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1 | General introduction

Huntington’s disease (HD) is a progressive autosomal dominant inherited neuro-

degenerative disorder, with an estimated prevalence of 5 – 10 per 100,000 in the 

Caucasian population.1,2 In the Netherlands, there are approximately 1,700 individuals 

with genetically confirmed HD and 6,000 to 9,000 individuals that potentially have the 

disease but have not been tested. 

In 1993, it was discovered that HD is caused by a cytosine-adenine-guanine (CAG) 

trinucleotide repeat expansion located on the short arm of chromosome 4p16.3 in 

the Huntingtin gene, which encodes the huntingtin protein.3 Expanded repeat lengths 

above 36 units cause a mutation in the Huntingtin gene, which inevitably leads to 

clinical signs of HD, whereas in the normal population the repeat length ranges from 

6 to 35 units.2 When the disease progresses, the mutant huntingtin aggregates within 

different compartments of nerve cells (e.g., in the nucleus, cytoplasm and axons), 

resulting in cell toxicity and neuronal dysfunction.2,4 

There is currently no effective treatment available to delay or prevent disease 

progression. As a result, physicians are focused on improving daily functioning by 

reducing symptom severity to maintain a good quality of life for the patient and their 

caregivers.5

CLINICAL FEATURES 

HD is characterized by progressive motor dysfunction, cognitive decline and behavioral 

changes,1,2 and is often accompanied by weight loss and sleep disturbances.6,7 Still, the 

presence and severity of symptoms is very heterogeneous among individuals. Disease 

onset varies between the ages of 30 and 50 years with a mean disease duration of 17 

to 20 years, although the disease can also occur in early childhood (juvenile HD) or 

later in life (late onset HD).1,8 Longer CAG repeat lengths are associated with early 

clinical disease onset and more rapid progression.1,2 Clinical disease onset is typically 

defined by the manifestation of characteristic motor signs, which are divided into 

involuntary movements such as chorea, dystonia, and tics, and impaired voluntary 

movements resulting in hypokinesia and apraxia.1,9 Chorea is the most recognized sign 

and can be described as unwanted, irregular movements of the extremities and facial 

jerking.9 The occurrence and severity of choreiform movements can vary from subtle 

movements of the eyebrows or upper face to more generalized contractions of the 

trunk and limbs.9 Dystonia is often present in more advanced stages of the disease and 

is defined as intermittent muscle contractions leading to abnormal posture of the trunk 

and extremities.10 Ultimately, motor symptoms will interfere with speech, swallowing, 

and gait stability.1 
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In general, HD gene carriers are considered to be clinically manifest based on the 

presence of motor signs that are related to HD, whereas premanifest HD gene 

carriers are defined as individuals with a confirmed expanded CAG repeat before the 

occurrence of substantial motor signs.11 Still, cognitive deterioration can already be 

present before the onset of motor symptoms, which progresses throughout the course 

of the disease and eventually results in dementia.11 Frequently reported early cognitive 

deficits include impairments in executive functioning (i.e., difficulties with planned 

behavior, attentional deficits and disinhibition), psychomotor speed, and emotion 

recognition.2,11,12 The majority of HD gene carriers additionally experience behavioral 

changes during their lifetime.13 Depression, irritability, aggression, obsessive-

compulsive behavior, and apathy are the most frequently reported neuropsychiatric 

symptoms in HD.13 

Patients become increasingly dependent in daily life, which interferes with social 

activities. Eventually, severe motor disturbances and behavioral changes are often the 

main reasons for nursing home placement.14

NEUROPATHOLOGY
 
Progressive neurodegeneration bilateral in the striatum, i.e., caudate nucleus, 

putamen, and nucleus accumbens, is the main neuropathological feature of HD.15 

Striatal degeneration is caused by an extensive loss of medium spiny projection 

neurons that form the main efferent output of the striatum towards cortical brain 

regions.4,15 The presence of neuronal loss and reactive astrogliosis is, therefore, often 

suggested as an explanation for the clinical signs in HD.15,16 Neuronal loss progresses 

along a dorsal-ventral and medial-lateral gradient, with the most early microscopic 

changes occurring in the body and tail of the caudate nucleus.4,15 In addition to striatal 

atrophy, post-mortem studies have shown severe widespread cortical atrophy.4,17–20 In 

advanced disease stages, brain weight is often reduced to 1,000 – 1,100 grams while 

the average normal brain weight is 1,300 to 1,500 grams.20

Still, it remains uncertain if cortical degeneration precedes or is secondary to striatal 

neuronal loss in HD and how this relates to the clinical features of HD. 
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BRAIN STRUCTURE AND FUNCTION 

Magnetic Resonance Imaging (MRI) is a non-invasive and objective approach to 

quantify in vivo alterations in brain structure and function. In general, structural imaging 

modalities such as T1-weighted images and diffusion tensor imaging (DTI), measure 

global and regional brain volume and the microstructure of white matter fiber tracts, 

while functional imaging modalities assess neural activity and cell (dys-)function by 

detecting changes in cerebral blood flow in rest or when performing tasks. 

For the diagnosis of HD, genetic testing is the gold standard. Therefore, MRI is not 

of diagnostic value in clinical practice. Occasionally, MRI is used to exclude other 

disorders in case of an atypical presentation or absent family history of HD.21 

In HD research, MRI is primarily used as a tool to evaluate the natural progression of 

the disease and to find biomarkers that can be used as an outcome measure in clinical 

trials.21,22 Structural imaging studies have mainly focused on changes in striatal volume 

and consistently observed atrophy of both caudate nucleus and putamen.22,23 Striatal 

atrophy is even found a decade before predicted disease onset in premanifest HD 

gene carriers,24 with a relatively linear rate of decline throughout the course of the 

disease.25 As a result, striatal volume is now frequently used as a marker for disease 

severity, to predict time to diagnosis, or as an outcome measure in clinical intervention 

trials. 

In addition to striatal atrophy, volumes of other subcortical and cortical brain regions 

are also vulnerable for degeneration early in the disease,11,26,27 but have been studied 

less extensively. In clinical manifest disease stages, early cortical atrophy is thought to 

originate in the superior and posterior cerebral cortex, primarily in the parietal and 

occipital lobes, and spreads throughout the entire cortex in more advanced stages.11,26 

Atrophy of the pallidum and nucleus accumbens is found in premanifest stages of the 

disease,27 but there is some controversy regarding cortical involvement in this stage. 

Several studies report cortical volume loss in premanifest HD gene carriers which is 

primarily localized in the posterior frontal, parietal and occipital brain regions,11,28 

whereas other studies report no changes, or even an increase of cortical grey matter 

volume in premanifest HD compared to controls.29,30 

There is additional evidence that besides brain atrophy, the clinical manifestation of 

HD also results from neuronal dysfunction, tissue repair, and circuitry reorganization 

that can be measured using task-based or resting-state functional MRI.31 Here, 

changes in the blood-oxygen-level-dependent (BOLD) signal are used to discriminate 

between brain regions with altered activations. In HD, functional imaging studies 
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showed reduced brain activity (e.g., cellular dysfunction) in heterogeneous cortical 

and subcortical areas after cognitive task performance (such as working memory and 

attentional tasks) and at rest.31–33 Changes in functional brain networks can even be 

found independent of brain atrophy, implying that cellular dysfunction precedes cell 

death in HD.31 However, the pattern of cortical dysfunction, the influence of structural 

and functional cortical degeneration on the clinical signs of HD, and associations with 

striatal atrophy are not yet identified.

AIMS OF THIS THESIS

The primary aim of this thesis is to examine alterations in the cerebral cortex in HD 

gene carriers. Different image modalities and approaches will be used to extent the 

knowledge on both structural and functional cortical brain changes in early disease 

stages and their relation to the clinical features of HD. 

First, to examine the influence of brain changes on the motor phenotype in HD, we 

aimed to identify associations between grey matter loss and motor symptoms in early 

stage HD patients (chapter 2). To further explore the cortical coherence, we aimed 

to investigate alterations in grey matter brain regions using a novel technique to 

identify structural covariance networks in controls, premanifest and manifest HD gene 

carriers (chapter 3). In chapter 4, we wanted to investigate corticostriatal circuitry in 

HD by assessing the pattern of cortical degeneration and the relationship with striatal 

degeneration in early manifest disease stages. 

An overview of the current literature regarding brain structure and function of the visual 

cortex and visual cognitive impairment in HD is presented in chapter 5. Here, the 

aim was to summarize the findings on clinical visual cognitive deficits and underlying 

structural and functional changes in the posterior cerebral cortex in HD. 

Based on the findings reported in chapter 5, we conducted a cross-sectional study in 

a cohort of controls, premanifest HD gene carriers and manifest HD gene carriers. The 

aim was to investigate changes in structure and function of the posterior cerebral cortex 

in different disease stages and examine the relation with visual cognitive impairments. 

The findings of this study are described in chapters 6 and 7. Conclusions, final remarks 

on the findings of this thesis, and future perspectives are presented in chapter 8.
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ABSTRACT 

Background: Motor disturbances are clinical hallmarks of HD and involve chorea, 

dystonia, hypokinesia and visuomotor dysfunction. Investigating the association 

between specific motor signs and different regional volumes is important to understand 

the heterogeneity of HD.

Objectives: To investigate the motor phenotype of Huntington’s disease (HD) and 

associations with subcortical and cortical grey matter volume loss.

Methods: Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls 

were used to calculate volumes of seven subcortical structures including the nucleus 

accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and 

amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI 

scan protocol and normalized brain volume, were performed to assess the relationship 

between subcortical volumes and different motor subdomains (i.e., eye movements, 

chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry 

analysis was used to investigate the relationship between cortical volume changes and 

motor signs.

Results: Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, 

and pallidum were associated with higher chorea scores. No other subcortical region 

was significantly associated with motor symptoms after correction for multiple 

comparisons. Voxel-based cortical grey matter volume reductions in occipital regions 

were related with an increase in eye movement scores. 

Conclusion: In HD, chorea is mainly associated with subcortical volume loss, while 

eye movements are more related to cortical volume loss. Both subcortical and cortical 

degeneration has an impact on motor impairment in HD. This implies that there is 

a widespread contribution of different brain regions resulting in the clinical motor 

presentation seen in HD patients.
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1. INTRODUCTION

Huntington’s disease (HD) is an autosomal-dominant, neurodegenerative disorder 

characterized by progressive motor disturbances, cognitive impairment and psychiatric 

symptoms. The clinical diagnosis of HD is based on the presence of motor signs, and 

can involve chorea, dystonia and/or hypokinesia.1 Oculomotor dysfunction, such as 

saccadic eye movements or gaze paralysis, can also be prominent in premanifest and 

early HD.2 The clinical HD phenotype is heterogeneous and different motor signs can 

also co-exist.3 Longitudinal analysis of motor signs showed that choreatic movements 

decrease over time, whereas hypokinetic-rigid signs slightly increase.4 This suggests 

that different motor symptoms can be more pronounced during different disease 

stages. The Unified HD Rating Scale Total Motor Score (UHDRS-TMS)5 is the gold 

standard to evaluate motor functioning in HD and establish the clinical diagnosis. Here, 

several motor domains including chorea, dystonia, gait, rigidity, and eye movements 

are examined, with higher total scores indicating more motor dysfunction.

Although striatal atrophy is the main neuropathological finding in HD, neuronal loss has 

been identified in many other extrastriatal brain regions.6 In these regions, it has been 

shown that grey matter volume reductions may also be associated with decreased 

global motor and functional scores.7–11 

Instead of focusing on global motor functioning, we aimed to investigate associations 

between separate motor domains and grey matter volume changes. To monitor HD 

signs in clinical practice and intervention trials, it is important to further understand the 

pathophysiology underlying the HD phenotype, because this can vary among patients. 

2. METHODS
2.1 Participants
A total of 79 patients with manifest HD and 30 healthy controls who visited the 

outpatient clinic at the department of Neurology of the Leiden University Medical 

Center (LUMC) between January 2008 and June 2016 were included. All manifest HD 

had a genetically confirmed CAG repeat length of ≥39 and an UHDRS-TMS of more 

than 5, confirming the diagnosis and clinical motor presence of HD. The local ethical 

committee approved this study and written informed consent was obtained from all 

participants. 

Distinctive items of the UHDRS motor scale were added for each participant to establish 

total scores per motor subdomain based on previous studies,4,12,13 representing five 

domains of motor functioning. For further details, see supplementary Table S1.   
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2.2 MRI image acquisition
All participants underwent MRI scanning on a 3 Tesla MRI scanner (Philips Achieva, Best, 

the Netherlands). For each participant, a structural three-dimensional T1-weighted 

image was acquired. Imaging parameters of the scan protocols were: TR = 7.7 ms, TE 

= 3.5 ms, flip angle = 8 °, FOV 24 cm, matrix size 224 x 224 cm and 164 sagittal slices to 

cover the entire brain with a slice thickness of 1.0 mm with no gap between slices. This 

resulted in a voxel size of 1,07 mm x 1,07 mm x 1,0 mm.

2.3 Image post-processing
Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL, 

version 5.0.8, Oxford, United Kingdom) was used for data analysis of all structural 

T1-weighted images.14 Brain tissue volume, normalized for individual head size, 

was estimated with SIENAX.15 Using SIENAX, brain and skull images were extracted 

from the single whole-head input data. Then, the brain image is affine-registered to 

Montreal Neurological Institute (MNI) 152-space standard image,16 using the skull 

image to determine the registration scaling. This volumetric scaling factor was used to 

normalize for head size. Next, tissue-type segmentation with partial volume estimation 

was performed in order to calculate the total volume of normalized brain tissue, 

including separate estimates of volumes of grey matter, white matter, peripheral grey 

matter and ventricular CSF for each HD patient. Visual inspection of the registration 

and segmentation was performed for each brain-extracted image. 

2.4 Subcortical volumes
Absolute volumes of seven subcortical structures (i.e., nucleus accumbens, hippo-

campus, thalamus, caudate nucleus, putamen, pallidum and amygdala) were measured 

using FMRIB’s integrated registration and segmentation tool (FIRST).17 Here, all non-

brain tissue was removed from the T1-weighted images using a semi-automated brain 

extraction tool that is implemented in FSL.18 After registration of the images to the MNI 

152-standard space image, using linear registration with 12° of freedom, segmentation 

of the subcortical regions was carried out using mesh models that were constructed 

from manually segmented images provided by the Center for Morphometric Analysis 

(CMA), Massachusetts General Hospital, Boston. Then, the volume for each structure 

was separately estimated. Visual inspection was performed for each output image 

during the registration and segmentation steps. 
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2.5 Voxel-based morphometry
To investigate voxel-wise differences in grey matter volume between HD patients and 

controls, voxel-based morphometry (VBM) analysis was performed as implemented in 

FSL.19 

First, brain extracted T1-weighted images were segmented into different tissue types 

(i.e., grey matter, white matter or cerebrospinal fluid). Each segmented image has 

values that indicate the probability of a given tissue type. Then, the grey matter images 

were aligned to the 2 mm MNI-152 standard space image using non-linear registration. 

The resulting images were averaged to create a study-specific grey matter template. 

Subsequently, all native grey matter images were non-linearly registered to this study-

specific template and ‘modulated’ to correct for local enlargements and contractions 

due to the non-linear component of the spatial transformation.20 The modulated grey 

matter images were finally smoothed with an isotropic Gaussian kernel with a sigma of 

3 mm and analyzed using a general linear model in FSL for statistical inference. 

Brain structures that showed a significant difference between groups were identified 

using the Harvard-Oxford atlas integrated in FSL. 

2.6 Statistical analyses
Group differences between HD patients and controls were analyzed using parametric 

(independent sample t-test) and non-parametric tests (χ2-test) when applicable. To 

analyze group differences in the VBM output, a general linear model was constructed 

in FSL to compare controls with manifest HD using two-tailed t-statistics with age, 

gender, normalized brain volume and MRI scan protocol as covariates. Voxel-wise 

non-parametric permutation testing with 5000 permutations was performed using FSL 

randomise.21 The Threshold-Free Cluster Enhancement (TFCE) technique was used 

to correct for multiple comparisons with family wise error,22 with a p-value < 0.05 as 

significant threshold. The regions that showed significant differences between HD 

patients and controls were selected for further analyses in the HD group only.

The following analyses, investigating the relationship between separate motor 

subdomains, subcortical and cortical brain volumes, were performed in HD patients 

only. Multiple linear regression analyses were used to investigate the relationship 

between the separate motor subdomains and subcortical brain volumes. Analyses 

were accounted for age, gender, CAG repeat length, normalized brain volume, and 

MRI scan protocol. To correct for multiple comparisons the p-value for statistical 

significance was set at p < 0.008 (0.05/6) for analyses of subcortical volumes. To assess 

the relationship between clinical motor scores and cortical grey matter changes in HD 

patients, a general linear model was constructed using a design matrix in FSL with 
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each clinical motor domain separately, correcting for age, gender, CAG repeat length, 

normalized brain volume, and MRI scan protocol. FSL-Randomise was used for voxel-

wise non-permutation testing,21 using the regions that showed significant grey matter 

changes between controls and HD patients as a grey matter mask. Again, the TFCE 

technique was used to correct for multiple comparisons with family wise error,22 with a 

p-value < 0.05 as significant threshold. Statistical analyses were performed using IBM 

SPSS 23.0 for Windows.

3. RESULTS

Group characteristics and comparisons between HD patients and controls are report-

ed in Table 1. There were no significant differences in age and gender between both 

groups. HD patients had a significantly higher mean UHDRS-TMS compared to the 

control group.

3.1 Subcortical volumes
The mean volumes of the accumbens nucleus, caudate nucleus, putamen, pallidum, 

thalamus and hippocampus were significantly lower in manifest HD compared to 

controls (Table 1). Since the mean volume of the amygdala did not differ between HD 

patients and controls, this structure was not included in further analyses in HD patients 

only. 

After correction for multiple comparisons, there was a significant association between 

the UHDRS chorea score and UHDRS-TMS with the accumbens nucleus, caudate 

nucleus, putamen and pallidum in HD patients (Table 2). Thalamus and hippocampus 

volumes did not show any association with UHDRS motor subdomains. 

3.2 Cortical grey matter volume
To assess differences in cortical grey matter volume between HD patients and controls, 

regional volumetric VBM analysis was performed. Significant grey matter volume 

reduction in HD patients was found in the motor cortex, visual cortex, and in the frontal 

and temporal lobes (Figure 1 and supplementary Table S2). 

In HD patients, VBM analysis showed that after correction for covariates and multiple 

comparisons, higher eye movement scores and UHDRS-TMS were associated with 

cortical volume loss of occipital regions (Figure 2 and supplementary Table S3). 
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TABLE 1  Clinical and volumetric group differences between HD patients and controls

HD (n= 79) Controls (n=30) p-value

Clinical characteristics

Age 46.5 (9.7; 28 – 65) 48.9 (8.4; 35 – 65) 0.229

Gender m/f (%m) 30/49 (38.0%) 14/16 (46.7%) 0.409

CAG 44.1 (2.4; 40 – 51) NA NA

Disease duration 3.3 (3.0; 0 – 13) NA NA

Disease burden 382.1 (77.8; 234 – 551) NA NA

UHDRS-TMS 17.8 (10.8; 6 – 45) 2.6 (2.4; 0 – 7) <0.001

UHDRS chorea 5.2 (4.8; 0 – 18) NA NA

UHDRS hypokinetic-rigid 4.6 (3.2; 0 – 12) NA NA

UHDRS dystonia 0.2 (0.6; 0 – 3) NA NA

UHDRS eye movements 4.9 (3.2; 0 – 13) NA NA

UHDRS gait/balance 1.8 (1.4; 0 – 6) NA NA

Subcortical structures

Accumbens nucleus 732.0 (188.0) 930.5 (207.0) <0.001

Caudate nucleus 4942.2 (997.5) 6695.4 (839.0) <0.001

Amygdala 2208.0 (528.5) 2163.4 (379.4) 0.673

Putamen 7093.0 (1229.1) 9280.0 (1289.7) <0.001

Pallidum 2749.8 (555.8) 3338.5 (471.4) <0.001

Thalamus 13958.0 (1551.3) 14844.2 (1383.7) <0.005

Hippocampus 7195.4 (1016.0) 7682.1 (818.3) 0.021

Data are mean (SD; range) or number (%) for gender. Volumes of subcortical structures are
expressed in mm3. Mean disease duration is based on a smaller sample size (n=65) due to missing 
data. Independent sample t-test was used to compare groups, except for gender (χ2-test). 
Statistically signifi cant p-values are highlighted in bold (p<0.05). NA = Not applicable; CAG = 
Cytosine-Adenine-Guanine; HD = Huntington’s Disease; UHDRS = Unifi ed Huntington’s Disease 
Rating Scale; TMS = Total Motor Score.



26

2 | Grey matter volume loss is associated with specific clinical motor signs in HD

TABLE 2  Relationship between UHDRS motor subdomains and subcortical brain volumes

Accumbens 
nucleus

Caudate 
nucleus

Putamen Pallidum Thalamus Hippocampus

UHDRS-TMS  -0.283  -0.316 -0.279 -0.312 -0.096 -0.265

UHDRS chorea -0.260 -0.346 -0.275 -0.273 -0.045 -0.172

UHDRS hypokinetic-
rigid

-0.180 -0.118 -0.175 -0.156 -0.052 -0.179

UHDRS dystonia -0.075 -0.033 -0.012 0.076 0.056 0.047

UHDRS eye 
movements

-0.188 -0.212 -0.171 -0.239 -0.169 -0.240

UHDRS gait/balance -0.097 -0.056 -0.112 -0.214 -0.057 -0.245

Reported data are standardized coeffi cients (standardized beta) from the multiple linear regression analysis. 
Analyses were accounted for age, gender, CAG, MRI scan protocol, and normalized brain volume. Statistically 
signifi cant values are printed in bold (corrected for multiple comparisons, p < 0.008). UHDRS = Unifi ed Huntington’s 
Disease Rating Scale; TMS = Total Motor Score

Brain regions that showed significant differences in grey matter volume in manifest HD compared to 
controls by means of voxel-based morphometry (VBM) are presented. Age, gender, MRI study protocol and 
normalized brain volume were included as covariates in the statistical model. Identified grey matter regions 
are overlaid on sagittal, transversal and coronal slices of Montreal Neurological Institute (MNI)-152 standard 
space T1-weighted images. Corresponding MNI x-, y-, z- coordinates are displayed. A threshold of p < 0.05 
(corrected with TFCE family wise error) is used. 

FIGURE 1  Voxel based morphometry analysis between manifest HD and controls
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TABLE 2  Relationship between UHDRS motor subdomains and subcortical brain volumes

Accumbens 
nucleus

Caudate 
nucleus

Putamen Pallidum Thalamus Hippocampus

UHDRS-TMS  -0.283  -0.316 -0.279 -0.312 -0.096 -0.265

UHDRS chorea -0.260 -0.346 -0.275 -0.273 -0.045 -0.172

UHDRS hypokinetic-
rigid

-0.180 -0.118 -0.175 -0.156 -0.052 -0.179

UHDRS dystonia -0.075 -0.033 -0.012 0.076 0.056 0.047

UHDRS eye 
movements

-0.188 -0.212 -0.171 -0.239 -0.169 -0.240

UHDRS gait/balance -0.097 -0.056 -0.112 -0.214 -0.057 -0.245

Reported data are standardized coeffi cients (standardized beta) from the multiple linear regression analysis. 
Analyses were accounted for age, gender, CAG, MRI scan protocol, and normalized brain volume. Statistically 
signifi cant values are printed in bold (corrected for multiple comparisons, p < 0.008). UHDRS = Unifi ed Huntington’s 
Disease Rating Scale; TMS = Total Motor Score

4. DISCUSSION

Our study showed that specific clinical motor signs in manifest HD are related to 

volume loss in different grey matter brain regions. Higher UHDRS chorea scores were 

particularly related to volume loss of subcortical structures, especially the accumbens 

nucleus, caudate nucleus, putamen and pallidum, whereas cortical brain regions did 

not. These findings suggest that volume loss in the subcortical regions are more 

involved in the development of chorea than cortical atrophy. It is well known that the 

medium-sized spiny neurons located in the striatum, that comprises of the caudate 

nucleus and putamen, are the most affected cells in HD.23 As these neurons are 

involved in motor control, this might explain the association we found between striatal 

volume loss and the UHDRS chorea score. 

In premanifest HD, general motor functioning is related to volume loss of the putamen, 

caudate nucleus and pallidum.7,10,11 Increased choreatic movements have been 

associated with striatal atrophy in premanifest HD.24 However, to our knowledge, no 

studies have been performed that examined motor domains separately in relation with 

both subcortical and cortical changes. In addition to striatal volume loss, we observed 

a correlation between volume loss of the pallidum and higher UHDRS chorea scores. 

It is suggested that changes in the pallidum might be due to the loss of striato-pallidal 

fibers projecting from striatal medium spiny neurons, implying that volume loss of the 

pallidum is not due to cell loss within the pallidum.11 

Besides subcortical grey matter volume changes, we also investigated the association 

with cortical regions in patients with HD. Here, cortical grey matter volume loss was 

particularly associated with oculomotor dysfunction, but not with choreatic signs. Our 

findings are in contrast with results reported in a previous study where no correlations 

were found between cortical grey matter and motor functioning in premanifest HD.11 

A possible explanation might be that this previous study calculated lobular cortical 

volumes instead of investigating relationships with cortical volumes using a voxel-based 

technique. Another explanation could be that the HD patients included in our study 

were in a more advanced disease stage with more motor impairments, suggesting that 

involvement of cortical regions is more pronounced later in the disease. Still, UHDRS 

dystonia and hypokinetic-rigid scores did not show any significant correlations with 

subcortical volumes in our study.

The motor cortex, visual cortex, and cortical regions in the frontal and temporal lobes 

showed significant decrease in grey matter volume in manifest HD compared to controls 

by means of voxel-based morphometry. These identified regions are consistent with 
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FIGURE 2   Correlations between clinical motor scores and grey matter loss in manifest HD

VBM analyses showing significant correlations between increased motor scores and reduction in grey matter 
volume. A threshold of p < 0.05 is used. Brain regions in blue are uncorrected for multiple testing and red-
yellow brain regions are corrected with TFCE family wise error. Results are overlaid on sagittal, transversal 
and coronal slices of Montreal Neurological Institute (MNI)-152 standard space T1-weighted images. 
Corresponding MNI x-, y-, z- coordinates are displayed. UHDRS – TMS = Unified Huntington’s Disease Rating 
Scale – Total Motor Score.
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FIGURE 2   Correlations between clinical motor scores and grey matter loss in manifest HD findings in previous voxel-based studies.11,25–28 Additionally, we observed volume loss 

in visual cortical regions, which were associated with higher eye movement scores in 

HD gene carriers. It is known that fronto-striatal and occipital regions are important for 

oculomotor control and visual processing,29,30 providing a possible explanation for the 

observed correlations in these specific motor domains. These results are comparable 

to other studies observing associations between volume changes and quantitative 

motor functioning.27,28

It has also been reported that more prominent bradykinesia and dystonia are related 

to cortical thinning of the anterior frontal regions, including the premotor and 

supplementary motor cortex.9,28 In addition, finger tapping has been related to striatal 

and cortical atrophy.24,28 Although we investigated changes in subcortical and cortical 

regions separately, there is a known interplay between the basal ganglia and cerebral 

cortex. Especially changes of the basal ganglia-thalamo-frontal circuits are known to 

contribute to hyperkinetic movements such as chorea.11,23 

We did not find an association between some of the motor domains and grey matter 

regions, such as the cingulate gyrus. Since we aimed to focus on the clinical hallmark 

of HD, which is the presence of motor signs, this absent association might be caused 

by the fact that these brain regions are also involved in other domains than motor 

control. It has been reported that cortical brain atrophy, specifically in frontal, parietal 

and occipital lobes is related to a decline in cognitive functioning.9,27,30 Future studies 

investigating the relationship between cognitive and psychiatric symptoms of HD and 

volume reductions of the brain are necessary to further understand the pathogenesis 

of HD. 

The lack of a relationship between dystonia and subcortical volumes in our study might 

also be caused by the relatively low scores on this item in our cohort of early stage HD 

patients. A further limitation of this study is the relatively smaller sample size of the 

control group, which could potentially influence the results. A larger sample size of the 

control group is preferred in future studies.

In conclusion, patients with HD can present with a heterogeneous motor phenotype, 

consisting of chorea, dystonia, hypokinesia and/or balance disturbances. Our results 

demonstrate that chorea, which is the clinical hallmark of HD, is strongly associated 

with subcortical volume loss of the striatum and pallidum and not with cortical atrophy. 

Oculomotor dysfunction, however, seems to be more related to cortical volume 

changes, especially in occipital regions. Thus, there is a widespread contribution of 

different brain regions resulting in the overall clinical motor presentation seen in HD 

patients. We showed that not only subcortical volume loss is involved in the expression 

of motor disturbances, but also, although to a much lesser extent, cortical degeneration. 
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TABLE S1   Subscales of fi ve motor domains based on the Unifi ed Huntington’s Disease 
Rating Scale (UHDRS)

Motor sum scores Description Items from 
UHDRS

Range

Chorea Chorea 12 0 – 28

Dystonia Dystonia 11 0 – 20

Eye movements Ocular, saccades 1, 2, 3 0 – 24

Hypokinesia/rigidity Finger tapping, pronate/supinate, 
bradykinesia, rigidity

6, 7, 9, 10 0 – 28 

Gait/balance Gait, tandem walking, retropulsion 13, 14, 15 0 – 12

Motor domains are based on previous studies.5, 14, 15 Scores of each individual item of the UHDRS 
were summed to create the specifi c motor domains. 
UHDRS = Unifi ed Huntington’s Disease Rating Scale

SUPPLEMENTARY MATERIAL
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TABLE S2  Grey matter differences in manifest HD compared to controls

MNI coordinates (mm) t-value p-value

x y z

Frontal lobe

Precentral gyrus 14 -14 76 6.65 <0.001

Supplementary motor cortex 10 -22 66 6.17 <0.001

Frontal orbital cortex 24 42 -8 3.21 0.043

Frontal pole 36 44 -6 3.10 0.044

Temporal lobe

Inferior temporal gyrus 48 -36 -14 6.37 <0.001

Middle temporal gyrus -46 -58 6 6.06 <0.001

Parietal lobe

Postcentral gyrus -20 -34 72 3.16 <0.001

Supramarginal gyrus 66 -22 42 3.37 0.045

Cingulate gyrus -8 -38 2 3.51 0.043

Occipital lobe

Occipital pole 26 -92 0 7.34 <0.001

Occipital fusiform gyrus 22 -80 -10 7.11 <0.001

Lateral occipital cortex -30 -94 4 6.91 <0.001

Anatomical regions that showed a signifi cant difference in grey matter volume between manifest 
HD and controls using voxel-based morphometry. All anatomical regions were identifi ed using the 
Harvard-Oxford Subcortical and Cortical atlases and the cluster tool implemented in FSL. T-statistics 
and corresponding p-values are presented (with a family wise corrected p-value of p<0.05)
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TABLE S3 Correlations between anatomical regions and clinical scores in HD patients

Anatomical 
region

Voxel 
size

MNI coordinates 
(mm)

t-value p-value

x y z

UHDRS-TMS Left occipital 
pole

403 -16 -100 -2 1.05 0.019

Right putamen 33 22 4 6 1.47 0.024

Chorea Right putamen 23 22 4 6 1.32 0.038

Eye 
movements

Lateral occipital 
cortex

172 20 -92 -28 0.92 0.036

Occipital fusiform 
gyrus

141 32 -84 -16 0.95 0.036

Right putamen 41 22 2 8 1.65 0.016

Voxel-wise identifi ed anatomical regions that showed a negative correlation with clinical scores in 
HD patients, i.e. an increase in clinical score is correlated with a decrease in grey matter volume. 
All anatomical regions were identifi ed using the Harvard-Oxford Subcortical and Cortical atlases 
and the cluster tool implemented in FSL. T-statistics and corresponding p-values are presented
 (with a TFCE-family wise corrected p-value of p < 0.05).
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ABSTRACT 

Background: Progressive subcortical changes are known to occur in Huntington’s 

disease (HD), a hereditary neurodegenerative disorder. Less is known about the 

occurrence and cohesion of whole brain grey matter changes in HD. 

