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A topological space X is called resolvable if it contains a dense subset with dense 
complement. Using only basic principles, we show that whenever the space X has 
a resolving subset that can be written as an at most countably infinite union of 
subsets, in such a way that a given vector lattice of (not necessarily bounded) 
continuous functions on X separates every point outside the resolving subset from 
each of its constituents, then the order continuous dual of this lattice is trivial. In 
order to apply this result in specific cases, we show that several spaces have resolving 
subsets that can be written as at most countably infinite unions of closed nowhere 
dense subsets. An appeal to the main result then yields, for example, that, under 
appropriate conditions, vector lattices of continuous functions on separable spaces, 
metric spaces, and topological vector spaces have trivial order continuous duals if 
they separate points and closed nowhere dense subsets. Our results in this direction 
extend known results in the literature. We also show that, under reasonably mild 
separation conditions, vector lattices of continuous functions on locally connected 
T1 Baire spaces without isolated points have trivial order continuous duals. A 
discussion of the relation between our results and the non-existence of non-zero 
normal measures is included.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and overview

Let E be a vector lattice. We recall that an order bounded linear functional ϕ on E is order continuous
if inf{ |ϕ(fi)| : i ∈ I } = 0 whenever (fi)i∈I is a net in E such that fi ↓ 0 in E. The vector lattice of all 
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order continuous functionals on E is called the order continuous dual of E. This paper is centred around 
the following result on the triviality of order continuous duals of vector lattices of continuous functions. It 
will be established in Section 3.

Theorem. Let X be a non-empty topological space, and let E be a vector sublattice of the real-valued con-
tinuous functions on X. Suppose that there exists an at most countably infinite collection { Γn : n ∈ N } of 
non-empty subsets of X such that

(1)
⋃

n∈N Γn and X \
⋃

n∈N Γn are both dense in X, and
(2) for every x ∈ X \

⋃
n∈N Γn and every k ∈ N, there exists an element u of E+ such that u(x) = 1 and 

u(y) = 0 for all y ∈ Γk.

Then 0 is the only order continuous linear functional on E.
If, in addition, X satisfies the countable chain condition (in particular, if, in addition, X is separable), 

then 0 is also the only σ-order continuous linear functional on E.

Let us make a few comments on this theorem. First of all, we mention explicitly that E need not consist 
of bounded functions, and that there are no topological properties of X supposed, other than what is in 
the theorem. Singletons need not even be closed subsets. In several of the existing results in the literature 
on the triviality of order continuous duals, X is supposed to be a locally compact Hausdorff space and E
is supposed to be a vector lattice of bounded continuous functions on X. More often than not, the Riesz 
representation theorem is then used to reduce the study of order continuous linear functionals on E to the 
analysis of the structure of the measures that represent them. Our approach is quite different. Using only 
first principles, the argument with nets and sequences is completely elementary, and further properties of 
X or of the elements of E play no role.

Let us also mention that it is not supposed that the Γn are pairwise disjoint, or even different. If one 
wishes, disjointness can nevertheless always be obtained by replacing each Γn with Γn \

⋃n−1
j=1 Γj for n ≥ 2, 

and disregarding all empty sets that might occur in this process.
There are no explicit topological conditions on the Γn in the theorem, but the coupling with the continuous 

functions in E implies that some properties are still automatic. For one thing, Γk is nowhere dense in X for 
all k ≥ 1. To see this, fix k ≥ 1. For every x ∈ X \

⋃
n∈N Γn, assumption (2) of the theorem implies that 

there exists an element ux of E such that ux(x) = 1 and ux(y) = 0 for all y ∈ Γk. Consequently, the open 
neighbourhood Vx := u−1[(1

2 , 2)] of x is contained in X \ Γk. Set V :=
⋃

x∈X\
⋃

∈N Γn
Vx. Then V is an open 

subset of X, and X \
⋃

n∈N Γn ⊆ V ⊆ X \ Γk. Since X \
⋃

n∈N Γn is dense in X, we conclude that X \ Γk

contains the open dense subset V of X. If Ṽ were a non-empty open subset of X that is contained in Γk, 
then Ṽ ∩V would be a non-empty open subset of X that is contained in Γk \Γk, which is impossible. Hence 
Γk has empty interior, i.e. Γk is nowhere dense.

If X is a Baire space, then this implies that one may as well assume that the Γn are all closed nowhere 
dense subsets of X, simply by replacing Γn with Γn for all n ≥ 1. Indeed, 

⋃
n∈N Γn is then certainly dense 

in X, but X \
⋃

n∈N Γn is also still dense, since the fact that X is a Baire space now implies that 
⋃

n∈N Γn

still has empty interior. Furthermore, if k ≥ 1 is fixed, and if x /∈
⋃

n∈N Γn, then x /∈
⋃

n∈N Γn, so that 
there exists an element u of E+ such that u(x) = 1 and u(y) = 0 for all y ∈ Γk. By continuity, we then also 
have that u(y) = 0 for all y ∈ Γk. Hence the Γn also satisfy the assumptions in the theorem. Of course, if 
the original Γn are pairwise disjoint, this property may be lost when replacing them with their closures.

In the applications that we give in Section 5, the Γn are, in fact, typically closed nowhere dense subsets 
of X. The above discussion shows that this is not totally unexpected.

In order to continue our discussion of the theorem, we recall the following notion that was introduced by 
Hewitt [9].
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Definition. A topological space X is called resolvable if there exists a subset D of X such that D and X \D
are both dense in X. We shall then say that such a subset D is a resolving subset of X, or that it resolves X.

Hence part (1) of the hypotheses implies that X should be resolvable, but not just that: Combination 
with part (2) shows that it must be resolvable in a special manner. If one thinks of E as given, then, using 
that the Γn may as well be taken to be disjoint, the interpretation of the parts (1) and (2) taken together is 
the following: There exists a resolving subset of X that can be split into at most countably infinitely many 
non-empty parts, in such a way that E is sufficiently rich with respect to each of these parts in order to be 
able to supply all separating functions in part (2). If one wants to coin a more or less suggestive terminology, 
then, although it does not capture everything, one could call { Γn : n ∈ N } an E-separated resolution of X.

Furthermore, let us observe that, if the hypotheses of the theorem are satisfied for E, they are obviously 
also satisfied for every superlattice F of continuous functions on X. Therefore, bypassing any subtleties that 
will arise when considering extensions or restrictions of order continuous linear functionals, the triviality of 
the order continuous duals of a particular vector lattice E of continuous functions is, when obtained from 
the above theorem, inherited by all its superlattices F of continuous functions.

We shall now combine the remainder of the discussion with an overview of the paper.
In Section 2, we introduce basic notation and establish a few auxiliary results on the role of the count-

able chain condition and isolated points regarding order continuous duals of vector lattices of continuous 
functions. The core statement of the main triviality theorem above is that the order continuous dual of E
is trivial, but if X satisfies the countable chain condition then the order continuous dual and the σ-order 
continuous dual coincide. Hence the σ-order continuous dual is then also trivial.

