
Physics Letters B 794 (2019) 135–142

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Massive mimetic cosmology

Adam R. Solomon a,∗, Valeri Vardanyan b,c, Yashar Akrami d,b

a Department of Physics & McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
b Lorentz Institute for Theoretical Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, the Netherlands
c Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, the Netherlands
d Département de Physique, École Normale Supérieure, PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 March 2019
Received in revised form 24 May 2019
Accepted 28 May 2019
Available online 30 May 2019
Editor: H. Peiris

We study the first cosmological implications of the mimetic theory of massive gravity recently proposed 
by Chamseddine and Mukhanov. This is a novel theory of ghost-free massive gravity which additionally 
contains a mimetic dark matter component. In an echo of other modified gravity theories, there are self-
accelerating solutions which contain a ghost instability. In the ghost-free region of parameter space, the 
effect of the graviton mass on the cosmic expansion history amounts to an effective negative cosmological 
constant, a radiation component, and a negative curvature term. This allows us to place constraints on the 
model parameters—the graviton mass and the Stückelberg vacuum expectation value—by insisting that 
the effective radiation and curvature terms be within observational bounds. The late-time acceleration 
must be accounted for by a separate positive cosmological constant or other dark energy sector. We 
impose further constraints at the level of perturbations by demanding linear stability. We comment on 
the possibility of distinguishing this theory from �CDM with current and future large-scale structure 
surveys.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Chamseddine and Mukhanov have recently proposed [1,2] a 
novel ghost-free theory of massive gravity in which one of the 
four Stückelberg scalars is constrained in the same way as in the 
mimetic theory of dark matter [3], spontaneously breaking Lorentz 
invariance. In this Letter, we study the immediate implications of 
this mimetic massive gravity for cosmological theory and observa-
tion.

From a field-theoretic perspective, general relativity is the 
unique theory (in four spacetime dimensions) of a massless spin-
2 particle, or graviton. It is therefore natural to ask whether it is 
possible to endow the graviton with a non-zero mass, and what 
sort of theoretical structures would result [4]. A closely related 
line of inquiry asks whether it is possible for two or more gravi-
tons to interact [5]. Most nonlinear realizations of such theories 
suffer from the so-called Boulware-Deser ghost instability [6]. The 
past decade has seen the construction of models which avoid this 
instability, allowing for the construction of ghost-free theories of 
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massive gravity [7–13] and bimetric and multimetric gravity [12,
14,15]. We refer the reader to the reviews [16,17] on massive grav-
ity and [18,19] on bimetric gravity. The theory of mimetic massive 
gravity proposed in Refs. [1,2] takes a new and alternative path to 
a ghost-free nonlinear theory of massive gravity.

A generic theory of massive gravity propagates six degrees of 
freedom, which should be thought of as the five helicity states of 
a massive graviton plus an additional, ghostly scalar. The easiest 
way to understand the degrees-of-freedom counting is to observe 
that a graviton mass breaks diffeomorphism invariance. This is a 
gauge symmetry and so can be restored by the addition of four 
Stückelberg scalars �A , which propagate in addition to the two 
(now potentially massive) tensor modes of general relativity.

As an illustration, consider a Lorentz-invariant theory of mas-
sive gravity. In order to construct non-trivial, non-derivative inter-
actions for the metric, one requires a second “reference” metric. 
The simplest choice for this metric is that of flat space, ημν , but 
the addition of this prior geometry breaks diffeomorphism invari-
ance; for instance, there are preferred coordinate systems in which 
ημν = diag(−1, 1, 1, 1). But diffeomorphism invariance is simply 
a redundancy in description, and can be restored by the addi-
tion of redundant variables, i.e., replacing ημν → ηAB∂μ�A∂ν�B , 
where ηAB = diag(−1, 1, 1, 1) and the four fields �A transform as 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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spacetime scalars. One can always, by means of a diffeomorphism, 
choose the unitary gauge in which �A = xA , and we recover the 
original description of the theory in terms of a symmetry-breaking 
reference metric. Generic interaction terms for the graviton, e.g., 
generic functions of gμαηAB∂α�A∂ν�B , will lead to dynamics for 
each of these four scalars, in addition to the two modes of general 
relativity, for a total of six degrees of freedom.

At the linear level, i.e., linearizing the metric about flat space 
in unitary gauge, gμν = ημν + hμν and �A = xA , we find that one 
of the six degrees of freedom leads to a ghost instability unless 
we specifically arrange the mass term into the Fierz-Pauli form, 
Lmass ∼ h2

μν − h2, in which case the dynamics of the ghostly mode 
take the form of a total derivative. Continuing this procedure at 
higher orders in perturbation theory—i.e., continually packaging 
ghostly operators into total derivative structures—leads uniquely to 
the non-linear massive gravity theory of de Rham, Gabadadze, and 
Tolley (dRGT) [8,9].