Objectives: We aimed to detect network integrity changes in grey matter structural 

covariance networks and examined relationships with clinical assessments.

Methods: Structural magnetic resonance imaging data of premanifest HD (n = 30), HD 

patients (n = 30) and controls (n = 30) was used to identify ten structural covariance 

networks based on a novel technique using the co-variation of grey matter with 

independent component analysis in FSL. Group differences were studied controlling 

for age and gender. To explore whether our approach is effective in examining grey 

matter changes, regional voxel-based analysis was additionally performed.

Results: Premanifest HD and HD patients showed decreased network integrity in 

two networks compared to controls. One network included the caudate nucleus, 

precuneous and anterior cingulate cortex (in HD p < 0.001, in pre-HD p = 0.003). 

One other network contained the hippocampus, premotor, sensorimotor, and insular 

cortices (in HD p < 0.001, in pre-HD p = 0.023). Additionally, in HD patients only, 

decreased network integrity was observed in a network including the lingual gyrus, 

intracalcarine, cuneal, and lateral occipital cortices (p = 0.032). Changes in network 

integrity were significantly associated with scores of motor and neuropsychological 

assessments. In premanifest HD, voxel-based analyses showed pronounced volume 

loss in the basal ganglia, but less prominent in cortical regions.

Conclusion: Our results suggest that structural covariance might be a sensitive 

approach to reveal early grey matter changes, especially for premanifest HD. 
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1. INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative 

disorder, caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat expansion 

on chromosome four in the Huntingtin (HTT) gene.1 The clinically manifest phase of 

the disease is characterized by motor disturbances, cognitive decline and psychiatric 

symptoms (such as apathy, depression, irritability, and obsessive-compulsive behavior), 

with a mean age at onset of 30 to 50 years.2 

HD gene carriers that have been tested positive for the CAG expansion are diagnosed 

as manifest HD based on the presence of typical motor disturbances that mainly 

involve chorea, dystonia, bradykinesia and rigidity.2 

Recent neuroimaging studies revealed pronounced neuropathological changes in 

subcortical structures, which primarily involve atrophy of the caudate nucleus and 

putamen.3 This decline in striatal volume is already detectable in premanifest gene 

carriers, years before onset of motor disturbances.4–6 Local subcortical grey matter 

volume changes in HD are commonly examined using a voxel-based approach,7–13 but 

only few neuroimaging studies have investigated the occurrence of volume changes 

in the cerebral cortex. Still, neuropathological studies on HD report the presence 

of widespread cortical atrophy in addition to striatal atrophy.14 Reported voxel-wise 

subcortical volume changes in HD are, however, more prominent than cortical changes 

and the amount of cortical changes varies across voxel-based studies.15,16

As voxel-based methods, such as voxel-based morphometry (VBM) analysis, provide 

whole-brain results for individual regions by studying voxels separately, a multivariate 

network-based analysis might give more information about inter-regional dependencies 

between grey matter voxels. As neurodegeneration is probably a network-based 

process involving several brain regions and is not regional specific,17 examining 

such approach might be particularly interesting in HD. Recently, a novel technique 

is developed to study disease-specific inter-regional network changes in grey matter 

by using structural covariance networks independent of a-priori defined regions.18,19 

Structural covariance networks are based on the observation that grey matter regions 

in the brain co-vary in morphometric characteristics. Therefore, structural covariance 

networks might be a valuable tool in investigating the topological organization of the 

brain.18 

Previous studies in premanifest HD showed that cognitive impairment and psychiatric 

symptoms can present prior to motor disturbances.5,20 Additionally, subcortical changes 

are already detectable in this stage of the disease.21,22 Whether or not abnormal grey 

matter changes are present in premanifest HD, we hypothesize that we may be able 
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to reveal morphological characteristics that vary reciprocally between cortices or 

between the cortex and the subcortical grey matter regions using structural covariance 

networks. Such changes in a given patient population address for abnormality in the 

reciprocal relationship that is due to disturbance in normal development or aging. 

Using structural covariance networks in such an unrestricted exploratory way can give 

more insight into the pathophysiological processes underlying HD.

Network integrity scores can be defined as the strength of an individuals’ expression 

in each identified anatomical network and can therefore indirectly provide information 

about grey matter changes. Network integrity scores can change as covariance can 

diminish when the existing correlation drops due to the variation within a normal range. 

Therefore, network integrity can change regardless of atrophy and might provide a 

more sensitive biomarker for tracking disease progression than direct measurement of 

volume changes in HD.

Thus, the aim of this study is to investigate network integrity changes in grey matter 

structural covariance networks in HD and examine the relationship between the 

identified networks and clinical assessments. Furthermore, we compared our inter-

regional findings with regional volumetric voxel-based analysis on the same data, as 

this approach is most often used to examine volume loss in HD.16

2. METHODS
2.1 Participants
Thirty premanifest gene carriers (pre-HD), 30 HD patients and 30 healthy controls who 

participated in the TRACK-HD study at the Leiden University Medical Center study 

site, were included. Both pre-HD and HD patients required a positive genetic test with 

40 CAG repeats or more. Participants were considered pre-HD with a total motor score 

(TMS) of 5 or less on the motor assessment of the Unified Huntington’s Disease Rating 

Scale (UHDRS)23 and a disease burden score (age x [CAG repeat length – 35.5]) of > 

250.24 HD patients were included with an UHDRS-TMS score > 5 and a Total Functional 

Capacity (TFC) score greater than or equal to 7 points. Partners and gene-negative 

relatives were recruited as healthy controls. The control group was age and gender 

matched to the combined pre-HD and HD patients. The Medical Ethical Committee 

of the Leiden University Medical Center approved this study and written informed 

consent was obtained from all participants. For additional details about the study 

design and exclusion criteria, see Tabrizi et al. (2009).4 
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2.2. Clinical assessments
The UHDRS-TMS was used to measure the degree of motor disturbances, ranging 

from 0 to 124, with higher scores indicating more increased motor impairment. The 

TFC assesses global impairments in daily functioning, ranging from 0 to 13, with lower 

scores indicating more impaired function. Cognitive scores included the total scores 

of the Mini Mental State Examination (MMSE), Symbol Digit Modality Test (SDMT), 

Stroop word reading test and Trail-Making Test (TMT) A and B. The TMT score was 

derived by subtracting the completion time of TMT-A from TMT-B, thus minimizing 

the potential effect of motor speed and disturbances. For more details on all clinical 

assessments.4

2.3. MRI image acquisition 
From January until August 2008, all participants underwent structural magnetic 

resonance imaging (MRI) scanning. Quality control of all images was performed by 

IXICO, London, United Kingdom. Imaging was performed on a 3 Tesla MRI scanner 

(Philips Achieva, Best, the Netherlands) using a standard 8-channel whole-head coil. 

Three-dimensional T1-weighted images were acquired with the following parameters: 

TR = 7.7 ms, TE = 3.5 ms, flip angle = 8 °, FOV 24 cm, matrix size 224 x 224 cm and 

164 sagittal slices to cover the entire brain with a slice thickness of 1.0 mm with no gap 

between slices. This resulted in a voxel size of 1,07 mm x 1,07 mm x 1,0 mm. 

2.4. Data analysis
2.4.1. Image post-processing
All T1-weighted images were analyzed using the software provided by FMRIB’s 

software library (FSL, version 5.0.8, Oxford, United Kingdom).25

First, all non-brain tissue was removed from structural T1-weighted images using a 

semi-automated brain extraction tool implemented in FSL.26 Before being aligned to 

the 2 mm MNI (Montreal Neurological Institute)-152 standard space image27 using 

non-linear registration,28 voxel-based morphometry (VBM) analysis was used as 

implemented in FSL.29 First, tissue-type segmentation was performed. The segmented 

images have values that indicate the probability of a given tissue type (i.e. grey matter, 

white matter or cerebrospinal fluid). To correct for the partial volume effect (i.e. voxels 

containing more than one tissue type), the tissue type segmentation was carried out 

with partial volume estimation. The segmented images have values that indicate the 

probability of a given tissue type. The resulting grey matter segmented images were 

averaged to create a study-specific grey matter template and ‘modulated’ to correct 

for local enlargements and contractions due to the non-linear component of the 
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spatial transformation.30 During the modulation step, each voxel of every registered 

grey matter image was multiplied by the Jacobian of the warp field. This defines the 

direction (larger or smaller) and the amount of modulation. The modulated grey matter 

images were finally smoothed with an isotropic Gaussian kernel with a sigma of 3 mm. 

For the network-based data-driven analysis, Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components (MELODIC)31,32 was used with the 

modulated grey matter images of all participants as a four-dimensional dataset. 

This statistical technique with independent component analysis (ICA) defines fully 

automated spatial component maps of maximal statistical independence, which is 

commonly used to study functional network integrity. When applied on structural grey 

matter images, this method defines spatial components based on the co-variation 

of grey matter patterns among all participants.18,19,33 Then, ICA provides for each 

participant a score (‘network integrity score’), which can be negative or positive, 

describing the strength of the individual expression in each network,31,33 with high scores 

indicating strong individual expression of the identified network. In general, there is no 

consensus on the optimal number of components, which may be depending on the 

data size and the research question.34 In our study, choosing less than ten components 

caused loss of spatial information due to merging of components, whereas selecting 

more components created additional components consisting of considerable noise. 

Therefore, we choose to set the number of independent components in our study to 

ten components. This number is consistent with previous studies of brain networks, in 

which eight to ten components are most often applied.18,34 A standard threshold level 

of 0.5 was used to describe significance of individual voxels within a spatial map. This 

indicates that the probability of a voxel being a signal component is greater than the 

probability of a voxel being noise. 

To investigate voxel-wise group differences in grey matter volume, VBM analysis was 

performed. Here, the modulated grey matter images were analyzed using a general 

linear model in FSL for statistical inference. 

Voxel-wise non-parametric permutation testing with 5000 permutations was performed 

using FSL randomise.35 Further, the Threshold-Free Cluster Enhancement (TFCE) 

technique was used,36 to correct for multiple comparisons with a p-value < 0.05 as 

significant threshold.

Brain structures were identified using the Harvard-Oxford atlas integrated in FSL.

For each participant, the mean voxels’ grey matter density value was calculated using 

the identified anatomical regions that showed significant grey matter volume changes 

as a mask.
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2.4.2. Statistics
Statistical analyses were performed using the Statistical Package for Social Sciences 

(SPSS for Mac, version 23, SPSS Inc.). Differences in demographic and clinical variables 

between groups were assessed using analysis of variance (ANOVA), χ2 and Kruskall-

Wallis tests for continuous, categorical and skewed data respectively. 

For group comparisons, separate linear regression analysis was performed in each 

network with correction for age and gender using the network integrity scores as 

dependent variable. The analysis was performed to compare controls with gene 

carriers (i.e. pre-HD and HD patients separately). All independent variables were 

entered in one block. Furthermore, correlations between clinical assessments and 

genetic markers (i.e. CAG repeat length and disease burden) with the anatomical 

networks were assessed using linear regression analysis in pre-HD and HD patients. 

For the VBM analysis, a design matrix for a general linear model was constructed in 

FSL to compare grey matter differences between controls and pre-HD and HD patients 

separately using two-tailed t-statistics, with age and gender as covariates to correct for 

confounding effects. To correct for multiple comparisons with family wise error, the 

Threshold-Free Cluster Enhancement (TFCE) technique was used,36 with a p-value < 

0.05 as significant threshold.

Linear regression analysis in HD gene carriers was performed to assess the relationship 

between clinical assessments and genetic markers with grey matter density values 

based on the mean value of the significant voxels of the VBM analysis.

In this observational study, the identified anatomical networks, grey matter density 

values, and cognitive tasks that were assessed share a mutual dependency. Considering 

it is not clear for which dependency to correct, we therefore present our correlational 

findings with clinical assessments uncorrected for multiple comparisons. As a result, 

to prevent type 2 errors, the interpretation of slight significant findings will be with 

caution. The significance threshold was set at a p value < 0.05.
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3. RESULTS
3.1. Demographic characteristics
Demographic and clinical data of all participants are shown in Table 1. There was a 

significant difference between groups for all clinical measures. Age, gender, handedness 

and education level did not differ between groups. There was no difference in CAG 

repeat length in both pre-HD and HD patients. 

TABLE 1  Clinical and volumetric group differences between HD patients and controls

HD (n= 79) Controls (n=30) p-value

Clinical characteristics

Age 46.5 (9.7; 28 – 65) 48.9 (8.4; 35 – 65) 0.229

Gender m/f (%m) 30/49 (38.0%) 14/16 (46.7%) 0.409

CAG 44.1 (2.4; 40 – 51) NA NA

Disease duration 3.3 (3.0; 0 – 13) NA NA

Disease burden 382.1 (77.8; 234 – 551) NA NA

UHDRS-TMS 17.8 (10.8; 6 – 45) 2.6 (2.4; 0 – 7) <0.001

UHDRS chorea 5.2 (4.8; 0 – 18) NA NA

UHDRS hypokinetic-rigid 4.6 (3.2; 0 – 12) NA NA

UHDRS dystonia 0.2 (0.6; 0 – 3) NA NA

UHDRS eye movements 4.9 (3.2; 0 – 13) NA NA

UHDRS gait/balance 1.8 (1.4; 0 – 6) NA NA

Subcortical structures

Accumbens nucleus 732.0 (188.0) 930.5 (207.0) <0.001

Caudate nucleus 4942.2 (997.5) 6695.4 (839.0) <0.001

Amygdala 2208.0 (528.5) 2163.4 (379.4) 0.673

Putamen 7093.0 (1229.1) 9280.0 (1289.7) <0.001

Pallidum 2749.8 (555.8) 3338.5 (471.4) <0.001

Thalamus 13958.0 (1551.3) 14844.2 (1383.7) <0.005

Hippocampus 7195.4 (1016.0) 7682.1 (818.3) 0.021

Data are mean (SD; range) or number (%) for gender. Volumes of subcortical structures are
expressed in mm3. Mean disease duration is based on a smaller sample size (n=65) due to missing 
data. Independent sample t-test was used to compare groups, except for gender (χ2-test). 
Statistically signifi cant p-values are highlighted in bold (p<0.05). NA = Not applicable; CAG = 
Cytosine-Adenine-Guanine; HD = Huntington’s Disease; UHDRS = Unifi ed Huntington’s Disease 
Rating Scale; TMS = Total Motor Score.
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Voxel-based morphometric analysis showed regional grey matter volume changes in premanifest gene 
carriers (A) and Huntington’s disease patients (B) compared to controls. The grey matter changes are overlaid 
on sagittal, transversal and coronal slices of MNI-152 standard T1-weigthed images. Corresponding MNI x-, 
y- and z- coordinates are displayed. The threshold for display is p < 0.05 (corrected using familywise error). 
The color scale bar represents T-scores.

FIGURE 1  Regional grey matter volume changes in HD

3.2. Voxel-based morphometry analysis
Regional volumetric voxel-based analysis was performed to assess voxel-wise 

differences between HD gene carriers and controls. In pre-HD, significant local 

grey matter volume reductions in the basal ganglia, mainly in the putamen, nucleus 

accumbens and caudate nucleus (Figure 1A and Table 2) was found compared to 

controls. Cortical volume changes in pre-HD were limited to the insular cortex (p = 

0.018) and a small region containing the planum temporale, parietal operculum cortex 

and posterior supramarginal gyrus (p = 0.045).  

In HD patients, grey matter volume reductions were more distributed across the brain 

(Figure 1B and Table 2). VBM analysis showed subcortical volume loss in the caudate 

nucleus, putamen and pallidum. Significant cortical grey matter changes were primarily 

located in the pre- and postcentral gyrus, the supplementary motor cortex and the 

lateral occipital cortex. 
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3.3. Anatomical networks and group comparisons
Ten grey matter anatomical networks were identified in all participants (Figure 2 and 

Table 3). Two structural covariance networks, the caudate nucleus network (network B) 

and the hippocampal network (network D), revealed a significant association in both 

pre-HD and HD patients compared to controls, meaning network integrity is reduced 

in both gene carrier groups compared to controls (Figure 2B, 2D and Table 4). The 

TABLE 2  Results of voxel-based morphometry analysis

Cluster size Anatomical region
MNI 

coordinates T-score p-value
x y z

Premanifest gene carriers

1126 Left putamen -32 -16 -6 5.39 0.005

Left caudate nucleus -20 14 8 4.25 0.013

Left accumbens -6 12 2 4.14 0.015

Insular cortex -28 6 10 4.49 0.018

1018 Right caudate nucleus 14 8 6 5.78 0.001

Right thalamus 14 -8 18 4.92 0.003

Right putamen, right pallidum 28 -16 8 3.99 0.025

10 Planum temporale 

-46 -36 16 4.47 0.045Parietal operculum cortex

Posterior supramarginal gyrus

HD patients

61398 Caudate nucleus 16 10 8 12.29 0.001

Putamen, pallidum 24 -4 8 5.17 0.001

Postcentral gyrus -18 -36 70 3.28 0.001

Precentral gyrus -14 -22 60 2.98 0.001

Supplementary motor cortex 10 -22 58 3.22 0.001

Lateral occipital cortex -46 -72 4 3.96 0.001

11 Frontal pole 22 44 18 4.24 0.041

Anatomical regions that showed signifi cant grey matter volume changes in Huntington’s disease 
compared to controls using voxel-based morphometry analysis. Regions were identifi ed using 
the cluster tool and the Harvard-Oxford Subcortical and Cortical Structural Atlases in FSL. 
The most signifi cant local maxima are presented with T-statistics and a Threshold-Free Cluster 
Enhancement (TFCE) family-wise error corrected p-value.
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FIGURE 2  Overview of structural covariance networks

The ten identified anatomical networks are based on the structural covariance of grey matter among all 
participants. The networks are overlaid on sagittal, transversal and coronal slices of MNI-152 standard T1-
weigthed images.

caudate nucleus network includes the nucleus accumbens, pallidum, putamen, and 

precuneous. The hippocampal network is further comprised of the parahippocampal 

gyrus, cerebellum, pallidum, and planum polare. One other network, the intracalcarine 

network (network E), showed only a significant change in network integrity in HD 

patients compared to controls, but not in pre-HD (Figure 2E and Table 4). 

This network includes the precuneous, cuneal and lateral occipital cortices and lingual 

gyrus. There were no significant group differences in network integrity in the 7 other 

identified networks (Figure 2A,C, F-J and Table 4). These networks include: anterior 

cingulate gyrus (network C), temporal gyrus (network F), lateral occipital cortex 

(network H), precuneous (network I), lingual gyrus (network J) and two cerebellar 

networks (networks A and G).



48

3 | Early grey matter changes in structural covariance networks in HD
TA

B
LE

 3
  I

d
en

tifi
 e

d
 a

na
to

m
ic

al
 b

ra
in

 n
et

w
o

rk
s

B
ra

in
 c

lu
st

er
Vo

xe
l 

si
ze

M
ax

 T
M

N
I 

co
or

d
in

at
es

x
y

z

N
et

w
or

k 
A

C
er

eb
el

lu
m

12
11

0
16

-2
8

-7
6

-4
6

R
ig

ht
 p

ut
am

en
, r

ig
ht

 p
al

lid
um

, r
ig

ht
 h

ip
p

o
ca

m
p

us
 a

nd
 r

ig
ht

 a
m

yg
d

al
a

23
3

4.
66

28
-2

4
-4

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

50
4.

08
16

-3
2

80

N
et

w
or

k 
B

C
au

d
at

e 
nu

cl
eu

s,
 n

uc
le

us
 a

cc
um

b
en

s,
 p

al
lid

um
, p

ut
am

en
 a

nd
 P

re
cu

ne
o

us
37

99
9

7.
55

-1
0

10
-4

A
nt

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
34

9
3.

4
16

44
4

C
er

eb
el

lu
m

18
9

2.
25

22
-5

6
-6

0

N
et

w
or

k 
C

A
nt

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
, s

up
p

le
m

en
ta

ry
 m

o
to

r 
co

rt
ex

 a
nd

 m
id

d
le

 a
nd

 in
fe

rio
r 

fr
o

nt
al

 g
yr

us
19

61
6

4.
24

10
-4

44

Pr
ec

un
eo

us
, s

up
er

io
r 

p
ar

ie
ta

l l
o

b
ul

e,
 la

te
ra

l o
cc

ip
ita

l c
o

rt
ex

, p
o

st
er

io
r 

ci
ng

ul
at

e 
co

rt
ex

, p
o

st
ce

nt
ra

l g
yr

us
47

47
4.

06
-1

0
-6

2
48

C
er

eb
el

lu
m

21
56

3.
97

2
-5

8
-2

2

Su
p

er
io

r 
an

d
 m

id
d

le
 t

em
p

o
ra

l g
yr

us
64

9
2.

93
42

-2
8

0

N
et

w
or

k 
D

H
ip

p
oc

am
p

us
, p

ar
ah

ip
p

o
ca

m
p

al
 g

yr
us

, c
er

eb
el

lu
m

, p
al

lid
um

 a
nd

 p
la

nu
m

 p
o

la
re

16
11

2
6.

66
-2

2
-2

4
-1

4

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

, s
up

er
io

r 
p

ar
ie

ta
l l

o
b

ul
e,

 a
ng

ul
ar

 g
yr

us
 

an
d

 s
up

ra
m

ar
g

in
al

 g
yr

us
10

12
3.

91
-3

0
-2

8
50

Po
st

er
io

r 
an

d
 a

nt
er

io
r 

ci
ng

ul
at

e 
g

yr
us

, s
up

p
le

m
en

ta
ry

 m
o

to
r 

co
rt

ex
88

1
3.

46
4

-2
6

38

In
su

la
r 

co
rt

ex
, c

au
d

at
e 

nu
cl

eu
s,

 fr
o

nt
al

 o
rb

ita
l c

o
rt

ex
50

4
3.

88
32

24
-4

N
et

w
or

k 
E

In
tr

ac
al

ca
ri

ne
 c

or
te

x,
 p

re
cu

ne
o

us
, c

un
ea

l c
o

rt
ex

, l
at

er
al

 o
cc

ip
ita

l c
o

rt
ex

 a
nd

 
lin

g
ua

l g
yr

us
11

28
8

6.
76

12
-6

4
8

Fr
o

nt
al

 m
ed

ia
l c

o
rt

ex
, p

ar
ac

in
g

ul
at

e 
co

rt
ex

 a
nd

 s
ub

ca
llo

sa
l c

o
rt

ex
83

3
3.

26
10

52
-6

Fr
o

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

59
5

3.
34

-3
8

26
8

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

43
9

3.
42

-1
0

-3
4

80

C
er

eb
el

lu
m

43
8

3.
37

26
-4

8
-4

2

Th
al

am
us

19
6

3.
2

-1
4

-2
8

-4

N
et

w
or

k 
F

M
id

d
le

 a
nd

 in
fe

ri
or

 t
em

p
or

al
 g

yr
us

, t
em

p
o

ra
l f

us
ifo

rm
 c

o
rt

ex
72

72
5.

48
54

-1
0

-2
2

Li
ng

ua
l g

yr
us

, p
o

st
er

io
r 

ci
ng

ul
at

e 
g

yr
us

, i
nt

ra
ca

lc
ar

in
e 

co
rt

ex
 a

nd
 o

cc
ip

ita
l 

fu
si

fo
rm

 g
yr

us
33

91
4.

4
-1

4
-5

0
0

Fr
o

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

, p
re

ce
nt

ra
l g

yr
us

, p
ar

ie
ta

l o
p

er
cu

lu
m

 c
o

rt
ex

 a
nd

 fr
o

nt
al

 
o

rb
ita

l c
o

rt
ex

24
32

3.
86

-3
0

22
14

Su
p

er
io

r 
fr

o
nt

al
 g

yr
us

 a
nd

 p
ar

ac
in

g
ul

at
e 

g
yr

us
66

2
4.

08
16

32
62

C
er

eb
el

lu
m

14
5

2.
54

36
-6

2
-3

8

N
et

w
or

k 
G

C
er

eb
el

lu
m

45
55

9.
34

-4
0

-6
6

-3
6

Po
st

ce
nt

ra
l g

yr
us

18
2

3.
33

70
-4

12

N
et

w
or

k 
H

La
te

ra
l o

cc
ip

it
al

 c
or

te
x,

 c
en

tr
al

 o
p

er
cu

la
r 

co
rt

ex
, p

la
nu

m
 p

o
la

re
, i

nf
er

io
r 

fr
o

nt
al

 
g

yr
us

, a
nd

 s
up

ra
m

ar
g

in
al

 g
yr

us
10

32
9

4.
18

-5
4

-6
6

24

Su
p

er
io

r 
an

d
 m

id
d

le
 t

em
p

o
ra

l g
yr

us
 a

nd
 a

ng
ul

ar
 g

yr
us

80
11

4.
57

44
-2

6
0

Fr
o

nt
al

 m
ed

ia
l c

o
rt

ex
, p

ar
ac

in
g

ul
at

e 
g

yr
us

, f
ro

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

 a
nd

 in
su

la
r 

co
rt

ex
72

14
5.

32
-1

4
48

-1
6

Pr
ec

un
eo

us
 a

nd
 c

in
g

ul
at

e 
co

rt
ex

17
21

3.
62

-1
0

-4
0

44

C
er

eb
el

lu
m

88
5

2.
91

4
-9

0
-3

4

N
et

w
or

k 
I

Pr
ec

un
eo

us
 

33
37

3.
58

-1
0

-5
2

56

Pr
ec

en
tr

al
 g

yr
us

, H
er

sc
hl

’s 
g

yr
us

 a
nd

 c
en

tr
al

 o
p

er
cu

la
r 

co
rt

ex
26

08
3.

87
52

0
30

Fr
o

nt
al

 o
rb

ita
l c

o
rt

ex
25

93
5.

87
32

28
-2

6

Po
st

ce
nt

ra
l g

yr
us

25
18

3.
99

-4
6

-3
4

50

Su
p

er
io

r 
p

ar
ie

ta
l l

o
b

ul
e

22
89

4.
65

40
-3

8
52

C
er

eb
el

lu
m

62
0

3.
59

-2
6

-5
4

-4
2

N
et

w
or

k 
J

Li
ng

ua
l g

yr
us

, c
er

eb
el

lu
m

, p
ar

ah
ip

p
o

ca
m

p
al

 g
yr

us
, a

nd
 o

cc
ip

ita
l f

us
ifo

rm
 g

yr
us

56
61

5.
88

2
-7

8
-1

8

Su
p

ra
m

ar
g

in
al

 g
yr

us
, o

p
er

cu
la

r 
co

rt
ex

 a
nd

 p
o

st
ce

nt
ra

l g
yr

us
40

74
4.

13
68

-3
6

38

M
id

d
le

 a
nd

 in
fe

rio
r 

te
m

p
o

ra
l g

yr
us

24
59

4.
28

-4
8

-2
0

-1
0

Su
p

er
io

r 
an

d
 m

id
d

le
 fr

o
nt

al
 g

yr
us

16
29

4.
29

44
38

32

Pa
ra

ci
ng

ul
at

e 
g

yr
us

59
1

3.
59

-1
4

42
16

E
ac

h 
an

at
o

m
ic

al
 n

et
w

o
rk

 is
 d

iv
id

ed
 in

to
 b

ra
in

 c
lu

st
er

s,
 u

si
ng

 a
 c

lu
st

er
 t

o
o

l i
nt

eg
ra

te
d

 in
 F

SL
. V

o
xe

l s
iz

e 
an

d
 M

N
I (

M
o

nt
re

al
 N

eu
ro

lo
g

ic
al

 In
st

itu
te

)-
15

2 
st

an
d

ar
d

 s
p

ac
e 

im
ag

e 
x-

, y
- 

an
d

 z
-c

o
o

rd
in

at
es

 o
f e

ac
h 

cl
us

te
r 

ar
e 

p
re

se
nt

ed
. M

ax
 T

 is
 t

he
 m

ax
im

um
 T

 s
ta

tis
tic

 o
f e

ac
h 

lo
ca

l m
ax

im
um

. S
tr

uc
tu

re
s 

d
is

p
la

ye
d

 in
 b

o
ld

 a
re

 t
he

 la
rg

es
t 

st
ru

ct
ur

es
 id

en
tifi

 e
d

 in
 e

ac
h 

an
at

o
m

ic
al

 n
et

w
o

rk
. A

na
to

m
ic

al
 b

ra
in

 s
tr

uc
tu

re
s 

w
er

e 
id

en
tifi

 e
d

 u
si

ng
 t

he
 H

ar
va

rd
-

O
xf

o
rd

 A
tla

s 
im

p
le

m
en

te
d

 in
 F

SL
. 



