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Review Article

Mind the Gaps: Ontogeny of Human Brain P-gp and Its Impact on Drug Toxicity

Jean-Marie Nicolas1,3 and Elizabeth C. M. de Lange2
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Abstract. Available data on human brain P-glycoprotein ontogeny during infancy and
childhood are limited. This review discusses the current body of data relating to maturation
of human brain P-glycoprotein including transporter expression levels in post-mortem human
brain samples, in vivo transporter activity using probe substrates, surrogate marker
endpoints, and extrapolations from animal models. Overall, the data tend to confirm that
human brain P-glycoprotein activity keeps developing after birth, although with a
developmental time frame that remains unclear. This knowledge gap is a concern given the
critical role of brain P-glycoprotein in drug safety and efficacy, and the vulnerable nature of
the pediatric population. Future research could include the measurement of brain P-
glycoprotein activity across age groups using positron emission tomography or central
pharmacodynamic responses. For now, caution is advised when extrapolating adult data to
children aged younger than 2 years for drugs with P-glycoprotein-dependent central nervous
system activity.

KEY WORDS: blood-brain barrier; brain; ontogeny; pediatric; P-glycoprotein.

INTRODUCTION

Cellular plasma membrane transporters are expressed in
various tissues and ensure the uptake of endogenous and
exogenous substances into cells, as well as their efflux.
Hundreds of transporters have been identified, with about
20 being recognized as playing a role in drug absorption,
distribution, and excretion (1). The multi-drug efflux pump P-
glycoprotein (P-gp; also termed multi-drug resistance protein
1 [MDR1]; encoded by the ABCB1 gene) belongs to the
ATP-binding cassette (ABC) superfamily. Since its discovery
more than 40 years ago (2), the function, localization, and
regulation of P-gp have been extensively studied. P-gp is
expressed throughout the body, typically at the apical surface
of polarized cells from the liver and the kidneys, where it
contributes to drug elimination. At physiological barriers such
as the intestine, blood-brain barrier (BBB), and others (e.g.,
placenta and testis), P-gp is expressed at the luminal surface
of cells, where it effluxes substrates and restricts their
absorption or distribution into tissues.

P-gp is remarkable in its ability to transport a wide range
of substances owing to its multiple substrate-binding sites.
Changes in P-gp function have a profound effect on the

pharmacokinetics, tissue distribution, efficacy, and toxicity of
drugs that are substrates for this transporter. As an example,
the over-the-counter anti-diarrheal drug loperamide is a
potent synthetic μ-opioid agonist which, under normal
circumstances, is devoid of central opioid side effects as a
result of P-gp-mediated efflux and thus has limited brain
distribution (3). However, concomitant administration of
loperamide with strong P-gp inhibitors (e.g., quinidine and
omeprazole) may lead to respiratory depression (3) and
euphoria with abuse potential (4). Secondly, the etexilate
prodrug of the anti-coagulant dabigatran shows poor oral
absorption because of intestinal P-gp efflux (4). Co-
administration with P-gp inhibitors has been reported to
increase dabigatran exposure and therefore risk of severe
hemorrhage (5).

Although less studied, the activity of the various drug
transporters can change during growth and development, with
potential impact on drug pharmacokinetics, pharmacodynamics,
and safety in children (6–8). The International Transporter
Consortium (ITC) recently issued a white paper about the
ontogeny of drug transporters, reviewing the limited existing
data and their clinical relevance for pediatrics, andmaking some
recommendations (9). Notably, only intestinal-, hepatic-, and
renal-transporter activities were discussed, without any mention
of brain tissue. This underscores the paucity of information
about brain P-gp ontogeny, which itself probably reflects the
numerous technical and ethical challenges impeding investiga-
tions. However, this knowledge gap contrasts with the pressing
need to better understand changes in drug kinetics during
childhood, in order to determine appropriate pediatric dosing
(10). Indeed, most of the drugs prescribed to children are off-
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label or unlicensed, with few (if any) clinical data available, and
with rudimentary dose adjustment (11), which leaves this
vulnerable population at risk of adverse safety reactions and
efficacy failures.