The recent proposal of Chamseddine and Mukhanov takes a 
novel alternative approach to eliminating the dangerous ghostly 
mode [1,2]. Noticing that the ghost can be associated to the 
�0 Stückelberg mode, they propose imposing the constraint 
gμν∂μ�0∂ν�0 = −1. This is motivated by a similar construction 
known as mimetic gravity [3], in which the constrained scalar 
winds up behaving like dark matter.1 Mimetic massive gravity 
takes this constrained scalar to be one of the Stückelberg modes of 
a massive graviton, eliminating the ghost. They propose the follow-
ing action, designed to ensure stability at the linear level (notice 
that the mass term is not of the Fierz-Pauli form),

S =
∫

d4x
√−g

[
M2

Pl

2
R + m2M2

Pl

8

(
1

2
h̄2 − h̄2

AB

)

+ λ(X + 1)

]
+ Smatter, (1)

with X ≡ gμν∂μ�0∂ν�0, and

h̄AB ≡ gμν∂μ�A∂ν�B − ηAB . (2)

Internal indices (given by capital Roman letters) are raised and 
lowered with the Minkowski metric. The field equations are2

Gμν = 1

M2
Pl

Tμν − 2λ

M2
Pl

∂μ�0∂ν�0

+ m2

2

(
h̄AB − 1

2
h̄ηAB

)(
∂μ�A∂ν�B − 1

4
h̄AB gμν

)
, (3)

0 = ∇μ

[
2λ

M2
Pl

∂μ�0δ0
A − m2

2

(
h̄AB − 1

2
h̄ηAB

)
∂μ�B

]
, (4)

X = −1. (5)

The last of these aligns �̇0 with the lapse of gμν . An upshot of 
this construction is that the constrained mode behaves as a pres-
sureless fluid, i.e., this theory provides a (mimetic) dark matter 
candidate [1,2].3

1 For an earlier construction in which a constrained scalar mimics dark matter 
and dark energy, and which contains mimetic dark matter as a subset, see Ref. [20].

2 Note the sign differences between the right-hand side of the Einstein equations 
and the corresponding equation in Ref. [1], which is due to the mostly positive 
metric convention we employ.

3 One should note that the phenomenology of mimetic dark matter is still in the 
early stages of development compared to traditional particle dark matter models 
such as weakly interacting massive particles (WIMPs) or axions, and it is premature 
to consider mimetic gravity as a serious alternative to those models. For exam-
We end this section by making a connection with the existing 
literature on Lorentz-violating massive gravity and demonstrating 
the absence of certain well-known features of Lorentz-invariant 
massive gravity, namely the van Dam-Veltman-Zakharov (vDVZ) 
discontinuity [22,23] and the Higuchi bound [24]. The vDVZ dis-
continuity refers to the failure of linearized Lorentz-invariant mas-
sive gravity to reduce to general relativity in the massless limit; 
this requires nonlinear effects in order to restore general relativity 
in the Newtonian limit [25,26]. The Higuchi bound is a stabil-
ity bound for massive gravity on de Sitter space, placing a lower 
bound on the graviton mass, m2 ≥ 2H2, with H the Hubble rate. 
It is well-known that breaking Lorentz invariance changes both of 
these conclusions dramatically [27,28].

At the level of linear perturbations around flat space, the gen-
eral SO(3)-invariant mass term in unitary gauge (�A = xA ) can be 
written as [27]

Lmass = 1

8
M2

Pl

(
m2

0h2
00 + 2m2

1h2
0i − m2

2h2
i j + m2

3h2
ii − 2m2

4h00hii

)
.

(6)

The linearized mass term in eq. (1) in unitary gauge is (treating λ
as first-order)

Lmass = m2M2
Pl

8

(
−1

2
h2

00 + 2h2
0i − h2

i j + 1

2
h2

ii − h00hii

)
+ λh00.

(7)

The λ equation of motion sets h00 = 0, which we can impose in 
the action4 to find

m2
0 = m2

4 = 0, m2
1 = m2

2 = 2m2
3 = 1. (8)

This allows us to easily make contact with the existing litera-
ture on Lorentz-violating massive gravity. The analysis of Ref. [27]
shows that for these mi parameters, the Newtonian limit is the 
usual one, while the vDVZ discontinuity is absent. The analogue of 
the Higuchi bound in Lorentz-violating massive gravity was derived 
in Ref. [28], and for our values of the mi parameters, it reduces 
simply to H2 > 0, which is trivially satisfied.

2. Flat-space perturbations

In this section, we briefly review the behavior of perturba-
tions about flat space in mimetic massive gravity, as discussed in 
Refs. [1,2]. This will place stability conditions on the theory which 
will be relevant when we move to cosmological solutions.