Section 3 contains the proof of the main triviality theorem above.
It is clear from the main triviality theorem that attention should be paid to resolvable spaces, and this 

is the topic of Section 4. It is easy to see that a non-empty resolvable topological space has no isolated 
points. Indeed, if X is resolvable and x ∈ X is such that {x} is an open subset of X, then {x} ∩D �= ∅ and 
{x} ∩ (X \D) �= ∅, so that x ∈ D as well as x ∈ X \D. If X avoids this obstruction by having no isolated 
points, then it is known to be resolvable in a number of cases: if X is a metric space (see [9, Theorem 41] and 
[3, Theorem 3.7]), if X is a locally compact Hausdorff space (see [3, Theorem 3.7]), if X is first countable 
(see [9, Corollary to Theorem 48]), if X is a regular Hausdorff countably compact topological space (see [3, 
Theorem 6.7]), and, if one assumes the Axiom of Constructibility, i.e. if one assumes that ‘V = L’, then 
this is also true if X is a Baire topological space (see [3, Theorem 7.1]). For a useful application of the main 
triviality theorem, however, it is needed that X has a resolving subset that can be decomposed as 

⋃
n∈N Γn, 

in such a manner that the Γn are ‘naturally’ related to the topology of X and to separation properties of 
E. The proofs in the papers just cited give no information about this being true or not in the generality of 
the pertaining result, but Section 4 shows that this is indeed the case in a number of reasonably familiar 
situations. The Γn in that section are typically closed nowhere dense subsets of X, and in that case the 
requirement under (2) in the theorem above specialises to a (mild) separation property for points and closed 
nowhere dense subsets.

In Section 5, the material from Section 4 on resolvable spaces and the preparatory results from Section 2
are combined with the main triviality theorem from Section 3. We thus obtain results on the triviality of 
order continuous duals in a number of not uncommon contexts. It is our hope that the results in this section 
are accessible without knowledge of the rest of the paper, apart from an occasional glance at Section 2 for 
notations and definitions.

In Section 6, the triviality of the order continuous duals of two common vector lattices of continuous 
functions, as established in Section 5, is interpreted in measure-theoretic terms. The order continuous linear 
functionals on these two vector lattices of continuous functions correspond to so-called normal measures 
on certain (σ-)algebras of subsets of the underlying topological space. Hence the triviality of the order 
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continuous duals can be interpreted as the absence of non-zero normal measures. We do not claim to give 
a complete overview here, and any omission in this section is entirely unintentional.

2. Preliminaries

In this section, we first introduce some notations and conventions. After that, we collect a few facts about 
the countable chain condition for a topological space and its relation with order continuous duals of vector 
lattices of continuous functions, and about the role of isolated points for order continuous duals of such 
vector lattices. In Section 5, these facts will be combined with the main triviality result from Section 3 and 
the material on resolvable spaces in Section 4.

We set N := {1, 2, 3, . . .}.
All vector spaces are over the real numbers, unless otherwise specified. If E is a vector lattice, then E∼

denotes its order dual. As in [20, p. 123], ϕ ∈ E∼ is called σ-order continuous if inf{ |ϕ(fn)| : n ∈ N } = 0
whenever (fn) is a sequence in E such that fn ↓ 0 in E, and, as already mentioned in Section 1, ϕ is called 
order continuous if inf{ |ϕ(fi)| : i ∈ I } = 0 whenever (fi)i∈I is a net in E such that fi ↓ 0 in E. We denote 
the σ-order continuous linear functionals on E and the order continuous linear functionals on E by E∼

c and 
E∼

n , respectively. Obviously, E∼
n ⊆ E∼

c . Furthermore, if ϕ ∈ E∼, then, by [20, Lemma 84.1], ϕ ∈ E∼
c if and 

only if ϕ+ ∈ E∼
c and ϕ− ∈ E∼

c , and ϕ ∈ E∼
n if and only if ϕ+ ∈ E∼

n and ϕ− ∈ E∼
n .

A topological space will simply be called a space. There are no implicit general suppositions concerning 
our spaces. A T1 space is a space in which singletons are closed subsets. An isolated point of a space is a 
point such that the corresponding singleton is an open subset. For a space X and a point x ∈ X, we let 
Vx denote the collection of open neighbourhoods of x in X. The closure of a subset A of X is denoted by 
A. If X is a space, then 0 denotes the function on X that is identically zero, and 1 denotes the function 
on X that is identically one. If f is a continuous function on a space X, we denote by Z(f) the zero 
set of f ; i.e. Z(f) := { x ∈ X : f(x) = 0 }. When we speak of a vector lattice of continuous functions
on a space X, we shall always suppose that the partial ordering and the lattice operations are pointwise. 
We let C(X), Cb(X), C0(X), and Cc(X) denote the vector lattices of the continuous functions on X, 
the bounded continuous functions on X, the continuous functions on X that vanish at infinity, and the 
compactly supported continuous functions on X, respectively. If X is a metric space, then Lipb(X) denotes 
the bounded Lipschitz functions on X. This is likewise a vector lattice of continuous functions; see e.g. [19, 
Proposition 1.5.5].

We recall that a space is a Baire space if the intersection of an at most countably infinite collection 
of dense open subsets is dense as well. Equivalently, a space is a Baire space if the union of an at most 
countably infinite collection of closed nowhere dense subsets has empty interior. Complete metric spaces 
and locally compact Hausdorff spaces are Baire spaces; there exist metrizable Baire spaces which are not 
completely metrizable.

We now turn to the countable chain condition and its relation with order continuous duals of vector 
lattices of continuous functions.

Definition 2.1. A space X is said to satisfy the countable chain condition, or to satisfy CCC, if every collection 
of non-empty pairwise disjoint open subsets of X is at most countably infinite.

We include the short proof of the following folklore result for the convenience of the reader.

Lemma 2.2. Every separable space satisfies CCC.

Proof. Suppose that X is a separable space with a (possibly finite) dense subset D = { dn : n ∈ N }. 
Consider a collection C of non-empty pairwise disjoint open subsets of X. Since D is dense in X, it follows 
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that U ∩D �= ∅ for every U ∈ C. For each U ∈ C, let nU = min{ n ∈ N : dn ∈ U }. Since the members of C
are pairwise disjoint, it follows that the map that sends C ∈ C to nU ∈ N is injective. Hence C is at most 
countably infinite. �

We recall that a vector lattice E is order separable if every subset of E that has a supremum contains an 
at most countably infinite subset that has the same supremum.