This review discusses the available literature relating to
brain P-gp ontogeny in humans and its relevance to drug
safety in children. Immunohistochemistry data obtained in
post-mortem human brain samples are reviewed, as well as
information derived from alternate readouts such as CSF
sampling, brain PET imaging, central nervous system (CNS)
pharmacodynamic effects, and animal studies.

Immunohistochemical Investigations Using Post-mortem Hu-
man Brain Samples

A pioneering study performed in the late 1990s demon-
strated P-gp expression in brain microvessels as early as 8 weeks
of gestation (12). A subsequent study showed a gradual increase
in brain microvessel P-gp expression with gestational age (13).
The developmental pattern showed regional differences with an
earlier P-gp expression in posterior forebrain when compared to
cerebral cortex. Importantly, P-gp expression levels measured in
post-mortem samples from term newborns were lower than those
in adults, leaving open the question of post-natal maturation of P-
gp.

This question was addressed in a work recently pub-
lished by Lam et al. that examined samples from gestational
age 20–26 weeks to post-natal age 3–6 months and compared
them to adults (14) (Table I). P-gp protein levels were
measured by immunohistochemistry in formalin-fixed, par-
affin-embedded, post-mortem brain samples. The authors
reported that P-gp expression was limited at birth and
increased to adult levels at post-natal age 3–6 months. The
authors acknowledged several limitations in their study.
Post-mortem interval, method of tissue fixation, and donor
P-gp genotype were unknown, which all may affect P-gp
level determination. Tissue autofluorescence (e.g., involving
lipofuscin) was discussed as another potential confounding
variable in the P-gp immunoassay, as well as the fact that
only cortex samples were examined. These concerns are not
unique to this study: previous immunohistochemical studies
measuring P-gp in tissues have produced conflicting results
that were ascribed to similar methodological challenges
(23,24). One could also add that the pediatric samples in
Lam’s report were compared with a rather old adult
population (mean age of 53.6 years), which may complicate
data interpretation as brain P-gp levels are known to decline
with aging (25,26). Finally, caution is warranted when
interpreting P-gp protein expression data, which may not
directly correlate with transporter activity (27–31). Discrep-
ancies would not be unexpected as P-gp activity is influenced
by numerous factors beyond the expression of the protein
itself, e.g., transporter conformation (31), membrane lipid
environment (29), and extracellular pH (32).

However, it should be emphasized that the availability of
quality human pediatric tissues is scarce and does not allow
for P-gp investigations with larger sample sizes and better-
controlled conditions (9). Despite all the above-mentioned
limitations, Lam’s study is cited by many review articles
stating that human brain P-gp is fully mature at 3–6 months of
age (7,35–39).

In Vivo Functional Activity of P-gp in Human BBB

As discussed above, P-gp expression levels in post-
mortem or surgical samples may not be predictive of
functional activity in vivo. However, assessing brain P-gp
activity in human subjects is challenging, particularly in young
children. An in vivo probe substrate for brain P-gp should
combine selectivity towards the transporter, efficient efflux,
low metabolism, high tolerability, and sensitive bioanalytics.
Performing pharmacokinetic studies in pediatrics represents
an additional challenge given the numerous technical, ethical,
and regulatory hurdles. A recent review of 1081 registered
clinical trials in children revealed that only 24% incorporated
pharmacokinetic measurements and that 74% were con-
ducted in children aged over 2 years (40), while changes in
drug pharmacokinetics tend to predominate in younger
children. From an ethical and regulatory perspective, studies
are not generally acceptable in healthy children, and drugs
investigated in ill children should either provide a direct
benefit to the subjects or be used at a dose where risks are
minimal (41).

The methods for estimating brain pharmacokinetics in
the clinic are very few and mostly restricted to cerebro-
spinal fluid sampling and positron emission tomography.

Cerebrospinal Fluid Sampling

Although the blood-CSF barrier differs from the BBB,
especially with respect to active transporters such as P-gp
(13,42–45), drug concentration in lumbar, cisternal, and
ventricular CSF may provide an indirect indication of brain
levels. CSF sampling has been widely used in adolescents and
adults to determine human brain P-gp activity towards
centrally acting drugs, and its changes in disease states or
resulting from P-gp/ABCB1 polymorphism (46–49). How-
ever, data in children are scarce and CSF sampling has never
been used to specifically investigate the post-natal maturation
of brain P-gp activity.