The equations of motion (3)–(5) in vacuum are solved by5

gμν = ημν, �A = xA, λ = 0. (9)

ple, since the mimetic dark matter only interacts gravitationally with the Standard 
Model, we do not expect to have a thermal production mechanism, in contrast to 
many traditional dark matter scenarios such as WIMPs. Indeed, when the theory is 
shift-symmetric in �0, the energy density of this component is set entirely by an 
integration constant and so is determined by initial conditions. It may also be nec-
essary to tune the parameters of the model in order to obtain the right values of 
the dark matter density over the entire cosmic history, and higher-derivative effec-
tive field theory corrections play an important role [21]. We refer the reader to, e.g., 
Ref. [21] for discussions of the constraints that early-Universe considerations place 
on the properties and evolution of mimetic dark matter throughout cosmic history.

4 This is justified because, on shell, the h00 equation of motion simply sets the 
value of λ, while h00 drops out of the hij equations of motion. The dynamics are 
therefore equivalent.

5 This is the only solution that is manifestly invariant under rotations, i.e., with 
gμν = diag(−1, 1, 1, 1) and �A = {

ϕ(t), βxi
}

. A priori it may be possible to have 
flat solutions with inhomogeneous Stückelbergs �A , or equivalently solutions with 
�A = xA and gμν = ημν with ημν written in a nonstandard coordinate system, but 
we do not consider these here.
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We expand the action (1) to quadratic order around the Minkowski 
solution, focusing on scalar modes,

g00 = −(1 + 2φ), (10)

g0i = ∂i B, (11)

gij = (1 − 2ψ)δi j + 2∂i∂ j E, (12)

�A = xA +
{
π0, ∂ iπ

}
, (13)

λ = δλ. (14)

Three of these fields—φ, B , and δλ—are auxiliary, as they appear 
without time derivatives in the action, and so can be integrated out 
using their equations of motion. Note that the auxiliary structure is 
precisely the same as in general relativity, since the mass term and 
Lagrange multiplier do not introduce any derivatives of the metric.

We can use diffeomorphism invariance to remove a further two 
modes. When gauge fixing at the level of the action, one must take 
care to only eliminate variables whose equations of motion are 
contained in the equations of motion of the remaining variables, 
otherwise we will lose information after picking a gauge. Follow-
ing the procedure of Refs. [29,30], we see that we can safely take 
π0 and one of (E, π) to vanish. Picking unitary gauge, π0 = π = 0, 
we obtain the flat-space quadratic action (in Fourier space),

δ2 S =
∫

dtM2
Pl

(
− 	̇X TK 	̇X + 	X T

(
k2G + m2M

) 	X
)

, (15)

where 	X ≡ (ψ, k2 E) and the matrices K, G, and M are given by

K=
(

3 + 4k2

m2 1

1 0

)
, (16)

G =
(

1 0
0 0

)
, (17)

M= 1

4

(
3 1
1 −1

)
. (18)

As described in Ref. [2], this system can be diagonalized by 
replacing ψ with the Lagrange multiplier δλ, which we had pre-
viously integrated out using

δλ = M2
Pl

4

[
(4k2 + 3m2)ψ + k2m2 E

]
, (19)

to find

δ2 S =
∫

dt
1

4k2 + 3m2

[
k4m2M2

Pl

(
Ė2 − (k2 + m2)E2

)

− 1

M2
Pl

(
16

m2
δ̇λ

2 − 4δλ2
)]

. (20)

If we take m2 > 0, we can canonically normalize,

δλc ≡ 4

mMPl

√
2k2 + 3

2 m2
δλ, (21)

Ec ≡ mMPlk2√
2k2 + 3

2 m2
E, (22)

to obtain the final action,

δ2 S =
∫

dt

[
1

2
Ė2

c − 1

2
(k2 + m2)E2

c − 1

2
δ̇λ

2
c + 1

8
m2δλ2

c

]
. (23)

The only dynamical degree of freedom here is Ec, which is 
healthy and has mass m. The field δλc has the wrong sign on both 
its kinetic and mass terms, but does not propagate due to the ab-
sence of a gradient term; its equation of motion,

δ̈λc + m2

4
δλc = 0, (24)

leads to a dispersion relation ω2 = m2/4 and is solved simply by 
[2]

δλc = C(	x) sin

(
mt

2

)
+ D(	x) cos

(
mt

2

)
, (25)

where C and D are space-dependent constants of integration. The 
authors of Ref. [2] identify this mode with the mimetic dark mat-
ter.6

When we discuss cosmology in the next section, we will find 
ourselves tempted by the possibility of taking m2 < 0. A priori this 
is merely a parameter choice, but the flat-space analysis shows 
why this would be a poor decision. By looking at the action (20), 
we see that, for negative m2, the overall sign in front of the ac-
tion flips depending on whether k2 > 3|m2|/4 or k2 < 3|m2|/4, a 
sign of pathological behavior. In particular, for scales k2 > 3|m2|/4, 
upon canonically normalizing we find the action (23) with an over-
all minus sign, so that the dynamical mode Ec is a ghost.

