100 °C (RT – 100 °C – RT) and 

measured again by AFM. 
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Rinsing with solvents 

The Si/SiO2-lipid-graphene assemblies were carefully rinsed with chloroform and 

then with a 10 mM of hexadecyltrimethylammonium bromide (CTAB) solution in 

water. For that, the samples were dipped into the solutions vertically upon and 

down seven times. For the CTAB rinsing, the sample was afterwards rinsed with 

ultrapure water before the measurements, to remove residual CTAB from the 

sample. 

Optical images 

Optical images were acquired using a Leica DM 2700 M microscope and the 

fluorescence images were performed using a Zeiss Axiovert 200 inverted 

microscope with 5x objective. For the fluorescence microscopy experiments, 1 

mol% of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine 

rhodamine B sulfonyl) (Liss Rhod PE) was added to the DPPC stock solution (1 

mg/mL) before depositing the lipids in the Langmuir trough. 

Infrared reflection absorption spectroscopy (IRRAS) 

Measurements were performed with a BIO-RAD Excalibur Series infrared 

spectrometer in an external reflectance mode. The chamber was continuously 

purged with dry air and a sample of plain Si/SiO2 substrate was taken as reference. 

The angle of incidence was measured at 45° with a spectra range of 6000-400 cm-

1. Each spectrum was obtained with an average of 20 scans and with a resolution 

of 2 cm-1.  

A home-made temperature controller – resistive heater – was positioned inside 

of the infrared spectrometer holder (resistance of few hundreds of kΩ), as 

observed in Figure III.1a. The sample was placed on top of the resistive heater using 

silver paste and a digital probe thermometer (Amprobe, AM-530-EUR) equipped 

with a thermocouple glued on the sample to monitor the temperature. A potential 

was applied using a Keithley 2400 multimeter. For example, applying a potential of 

28 V, corresponding to electrical current of 49.8 mA allowed to reach a maximum 

temperature of 78 °C in our experiments (Figure III.1b). 
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Figure III.1. a) Image of the home-made setup mounted on the spectrometer holder. The 

sample (blue, Si/SiO2 substrate) is mounted on a resistive heater that is placed on top of 

the metal holder. A thermocouple is glued to the sample with silver paste. b) Temperature 

vs voltage plot applied to the sample step-by-step. 

 



137 
 

 

Appendix IV 

Supporting Information to Chapter 5 

  



138 
 

IV. Materials and Methods 

 

Samples preparation 

Four different lipids were used in this work: the zwitterionic saturated 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the zwitterionic unsaturated 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), the anionic unsaturated 1,2-

dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and the cationic unsaturated 1,2-

dioleoyl-3-trimethylammonium-propane (DOTAP), all purchased from Avanti Polar 

Lipids Inc. The lipids were transferred to distinct substrates with two different 

methods: the Langmuir-Schaefer (LS) and the vesicle fusion (VF). The LS technique 

was performed using a Minitrough 2, KSV Instruments at 25 °C with ultrapure 

water and the lipids were compressed until a surface pressure (π) of 30 mN/m, as 

described in detail in Appendix I. Then, the substrate was approached horizontally 

downwards contacting the lipid chains at the interface, and thereafter immediately 

retracted under a constant lipid compression (π = 30 mN/m). For the VF method, 

each individual lipid was first dissolved in a mixture of CHCl3/CH3OH 3:1 vol% to 

yield a 3 mM concentration. The solutions were evaporated under nitrogen flow 

for 30 minutes and then resuspended with ultrapure water (or phosphate buffer 

for the QCM experiments) to obtain a final concentration of 0.5 mM. Subsequently, 

the lipids were subjected five times to 40 seconds cycles of vortex and thereafter, 

30 minutes of sonication (VWR, Ultrasonic Cleaner USC-TH) in order to obtain 

unilamellar vesicles. 100 µl of the lipid suspensions were added to the different 

substrates for a duration time of 30 minutes and then rinsed several times with 

ultrapure water (or phosphate buffer, PBS), to remove the vesicles in excess. For 

DPPC lipids, the liposomes assembly were performed above the phase transition 

temperature of 41°C. 