Vincristine (VCR) is a plant alkaloid widely used as an
intravenous infusion for the treatment of childhood and
adult malignancies. A study in 17 pediatric patients (aged
2.5–14 years) measured paired VCR levels in plasma and
CSF after intravenous dosing (15) (Table I). No measurable
VCR was detected in CSF samples, with CSF/plasma ratios <
5% irrespective of patient age. CSF-to-free plasma-level
ratios were estimated to be < 0.16 (detection limit 0.1 ng/mL,
VCR plasma protein binding 71% (50)). Since VCR is a P-gp
substrate (51), the data above could be interpreted as brain
P-gp being fully mature from 2.5 years onwards. These
findings should be taken with caution as the study did not
investigate younger ages. Also, the data were from patients
treated for acute lymphoblastic leukemia or non-Hodgkin
lymphoma, disease states often associated with overexpres-
sion of P-gp (52,53). Finally, VCR also interacts with other
transporters such as multi-drug resistance-associated pro-
teins (MRPs) (54,55),and organic anion transporting
polypeptides (OATPs) (56).

Amphotericin B (AmB) is a potent anti-fungal known
for showing poor brain penetration and extensive P-gp-
mediated efflux (57). Although several studies reported
undetectable AmB levels in CSF across various age groups
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(58–60), the methods used were not sensitive enough to
quantify the low concentrations expected due to high
plasma protein binding of AmB. A more recent study in
subjects approximately 8 years old used a highly sensitive
AmB assay and established that CSF concentrations
corresponded to 0.13% of serum levels (61); this translates
into a CSF-to-free serum-level ratio of approximately 0.26
(assuming 99.5% plasma protein binding (62)), confirming
restricted BBB penetration. AmB CSF concentrations
reported in pre-term neonates are surprisingly high, i.e.,
up to 40–90% of the concentration measured in paired
serum samples (63). It could be hypothesized that the
higher CSF levels in neonates relate to immature brain P-
gp. However, as for VCR, these data should be interpreted
with caution since the role of P-gp in AmB distribution is
still debated (64,65) and age-related changes in plasma
protein binding may have also contributed to the higher
AmB CSF concentrations in neonates (66). Moreover, it
should be realized that CSF concentrations do not directly
reflect brain extracellular fluid (ECF) concentrations. The
relationship between brain ECF and CSF is drug depen-
dent, system dependent, and time dependent, and it is the
brain ECF concentrations that are needed to understand P-
gp activity at the level of the BBB (45).

Positron Emission Tomography

PET imaging has been proposed as an alternative to CSF
sampling to investigate drug distribution across the BBB. PET has
the advantages of being non-invasive and allowing regional
distribution studies (67). On the other hand, PET remains
expensive and technically challenging. In addition, the PET signal
is not easy to interpret since it shows the total concentration in the
tissue of interest; it does not allowdiscrimination between the intact
tracer and its labeled metabolites, nor between free and bound
material. The PET signal also does not differentiate between the
intracellular, extracellular, and intravascular compartments (68).
PET has been applied to measure brain P-gp functional activity in
animals and humans using [11C]-labeled probe markers, e.g., [11C]-
verapamil and [11C]-desmethyl-loperamide. So far, human PET
studies have been restricted to adults, measuring brain P-gp activity
in disease states and/or following co-administration with P-gp
inhibitors (68). There are no reports of PET studies investigating
brain P-gp maturation in children.

P-gp Activity in Peripheral Tissues as a Surrogate Marker of
Activity in the Brain

Given the difficulties in quantifying in vivo brain P-gp
functional activity in young children, a surrogate marker with
easier access would be useful. P-gp is present in various tissues,
particularly blood cells that are easy to collect. However, available
literature suggests that P-gp functional activity varies across tissues,
making blood cell assays unlikely to quantitatively predict the BBB
situation. In vivo, brain P-gp is more resistant to inhibition than P-
gp in blood lymphocytes (69–71). Similarly, in vitro data showed
that circulating lymphocytes and brain endothelial cells respond
differently to P-gp inducers, suggesting different mechanisms of
transporter regulation (72). It has also been suggested that the
location of P-gp within the cell membrane, its lipid microenviron-
ment, and its expression level might differ between blood

lymphocytes and brain endothelial cells, which could account for
the observed differences in activity (69). In circulating T lympho-
cytes and NK cells, P-gp activity is maximal at birth and gradually
decreases to adult levels at 6 months of age (73,74), suggesting that
blood lymphocytes and brain have an opposite time frame with
respect to P-gp maturation.