3. Cosmological solutions

In this section we investigate Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmological solutions of mimetic massive gravity. 
Consider the homogeneous and isotropic ansatz

gμν = diag(−1,a(t)2δi j), (26)

�A =
{
ϕ(t),βxi

}
. (27)

In principle one could allow β to depend on time, but this breaks 
homogeneity and isotropy as it induces 	x-dependent terms in the 
stress-energy tensor of the Stückelberg fields. Note that on-shell, 
the Lagrange multiplier enforces ϕ = t (up to a constant). We will 
include a general matter sector with density ρ and pressure p. 
We will find this sector needs to contain a cosmological constant, 
much like in general relativity, but does not need to include dark 
matter, as this role can be played by the mimetic dark matter 
(which is an exactly pressureless perfect fluid).

The Einstein and scalar equations of motion are

3H2 = ρ

M2
Pl

− 2λ

M2
Pl

− 3m2

16

(
β4

a4
− 6

β2

a2
+ 5

)
, (28)

2Ḣ + 3H2 = − p

M2
Pl

− m2

16

(
3 − β4

a4
− 2

β2

a2

)
, (29)

0 = d

dt

{
a3

[
3m2

4

(
1 − β2

a2

)
+ 2λ

M2
Pl

]}
. (30)

We can solve for λ by integrating the �0 equation of motion (30), 
finding

6 See Ref. [2] for an argument for why this mode is not a ghost, despite having 
an overall wrong-sign action. In principle, one might worry that when quantizing or 
considering nonlinearities, a coupling will be induced between δλc and other fields 
which will lead to an Ostrogradski instability. On the other hand, due to the lack 
of a gradient term this mode is not a propagating degree of freedom in the usual 
sense. We will remain agnostic about this question and limit ourselves to consid-
erations of classical, linear stability, which this system clearly satisfies for m2 > 0. 
See, e.g., Refs. [31,32] for detailed discussions of classical and quantum properties 
of modes lacking a gradient term.
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− 2λ

M2
Pl

= C
a3

+ 3m2

4

(
1 − β2

a2

)
, (31)

where C is an integration constant. Plugging this into the Fried-
mann equation (28), we obtain

3H2 = ρ

M2
Pl

+ C
a3

− 3m2

16

(
1 − β2

a2

)2

. (32)

Note that the contribution from λ exactly cancels out that from the 
last term of the Einstein equation (3), so the very simple form for 
ρϕ ≡ −3m2M2

Pl(1 − β2/a2)2/16 is entirely due to the term propor-
tional to gμν in the stress tensor. The integration constant provides 
a dust-like contribution to the Friedmann equation, which is to be 
expected as this is a theory of mimetic dark matter.

We can get a better sense of the physical picture by expand-
ing out the Friedmann equation and absorbing the mimetic dark 
matter C into ρ , finding

3H2 = ρ

M2
Pl

− 3m2

16

(
β4

a4
− 2β2

a2
+ 1

)
. (33)

For m2 > 0 (m2 < 0), we see that the mass term generates an ef-
fective negative (positive) cosmological constant, an effective neg-
ative (positive) curvature, and an effective radiation component 
with negative (positive) energy density. Note that these add on to 
any cosmological constant, radiation, and curvature already present 
cosmologically; for example, while we have assumed a flat cosmol-
ogy as our ansatz, observational bounds on spatial curvature will 
constrain the sum of any pre-existing curvature and the curvature-
like term generated by the graviton mass.

Note that for m2 < 0 we have late-time acceleration, with 
�eff = 3|m2|/16. However, as discussed in the previous section, we 
need m2 > 0 in order to avoid a ghost around flat space. This is 
reminiscent of the situation in the Dvali-Gabadadze-Porrati (DGP) 
model [33], where one branch of solutions has self-accelerating 
cosmological expansion [34,35] but is plagued by a ghost [36,37], 
while the other branch is healthy but cannot account for cosmic 
acceleration.

Let us assume that the energy density ρ in eq. (33) contains 
dust (including the mimetic dark matter), radiation, and dark en-
ergy components. Then, in terms of the density parameters,

�i,0 = ρi,0

3M2
Pl H

2
0

, (34)

the components of the Friedmann equation which are modified by 
mimetic massive gravity are

��,0 = �̄�,0 − m2

16H2
0

(35)

�K ,0 = m2

8H2
0

β2, (36)

�r,0 = �̄r,0 − m2

16H2
0

β4, (37)

where �̄�,0 and �̄r,0 are the densities associated to dark energy 
and Standard Model radiation. Using observational bounds on the 
curvature and radiation densities, we can place constraints on the 
model parameters m2 and β . We will not consider any bounds 
coming from the presence of the effective cosmological constant, 
even though it contributes a negative and potentially large (if 
m2 
 H0) amount to ��,0. Particle physics also predicts a large 
(and potentially negative) vacuum energy, and since we are not 
worrying about that, it seems inconsistent to worry about the 
contribution from mimetic massive gravity. One might expect that 
whatever solves the former problem will also solve the latter.7

We will use observational constraints on �K ,0 and �r,0 to 
bound our two free parameters, m2 and β . Planck 2018 constrains 
�K ,0 = 0.0007 ± 0.0019, which we parametrize as |�K ,0| < δK , 
with δK ∼ 0.003 [39]. We will take this to be a constraint on the 
contribution from mimetic massive gravity alone,

m2

8H2
0

β2 < δK . (38)

We remind the reader that what we are really bounding is the 
sum of the mimetic massive gravity contribution and any “bare” 
curvature, but unless there is significant tuning between these two, 
we can simply take this as a constraint on the mimetic massive 
gravity piece alone.