The substrates used for attenuated total reflectance infrared spectroscopy 

(ATR-IR) characterization were: chemical vapor deposition (CVD) graphene-on-

copper and highly oriented pyrolytic graphite (HOPG). The graphene-on-copper 

was grown in our group using a Planar Tech tube oven and the HOPG was 

purchased from SPI supplies. 
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Attenuated total reflectance infrared spectroscopy (ATR-IR) 

The spectra were collected with a PerkinElmer FT-IR Spectrometer Spectrum Two 

apparatus with a diamond attenuated total reflection (ATR) crystal. Typically 16 

scans were collected and averaged with a resolution of 2 cm-1. The CVD graphene-

on-copper and the HOPG samples with the different lipids deposited on top were 

scanned at room temperature after the samples were dried in air. The data were 

processed using Origin-Pro software. The ATR-IR spectra collected for the mean 

distribution of wavenumbers of the symmetric and asymmetric stretching CH2 

vibrations of the different lipids are observed in Figure IV.1. The lipids were 

transferred to CVD graphene-on-copper and HOPG by two different methods – 

Langmuir-Schaefer and vesicle fusion. 

 

Figure IV.1 a) ATR-IR spectra of DPPC assembled with the Langmuir-Schaefer and the 

vesicle fusion methods on graphene-on-copper and HOPG. b) ATR-IR spectra of DOPC 

assembled with the Langmuir-Schaefer and the vesicle fusion methods on graphene-on-

copper and HOPG. c) ATR-IR spectra of DOTAP assembled with the Langmuir-Schaefer and 

the vesicle fusion methods on graphene-on-copper and HOPG. d) ATR-IR spectra of DOPS 

assembled with the Langmuir-Schaefer and the vesicle fusion methods on graphene-on-

copper and HOPG.  
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Atomic force microscopy (AFM) 

AFM images with 512x512 pixels were scanned in an intermittent mode in air at 

room temperature and performed with a JPK NanoWizard Ultraspeed instrument. 

The experiments were acquired using a silicon probe (AC240TS, Asylum Research) 

with a 70 kHz nominal resonance frequency. The HOPG samples were freshly 

exfoliated before the measurements.  

Quartz crystal microbalance with dissipation monitoring (QCM-D) 

The QCM-D technique is used to monitor the assembly and formation of lipid 

monolayers or bilayers by the VF method on quartz crystal substrates.1 The 

substrates are equipped with two electrodes which activate the piezoelectric 

effect of the quartz crystal sandwiched between the electrodes upon applying an 

alternating voltage (AC) to the crystal resulting in an oscillation of the quartz 

crystal. If a lipid layer adsorbs on the crystal substrate, the resonance frequency of 

the crystal decreases, yielding a change in frequency (Δf) that is proportional to the 

mass adsorbed. The exponential decay of the oscillation frequency after a 

discontinuity of the applied AC voltage is associated to the energy dissipation 

factor (D), i.e., the loss of energy per oscillation, and is proportional to the 

viscoelastic property of the adsorbed layer.2 The adsorption of liposomes on a 

QCM crystal typically results in a large decrease of frequency of oscillation and an 

increase of the energy dissipation. The subsequent rupture of the liposomes and 

the formation of a SLB, however leads to an increase of the frequency change 

(solvent loss inside the vesicles) and an abrupt decrease of the energy dissipation 

values to almost 0, due to the formation of a “rigid” SLB.2 Liposomes tend to 

rupture and form a lipid bilayer on SiO2-coated QCM crystals, due to the 

hydrophilicity of both the substrate and the lipid head groups.3-4 However, for gold-

coated QCM crystals the hydrophobicity of gold leads to the adsorption of intact 

liposomes.1, 5 

QCM-D experiments were performed with a Q-sense Explorer, Biolin Scientific 

AB. The normalized frequency and the changes in dissipation were measured 

simultaneously, at room temperature (~22 °C) for DOTAP, DOPS and DOPC lipids 

and above the phase transition temperature of DPPC lipid (~55 °C). The data were 

presented for the third overtone and the Sauerbrey equation (valid for thin and 

soft lipid layers) was used to calculate the adsorbed masses on the crystal sensors.1 
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The lipid samples were all prepared in PBS solution. The PBS solution was first 

injected in the chamber and after ~20 minutes of stabilization, a volume of ~0.5 

mL of liposomes of the different lipids was injected in the chamber with the QCM 

sensors. After ~1 hour, pure PBS solution was again injected into the QCM chamber 

in order to check the stability of the layer deposited on the QCM sensors. 