For Archimedean vector lattices, there are several equivalent alternate characterisations of order separa-
bility available; see [13, Theorem 29.3]. One of these is the property that every subset of E+ that is bounded 
from above and that consists of pairwise disjoint elements is at most countably infinite. It is this property 
that is used to establish the following result, which is a rather obvious generalisation of [5, Theorem 10.3 (i)]. 
We include the short proof for the sake of completeness.

Lemma 2.3. Let X be a non-empty space that satisfies CCC. Then every vector lattice of continuous functions 
on X is order separable.

Proof. It is clearly sufficient to prove that C(X) is order separable. Suppose that G ⊆ C(X)+ \ {0} is 
bounded from above and that it consists of pairwise disjoint elements. It is sufficient to prove that every 
such G is at most countably infinite. For each v ∈ G, the set Uv = X \Z(v) is open and non-empty. Since G
consists of pairwise disjoint elements, Uv1 ∩ Uv2 = ∅ if v1, v2 ∈ G are different. This implies that Uv1 �= Uv2

if v1, v2 ∈ G are different. Consequently, the map that sends v ∈ G to Uv is a bijection between G and 
UG = { Uv : v ∈ G }. Since UG consists of non-empty pairwise disjoint open subsets of X, and since X
satisfies CCC, UG is at most countably infinite. Hence the same holds for G. �

If E is an order separable vector lattice, then E∼
n = E∼

c ; see [20, Theorem 84.4 (i)]. Combining this with 
Lemmas 2.2 and 2.3 we have the following.

Proposition 2.4. Let X be a non-empty space, and let E be a vector lattice of continuous functions on X. If 
X satisfies CCC (in particular, if X is separable), then E∼

n = E∼
c .

We conclude with a result pointing out the special role of isolated points for order continuous duals of vec-
tor lattices of continuous functions, which the reader may readily verify upon noting that the characteristic 
function of an isolated point is continuous.

Lemma 2.5. Let X be a space that has an isolated point x0, and suppose that E is a vector lattice of 
continuous functions on X that contains the characteristic function χ{x0} of {x0}. Define the evaluation 
map δx0 : E → R by setting δx0(f) := f(x0). Then {0} �= {δx0} ⊆ (E∼

n )+ ⊆ (E∼
c )+.

3. Main triviality theorem

The following result is the technical heart of the current paper. The proof is ultimately inspired by ideas 
in [21, Example 21.6 (ii)], where it is established that C([0, 1])∼c = {0}.

Theorem 3.1. Let X be a non-empty space, and let E be a vector lattice of continuous functions on X. 
Suppose that there exists an at most countably infinite collection { Γn : n ∈ N } of non-empty subsets of X
such that

(1)
⋃

n∈N Γn resolves X, and
(2) for every x ∈ X \

⋃
n∈N Γn and every k ∈ N, there exists an element u of E+ such that u(x) = 1 and 

u(y) = 0 for all y ∈ Γk.
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Then E∼
n = {0}.

If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then also E∼
c = {0}.

Proof. As a preparatory reduction, we note that we may (and shall) assume that also Γ1 ⊆ Γ2 ⊆ Γ3 ⊆ · · · . 
Indeed, for n ∈ N, set Γ̃n :=

⋃n
j=1 Γj . Then 

⋃
n∈N Γ̃n =

⋃
n∈N Γn resolves X. If the point x is such that 

x ∈ X \
⋃

n∈N Γ̃n = X \
⋃

n∈N Γn, then, for each j ∈ N, there exists ujx ∈ E+ such that ujx(x) = 1 and 
ujx(y) = 0 for all y ∈ Γj . For k ∈ N, set ukx :=

∧k
j=1 ujx. Then ukx ∈ E+, ukx(x) = 1, and ukx(y) = 0 for 

all y ∈ Γ̃k. Hence we may replace the Γn with the Γ̃n, and the latter form a non-decreasing chain.
After this reduction, we start with the triviality of E∼

n .
Arguing by contradiction, suppose that E∼

n �= {0}. Then there exist ϕ ∈ E∼
n and e ∈ E such that ϕ ≥ 0, 

e ≥ 0, and ϕ(e) = 1. Choose and fix such ϕ and e for the remainder of the proof.
The first step of the proof consists of introducing an auxiliary set function on the power set of X, as 

follows.
For every n ∈ N and every subset A of X, set

ρn(A) :=
{

1 if A ∩ Γn �= ∅;
0 if A ∩ Γn = ∅,

and set

ρ(A) =
∞∑

n=1

1
2n ρn(A).

Since 
⋃

n∈N Γn is dense in X, it follows that ρ(U) > 0 for every non-empty open subset U of X. Furthermore, 
ρ : 2X → [0, 1] is monotone. Both these properties are essential in the sequel of the proof; we shall encounter 
a similar auxiliary function on the non-empty open subsets of a space in Proposition 4.14.

The second step of the proof consists of constructing elements of E that are indexed by m ∈ N and that 
are suitably related to the Γn, to ρ, and to ϕ. We shall use the order continuity of ϕ here. The construction 
of these elements, which will be denoted by ṽmFm

below, is as follows.
Fix m ∈ N. We choose and fix Nm ∈ N such that

∞∑
n=Nm+1

1
2n ≤ 1

m
,

and set

Am = X \ ΓNm
. (3.1)

Due to the non-decreasing nature of the chain { Γn : n ∈ N }, we have

ρ(Am) ≤
∞∑

n=Nm+1

1
2n ≤ 1

m
. (3.2)

Let x be an arbitrary element of the non-empty set X \
⋃

n∈N Γn. As a consequence of the second part of 
the hypotheses and the fact that e(x) ≥ 0, there exists umx ∈ E+ such that umx(x) = e(x) and umx(y) = 0
for all y ∈ ΓNm

. Set vmx := e ∧ umx. Then vmx ∈ E, and
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0 ≤ vmx ≤ e,

vmx(x) = e(x),

vmx(y) = 0 for all y ∈ ΓNm
.

(3.3)

Denote by F the collection of non-empty finite subsets of X \
⋃

n∈N Γn. Then F is non-empty, since it 
contains the singletons {x} for all x ∈ X \

⋃
n∈N Γn. We introduce a partial ordering on F by inclusion; it 

is then directed. For F ∈ F , set ṽmF :=
∨

x∈F vmx ∈ E. With m still fixed, the subset { ̃vmF : F ∈ F } of 
E is obviously upward directed. Furthermore, (3.3) implies that, for all F ∈ F ,

0 ≤ ṽmF ≤ e,

ṽmF (x) = e(x) for all x ∈ F,

ṽmF (y) = 0 for all y ∈ ΓNm
.

(3.4)

We see from (3.4) that e is an upper bound of { ̃vmF : F ∈ F } in E. We claim that actually ṽmF ↑ e

in E. To see this, let f ∈ E be an upper bound of { ̃vmF : F ∈ F } in E. For every x ∈ X \
⋃

n∈N Γn, 
taking F = {x} ∈ F in (3.4) shows that f(x) ≥ ṽm{x}(x) = e(x). Since X \

⋃
n∈N Γn is dense in X, and 

since the elements of E are actually continuous (which has not been used so far), it follows that f ≥ e. This 
establishes our claim that ṽmF ↑ e in E.