To bound the mimetic contribution to the radiation density, we 
will use constraints from big bang nucleosynthesis (BBN). At the 
time of BBN, radiation dominates. The exact value of the Hubble 
rate at the time of nucleosynthesis, which depends on the radi-
ation density, determines the freeze-out abundance of neutrons 
and therefore the primordial abundance of helium-4, which is sub-
ject to tight observational bounds. The constraints are conveniently 
phrased in terms of the “speed-up factor” ζ ≡ H/H̄ , where H and 
H̄ are the Hubble rate and its expected value, respectively, at the 
time of BBN. The difference between the observed and predicted 
helium-4 abundance, |�Y P |, is related to the speed-up factor by 
[40]

�Y P = 0.08(ζ 2 − 1). (39)

Current observational bounds imply [41]

|�Y P | � 0.01. (40)

Comparing the Friedmann equation (33) with and without the 
mimetic radiation contribution, and focusing on radiation domi-
nation, we find

ζ 2 − 1 = − m2β4

16�̄r,0 H2
0

, (41)

where the value for the present-day radiation density associated 
to photons and neutrinos, �̄r,0 ∼ 10−4, is determined entirely by 
the CMB temperature and the effective number of neutrino species 
and is therefore not dependent on our modification of gravity.8

Combining this with eq. (40) we arrive at the constraint

m2

16H2
0

β4 < δr, (42)

where

δr ≡ max(|�Y P |)�̄r,0

0.08
≈ O(10−5). (43)

We can rewrite our constraints (38) and (42) as inequalities for 
m/H0 and β alone in two different régimes,

m

H0
<

⎧⎪⎨
⎪⎩

√
8δK
β

, β <

√
2δr
δK

4
√

δr
β2 , β >

√
2δr
δK

.

(44)

These are plotted in Fig. 1.

7 See Ref. [38] for a proposed solution to the cosmological constant problem in 
the context of Lorentz-violating massive gravity, which is closely related to mimetic 
massive gravity.

8 See Ref. [42] for a measurement of the CMB temperature.
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Fig. 1. Upper limits on m/H0 and β for (δK , δr) = (0.003,10−5).

Finally, we note that the strong-coupling scale for this theory is 
of order �2 = √

mMPl [2]. If m is of order the present-day Hubble 
scale, m ∼ 10−33 eV, then the strong coupling scale is �2 ∼ meV, 
i.e., the theory breaks down slightly below the millimeter scale. 
As we see from eq. (44), for sufficiently small β , m could poten-
tially be much larger than H0, leading to a correspondingly larger 
strong-coupling scale.

4. Cosmological perturbations

As we have seen, at the background level, cosmological solu-
tions in mimetic massive gravity do not differ appreciably from 
�CDM. We therefore proceed to study cosmological perturbations 
around the FLRW background. This will tell us how cosmological 
large-scale structure (LSS) evolves in this theory in comparison to 
�CDM. Since mimetic massive gravity differs from general rela-
tivity, we would expect modifications to the gravitational Poisson 
equation and the slip relation, which could in principle allow for 
observational tests of this alternative model against �CDM and 
distinguish the two using the current and future LSS surveys. How-
ever, as we will see, stability of cosmological perturbations and the 
bounds (44) place strong constraints on the model which suggest 
that this theory should be observationally indistinguishable from 
GR in the linear régime.

4.1. Stability bound

We begin by studying the stability of cosmological pertur-
bations using the second-order action formalism. Since, as dis-
cussed in section 3, this theory does not possess ghost-free self-
accelerating solutions, we include a cosmological constant, al-
though it will not affect any of the results in this section. Since the 
theory already contains a pressureless fluid, namely the mimetic 
dark matter, we need not introduce an additional matter field. Our 
analysis is therefore valid for all times after matter-radiation equal-
ity.