The QCM-sensors used for the measurements were the SiO2 and gold. The CVD 

graphene was transferred on top of the sensors using the PMMA assisted transfer 

method.6 The plain SiO2 and gold QCM sensors were also measured with DOPC 

lipids as a control. Figure IV.2 shows the QCM data for DOPC liposomes deposited 

on SiO2 (Figure IV.2a) and on gold (Figure IV.2b). 

 

Figure IV.2. a) Quartz crystal microbalance monitoring the assembly of the zwitterionic 

unsaturated DOPC lipids on SiO2. e) Quartz crystal microbalance monitoring the assembly 

of the zwitterionic unsaturated DOPC lipids on gold.  

 

Raman spectroscopy 

Raman spectra were measured on a WITec confocal spectrometer with a 532 nm 

laser and a 100x objective with the lateral resolution of 200-300 nm. The SiO2 QCM 

crystals with a CVD graphene transferred on top were scanned before and after 

the QCM-D measurements, in order to confirm the integrity of graphene on the 

surface of the crystal during all the QCM-D measurements. Figure IV.3 shows the 

Raman spectra of CVD graphene transferred on the SiO2 sensor crystal before and 

after performing the QCM-D experiments. 
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Figure IV.3. Raman spectroscopy of graphene transferred on the SiO2 sensor crystal before 

(a) and after (b) the QCM-D measurements. 
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V. Materials and Methods 

 

Langmuir-Blodgett technique 

The measurements were performed in a Minitrough 2, KSV Instruments using KSV 

Research Lab v2.01 software. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) 

lipids (Avanti Polar Lipids Inc.) with a concentration of 1 mg/mL were prepared in 

CHCl3/CH3OH 3:1 vol %. The lipid solution was deposited dropwise on an 

ammonium persulfate solution (APS, 0.5 mM) at 25 °C using a microliter syringe, 

and the solvent was allowed to evaporate for 15 min. The lipids were compressed 

until a surface pressure (π) of 50 mN/m. The isotherm (π-area) obtained was used 

to calculate the amount of lipids deposited on each Petri dish. 

Graphene transfer 

Six Petri dishes filled with APS were prepared prior to the experiments. Copper foils 

with chemical vapor deposition (CVD) graphene on copper (all with approximate 

size of ~ 10x10 mm2) were placed on the surface of the etchant (Figure V.1). 

Immediately afterwards, the DPPC lipids were added to the air-etchant interface 

with different π (0 – 50 mN/m) in separate Petri dishes. After copper was etched, 

the graphene floating at the interface, was transferred to Si/SiO2 substrates by 

gently placing the substrate in contact with graphene. APS residues remaining on 

the surface of graphene were rinsed with a continuous flow of ultrapure water. π 

below 10 mN/m was insufficient to prevent the lateral movements of the graphene 

or preserve its integrity during etching (see Figure V.1a and b). Instead, for π ≥ 30 

mN/m, the foil (graphene) remained immobilized. Higher π, fixed the foils in 

position throughout the etching. However, at the π of 40 mN/m the graphene 

sheet was slightly contracted probably due to the force induced by the lipids on 

the graphene edges. Importantly, we did not observe any remarkable contraction 

of graphene at 50 mN/m, which suggests that the lipids collapsed1 (i.e. overlapped 

or sank) reducing the overall π. 
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Figure V.1. a) Photographs of a sequence of six Petri dishes with CVD graphene on copper 

foil floating in ammonium persulfate solution (0.5M) with different surface pressure (0, 5, 

10, 30, 40 and 50 mN/m): a) initial state; b) after the etching of the copper. The red dashed 

lines represent the area of graphene after the etching of the copper. 