The organ-specific pattern of P-gp development has been
already discussed for other peripheral tissues (7,38). Based on
protein expression data, hepatic P-gp reaches adult levels at
1 year of age (75), duodenal P-gp appears fully mature from
birth (76,77), while placenta P-gp decreases with advancing
gestation (78). The mechanisms and physiological reasons for
these tissue differences remain unclear. Overall, it is unlikely
that P-gp maturation in peripheral tissues or blood cells will
be informative for the situation at the BBB level.

CNS Pharmacodynamic Response as a Surrogate Marker of
Brain P-gp Activity

Under certain circumstances, central effects of P-gp
substrates on the brain may be considered as a potential
surrogate for measuring the transporter activity at the BBB.
This necessitates a drug with sizable P-gp-mediated efflux and
easily measurable CNS pharmacological or toxicological
response.

When taken as advised, loperamide does not elicit
central opioid activity because of restricted brain penetration,
a consequence of P-gp-mediated efflux (79). However, cases
of neurological side effects have been reported in young
children given loperamide (80–82). A large meta-analysis of
13 selected, randomized, controlled trials in children (total of
1788 children aged 1 month to 12 years) (16) (Table I)
confirmed that loperamide is mostly efficacious and safe.
However, serious adverse events were reported among
loperamide-treated children aged < 3 years, compared with
none in older children or those allocated to placebo. It has
been suggested that decreased brain P-gp function in children
might account for their increased vulnerability to loperamide
CNS side effects (83).

Buprenorphine is a partial agonist of μ-opioid receptors
used in adults for treatment of pain and narcotic addiction.
It is also a valuable treatment option for neonatal absti-
nence syndrome, a condition affecting newborns that were
exposed to opioids in utero (84). Norbuprenorphine, the
major active metabolite, is a substrate of P-gp, which limits
its brain distribution and partly masks its potential to
provoke CNS depression (85). Buprenorphine has been
rarely linked to overdose in adults and children. However,
children under 2–3 years do not respond well to
buprenorphine overdosage showing CNS toxicity such as
respiratory and CNS depression, altered mental status and
miosis (84,86–88). In theory, immature P-gp in children
could allow higher brain exposure to norbuprenorphine
(83,87). Other mechanisms could also account for the
observed findings, for example a Bceiling^ pharmacodynam-
ics effect might limit respiration depression in adults but not
in very young children (86).

Cyclosporin A (CsA) is a potent, amino acid-containing
immunosuppressant. It is a P-gp substrate (89) that usually
shows restricted distribution to the brain (90). However,
severe neurotoxicity is a recognized complication of CsA
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that can manifest as seizures, acute encephalopathy, coma,
cerebral hemorrhage, and cortical blindness. It is not directly
linked to CsA dose or plasma exposure (91); the exact
underlying mechanisms are poorly understood and likely to
be multi-factorial (92). Many risk factors have been identi-
fied, including co-administration with anti-cancer drugs and
glucocorticoids, hypertension, hepatic and renal dysfunction,
cerebral ischemia or hemorrhage, and low serum cholesterol
(93,94). A retrospective study in 146 children (from 0.4 to
18 years of age) demonstrated that age is another risk factor
for CsA neurotoxicity (17). Age < 6 years was found to be
significantly associated with CsA encephalopathy (Table I),
possibly because of immature brain P-gp.

As described earlier, VCR is a plant alkaloid widely used
as an intravenous infusion for the treatment of childhood and
adult malignancies such as lymphoma, leukemia, and rhab-
domyosarcoma. Severe and often fatal CNS toxicity has been
reported following accidental intrathecal administration of
VCR (95). Under normal circumstances, central side effects
are rare since the drug does not distribute into the brain
(15,96) as a consequence of its extensive efflux by P-gp and
MRPs (55). Disruption of the BBB, for example due to brain
tumor (55), osmotic opening (97), or impaired brain P-gp
activity (98,99), potentially increases distribution of VCR to
the brain and increases its central toxicity. Presumably,
immature brain P-gp in young children could also translate
into increased VCR central side effects. However, to our
knowledge, there are no published reports suggesting a
higher incidence of VCR-induced central side effects in
young children versus older age groups.