By the order continuity of ϕ, it follows that ϕ(e − ṽmF ) ↓ 0. Therefore, we can choose and fix Fm ∈ F
such that

ϕ(e− ṽmFm
) < 1

2m+1 . (3.5)

In the third step of the proof, we combine the ṽmFm
as they have been found for all m ∈ N, as follows. 

For each k ∈ N, set

wk :=
k∧

m=1
ṽmFm

. (3.6)

Then (wk) is decreasing and bounded below by 0. We claim that actually wk ↓ 0 in E. To see this, suppose 
that w ∈ E is such that w ≤ wk for all k ∈ N. Then w+ ≤ wk for all k ∈ N. Fix k ∈ N. If x ∈ X is such 
that w+(x) > 0, then (3.6) shows that certainly ṽkFk

(x) > 0. In view of (3.4), we must then have x /∈ ΓNk
, 

or, equivalently (see (3.1)), we must have x ∈ Ak. We conclude that { x ∈ X : w+(x) > 0 } ⊆ Ak. Since 
ρ is monotone, we have ρ({ x ∈ X : w+(x) > 0 }) ≤ ρ(Ak). An appeal to (3.2) allows us to conclude that 
ρ({ x ∈ X : w+(x) > 0 }) ≤ 1/k. Since this holds for all k ∈ N, we see that ρ({ x ∈ X : w+(x) > 0 }) = 0. 
As ρ is strictly positive on non-empty open subsets of X, it follows that { x ∈ X : w+(x) > 0 } = ∅; here we 
use the continuity of elements of E again. Hence w+ = 0, and then w ≤ 0. This establishes our claim that 
wk ↓ 0 in E.

In the fourth and final step of the proof, we use the wk and the order continuity of ϕ to reach a 
contradiction, as follows.

Since wk ↓ 0 in E, we have ϕ(wk) ↓ 0. On the other hand, using that e − ṽmFm
∈ E+ for all m ∈ N, we 

note that, for all k ∈ N,

e− wk = e−
k∧

m=1
ṽmFm

=
k∨

(e− ṽmFm
)

m=1
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≤
k∑

m=1
(e− ṽmFm

).

Since ϕ ≥ 0, (3.5) therefore yields that, for all k ∈ N,

ϕ(e− wk) ≤
k∑

m=1
ϕ(e− ṽmFm

)

<
k∑

m=1

1
2m+1

<
1
2 .

Since ϕ(e) = 1, it follows that

ϕ(wk) >
1
2

for all k ∈ N. This contradicts the fact that ϕ(wk) ↓ 0, and we conclude that we must have E∼
n = {0}.

The second part of the statement follows from the first part and Proposition 2.4. �
4. Resolvable spaces

In view of Theorem 3.1, it is clearly desirable to seek resolving subsets of resolvable spaces that can 
be decomposed into at most countably infinitely many components that relate naturally to continuous 
functions. The present section is devoted to such results.

It was already observed in Section 1 that a non-empty resolvable space has no isolated points, and we 
collect a second elementary results for future reference.

Lemma 4.1. If X is a resolvable non-empty T1 space, then every resolving subset of X is infinite.

Proof. Suppose that X is a non-empty T1 space and that D ⊆ X resolves X. If D is finite, then D is a 
closed subset of X, so that X = D = D. But then X = X \D = ∅, which is not the case. �

The remainder of this section is divided into four (non-disjoint) parts, covering separable spaces, metric 
spaces, topological vector spaces, and locally connected Baire spaces, respectively.

4.1. Separable spaces

The simplest examples of resolvable spaces that have a resolving subset with a ‘good’ decomposition are 
obviously the spaces that have an at most countably infinite resolving subset. In that case, the components 
of the resolving subset as in part (1) of Theorem 3.1 can simply be taken to be singletons. Clearly, the space 
is then separable, and in a number of cases this is also sufficient.

Proposition 4.2. Let X be a separable space. If X has the property that every non-empty open subset is 
uncountable, then every at most countably infinite dense subset of X resolves X.

Proof. Since the resolving subsets of a space are the dense subsets with empty interior, this is clear. �
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Proposition 4.2 applies to a number of spaces of practical interest. For example, non-empty differentiable 
manifolds (which are second countable by definition) and non-empty open subsets of separable real or 
complex topological vector spaces have an at most countably infinite resolving subset. We shall have more 
to say about not necessarily separable real and complex topological vector spaces in Section 4.3.

We continue with another category of spaces with a countable resolving subset. It covers e.g. non-empty 
separable complete metric spaces and non-empty separable locally compact Hausdorff spaces, in both cases 
without isolated points.

Proposition 4.3. Let X be a non-empty separable Baire T1 space that has no isolated points. Choose an at 
most countably infinite dense subset D of X. Then D is actually countably infinite, and D resolves X.

Proof. Since X is a T1 space that has no isolated points, the sets X \ {x} are open and dense in X for all 
x ∈ X. Since X is a Baire space, 

⋂
x∈D X \ {x} = X \D is dense in X. Hence D resolves X. Lemma 4.1

shows that D is infinite. �
In the proof of Theorem 5.1 we shall need the final statement of the following result, which is [10, Lemma 

3.12]. The proof of [10, Lemma 3.12], however, actually shows that the first statement is true, and it seems 
worthwhile to record this.

Lemma 4.4. Let X be a resolvable space, and suppose that the subset D of X is dense in X. Then there 
exists a subset of D that resolves X. In particular, if X is resolvable and separable, then there exists an at 
most countably infinite subset of X that resolves X.

4.2. Metric spaces

A little bit more complicated than the case where the components of a resolving subset are singletons as 
in Section 4.2, is the case where these components are closed nowhere dense subsets. The present section 
contains such results in the context of metric spaces; Section 4.3 covers real and complex topological vector 
spaces, and Section 4.4 deals with locally connected Baire spaces.

The following result applies to non-empty complete metric spaces that have no isolated points. We recall, 
however, that there are metrizable Baire spaces which are not completely metrizable.

Proposition 4.5. Let X be a non-empty metric Baire space that has no isolated points. Then there exist an 
at most countably infinite collection { Γn : n ∈ N } of closed nowhere dense subsets of X such that 

⋃
n∈N Γn

resolves X.