 

An alternative transfer approach was to dip the Si/SiO2 substrate in the liquid 

etchant (Figure V.2a). After the etching of the copper, the APS was replaced by 

ultrapure water with a continuous flow of water in and APS out. Eventually, the 

surface of the water was lowered to gently position the graphene onto the 

substrate. This method also allowed the transfer of a continuous graphene sheet, 

as observed by the optical image micrograph in Figure V.2b. 

 

Figure V.2. a) Illustration of the molecular edge clamp concept with the substrate on the 

bottom of the Petri dish. b) Optical image of the transfer of graphene to a Si/SiO2 substrate 

with a surface pressure of 30 mN/m. Inset: Raman spectrum of graphene transferred to a 

Si/SiO2 substrate with a surface pressure of 30 mN/m.  
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Imaging set-up 

Optical images were obtained with a Leica DM 2700 M microscope with a 5x 

objective. Fluorescence quenching microscopy was performed with a 20x objective 

mounted on an Axiovert 200 ZEISS inverted fluorescence microscope equipped 

with a monochrome AxioCam MRm ZEISS camera, to quantify the amount of 

cracks on graphene. To perform the measurement, the surface of graphene was 

spin-coated with poly(methyl methacrylate) (PMMA) layer pre-mixed with 2–6 µL 

solution of Rhodamine B, 4 mM (dissolved in acetone). The images were post 

processed according to the protocol published earlier2 to estimate the surface 

rupture index (RI).  

Infrared reflection absorption spectroscopy (IRRAS) 

Spectra were collected with a BIO-RAD Excalibur Series infrared spectrometer in 

external reflectance mode. The chamber was continuously purged with dry air and 

a sample of plain Si/SiO2 substrate was taken as reference. The angle of incidence 

was measured at 45° with a spectra range of 6000-400 cm-1. Each spectrum was 

collected for an average of 128 scans with a resolution of 2 cm-1. 

Raman spectroscopy  

Raman spectra were measured on a WiTec alpha 3000 confocal spectrometer with 

a 532 nm laser and a 100x objective. Each sample was measured at least on three 

different locations to obtain an average spectrum. 

Atomic force microscopy (AFM) 

AFM images were obtained with a JPK NanoWizard Ultra Speed instrument, and 

the images were processed with a JPK SPM Data Processing software. The 

experiments were performed using a silicon probe (AC160TS, Asylum Research) 

with 300 kHz nominal resonance frequency. The images were scanned in an 

intermittent contact mode at room temperature with 512x512 pixels. 
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Summary 

In this PhD work, I investigated the interactions of lipid molecules with the basal 

plane and edges of graphene. As it is well known that the surface of graphene is 

hydrophobic, I studied whether lipids could form a stable layer on the graphene 

basal plane. Lipids are main constituents of cell membranes and thus – through 

hydrophobic interactions – I aimed to sandwich graphene directly in the 

hydrophobic core of a lipid bilayer, with the long term goal of developing a 

graphene-based sensor within a bilayer. In fact, the outstanding electrical 

properties of graphene allow to monitor subtle changes in the dielectric properties 

of the environment of graphene. However, a major challenge remain ways to 

integrate graphene within such a lipid bilayer. 

Chapter 1 is a literature review on lipid interactions with graphene, graphene 

oxide and reduced graphene oxide. Surprisingly, at the start of my PhD study, there 

was no general consensus or trend in systematically understanding which were the 

driving forces yielding stable lipid-graphene assemblies. Surprisingly, the most 

basic characterization methods used to study lipids on surfaces (namely infrared 

spectroscopy, quartz crystal microbalance and ellipsometry) were not used to 

study lipid-graphene interactions.  