49

3

TA
B

LE
 3

  I
d

en
tifi

 e
d

 a
na

to
m

ic
al

 b
ra

in
 n

et
w

o
rk

s

B
ra

in
 c

lu
st

er
Vo

xe
l 

si
ze

M
ax

 T
M

N
I 

co
or

d
in

at
es

x
y

z

N
et

w
or

k 
A

C
er

eb
el

lu
m

12
11

0
16

-2
8

-7
6

-4
6

R
ig

ht
 p

ut
am

en
, r

ig
ht

 p
al

lid
um

, r
ig

ht
 h

ip
p

o
ca

m
p

us
 a

nd
 r

ig
ht

 a
m

yg
d

al
a

23
3

4.
66

28
-2

4
-4

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

50
4.

08
16

-3
2

80

N
et

w
or

k 
B

C
au

d
at

e 
nu

cl
eu

s,
 n

uc
le

us
 a

cc
um

b
en

s,
 p

al
lid

um
, p

ut
am

en
 a

nd
 P

re
cu

ne
o

us
37

99
9

7.
55

-1
0

10
-4

A
nt

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
34

9
3.

4
16

44
4

C
er

eb
el

lu
m

18
9

2.
25

22
-5

6
-6

0

N
et

w
or

k 
C

A
nt

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
, s

up
p

le
m

en
ta

ry
 m

o
to

r 
co

rt
ex

 a
nd

 m
id

d
le

 a
nd

 in
fe

rio
r 

fr
o

nt
al

 g
yr

us
19

61
6

4.
24

10
-4

44

Pr
ec

un
eo

us
, s

up
er

io
r 

p
ar

ie
ta

l l
o

b
ul

e,
 la

te
ra

l o
cc

ip
ita

l c
o

rt
ex

, p
o

st
er

io
r 

ci
ng

ul
at

e 
co

rt
ex

, p
o

st
ce

nt
ra

l g
yr

us
47

47
4.

06
-1

0
-6

2
48

C
er

eb
el

lu
m

21
56

3.
97

2
-5

8
-2

2

Su
p

er
io

r 
an

d
 m

id
d

le
 t

em
p

o
ra

l g
yr

us
64

9
2.

93
42

-2
8

0

N
et

w
or

k 
D

H
ip

p
oc

am
p

us
, p

ar
ah

ip
p

o
ca

m
p

al
 g

yr
us

, c
er

eb
el

lu
m

, p
al

lid
um

 a
nd

 p
la

nu
m

 p
o

la
re

16
11

2
6.

66
-2

2
-2

4
-1

4

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

, s
up

er
io

r 
p

ar
ie

ta
l l

o
b

ul
e,

 a
ng

ul
ar

 g
yr

us
 

an
d

 s
up

ra
m

ar
g

in
al

 g
yr

us
10

12
3.

91
-3

0
-2

8
50

Po
st

er
io

r 
an

d
 a

nt
er

io
r 

ci
ng

ul
at

e 
g

yr
us

, s
up

p
le

m
en

ta
ry

 m
o

to
r 

co
rt

ex
88

1
3.

46
4

-2
6

38

In
su

la
r 

co
rt

ex
, c

au
d

at
e 

nu
cl

eu
s,

 fr
o

nt
al

 o
rb

ita
l c

o
rt

ex
50

4
3.

88
32

24
-4

N
et

w
or

k 
E

In
tr

ac
al

ca
ri

ne
 c

or
te

x,
 p

re
cu

ne
o

us
, c

un
ea

l c
o

rt
ex

, l
at

er
al

 o
cc

ip
ita

l c
o

rt
ex

 a
nd

 
lin

g
ua

l g
yr

us
11

28
8

6.
76

12
-6

4
8

Fr
o

nt
al

 m
ed

ia
l c

o
rt

ex
, p

ar
ac

in
g

ul
at

e 
co

rt
ex

 a
nd

 s
ub

ca
llo

sa
l c

o
rt

ex
83

3
3.

26
10

52
-6

Fr
o

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

59
5

3.
34

-3
8

26
8

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

43
9

3.
42

-1
0

-3
4

80

C
er

eb
el

lu
m

43
8

3.
37

26
-4

8
-4

2

Th
al

am
us

19
6

3.
2

-1
4

-2
8

-4

N
et

w
or

k 
F

M
id

d
le

 a
nd

 in
fe

ri
or

 t
em

p
or

al
 g

yr
us

, t
em

p
o

ra
l f

us
ifo

rm
 c

o
rt

ex
72

72
5.

48
54

-1
0

-2
2

Li
ng

ua
l g

yr
us

, p
o

st
er

io
r 

ci
ng

ul
at

e 
g

yr
us

, i
nt

ra
ca

lc
ar

in
e 

co
rt

ex
 a

nd
 o

cc
ip

ita
l 

fu
si

fo
rm

 g
yr

us
33

91
4.

4
-1

4
-5

0
0

Fr
o

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

, p
re

ce
nt

ra
l g

yr
us

, p
ar

ie
ta

l o
p

er
cu

lu
m

 c
o

rt
ex

 a
nd

 fr
o

nt
al

 
o

rb
ita

l c
o

rt
ex

24
32

3.
86

-3
0

22
14

Su
p

er
io

r 
fr

o
nt

al
 g

yr
us

 a
nd

 p
ar

ac
in

g
ul

at
e 

g
yr

us
66

2
4.

08
16

32
62

C
er

eb
el

lu
m

14
5

2.
54

36
-6

2
-3

8

N
et

w
or

k 
G

C
er

eb
el

lu
m

45
55

9.
34

-4
0

-6
6

-3
6

Po
st

ce
nt

ra
l g

yr
us

18
2

3.
33

70
-4

12

N
et

w
or

k 
H

La
te

ra
l o

cc
ip

it
al

 c
or

te
x,

 c
en

tr
al

 o
p

er
cu

la
r 

co
rt

ex
, p

la
nu

m
 p

o
la

re
, i

nf
er

io
r 

fr
o

nt
al

 
g

yr
us

, a
nd

 s
up

ra
m

ar
g

in
al

 g
yr

us
10

32
9

4.
18

-5
4

-6
6

24

Su
p

er
io

r 
an

d
 m

id
d

le
 t

em
p

o
ra

l g
yr

us
 a

nd
 a

ng
ul

ar
 g

yr
us

80
11

4.
57

44
-2

6
0

Fr
o

nt
al

 m
ed

ia
l c

o
rt

ex
, p

ar
ac

in
g

ul
at

e 
g

yr
us

, f
ro

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

 a
nd

 in
su

la
r 

co
rt

ex
72

14
5.

32
-1

4
48

-1
6

Pr
ec

un
eo

us
 a

nd
 c

in
g

ul
at

e 
co

rt
ex

17
21

3.
62

-1
0

-4
0

44

C
er

eb
el

lu
m

88
5

2.
91

4
-9

0
-3

4

N
et

w
or

k 
I

Pr
ec

un
eo

us
 

33
37

3.
58

-1
0

-5
2

56

Pr
ec

en
tr

al
 g

yr
us

, H
er

sc
hl

’s 
g

yr
us

 a
nd

 c
en

tr
al

 o
p

er
cu

la
r 

co
rt

ex
26

08
3.

87
52

0
30

Fr
o

nt
al

 o
rb

ita
l c

o
rt

ex
25

93
5.

87
32

28
-2

6

Po
st

ce
nt

ra
l g

yr
us

25
18

3.
99

-4
6

-3
4

50

Su
p

er
io

r 
p

ar
ie

ta
l l

o
b

ul
e

22
89

4.
65

40
-3

8
52

C
er

eb
el

lu
m

62
0

3.
59

-2
6

-5
4

-4
2

N
et

w
or

k 
J

Li
ng

ua
l g

yr
us

, c
er

eb
el

lu
m

, p
ar

ah
ip

p
o

ca
m

p
al

 g
yr

us
, a

nd
 o

cc
ip

ita
l f

us
ifo

rm
 g

yr
us

56
61

5.
88

2
-7

8
-1

8

Su
p

ra
m

ar
g

in
al

 g
yr

us
, o

p
er

cu
la

r 
co

rt
ex

 a
nd

 p
o

st
ce

nt
ra

l g
yr

us
40

74
4.

13
68

-3
6

38

M
id

d
le

 a
nd

 in
fe

rio
r 

te
m

p
o

ra
l g

yr
us

24
59

4.
28

-4
8

-2
0

-1
0

Su
p

er
io

r 
an

d
 m

id
d

le
 fr

o
nt

al
 g

yr
us

16
29

4.
29

44
38

32

Pa
ra

ci
ng

ul
at

e 
g

yr
us

59
1

3.
59

-1
4

42
16

E
ac

h 
an

at
o

m
ic

al
 n

et
w

o
rk

 is
 d

iv
id

ed
 in

to
 b

ra
in

 c
lu

st
er

s,
 u

si
ng

 a
 c

lu
st

er
 t

o
o

l i
nt

eg
ra

te
d

 in
 F

SL
. V

o
xe

l s
iz

e 
an

d
 M

N
I (

M
o

nt
re

al
 N

eu
ro

lo
g

ic
al

 In
st

itu
te

)-
15

2 
st

an
d

ar
d

 s
p

ac
e 

im
ag

e 
x-

, y
- 

an
d

 z
-c

o
o

rd
in

at
es

 o
f e

ac
h 

cl
us

te
r 

ar
e 

p
re

se
nt

ed
. M

ax
 T

 is
 t

he
 m

ax
im

um
 T

 s
ta

tis
tic

 o
f e

ac
h 

lo
ca

l m
ax

im
um

. S
tr

uc
tu

re
s 

d
is

p
la

ye
d

 in
 b

o
ld

 a
re

 t
he

 la
rg

es
t 

st
ru

ct
ur

es
 id

en
tifi

 e
d

 in
 e

ac
h 

an
at

o
m

ic
al

 n
et

w
o

rk
. A

na
to

m
ic

al
 b

ra
in

 s
tr

uc
tu

re
s 

w
er

e 
id

en
tifi

 e
d

 u
si

ng
 t

he
 H

ar
va

rd
-

O
xf

o
rd

 A
tla

s 
im

p
le

m
en

te
d

 in
 F

SL
. 

TA
B

LE
 3

  I
d

en
tifi

 e
d

 a
na

to
m

ic
al

 b
ra

in
 n

et
w

o
rk

s

B
ra

in
 c

lu
st

er
Vo

xe
l 

si
ze

M
ax

 T
M

N
I 

co
or

d
in

at
es

x
y

z

N
et

w
or

k 
A

C
er

eb
el

lu
m

12
11

0
16

-2
8

-7
6

-4
6

R
ig

ht
 p

ut
am

en
, r

ig
ht

 p
al

lid
um

, r
ig

ht
 h

ip
p

o
ca

m
p

us
 a

nd
 r

ig
ht

 a
m

yg
d

al
a

23
3

4.
66

28
-2

4
-4

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

50
4.

08
16

-3
2

80

N
et

w
or

k 
B

C
au

d
at

e 
nu

cl
eu

s,
 n

uc
le

us
 a

cc
um

b
en

s,
 p

al
lid

um
, p

ut
am

en
 a

nd
 P

re
cu

ne
o

us
37

99
9

7.
55

-1
0

10
-4

A
nt

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
34

9
3.

4
16

44
4

C
er

eb
el

lu
m

18
9

2.
25

22
-5

6
-6

0

N
et

w
or

k 
C

A
nt

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
, s

up
p

le
m

en
ta

ry
 m

o
to

r 
co

rt
ex

 a
nd

 m
id

d
le

 a
nd

 in
fe

rio
r 

fr
o

nt
al

 g
yr

us
19

61
6

4.
24

10
-4

44

Pr
ec

un
eo

us
, s

up
er

io
r 

p
ar

ie
ta

l l
o

b
ul

e,
 la

te
ra

l o
cc

ip
ita

l c
o

rt
ex

, p
o

st
er

io
r 

ci
ng

ul
at

e 
co

rt
ex

, p
o

st
ce

nt
ra

l g
yr

us
47

47
4.

06
-1

0
-6

2
48

C
er

eb
el

lu
m

21
56

3.
97

2
-5

8
-2

2

Su
p

er
io

r 
an

d
 m

id
d

le
 t

em
p

o
ra

l g
yr

us
64

9
2.

93
42

-2
8

0

N
et

w
or

k 
D

H
ip

p
oc

am
p

us
, p

ar
ah

ip
p

o
ca

m
p

al
 g

yr
us

, c
er

eb
el

lu
m

, p
al

lid
um

 a
nd

 p
la

nu
m

 p
o

la
re

16
11

2
6.

66
-2

2
-2

4
-1

4

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

, s
up

er
io

r 
p

ar
ie

ta
l l

o
b

ul
e,

 a
ng

ul
ar

 g
yr

us
 

an
d

 s
up

ra
m

ar
g

in
al

 g
yr

us
10

12
3.

91
-3

0
-2

8
50

Po
st

er
io

r 
an

d
 a

nt
er

io
r 

ci
ng

ul
at

e 
g

yr
us

, s
up

p
le

m
en

ta
ry

 m
o

to
r 

co
rt

ex
88

1
3.

46
4

-2
6

38

In
su

la
r 

co
rt

ex
, c

au
d

at
e 

nu
cl

eu
s,

 fr
o

nt
al

 o
rb

ita
l c

o
rt

ex
50

4
3.

88
32

24
-4

N
et

w
or

k 
E

In
tr

ac
al

ca
ri

ne
 c

or
te

x,
 p

re
cu

ne
o

us
, c

un
ea

l c
o

rt
ex

, l
at

er
al

 o
cc

ip
ita

l c
o

rt
ex

 a
nd

 
lin

g
ua

l g
yr

us
11

28
8

6.
76

12
-6

4
8

Fr
o

nt
al

 m
ed

ia
l c

o
rt

ex
, p

ar
ac

in
g

ul
at

e 
co

rt
ex

 a
nd

 s
ub

ca
llo

sa
l c

o
rt

ex
83

3
3.

26
10

52
-6

Fr
o

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

59
5

3.
34

-3
8

26
8

Po
st

ce
nt

ra
l g

yr
us

 a
nd

 p
re

ce
nt

ra
l g

yr
us

43
9

3.
42

-1
0

-3
4

80

C
er

eb
el

lu
m

43
8

3.
37

26
-4

8
-4

2

Th
al

am
us

19
6

3.
2

-1
4

-2
8

-4

N
et

w
or

k 
F

M
id

d
le

 a
nd

 in
fe

ri
or

 t
em

p
or

al
 g

yr
us

, t
em

p
o

ra
l f

us
ifo

rm
 c

o
rt

ex
72

72
5.

48
54

-1
0

-2
2

Li
ng

ua
l g

yr
us

, p
o

st
er

io
r 

ci
ng

ul
at

e 
g

yr
us

, i
nt

ra
ca

lc
ar

in
e 

co
rt

ex
 a

nd
 o

cc
ip

ita
l 

fu
si

fo
rm

 g
yr

us
33

91
4.

4
-1

4
-5

0
0

Fr
o

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

, p
re

ce
nt

ra
l g

yr
us

, p
ar

ie
ta

l o
p

er
cu

lu
m

 c
o

rt
ex

 a
nd

 fr
o

nt
al

 
o

rb
ita

l c
o

rt
ex

24
32

3.
86

-3
0

22
14

Su
p

er
io

r 
fr

o
nt

al
 g

yr
us

 a
nd

 p
ar

ac
in

g
ul

at
e 

g
yr

us
66

2
4.

08
16

32
62

C
er

eb
el

lu
m

14
5

2.
54

36
-6

2
-3

8

N
et

w
or

k 
G

C
er

eb
el

lu
m

45
55

9.
34

-4
0

-6
6

-3
6

Po
st

ce
nt

ra
l g

yr
us

18
2

3.
33

70
-4

12

N
et

w
or

k 
H

La
te

ra
l o

cc
ip

it
al

 c
or

te
x,

 c
en

tr
al

 o
p

er
cu

la
r 

co
rt

ex
, p

la
nu

m
 p

o
la

re
, i

nf
er

io
r 

fr
o

nt
al

 
g

yr
us

, a
nd

 s
up

ra
m

ar
g

in
al

 g
yr

us
10

32
9

4.
18

-5
4

-6
6

24

Su
p

er
io

r 
an

d
 m

id
d

le
 t

em
p

o
ra

l g
yr

us
 a

nd
 a

ng
ul

ar
 g

yr
us

80
11

4.
57

44
-2

6
0

Fr
o

nt
al

 m
ed

ia
l c

o
rt

ex
, p

ar
ac

in
g

ul
at

e 
g

yr
us

, f
ro

nt
al

 o
p

er
cu

lu
m

 c
o

rt
ex

 a
nd

 in
su

la
r 

co
rt

ex
72

14
5.

32
-1

4
48

-1
6

Pr
ec

un
eo

us
 a

nd
 c

in
g

ul
at

e 
co

rt
ex

17
21

3.
62

-1
0

-4
0

44

C
er

eb
el

lu
m

88
5

2.
91

4
-9

0
-3

4

N
et

w
or

k 
I

Pr
ec

un
eo

us
 

33
37

3.
58

-1
0

-5
2

56

Pr
ec

en
tr

al
 g

yr
us

, H
er

sc
hl

’s 
g

yr
us

 a
nd

 c
en

tr
al

 o
p

er
cu

la
r 

co
rt

ex
26

08
3.

87
52

0
30

Fr
o

nt
al

 o
rb

ita
l c

o
rt

ex
25

93
5.

87
32

28
-2

6

Po
st

ce
nt

ra
l g

yr
us

25
18

3.
99

-4
6

-3
4

50

Su
p

er
io

r 
p

ar
ie

ta
l l

o
b

ul
e

22
89

4.
65

40
-3

8
52

C
er

eb
el

lu
m

62
0

3.
59

-2
6

-5
4

-4
2

N
et

w
or

k 
J

Li
ng

ua
l g

yr
us

, c
er

eb
el

lu
m

, p
ar

ah
ip

p
o

ca
m

p
al

 g
yr

us
, a

nd
 o

cc
ip

ita
l f

us
ifo

rm
 g

yr
us

56
61

5.
88

2
-7

8
-1

8

Su
p

ra
m

ar
g

in
al

 g
yr

us
, o

p
er

cu
la

r 
co

rt
ex

 a
nd

 p
o

st
ce

nt
ra

l g
yr

us
40

74
4.

13
68

-3
6

38

M
id

d
le

 a
nd

 in
fe

rio
r 

te
m

p
o

ra
l g

yr
us

24
59

4.
28

-4
8

-2
0

-1
0

Su
p

er
io

r 
an

d
 m

id
d

le
 fr

o
nt

al
 g

yr
us

16
29

4.
29

44
38

32

Pa
ra

ci
ng

ul
at

e 
g

yr
us

59
1

3.
59

-1
4

42
16

E
ac

h 
an

at
o

m
ic

al
 n

et
w

o
rk

 is
 d

iv
id

ed
 in

to
 b

ra
in

 c
lu

st
er

s,
 u

si
ng

 a
 c

lu
st

er
 t

o
o

l i
nt

eg
ra

te
d

 in
 F

SL
. V

o
xe

l s
iz

e 
an

d
 M

N
I (

M
o

nt
re

al
 N

eu
ro

lo
g

ic
al

 In
st

itu
te

)-
15

2 
st

an
d

ar
d

 s
p

ac
e 

im
ag

e 
x-

, y
- 

an
d

 z
-c

o
o

rd
in

at
es

 o
f e

ac
h 

cl
us

te
r 

ar
e 

p
re

se
nt

ed
. M

ax
 T

 is
 t

he
 m

ax
im

um
 T

 s
ta

tis
tic

 o
f e

ac
h 

lo
ca

l m
ax

im
um

. S
tr

uc
tu

re
s 

d
is

p
la

ye
d

 in
 b

o
ld

 a
re

 t
he

 la
rg

es
t 

st
ru

ct
ur

es
 id

en
tifi

 e
d

 in
 e

ac
h 

an
at

o
m

ic
al

 n
et

w
o

rk
. A

na
to

m
ic

al
 b

ra
in

 s
tr

uc
tu

re
s 

w
er

e 
id

en
tifi

 e
d

 u
si

ng
 t

he
 H

ar
va

rd
-

O
xf

o
rd

 A
tla

s 
im

p
le

m
en

te
d

 in
 F

SL
. 



50

3 | Early grey matter changes in structural covariance networks in HD

TA
B

LE
 4

   D
iff

er
en

ce
s 

p
er

 a
na

to
m

ic
al

 n
et

w
o

rk
 b

et
w

ee
n 

co
nt

ro
ls

 c
o

m
p

ar
ed

 t
o

 p
re

m
an

ife
st

 g
en

e 
ca

rr
ie

rs
 

an
d

 H
D

 p
at

ie
nt

s

N
et

w
or

k
U

ns
ta

nd
ar

d
iz

ed
 B

 (9
5%

 C
I)

St
an

d
ar

d
iz

ed
 β

R
2

p
-v

al
ue

 

A
 –

 C
er

eb
el

lu
m

Pr
em

an
ife

st
M

an
ife

st
-0

.0
03

 (-
0.

01
0 

to
 0

.0
03

)
-0

.0
05

 (-
0.

01
1 

to
 0

.0
01

)
-0

.1
48

-0
.2

27
0.

14
1

0.
15

3
0.

26
9

0.
07

9

B
 –

 C
au

d
at

e 
nu

cl
eu

s
Pr

em
an

ife
st

M
an

ife
st

-0
.0

09
 (-

0.
01

5 
to

 -
0.

00
3)

-0
.0

23
 (-

0.
02

9 
to

 -
0.

01
8)

-0
.4

02
-0

.7
18

0.
17

4
0.

55
1

0.
00

3 
<

 0
.0

01

C
 –

  A
nt

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
Pr

em
an

ife
st

M
an

ife
st

-0
.0

01
 (-

0.
00

9 
to

 0
.0

07
)

-0
.0

01
 (-

0.
00

8 
to

 0
.0

06
)

-0
.0

28
-0

.0
35

0.
27

4
0.

18
5

0.
81

6
0.

77
8

D
 –

 H
ip

p
o

ca
m

p
us

 
Pr

em
an

ife
st

M
an

ife
st

-0
.0

08
 (-

0.
01

4 
to

 -
0.

00
1)

-0
.0

09
 (-

0.
01

4 
to

 -
0.

00
4)

-0
.3

00
-0

.3
76

0.
16

8
0.

33
0

0.
02

3 
0.

00
1 

E
 –

 In
tr

ac
al

ca
rin

e 
co

rt
ex

Pr
em

an
ife

st
M

an
ife

st
-0

.0
04

 (-
0.

01
1 

to
 0

.0
02

)
-0

.0
07

 (-
0.

01
3 

to
 -

0.
00

1)
-0

.1
77

-0
.2

81
0.

14
3

0.
11

8
0.

18
0

0.
03

2 

F 
– 

Te
m

p
o

ra
l g

yr
us

Pr
em

an
ife

st
M

an
ife

st
-0

.0
01

 (-
0.

00
7 

to
 0

.0
04

)
-0

.0
02

 (-
0.

00
8 

to
 0

.0
05

)
-0

.0
66

-0
.0

68
0.

13
0

0.
07

7
0.

61
6

0.
60

4

G
 –

 C
er

eb
el

lu
m

 
Pr

em
an

ife
st

M
an

ife
st

0.
00

2 
(-

0.
00

4 
to

 0
.0

09
)

0.
00

3 
(-

0.
00

3 
to

 0
.0

09
)

0.
09

4
0.

12
1

0.
07

2
0.

08
5

0.
49

2
0.

35
7

H
 –

 La
te

ra
l o

cc
ip

ita
l 

co
rt

ex
Pr

em
an

ife
st

M
an

ife
st

0.
00

0 
(-

0.
00

7 
to

 0
.0

07
)

-0
.0

01
 (-

0.
00

8 
to

 0
.0

06
)

-0
.0

17
-0

.0
44

0.
03

4
0.

01
5

0.
90

2
0.

74
5

I –
 P

re
cu

ne
o

us
 

Pr
em

an
ife

st
M

an
ife

st
0.

00
3 

(-
0.

00
4 

to
 0

.0
10

)
-0

.0
05

 (-
0.

01
1 

to
 0

.0
01

)
0.

12
7

-0
.2

16
0.

03
3

0.
05

7
0.

36
1

0.
11

0

J 
– 

Li
ng

ua
l g

yr
us

Pr
em

an
ife

st
M

an
ife

st
-0

.0
03

 (-
0.

01
0 

to
 0

.0
05

)
-0

.0
04

 (-
0.

01
0 

to
 0

.0
02

)
-0

.1
05

-0
.1

81
0.

07
8

0.
14

5
0.

44
6

0.
15

5

β 
 =

 s
ta

nd
ar

d
iz

ed
 B

et
a 

co
ef

fi c
ie

nt
. C

o
nt

ro
ls

 w
er

e 
co

m
p

ar
ed

 t
o

 p
re

-H
D

 a
nd

 H
D

 p
at

ie
nt

s 
w

ith
 a

d
ju

st
m

en
t 

fo
r 

ag
e 

an
d

 
g

en
d

er
 in

fl u
en

ce
s.

 S
ig

ni
fi c

an
t 

p
-v

al
ue

s 
(u

nc
o

rr
ec

te
d

 p
 <

 0
.0

5)
 a

re
 d

is
p

la
ye

d
 in

 b
o

ld
.



51

3

3.4. Correlations of structural changes with clinical assessments
The caudate nucleus network, hippocampal network and intracalcarine network were 

selected to further assess the relationship with clinical scores, as these anatomical 

networks showed significant differences between controls and HD gene carriers. Six 

clinical assessments were analyzed in the HD gene carrier group and consisted of 

motor, functional and cognitive scores. CAG repeat length and disease burden score 

were used as a measurement of genetic burden in HD gene carriers. The caudate 

nucleus network showed a significant correlation with the TFC score and the UHDRS 

total motor score (Table 5). This means that a higher motor score is associated with a 

reduction in network integrity for this specific network. Significant correlations were 

also found with the caudate nucleus network and both CAG repeat length and disease 

burden score, meaning that a larger CAG repeat length and higher disease burden 

score are associated with a reduction in network integrity scores. Furthermore, all 

cognitive assessments showed a significant correlation with this network, i.e. the SDMT 

score, Stroop word reading test, TMT score and MMSE. The hippocampal network 

revealed no significant correlations with any of the clinical assessments or the measures 

of genetic burden. Two clinical assessments showed significant correlations with the 

intracalcarine network, the TFC score and the TMT score (Table 5). Furthermore, the 

disease burden score also showed a significant correlation with this network. The 

identified voxel-based anatomical regions of grey matter volume changes in HD were 

additionally used to assess relationships with clinical assessments in HD gene carriers. 

Overall, grey matter density values were significantly lower in manifest HD compared 

to controls and pre-HD (F(2,87) = 24.1, p < 0.001). For all clinical motor, functional 

and cognitive assessments, there was a significant correlation with grey matter density 

values in HD gene carriers (Table 5).
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TABLE 5   Correlations between changes in structural covariance networks and clinical 
assessments

Network B

Caudate 
nucleus network

Network D 

Hippocampus 
network

Network E 

Visuomotor 
network

Voxel-based 
grey matter 
volume changes

β p-value β p-value β p-value β p-value

UHDRS-TMS -0.519 < 0.001 0.057 ns -0.160 ns -0.525 < 0.001

TFC 0.329 0.002 0.019 ns 0.272 0.037 0.437 < 0.001

SDMT 0.544 < 0.001 0.152 ns 0.151 ns -0.520 < 0.001

Stroop word 
reading 

0.410 0.001 0.171 ns 0.047 ns 0.330 0.003

TMT -0.420 0.001 -0.109 ns -0.258 0.049 -0.520 < 0.001

MMSE 0.341 0.008 0.036 ns -0.025 ns 0.348 0.002

CAG repeat 
length

-0.578 < 0.001 -0.012 ns -0.294 ns -0.564 < 0.001

Disease 
burden

-0.474 < 0.001 -0.034 ns -0.263 0.046 -0.452 < 0.001

Signifi cant correlations of motor, functional and cognitive assessments and genetic burden with 
structural covariance networks and voxel-based grey matter volume changes in HD gene carriers are
presented. ns = not signifi cant; β  = standardized Beta coeffi cient; UHDRS-TMS = Unifi ed Huntington’s 
Disease Rating Scale – Total Motor Score; TFC = Total Functional Capacity score; SDMT = Symbol Digit 
Modality Test; TMT = Trail Making Test; MMSE = Mini Mental State Examination; CAG = cytosine, 
adenine, guanine; disease burden score = age x (CAG length-35.5) by Penney et al. (1997).
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4. DISCUSSION

In this study, we showed that identification of structural covariance networks revealed 

early grey matter changes in premanifest gene carriers and HD patients. In total, ten 

anatomical networks were identified in all participants. The regions of grey matter 

changes were located in two specific structural covariance networks, in which we found 

network integrity changes in both pre-HD and HD patients. One of these networks 

contained the basal ganglia, precuneous and anterior cingulate cortex, whereas the 

other network comprised of the hippocampus, parahippocampal gyrus, cingulate, 

insular, and sensorimotor cortices, superior parietal lobule, angular gyrus and frontal 

orbital cortex. One other network, the intracalcarine network, only showed a significant 

change in network integrity in HD patients, not in pre-HD, compared to controls. The 

other seven networks involving the cerebellum, temporal and frontal lobes showed 

no significant differences in network integrity between controls and pre-HD or HD 

patients.

The mean network integrity score describes the strength of group expression in 

each network with higher scores indicating strong group expression of the identified 

network. 

Our findings suggest that there is a progressive increasing change of network integrity 

in grey matter structures from the premanifest phase, when motor symptoms are not 

yet present, to the manifest stage of the disease.

Network integrity changes found in both pre-HD and HD patients were located in a 

network containing the precuneous and anterior cingulate cortex. These structures 

are involved in motor planning, visuospatial processing, and cognitive attention and 

control.37,38 As these motor and cognitive functions are known to be affected in HD,20,22 

this can explain the strong associations we found in HD gene carriers between this 

network and performances on motor and cognitive tasks. The identified hippocampal 

network comprised of cortical structures involved in working memory performance, 

emotion processing and motor control. Although we showed evidence for change in 

network integrity in this network in pre-HD and HD patients, there were no significant 

correlations with clinical assessments. One possible explanation might be that we 

assessed cognitive tasks that are not designed to measure the domains of working 

memory and emotion processing. Another possible explanation could be that changes 

in network integrity precede the clinical decline. 