Proof. The proof of [7, Lemma on p. 249] shows that there exist closed nowhere dense subsets Γ1, Γ2, Γ3, . . .
of X such that 

⋃
n∈N Γn is dense in X. Since X is a Baire space, 

⋃
n∈N Γn has empty interior, i.e. X\

⋃
n∈N Γn

is dense in X. Hence 
⋃

n∈N Γn resolves X. �
Euclidean n-space falls within the scope of Proposition 4.2, so that it has a very simple suitably decom-

posable resolving subset. A more complicated resolving subset that is still suitably decomposable could be 
obtained by taking the union of all metric spheres

Sr(0) = {x ∈ Rn : ‖x‖ = r }

with radii r in a given countably infinite dense subset of (0, ∞) and centred at 0. The following result shows 
that this idea can also be used in a number of (not necessarily separable) metric spaces.
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Proposition 4.6. Let X be a locally connected metric space with metric d(·, ·). Suppose that X contains at 
least two points. For x0 ∈ X, set Br(x0) := { x ∈ X : d(x0, x) < r } and Sr(x0) = { x ∈ X : d(x0, x) = r }
for r > 0, and let Dx0 = { d(x0, x) : x ∈ X }.

Suppose that there exists a point x0 ∈ X such that

(1) Br(x0) = { x ∈ X : d(x0, x) ≤ r } for every r > 0, and
(2) Dx0 is connected in R.

If D ⊆ Dx0 \ {0} is non-empty and dense in Dx0 (such D exist), then 
⋃

r∈D Sr(x0) is dense in X, and if 
D̃ ⊆ Dx0 \ {0} is countably infinite and dense in Dx0 (such D̃ exist), then 

⋃
r∈D̃ Sr(x0) resolves X.

For all r > 0, the subset Sr(x0) of X is a closed nowhere dense subset of X.

Proof. Since X contains at least two points, it follows from the second assumption that Dx0 is an interval 
of the form [0, M ] or [0, M) for some M > 0, or equal to [0, ∞). Since Dx0 does not reduce to {0}, sets D
and D̃ as in the statement quite obviously exist.

Clearly, Sr(x0) is closed for all r > 0. Furthermore, the first part of the hypotheses implies that, for 
r > 0, Sr(x0) = Br(x0) \Br(x0). Hence Sr(x0) has empty interior for all r > 0, so that it is indeed a closed 
nowhere dense subset of X.

Suppose that D ⊆ Dx0 \ {0} is dense in Dx0 . We shall show that 
⋃

r∈D Sr(x0) is dense in X.
Suppose that this were not the case. Then there exists a non-empty connected open subset U of X such 

that U ∩ Sr(x0) = ∅ for every r ∈ D. Consider any r ∈ D. Since { d(x0, x) : x ∈ U } is connected in R, but 
does not contain r, we have either d(x0, x) < r for all x ∈ U , or d(x0, x) > r for all x ∈ U .

Choose and fix a point x1 ∈ U . From what we have just seen, if x ∈ U is arbitrary, then d(x0, x) < r

whenever r ∈ D is such that d(x0, x1) < r, and d(x0, x) > r whenever r ∈ D is such that d(x0, x1) > r.
If d(x0, x1) is an interior point of Dx0 \{0}, then, by the density of D in Dx0 \{0}, there exists a sequence 

(rn) in D such that rn ↓ d(x0, x1). From what we have just observed, it follows that d(x0, x) ≤ rn for all 
x ∈ U and all n ∈ N. Hence d(x0, x) ≤ d(x0, x1) for all x ∈ U . Similarly, using a sequence (rn) in D such 
that rn ↑ d(x0, x1), we have d(x0, x) ≥ d(x0, x1) for all x ∈ U . We conclude that U ⊆ Sd(x0,x1)(x0). This set, 
however, has empty interior. This contradiction shows that d(x1, x0) is not an interior point of Dx0 \ {0}.

If d(x0, x1) = 0, then consideration of a sequence in D that decreases to 0 shows that d(x0, x) = 0 for all 
x ∈ U . That is, U = {x0}. This, however, implies that {x0} is isolated in Dx0 , which is not the case. This 
contradiction shows that d(x0, x1) �= 0.

If Dx0 is an interval of the form [0, M) for some M > 0, or equal to [0, ∞), then all possibilities for d(x0, x1)
have now been exhausted, and this final contradiction concludes the proof of the density of 

⋃
r∈D Sr(x0) in 

X in these two cases.
If Dx0 = [0, M ] for some M > 0, we still have to consider the possibility that d(x0, x1) = M . Using a 

sequence in D that increases to M then shows that d(x0, x) ≥ M for all x ∈ U . Since the reverse inequality 
is obviously also satisfied, we find U ⊆ SM (x0), which is again impossible. This exhausts all possibilities for 
d(x0, x1) if Dx0 = [0, M ] for some M > 0, and this final contradiction completes the proof of the density of ⋃

r∈D Sr(x0) in X also in the case where Dx0 = [0, M ] for some M > 0.
We turn to the statement concerning D̃. Suppose that D̃ ⊆ Dx0 \ {0} is countably infinite and dense in 

Dx0 . Then 
⋃

r∈D̃ Sr(x0) is dense in X by what we have just shown. On the other hand, since non-empty 

open subsets of Dx0 are uncountable, (Dx0 \ {0})\D̃ is also dense in Dx0 . Again by what we have just shown, ⋃
r∈

(
Dx0\{0}

)
\D̃ Sr(x0) is dense in X. Since evidently X \

⋃
r∈D̃ Sr(x0) = {x0} ∪

⋃
r∈

(
Dx0\{0}

)
\D̃ Sr(x0), we 

see that X \
⋃

r∈D̃ Sr(x0) is dense in X.
Hence 

⋃
r∈D̃ Sr(x0) resolves X. �
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4.3. Topological vector spaces

The idea of working with metric spheres in Proposition 4.6 can be adapted to the context of real and 
complex topological vector spaces, where a metric sphere with radius r > 0 is replaced with r(U \ U) for a 
suitable open neighbourhood U of 0. Our final result in this vein is Theorem 4.10, and we start with the 
necessary preparations.

Lemma 4.7. Let X be a (not necessarily Hausdorff ) real or complex topological vector space, and let U be a 
balanced open neighbourhood of 0 in X. Set W :=

⋂
r>0 rU . Then W is invariant under scalar multiplication.

Proof. Consider x ∈ W and a scalar α. Fix r > 0. Since x ∈ W , it follows that

x ∈ r
1+|α|U.

Then

αx ∈ αr
1+|α|U = r

(
α

1+|α|U
)
.

Since U is balanced, we have α
1+|α|U ⊆ U . Hence αx ∈ rU . Since r > 0 is arbitrary, it follows that 

αx ∈ W . �
Lemma 4.8. Let X be a (not necessarily Hausdorff ) real or complex topological vector space, and suppose that 
U is a balanced convex open neighbourhood of 0. If r1, r2 ∈ (0, ∞) are such that r1 �= r2, then r1

(
U \ U

)
∩

r2
(
U \ U

)
= ∅.