In Chapter 2, the packing and organization of a lipid monolayer interacting with 

graphene was therefore investigated using infrared spectroscopy. For this, a lipid 

monolayer was transferred by the Langmuir-Blodgett technique on a Si/SiO2 

substrate. Remarkably, the lipid monolayer changed its conformation when 

graphene was placed on top, resulting in a more ordered, compact and well-

organized structure. The lipid-graphene assembly also suppressed the Si/SiO2 p-

doping effect, reducing graphene hysteresis loop and the average charge neutrality 

point when a voltage was applied. The obtained superstructure – a lipid monolayer 

with hydrophilic heads facing the Si/SiO2 substrate and tails facing the graphene 

monolayer transferred on top – increased our understanding of the interaction 

between lipids and graphene and paved the way towards a graphene sheet 

sandwiched within the core of a lipid bilayer.  

In Chapter 3, graphene was encapsulated within the hydrophobic core of a lipid 

bilayer. The Langmuir-Schaefer method was used to transfer a second lipid 
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monolayer on top of graphene, thereby forming a lipid-graphene-lipid assembly 

which was characterized by infrared spectroscopy, ellipsometry and neutron 

reflectometry. The assembly showed to be a very stable and organized structure 

as compared to a single lipid bilayer. Surprisingly, the encapsulation of graphene 

within the lipid bilayer did not alter the intrinsic structure of the bilayer membrane. 

In Chapter 4, the influence of temperature on the stability of lipid-graphene 

assemblies was investigated. The temperature-dependence on the lipid monolayer 

structure with and without graphene on top was studied by atomic force 

microscopy and infrared spectroscopy. This study revealed that a graphene 

monolayer deposited on top of the lipid constructs protects the lipids from the 

removal by solvents like chloroform or a surfactant solution (i.e. CTAB).  

The properties of a lipid assembly on graphene depends on the number of 

unsaturated bonds, chain lengths, and charges. In Chapter 5, the assembly and 

structural organization of distinct lipids on different graphene materials was 

investigated by infrared spectroscopy and quartz crystal microbalance with 

dissipation monitoring. Here, zwitterionic, cationic and anionic lipids were 

deposited on graphene using the Langmuir-Schaefer and a vesicle fusion method. 

Depending on the substrate and the assembly method used, the resulted lipid 

layers adopted a distinct molecular structure. Infrared spectroscopy studies 

revealed that the saturated lipid DPPC exhibited higher molecular order than 

unsaturated lipids, both on a graphene-on-copper or a graphite substrate. The 

unsaturated DOTAP lipid carries a positive charge and a smaller head group and 

assembled into a more organized lipid structure as compared to the unsaturated 

zwitterionic DOPC and anionic DOPS lipids. Quartz crystal microbalance studies 

showed that with the vesicle fusion method, liposomes of zwitterionic unsaturated 

lipids yielded a lipid bilayer on graphene-on-SiO2 and adsorbed without rupturing 

on graphene-on-gold. This suggests that the wetting transparency of graphene 

(i.e., the substrate on which graphene is deposited on) plays an important role in 

governing the interaction of lipids (in the form of vesicles) with the graphene basal 

plane.  

In Chapter 6, lipids were used as a flexible and molecular scaffold to clamp 

graphene at the edges while floating at the air-water interface, enabling the 

transfer of a continuous and clean graphene monolayer to a Si/SiO2 substrate. 
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Langmuir films were deposited at the edges of graphene floating on an air-etchant 

interface, preventing the movement and cracking of graphene during all the 

etching and transfer procedures. This method yielded graphene without 

contaminants and is a step towards the fabrication of clean and therefore sensitive 

graphene based sensors.  

In conclusion, this study provides new insights on the interactions between 

lipids and graphene. Lipids were assembled by Langmuir-Blodgett or by vesicle 

fusion and characterized by infrared spectroscopy, ellipsometry, neutron 

reflectivity, atomic force microscopy and quartz crystal microbalance. Additionally, 

lipids were introduced as a molecular-based scaffold yielding the controllable 

manipulation of graphene at the edges which could be used as an alternative clean 

graphene transfer method. Importantly, graphene demonstrated to be stable 

within the hydrophobic core of a lipid bilayer, i.e., not disturbing the intrinsic 

properties of the lipid bilayer. This result yields potential applications for designing 

well-defined interfaces for biosensing devices. 
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Samenvatting 

Mijn promotieonderzoek is gericht op de interactie tussen lipidenmet grafeen. 