In HD, network-based analysis has been applied in one other recent study that 

investigated structural covariance networks in brain regions that are functionally 

related.39 Here, in all pre-specified motor, working memory, cognitive flexibility, and 
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social-affective networks there were no differences between controls and pre-HD 

observed.39 In our study, however, we found evidence for early grey matter volume 

changes in two structural covariance networks in pre-HD compared to controls. This 

difference might be explained by the fact that we used patterns of co-variation in 

whole brain grey matter of the participants and were not restricted to pre-defined 

brain regions.

Further, we assessed correlations with our identified anatomical networks and genetic 

markers, such as CAG repeat length and disease burden. We found that a larger CAG 

repeat length and higher disease burden score in HD gene carriers were associated 

with a reduction in network integrity scores of the caudate nucleus network, suggesting 

that genetic markers might have an effect on the rate of disease progression. This is 

consistent with previous studies showing a larger CAG repeat length is associated 

more widespread atrophy.10,12,24

In general, grey matter structural covariance networks showed to spatially overlap with 

resting-state functional connectivity networks.33,40 It is suggested that the topological 

organization of anatomical networks reflect the pattern of functional organization of 

different networks, thus, regions that co-vary in grey matter volume may also be part of 

the same functional network.40,41 The identified anatomical networks in our study also 

show similarity with resting state functional connectivity networks found in early HD 

patients in previous studies.42–44

Visual comparison of our identified networks with results from previous functional 

neuroimaging studies in HD show spatial overlap between the caudate nucleus network 

(B) and the functional striatal network, the anterior cingulate cortex network (C) and 

the executive control network, the hippocampal network (D) and the frontoparietal 

network, the intracalcarine network (E) and the functional visuomotor network, the 

temporal gyrus network and the functional medial temporal network, the lateral 

occipital network (H) and the default mode network, the precuneous network (I) and 

the sensorimotor network, the lingual gyrus network (J) and the auditory network, and 

the structural cerebellar networks (A and G) and the functional cerebellar network. Yet, 

more studies are needed to gain more knowledge about the relationship between 

structural networks and functional connectivity in HD.

To investigate whether identifying structural covariance networks is an effective 

approach to examine grey matter changes in HD, regional voxel-based analysis was 

additionally performed on the same data. 

In pre-HD, previous voxel-based analysis studies revealed volume loss in the prefrontal 

cortex,11 insular cortex and parietal lobe.12 This is consistent with our regional analysis 

that showed limited cortical volume loss in pre-HD, located in the insular cortex, 
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planum temporale, parietal operculum cortex and posterior supramarginal gyrus. 

However, our network-based analysis revealed that changes were also located in 

other brain regions like the precuneous, cingulate and sensorimotor cortices, and the 

parahippocampal gyrus. These results are consistent with previous studies on cortical 

thinning in early clinical disease stages.45,46 For the voxel-based regions that showed 

volume loss in HD gene carriers, mean grey matter density values were calculated 

and correlated with scores of clinical assessments. We found significant correlations 

between grey matter density values and motor, functional and cognitive assessments, 

as well as CAG repeat length and disease burden. Comparable significant correlations 

with these clinical assessments were also found in the caudate nucleus network, 

suggesting that network-based analysis is also sensitive in detecting correlations 

with clinical measures. Using univariate VBM, however, these correlations are based 

on voxel-wise differences in grey matter density. Therefore, it is difficult to directly 

compare the sensitivity of the univariate VBM approach with a multivariate network 

approach, based on the correlation with clinical assessments. 

Nevertheless, based on the current results and previous reports, network-based 

analyses using structural covariance network with spatially independent regions 

might be a sensitive method in detecting early grey matter changes in HD as network 

integrity can change regardless of atrophy. Also, cognitive dysfunctions might not only 

be caused by localized brain damage, but of a impaired brain network as well.47

Still, more studies are needed to determine if structural covariance networks are 

reliable to be used as a standardized method for grey matter changes in HD.

4.1. Strengths and limitations
The strength of this current study lies in detecting whole brain networks by using the 

anatomical relationship between spatially distributed brain regions as covariance 

networks without using pre-defined regions of interest or analyzing voxels separately.  

However, this study has a cross-sectional design, so a longitudinal follow-up study 

is preferred to further assess the relationship with disease progression. Additionally, 

larger sample sizes might provide more information about associations with clinical 

assessments. Another limitation of this study is the number of components or networks 

used in our analysis, which was chosen arbitrary.34 When choosing the number of 

components it is important to take into account that the sensitivity to detect regional 

effects can be affected and thus might influence outcomes.18
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5. CONCLUSIONS

This study identified spatially independent grey matter regions that form different 

structural networks based on the co-variance of grey matter in healthy controls, 

pre-HD and HD patients. Our findings suggest that changes in grey matter volume 

are widespread, involve several brain regions, and are already detectable in the 

premanifest stage of the disease. Potentially, structural covariance networks might 

develop into an early biomarker for identifying grey matter changes in HD that could 

be used in future clinical trials. Additionally, it is important to understand large-scale 

anatomical networks in a neurodegenerative disorder like HD, as this might provide 

new insights into underlying cortical pathophysiological processes, which are still 

poorly understood.
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ABSTRACT 

Background: Progressive striatal atrophy is the neuropathological hallmark of 

Huntington’s disease (HD), a hereditary neurodegenerative disorder. Cortical atrophy 

is additionally present in HD, but it is unknown if striatal degeneration is related with 

cortical atrophy or if these are independent neurodegenerative processes.

Objective: To investigate the extent of corticostriatal degeneration in early manifest 

disease stages and examine the relationship between cortical thinning and striatal 

volume loss.

Methods: Ninety-two participants (18 healthy controls, 31 HD stage 1, and 43 HD 

stage 2) underwent structural MRI scanning. Thickness and surface area of cortical 

brain regions and striatal volumes were calculated using FreeSurfer. Based on 

independent corticostriatal circuits (motor, oculomotor, prefrontal, limbic, and visual 

loops), associations between cortical thickness and striatal volumes (caudate nucleus, 

putamen, and accumbens nucleus) in HD gene carriers were assessed using multiple 

linear regression analyses adjusted for age and gender, and corrected for multiple 

comparisons (p < 0.003).

Results: Atrophy of the striatum, especially the caudate nucleus, was more extensive 

than thinning of the cerebral cortex in HD gene carriers. In HD stage 2, cortical thinning 

was mainly located in parietal and occipital cortices. Although both striatal volume loss 

and cortical thinning was observed, no significant associations were found between 

cortical thickness and striatal volumes. 

Conclusion: In early stage HD, cortical atrophy is mainly located in parietal and 

occipital brain regions. Since no relationship was observed in the degree of atrophy 

within corticostriatal circuits, our findings imply that cortical degeneration might be 

independent from striatal atrophy.   
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1. INTRODUCTION

Progressive striatal degeneration is the neuropathological hallmark of Huntington’s 

disease (HD), an autosomal dominant inherited neurodegenerative disorder caused 

by an elongated cytosine-adenosine-guanine (CAG) repeat length on chromosome 

four.1,2 The gradual loss of medium spiny projection neurons in the striatum are 

thought to explain the clinical signs of HD, such as choreiform movements, oculomotor 

dysfunction, and even cognitive and psychiatric symptoms.3–5 Early microscopic 

changes in the striatum usually begins in the body and tail of the caudate nucleus, 

and further deterioration occurs in a dorsal to ventral direction.4 In addition to striatal 

atrophy, widespread neuronal cell loss in different regions of the cerebral cortex have 

been found in advanced HD patients, resulting in an overall brain weight loss of more 

than 40%.6–8 Regional cortical atrophy can also be detected in early disease stages, 

although to a lesser extent than striatal atrophy.9–14 

Currently, it is suggested that cortical atrophy in HD originates in posterior brain regions 

and progresses to the anterior cerebral cortex,15 but it is unknown if the degree of 

regional cortical degeneration is related to striatal volume loss. It is hypothesized that 

either the striatum is the primary site of degeneration in HD and other subcortical and 

cortical brain regions are subsequently affected, or that striatal atrophy is secondary 

to degeneration in the cerebral cortex.1 However, it is also possible that striatal and 

cortical degeneration occur relatively independent of each other.16

In general, different cortical regions have projections to different striatal regions (i.e., 

the putamen, caudate nucleus, or accumbens nucleus) that subsequently project 

to the pallidum, thalamus, and finally back to the cortex. Five major independent 

corticostriatal circuits have been identified: the motor, oculomotor, prefrontal, limbic, 

and visual loops (Figure 1).5,17–19 Dysfunction of the corticostriatal pathways may lead to 

neurodegeneration of both cortical and striatal neurons.6

Identifying the pathways of corticostriatal neurodegeneration in HD is important 

because this can provide more insight into the debate to which extent the striatum 

plays a causal or modulatory role in the onset of clinical signs. To date, striatal atrophy 

is often used as a marker to track disease progression or to measure the effect of a 

pharmacological treatment in clinical trials. When cortical degeneration indeed occurs 

independent from striatal atrophy, this could have consequences for future clinical 

trial designs and therapeutic interventions, especially since cognitive, affective and 

behavioral disturbances in HD patients have been linked to cortical atrophy.9,13

Therefore, with this study, we aimed to identify the degree of corticostriatal degeneration 

in early manifest HD disease stages and examine the relationship between cortical 

thinning and striatal volume loss.



66

4 | Patterns of corticostriatal degeneration in early HD patients

2. METHODS
2.1. Participants
A total of 92 individuals (18 healthy controls and 31 manifest HD gene carriers stage 

1 (HD1) and 43 manifest HD gene carriers stage 2 (HD2)) were included in this study. 

Participants were recruited from the outpatient clinic of our Neurology department. 

Spouses and gene-negative relatives without neurological or psychiatric disorders 

were included as healthy controls. All HD gene carriers had a genetically confirmed 

CAG repeat length of ≥ 36 and scored above 5 points on the Total Motor Score of 

FIGURE 1  Corticostriatal circuits

Schematic overview of the main corticostriatal circuits in the human brain, adapted from Alexander et al.17 
and Lawrence et al.18 Each circuit is a closed loop projecting from the cerebral cortex to specific regions of 
the striatum, pallidum, and thalamus, which project back to the cerebral cortex. The sensorimotor cortex 
mainly connects to the putamen, the orbitofrontal, parietal, and occipital cortices with the caudate nucleus, 
whereas the limbic structures and prefrontal cortex are involved with the nucleus accumbens. Note that the 
connections between striatal regions (i.e., the indirect and direct pathways), and to the pallidum and thalamus 
are not displayed in this figure. 
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the Unified Huntington’s Disease Rating Scale (UHDRS), a scale to evaluate motor 

functioning in HD, ranging from 0 to 124.20 Usually, a score above 5 points on the 

UHDRS-TMS refers to clinical presence of typical HD-related motor signs.10 Based 

on the UHDRS Total Functional Capacity (TFC) score, which assesses global daily 

functioning, manifest HD gene carriers were divided into diseases stages21 The TFC 

score ranges from 0 to 13, with lower scores indicating more impaired function. This 

resulted in 31 patients in the earliest disease stage (HD1) with TFC score between 11 

and 13, and 43 patients in the second disease stage (HD2), with TFC score between 

7 and 10. The disease burden score was calculated as indicator of disease pathology, 

based on the following formula: age x (CAG – 25.5).22

The local medical ethical committee approved this study and written informed consent 

was obtained from all participants. 

2.2. MRI acquisition 
All participants underwent structural Magnetic Resonance Imaging (MRI) scanning 

between January 2016 and December 2017 on a 3 Tesla MRI scanner (Philips Achieva, 

Best, the Netherlands). Anatomical T1-weighted images were acquired using a 

standard 32-channel whole head coil. The following image parameters were used: TE 

= 3.3, TR = 7.2 ms, flip angle = 9°, FOV = 256 x 240 x 176 mm and 176 slices with a slice 

thickness of 1 mm and no gap between slices, resulting in a voxel size of 1.00 x 1.00 x 

1.00 mm, and scan duration of approximately 9 minutes.

2.3. Image processing
FreeSurfer (version 5.3.0) was used to calculate the cortical thickness and surface area of 

the cortical brain regions.23 Automated parcellation and segmentation was performed 

by the FreeSurfer algorithm, which assigns a neuroanatomical label to each location on 

a cortical surface model, based on probabilistic information. Frontal, medial and lateral 

temporal, parietal, occipital and cingulate regions in each hemisphere were identified 

based on the Desikan-Killiany atlas, resulting in 34 cortical regions.24 Thickness and 

surface area measures were averaged across the two hemispheres. Then, average 

thickness values per region (comprising of the frontal, parietal, temporal, and occipital 

lobes and the cingulate cortex) were calculated based on a weighted sum of mean 

thickness which accounted for surface area that has been described previously.13,25 

In addition, volumetric measures of striatal structures, i.e., caudate nucleus, putamen, 

and nucleus accumbens were obtained automatically using FreeSurfer’s subcortical 

segmentation pipeline.26 
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2.4. Statistical analysis
Group differences in demographic variables were analyzed using analysis of variance 

(ANOVA) or χ2 for continuous and categorical data respectively. Differences between 

HD1 and HD2 for clinical outcome measures (CAG, disease burden score, disease 

duration and UHDRS-TMS) were analyzed using independent samples t-tests. 

Differences between HD1, HD2, and controls in striatal volumes and average cortical 

thickness for each lobe were analyzed using ANOVA, with Bonferroni correction. 

Based on the corticostriatal circuits presented in Figure 1, we used multiple linear 

regression analyses in all HD gene carriers (i.e., HD1 and HD2 combined) to assess 

associations between cortical thickness of specific brain regions within each circuit and 

the corresponding striatal volumes (i.e., caudate nucleus, putamen, and accumbens 

nucleus). Each specific cortical region’s thickness was entered as dependent variable 

with the corresponding striatal volume as independent variable, adjusted for age and 

gender. All independent variables were entered in one block. 

An alpha-level of p < 0.05 was used as significant threshold and, if applicable, an 

adjusted p-value was set to account for multiple comparisons. Statistical analyses were 

performed using the Statistical Package for Social Sciences (SPSS for Mac, version 23, 

SPSS Inc.).

3. RESULTS
3.1. Demographic characteristics
Demographic data are presented in Table 1. There were no significant group 

differences in age and gender. CAG repeat length and disease burden score were 

not different between the HD disease stages. The HD2 group had a significant longer 

disease duration and higher score on the UHDRS-TMS compared to HD1. 

3.2. Striatal volume and cortical thickness
Significant reduced volumes of all striatal structures were found for both HD1 and HD2 

compared to controls (Table 2 and Figure 2). 

The caudate nucleus showed the largest volume loss in HD gene carriers compared to 

controls with 31.1% and 31.4% volume loss in HD1 and HD2 respectively. There were 

no significant differences in striatal volumes between HD1 and HD2. After correction 

for multiple comparisons, each lobe showed reduced average cortical thickness in 

HD2 compared to controls, with largest volume reductions in the parietal and occipital 

brain regions, while no significant reductions in HD1 compared to controls were found. 
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TABLE 1  Demographic characteristics of study population

Controls HD1 HD2 p-value

N 18 31 43

Age (years) 46.2 ± 10.7
(24.1 – 61.3)

50.1 ± 9.1
(30.5 – 64.8)

51.2 ± 10.1
(28.4 – 65.7)

0.198

Gender (M/F) 7/11 17/14 22/21 0.548

Disease burden score NA 375 ± 86
(246 – 562)

382 ± 87
(185 – 544)

0.741

Disease duration (years) NA 3.5 ± 2.6 5.3 ± 2.9 0.005

CAG NA 43.3 ± 2.4
(40-49)

43.2 ± 1.9
(40-48)

0.973

UHDRS – Total motor score NA 17.1 ± 8.1
(6 – 40)

24.4 ± 12.3
(8 – 52)

0.007

Data are presented with mean ± SD (range), except for gender (male/female) in numbers. 
UHDRS: Unifi ed Huntington’s Disease Rating Scale – Total Motor score. NA: not applicable. 
Signifi cant group differences are displayed in bold. 

TABLE 2  Structural brain data 

Controls HD1 HD2 

Controls 
vs. HD1 

p-value

Controls 
vs. HD2

p-value

Average subcortical volumes (mm3)

Caudate 3580 ± 426 2467 ± 584 2449 ± 662 < 0.001 < 0.001

Putamen 4863 ± 586 3392 ± 644 3333 ± 643 < 0.001 < 0.001

Accumbens 472 ± 112 378 ± 115 362 ± 102 0.014 0.002

Average cortical thickness per brain region (mm)

Frontal cortex 2.55 ± 0.11 2.49 ± 0.09 2.43 ± 0.12 0.227 < 0.001

Medial temporal cortex 2.86 ± 0.17 2.81 ± 0.14 2.71 ± 0.16 0.997 0.003

Lateral temporal cortex 2.75 ± 0.12 2.68 ± 0.12 2.60 ± 0.14 0.262 < 0.001

Parietal cortex 2.34 ± 0.11 2.22 ± 0.11 2.17 ± 0.14 0.006 < 0.001

Occipital cortex 2.03 ± 0.12 1.92 ± 0.13 1.88 ± 0.14 0.016 < 0.001

Cingulate cortex 2.56 ± 0.14 2.50 ± 0.09 2.43 ± 0.11 0.209 < 0.001

Mean ± SD of subcortical volumes (mm3) and cortical thickness per brain region (mm) are presented. 
The average cortical thickness for each brain region was calculated using a weighted sum of 
thickness values accounted for surface area using the following formula described previously by 
Johnson et al., 2015 13, and Segura et al., 2014 25: Average thickness of region A and B = ((Thickness 
region A * Surface area region A) + (Thickness region B * Surface area region B)) / (Surface area region 
A + Surface area region B). One-way ANOVA was used to analyze group differences, with post-hoc 
comparisons using Bonferonni correction. Signifi cant differences compared to controls after correction 
for multiple comparisons (p < 0.006) are displayed in bold. 
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3.3. Relationship between cortical and striatal atrophy
In the whole HD gene carriers group (HD1 and HD2 combined), the relationship 

between striatal volume and cortical thickness was examined adjusted for age and 

gender for each corticostriatal loop described in Figure 1. Multiple linear regression 

analyses after correction for multiple comparisons showed no significant associations 

between any cortical region and corresponding striatal volume within a corticostriatal 

loop (Table 3 and Figure 3).

FIGURE 2  Striatal volume and cortical thickness in HD gene carriers

Boxplots of striatal volumes and cortical thickness per region in HD gene carriers compared to controls 
(100%). Using analysis of variance (ANVOA), significant reductions in caudate nucleus and putamen volumes 
were observed for both HD1 and HD2 patients compared to controls. Furthermore, significant cortical 
thinning for all brain regions was present in HD2 patients compared to controls. 

* Significant different compared to controls, p < 0.006 (corrected for multiple comparisons, 0.05/8)
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TABLE 3  Associations between regional cortical thickness and striatal volumes 

Cortical region Lobe Caudate nucleus Putamen Nucleus accumbens

Standardized 
ß

p-value
Standardized 
ß

p-value
Standardized 
ß

p-value

Motor loop
Precentral gyrus 
(BA4)

Frontal 0.168 0.141

Paracentral lobule 
(BA6)

Frontal 0.020 0.410

Postcentral gyrus 
(BA1, 2,3)

Parietal 0.151 0.170

Prefrontal loop
Middle frontal 
gyrus (BA9, 46)

Frontal 0.074 0.513

Frontal pole 
(BA10)

Frontal -0.147 0.173

Oculomotor 
loop

Superior frontal 
gyrus (BA8)

Frontal 0.077 0.504

Precuneus (BA7) Parietal 0.237 0.022

Superior parietal 
cortex (BA5, 7)

Parietal 0.241 0.027

Visual loop
Inferior frontal 
gyrus (BA44, 45)

Frontal -0.033 0.776

Inferior temporal 
cortex (BA20)

Lateral 
temporal

0.019 0.863

Superior 
temporal (BA22)

Lateral 
temporal

-0.008 0.945

Pericalcarine 
cortex (BA17)

Occipital 0.091 0.408

Cuneus (BA18) Occipital 0.239 0.028

Lingual gyrus 
(BA18)

Occipital 0.269 0.013

Lateral occipital 
cortex (BA19)

Occipital 0.265 0.014

Fusiform (BA19, 
37)

Medial 
temporal

0.191 0.084

Limbic loop
Orbitofrontal 
cortex (BA47)

Frontal 0.022 0.836

Entorhinal cortex 
(BA28, 34)

Medial 
temporal

-0.010 0.925

Parahippocampal 
gyrus (BA27, 28)

Medial 
temporal

0.077 0.471

Anterior cingulate 
cortex (BA24)

Cingulate -0.053 0.633

Data are standardized Beta coeffi cients using linear regression corrected for age and gender. Unadjusted signifi cant p-values (p < 0.05) are 
displayed in bold. After correction for multiple comparisons (p < 0.003), no signifi cant associations were observed between regional cortical
thickness and striatal regions.
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FIGURE 3  Relationship within striatum and in corticostriatal circuits

A:  Scatter plots of relationships between striatal structures (i.e., caudate nucleus, putamen, and accumbens 
nucleus). The most pronounced association was present between the putamen and caudate nucleus. 

B:  Scatter plots of relationships between cortical thickness and striatal volume in HD gene carriers. For each 
corticostriatal circuit, an example is presented. However, after correction for multiple comparisons, there 
were no significant associations between cortical thickness and striatal volumes for all corticostriatal loops.
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4. DISCUSSION

This study showed striatal atrophy and cortical thinning, primarily in parietal and 

occipital regions in the earliest manifest HD disease stage, but we found no association 

between cortical thinning and striatal volume loss. This suggests that striatal 

degeneration in early HD gene carriers might be independent of cortical degeneration 

and can therefore be seen as two separate neurodegenerative processes that occur 

simultaneously. 

Furthermore, it is surprising that the frontal lobe is relatively unaffected in early disease 

stages, since the striatum predominantly projects to frontal cortical regions, such 

as the primary motor cortex and dorsolateral prefrontal cortex.17,18 Still, the parietal 

and occipital cortices, brain regions that seem to be mainly affected in HD, are also 

connected to the striatum.19 More specifically, orbitofrontal, parietal, and occipital 

brain regions are connected to the caudate nucleus, whereas the sensorimotor cortex 

in the fronto-parietal cortices are mainly connected with the putamen.17–19 The limbic 

structures and the prefrontal cortex have projections to the nucleus accumbens, 

the ventral part of the striatum.17–19 Our findings showed a trend towards a possible 

association between the volume of the caudate nucleus and the thickness of cortical 

regions of the oculomotor loop and visual loop. However, these associations were not 

significant after correction for multiple comparisons. 

Early manifest HD gene carriers can be divided in disease stage 1 (HD1) and stage 2 (HD2) 

based on the patients’ capacity of daily functioning.21 In our study, extensive atrophy of 

the caudate nucleus, putamen, and nucleus accumbens was present in similar degrees 

in both disease stages. Cortical thinning, however, was found throughout the entire 

brain in HD2 patients. In HD1 patients, our data showed a trend towards thinning of 

parietal and occipital cortices compared to controls, however, this was not significant 

due to correction for multiple comparisons. These results suggest that the degree of 

striatal atrophy seems to stabilize after disease onset whereas the degree of cortical 

atrophy increases, beginning in the posterior brain regions with relative sparing of 

the frontal, parietal, and cingulate cortices. Our findings are consistent with previous 

studies in manifest HD that showed thinning of the superior and posterior cortical 

brain regions with minimal involvement of the anterior frontal and lateral temporal 

lobes.9,10 Other studies additionally showed that cortical involvement contributes to 

behavioral, cognitive and motor symptoms in HD patients.6,9,13,14 For instance, worse 

performance on attentional and executive tasks was correlated with thinning in the 

primary motor cortex, and parietal and occipital regions.9,13 In addition, cell loss in the 
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anterior cingulate cortex was found in HD patients with prominent mood symptoms,6 

whereas oculomotor abnormalities have been related with volume reductions in 

occipital regions.14 

Our findings support the hypothesis that cortical and striatal degeneration might be 

independent neurodegenerative processes in HD. This could explain the fact that 

affective, behavioral and cognitive symptoms of HD have been linked to cortical 

atrophy instead of striatal atrophy.6,9,13

Only few studies have previously assessed cortical thinning in early manifest HD gene 

carriers and most studies consisted of small sample sizes without subdividing manifest 

HD gene carriers in different disease stages.9,27–30 The strength of our study lies in 

the fact that we can confirm a distinct pattern of cortical thinning in a relatively large 

sample of early manifest HD gene carriers, considering HD is a rare neurodegenerative 

disorder.

A limitation of this study is that we used automated global volumetric segmentations of 

striatal structures using relatively large structural models. In the early disease stages of 

HD, striatal atrophy mainly involves the body and tail of the caudate nucleus.4 However, 

our structural models did not allow us to subdivide the caudate nucleus. Furthermore, 

although we assessed patterns of neurodegeneration in different disease stages to 

better understand the structural changes during disease progression, longitudinal 

studies are still necessary to validate our findings. 

Many longitudinal studies have previously focused on evaluating the rate of decline in 

striatal volume in different disease stages, even in HD gene carriers close to disease 

onset but without motor symptoms.10,31,32 Striatal atrophy has also been linked to 

clinical signs in HD, such as motor symptoms,11,14 and executive dysfunction,33,34 thus 

making striatal volume an interesting outcome measure in clinical intervention trials. 

Nevertheless, given the relationship of cortical atrophy with other specific HD related 

signs and our suggestion that cortical degeneration occurs independent from striatal 

atrophy, cortical thickness measurements might also be valuable for future clinical trial 

designs.

In conclusion, cortical degeneration in the earliest manifest HD disease stage primarily 

begins in parietal and occipital brain regions, while the frontal lobe remains less 

affected in this stage. This is interesting, since the striatum mainly projects to the frontal 

lobe. Still, thinning of parietal and occipital cortices is not related with striatal atrophy, 

suggesting that cortical and striatal degeneration are independent neurodegenerative 

processes in HD. This is important for future clinical trial designs that target cognitive, 

affective or behavioral symptoms in HD patients, as these symptoms have been linked 

to cortical atrophy. 
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ABSTRACT 

The processing of visual stimuli from retina to higher cortical areas has been 

extensively studied in the human brain. In Huntington’s disease (HD), an inherited 

neurodegenerative disorder, it is suggested that visual processing deficits are present in 

addition to more characteristic signs such as motor disturbances, cognitive dysfunction, 

and behavioral changes. Visual deficits are clinically important because they influence 

overall cognitive performance and have implications for daily functioning.

The aim of this review is to summarize current literature on clinical visual deficits, 

visual cognitive impairment, and underlying visual cortical changes in HD patients. A 

literature search was conducted using the electronic database of PubMed/Medline. 

This review shows that changes of the visual system in patients with HD were not the 

primary focus of currently published studies. Still, early atrophy and alterations of the 

posterior cerebral cortex was frequently observed, primarily in the associative visual 

cortical areas such as the lingual and fusiform gyri, and lateral occipital cortex. Changes 

were even present in the premanifest phase, before clinical onset of motor symptoms, 

suggesting a primary region for cortical degeneration in HD. Although impairments in 

visuospatial processing and visual perception were reported in early disease stages, 

heterogeneous cognitive batteries were used, making a direct comparison between 

studies difficult. The use of a standardized battery of visual cognitive tasks might 

therefore provide more detailed information regarding the extent of impairments 

in specific visual domains. Further research could provide more insight into clinical, 

functional, and pathophysiological changes of the visual pathway in HD. 
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1. INTRODUCTION

Many regions of the human brain are involved in processing visual stimuli, from the 

retina to cortical brain areas. The organization and function of the visual cortex has 

been extensively studied in primates, both in macaques and healthy human adults.1,2 

Visual field mapping using functional Magnetic Resonance Imaging (fMRI) showed that 

approximately 20-30% of the human brain is directly or indirectly involved in visual 

processing.3,4 Incoming visual stimuli are transmitted from the retina through the 

afferent visual pathway via the optic nerve and optic tract, to the lateral geniculate 

nucleus in the thalamus.5 Then, via the optic radiation, signals reach the primary visual 

cortex in the occipital lobe and eventually the associative (secondary and tertiary) 

visual cortices for further processing.5 

FIGURE 1  Visual cortex in human brain

Schematic lateral and medial overview of cortical regions involved in the processing of visual stimuli in the 
human brain. Stimuli pass the retina via the optic tract to the primary visual cortex (V1) and secondary visual 
cortex (V2) for basic processing (i.e. shape and contrast). Although there are no clear demarcations among the 
regions of the posterior cortex, it is clear that higher-level visual processing occurs in the regions surrounding 
the primary visual cortex, which are divided into visual areas V3, V4 and V5. The ventral pathway runs through 
the medial part of Brodmann area 19, located in the anterior medial occipito-temporal gyrus, towards 
Brodmann area 37 (or V4) which is located in the caudal two-thirds of the lateral occipito-temporal gyrus (e.g. 
fusiform gyrus). V4 projects to Brodmann area 20, located in the inferior temporal gyrus, to Brodmann area 
38, located in the anterior temporal pole, and to the limbic system. The dorsal pathway (V3 and V5) conveys 
visual information to the posterior parietal cortex (Brodmann area 7) and the premotor cortex (Brodmann 
area 6). In general, the ventral pathway in the temporal-occipital region is involved in object recognition and 
color processing, whereas the dorsal pathway processes depth and movement perception. Numbers in each 
cortical region depict corresponding Brodmann areas.
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The primary visual cortex (also known as V1, striate cortex or Brodmann area 17) is 

located around the edges of the calcarine fissures on the medial and dorsolateral 

surface of the occipital lobe.3,6 The visual association areas (also known as the extra-

striate cortices) are responsible for the interpretation of the visual input, such as 

color discrimination, motion perception, depth, and contrast. 3 The secondary visual 

cortex (V2 or Brodmann area 18) processes basic visual characteristics such as color 

perception and orientation.2,7 On the medial occipital lobe surface, V2 is located in the 

cuneus above V1 and in the medial occipito-temporal gyrus (e.g. lingual gyrus) below 

V1, whereas on the lateral surface, V2 is located in the occipital gyrus anterior to V1.2 

From V2 onwards, visual processing proceeds along two parallel pathways, the ventral 

(occipito-temporal) pathway, and the dorsal (occipito-parietal) pathway.8 The ventral 

stream is also known as the ‘what’ visual pathway, and is involved in the recognition 

of objects, faces and shapes and color processing.2,7 The dorsal stream is known as 

the ‘where’ visual pathway and it is suggested that this area is necessary for depth 

(three-dimensional vision) and movement perception in relation to objects in space in 

the frontal eye fields.1,2,9,10 A summary of the visual cortical areas and their function is 

presented in Table 1 and Figure 1.