Proof. Consider the Minkowski functional associated with U , given by

μU (x) = inf{ t > 0 : x ∈ tU }.

Since U is balanced, convex, and absorbing, [15, Theorem 1.35 (c)] shows that μU is a seminorm. Further-
more, since U is an open subset of X, the proof of [15, Theorem 1.36] shows that μU is continuous, and 
that

U = {x ∈ X : μU (x) < 1 }. (4.1)

Suppose now that r1, r2 ∈ (0, ∞) are such that r1 < r2, and suppose that x ∈ r1
(
U \ U

)
∩ r2

(
U \ U

)
. 

Then there exist x1, x2 ∈ U \ U such that r1x1 = x = r2x2. By the continuity of μU and (4.1), we have 
μU (x1) ≤ 1. Since x2 = r1

r2
x1, we see that μU (x2) = r1

r2
μU (x1) < 1. Then (4.1) implies that x2 ∈ U , which 

is a contradiction. �
Proposition 4.9. Let X be a (not necessarily Hausdorff ) real or complex topological vector space such that 0
has an open neighbourhood that is not the whole space. Suppose that U is a balanced open neighbourhood of 
X such that U − U �= X (such U exist), and suppose that S ⊆ (0, ∞) is dense in (0, ∞).

Then 
⋃

r∈S r
(
U \ U

)
is dense in X, and, for all r > 0, the set r

(
U \ U

)
is a closed nowhere dense subset 

of X.

Proof. There exists an open neighbourhood W of 0 such that W �= X, and then the continuity of the vector 
space operations implies that there exists an open neighbourhood U of 0 such that U − U ⊆ W . Since U
contains a balanced open neighbourhood of 0 (see e.g. [17, Theorem 3.1 (3.5)]), we may suppose that U is 
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balanced. This establishes the existence of balanced open neighbourhoods U of 0 such that U −U �= X. We 
choose and fix one such U .

For each r > 0, let

Γr = rU \ rU = r(U \ U).

Each Γr is a closed nowhere dense subset of X. We need to show that⋃
r∈S

Γr is dense in X. (4.2)

Suppose that (4.2) were false. Note that X, being a topological vector space, is locally connected. Therefore, 
in that case, there exists a non-empty connected open subset V of X such that

V ∩ Γr = ∅

for all r ∈ S. That is,

V ⊆ (rU) ∪ (X \ rU)

for all r ∈ S. Since V is connected, it follows that, for all r ∈ S,

either V ⊆ rU or V ⊆ X \ rU. (4.3)

As U is an open neighbourhood of 0 and S is dense in (0, ∞), there exists r ∈ S such that V ∩ rU �= ∅. 
Hence (4.3) shows that

{ r ∈ S : V ⊆ rU } �= ∅, (4.4)

which enables us to set

R = inf{ r ∈ S : V ⊆ rU }.

Consider r1, r2 ∈ (0, ∞) such that r1 < r2. Since U is balanced, we have r1U ⊆ r2U . Combining this with 
the density of S in (0, ∞), we see that V ⊆ rU for all r > R. If R > 0 (as we shall demonstrate in a 
moment), then, using (4.3) and the density of S ∩ (0, R) in (0, R), we also see that V ⊆ X \ rU for all 
r ∈ (0, R).

We show that R �= 0. Arguing by contradiction, suppose that R = 0. From what we have just observed, 
it then follows that V ⊆

⋂
r>0 rU , so that

V − V ⊆
⋂
r>0

rU −
⋂
r>0

rU.

Since V − V is a neighbourhood of 0, we conclude that 
⋂

r>0 rU −
⋂

r>0 rU is absorbing. Then Lemma 4.7
implies that 

⋂
r>0 rU −

⋂
r>0 rU = X, so that certainly U −U = X. This contradiction with our choice for 

U shows that R > 0.
We claim that

V ⊆ RU. (4.5)
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To see this, consider x ∈ V . We know that x/r ∈ U for every r ∈ (R, ∞). Since x/r converges to x/R as 
r ↓ R, we see that x/R ∈ U . Hence x ∈ RU .

We claim that

V ⊆ X \RU. (4.6)

To see this, consider x ∈ RU , so that x = RxR for some xR ∈ U . We know that V ⊆ X \ rU ⊆ X \ rU

for all r ∈ (0, R). Hence rU ⊆ X \ V for all r ∈ (0, R), so that rxR ∈ X \ V for all r ∈ (0, R). Since rxR

converges to RxR = x as r ↑ R, we see that x ∈ X \ V . This establishes (4.6).
It follows from (4.5) and (4.6) that V ⊆ RU \RU , contradicting the fact that RU \RU has empty interior. 

Hence (4.2) must hold. �
Theorem 4.10. Let X be a (not necessarily Hausdorff ) real or complex topological vector space, and let S be 
a countably infinite dense subset of (0, ∞).

If X is a Baire space and 0 has an open neighbourhood that is not the whole space, let U be a balanced 
open neighbourhood of 0 such that U − U �= X (such U exist).

If 0 has a convex open neighbourhood that is not the whole space, let U be a balanced convex open 
neighbourhood of X such that U − U �= X (such U exist).

Then, in both cases, 
⋃

r∈S r
(
U \ U

)
resolves X and, for all r > 0, the set r

(
U \ U

)
is a closed nowhere 

dense subset of X.

Proof. We start with the case where X is a Baire space and 0 has an open neighbourhood that is not the 
whole space. Proposition 4.9 then shows that there exists a balanced open neighbourhood U of 0 such that 
U − U �= X and that, for any such U , 

⋃
r∈S r

(
U \ U

)
is dense in X. It also asserts that, for all r > 0, the 

set r
(
U \ U

)
is a closed nowhere dense subset of X. Since X is a Baire space and the set r

(
U \ U

)
is a 

closed nowhere dense subset of X for each r > 0, it is immediate that X \
⋃

r∈S r
(
U \ U

)
is also dense in 

X. Hence 
⋃

r∈S r
(
U \ U

)
resolves X.

We turn to the case where 0 has a convex open neighbourhood W that is not the whole space. An 
appeal to [15, Theorem 1.14 (b)] shows that there exists a balanced convex open neighbourhood U such 
that U ⊆ 1

2W ; although the result referred to is stated in a context where X is Hausdorff, the proof makes 
no use of this fact. Then U − U = U + U since U is balanced, and U + U ⊆ 1

2W + 1
2W ⊆ W since W is 

convex. We have thus established the existence of a balanced convex open neighbourhood U of 0 such that 
U − U �= X.

If U is any such open neighbourhood of 0, then Proposition 4.9 shows again that 
⋃

r∈S r
(
U \ U

)
is dense 

in X and that, for all r > 0, the set r
(
U \ U

)
is a closed nowhere dense subset of X. In addition, Lemma 4.8

implies that

X \
⋃
r∈S

r
(
U \ U

)
⊇

⋃
r∈(0,∞)\S

r
(
U \ U

)
.