Omdat bekend is dat het oppervlak van grafeen hydrofoob is, heb ik onderzocht of 

lipiden op gecontroleerde wijze een stabiele laag op het oppervlak van grafeen (i.e. 

basal plane) kunnen vormen. Lipiden zijn het hoofdbestanddeel van 

celmembranen en ik heb ernaar gestreefd om via hydrofobe interacties grafeen 

rechtstreeks in de hydrofobe kern van een lipide dubbellaag te incorporeren. Het 

doel van dit onderzoek was om in de toekomst grafeen te gebruiken als sensor 

binnen een lipide dubbellaag. De uitstekende elektrische eigenschappen van 

grafeen maken het mogelijk om elektrisch subtiele veranderingen in de 

diëlektrische eigenschappen van de omgeving van grafeen te meten. Tevens blijft 

het een grote uitdaging een methode te vinden om grafeen in een dergelijke 

dubbele lipidenlaag in te bouwen als onderdeel van een sensor. 

Hoofdstuk 1 van dit proefschrift geeft een overzicht van de bestaande literatuur 

over de interactie tussen lipiden en grafeen, grafeenoxide en gereduceerd 

grafeenoxide. Verrassend genoeg was er aan het begin van dit promotieonderzoek 

geen consensus met betrekking tot de onderliggende krachten van stabiele lipide-

grafeenassemblages. De meest gebruikelijke karakterisatiemethoden om lipiden 

op oppervlakken te bestuderen, zoals infraroodspectroscopie, kwartskristal 

microbalansmetingen en ellipsometrie, werden eerder niet toegepast voor het 

bestuderen van lipide-grafeen interacties. 

Daarom werd in hoofdstuk 2 de pakking en de organisatie van een lipide-

monolaag in interactie met grafeen met behulp van infrarood spectroscopie 

bestudeerd. Hiervoor werd een Langmuir-Blodgett lipide monolaag op een Si/SiO2-

substraat aangebracht. Opmerkelijk was dat de conformatie in de lipide monolaag 

veranderde in de aanwezigheid van grafeen bovenop de monolaag, met als 

resultaat een meer geordende, compacte en goed georganiseerde structuur. De 

gevormde grafeen-lipide monolaag assemblage verminderde ook het Si/SiO2-p-

doteringseffect. Hierdoor werd de hysterese-lus van grafeen en het gemiddelde 

neutraliteitspunt van de lading verminderd wanneer een spanning werd 

aangelegd. De gebruikte superstructuur, een lipide monolaag met hydrofiele 

kopgroepen in contact met het Si/SiO2-substraat en de acyl ketens in contact met 
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de grafeen monolaag, resulteerde in een beter inzicht over de interactie tussen 

lipide monolagen en grafeen.  

Voortbouwend op dit inzicht werd in hoofdstuk 3 onderzocht of grafeen in de 

hydrofobe kern van een lipide dubbellaag kon worden ingebouwd. De Langmuir-

Schäfer-methode werd toegepast om een tweede lipide monolaag bovenop 

grafeen aan te brengen, resulterend in een lipide-grafeen-lipide-sandwich. De 

constructie werd gekarakteriseerd met behulp van infraroodspectroscopie, 

ellipsometrie en neutronenreflectometrie. De assemblage heeft een zeer stabiele 

en georganiseerde structuur in vergelijking met een enkele lipide dubbellaag. 

Opvallend genoeg veranderde de introductie van grafeen in een lipide dubbellaag 

niet de intrinsieke structuur van de dubbellaag. 

Hoofdstuk 4 beschrijft het onderzoek naar de invloed van temperatuur op de 

stabiliteit van lipide-grafeenassemblages. De temperatuurafhankelijkheid van de 

lipide monolaagstructuur met en zonder grafeen aan de bovenzijde werd 

bestudeerd met atoomkrachtmicroscopie en infraroodspectroscopie. Hieruit bleek 

dat grafeen gepositioneerd op een lipide monolaag, de lipiden beschermt tegen 

oplosmiddelen zoals chloroform en een waterige surfactantenoplossing. 