We define the linearized metric, Stückelberg fields, and La-
grange multiplier as

ds2 = −(1 + 2φ)dt2 + 2a∂i Bdtdxi

+ a2 [
(1 − 2ψ)δi j + 2∂i∂ j E

]
dxidx j, (45)

�0 = t + π0, (46)

�i = β
(

xi + ∂ iπ
)

, (47)

λ = λ̄ + δλ, (48)

where we are restricting ourselves to scalar perturbations, and λ̄
is the background value given in eq. (31). The calculation of the 
quadratic action proceeds analogously to the flat-space case dis-
cussed in section 2. Expanding the action (1) (with a cosmological 
constant) to quadratic order in perturbations, we find that the vari-
ables φ, B , and δλ are auxiliary—that is, they appear without time 
derivatives—and can therefore be integrated out using their equa-
tions of motion. To safely fix a gauge at the level of the action, 
we again follow the procedure of Refs. [29,30], finding that we can 
eliminate one each of (ψ, π0) and (E, π ). We will choose to work 
in unitary gauge, π0 = π = 0, so that �A = (t, βxi) is unperturbed. 
The final action, in Fourier space and after integrations by parts, is

δ2 S =
∫

dtM2
Pla

3
(

− 	̇X TK 	̇X + 	X T
(

k2

a2
G + m2M

)
	X
)

, (49)

where 	X ≡ (ψ, k2 E) and the matrices K, G, and M are given by

K=
(

3 − 8a2

β2−3a2
k2

m2β2 1

1 0

)
(50)

G =
(

1 0
0 0

)
(51)

M= 1

8

β2

a2

(
1 + β2

a2

)(
3 1
1 −1

)
(52)

Since we are interested in the implications of mimetic massive 
gravity for the growth and properties of large-scale structure in the 
late Universe, let us focus on subhorizon scales (i.e., k2 
 a2 H2) 
and assume the quasi-static (QS) approximation. In order to use 
this approximation, we first need to ensure that fluctuations in this 
régime are stable. Ignoring time variation in a(t), which will be 
subdominant in the limit k2 
 a2 H2, and assuming solutions of 
the form 	X = 	X0eiωt , the equations of motion following from the 
action (49) are(

−ω2K+ k2

a2
G + m2M

)
	X = 0. (53)

We can then derive stability conditions from the dispersion rela-
tions, obtained by solving

0 = det

(
−ω2K+ k2

a2
G + m2M

)

= ω4

a2 + β2
− ω2k2

a2(3a2 − β2)
− 5ω2m2β2

8a4
+ k2m2β2

8a6

+ m4β4(a2 + β2)

16a8
(54)

for ω2.
The dispersion relations arising from eq. (54) are complicated, 

but simplify significantly in the limit k 
 aH when we take into 
account the constraints (44) on m/H0, which we obtained by re-
quiring that the radiation and curvature densities generated by the 
mass term not exceed observational bounds. Consider replacing m
and β in eq. (54) with the following two parameters,9

ε1 ≡
(

mβ

k

)2

, ε2 ≡
(

mβ2

ka

)2

. (55)

We proceed to show that the bounds (44) imply that each of these 
is much smaller than unity on subhorizon scales for all times after 
matter-radiation equality.

9 To do this replacement, first replace m → √
ε1β/k, and then replace any re-

maining factors of β with β → √
ε2/ε1a.
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For both ε1 and ε2 we can put upper bounds on the numera-
tors and lower bounds on the denominators. Let us start with the 
numerators. For ε1, multiply each side of eq. (44) by β . We see 
there is a strict upper bound on the combination mβ ,

mβ ≤ √
8δK H0 ≈ 0.15H0 (56)

where we have taken δK ∼ 0.003 as a representative value. We can 
similarly find a bound on the numerator of ε2 by multiplying both 
sides of eq. (44) by β2, finding

mβ2 ≤ 4
√

δr H0 ≈ 10−2 H0 (57)

for δr ∼ 10−5.
Now we move on to the denominators. The subhorizon limit 

is given by k 
 aH . For the sake of argument let us be conserva-
tive and assume that k is only slightly subhorizon, k/a ≈ O(1)H .10

At any given time from matter-radiation equality to the present, 
where we can trust our analysis, the Hubble rate H is related to 
its present-day value H0 by H = H0

√
��,0 + �m,0a−3. Putting this 

together with the bounds we have derived on mβ and mβ2, we 
find

ε1 �
0.02

��,0a2 + �m,0a−1
 1, (58)

ε2 �
10−4

��,0a4 + �m,0a
 1 for z � 3000. (59)

Note that while the upper bound on ε1 is always much smaller 
than unity for 0 < a ≤ 1, the upper bound on ε2 in fact grows as 
a−1 at early times. However, it grows slowly and has a factor of 
10−4 to compete with, so that max(ε2) does not reach unity until 
z ∼ 3000, right around matter-radiation equality. Therefore in prin-
ciple there might be a handful of modes—right around the horizon 
scale and at the earliest moments of matter domination—for which 
terms going as ε2 affect the subhorizon dispersion relation, if mβ2

takes the largest value allowed by the constraints. We will con-
tinue to take ε2  1, with the understanding that if this particular 
situation is realized, then at those very early times we are only 
considering modes with k � 10aH , for which ε2 is certainly smaller 
than unity.