TABLE 1  Visual cortex and higher visual function

Visual 
area

Brodmann area Cortex Function

V1 17
Calcarine fi ssure
Occipital pole

Mapping and processing 
visual stimuli

V2 18
Cuneus 
Lingual gyrus

Color discrimination

V4
19 (medial) / 37
20

Fusiform gyrus
Inferior temporal gyrus

Ventral ‘what’ pathway: 
Object recognition

V3 19 Lateral part of cuneus
Dorsal ‘where’ pathway: 
Movement and spatial 
perceptionV5 19 (lateral) / 7

Superior occipital gyrus
Posterior parietal cortex
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Any alteration in the visual pathway may result in clinical visual deficits and changes in 

cognitive performance. In Huntington’s disease (HD), a hereditary neurodegenerative 

disorder, cortical degeneration of visual brain regions is suggested to be present in 

early disease stages, in addition to striatal atrophy.11–13 HD is autosomal dominantly 

inherited and caused by a cytosine-adenine-guanine (CAG) repeat mutation of the 

Huntingtin (HTT) gene on chromosome 4.14 The estimated prevalence of the disease 

is 5-10 per 100.000 in the Caucasian population.15 The manifest phase of the disease 

is generally characterized by progressive motor disturbances, cognitive decline, and 

behavioral changes.15 However, clinical signs can vary considerably among patients 

during the course of the disease as well as time of disease onset. Typically, the mean 

age of disease onset is between 30 and 50 years (range from 2 to 85 years) and the 

mean disease duration is between 17 to 20 years.15 

Most reported behavioral and psychiatric symptoms in HD include apathy, depression, 

irritability, and obsessive-compulsive behavior.16 Visual hallucinations or other psychotic 

symptoms are rarely seen in HD patients. In a study of 1,993 HD gene mutation carriers, 

mild psychosis was only observed in 2.9% of the study population and only 1.2% scored 

moderate to severe psychosis, but no visual hallucinations were reported.16

Early cognitive deficits in HD mainly involve impairments in executive functioning, 

such as attention and planning difficulties, and cognitive inflexibility, which gradually 

progresses over time and eventually results in dementia.15,17 Executive dysfunction 

can already be present in the premanifest phase, before motor symptoms occur.17,18 

Although deficits in visual acuity or visual dysfunction are not typical clinical features of 

HD, visuospatial deficits are reported in HD patients. Such visuospatial deficits are of 

clinical importance because they can influence overall cognitive performance and may 

have major functional implications, for example the impact on driving a car or using 

electronic devices such as mobile phones and computers. Also, visual deficits should 

be taken into account when conceptualizing cognitive assessments for measuring 

drug efficacy in clinical trials. By providing an overview regarding the brain structure 

and function of the visual cortex in patients with HD, we propose to provide novel 

information on disease progression and cortical degeneration. Therefore, the aim of 

this review is to summarize the current literature regarding visual cognitive impairment 

and identify the posterior cortical changes that occur in HD patients. 
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2. METHODS

A review of the existing literature on visual impairment in HD was conducted using the 

electronic database of PubMed/Medline. All literature published before August 2017 

was critically reviewed. The following search terms were used in several combinations 

to identify the available literature: “Huntington”, “Huntington’s disease”, “visual”, 

“visual cognition”, “visual processing”, “visuospatial”, “atrophy”, “occipital cortex”, 

“cerebral blood flow”, “visual pathway”, and “visual system”. In addition, potential 

eligible studies were also screened using the reference lists of the studies found. Only 

original research papers and review articles written in English were considered for 

further review. Animal model studies, letters to editors and editorial comments were 

excluded. Articles that examined the visual cortex and/or assessed visual cognition in 

manifest and premanifest HD gene carriers were included for further evaluation. 

3. RESULTS
3.1. Search results
Of the 1,406 articles that were identified by the initial database search, 85 articles were 

selected for further review based on the abstract. Twenty-two studies were included 

for this review as these studies specifically investigated visual function in HD. Of these 

22 studies, one post-mortem brain study and six neuroimaging studies addressed 

changes of the visual cortex in HD gene carriers, and 15 neuropsychological studies 

assessed visual cognitive functioning in HD. We will first focus on the structural and 

functional changes of the visual cortex reported in manifest and premanifest HD 

gene carriers in paragraphs 3.2.1 and 3.2.2. An overview of the literature regarding 

changes of the visual cortex is also provided in Table 2. In paragraph 3.2.3, we will 

discuss the findings of studies investigating visual cognition in HD using the following 

cognitive domains: visual perception, visuospatial processing, visual working memory, 

visuoconstruction and visuomotor function. These visual cognitive domains and 

their associated neuropsychological tasks are summarized in Table 3. Furthermore, 

a summary of the current literature on visual cognition in HD is given in Table 4. 

Besides the 22 studies that investigated visual function in HD, another 26 articles were 

additionally reviewed, of which 24 articles assessing whole brain changes in HD, and 

two articles examining an extensive neuropsychological assessment battery in HD. 

These studies did not specifically aim to focus on the visual system, but did report 

relevant findings on the visual pathway in HD and will therefore be discussed in the 

corresponding paragraphs. 
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3.2. The visual cortex in Huntington’s disease
Neuropathological alterations in HD are primarily found in the striatum, especially in 

the caudate nucleus and putamen, due to loss of striatal medium-sized spiny neurons.19 

Although striatal atrophy is considered to be the origin of choreiform movements 

seen in HD patients, it is suggested that other symptoms of HD are related to cortical 

degeneration, as extensive neuronal loss is seen throughout the cerebral cortex when 

the disease progresses.20–22 

3.2.1. Structure of the cerebral cortex
A post-mortem brain study showed a 32% reduction of nerve cells in the primary visual 

area (Brodmann area 17) in brains of 7 HD patients in advanced disease stages compared 

to 7 controls.23 The authors conclude that damage to the primary visual area contributes 

to the pathogenesis of visual dysfunction.23 This study, however, only examined nerve 

cells in Brodmann area 17 in the occipital lobe and did not assess other brain regions, 

which is contrary to another study that examined the patterns of neuronal cell loss in 

the frontal, parietal, temporal, and occipital lobes in post-mortem brains of 14 end 

stage HD patients.21 Compared to controls, HD patients showed the highest difference 

in pyramidal neuron cells in the secondary visual cortex (42% decrease), whereas no 

significant pyramidal cell differences was observed in the primary visual cortex (3% 

decrease).21 In comparison, a 27-34% reduction in pyramidal cell number was found in 

HD patients compared to controls for the superior frontal, middle temporal, superior 

parietal, and primary sensory cortices.21 Between HD patients, there was additionally 

more neuronal loss in the secondary visual cortex (36% loss) than in the primary visual 

cortex (12% loss), suggesting that mainly associative visual regions are impaired in 

HD.21 These latter findings were confirmed by a MRI study that observed reduced 

cortical thickness of the lingual gyrus and lateral occipital cortex in premanifest gene 

carriers close to disease onset (n=58) and early stage HD patients (n=40) that was 

associated with worse visuospatial task and visual working memory performance 

measured with the Map Search task, Spot the change task and the Trail Making Test 

part A.13 No associations were found between cognitive performance and thickness 

of the cuneus. This implies a distinct association between higher-level cognitive 

performance and cortical occipital degeneration.13 An additional MRI study examined 

structural posterior brain changes in relation to visuospatial attention in premanifest 

(n=119) and early stage manifest HD (n=104), and found associations between poorer 

visuospatial performance (measured using the Map Search and mental rotation tasks) 

and volume loss in the cuneus, lingual, fusiform gyri, and motor regions in manifest 

HD compared to controls.24 Another study focused on the link between visuomotor 
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performance and prefrontal cortex atrophy, but additionally found focal volume loss in 

the occipital cortex and associations between this volume loss and poorer visuomotor 

performance (measured using the 15-Object test, a visuomotor integration task).25 

Yet, another study examining visuomotor function using the Circle Tracing task and 

cortical volume loss did not find any significant association between visuomotor task 

performance and the visual and motor cortices,26 but this might be explained by 

the fact that in these studies different cognitive assessments were used to evaluate 

visuomotor function.

In studies focusing on whole brain cortical changes and associations with clinical 

impairments, reduced cortical thickness of the cuneus,12,27 and volume loss of the 

occipital lobe,11,28–31 and parietal lobe 12 were observed in both premanifest and early 

manifest disease stages compared to controls.

In conclusion, volumetric changes of posterior cortical regions can already be detected 

in early stages of the disease, even in the premanifest phase, while frontal and temporal 

regions remain largely unaffected. 

3.2.2. Cortical brain function
It is thought that clinical manifestations of HD not only depend on brain atrophy, but 

are also influenced by neuronal dysfunction and loss in neuronal network structure.32 

Functional MRI (fMRI) can be used to study neural function. Several fMRI studies in 

HD gene carriers showed changes in multiple functional brain networks before brain 

atrophy or clinical symptoms were present.32,33

Only one functional imaging study focused on the visual system in 20 early HD patients 

using resting-state fMRI.34 Resting-state fMRI assesses overall brain connectivity that 

is not related to task performance. Reduced fusiform cortex activity in HD patients 

was found after correcting for whole brain atrophy compared to controls.34 The 

authors therefore conclude that activation differences in the occipital cortex could not 

sufficiently be explained by regional brain volume loss alone. Another study reported 

reduced brain connectivity using whole brain resting-state fMRI in the occipital cortices 

in both premanifest and manifest HD gene carriers compared to controls.35 However, 

decline in brain connectivity over time in the occipital region was not confirmed in 

longitudinal resting-state fMRI studies.36,37

It is suggested that visual stimulation results in an increase in glucose uptake in the 

brain and cerebral blood flow.38 Therefore, a 31phosphorus nuclear magnetic resonance 

(NMR) spectroscopy study used a basic visual stimulation task to activate the occipital 

cortex and measure metabolite concentrations for the assessment of brain energy 

deficits in manifest HD (n=15) compared to controls (n=15).39 An increase in metabolite 
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concentrations was observed in controls, whereas HD patients did not show any 

response to brain activation, indicating impaired mitochondrial function in the visual 

cortex.39 In addition, two small task-based fMRI studies demonstrated reduced neural 

activity of the occipital cortex, during a Porteus Maze task in 3 premanifest individuals,40 

and during a serial reaction time task in early and premanifest HD patients (n=8).41 

These studies also showed reduced activation in the caudate, parietal and 

sensorimotor cortices,40 and in the middle frontal gyri and precuneus.41 As these tasks 

were examined in small patient groups and involve a combination of basic and higher 

visual processing, motor speed, and spatial functioning, a direct conclusion cannot be 

drawn regarding neural dysfunction of the occipital cortex alone. 

3.2.3. Cerebral metabolism
With positron emission tomography (PET) imaging, functional or metabolic changes 

in HD can be studied using a radioactive labeled tracer that binds to specific 

structures within the brain. Several reviews have recently discussed the developments 

of PET imaging in HD.42–44 Overall, there is increasing evidence of reduced glucose 

metabolism in the striatum, and frontal and temporal cortices, which seem to be 

reliable predictors of disease progression in HD.42–44 There have been no PET studies 

performed to date that specifically focused on the glucose metabolism of the visual 

cortex in HD patients. However, an interesting finding was observed by a study 

group that examined spatial covariance patterns between different networks of 

regions with altered glucose metabolism using PET imaging.45,46 A relative increase 

in glucose metabolism was found in thalamic, motor, occipital and cerebellar regions, 

in association with a decrease in striatal metabolism in HD patients compared to 

healthy controls.45,46 A recent study reports similar findings of striatal hypometabolism 

in combination with hypermetabolism in the cerebellum, thalamus, and occipital 

cortex.47 Here, hypermetabolism in the cuneus and lingual gyrus was negatively 

correlated with hypokinetic motor scores. These findings suggest that a decrease in 

glucose metabolism might be linked to clinical disease onset, whereas an increase in 

glucose metabolism indicates a compensatory mechanism for neuronal loss and/or 

motor disturbances.46,47 As neuronal loss is indirectly measured using functional MRI, 

the reduced brain activity in the occipital cortex of HD patients found in previous fMRI 

studies might indeed explain the hypermetabolism found in these PET studies. 

Another approach to assess alterations in metabolism is by measuring cerebral 

blood flow (CBF) or cerebral blood volume (CBV) using transcranial Doppler (TCD) 

ultrasonography, PET imaging or arterial spin labeling MRI.48
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Reductions in cerebral blood flow and elevations in cerebral blood volume were 

primarily observed in frontal cortical regions in premanifest HD gene carriers.49,50 In 

manifest HD, hypoperfusion was additionally observed in the fronto-parietal regions 

and anterior cingulate cortex during a word generation task,51 motor task,52 and 

executive functioning tasks,53,54 but no alterations in cerebral perfusion were detected 

in the posterior cortex during task performance. One study reported heterogeneous 

regional CBF reductions in rest in 17 early manifest HD extending to the sensorimotor, 

paracentral, inferior temporal and lateral occipital regions, with normal CBF in the 

thalamus, postcentral gyrus, insula, and medial occipital areas.55 However, the degree 

of cortical thinning exceeded CBF reductions in the temporal and occipital cortices, and 

in the striatum, suggesting that structural and vascular alterations might originate from 

different underlying pathologic mechanisms.55 More studies are necessary to evaluate 

the manner of perfusion changes over the course of the disease but hypoperfusion 

seems to play a role in the pathophysiology of neuronal dysfunction in HD.   

In conclusion, although the visual system has not been the main focus in many imaging 

studies in HD to date, atrophy (i.e. volume loss and cortical thinning), reduced neural 

activity and functional connectivity, and changes in glucose metabolism of the posterior 

cerebral cortex have been reported in both early stage HD patients and premanifest 

gene carriers. This suggests that the posterior cerebral cortex might be one of the first 

cortical regions to undergo pathological and functional changes. 

3.3. Visual cognition in Huntington’s disease
Many studies investigated the progression of cognitive impairment in different HD 

disease stages.17 Here, we will focus on studies assessing cognitive deficits in HD that 

involve a visual component. Visual cognitive functioning can be divided into different 

domains of visual processing, however, the terminology that is used to define visual 

cognition widely differs among the current literature. Also, many neuropsychological 

assessments that are used to evaluate visual cognitive function often require a 

combination of several domains, such as visual attention, spatial orientation and working 

memory. Additionally, in HD patients, possible influence of a motor component on 

cognitive performances should also be considered. Below, we will discuss the reviewed 

studies using the following domains: visual perception, visuospatial processing, visual 

working memory, visuoconstruction and visuomotor function (Table 3).

In general, color, patterns, depth, motion perception, and the recognition of facial 

expressions of emotions are usually classified as visual perceptual skills. Visuospatial 

processing or visual scanning and attention are needed to visually perceive objects 

and assess the spatial distance and relationship among items or objects. Visual working 
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TABLE 3  Visual cognitive domains and associated neuropsychological assessments

Domain Defi nition Assessments

Visual perception

Color perception Perception of colors and 
ability to distinguish contrast

Ishihara Color Test, Contrast 
Sensitivity Test

Visual recognition Recognition of faces and 
facial expression of emotions

Emotion Recognition Tasks

Visual organization Perceptual reorganizing 
to distinguish incomplete 
fragmented visual stimuli

Closure Speed, Visual Object 
and Space Perception 
battery, Hooper Visual 
Organization Test

Visuospatial function

Visual attention Awareness of visual stimuli Line Bisection Test, 
Cancellation Task, Visual 
Search and Attention Test, 
Embedded Figures, Map 
Search, Trail Making Test A

Visual scanning Ability to acquire information 
regarding environment and 
spatial distance (e.g. for 
reading, writing, telling time)

Counting dots, Visual 
Scanning Test, Mental 
Rotation, Street Map Task, 
Symbol Digit Modalities Test, 
Digit Symbol Task

Visual working memory

Visual recognition 
memory

Ability to retrieve 
visuospatial information from 
memory

Recurring Figures Test, 
Family Pictures (subtest of 
Wechsler Memory Scale-III), 
Trail Making Test B

Visual Recall Reproduction of a design or 
object

Visual Reproduction Task 
(immediate and delayed 
recall), Spot the change Task

Visuospatial Learning Learning and recall memory 
of visuospatial stimuli

Visuospatial Learning Test, 
Trail Learning Test

Visuoconstruction 

Visuoconstructive 
ability

Spatial ability to reproduce 
complex geometric designs

Rey-Osterrieth Complex 
Figure Test

Visuomotor function

Visuomotor Ability to maintain gaze on a 
moving target

Circle-Tracing Task (direct 
and indirect feedback), 
15-Objects task

Based on Lezak et al., 2004 56
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memory accounts for the recall of visuospatial stimuli. Visuoconstruction is defined as 

the ability to organize and manually manipulate spatial information to make a design, 

i.e. copying a complex figure or constructing three-dimensional figures from two-

dimensional units.56 Last, visuomotor function involves visual scanning and tracking of 

movement and the ability to maintain gaze on a moving target.57 

A summary of the reviewed literature regarding visual cognition is presented in Table 

4. 

3.3.1. Visual perception 
The perception of colors, contrast, and motion, the recognition of objects, facial 

expression, and emotions, and conceptual organizing skills are all classified as visual 

perception. The lateral geniculate nucleus is involved in the processing of colors 

and contrast resolution before further functional differentiation occurs in the striate 

cortex.58 Limited studies have been performed that address basic visual processing 

of contrast and motion in HD. Patients with HD showed impaired contrast sensitivity 

for moving stimuli,59 while contrast sensitivity for static stimuli seems unaffected in HD 

patients.59,60 This might indicate involvement of the (pre)-striate visual cortex early in 

the disease process.59 Still, no structural or functional neuroimaging studies have been 

performed that confirm this hypothesis. 

Conceptual organization or visual object perception has been examined in several 

studies in patients with HD, but methods differ and findings are inconsistent. One 

study assessed visuoperceptive function using the Hooper Visual Organization test in 

premanifest and manifest HD gene carriers, for which participants needed to recognize 

and name the object that is displayed on a card in fragmented form.61 Both early 

and more advanced HD patients scored significantly lower on this task compared to 

premanifest and control individuals. No differences in scores were observed between 

premanifest HD and controls. Remarkably, 70% of the premanifest individuals scored 

above 25 points (maximum of 30 points), while only 20% of the early manifest individuals 

reached this score, which illustrates the impaired task performance in manifest HD.61 

Three other studies assessed visuoperceptional skills in HD patients using the Visual 

Object and Space Perception (VOSP) battery, which measures object recognition and 

space perception separately in eight subtests with minimal involvement of motor skills 

and executive functioning.34,62,63 A cross-sectional study showed that out of all the 

subtests of the VOSP, only the performance on the object decision task was impaired 

in HD patients (39% of the HD patients performed below the fifth percentile of the 

control norm),63 while another cross-sectional study found an overall worse performance 

on the silhouettes and object decision subtasks in early HD patients compared to 
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controls.34 Brain activity of the fusiform gyrus did not predict the performance on 

visual object perceptional tests,34 which is unexpected since the fusiform gyrus is 

thought to be involved in object and facial recognition.64 A longitudinal study that 

assessed in addition to visual cognition also executive function, language, learning, 

and intelligence, reported a decline in performance for object recognition and space 

perception in HD patients after a follow-up period of 2.5 years, measured using sum 

scores for all object recognition tasks and space perception tasks.62 

In contrast, a small study in 10 HD patients reported that the identification of individual 

objects and objects adjacent to each other remained unaffected, while deficits were 

found in the simultaneous perception of multiple objects that were presented in an 

overlapping manner.65 

The perception of motion can be measured using a motion discrimination task, in 

which participants need to decide whether dots moved to the right or left in a field 

of noise. Here, findings are also inconsistent, when assessing a motion discrimination 

task in HD patients.59,60 In a pilot study of 8 HD patients and 9 premanifest HD gene 

carriers, the discrimination of motion trajectories in noise was impaired in the manifest 

HD group, but not in premanifest HD gene carriers.60 In a subsequent study with a 

larger sample (201 controls, 52 premanifest and 36 manifest HD gene carriers), no 

differences were observed in the performance on this task among different HD gene 

carrier groups and controls.59 The authors explained these different findings because 

of possible differences in the severity of HD participants that were included in the two 

studies.59 Therefore, no conclusions can be drawn from this limited evidence on the 

motion perception performance in HD patients. 

In contrast, visuoperceptual recognition of facial expressions and emotions has been 

extensively studied in HD patients. Several reviews have recently evaluated the current 

literature on emotion recognition in HD.66–68 Briefly, the ability to recognize basic 

emotions from facial expressions has consistently been found to be impaired in both 

manifest and premanifest HD, especially for negative emotions such as anger, disgust, 

and fear.67,68 Impairments in facial emotion recognition in HD seem to be associated 

with regional loss of brain tissue, altered brain activation, and changes in brain 

connectivity.68 A large study by the Predict-HD study group found that, in premanifest 

HD gene carriers, deficits in negative emotion recognition were associated with 

atrophy of the fronto-striatal network, the precuneus and occipital regions, such as the 

lingual gyrus, cuneus, lateral occipital cortex, and middle-temporal cortex.69
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3.3.2. Visuospatial function
The dorsal temporo-occipital pathway is suggested to be involved in visuospatial 

cognition.1 Visuospatial attention involves the awareness of visual stimuli to perceive 

objects, while visuospatial scanning is necessary to acquire information regarding the 

environment, spatial distance and relationship among objects. Therefore, visuospatial 

processing is important for daily functioning, such as walking, driving, reading, and 

writing, and is often essential when measuring other cognitive domains. 

Eight studies specifically investigated visuospatial function, visual attention or visual 

scanning in HD patients.13,24,34,61,70–73 One study assessed a wide range of visuospatial 

tasks in HD patients and controls.70 Factor analyses showed that overall visuospatial 

processing capacity (measured using the performance subscales of the WAIS-R, 

Embedded Figures Test, and Mental Reorientation Test) and spatial manipulation 

(involving performance on the Mental Rotation and Street Map task) were impaired in 

HD, whereas spatial judgment (comprising of scores of the Rod-And-Frame Test and 

In-Front-Of Test) appeared unaffected.70

Another study also examined the ability to spatially rotate a mental image (i.e. a 

mental rotation task) in patients with HD and patients with Alzheimer’s disease (AD).71 

HD patients were able to mentally rotate a figure through space, but showed slowing 

in information processing speed (i.e. bradyphrenia) resulting in a worse performance, 

whereas in AD patients the accuracy, not the speed, was impaired compared to their 

respective age-matched controls 71 Other more recent studies, however, reported 

worse performance on the Mental Rotation task in both premanifest and manifest HD 

gene carriers compared to controls, with poorer performance in the more advanced 

disease stages that was not influenced by bradyphrenia.13,24 

Different neuropsychological assessments were used to measure visual scanning and 

attentional deficits in HD patients in several studies.24,34,61,72,73 The Cancelation Task and 

Line Bisection Test did not show any differences in visual attentional function between 

healthy controls, premanifest, and manifest HD gene carriers.61 In a longitudinal study, 

decline in performance on the Map Search attentional task was only observed in more 

advanced HD patients after a 12 months follow-up period.24 

The Symbol Digit Modalities Test (SDMT) and the Trail Making Test (TMT) are widely 

used assessments to measure cognitive function in HD patients.62,74,75 The SDMT is 

found to be the most sensitive cognitive task in large longitudinal studies to detect 

progressive change in HD gene carriers.62,74,75 An explanation for this might be that the 

SDMT is a demanding task that requires a high degree of visual scanning and memory, 

processing speed, object recognition, oculomotor function and motor speed. One 

study assessed the association between cognitive task performance and visual brain 
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activity changes.34 Here, early HD patients’ lower fusiform activity was associated with 

worse performance on the SDMT, which is not surprising as the SDMT also involves the 

recognition of symbols and shapes.34

Among a large group of 767 premanifest HD gene carriers, the TMT part A was 

associated with visual search and sustained attention, whereas TMT part B was 

associated with executive functioning, processing speed and working memory.72 

Premanifest HD gene carriers close to disease onset performed worse on both TMT 

part A and part B. Interestingly, only part A scores seemed to be mildly affected by 

motor disturbances.72

Only one study specifically assessed visual scanning in premanifest and manifest 

HD gene carriers using the Digit Symbol Subtest, a subscale of the Wechsler Adult 

Intelligence Scale - Revised (WAIS-R), and quantitative eye movements.73 While 

all participants used a similar visual scanning strategy, slowing and irregular visual 

scanning in both premanifest and manifest HD was related to worse performance on 

the Digit Symbol task compared to controls.73 Although this might suggest deficits in 

visual scanning in early disease stages, the influence of motor impairment on cognitive 

performance was not taken into account. 

Overall, visuospatial function in HD patients has been examined using various cognitive 

batteries, making it difficult to directly compare study findings. Some visual attentional 

tasks (such as the Mental Rotation, TMT part A and the SDMT) revealed impaired 

performance in both premanifest and manifest HD, while other tasks (such as the Line 

Bisection Test and Cancellation Task) showed no differences in task performance.

3.3.3. Visual working memory 
Visual working memory accounts for the ability to retrieve visuospatial information from 

memory, and involves learning and recall of visuospatial stimuli. Six studies assessed 

visuospatial memory function in HD patients.13,63,76–79 

Compared with other neurodegenerative disorders, such as Alzheimer’s’ disease (AD) 

and Parkinson’s disease (PD), patients with HD showed impairments in spatial working 

memory and visuospatial learning.76,77 In these studies, visuospatial working memory 

was determined as the ability to recall a sequence of squares at the right location 

on a screen76, the recognition of abstract visual stimuli76, and the recall of the right 

naming and location of sketched objects on cards.77 Patients with HD were better at 

correctly naming the objects than recalling their spatial location, whereas the opposite 

was true for the AD and PD patients.77 This was confirmed by a study in early stage 

HD patients that measured visual object and visuospatial working memory using an 

extensive battery of cognitive visual assessments.63 Here, deficits in pattern and spatial 



95

5

recognition memory, decreased reaction times in visual search, and an impaired spatial 

working memory were found in HD patients, while visual object working memory 

showed no changes compared with healthy controls. 

To evaluate the influence of slowness of execution (bradykinesia), thinking (bradyphrenia) 

or motor speed on visual memory task performance, one study assessed accuracy and 

reaction times between different disease stages on a visual comparison task to spot the 

change of randomly selected colors between images.78 Premanifest HD gene carriers 

close to disease onset and early stage HD patients showed lower working memory 

accuracy and slower response times compared to controls. As premanifest individuals 

without motor signs also showed impairments in task performance, the findings of this 

study imply that results are influenced by a decrease in cognitive performance and 

impaired information processing, rather than reduced motor speed.78

A more recent study also reported poorer performance on the ‘Spot the change’ task 

in more advanced disease stages.13 In addition, task performance was associated with 

thickness of the lateral occipital cortex and lingual gyrus, while a non-visual motor 

task showed no associations with the visual cortex.13 This implies that the changes 

in occipital thickness are specific to visual cognition rather than general disease 

progression.13 In another study, visuospatial memory function was evaluated in HD 

patients and healthy controls using the Visual Spatial Learning Test (VSLT), which is 

a nonverbal memory test that measures immediate and delayed memory for designs 

and locations without requiring motor or language skills.79 Compared to controls, 

premanifest HD gene carriers showed, besides an impaired recall for associations 

between object and spatial location, no deficits in the memory for objects, while HD 

patients showed impairments on all measures.79

Generally, retrieving visuospatial information from memory seems to be inaccurate in 

early manifest stages and even in premanifest HD gene carriers close to disease onset, 

whereas the recognition and recall of naming objects from memory appears to be less 

affected.

 

3.3.4. Visuoconstructive abilities
Visuoconstruction involves the spatial ability to reproduce complex geometric designs. 

Interpretation of visuoconstructive deficits can be difficult because tests that are used to 

measure visuoconstruction often involve other domains, such as visuospatial, executive 

and motor functioning. Only two studies investigated visuoconstructive skills in HD 

patients by assessing the ability to copy a complex figure using the Rey-Osterrieth 

Complex Figure Test.61,80 The first study explored these visuoconstructive abilities of 

HD patients with age-matched controls for HD by recording the accuracy and time 
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to copy the design.80 Here, patients with HD showed no differences in accuracy but 

needed more time to complete the test compared to their matched control group, 

which may have been due to the presence of motor disturbances.80 A second study 

examined the same part of the Rey-Osterrieth Complex Figure test, in premanifest 

and manifest HD gene carriers but measured the correct elements that were copied 

instead of evaluating the accuracy of the lines to minimize motor interference.61 In HD 

patients, total correct scores declined in more advanced disease stages. Furthermore, 

early HD patients showed mild deficits in visuoconstruction but this was not significant 

compared with premanifest HD gene carriers. 

Based on this literature, visuoconstructive skills become impaired in the more advanced 

disease stages. Still, more studies are necessary to fully determine the extent of these 

impairments and the possible influence of motor signs and bradyphrenia. 

3.3.5. Visuomotor function

Visuomotor deficits in the tracking of movements and the ability to maintain gaze on a 

moving target have been reported in HD patients.25,26,81,82

In two studies using a circle-tracing task to measure indirect and direct visual feedback, 

early HD patients were slower, less accurate and needed more time to detect errors.26,82 

This is consistent with another study using a visual tracking task that showed a higher 

error rate and longer time scores in HD patients, especially in the non-dominant hand, 

compared to controls.81 Premanifest HD gene carriers also showed less accuracy in 

completing the task compared to controls, however, no associations were found 

between visuomotor integration deficits in HD gene carriers and volumes of visual and 

motor cortices.26 This might be explained by the multifactorial demands of the circle-

tracing task that was used as an outcome measure. 

To the contrary, another study found correlations between impaired visuomotor 

performance in premanifest HD gene carriers and decreased volumes of the prefrontal 

and occipital cortices.25 In this study, visuomotor integration performance was 

measured using the time to complete the 15-objects test that contains 2 figures, each 

with overlapping drawings of 15 different items.25 This task, however, can also be used 

to assess visual perception and in addition, it remains uncertain if other signs of HD, 

such as bradyphrenia, motor and eye movement disturbances, or visuoperceptional 

deficits rather than visuomotor dysfunction may have influenced the results of these 

studies. 
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4. DISCUSSION

This review presents an overview regarding changes of the visual system in premanifest 

and manifest HD gene carriers. Although the visual cortex was not the main focus of 

many neuroimaging studies, there is increasing evidence of early neurodegeneration 

of the posterior cerebral cortex. Based on the current literature, alterations were 

primarily found in the associative visual areas, such as the lingual and fusiform gyri, 

and the lateral occipital cortex. The cuneus and primary visual cortex appear to be 

affected in more advanced disease stages. As changes of the visual association cortex 

were already detectable in the pre-symptomatic and early disease stages, this implies 

that the visual cortex might be an early marker of disease progression that can be used 

as an outcome measure in disease-modifying intervention trails. 