Zelfassemblage van lipiden op grafeen is afhankelijk van de lipide structuur, 

zoals bijvoorbeeld lading, ketenlengte en verzadiging. Hoofdstuk 5 beschrijft het 

onderzoek naar de assemblage en structurele organisatie van verschillende lipiden 

op verschillende grafeenmaterialen door middel van infraroodspectroscopie en 

kwartskristal microbalansmetingen. Zwitterionische, kationische en anionische 

lipide monolagen op grafeen werden gemaakt met de Langmuir- Schäfer en 

vesikelfusie methode. Afhankelijk van het substraat en de gebruikte 

assemblagemethode, lieten lipiden verschillende moleculaire structuren zien. De 

infraroodspectroscopiestudie toonde aan dat een monolaag van de verzadigde 

lipide DPPC een hogere moleculaire orde bezit in vergelijking met onverzadigde 

lipiden. Vanwege de positieve lading en de kleinere kopgroep, gaf het  

onverzadigde DOTAP een meer georganiseerde lipidestructuur. Uit de 

kwartskristal microbalansstudies bleek dat de vesikelfusie methode, met 

zwitterionische onverzadigde vesikels een lipide dubbellaag opleverde op grafeen-

op-SiO2 en op grafeen-op-goud substraten. Dit resultaat suggereert dat de 
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zogenaamde “wetting transparency” van grafeen een belangrijke rol speelt bij de 

interactie van lipiden met grafeen. 

In hoofdstuk 6 werden lipide monolagen gebruikt om grafeen op het grensvlak 

van water en lucht in te klemmen, waardoor de overdracht van een continue en 

schone grafeenmonolaag op een Si/SiO2-substraat mogelijk was. De lipide 

monolaag op dit grensvlak voorkomt beweging en scheuren van grafeen tijdens 

het etsen van het kopersubstraat en het transport op het Si/SiO2-substraat. Deze 

methode resulteerde in grafeen zonder verontreinigingen op Si/SiO2, welke een 

cruciale stap is voor de fabricage van schone (en dus gevoelige) grafeen sensoren 

in de toekomst. 

Samenvattend, dit proefschrift biedt nieuwe inzichten in de interacties tussen 

lipiden en grafeen. Lipiden werden geassembleerd door Langmuir-Blodgett of door 

vesikelfusie methodes en gekarakteriseerd met behulp van infrarood 

spectroscopie, ellipsometrie, neutronenreflectie, atoomkrachtmicroscopie en 

kwartskristal microbalans. Daarnaast werden lipiden geïntroduceerd als een 

scaffold die manipulatie van grafeen op het water-luchtgrensvlak mogelijk maakt, 

resulterend in een alternatieve schone grafeenoverdrachtsmethode. Een 

belangrijke conclusie van dit onderzoek is dat grafeen binnen de hydrofobe kern 

van een lipidedubbellaag stabiel bleek te zijn en dat de intrinsieke eigenschappen 

van de lipidedubbellaag niet verstoord werd. Dit resultaat maakt potentiële 

toepassingen mogelijk voor het ontwerpen van goed gedefinieerde interfaces voor 

biosensoren gebaseerd op grafeen. 

  



158 
 

 

  



159 
 

Curriculum Vitae 

Lia Macedo Coelho Lima was born in Manchester, United Kingdom on June 2nd 

1987. She graduated from a high school in Braga, Portugal in 2005 and enrolled in 

a bachelor degree in Chemistry at the Faculty of Science of the University of Porto. 

During her studies, she was admitted to the Erasmus Exchange Bachelor Program 

in Turin, Italy at the Università degli Studi di Torino for six months. She graduated 

in 2009 after a research internship about studies of films deposition containing 

nanoparticles.  

Lia continued her studies with a master degree in Chemistry at the Faculty of 

Science of the University of Porto. She spent her Erasmus Exchange Master 

Program in Barcelona, Spain at the Institute of Bioengineering of Catalonia, 

Nanoprobes and Nanoswitches group. During this one year program, Lia 

completed her final master research internship. Graduating at the end of 2011 in 

Chemistry, her master project was published as first author in 2013 with the title: 

“Morphological and nanomechanical behavior of supported lipid bilayers on 

addition of cationic surfactants”. 