Most of the above examples tend to confirm post-natal
development of brain P-gp activity. However, these reports do
not allow a precise clarification of the time frame of the transporter
maturation, as some important variables were not controlled, e.g.,
P-gp genotype, environmental exposure, potential age-related
changes in systemic drug levels, or in the expression of the target(s)
driving theCNS response (such as for dopamine neurotransmission
(100), GABAA (101,102), or SV2A, (103)). Measuring CNS
pharmacodynamics response as a surrogatemarker of P-gp activity
remains a viable future option for controlled prospective studies.

Extrapolations from Animal Models to Humans

Measuring protein expression levels and/or functional
activity of BBB transporters in laboratory animals at various
post-natal ages might potentially provide an indication of the
human situation (9,104,105).

Age-related changes in brain disposition of various P-gp
probe substrates have been thoroughly investigated in
rodents. After intravenous infusion to male Wistar rats, the
brain-to-plasma concentration ratio of the P-gp substrate
oseltamivir was highest in 3-day-old pups and decreased to
adult levels from 21 days onwards (Table I) (18). These data
were confirmed in a subsequent PET imaging study with
[11C]-oseltamivir (19) and in a tissue distribution study using
digoxin, another P-gp substrate (20). The above age-related
changes in brain P-gp function broadly parallel the changes
in mRNA (18,20,106,107) and protein (108–110) expression
in brain microvessels, with adult levels being reached at
postnatal weeks 3–4. In rats, the expression profile of P-gp
protein appears to be comparable in the capillaries of

cerebral cortex, hippocampus, and cerebellum (108). The
developmental pattern of brain P-gp in mice is similar than
in rat. A report investigating the brain disposition of the P-
gp substrate CsA in mice demonstrated around 4-fold higher
brain P-gp activity in adults compared with 1-day-old
animals, and mature levels were achieved at around 19 days
of age (111). Similarly, P-gp expression in mouse brain was
found to be limited during embryogenesis and to increase
with postnatal maturation. By day 21, brain P-gp protein
expression approximates adult levels (112).

The numerous and well-aligned datasets in mice and rat
contrast with very few and conflicting reports in non-human
primates. In a comprehensive PET study in Rhesus monkeys,
the brain-uptake clearance of R-[11C]-verapamil, a parameter
that is inversely proportional to P-gp activity at the BBB, was
significantly higher in infant animals (9 months) compared
with adolescents (24–27 months) or adults (5.6–6.6 years):
0.14 ± 0.04, 0.09 ± 0.02, and 0.06 ± 0.01 mL/min/g, respectively
(mean ± standard deviation of five animals per group) (21)
(Table I). This finding suggests a rather delayed maturation of
brain P-gp, which contrasts with a concurrent study reported
in cynomolgus monkeys (22). In this later study, brain P-gp
was claimed to be mature at birth since similar P-gp protein
levels were measured in 1-day-, 16-month-, and 4-year-old
animals. However, these data should be interpreted with
caution given the small sampling size (i.e., one animal per
group) and potential disconnect between protein expression
and functional activity.

Overall, from the above data, brain P-gp activity appears
to be mature in rodents from ca. 3-week post-natal age and in
Rhesus monkeys aged > 9 months. Translating these data to
humans should consider potential species differences in organ
and function maturation. Using a Bneuroinformatic^ ap-
proach combining various neurodevelopmental endpoints
(33), 3 weeks of rat age would correspond to 1–2 years of
human age, with 9 months in Rhesus monkey age corre-
sponding to approximately 4 years in humans. Broadly similar
schedules can be derived from the popular age-comparative
categories described by Buelke-Sam, which are based on
overall CNS and reproductive development (113). One major
weakness of this approach is that it assumes that brain P-gp
development parallels other CNS endpoints such as
neurogenesis, myelination, sensimotor function, and brain
growth. Such assumptions might be flawed, as illustrated by
intestinal P-gp. Indeed, human intestinal P-gp is fully mature
at birth (76,114) while other intestinal functions, such as
duodenal CYP3A4 activity, intestinal cell morphology, and
Peyer’s patch development, show delayed maturation (115–
117). Translating brain P-gp maturation data from animals to
humans is made even more complex by species differences in
BBB transporter expression and activity, especially between
rodents and primates (118–120). Overall, although strongly
indicating maturation of BBB P-gp after birth, the actual
animal data are somewhat conflicting and difficult to extrap-
olate to humans, especially in refining the maturation time
frame of the transporter.