Since S is countably infinite, (0, ∞) \ S is also dense in (0, ∞). Proposition 4.9 therefore also shows 
that 

⋃
r∈(0,∞)\S r

(
U \ U

)
is dense in X, and then this is certainly true for X \

⋃
r∈S r

(
U \ U

)
. Hence ⋃

r∈S r
(
U \ U

)
resolves X. �

4.4. Locally connected Baire spaces

This section serves as a preparation for Section 5.4, where we shall consider the triviality of the order 
continuous duals of vector lattices of continuous functions on locally connected Baire spaces.
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The first main result of this section is Proposition 4.14, which can be viewed as defining and describing the 
support of an order continuous linear functional on a sufficiently rich vector lattice of continuous functions 
on a T1 space without isolated points. Here the space does not yet need to be a Baire space.

The second main result of this section is Proposition 4.15, stating that a non-empty locally connected T1
Baire space admits a resolving set of the form 

⋃
n∈N Γn, where each Γn is a closed nowhere dense subset 

of X, provided that E∼
n contains a strictly positive order continuous linear functional for a sufficiently rich 

vector lattice E of continuous functions on X.
We start with some preparatory results.

Lemma 4.11. Let X be a space, and let x0 be a point in X that is not isolated. Let E be a vector lattice of 
continuous functions on X, and suppose that S ⊆ E+ has the property that, for every x �= x0 in X, there 
exists fx ∈ S such that fx(x) = 0. Then inf S = 0 in E.

Proof. Suppose that g ∈ E is such that g ≤ f for all f ∈ S. Then g ≤ fx for all x �= x0 in X, so that 
g(x) ≤ 0 for all x �= x0 in X. If g(x0) > 0, then there is an open neighbourhood of x0 on which g is strictly 
positive. Since x0 is not isolated, this neighbourhood contains a point x1 that is different from x0. In that 
case, however, we already know that g(x1) ≤ 0, contradicting that g(x1) > 0. Hence g(x0) ≤ 0, and we see 
that g ≤ 0. Since 0 is a lower bound for S, we conclude that inf S = 0 in E. �
Proposition 4.12. Let X be a space, and let x0 be a point in X that is not isolated. Let E be a vector lattice 
of continuous functions on X with the property that, for every x �= x0 in X, there exists fx ∈ E+ such that 
fx(x) = 0 and fx(x0) = 1.

Suppose that (fi)i∈I ⊆ E+ is an order bounded net in E with the property that, for every U ∈ Vx0 , there 
exists iU ∈ I such that X \ Z(fi) ⊆ U for all i ≥ iU .

Then there exists an order bounded net (gj)j∈J ⊆ E+ such that gj ↓ 0 in E and with the property that, 
for all j0 ∈ J , there exists i0 ∈ I such that 0 ≤ fi ≤ gj0 for all i ≥ i0.

Consequently, if ϕ ∈ (E∼
n )+, then inf{ ϕ(fi) : i ∈ I } = 0.

Proof. Choose and fix an upped bound u for (fi)i∈I in E+. Set

J = { j ∈ E+ : j ≤ u and there exists i0 ∈ I such that j ≥ fi for all i ≥ i0 }.

Then u ∈ J , so that J �= ∅. We introduce a partial order on J by saying that, for j1, j2 ∈ J , j1 � j2 in J
if j1 ≤ j2 in E. We claim that J is directed. Indeed, suppose that j1 ∈ J and i1 ∈ I are such that j1 ≥ fi
for all i ≥ i1, and that j2 ∈ J and i2 ∈ I are such that j2 ≥ fi for all i ≥ i2. There exists i3 ∈ I such that 
i3 ≥ i1 and i3 ≥ i2, and then j1 ∧ j2 ≥ fi for all i ≥ i3. Since also 0 ≤ j1 ∧ j2 ≤ u, we see that j1 ∧ j2 ∈ J . 
The inequalities j1 ∧ j2 � j1 and j1 ∧ j2 � j2 in J then show that J is directed.

Consider the net (gj)j∈J in E+ that is defined by gj := j for j ∈ J . It is clear that this net is order 
bounded and decreasing. We claim that actually gj ↓ 0 in E. To see this, we shall employ Lemma 4.11. 
Fix x1 �= x0. Then there exists fx1 ∈ E+ such that fx1(x1) = 0 and fx1(x0) = 1. The subset U =
{ x ∈ X : fx1(x) > 1

2 and u(x) < u(x0) + 1 } of X is an open neighbourhood of x0, so, by assumption, 
there exists iU ∈ I such that { x ∈ X : fi(x) �= 0 } ⊆ U for all i ≥ iU . If i ≥ iU and x ∈ U , then 
2(u(x0) + 1)fx1(x) > u(x0) + 1 > u(x) ≥ fi(x), and trivially 2(u(x0) + 1)fx1(x) ≥ 0 = fi(x) for all i ≥ iU
and x /∈ U . Hence 2(u(x0) + 1)fx1 ≥ fi for all i ≥ iU . Then also [2(u(x0) + 1)fx1 ] ∧ u ≥ fi for all i ≥ iU , 
and we conclude that [2(u(x0) + 1)fx1 ] ∧ u ∈ J .

Since g[2(u(x0)+1)fx1 ]∧u(x1) = ([2(u(x0) + 1)fx1 ] ∧ u)(x1) = [2(u(x0) + 1)fx1(x1)] ∧ u(x1) = 0 ∧ u(x1) = 0, 
and since x1 is an arbitrary point in X differing from x0, Lemma 4.11 shows that inf{ gj : j ∈ J } = 0 in 
E. Hence gj ↓ 0 in E, as claimed.
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If j0 ∈ J is given, then by the very definition of J there exists i0 ∈ I such that 0 ≤ fi ≤ j0 = gj0 for all 
i ≥ i0.

We have thus established the existence of a net (gj)j∈J with the required properties.
The final statement of the proposition is clear since ϕ(gj) ↓ 0 for ϕ ∈ (E∼

n )+. �
Remark 4.13. The net (fi)i∈I in Proposition 4.12 converges in order to 0 in E in the sense of [1, Defini-
tion 1.18]. If we knew E to be Dedekind complete, then [1, Lemma 1.19 (b)] would imply that it is also 
convergent in order to 0 in E in the (non-equivalent) sense of [2, p. 33]. Since we do not know E to be 
Dedekind complete, we have refrained from including any (ambiguous) statement about order convergence 
of (fi)i∈I in Proposition 4.12.

In the following proposition, we introduce a function ρ on the collection of non-empty subsets of X that 
bears some resemblance to the function ρ on 2X in the proof of Theorem 3.1.