Clinical visual deficits or visual hallucinations are not commonly reported as typical 

features of HD. Still, studies assessing visual cognitive function in HD report impairments 

in several domains, specifically tasks involving visual object perception, facial emotion 

recognition and visuospatial processing and working memory. 

Studies assessing driving competence in HD patients also showed that visual 

processing speed, visual scanning, and visual attention are more sensitive predictors 

of performance on on-road driving assessments, compared to motor functioning.83,84

The assessment of visual cognitive impairment is therefore of clinical importance as it 

can have implications in daily functioning, such as the impact on driving performance, 

the use of electronic devices and subsequently affects participating in social activities. 

For example, the impairment to recognize negative facial emotions, such as anger, 

disgust and fear, could affect communication and social relationships.68 Also, patients 

with HD might have a higher risk of falling or experience difficulty with walking because 

of visual perceptual and visuomotor deficits. In addition, visual cognitive impairment 

can influence overall cognitive performance. 

Visual cognitive impairments have primarily been found in the manifest disease 

stage, although visuospatial working memory deficits and changes in facial emotion 

recognition are also reported in HD gene carriers prior to clinical motor onset. 

Neuropsychological studies in HD patients, however, have used heterogeneous 

cognitive batteries to examine visual cognition involving various visual skills, making 

a direct comparison between studies difficult. This was particularly found in studies 

assessing visual attention in HD, where the Map Search, TMT part A, SDMT, Stroop, 

Digit Symbol task, Line Bisection test and Cancellation task were all used to measure 

visual attention. A standardized battery of cognitive tasks focusing on visual processing 

skills might provide more information regarding the specific underlying deficits. Using 
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cognitive tasks with minimal motor involvement is recommended to reduce the 

possible influence of other HD related signs, such as the Visual Object and Space 

Perception battery, the Visual Spatial Learning test and the Stroop tasks. 

Visual cognitive impairment in HD gene carriers has previously been interpreted as a 

result of disturbances in the fronto-striatal network.57,63,80 However, more recent studies 

suggest that degeneration of cortical-striatal circuits that are linked to the associative 

cortical regions in the parietal lobe contribute to visual memory and visuospatial 

impairments associated with HD.77,79

We believe that the posterior cerebral cortex is one of the first cortical areas that 

undergoes changes in early stages of HD. Therefore, systematic and preferably 

longitudinal assessment of the visual cortex in HD is warranted, to improve the 

understanding of structural and functional alterations in the visual pathway in patients 

with HD. 

Linking structural changes of the visual cortex with functional cognitive decline over time 

can provide valuable information on disease progression and cortical degeneration. 

The use of a standardized battery of visual cognitive tasks might additionally provide 

more detailed information regarding impairments in specific visual domains. To reduce 

interference on task performance, we are of the opinion that visual neuropsychological 

tasks should be selected that are not influenced by motor speed, bradyphrenia or 

language skills. 

To summarize, based on the current literature, early involvement of the visual cortex in 

the neurodegenerative process in HD has been reported. Structural, metabolic, and 

functional changes are primarily found in the associative cortices, such as the cuneus, 

lingual gyrus, and fusiform gyrus. Further research is nevertheless required to provide 

more insight into the pathophysiological changes of the posterior cerebral cortex in 

HD. Clinical visual deficits or visual hallucinations are not commonly reported as typical 

features of HD. However, visual cognitive impairments are seen in several domains, 

specifically tasks involving visual object perception, facial emotion recognition and 

visuospatial processing and working memory were impaired in pre-symptomatic and 

early disease stages. Because heterogeneous cognitive batteries were used, a direct 

comparison between studies was difficult. We are of the opinion that tasks with minimal 

motor involvement are most recommended for the assessment of visual cognitive 

function in future clinical trials, such as the Visual Object and Space Perception battery, 

the Visual Spatial Learning test, and the Stroop tasks. In addition, a motor task without 

a visual component, such as the Paced Tapping task, can be included in the test battery 

as a general proxy for disease progression.75 In this way, the relationship between 

visual task performance and visual cortical changes can be measured exclusively.13,75 
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Investigating the association of brain structure and function with visual cognition in 

HD using a standardized visual cognitive battery and different imaging modalities can 

quantify alterations and hopefully link structural posterior brain changes to functional 

impairments.
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ABSTRACT 

Huntington’s disease (HD) is an autosomal-dominant inherited neurodegenerative 

disorder characterized by motor disturbances, psychiatric disturbances, and cognitive 

impairment. Visual cognitive deficits and atrophy of the posterior cerebral cortex are 

additionally present in early disease stages. This study aimed to assess the extent of 

structural and functional brain alterations of the visual cortex in HD gene carriers using 

different neuroimaging modalities. 

Structural and functional magnetic resonance imaging (MRI) data were acquired from 

18 healthy controls, 21 premanifest, and 20 manifest HD gene carriers. Voxel-based 

morphometry (VBM) analysis and cortical thickness measurements were performed to 

assess structural changes in the visual cortex. Brain function was measured by assessing 

neuronal connectivity changes in response to visual stimulation and at rest in visual 

resting-state networks. Multiple linear regression analyses were performed to examine 

the relationship between visual cognitive function and structural imaging measures. 

Compared to controls, pronounced atrophy and decreased neuronal function at rest 

were present in associative visual cortices in manifest HD. The primary visual cortex 

did not show group differences in cortical thickness and in vascular activity after 

visual stimulation. Thinning of the associative visual cortex was related to worse visual 

perceptual function. Premanifest HD gene carriers did not show any differences in 

brain structure or function compared to controls. 

This study improves the knowledge on posterior brain changes in HD, as our findings 

suggest that the primary visual cortex remains preserved, both structurally and 

functionally, while atrophy of associative visual cortices is present in early HD and 

linked to clinical visual deficits. 
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1. INTRODUCTION

Visual processing is involved in routine daily functioning, such as walking, driving a 

car, and in social communication. In the human brain, transmission of incoming stimuli 

from the retina pass the afferent visual pathway via the optic nerve, optic tract, lateral 

geniculate nucleus in the thalamus, and optic radiation to the primary visual (striate) 

cortex in the occipital lobe and higher posterior cortical areas.1 Higher-level visual 

processing occurs in the associative extra-striate regions surrounding the primary visual 

cortex, from the secondary visual cortex to the ventral occipital-temporal pathway 

and dorsal occipital-parietal pathway.2 In Huntington’s disease (HD), an autosomal 

dominant inherited neurodegenerative disorder, progressive structural changes in the 

posterior cerebral cortex can be detected in early stages of the disease, while frontal 

and temporal regions remain less affected.3–8 The manifest stage of HD is clinically 

characterized by progressive motor disturbances such as chorea and dystonia, 

cognitive decline and psychiatric symptoms.9,10 Cognitive decline mainly involves 

progressive impairment in executive function.11 Nonetheless, neuropsychological 

studies assessing visual cognitive function in HD reported impairments in several 

visual domains, specifically tasks involving visual object perception,12,13 facial emotion 

recognition,14,15 visuospatial processing and visual working memory.7,16,17

Striatal atrophy is considered to be the origin of the characteristic choreatic motor 

signs, but it is suggested that other symptoms of HD might be related to cortical 

degeneration.4,18,19 Thinning of regions in the occipital lobe has been linked to worse 

performance on cognitive visuospatial tasks, which implies a distinct association 

between higher-level cognitive performance and occipital degeneration in HD gene 

carriers.6,7

In contrast to many structural magnetic resonance imaging (MRI) studies that showed 

neurodegenerative changes of the posterior cerebral cortex, only one study has 

assessed the functional aspects of visual brain function in HD using resting-state 

functional MRI.20 Here, functional connectivity changes were limited to the fusiform 

cortex in patients with HD, despite the presence of widespread posterior cortical 

atrophy. Still, little is known about brain function in patients with HD, and the link 

between structural cortical brain changes and functional impairments has not yet been 

fully investigated. Using different neuroimaging modalities and a visual cognitive test 

battery, this study aimed to improve the understanding of functional and structural 

alterations in the visual cortex in premanifest individuals (i.e., before the presence of 

motor symptoms) and in patients with early stage HD and investigate if there is an 

association between brain changes and visual cognitive task performance. 
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2. METHODS
2.1. Participants
A total of 59 participants (18 healthy controls, 20 premanifest HD gene carriers, and 

20 premanifest HD gene carriers) were included in this cross-sectional, observational 

study (Table 1).

Individuals were recruited from the outpatient clinic of the Neurology department at 

the Leiden University Medical Center between January 2017 and September 2017. 

HD gene carriers required a positive genetic test with a cytosine, adenine, guanine 

(CAG) repeat expansion of 36 or more on the Huntingtin gene. Partners and HD 

gene-negative relatives were recruited as healthy controls. All participants were 

between 18 and 65 years of age at the time of visit. To ensure an optimal primary 

visual acuity, individuals with an impaired primary visual ability (measured as below 

0.5; i.e., 20/40 vision) on the visual acuity test or ophthalmic disorders were excluded 

from the study. Other exclusion criteria were additional major co-morbidities not 

related to HD (including cardiovascular diseases, hypertension, diabetes mellitus and 

other neurological disorders), the inability to undergo MRI scanning (due to metallic 

implants, claustrophobia or pregnancy), or the participation in intervention trials. 

The Medical Ethical Committee of the Leiden University Medical Center approved 

this study and written informed consent according to the Declaration of Helsinki was 

obtained from all participants. 

2.2. Clinical assessments
Demographic information, CAG repeat length (for HD gene carriers only), and medical 

history was collected. Primary visual ability was measured with a visual acuity test. To 

assess the ability to perceive color differences the Ishihara Color Test was performed. 

Trained investigators assessed the degree of motor disturbances using the Unified 

Huntington’s Disease Rating Scale - Total Motor Score (UHDRS-TMS), a scale that 

measures different domains that are characteristically impaired in HD, including the 

oculomotor function, the tongue protrusion, the gait and postural stability, and the 

presence of choreatic or dystonic movements.21 Higher scores indicate increased 

motor impairment. Based on the UHDRS-TMS, HD gene carriers were divided into 

21 premanifest individuals, with a score of 5 or less, and 20 manifest individuals, 

with a score of more than 5.21 The UHDRS Total Functional Capacity (TFC) score was 

administered to assess five components of global daily functioning, including capacity 

to work, management of finances, ability to perform domestic chores, independency in 

activities of daily living (such as eating, bathing, and dressing), and care environment. 

Here, lower TFC scores indicate more impaired function. In manifest HD, the TFC score 
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is used to divide participants into disease stages, in which Stages 1 and 2 represent an 

early disease stage and Stage 5 the most advanced stage.22

The cognitive battery used in this study consisted of specific neuropsychological 

assessments with a large visual component. All cognitive tasks were administered by 

certified neuropsychological investigators and lasted approximately 30 minutes. 

The selection of cognitive assessments was based on findings from previous studies that 

focused on cognitive dysfunction in premanifest and manifest HD gene carriers.13,23–25 

The Symbol Digit Modalities Test (SDMT), Stroop Word Reading Test (SWRT), and 

Trail Making Test (TMT) were administered to assess visuospatial function, such as 

visual scanning and visual attention.24,26,27 Visual object perception was measured 

using subtests from the Visual Object and Space Perception (VOSP) battery and the 

Groningen Intelligence Test (GIT).28,29 Individual scores on each cognitive assessment 

were converted to standardized Z-scores. These Z-scores were summed and averaged 

resulting in cognitive domain scores to assess overall visuospatial and visual perceptual 

function.

2.3. Image acquisition 
All participants underwent structural and functional MRI scanning on a 3.0 Tesla MRI 

scanner (Philips Achieva, Best, the Netherlands). Both structural and functional MRI 

data were acquired using a standard 32-channel whole head coil. MRI proof glasses 

or lenses were used during scanning if participants had a visual acuity below 0.5 

(20/40 vision) without correction, to ensure optimal primary visual ability during task 

performance. Anatomical three-dimensional T1-weighted images were acquired with 

the following parameters: TE = 3.3 ms, TR = 7.2 ms, flip angle = 9°, FOV = 256 x 240 

x 176 mm and 176 slices with a slice thickness of 1 mm and no gap between slices, 

resulting in a voxel size of 1.00 x 1.00 x 1.00 mm, and scan duration of 9 minutes. 

All functional blood oxygen level-dependent (BOLD)-weighted echo-planar imaging 

whole brain volumes were obtained with the following parameters: TE = 30 ms, TR = 

3000 ms, FOV = 212 x 198 x 158 mm, flip angle = 80° and 48 slices with a slice thickness 

of 2.81 mm and slice gap of 0.5 mm, resulting in a voxel size of 3.31 x 3.31 x 2.81 mm, 

and scan duration of 5.42 minutes for the task fMRI, and 8 minutes for the resting state 

fMRI.

2.4. Image processing
2.4.1. Structural MRI

Cortical morphology was examined using volumetric and thickness outcome measures. 

Grey matter density alterations of the visual cortex in premanifest and manifest HD 
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gene carriers compared to controls were examined using voxel-based morphometry 

(VBM) analysis, which involves a voxel-wise comparison of the local concentration of 

grey matter between groups, including cortical surface area and cortical folding.30 In 

addition, to investigate subtle brain changes, the cortical thickness of specific brain 

regions in the visual cortex were measured.31

2.4.2. Voxel-based morphometry 
To assess structural voxel-wise grey matter density differences of the visual cortex 

between groups, we used a standardized VBM analysis protocol,30 using the FMRIB’s 

Software Library (FSL, version 5.0.10, Oxford, United Kingdom) tools.32,33 First, non-

brain tissue from all T1-weighted images was removed using the semi-automated brain 

extraction tool.34 Then, these brain-extracted images were segmented into different 

tissue types (i.e., grey matter, white matter, and cerebrospinal fluid). Quality control 

was performed on the brain extraction and grey matter segmentation images, and no 

data was excluded for further analyses. The grey matter images were aligned to the 2 

mm Montreal Neurological Institute (MNI)-152 standard space image, using non-linear 

registration.35,36 An averaged study-specific 4D template was subsequently created. 

Then, all native grey matter images were non-linear registered to this study specific 

template and modulated to correct for local enlargements and contractions due to 

the non-linear component of the spatial transformation.30 Finally, the modulated grey 

matter images were smoothed with an isotropic Gaussian kernel with a sigma of 3 mm, 

which corresponds to a full width at half maximum (FWHM) smoothing kernel of 7 mm. 

2.4.3. Cortical thickness
Cortical thickness of specific regions of interest was measured using cortical 

parcellation implemented in FreeSurfer version 5.3.0.37 The FreeSurfer algorithm 

automatically parcellates the cortex and assigns a neuroanatomical label to each 

location on a cortical surface model, based on probabilistic information. Four occipital 

regions (lingual gyrus, pericalcarine cortex, cuneus, and lateral occipital cortex), one 

parietal region (superior parietal cortex), and three temporal regions (temporal pole, 

fusiform gyrus, inferior temporal gyrus) defined by the Desikan-Killiany atlas were 

selected for further analyses,31 because these regions are all involved in the processing 

of visual stimuli.1 As there were no differences in cortical thickness between left and 

right hemisphere for any cortical region in our cohort, thickness was averaged across 

the two hemispheres for each region (see supplementary Table S1).
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2.4.4. Functional MRI
Alterations in brain function were assessed using task-based and resting-state fMRI. 

For the task-based fMRI, changes in BOLD signal in response to a visual stimulus were 

calculated as a proxy for cortical neuronal connectivity.38 In addition, brain function at 

rest was examined using resting-state functional connectivity analysis with pre-defined 

visual resting-state networks of interest (NOI).39 

2.4.5. Task design
The visual stimulus for the task-based fMRI scan consisted of seven blocks with an 8 Hz 

flashing black-and-white checkerboard pattern for 20 seconds, followed by 28 seconds 

of a grey screen with a red dot in the center of the screen. The visual stimuli were 

projected onto a screen, which the participant observed through a mirror attached to 

the head coil. To maintain attention and fixation to the checkerboard, each participant 

was asked to push on a button when the red dot position in the center of the screen 

changed from lighter to darker red, occurring at random intervals throughout the 

stimulus run. For the resting-state fMRI measures, participants were asked to close 

their eyes, not to fall asleep, and not to speak during the complete scanning time. 

2.4.6. Pre-processing
All functional images were pre-processed using the FEAT tool implemented in 

FSL.32 Pre-processing steps included motion correction,35 spatial smoothing using 

a Gaussian kernel of 8 mm FWHM, high-pass temporal filtering (with a cutoff of 48 

seconds for task-fMRI images, and 100 seconds for resting-state fMRI images), and 

distortion correction of B0 inhomogeneity’s. The pre-processed functional images 

were non-linear registered to individual brain-extracted T1-weighted scans, which 

were registered to MNI-152 standard space with boundary-based-registration.34,35 No 

scans were excluded after visual quality control to ensure correct registration. 

2.4.7. Vascular reactivity
Pre-processed task-based functional MRI scans were further processed to measure 

cortical vascular reactivity in response to visual stimulation. For this analysis, BOLD 

timeseries had to be extracted from the preprocessed scans. To this end, a region of 

interest (ROI) was created for each participant based on the results of an initial subject-

level analysis. During this subject-level analysis, brain regions were identified that 

reacted to the stimulus train using the general linear modeling approach implemented 

in FSL’s FEAT.32 The degree to which each voxel responded to the stimulus train was 

expressed in a Z-statistic map.
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To obtain the functional region of interest for each participant, a binary mask was 

constructed by taking the top 20% most activated voxels from this Z-statistic activation 

map. Using this mask, an average BOLD timeseries was calculated for each participant 

by averaging across all masked voxels. The resulting timeseries was cut up into blocks 

that each contained stimulus period (20 sec) and a subsequent rest period (28 sec). 

Then, the timeseries of each block were expressed as percentage BOLD change 

using the mean value of all blocks. To minimize the effect of non-physiologic noise 

on the block response, blocks with a percentage BOLD change greater than 3% were 

discarded.

Based on the method previously described by Dumas et al., 2012,38 a trapezoidal 

function was fit to the vascular reactivity response (i.e., percentage BOLD signal 

change) in the average BOLD timeseries, to describe the time-to-peak response, time-

to-baseline and amplitude of the response. The time-to-peak was calculated from the 

beginning of the block at t = 0 to onset of the trapezoid ceiling. The time-to-baseline is 

defined as the duration from the end of the stimulus at t = 20 seconds to the baseline. 

Response amplitude was defined as the distance from baseline to the peak response. 

The entire algorithm described above was implemented in R (the R foundation for 

Statistical Computing, Vienna, Austria), version 3.4.2. The full source code, along with 

additional mathematical details, has been published on GitHub (https://github.com/

jjhbw/TrapFit/).

2.4.8. Functional connectivity
After pre-processing of the functional resting state images, Independent Component 

Analysis-based Automated Removal Of Motion Artifacts was used as a data-driven 

method to identify and remove motion-related independent components from our 

resting state fMRI data.40 Then, functional connectivity analysis was performed using 

the dual regression method implemented in FSL, previously described by Filippini et 

al., 2009 and Hafkemeijer et al., 2015.41,42

For the dual regression method, we used standardized resting state NOI to measure 

functional connectivity as BOLD signal changes in the brain in relation to similar 

alterations in predefined resting state networks.39 As we focused on the visual cortex, 

we used two templates of standardized resting state networks, namely the medial 

visual network (including the calcarine sulcus, precuneus, lateral geniculate nucleus, 

and primary visual cortex) and the lateral visual network (including the occipital pole, 

lateral occipital cortex, fusiform areas, and superior parietal regions).39 To account 

for noise, white matter and cerebrospinal fluid templates were also included in the 

analyses.43
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2.4.9. Statistical analysis
Group differences in demographic and clinical outcome measures were analyzed using 

ANOVA, χ2-test, and Kruskal-Wallis test when applicable for continuous, categorical 

and skewed data respectively. Analysis of Covariance (ANCOVA), with group as factor 

and a simple contrast, was used to analyze differences in cortical thickness, task-

based fMRI response parameters and cognitive task performance in premanifest 

and manifest HD compared to controls. Age, gender, and years of education were 

included as covariates. Multiple linear regression analyses in HD gene carriers (i.e., 

premanifest and manifest HD) were performed to assess the relationship between 

neuroimaging (dependent variable) and cognitive outcome measures (independent 

variable), adjusted for age, gender, years of education, and CAG repeat length. All 

independent variables were entered in one block. Separate linear regression models 

were used for each neuroimaging measure. An alpha-level of < 0.05 was used to 

determine significance. To account for multiple comparisons in this analysis, an 

adjusted p-value was set based on the number of comparisons made for the analysis. 

Statistical analyses were performed using the Statistical Package for Social Sciences 

(SPSS for Mac, version 23, SPSS Inc.). 

For the structural VBM and resting state functional connectivity data, statistical analyses 

to detect group differences between controls, and premanifest and manifest HD were 

performed using a general linear model in FSL with age and gender as covariates. FSL-

randomise was used for voxel-wise non-permutation testing with 5,000 permutations.44 

For the VBM analysis, a binary mask of the visual cortex extracted from the MNI-152 

standard space image was used. For the functional connectivity analysis, analyses of 

variance F tests were first performed to assess if the group averages accounted for a 

significant effect in each NOI. Then, two-sample t tests were applied to obtain specific 

group differences (i.e., an increase or decrease) in functional connectivity. To account for 

the potential effects of local structural grey matter differences within and between the 

groups, individual grey matter density maps were used as additional voxel-dependent 

covariate in the statistical design. The threshold-free cluster enhancement (TFCE) 

technique was used to correct for multiple comparisons across voxels with family wise 

error,45 with a significant p-value of < 0.05 as significant threshold. Brain structures that 

showed a significant difference between groups were identified on the TFCE-statistic 

image using the Harvard-Oxford atlas and the cluster tool integrated in FSL. 
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3. RESULTS
3.1. Clinical characteristics
Demographic group characteristics are displayed in Table 1. Based on their functional 

capacity, manifest HD were in an early to moderate disease stage (4 patients in Stage 

1, 15 patients in Stage 2, and 1 patient in Stage 3).

There were no significant group differences for gender, handedness, education level, 

and use of tobacco. CAG repeat length did not differ between premanifest and 

manifest HD. Premanifest HD were younger (F[2,56] = 10.90) compared to controls (p 

= 0.028) and manifest HD (p < 0.001). Furthermore, manifest HD had a higher UHDRS-

TMS compared to controls and premanifest HD (F[2,56] = 49.41, both p < 0.001) and 

a lower UHDRS-TFC score compared to controls and premanifest HD (H[2] = 41.24, 

p < 0.001). On all visuospatial and visual perceptual tasks, manifest HD performed 

worse compared to controls. There were no significant differences in cognitive task 

performance between controls and premanifest HD. 

3.2. Structure of the visual cortex
3.2.1. Voxel-based morphometry 

Regional VBM analysis of the visual cortex was used to assess grey matter volume 

differences between groups. In manifest HD, significant cortical volume loss was 

identified bilateral in the fusiform gyrus, lingual gyrus, lateral occipital cortex and 

superior parietal cortex (Figure 1 and Table 2).  Furthermore, the left occipital pole 

and right inferior temporal cortex showed volume loss in manifest HD compared to 

controls. No significant differences in grey matter volume were found between controls 

and premanifest HD.
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TABEL 1  Demographic and clinical characteristics

Controls Premanifest HD Manifest HD

N 18 21 20

Age, years 46.2 ± 10.7 
(24.1 – 61.3)

37.4 ± 9.0*

(23.2 – 53.0)
52.1 ± 10.8
(24.1 – 61.3)

Gender (male/female) 7/11 11/10 11/9

Handedness – right (%) 15 (83.3%) 19 (90.5%) 15 (75.0%)

Education, years 17.0 ± 2.2 16.8 ± 3.2 16.4 ± 2.3

Current tobacco use 3 (16.7%) 4 (19.0%) 6 (30.0%)

CAG repeat length N/A 41.8 ± 2.2 
(38 – 45)

42.8 ± 2.4 
(40 – 48)

UHDRS – TMS 1.8 ± 1.2
(0 – 5)

2.8 ± 1.0
(1 – 5)

27.2 ± 15.5**

(8 – 52)

UHDRS – TFC 13 (11 – 13) 13 (10 – 13) 9 (6 – 13)**

Visual perception 
(compound Z-score)

0.43 ± 0.43 0.34 ± 0.48 -0.61 ± 0.91**

Visual scanning and attention
(compound Z-score)

0.26 ± 0.43 0.13 ± 0.29 -0.26 ± 0.39**

Data are mean ± SD (range) for age, CAG repeat length, years of education, and UHDRS-TMS. 
Numbers (%) are presented for handedness and tobacco use. Median (range) is given for UHDRS-
TFC. Compound standardized Z-scores on visual cognitive tasks were calculated. Scaled Z-scores 
were summed and averaged resulting in Z-scores per visual cognitive domain. Mean Z-scores ± 
SD per domain are presented. Analysis of covariance (ANCOVA) with group as simple contrast
was used to assess differences in Z-scores compared to controls, with age, gender and years of 
education as covariates. Abbreviations: N/A = Not applicable; CAG = Cytosine, Adenine, Guanine;
UHDRS-TFC = Unifi ed Huntington’s Disease Rating Scale Total Functional Capacity; UHDRS-TMS 
= Unifi ed Huntington’s Disease Rating Scale Total Motor Score.
* Signifi cant different compared to controls p < 0.05
** Signifi cant different compared to controls p < 0.001
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TABLE 2  Grey matter volume loss in the visual cortex in manifest HD

Cluster 
voxel size

Anatomical regions Side MNI coordinates 
(mm)

t value p value

x y z

870 Fusiform gyrus (BA 19/37) R 24 -72 -10 4.78 0.003

Lateral occipital cortex (BA 19) R 36 -80 -2 3.94 0.004

Lingual gyrus (BA 18) R 26 -46 0 4.11 0.014

741 Lateral occipital cortex (BA 19) L -46 -64 2 3.87 0.012

Occipital pole (BA 17) L -18 -92 -12 3.75 0.022

Fusiform gyrus (BA 19/37) L -26 -70 -6 3.32 0.038

696 Superior parietal cortex (BA 7) L -36 -46 38 4.76 0.012

606 Superior parietal cortex (BA 7) R 22 -48 56 4.85 0.007

398 Inferior temporal cortex (BA 20) R 46 -48 -6 4.35 0.019

15 Lingual gyrus (BA 18) L -26 -54 0 3.36 0.046

Voxel-wise identifi ed regions of signifi cant cortical volume loss in manifest HD compared to controls. 
All anatomical regions were identifi ed using the Harvard-Oxford Subcortical and Cortical atlases and the cluster
tool  implemented in FSL. T-statistics and corresponding p-values are presented (with a TFCE-family wise 
corrected p-value of p < 0.05). 
BA: Brodmann area, R: right hemisphere, L: left hemisphere

3.2.2. Cortical thickness

To determine subtle cortical changes in the visual cortex, the cortical thickness of 

eight regions of interest (cuneus, fusiform gyrus, inferior temporal cortex, lateral 

occipital cortex, lingual gyrus, pericalcarine cortex, superior parietal cortex, temporal 

pole) were additionally measured. Except for the pericalcarine cortex and temporal 

pole, significant cortical thinning was present in manifest HD in the cuneus, fusiform 

and lingual gyri, and inferior temporal, lateral occipital and superior parietal cortices 

compared to controls (Table 3). Premanifest HD did not show any significant differences 

in cortical thickness for all regions of interest compared to controls. 

Multiple linear regression analysis was performed to assess the relationship between 

cortical thickness and cognitive function in HD gene carriers (i.e., both premanifest 

and manifest HD). Besides the inferior temporal cortex, all regions showed significant 

associations with visual perceptual function, in which a decrease in cortical thickness 
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FIGURE 1  Grey matter volume loss in the visual cortex in manifest HD

Voxel-based morphometry analysis. The significant Family-Wise-Error corrected grey matter differences 
between manifest HD and controls (p < 0.05) are presented in red-yellow, overlaid on sagittal, coronal, and 
transversal slices of Montreal-Neurological-Institute-152 standard T1-weighted images. 
Green: mask of visual cortex. Corresponding x-, y-, and z-coordinates are given. 
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FIGURE 2  Blood oxygen level-dependent (BOLD) response to visual stimulation

3.3. Function of the visual cortex
3.3.1 Vascular reactivity 

Vascular brain function of the visual cortex was examined by quantifying alterations 

in BOLD signal in response to visual stimulation. Relative to baseline (i.e., prior to 

the start of the stimulus), there were no significant group differences in changes of 

the average BOLD response for the time to peak, time to baseline and amplitude 

response (Figure 2). 

Fitted average BOLD responses per group relative to baseline (0%). The grey area represents the duration of 
visual stimulation for 20 seconds.  
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Decreased functional connectivity independent of grey matter atrophy in manifest HD compared to controls 
in the medial visual network (green). Significant Family-Wise-Error corrected regions are presented in blue 
overlaid on sagittal, coronal, and transversal slices of Montreal-Neurological-Institue-152 standard T1-
weighted images. Corresponding x-, y-, and z-coordinates are given. 

FIGURE 3  Decreased functional connectivity in medial visual network in manifest HD

3.3.2. Functional connectivity 

Brain function at rest was assessed to detect disease specific functional connectivity 

network changes within the medial visual network and lateral visual network. Decreased 

functional connectivity between the bilateral lingual gyrus, occipital pole, and occipital 

fusiform gyrus and the medial visual network was present in manifest HD compared 

to controls, independent of local grey matter atrophy (Figure 3 and Table 5). No 

differences in functional connectivity with the medial visual network were observed 

between premanifest HD and controls. In addition, there were no group differences in 

lateral visual network functional connectivity. 
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TABLE 5  Decreased functional connectivity in medial visual network in manifest HD

Brain structure Side MNI coordinates 
(mm)

t-value p-value

x y z

Lingual gyrus (BA 18)
Occipital fusiform gyrus (BA 19/37)

R 12 -86 -14 4.65 0.013

Occipital pole (BA 17) R 12 -98 -6 4.27 0.016

Lingual gyrus (BA 18)
Occipital pole (BA 17)

L 0 -88 -14 4.43 0.015

Occipital fusiform gyrus (BA 19/37) L -14 -90 -16 3.39 0.035

Brain structures in the medial visual network that showed reduced functional connectivity in manifest 
HD compared to controls, independent of physiological noise, age, and gender. Structures were 
identifi ed using the Harvard-Oxford Cortical atlas and cluster tool implemented in FSL. T-statistics and 
corresponding p-values are presented (with a TFCE-family wise corrected p-value < 0.05). For each 
peak voxel x-, y-, and z-coordinates in the MNI-152 standard space image are given.
BA: Brodmann area, R: right hemisphere, L: left hemisphere
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4. DISCUSSION

This study showed that changes in the visual cortex and visual cognitive deficits are 

present in early manifest HD gene carriers, but not in premanifest gene carriers. 