Dropping terms subdominant in ε1 and ε2, the dispersion rela-
tion (54) becomes

0 ≈ ω4

a2 + β2
− ω2k2

a2(3a2 − β2)
+ k2m2β2

8a6
. (60)

Solving for ω2, and again dropping terms subleading in ε1 =
(mβ/k)2, we find the dispersion relations for our two modes,

ω2 ≈ k2

a2

a2 + β2

3a2 − β2
, (61)

ω2 ≈ m2β2

8a2

(
3 − β2

a2

)
. (62)

Each of these implies the same stability condition,

β2

a2
< 3. (63)

This tells us that no matter what the value of β is, our cosmologi-
cal solutions are unstable at sufficiently high redshifts,

10 Of course, the deeper in the subhorizon régime k is, the smaller ε1 and ε2

become.
z >
√

3β−1 − 1. (64)

This early time instability can however be safely pushed back to 
unobservably early times by taking the parameter β to be suffi-
ciently small.11 Because we are assuming matter and dark energy 
domination, we can trust our stability condition as far back as 
matter-radiation equality at zeq ≈ 3400. Demanding stability from 
zeq onward, we find a constraint on β ,12

β � 5 × 10−4. (65)

4.2. Cosmological tensor mass

Another possible cosmological bound on the parameters m
and β comes from constraints on the graviton mass. The tight-
est bounds currently come from LIGO, mT ≤ 7.7 × 10−23 eV [44].13

To compute the mass of tensor fluctuations on a cosmological 
background, we linearize the Einstein equation (3) around gμν =
ḡμν + hμν , with ḡμν = diag(−1, a2δi j), h00 = 0, and hij transverse 
and traceless, i.e., hii = ∂ihi j = 0. The Einstein equation is

ḧi j + 3Hḣij − ∇2

a2
hij + m2

Thij = 0 (66)

with the tensor mass given by

m2
T ≡ m2

2

β2

a2

(
1 + β2

a2

)
(67)

The structure of the Einstein equation is such that m2
T/m2 has 

to be a (quadratic) polynomial in β2/a2. What is non-trivial is 
that the degree-zero term in that polynomial cancels out, i.e., the 
expression for m2

T/m2 starts at order β2/a2. This means that grav-
itational waves propagating over cosmological distances (at low 
redshift, i.e., a ∼O(1)) do not depend on m alone; instead they in-
volve the combinations mβ and mβ2 which, as we have seen, are 
strongly constrained by the cosmological background. In particular, 
recalling that m2β2 � 10−2 H2

0 and m2β4 � 10−4 H2
0, we see that 

mT at the present era is at most of order 10−1 H0 ∼ 10−34 eV, far 
below the LIGO bounds. Moreover, our stability condition (65) has 
no bearing on mT. No matter how tiny β is, the constraints (44)
place a constant upper bound on mβ , so that the smaller β is, the 
larger m is allowed to be, leaving mT ≈ mβ/(

√
2a) fixed. It is inter-

esting to note that, without demanding that this model provides 
cosmic acceleration, the tensor mass is nevertheless forced to be 
smaller than the Hubble scale. Finally, we note that around a flat 
background, the tensor mass is simply m, so local tests of gravity 
might be able to place constraints on m that are not possible with 
gravitational waves that propagate over cosmological distances.

4.3. Quasistatic limit

Finally, let us comment on the testability of mimetic massive 
gravity using near-future LSS surveys. We will find it convenient 

11 This is similar to massive bimetric gravity, which possesses an early-time in-
stability that can be rendered safe in the limit where the ratio of the two Planck 
masses becomes small [43].
12 It is plausible that the result (63) holds, at least on an order-of-magnitude basis, 

through radiation domination as well (see, again, the example of bigravity [43]). In 
this case, we should demand that the instability be pushed back to before big bang 
nucleosynthesis, with zBBN ≈ 3 × 108, which would imply a stronger constraint of 
β � 10−8. We do not have much observational handle on the presumably radiation-
dominated era before BBN, and therefore should not demand that the instability be 
absent then; indeed, a mild enough instability might have interesting consequences, 
such as the formation of primordial black holes.
13 See Ref. [45] for a helpful summary of bounds on the graviton mass from a 

variety of experiments and observations.
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to work in Newtonian gauge, B = E = 0. Linearizing the Einstein 
equations (3), and leaving in a generic stress-energy tensor Tμν

for completeness, we obtain

6H2φ − 2

a2
∂ i∂iψ + 6Hψ̇

= 1

M2
Pl

δT 0
0 + 2

δλ

M2
Pl

− m2

4

β2

a2

(
3 − β2

a2

)(
3ψ + ∂ i∂iπ

)
, (68)

−2∂i
(
ψ̇ + Hφ

) = 1

M2
Pl

δT 0
i + 2

λ̄

M2
Pl

∂iπ
0

+ m2

4

(
3 − β2

a2

)(
∂iπ

0 − β2∂iπ̇
)

, (69)

6
[
ψ̈ + 3Hψ̇ + H�̇ + (3H2 + 2Ḣ)φ

]
+ 2

a2
∂ i∂i (φ − ψ)

= 1

M2
Pl

δT i
i − m2

4

β2

a2

(
1 + β2

a2

)(
3ψ + ∂ i∂iπ

)
, (70)