After working in business development for a short time (2012-2014), she 

started her PhD research in 2014 at the Leiden Institute of Chemistry (Leiden 

University) in the research group of Dr. Grégory F. Schneider, department of 

Supramolecular and Biomaterials Chemistry. During her PhD studies, she 

collaborated with several research groups in Leiden (Prof. dr. Alexander Kros, the 

Leiden Institute of Physics, particularly for the atomic force microscopy facilities 

with Dr. Federica Galli), in Strasbourg with Prof. dr. Thierry Charitat and, in 

Grenoble with Prof. dr. Giovanna Fragneto for the Neutron reflectometry 

experiments. She supervised several bachelor students and first year practical 

courses. She participated in a number of conferences as a speaker (e.g., CHAINS 

2016, Veldhoven, The Netherlands), and by presenting a poster (e.g., CHAINS 2015, 

2016, 2017, and Chem2DMat 2017, Strasbourg, France). At this last conference, Lia 

was awarded with a poster prize.  

 

 



160 
 

 



161 
 

List of publications 

1. Sensing at the surface of graphene field-effect transistors.  
Wangyang Fu, Lin Jiang, Erik P. van Geest, Lia M. C. Lima, Grégory F. Schneider. 
Advanced Materials, 2017, 29, 1603610. 
 

2. Graphene-stabilized lipid monolayer heterostructures: a novel 
biomembrane superstructure. 
Lia M. C. Lima, Wangyang Fu, Lin Jiang, Alexander Kros, Grégory F. Schneider. 
Nanoscale, 2016, 8, 18646. 
 

3. Encapsulation of graphene in the hydrophobic core of a lipid bilayer.  
Lia M. C. Lima, Liubov A. Belyaeva, Hadi Arjmandi-Tash, Tetiana Mukhina, 
Giovanna Fragneto, Alexander Kros, Thierry Charitat, Grégory F. Schneider.  
In preparation. 
 

4. Effect of temperature on the structure of lipids in the presence of graphene. 
Lia M. C. Lima, Hadi Arjmandi-Tash, Grégory F. Schneider. In preparation. 
 

5. Assembly and structural characterization of lipids on graphite and on 
graphene. 
Lia M. C. Lima, Xiaoyang Zhang, Grégory F. Schneider. In preparation. 
 

6. Lateral non-covalent clamping of graphene at the edge using a lipid scaffold.  
Lia M. C. Lima, Hadi Arjmandi-Tash, Grégory F. Schneider. ACS Applied 
Materials & Interfaces, 2018, 10 (13), 11328-11332. 
 

7. Biaxial compression of centimeter-scale graphene.  
Hadi Arjmandi-Tash, Hessam Sokooti, Khosrow Shakouri, Lin Jiang, Alexander 
Kloosterman, Marius Staring, Lia M. C. Lima, Grégory F. Schneider. Submitted. 
 

8. Contact angle measurement of free-standing square-millimeter single-layer 
graphene.  
Ana V. Prydatko, Liubov A. Belyaeva, Lin Jiang, Lia M. C. Lima, Grégory F. 
Schneider. Nature Communications, 2018, 9, 4185. 
 
 
 



162 
 

9. Ultrasensitive ethene detector based on a graphene−copper(I) hybrid 
material.  
Wangyang Fu, Thomas F. van Dijkman, Lia M. C. Lima, Feng Jiang, Grégory F. 
Schneider, Elisabeth Bouwman. Nano Letters, 2017, 17 (12), 7980-7988.  
 

10. Morphological and nanomechanical behavior of supported lipid bilayers on 
addition of cationic surfactants. 
Lia M. C. Lima, Marina I. Giannotti, Lorena Redondo-Morata, M. Luísa C. Vale, 
Eduardo F. Marques, Fausto Sanz. Langmuir, 2013, 29 (30), 9352-9361. 

 

 

 