The most pronounced volume loss and cortical thinning in manifest HD was found in 

the associative visual cortices, namely the lingual and fusiform gyri, and lateral occipital 

cortex. Thinning of these cortical regions in the ventral occipital-temporal pathway 

was associated with impaired visual perceptual function (i.e., object recognition tasks), 

suggesting that the neurodegenerative processes in the cortex might play a role in the 

visual deficits found in HD. Interestingly, the primary visual cortex (i.e., pericalcarine 

region and occipital pole) did not show neurodegenerative alterations and neuronal 

activity after visual stimulation also did not differ between groups, which suggest that 

basic visual processing remains preserved in early stages of the disease. 

Our findings that cortical morphology of the primary visual cortex in early HD remained 

unaffected is in line with other studies that did not found atrophy of the primary visual 

cortex in both early and advanced disease stages.4,7,8 Still, our study is the first study 

that provides evidence of preserved basic visual processing function in early stages of 

HD using task-based fMRI that involved a black-and-white checkerboard stimulus. The 

BOLD response to visual stimulation in the primary visual cortex was not different from 

controls in both manifest and premanifest HD, which suggests that incoming stimuli 

from the optic radiation and lateral geniculate nucleus in the thalamus are properly 

received and transmitted by the primary visual cortex to higher visual cortical areas. 

In general, visual stimuli that are received by the primary visual cortex (V1) are then 

projected to the secondary visual cortex (V2), which plays a role in the color perception 

and orientation.46 Then, visual processing proceeds along the associative cortices, 

which can be divided into the ventral occipito-temporal pathway (V4) involved in color 

processing and the recognition of objects and shapes, and the dorsal occipito-parietal 

pathway (V3 and V5), involved in the processing of spatial information and movement 

perception.2,47

Visual scanning, attention, and visual object and shape recognition was measured using 

visuospatial and visual perceptual tasks respectively. Manifest HD gene carriers showed 

impairments in these domains, but only visual perceptual function was associated with 

cortical thickness. The SDMT and TMT were used to measure visuospatial function, as 

these tasks require visual scanning and attention skills 24,26. However, these tasks also 

require a high motor demand and processing speed, which are known to be impaired in 

patients with HD. This might explain that no significant relationship was found between 

visuospatial task performance and thickness of the visual cortex. 
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The secondary visual cortex is located in the cuneus and lingual gyrus, which is involved 

in color discrimination and visual working memory .46 From here, stimuli proceed 

towards the fusiform gyrus and lateral occipital cortex that are known to play a role 

in object and face recognition.48,49 This supports our findings that an impaired visual 

perceptual function in HD was associated with reduced cortical thickness in these 

regions.

Other studies reported similar findings in early manifest HD, such as a reduced nerve 

cell number in the secondary visual cortex,4 volume loss of the occipital lobe,3,20 and 

thinning of the cuneus, lingual gyrus and lateral occipital cortex that were associated 

with worse performance on cognitive tasks involving a visual component.6,7 Contrary 

to our findings, thinning and volume loss of the occipital lobe has also been observed 

in premanifest HD gene carriers.3,7,8,50 This process seems to occur in premanifest HD 

gene carriers that are within a decade or nearer to disease onset, suggesting a sudden 

increase in the rate of thinning around disease onset,7,8 but there are no longitudinal 

studies that can confirm this hypothesis. The difference with our findings might be 

explained by the fact that our cohort consisted of a heterogeneous, relatively young 

group of premanifest HD gene carriers with a median estimated time to disease onset 

of 16 years, based on the survival analysis of Langbehn et al., 2004.51 In contrast, the 

multicenter TRACK-HD and PREDICT-HD studies included large cohorts of premanifest 

HD gene carriers which were divided into close (e.g., below 9 or 10 years) and far (above 

10 to 15 years) from estimated disease onset.3,7,8 Only six premanifest participants in 

our study were within a decade or nearer to disease onset, which might explain the fact 

that we found no differences between controls and premanifest HD. 

Function of the posterior cerebral cortex has been studied less extensively in HD. 

Our study examined brain function at rest, in addition to the assessment of brain 

function during task performance. Resting state fMRI can be used to study functional 

interactions between brain regions at rest (i.e., connectivity), and as no active input is 

required during resting state fMRI, the influence of the disease on task performance 

is not of concern.52,53 Despite normal brain function after visual task stimulation, 

decreased functional connectivity at rest of the lingual and fusiform gyri, and occipital 

pole was found in manifest HD compared to controls within the medial visual network. 

One other study specifically focused on the visual cortex at rest using resting state fMRI 

in manifest HD and found only reduced connectivity in the left fusiform gyrus, despite 

widespread volume loss in the occipital cortex.20 Our findings of reduced functional 

connectivity were also independent of grey matter atrophy in these regions, which 

might suggest that regional atrophy does not cause abnormal neural connectivity at 

rest. 
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To improve the understanding of functional alterations in different disease stages, we 

additionally examined brain function at rest in premanifest individuals. Compared to 

controls, we found no differences in functional connectivity for both medial and visual 

networks, which is contrary to a previous study that showed reduced connectivity in the 

right parietal and bilateral visual cortices of the medial visual network in premanifest HD 

gene carriers.52 Although using several methodological approaches, these reductions 

in whole brain functional connectivity in premanifest HD were not detectable over 

time in longitudinal studies.54,55 A possible explanation for these discrepancies can be 

a selection bias, as participants with a faster rate of clinical decline might withdraw 

earlier from the study, leaving a relatively fitter premanifest group for longitudinal 

analyses.54

Still, our study provides evidence of preserved brain function of the primary visual 

cortex at rest and after visual stimulation in manifest HD, but reduced function 

in the ventral occipito-temporal pathway at rest. Structural alterations of the visual 

cortex seem, nevertheless, to be more pronounced and widespread than functional 

alterations in early manifest HD, even extending to the inferior temporal and superior 

parietal cortices. Together with previous studies that additionally found evidence of 

cortical thinning and volume loss in these regions in premanifest HD gene carriers 

that are within a decade to disease onset,3,7,8,50 this implies that structural alterations 

might precede functional alterations in HD.  Future studies with larger sample sizes 

are, however, needed to examine brain function using tasks that involve other visual 

cognitive domains, such as object or facial emotion recognition, or visuomotor 

function. 

A limitation of this study is, that due to the cross-sectional design and our heterogeneous 

group of premanifest HD gene carriers, it remains uncertain how the posterior cerebral 

cortex changes over time. It would be interesting to assess the progression of posterior 

cortical volume loss longitudinally and in addition measure the effect of volume loss 

on changes in neural connectivity. In this way, potential cortical biomarkers can be 

identified that can be used in future clinical trials. Another limitation of this study is 

the relative small sample size of our cohort, which additionally prevents examining the 

role of gender. 

In conclusion, the ventral visual pathway, specifically the lingual and fusiform gyri 

and the lateral occipital cortex, showed most pronounced structural and functional 

alterations in early manifest HD. Our study is the first to provide evidence of preserved 

basic visual function in early disease stages after visual stimulation. Clinically, visual 

perceptual function was impaired and related to reduced cortical thickness of the 
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ventral posterior brain regions. Still, changes in the visual cortex were not detectable 

in our premanifest HD group. 

Our findings suggest that clinical visual deficits in HD are linked to atrophy of the 

posterior cerebral cortex, while basic visual function remains preserved in early disease 

stages.
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ABSTRACT 

Objective: To investigate microstructure and function of the visual pathway and 

determine clinical correlates in Huntington’s disease (HD) patients. 

Methods: Diffusion tensor-imaging data was acquired of 21 premanifest, 20 manifest 

HD, and 17 healthy controls. To examine the microstructure of white matter pathways, 

mean indices of diffusion parameters were measured along the anterior and posterior 

thalamic radiation tracts using Tract-Based Spatial Statistics (TBSS). Additionally, 

electrical activity of the brain in response to visual stimuli was measured using pattern-

reversal visual-evoked potentials (VEPs). Associations with clinical measures were 

examined in HD gene carriers using univariate linear regression analyses corrected for 

age, gender, and HD group. 

Results: Microstructural alterations in manifest HD were primarily present in the optic 

radiations of posterior brain regions and to a lesser extent in the anterior brain regions. 

Reduced fractional anisotropy, and increased radial and axial diffusivity were associated 

with higher disease burden scores and increased oculomotor impairment in HD gene 

carriers. Radial diffusivity showed the strongest associations with oculomotor function 

and disease burden. Normal latencies of the pattern-reversal VEP were found in HD 

gene carriers compared to controls. Reduced amplitudes of the early components 

were present in premanifest HD and manifest HD, but were not associated with clinical 

measures. 

Conclusion: Altered microstructure of the posterior optic radiation is detectable in 

early manifest HD and is related with disease severity. Our results show that axonal 

degeneration in the occipital lobe occurs early in the disease process, while functional 

integrity of the visual pathway remains relatively preserved. 
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1. INTRODUCTION

Huntington’s disease (HD) is a hereditary, neurodegenerative disorder, characterized by 

a triad of progressive motor disturbances, cognitive decline and behavioral changes.1 

The disease is caused by an abnormal expansion of the CAG (cytosine-adenosine-

guanine) repeat length in the Huntingtin gene on chromosome four.2 Atrophy of the 

striatum is the neuropathological hallmark of the disease due to extensive loss of 

striatal medium-sized spiny neurons.3 As a result, striatal atrophy is thought to be the 

origin of the typical unwanted choreiform movements that occur in patients with HD.3,4 

Neuroimaging studies have shown that striatal atrophy can be detected a decade 

before clinical disease onset in the so-called premanifest phase, and is therefore seen 

as a robust marker to track disease progression.5,6 However, besides the characteristic 

clinical signs of HD, deficits in visual cognition, such as an impaired visuospatial working 

memory or changes in facial emotion recognition have been frequently reported,7 and 

are suggested to originate from posterior cortical degeneration, since pronounced 

reductions in the absolute nerve cell number in the occipital lobe have been found in 

advanced HD patients.8–10

Moreover, in earlier disease stages, volume loss in posterior cortical brain regions is 

present,11–15 and is even associated with worse visual cognitive task performance and 

oculomotor dysfunction.11,12,15 It has therefore been proposed that besides striatal 

atrophy, cortical degeneration also contributes to the clinical phenotype of HD.15

Although there is increasing evidence of the involvement of posterior brain regions in 

the neurodegenerative process of HD, the extent of structural and functional changes 

of the in-vivo pathways to these regions remains unclear. In our study, we aimed to 

gain more insight into the neuropathological involvement of posterior brain regions in 

HD. We therefore assessed white matter diffusion properties and neurophysiological 

measurement of visual-evoked potentials to investigate structural and functional 

alterations of the visual pathway in premanifest and manifest HD gene carriers. 

2. METHODS
2.1. Participants
Fifty-eight participants (21 premanifest HD gene carriers, 20 manifest HD gene 

carriers, and 17 healthy controls) were included in this cross-sectional, observational 

study via the outpatient clinic of the Neurology department at the Leiden University 

Medical Center (LUMC) in the Netherlands. All HD gene carriers had a genetic test 

with ≥ 36 CAG repeats. Spouses and HD gene-negative relatives were recruited as 
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controls. Participants were required to have a normal or corrected-to-normal primary 

visual ability above 0.5 (20/40) on the visual acuity test and no major ophthalmic or 

neurologic co-morbidities. Participants were not included if they were unable to 

undergo MRI scanning (i.e. due to metallic implants, claustrophobia, or pregnancy). 

Patients that participated in an intervention trial were not included in this study. The 

Medical Ethical Committee of the LUMC approved this study and written informed 

consent was obtained from all participants.

Demographic data, including gender, date of birth, age at visit, and years of education, 

was obtained for all participants. Primary visual acuity and the ability to perceive 

color differences were assessed using a visual acuity test and the Ishihara Color Test 

respectively. HD gene carriers were divided into premanifest and manifest HD based 

on the presence of motor signs using the Unified Huntington’s Disease Rating Scale 

(UHDRS) total motor score.16 This scale measures the degree of motor disturbances 

in different domains, such as oculomotor function, gait and postural stability, and the 

presence of choreiform or dystonic movements. A higher score indicates more motor 

impairments. The clinically manifest phase of the disease is defined as an UHDRS – 

total motor score of more than 5, whereas HD gene carriers with a score of 5 or less 

are defined as premanifest individuals. The ocular and saccadic movement items of 

the UHDRS were summed to establish a subdomain score (range 0 – 24) of oculomotor 

function, as described previously.12,17 The disease burden score (age x [CAG repeat 

length – 35.5]) was calculated for all HD gene carriers, in which a higher score reflects 

an increased disease severity.18

2.2. DTI acquisition
Diffusion Tensor Imaging (DTI) data was acquired on a 3-Tesla whole body MRI scanning 

system (Philips Achieva, Best, the Netherlands) using a standard 32-channel head coil. 

A single shot echo-planar DTI sequence was applied with 32 gradient directions and 

a total acquisition time of approximately 8 minutes. The follow scan parameters were 

used: TR = 11.547 ms, TE = 56 ms, FOV = 220 x 220 mm2 with an acquisition matrix of 

112 x 110, 2 mm slice thickness with no gap between slices, flip angle = 90°, voxel size 

= 1.96 x 1.96 x 2.00 mm3, number of slices = 75, b-value = 1000 s/mm2, and halfscan 

factor = 0.61. 

2.3. DTI processing
Diffusion tensor imaging data were preprocessed using the FMRIB’s Diffusion Toolbox 

(FDT) that is implemented in FMRIB’s Software Library (FSL, version 5.0.10, Oxford, 

United Kingdom).19,20 First, images were corrected for distortions caused by eddy 



143

7

currents and motion artifacts. Then, diffusion tensors were fit to the eddy-current 

corrected data resulting in fractional anisotropy (FA), radial diffusivity (RD or l⊥) and 

axial diffusivity (AD or l||) maps. RD was defined as the average of the second and 

third eigenvalues of the diffusion tensor (l2 + l3 / 2), while AD corresponded to the first 

eigenvalue (l1). 

The FA, RD, and AD maps from each participant were further analyzed using voxel-

wise tract-based spatial statistics (TBSS) analysis, part of FSL.21 Here, FA images from all 

participants were nonlinearly registered to a standard space target image (FMRIB58_

FA image) to form an averaged registered FA image. Then, a skeleton of white matter 

was generated by thresholding the averaged FA image, in which only voxels with a 

mean FA value of 0.2 or higher were included. Consequently, this mean FA skeleton 

represents the center of the white matter fibers throughout the whole brain. The 

skeleton projection was then applied to RD, and AD images, to create a separate 

skeleton for each diffusion measure. All data was visually checked for distortions or 

incorrect registration. 

The anterior and posterior thalamic radiations (including the optic radiations) tracts 

were used as a mask of the visual pathway and mean FA, RD, and AD values within this 

mask were extracted. These tracts were identified using the Johns Hopkins University 

white matter tractography atlas implemented in FSL. 

2.4. Visual-evoked potentials (VEP)
Electrical activity of the brain in response to visual stimuli was measured using a pattern-

reversal VEP (Medelec Synergy, Oxford Instruments, version 11.0) at the department of 

Clinical Neurophysiology in the LUMC.

The left and right eyes were stimulated separately in two sessions (a total of four 

sessions), and were then averaged to form one trace per eye. A high-contrast full-field 

black-and-white checkerboard was used that flashed at a frequency of 2 Hz with an 

individual square check size of 0.45 degrees of arc. Participants were seated facing the 

checkerboard screen at a viewing distance of 2 meter in a dark room and were asked to 

fixate their gaze on the center of the screen with one eye covered. The EEG signal was 

recorded using an active mid-occipital (Oz) electrode and referenced to Cz, according 

to the international 10/20 system. A total of 100 trials were recorded. Trials containing 

artifacts were manually removed before further analyses. 

Four major components (N75, P100, N140 and P200) were measured to analyze brain 

activity in the occipital cortex. For each component, the latency was calculated to 

indicate the time from stimulus onset to the component, whereas the amplitude was 

measured from peak to baseline (i.e. peak amplitude) and from peak to peak (i.e. 
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peak-to-peak amplitude), as described in the guidelines of the International Society 

for Clinical Electrophysiology of Vision (ISCEV).22

2.5. Statistics
Group differences in demographic characteristics were analyzed using analysis of 

variance (ANOVA), independent T-test or chi-square test when applicable. Group 

differences between the extracted mean FA, RD, and AD values of the white matter 

tracts of interest were analyzed using ANOVA with Sidak correction to correct for 

multiple comparisons. 

Post-hoc group differences on all diffusion outcome measures were performed using 

the general linear model (GLM) tool implemented in FSL. Age and gender were 

included as covariates in all statistical designs. FSL-randomise was used for voxel-

wise non-permutation testing with 5000 permutations.23 The Threshold-Free Cluster 

Enhancement technique was used, and family wise error was used to correct for 

multiple comparisons across voxels.24

Group differences for all VEP outcome measures were analyzed using Kruskal-Wallis 

test. If this analysis yielded significant results, post-hoc analysis was performed using 

the Mann-Whitney U test.

Separate univariate linear regression analyses were performed in HD gene carriers 

(i.e. both premanifest and manifest HD) to assess the associations between diffusion 

outcome measures and clinical assessments, and between neurophysiological outcome 

measures and clinical assessments. Only outcome measures that showed significant 

group differences compared to controls were included in the regression analyses. Age, 

gender and HD group were included as covariates and entered in one block with the 

predictor variable. The significant threshold was set at a p-value of < 0.05. Statistical 

analyses were performed using the Statistical Package for Social Sciences (SPSS for 

Mac, version 23, SPSS Inc.). 

3. RESULTS

Demographic characteristics for each group are presented in Table 1. Premanifest HD 

gene carriers were younger compared to both controls and manifest HD (F (2,55) = 

10.81, p = 0.026 and p < 0.001 respectively). Manifest HD had a higher disease burden 

score compared to premanifest HD (t (37) = 4.6, p < 0.001). In addition, manifest 

HD had more motor impairments compared to controls and premanifest HD on the 

UHDRS – total motor score (F (2,55) = 48.06, both p < 0.001) and UHDRS - oculomotor 
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score (F (2,55) = 67.00, both p < 0.001). Gender and CAG repeat length did not differ 

between groups.

To study structural integrity of the visual pathway, mean indices of diffusion parameters 

were measured along the anterior and posterior thalamic radiation tracts. Reduced FA 

(F (2,55) = 9.35, p = 0.005), increased RD (F (2,55) = 16.66, p < 0.001) and increased AD 

(F (2,55) = 8.61, p = 0.001) were found in manifest HD compared to controls (Figure 

1A). No differences in diffusion parameters were observed between premanifest HD 

and controls. 

Voxel-wise analysis showed that these reduced FA and increased RD values in manifest 

HD were primarily located posterior in the optic radiation and thalamus (Figure 1B). 

Reduced mean AD was found in the frontal lobe, particularly in the anterior limb of the 

internal capsule and thalamus. 

All diffusivity parameters showed significant associations with clinical assessments 

(Table 2). The UHDRS total motor score, UHDRS oculomotor score and disease burden 

score all showed the strongest association with radial diffusivity, meaning that higher 

clinical scores were correlated with increased radial diffusivity. 

To study functional integrity of the visual pathway, brain activity after visual stimulation 

TABLE 1  Demographic group characteristics

Controls Premanifest HD Manifest HD

N 17 21 20

Age (years) 46.5 ± 10.9
(24.1 – 61.3)

37.4 ± 9.0
(23.2 – 52.9)

52.1 ± 10.8
(28.5 – 64.8)

Gender (m/f) 7/10 11/10 11/9

CAG repeat length – 41.8± 2.2
(38 – 45)

42.8 ± 2.4
(40 – 48)

Disease burden score – 228.6 ± 88.1
(89.9 – 368.0)

362.4 ± 93.1
(185.0 – 538.8)

UHDRS – Total motor score 1.8 ± 1.3
(0 – 5)

2.8 ± 1.0
(1 – 5)

27.2 ± 15.5
(8 – 52)

UHDRS - Oculomotor 0.4 ± 0.7
(0 – 2)

1.6 ± 1.1
(0 – 4)

8.4 ± 3.7
(3 – 15)

Demographic data are showed (mean ± SD (range), except for gender (numbers)). 
Disease burden score was calculated with the formula: age x [CAG repeat length – 35.5] by 
Penney et al., 1997.
CAG = cytosine-adenosine-guanine, UHDRS = Unifi ed Huntington’s Disease Rating Scale. 
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TABLE 2  Correlations between diffusion parameters and clinical assessments in HD gene carriers 

Fractional anisotropy Axial diffusivity Radial diffusivity

R2 βstd p-value R2 βstd p-value R2 βstd p-value

UHDRS – 
Total Motor 

0.426 -0.517 0.012 0.374 0.605 0.005 0.534 0.634 0.001

UHDRS – 
Oculomotor

0.403 -0.486 0.027 0.316 0.501 0.033 0.474 0.535 0.010

Disease
burden score

0.484 -0.585 0.001 0.347 0.454 0.012 0.583 0.620 < 0.001

Separate univariate linear regression analyses were performed adjusted for age, gender and HD group (i.e. 
premanifest and manifest HD). Standardized Beta coeffi cients (βstd) represent the SD change in diffusion
parameters per every SD increase in the clinical assessments. As age is already included in the disease burden 
score (age x [CAG repeat length  – 35.5] by Penney et al., 1997), these regression analyses were performed 
without age as covariate. Signifi cant p-values < 0.05 are presented in bold.

FIGURE 1  Diffusion parameters

Diffusion parameters measured using tract-based spatial statistics (TBSS) analysis showed microstructural changes in 
manifest HD. A) Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) values within the anterior 
and posterior thalamic radiation tracts are presented per group. Significant differences between manifest HD and 
controls are displayed, * p < 0.05 and ** p ≤ 0.001. B) Voxel-based brain regions that showed significant differences 
in diffusion parameters between manifest HD and controls. Blue: decreased diffusivity in manifest HD compared 
to controls. Red: increased diffusivity in manifest HD compared to controls. Age and gender were included as 
covariates in the statistical model. Regions are overlaid on sagittal, coronal, and transversal slices of a standard 
FMRIB FA image. A family wise error corrected threshold of p < 0.05 was used. 
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was analyzed, using mean peak latencies and amplitudes of four major pattern-reversal 

VEP components (Figure 2 and Table 3).  Four patients with HD had no recognizable 

signal due to motion artifacts and were therefore not included in the analyses. 

Significant lower peak amplitudes of the N75 and P200 components, and reduced 

N75-P100 peak-to-peak amplitude were found in manifest HD compared to controls (U 

= 206, p = 0.011; U = 37, p = 0.025; and U = 65, p = 0.010 respectively). In addition, the 

P200 component was also reduced in premanifest HD compared to controls (U = 66, p 

= 0.014). There were no significant differences between groups in mean peak latencies 

for any component. In addition, there were no significant associations between N75 

and P200 amplitudes and clinical outcome measures (Table 4).

TABLE 2  Correlations between diffusion parameters and clinical assessments in HD gene carriers 

Fractional anisotropy Axial diffusivity Radial diffusivity

R2 βstd p-value R2 βstd p-value R2 βstd p-value

UHDRS – 
Total Motor 

0.426 -0.517 0.012 0.374 0.605 0.005 0.534 0.634 0.001

UHDRS – 
Oculomotor

0.403 -0.486 0.027 0.316 0.501 0.033 0.474 0.535 0.010

Disease
burden score

0.484 -0.585 0.001 0.347 0.454 0.012 0.583 0.620 < 0.001

Separate univariate linear regression analyses were performed adjusted for age, gender and HD group (i.e. 
premanifest and manifest HD). Standardized Beta coeffi cients (βstd) represent the SD change in diffusion
parameters per every SD increase in the clinical assessments. As age is already included in the disease burden 
score (age x [CAG repeat length  – 35.5] by Penney et al., 1997), these regression analyses were performed 
without age as covariate. Signifi cant p-values < 0.05 are presented in bold.

Mean pattern reversal visual evoked potentials per group measured from electrode Oz after left and right eye 
stimulation separately. In the manifest HD group, four participants had no recognizable signal due to motions 
artifacts and were not included in further analyses. The four major components, N75, P100, N140, and P200 
are displayed, showing significant decreased N75 and P200 amplitudes in manifest HD compared to controls 
and significant decreased P200 amplitude in premanifest HD compared to controls.

FIGURE 2  Visual evoked potentials 
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4. DISCUSSION

This study revealed alterations in structural and functional integrity of the visual pathway 

in manifest HD compared to controls. Altered microstructure was primarily present in 

the optic radiations of posterior brain regions and to a lesser extent in the anterior 

brain regions. In addition, reduced amplitudes with normal latencies were observed 

in response to visual stimulation using pattern-reversal visual evoked potentials as a 

measure of functional integrity. 

Diffusion markers are thought to reflect the structural integrity of neural tracts in the 

brain by detecting the extent and coherence of water diffusion.25,26 Our diffusion 

tensor imaging analyses showed reduced axial diffusivity (i.e., axonal degeneration) 

in manifest HD compared to controls in the anterior limb of the internal capsule in the 

frontal lobe. In contrast, reduced fractional anisotropy (i.e., overall fiber density) and 

increased radial diffusivity (i.e. axonal myelination and diameter) were observed more 

widespread in fibers located in the thalamus and optic radiations in the occipital lobe. 

Our findings suggest that neurodegeneration of the visual pathway predominantly 

occurs in fibers that project to the posterior cerebral cortex due to loss of axonal 

fibers, which is in line with postmortem studies that observed neuronal cell loss and a 

reduction of axonal connections in the occipital lobe.8,9

Microstructural changes in tracts to the prefrontal cortex, sensorimotor cortex and 

corpus callosum were found in previous studies that assessed cortico-striatal and deep 

white matter pathways across the entire brain in patients with HD.27 Diffusivity changes 

of posterior cerebral tracts have also been found in HD, particularly located in the 

frontal white matter projections to the occipital lobe.28–30 In these studies, however, 

alterations in the occipital cortex have not been the primary focus of interest. 

Although striatal atrophy can be detected in premanifest HD a decade before the 

onset of motor symptoms,5 we did not detect microstructural white matter changes 

in our group of premanifest HD gene carriers. It is possible that axonal loss in the 

white matter tracts to the cortex only occurs in manifest disease stages and that 

microstructural changes during premanifest stages are more variable and dynamic over 

time.31 In contrast, a longitudinal study did observe changes in diffusivity over time in 

the fronto-occipital tracts in premanifest HD, most prominently in the individuals close 

to estimated disease onset.28 However, the premanifest HD group in this study already 

showed motor symptoms, suggesting that the distinction between manifest and 

premanifest was based on different criteria than our study, making direct comparisons 

difficult.  
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We additionally examined correlations between clinical functional assessments and 

diffusion outcome measures. The strongest association was found between disease 

burden score and radial diffusivity, indicating that higher disease severity is correlated 

with increased axonal fiber loss. This finding suggests that diffusion measurements 

within the visual pathway can be used as a marker of disease severity.

While diffusion markers reflect the structural integrity of white matter tracts, visual-

evoked potentials are frequently used to measure the functional integrity of the 

retinal-cortical pathway. The neural generators of the main components of the evoked 

potential wave (before 150 milliseconds) are considered to originate in the primary 

visual cortex, while late components (after 150 milliseconds) reflect activity in the 

associative occipital and parietal cortical areas.32 In our study, normal latencies of both 

main and late components were observed in HD gene carriers, which imply preserved 

pre-chiasmatic function and normal conduction velocities to the primary cortex in 

early disease stages, since prolonged latencies are generally found in demyelination 

disorders.33 We did observe reduced amplitudes for both main and late components 

(N75 and P200 respectively) in manifest HD compared to controls. Therefore, in 

addition to our findings of altered structural integrity, we provide evidence of 

changed functional integrity in the optic tracts in patients with HD as well. There are 

no previous studies that examined both visual-evoked potentials and microstructural 

brain changes of the visual pathway in HD. In line with our findings, several previous 

neurophysiological studies also reported reduced amplitudes in HD patients with 

normal latencies of the main components in response to light flashes or checkerboard 

pattern-reversal stimulation.34–37 Other pattern-reversal VEP studies, however, report 

no significant differences in both amplitudes and latencies of the main components 

in manifest HD compared to controls.38,39 Nonetheless, these studies were conducted 

before genetic testing became available and different criteria were used to define 

patients with HD. Recent neurophysiological studies focused on the late components 

to investigate higher level visual processing using more challenging visual processing 

tasks, such as a word recognition task,40 attentional categorization tasks,41,42 or a 

facial emotion expression task.37 These studies all found reduced amplitudes for late 

components.37,41,42 Since reduced main component amplitudes are frequently reported 

in manifest HD, it is hypothesized that early visual processing is already impaired, 

thus making subsequent visual processing more difficult.37 We did observe reduced 

amplitudes in main and late components in manifest HD, but future studies with a 

larger sample size and different stimulation types could elucidate this hypothesis more 

thoroughly. 
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In our study, reduced amplitudes in premanifest HD gene carriers were additionally 

observed for the late component (P200). Only two other studies assessed the response 

to visual-evoked potentials in premanifest HD gene carriers, before the onset of 

overt motor symptoms.41,42 One study also observed reduced amplitudes of the late 

component in premanifest HD in response to a visual attentional processing task, 

while another study did not find neurophysiological impairments in early perceptual 

processing in premanifest HD.41,42 As the latter study involved more complex stimulation 

tasks, a direct comparison to our pattern-reversal VEP is not possible.

We did not observe a significant relationship between neurophysiological measures 

and clinical assessments in HD gene carriers, possibly because of the heterogeneity 

seen in the waveforms of all participants or the effects of gender and age on evoked-

potential components.43 To address the issue of heterogeneity of VEP responses, 

longitudinal studies could be performed with larger sample sizes to measure individual 

change over time as a marker for disease progression. 