1

a2
∂ i∂ j (ψ − φ) = 1

M2
Pl

δT i
j + m2

2

β2

a2

(
1 + β2

a2

)
∂ i∂ jπ,

i �= j. (71)

Moving to Fourier space, specializing to a pressureless fluid with-
out anisotropic stress, and taking the quasistatic limit, Ẍ ∼ H Ẋ ∼
H2 X  k2 X for any perturbation X , eqs. (68), (70) and (71) be-
come

2k2

a2
ψ = 1

M2
Pl

(2δλ − ρ̄δ)

− m2

4

β2

a2

(
3 − β2

a2

)(
3ψ − k2π

)
, (72)

2k2

a2 (φ − ψ) = m2

4

β2

a2

(
1 + β2

a2

)(
3ψ − k2π

)
, (73)

1

a2 (φ − ψ) = −m2

2

β2

a2

(
1 + β2

a2

)
π, (74)

where ρ̄ and δ are the background density and overdensity of the 
dust component. Note that these are degenerate with the mimetic 
dark matter, as expected.

Combining these equations, we obtain the modified Poisson 
equation and the slip relation,

−k2ψ = 4πGμ(a,k)a2(δρ − 2δλ), (75)

ψ = η(a,k)φ, (76)

where the modified-gravity parameters μ and η are given by

μ(a,k) = 1

1 + 1
2

m2β2

k2

(
3 − β2

a2

) , (77)

η(a,k) = 1

1 + 1
2

m2β2

k2

(
1 + β2

a2

) . (78)

These parametrize observable deviations from general relativity, in 
which μ = η = 1.

The constraints we have already derived on m and β preclude 
μ and η from deviating from unity at a level accessible to near-
future observations. The stability constraint (63) requires the terms 
in parentheses to be O(1), while the background constraint (56)
sets m2β2 � 0.02H2, so that
0
μ − 1 ∼ η − 1 ∼ O
(

m2β2

k2

)
� 10−2

(
H0

k

)2

. (79)

It is therefore highly unlikely that cosmological observations will 
be able to test this model against �CDM in the linear and sub-
horizon régime.

5. Conclusions

In this Letter we have studied the first cosmological implica-
tions of the recently-proposed theory of mimetic massive grav-
ity. We find that the theory is unable to self-accelerate without 
introducing a ghost. Its effects on Friedmann-Lemaître-Robertson-
Walker cosmological backgrounds are to introduce effective radi-
ation, curvature, and cosmological constant terms, as well as a 
dust-like mimetic dark matter component. We place constraints 
(44) on the theory parameters by demanding that the effective 
radiation and curvature terms be within observational bounds. In 
the ghost-free region of parameter space, m2 > 0, the effective cos-
mological constant is negative-definite, so a separate dark energy 
sector, which we take to be a positive cosmological constant, is re-
quired to explain the late-time acceleration of the Universe.

We further studied the behavior of cosmological perturbations 
in the subhorizon, quasistatic limit. The model generically suffers 
from an instability at early times. However, since our analysis only 
included a pressureless dust component (in addition to a cosmo-
logical constant), the calculation can only be trusted as far back as 
matter-radiation equality. This allowed us to place a further con-
straint on the theory parameters by insisting that the instability be 
absent throughout matter domination. With these constraints, the 
deviations from �CDM in the linear, subhorizon régime are likely 
too small to be observable.

Not surprisingly, since this is a theory of massive gravity, it pre-
dicts massive tensor modes. We have calculated the tensor mass 
around cosmological backgrounds and found that, taking into ac-
count the constraints imposed by the cosmological background, 
this mass must be at least an order of magnitude below the Hub-
ble scale, far outside the currently-available constraints on the 
graviton mass. Unlike other theories of massive gravity, in which 
the graviton mass is comparable to the Hubble scale in order to 
provide late-time acceleration, this bound on the graviton mass is 
solely due to the requirement that the effective radiation and cur-
vature terms in the Friedmann equation not be too large.

What are the remaining prospects for cosmological tests of 
mimetic massive gravity? We emphasize that our analysis does 
not apply in two important régimes: horizon-size scales and non-
linear scales. One or both of these may possess signatures which 
could be used to distinguish mimetic massive gravity from �CDM, 
or otherwise to rule out additional regions of parameter space. 
One expects that nonlinear scales will require N-body simulations, 
while at horizon-size scales we cannot apply the quasistatic ap-
proximation and would need to solve the perturbation equations 
numerically, as in other theories of modified gravity [46]. For the 
latter, we note that the mass scales appearing in the action (49)
for cosmological perturbations are not simply m, which can be ar-
bitrarily large (in the limit of small β), but rather mβ and mβ2, 
which we have shown must both be at least an order of magni-
tude smaller than the Hubble scale. It therefore might be difficult 
for this theory to produce effects at horizon scales that are larger 
than cosmic variance. Note that scales k ∼ mβ and k ∼ mβ2 are 
super-horizon and therefore not observable.
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