Physiologically Based Pharmacokinetic Modeling of CNS

PBPK modeling is increasingly used to investigate drug
pharmacokinetics in children (121–123). PBPK is a
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mechanism-based modeling approach where all drug me-
tabolism and pharmacokinetic processes and their intercon-
nections are described mathematically. A broad range of
input data (in silico, in vitro, pre-clinical and clinical data)
can be incorporated to parameterize the PBPK model for
both system-specific (e.g., anatomy, physiology, flow rates,
tissue volume and composition, or metabolizing enzyme
activity) and drug-specific (e.g., solubility, permeability,
metabolic clearance, or fraction bound to plasma proteins)
parameters. Typically, an adult PBPK model is first built,
then refined and verified against measured clinical data.
Later, system parameters can be adjusted to account for
maturational changes in pharmacokinetic processes, and the
model can be used to predict pharmacokinetics in children
(121).

So far, pediatric PBPK modeling has primarily been
applied a posteriori using data for well-known reference
drugs, in order to explore the maturation of renal and
metabolic clearance processes (124–129). A priori pediatric
PBPK studies for guiding dose selection and trial design are
far fewer (130–132). The prospective use of pediatric PBPK
models is hindered by limited understanding of age-related
changes in some pharmacokinetic mechanisms. The develop-
mental patterns of processes involved in oral drug absorption
remain particularly poorly characterized (114,133). The
information gap around the ontogeny of P-gp activity is
another critical limitation, especially when the PBPK model is
intended to predict drug concentrations in the brain and
associated CNS therapeutic or toxic activities. To our
knowledge, there are no published PBPK reports investigat-
ing the CNS distribution of P-gp substrates in pediatric vs
adult populations. Predicting the distribution of P-gp sub-
strates across adult BBB, i.e., ignoring age-related changes,
remains a challenging task (134–137). Recently, Yamamoto
et al. reported a generic CNS PBPK model to predict the
concentration-time profile of drugs in various compartments
of adult rat (138) and human (139) brain. The model was
validated against multiple drugs with varying physicochemical
properties and active transport activities. Moreover, this
model was instrumental in predicting morphine brain con-
centrations in children with traumatic brain injury (140).
Hopefully, as knowledge of ontogeny of brain P-gp improves,
it will become possible to extend PBPK models to predict
brain disposition in children.

CONCLUSIONS

Reliable data on the timing of postnatal maturation of
human brain P-gp activity are scarce. Our review of data from
a variety of sources tends to confirm that post-natal changes
in human brain P-gp activity occur, but does not allow a
precise determination of the time schedule (Table I). De-
pending on the data considered, maturation could be
achieved either at term birth or not until several years of
age. Unfortunately, measuring brain P-gp functional activity
in pediatric subjects is associated with considerable technical,
ethical, and regulatory challenges. In the future, prospective
studies using PET imaging or assessment of CNS pharmaco-
dynamic responses may provide more robust insights into the
normal human brain P-gp maturation pattern. Undoubtedly, a
better understanding of the mechanisms underlying the

maturation of P-gp in brain microvessels would also contrib-
ute filling the knowledge gaps and/or identifying other
biomarkers. For instance, astrocytes have been suggested to
modulate P-gp through multiple signaling pathways (e.g.,
TGF-β1, lipids) that are sensitive to developmental changes
and disease effects (141–143). Once available, all these data
could be used to refine the currently available human CNS
PBPK model and to predict brain-drug disposition in
pediatric patients. However, for now, caution is advised when
extrapolating adult data to children aged younger than 2 years
for drugs with P-gp-dependent CNS activity.
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