This study examined the microstructure of regional white matter tracts of the visual 

pathway and the response on pattern-reversal visual-evoked potentials in premanifest 

and manifest HD gene carriers. 

In conclusion, changes in structural integrity were most prominently present in 

the thalamus and optic radiations in early manifest HD, and were associated with 

functional scores, such as disease burden and oculomotor scores, suggesting that 

microstructural changes in the optic tracts are related with clinical disease severity. 

In addition, reduced amplitudes with normal latencies were observed in response to 

visual stimulation in manifest HD patients.

Our findings show that the posterior brain regions undergo structural alterations 

in early stages of the neuropathological process in HD. These data provide more 

knowledge on the pathophysiological processes in the cerebral cortex and might aid 

in the identification of other regions than the striatum that can be used as a potential 

marker of disease severity for future clinical trials.
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Although promising disease-modifying drugs are currently under investigation, there 

are unfortunately no effective treatment options available to date to delay or prevent 

the clinical onset of Huntington’s disease (HD). Therefore, more knowledge about the 

pathophysiologic mechanisms in HD is still needed. Magnetic Resonance Imaging 

(MRI) is a non-invasive and objective approach to study the human brain. In the last 

decades, the increased use of brain imaging in HD research made it possible to better 

understand the natural course of the disease. MRI research in HD has been particularly 

focused on evaluating the onset and rate of striatal atrophy but the contribution of 

cortical changes remains less understood. 

The aim of this thesis was therefore to investigate alterations in the cerebral cortex in 

HD gene carriers and assess the relationships with clinical signs of HD. Neuroimaging, 

neurophysiological, and cognitive measurements were used to examine structure and 

function of the cerebral cortex in premanifest and early manifest HD gene carriers. In 

this chapter, the main findings described in this thesis are summarized, discussed and 

recommendations for future research are provided. 

SUMMARY 
Brain structure
Macrostructural changes of the cerebral cortex are generally examined with volumetric 

MRI using different methodological techniques. Voxel-based morphometry (VBM) 

analysis is such a neuroimaging technique that is frequently used in brain research.1,2 

VBM involves a voxel-by-voxel comparison of the local grey matter density across the 

entire brain between different groups, therefore making it a sensitive approach to 

detect disease-specific cortical changes in regional volume.1 

VBM analysis in our cohort of 79 early manifest HD gene carriers and 30 healthy 

controls showed that grey matter volume loss in HD is located in the sensorimotor 

cortex in the frontal and parietal lobes, and the associative visual cortices in the 

temporal and occipital lobes (chapter 2). In a smaller cohort of manifest HD gene 

carriers, consistent grey matter volume reductions were described in the sensorimotor 

and lateral occipital cortices (chapter 3). On the contrary, premanifest HD gene carriers 

only showed limited volume changes compared to controls in a small region involving 

the insular cortex and parietal operculum, near the sensorimotor cortex (chapter 3), 

which is consistent with previous studies.3,4 The findings from our studies suggest that 

there is an decrease in cortical volume somewhere during or close after clinical disease 

onset, however, future longitudinal analysis is warranted to investigate this hypothesis. 
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Voxel-based methods measure densities per voxel separately within a brain region. 

Opposed to this technique, network-based analysis provides information about inter-

regional changes in grey matter voxels.5 Structural covariance networks of spatially 

independent grey matter regions were identified based on the co-variation of grey 

matter using independent component analysis (chapter 3). This technique is commonly 

used in resting-state functional MRI (fMRI) studies to assess functional connectivity.6 

When used on volumetric MRI, this technique defines spatial components based on the 

co-variation of grey matter patterns among an entire cohort, which can be expressed 

in a network integrity score.6 Network integrity is described as the strength of an 

individuals’ expression in an anatomical network and indirectly provides information 

regarding network-based grey matter alterations. 

Structural covariance networks involving the precuneous, anterior cingulate, 

sensorimotor and parahippocampal cortices showed reductions in network integrity 

for both premanifest and manifest HD compared to controls (chapter 3). This indicates 

that this novel technique is sensitive to detect early grey matter changes in the cerebral 

cortex. The affected regions are generally involved in the planning, control, and 

execution of voluntary movements, visuospatial processing, and cognitive attention 

and control.7,8 Domains that were all impaired in manifest HD (chapter 3, 5, and 6). 

However, since the grey matter changes were already found in premanifest HD gene 

carriers, our results suggest that cortical changes occur prior to clinical disease onset, 

in addition to striatal atrophy.9 

Interestingly, another network comprising of the cuneus, lateral occipital cortex 

and lingual gyrus only showed decreased network integrity in manifest HD and not 

in premanifest HD (chapter 3), which indicates that there is an increase in cortical 

alterations from the premanifest phase to the manifest phase, in particular in the 

posterior cerebral cortex (chapter 5). 

Subtle local volumetric differences between groups might not be detected when 

assessing global volumes. Measuring the thickness of the cortex with an automated 

method that parcellates the gyri and sulci into many small distinct regions is a frequently 

used method to distinguish subtle group differences.10,11 

Rosas et al. were the first that used this technique in a small cohort of HD gene carriers 

to evaluate the degree of cortical thinning and reported that the earliest and most 

severely affected regions in HD are the primary motor, sensory, and visual cortical 

regions (including the superior parietal and frontal cortices).12,13 We conducted a study 

in 74 HD patients in early disease stages (HD stage 1 and 2) and observed cortical 

thinning throughout the entire brain in HD stage 2 patients, with most severe thinning 
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in the parietal and occipital lobes (chapter 4). Our findings are therefore consistent 

with previous studies reporting relative sparing of the frontal and parietal brain regions 

early in the disease.10,13,14 Still, in our study, HD patients in the most early clinical disease 

stage (HD stage 1) only showed a trend towards thinning of parietal and occipital 

cortices, while extensive striatal atrophy was observed in both disease stages, with up 

to 35% volume loss of the caudate nucleus. This implies that the rate of striatal atrophy 

stabilizes after clinical disease onset, whereas the degree of cortical atrophy increases. 

More interestingly, no associations were found between cortical thinning and striatal 

volume loss, suggesting that striatal and cortical degeneration might occur as two 

separate neurodegenerative processes (chapter 4). 

To better understand the extent of neurodegeneration in the posterior cerebral 

cortex, we conducted a cross-sectional observational study with the visual cortex 

as region of interest. Volumetric MRI was performed to examine macrostructural 

alterations of the visual cortex (chapter 6) and diffusion tensor imaging (DTI) was 

used to assess the microstructure of pathways towards the visual cortex (chapter 7). 

Microstructural characteristics of fiber tracts in the brain can generally be examined 

based on the diffusion properties of water molecules in tissues.15 It is proposed that 

changes in diffusion parameters in HD can be explained by axonal degeneration or 

demyelination,16 although the specific cellular mechanism remains unclear. 

Measurement of diffusion parameters along the anterior and posterior thalamic 

radiation tracts in manifest HD gene carriers showed signs of axonal fiber loss in the 

thalamus and optic radiation tract in the occipital lobe, and to a lesser degree in 

anterior fiber tracts in the frontal lobe (chapter 7). Remarkably, volumetric analysis of 

visual cortical regions showed reduced volumes and cortical thinning in the associative 

visual cortex, while the primary visual cortex did not show signs of atrophy (chapter 

6). This latter finding is consistent with previous studies that report early involvement 

of associative visual brain regions, such as the fusiform gyrus, lingual gyrus, lateral 

occipital cortex, and cuneus in manifest HD gene carriers (chapter 5). Premanifest HD 

gene carriers, however, did not show any macro- or microstructural alterations in the 

posterior cerebral cortex (chapter 6 and 7), again suggesting that neurodegenerative 

changes in the posterior brain regions occur after clinical disease onset. 

Brain function
The structural imaging analyses described in this thesis showed that the posterior 

cerebral cortex is affected in early manifest stages. Besides brain structure, we 

examined brain function in premanifest and manifest HD gene carriers compared to 

healthy controls (chapter 6). 
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In general, brain function can be measured using the different magnetic properties of 

oxygenated and deoxygenated blood. Activated neurons demand an increased use of 

energy leading to an increased blood flow in the surrounding microvasculature, which 

results in higher levels of oxygenated hemoglobin.17 The change in oxygenated and 

deoxygenated blood levels causes alterations in MRI signal intensity, which is referred 

to as the Blood Oxygenation Level Dependent (BOLD) signal. Therefore, this regional 

hemodynamic response indirectly reflects neuronal activity in response to a task or 

stimulus, or at rest when measuring spontaneous fluctuations in the BOLD signal 

within predefined resting-state networks.17,18 After visual stimulation using a black-and-

white checkerboard stimulus, neuronal activity of the primary visual cortex was not 

different in premanifest and manifest HD gene carriers compared to controls (chapter 

6). However, decreased functional connectivity at rest was present in the associative 

visual cortex (primarily the lingual and fusiform gyri) in manifest HD gene carriers. Our 

findings indicate preserved basic visual processing function and altered brain function 

in regions involved in higher level visual processing.

Besides the fact that we did not find structural changes of the posterior cerebral 

cortex in premanifest HD gene carriers, brain function also remained unaffected in this 

disease stage (chapter 6), supporting our suggestion that alterations (both structurally 

and functionally) in the posterior cerebral cortex only occur in the manifest disease 

stage. 

Another approach to examine brain function is measurement of pattern-reversal 

visual-evoked potentials (VEP). A VEP comprises of a high contrast black-and-white 

checkerboard that is used as visual stimulus and the neurophysiological evoked signal 

is recorded with electrodes spanning the occipital region. Amplitudes (height) and 

latencies (length) of early components (waves) are usually considered to originate in 

the primary visual cortex, while late responses are thought to reflect brain activity in the 

associative visual cortical areas.19

Normal latencies were observed in premanifest and manifest HD gene carriers, 

indicating a preserved pre-chiasmatic function and normal conduction velocities 

towards and in the primary visual cortex (chapter 7). The reduced amplitudes that were 

found in HD gene carriers could suggest that axonal loss in the visual pathways due to 

neurodegeneration causes a reduction in signal intensity. However, we did not observe 

a relationship between the evoked potential measurements and clinical assessments 

in HD gene carriers, which might be explained by the heterogeneity in waveforms that 

is commonly seen due to the effects of age and gender.20



162

8 | Summary, discussion and future perspectives

Clinical features
The clinical diagnosis of HD is based on the presence of motor symptoms which are 

measured using the total motor score of the Unified Huntington’s Disease Rating 

Scale.21 For this scale, motor symptoms can be divided in separate domains such as 

chorea, dystonia, gait disturbances, rigidity, and oculomotor dysfunction, with higher 

scores indicating more dysfunction.21,22 

We related the clinical motor phenotype of 79 manifest HD gene carriers to changes 

in grey matter brain regions (chapter 2). Higher chorea scores were associated with 

volume loss of the striatum and pallidum, whereas higher eye movement scores 

were related with cortical volume loss in occipital regions. The lack of relationships 

between other motor symptoms, such as dystonia and gait disturbances, and changes 

in subcortical or cortical volumes can be explained by the fact that this cohort of early 

manifest HD gene carriers scored relatively low on these items. This is not unexpected, 

since dystonia, hypokinesia and related balance problems are often seen in more 

advanced stages and our cohort consisted of early stage manifest HD gene carriers.22,23

Increased motor symptoms in HD gene carriers were also associated with reduced 

network integrity scores in the structural covariance network comprising of the striatum, 

precuneous, and anterior cingulate cortex (chapter 3), regions that are known to be 

involved in motor planning and execution.8 

Besides motor symptoms are visual processing deficits also frequently reported in 

HD.24–26 A review of the current literature showed that impairments are present in 

several visual cognitive domains, such as visual object perception, facial emotion 

recognition, visuospatial processing, and working memory, while visual hallucinations 

and ophthalmic disorders are rarely described in HD (chapter 5). Studies have 

unfortunately used heterogeneous cognitive test batteries to measure visual cognitive 

function, making direct comparisons between study findings difficult. 

In our study, we used specific cognitive tasks with a large visual component that have 

been used previously and observed impaired visual object perception and visuospatial 

function in manifest HD gene carriers (chapter 6). However, only worse performance on 

visual perceptual tasks was related with reduced cortical thickness of parieto-occipital 

brain regions. These visual perceptual tasks required minimal motor involvement and 

processing speed, which implies that these tasks are a sensitive assessment of visual 

cognitive function.
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CONCLUSIONS

This thesis provides evidence for distinct changes in cortical brain structure and 

brain function in early symptomatic HD disease stages. Although striatal atrophy is 

more extensively present in HD, changes in the cerebral cortex can also be detected 

in the pre-symptomatic stage. Different methodological approaches used in our 

studies all showed a consistent pattern of cortical atrophy making volumetric MRI a 

reliable and effective tool to assess early in-vivo cortical brain changes, even in a rare 

neurodegenerative disorder such as HD. Voxel-based morphometry analyses, structural 

covariance network analysis, and cortical thickness analyses all revealed signs of 

cortical atrophy in manifest HD gene carriers located in the precuneous, sensorimotor 

cortex, secondary and associative visual cortex, and anterior cingulate cortex. In 

premanifest HD gene carriers, cortical atrophy was limited to the precuneous and 

sensorimotor cortex. It seems that striatal volume loss stabilizes after clinical disease 

onset, whereas cortical atrophy becomes more pronounced. Our findings additionally 

imply that cortical atrophy occurs simultaneous with the onset of striatal atrophy as 

an independent neurodegenerative process, since the presence of cortical thinning in 

HD gene carriers was not related with striatal volume loss, and cortical changes were 

already observed in premanifest HD gene carriers close to estimated disease onset. 

Still, cortical changes seem to be limited to the sensorimotor areas in premanifest HD, 

whereas manifest HD gene carriers showed more widespread cortical alterations, with 

the posterior cerebral cortex as main affected brain region. 

The findings of this thesis further suggest that cortical degeneration plays an important 

role in the presence of clinical features of HD, such as oculomotor dysfunction and 

visual cognitive processing deficits, while the severity of chorea, the most recognized 

clinical symptom in HD, is related to striatal volume loss. 

We additionally examined brain function in HD using functional neuroimaging and 

neuro-physiological measurements, which showed that basic visual function remains 

preserved, even in manifest disease stages. The associative visual cortex did show 

changes in brain activity at rest in manifest HD gene carriers, which is consistent with 

our findings of impaired higher level visual cognitive functioning.  The structural and 

functional neurodegenerative changes of the posterior cerebral cortex seems to 

originate in the associative visual cortices in the parietal, temporal and occipital lobes, 

with sparing of the primary visual cortex in the early manifest stages. Nevertheless, 

functional alterations of the higher-level visual cortex appear to be less pronounced 

and widespread than structural changes, which even extend to the inferior temporal 

and superior parietal cortices. Based on these findings, we can therefore conclude that 

structural cortical alterations contribute to the clinical signs of HD and likely precede 

functional brain changes in early HD.
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IMPLICATIONS AND FUTURE PERSPECTIVES 

Striatal atrophy is the hallmark of the disease and is linked to main clinical features of 

HD such as choreiform movements. Indeed, extensive volume loss was observed early 

in the disease, but the influence of cortical changes on other clinical signs that occur 

in HD should not be overlooked.

Our results demonstrate that volume loss and thinning of the cerebral cortex, especially 

the posterior brain regions, is detectable in early manifest stages and contributes to the 

presence of specific motor signs and cognitive impairments. We believe that clinical 

intervention trials could therefore benefit from using cortical volumes as outcome 

measures to assess treatment efficacy or disease progression, instead of using striatal 

volumes as outcome measure alone.

We described deficits in several visual cognitive domains, such as visual perceptual 

dysfunction and an impaired visual scanning and attention. The awareness of visual 

stimuli and processing of visual information is important because it is needed in daily 

life, for example when driving a car, during walking and in communication with others. 

Moreover, visual perceptual deficits might negatively impact complex cognitive task 

performance. While these higher-level visual processing deficits in HD are not well-

recognized clinical signs of HD, it is remarkable that early involvement of the cerebral 

cortex seems to originate in the associative visual cortices, the regions that are 

generally involved in higher-level processing.

This thesis focused on the pattern of cortical changes in HD and the relation with 

motor and cognitive symptoms. Still, it is also important to investigate the underlying 

brain changes of behavioral symptoms. There are only limited studies available that 

assessed the neuronal correlates of behavioral changes in HD,27,28 which is surprising 

since irritability, apathy, and mood disturbances are frequently reported signs in HD.29 

The presence of apathy in HD seems to be related to atrophy of the thalamus,27 while 

depressive symptoms were associated with smaller volumes of the cingulate cortex.28 

Novel disease-modifying therapeutic agents, such as huntingtin lowering drugs, are 

currently under development and could be promising for the treatment of HD. The 

study design of large multicenter longitudinal clinical trials that examine the efficacy 

of such drugs should therefore make use of structural and functional MRI for the 

assessment of both subcortical and cortical structure and function. In addition, an 

extensive cognitive test battery including visual cognitive tasks can be used to measure 

improvement of cognitive functioning. We recommend including visual cognitive tasks 

that are independent of other cognitive or motor processes, such as the Visual Object 
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and Space Perception (VOSP) tasks, in the standard cognitive battery. 

Since atrophy of the posterior cerebral cortex, and in particular the visual cortex, seems 

to occur early in the disease, we also suggest to include volumetric assessments of the 

visual cortex as outcome measure in clinical intervention trials, in addition to the more 

standard measurements of striatal volume. 

Future observational studies are continuously necessary to better understand the 

pathophysiologic mechanisms of the disease and the relationship with clinical signs. 

For a better understanding of brain function in HD, and in particular to further 

investigate impairments in higher-level visual processing, functional MRI using more 

complex visual processing tasks should be performed in future trials. In addition, it 

would be interesting to examine simultaneous recordings of visual-evoked potentials 

with functional MRI for high temporal and spatial resolution.30,31 This way, the neural 

correlates of the evoked response can be better interpreted, which provides more 

information about functional brain changes in the posterior cerebral cortex in HD. 

Especially large groups of premanifest HD gene carriers (divided based on the 

estimated time to clinical diagnosis) should be observed over time, since this group 

can have considerable benefit from disease-modifying drugs.
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De ziekte van Huntington (Huntington’s disease, HD) is een zeldzame autosomale 

dominante neurodegeneratieve aandoening. De ziekte wordt veroorzaakt door een 

abnormale CAG (cytosine-adenine-guanine) expansie in het huntingtine gen op 

chromosoom 4, coderend voor het huntingtine eiwit. Hoewel de exacte functie van het 

normale huntingine eiwit niet geheel bekend is, is het eiwit betrokken bij de embryonale 

ontwikkeling en speelt het een belangrijke rol bij axonaal transport, regulatie van 

gentranscriptie en overleven van zenuwcellen. Het afwijkende huntingtine eiwit bij 

HD aggregeert in verschillende delen van zenuwcellen en veroorzaakt progressieve 

hersenschade. 

In Nederland zijn er ongeveer 1.700 mensen met genetisch bevestigd HD en zijn er 

6.000 tot 9.000 mensen potentieel drager van de genmutatie die zich nog niet hebben 

laten testen. 

Klinisch kenmerkt de ziekte zich door een progressief beloop, zich uitend in 

bewegingsstoornissen (chorea, dystonie, rigiditeit, balansstoornissen), cognitieve 

achteruitgang (executieve functiestoornissen, geheugenstoornissen), en 

gedragsveranderingen (depressie, irritatie, apathie, en obsessief-compulsieve 

stoornissen). Hoewel symptomen tussen patiënten kunnen variëren in aard en ernst, 

en psychiatrische of cognitieve klachten al vroeg aanwezig kunnen zijn, wordt de 

ziekte gedefinieerd als klinisch manifest zodra er motorische symptomen zichtbaar 

zijn. De ziekte begint meestal rond een leeftijd van 30 tot 50 jaar met een gemiddelde 

ziekteduur van 17 tot 20 jaar. Ondanks de ontdekking van de chromosomale lokalisatie 

in 1983 en de specifieke genmutatie in 1993, is er momenteel nog geen genezing of 

remming van het ziekteproces mogelijk. De symptomatische behandeling is gericht 

op het verbeteren van de kwaliteit van leven van de patiënt en naasten en bestaat vaak 

uit medicamenteuze behandeling in combinatie met psychologische en paramedische 

ondersteuning. 

Magnetic resonance imaging (MRI) is een niet-invasieve en objectieve methode om 

in-vivo veranderingen in hersenstructuur en -functie te onderzoeken. Eerdere MRI-

studies in HD hebben aangetoond dat volume verlies in het striatum, het belangrijkste 

neuropathologische kenmerk van HD, al aantoonbaar is in de premanifeste fase, de 

fase wanneer er nog geen klinische motorische symptomen aanwezig zijn. Naast atrofie 

in het striatum zijn er ook aanwijzingen voor vroege veranderingen in de cerebrale 

cortex, maar dit is minder uitgebreid onderzocht (hoofdstuk 1). 
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Het doel van dit proefschrift was de neurodegeneratieve veranderingen in de cerebrale 

cortex in kaart te brengen in zowel de premanifeste als manifeste fase van de ziekte 

van Huntington. Met behulp van verschillende MRI-maten en neurofysiologisch 

onderzoek bieden wij meer inzicht in de structuur en functie van de hersenen in 

genmutatiedragers met HD ten opzichte van gezonde controles. Daarnaast hebben 

wij onderzocht of de mate van cerebrale atrofie in HD gerelateerd is aan stoornissen 

in de motoriek en cognitie. 

Macrostructurele veranderingen in het volume van de cortex kunnen onderzocht 

worden middels diverse methodologische technieken. Standaard volume analyses 

zijn uitgevoerd met behulp van structurele T1 MRI-scans in een cohort van 79 HD 

patiënten in een vroeg stadium van de ziekte en 30 gezonde controles (hoofdstuk 

2). Dit onderzoek toonde aan dat grijze stof veranderingen zichtbaar zijn in de 

somatosensible en motorische cortex in de frontoparietal kwabben, en in de 

associatieve visuele cortex in de temporo-occipitaal kwabben. Een toename van 

chorea was geassocieerd met een afname in volume van het striatum en pallidum, 

terwijl een toename van oogbewegingsstoornissen was gerelateerd aan afname in 

volume in corticale gebieden in de occipitale kwab. Dystonie en balansstoornissen 

waren niet gerelateerd aan volume verlies. Dit kan verklaard worden door het feit dat 

dystonie, hypokinesie en daaraan gerelateerde balansstoornissen vaker aanwezig zijn 

in meer vergevorderde stadia van de ziekte, terwijl ons cohort bestond uit patiënten 

in een vroeg ziektestadium. 

Netwerkanalyse is een nieuwe methode om volume veranderingen in de hersenen 

te bestuderen en kijkt in tegenstelling tot de standaard volume analyse niet op 

regionaal niveau, maar naar interregionale hersengebieden. Structurele netwerken zijn 

opgebouwd uit hersengebieden die overeenkomsten in structuur vertonen, waardoor 

men meer inzicht kan krijgen in ziekte-specifieke veranderingen in de hersenen. 

Netwerken bestaande uit de precuneus, cortex cingularis anterior, somatosensibele 

cortex en motorische cortex, lieten een verminderde integriteit zien in premanifest HD 

(n=30) en manifest HD (n=30) ten opzichte van gezonde controles (n=30) (hoofdstuk 

3). Verminderde netwerk integriteit van het visuele netwerk (cuneus, gyrus lingualis, 

cortex occipitalis lateralis) was alleen aanwezig in manifest HD en niet in premanifest 

HD. Dit betekent dat de overgang van de premanifest naar de manifeste fase wordt 

gekenmerkt door een toename in corticale veranderingen, met name in de posterior 

cerebrale cortex. 
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Globaal dagelijks functioneren wordt in HD onderzoek gemeten middels de totale 

functionele capaciteit (TFC) score. Op basis van deze score kunnen patiënten in de 

manifeste fase van de ziekte worden ingedeeld in verschillende ziektestadia, waarbij 

stadia 1 (HD1) en 2 (HD2) de vroege stadia zijn, en stadia 4 (HD4) en 5 (HD5) de meest 

gevorderde stadia. 

In onze studie met 18 gezonde controles, 31 HD1 patiënten en 43 HD2 patiënten was in 

beide ziektestadia reeds uitgebreid volume verlies in het striatum aanwezig, met name 

in de nucleus caudatus (hoofdstuk 4). In vergelijking met gezonde controles was er een 

afname in volume van de nucleus caudatus met 31.1% en 31.4% voor respectievelijk 

HD1 en HD2 patiënten. Daarnaast toonde analyse van de corticale dikte een afname 

in de gemiddelde dikte van alle hersenkwabben in HD2 patiënten, met de grootste 

reductie in corticale dikte in de pariëtale en occipitale kwabben. HD1 patiënten lieten 

echter geen veranderingen in corticale dikte zien. In de gecombineerde HD1 en HD2 

groep was er tevens geen associatie aantoonbaar tussen de mate van atrofie in het 

striatum en de cortex. Deze bevindingen suggereren dat degeneratie van het striatum 

onafhankelijk is van corticale degeneratie en dat er sprake is van twee afzonderlijke 

neurodegeneratieve processen. 

Een overzicht van de bestaande literatuur toonde aan dat volumeveranderingen in de 

posterior cerebrale cortex al vroeg in het ziekte proces ontstaan terwijl fronto-temporale 

hersengebieden relatief gespaard blijven (hoofdstuk 5). Neuropathologische studies 

hebben aangetoond dat er specifiek verlies is van neuronen in het visuele systeem 

in het posterieure deel van de hersenen. Dit wordt bevestigd door MRI-studies, die 

uitgebreide atrofie en verminderde hersenfunctie in de posterior cerebrale cortex in 

HD laten zien, met name in de cuneus, gyrus lingualis en gyrus fusiformis. 

Recente studies tonen tevens aan dat stoornissen van het visuele systeem frequent 

voorkomen in patiënten met HD, naast de veelvoorkomende symptomen zoals 

stoornissen in de motoriek, cognitieve achteruitgang en gedragsproblemen. Deze 

visuele stoornissen kunnen aanwezig zijn in verschillende ziektestadia en bestaan uit 

visuomotor en visuospatiële dysfunctie, gestoorde visuele attentie en stoornissen in 

het herkennen van visuele objecten.

Het visuele systeem in de hersenen is echter bij patiënten met HD niet eerder 

systematisch onderzocht. Daarom hebben wij een exploratieve, observationele 

studie uitgevoerd in 18 gezonde controles, 22 premanifest HD en 22 manifest HD om 

meer inzicht te krijgen in de structurele en functionele veranderingen van het visuele 

systeem. Uitkomsten van structurele en functionele MRI, neurofysiologisch onderzoek 

en visuele cognitieve neuropsychologische taken zijn verzameld en de bevindingen 

van deze studie zijn besproken in hoofdstukken 6 en 7. 
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Volume verlies en afname in corticale dikte in manifest HD was aanwezig in de 

secundaire visuele cortex en associatieve visuele cortex en niet in de primaire 

visuele cortex. Daarnaast was afname in corticale dikte in de associatieve visuele 

cortex geassocieerd met een verminderde visuele object perceptie. Structurele 

integriteit van de axonenbundels in de vezelbanen naar de visuele cortex werden 

gemeten met behulp van Diffusion Tensor Imaging (DTI). In manifest HD waren 

aangedane vezelbanen met name gelokaliseerd naar de thalamus en radiatio optica 

in de occipitaal kwab. Neurofysiologisch onderzoek middels Visual-Evoked Potentials 

(VEP) liet in premanifest en manifest HD normale geleidingssnelheden (latenties) 

maar lagere signaalintensiteiten (amplituden) zien na visuele stimulatie. DTI en VEP-

onderzoek wijst dus op tekenen van axonale schade in de banen naar de visuele cortex 

in patiënten met HD.

Een opvallende bevinding was dat in alle groepen een normale neuronale activiteit 

van de primaire visuele cortex werd gemeten na visuele stimulatie middels functionele 

MRI, terwijl er afgenomen neuronale activiteit in manifest HD werd waargenomen in de 

associatieve visuele cortex in rust. De resultaten uit deze studie wijzen derhalve op een 

normale basale visuele functie ondanks tekenen van axonale schade in de vezelbanen 

naar de visuele cortex en een gestoorde visuele aandacht en object perceptie in HD 

patiënten. 

Tot slot worden de belangrijkste bevindingen en implicaties voor toekomstige studies 

besproken in hoofdstuk 8. Samenvattend laten de studies beschreven in dit proefschrift 

zien dat er naast uitgebreide atrofie van het striatum ook corticale atrofie in vroege 

ziekte stadia kan worden aangetoond met behulp van verschillende methodologische 

technieken. Corticale atrofie lijkt met name gelokaliseerd in de somatosensibele 

en motorische cortex in de vroege (pre)klinische ziektestadia, waarna atrofie in het 

posterieure deel van de cortex meer uitgesproken wordt. Corticale degeneratie blijkt 

daarnaast ook bij te dragen aan klinische symptomen van HD, zoals oculomotor 

stoornissen en visueel cognitieve stoornissen. Systematisch onderzoek van de 

posterior cerebrale cortex toonde tevens dat neurodegeneratieve veranderingen in 

manifest HD zich met name lokaliseren in de associatieve visuele cortex waarbij de 

functie en structuur van de primair visuele cortex intact blijft. 

Naar aanleiding van onze bevindingen vinden wij dat corticaal volume gebruikt moet 

worden als uitkomstmaat in klinische HD studies (zoals observationeel en placebo-

gecontroleerd medicatie onderzoek), mede omdat de cortex in belangrijke mate 

bijdraagt aan specifieke stoornissen in de motoriek en cognitie. Naast motorische 

symptomen kunnen visuele cognitieve stoornissen van grote invloed zijn op algemeen 
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dagelijks functioneren. Visuele cognitieve achteruitgang kan mogelijk ook een negatief 

effect hebben op prestaties bij algemeen cognitief onderzoek. Daarom adviseren wij 

visueel cognitieve taken toe te voegen aan de standaard cognitieve taken die vaak 

gebruikt worden in klinisch onderzoek naar HD. 

Dit onderzoek heeft zich met name gericht op veranderingen in de cerebrale cortex en 

de invloed daarvan op stoornissen in de motoriek en cognitie in HD. De onderliggende 

hersenveranderingen van gedragsproblemen in HD is echter niet onderzocht. Gezien 

de potentieel effectieve huntingtine verlagende geneesmiddelen die momenteel 

onderzocht worden, is meer observationeel onderzoek uiterst zinvol om de complexe 

pathologische mechanismen van de ziekte beter in kaart te brengen. 
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