Proposition 4.14. Let X be a non-empty T1 space without isolated points, and let E be a vector lattice of 
continuous functions on X such that, for every point x0 ∈ X and every U ∈ Vx0 , there exist V ∈ Vx0 and 
f ∈ E such that V ⊆ U , 0 ≤ f ≤ 1, f(x) = 1 for all x ∈ V , and X \ Z(f) ⊆ U .

Let ϕ ∈ (E∼
n )+ be a positive order continuous linear functional on E.

For each non-empty open subset U of X, define

ρ(U) := sup{ϕ(f) : f ∈ E, 0 ≤ f ≤ 1, and X \ Z(f) ⊆ U }. (4.7)

Then:

(1) 0 ≤ ρ(U) ≤ ∞ for each non-empty open subset U of X, and ρ(U) ≤ ρ(V ) for all non-empty open 
subsets U and V of X such that U ⊆ V ;

(2) if U and V are non-empty open subsets of X such that ρ(U) = ρ(V ) = 0, then also ρ(U ∪ V ) = 0;
(3) for every x0 ∈ X and ε > 0, there exists U ∈ Vx0 such that ρ(U) < ε;
(4) the set Sϕ := { x ∈ X : ρ(U) > 0 for all U ∈ Vx } is a closed subset of X, and if ϕ �= 0, then it has 

non-empty interior,
(5) for f ∈ E+, ϕ(f) = 0 if and only if f(x) = 0 for all x ∈ Sϕ;
(6) ϕ is strictly positive if and only if Sϕ = X.

Proof. Let U be a non-empty open subset of X. Since the set in the right hand side of (4.7) contains 
ϕ(0) = 0, the first part of the first conclusion is clear. It is also clear that ρ is monotone.

Before proceeding with the remaining conclusions, we note the following for later use. Consider a non-
empty open subset V of X such that ρ(V ) = 0. We claim that then ϕ(f) = 0 whenever f ∈ E+ is 
bounded on V and X \ Z(f) ⊆ V . Indeed, since f is bounded on V and zero outside V , there exists 
M > 0 such that 0 ≤ f ≤ M1, or 0 ≤ f/M ≤ 1. Since X \ Z(f/M) = X \ Z(f) ⊆ V , this implies that 
0 ≤ ϕ(f/M) ≤ ρ(V ) = 0, so that ϕ(f) = 0.

We now turn to the second conclusion. Let U and V be non-empty open subsets of X with the property 
that ρ(U) = ρ(V ) = 0. Then

ϕ(f) = 0 whenever f ∈ E, 0 ≤ f ≤ 1, and X \ Z(f) ⊆ U (4.8)

and

ϕ(g) = 0 whenever g ∈ E, 0 ≤ g ≤ 1, and X \ Z(g) ⊆ V. (4.9)
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Set U0 := U \ V and V0 := V \ U0. Then U0 and V0 are disjoint open subsets of X. Consequently, 
U0 ∩ V 0 = ∅ and V0 ∩ U0 = ∅. It can happen that U0 = ∅, but V0 is never empty. Indeed, if V0 = ∅, then 
V ⊆ U0 = U \ V ⊆ X \ V ⊆ X \ V = X \ V , which contradicts that V is non-empty.

It is easy to see that U0 ∪ V0 and X \ (U ∪ V ) are disjoint subsets of X. Furthermore, their union 
U0 ∪V0 ∪ (X \ (U ∪V )) is a dense subset of X. To see this, it is sufficient to show that U ∪V ⊆ U0 ∪ V0. For 
this, fix x ∈ U ∪V , and consider an arbitrary W ∈ Vx. We are to show that W ∩ (U0 ∩V0) �= ∅, and for this 
we may evidently suppose that W ⊆ U ∪V . If W ∩U0 = ∅, then W ⊆ V , so that W ∩V �= ∅. But in this case 
also W ∩U0 = ∅, as X \W is a closed subset of X that contains U0. It follows that W ∩V0 = W ∩V �= ∅. We 
conclude that x ∈ U0 ∪ V0. Therefore, U ∪V ⊆ U0 ∪ V0, as desired, so that the subset U0∪V0∪(X \(U ∪V ))
of X is indeed dense in X.

After these preparations, we consider a fixed h ∈ E such that 0 ≤ h ≤ 1 and X \ Z(h) ⊆ U ∪ V . We 
shall show that ϕ(h) = 0, as follows. It follows from the first part of the hypotheses and the fact that E
is a vector lattice that, for each y ∈ U0 (if any), there exists fy ∈ E+ such that fy(y) = h(y), fy ≤ h, 
and X \ Z(fy) ⊆ U0. Likewise, for each z ∈ V0, there exists gz ∈ E+ such that gz(z) = h(z), gz ≤ h, and 
X \ Z(gz) ⊆ V0. Denote by A and B the collections of finite subsets of U0 and V0, respectively. For ∅ ∈ A, 
we define f∅ := 0; for ∅ ∈ B, we define g∅ := 0. For a non-empty A = {y1, . . . , yn} ∈ A (if any) and a 
non-empty B = {z1, . . . , zk} ∈ B, we define

fA := fy1 ∨ · · · ∨ fyn
,

gB := gz1 ∨ · · · ∨ gzk .

Then, for all A ∈ A and B ∈ B, we have

fA(y) = h(y) for all y ∈ A (if any), 0 ≤ fA ≤ h ≤ 1, and X \ Z(fA) ⊆ U0 (4.10)

and

gB(z) = h(z) for all z ∈ B (if any), 0 ≤ gB ≤ h ≤ 1, and X \ Z(gB) ⊆ V0. (4.11)

Since U0 and V0 are disjoint, we also have, for all A ∈ A and B ∈ B, that fA(x) + gB(x) = h(x) for 
all x ∈ A ∪ B, 0 ≤ fA + gB ≤ h, and X \ Z(fA + gB) ⊆ U0 ∪ V0. Clearly, the sets { fA : A ∈ A }
and { gB : B ∈ B } are both upward directed; therefore so is { fA + gB : A ∈ A, B ∈ B }. Furthermore, 
fA + gB ≤ h for all A ∈ A and B ∈ B. We claim that, in fact, fA + gB ↑ h in E. Suppose that w ∈ E is such 
that fA+gB ≤ w for all A ∈ A and B ∈ B. Then w ≥ f∅+g∅ = 0. In particular, for x ∈ X \(U ∪V ), we have 
w(x) ≥ 0 = h(x). If x ∈ U0 ∪ V0, then we can choose A ∈ A and B ∈ B such that x ∈ A ∪B, in which case 
w(x) ≥ fA(x) +gB(x) = h(x). We have now established that w(x) ≥ h(x) for all x ∈ U0∪V0∪ (X \ (U ∪V )). 
Since U0∪V0∪ (X \ (U ∪V )) is dense in X, it follows that w ≥ h. We conclude that fA +gB ↑ h, as claimed.

It follows from (4.8), (4.9), (4.10), and (4.11) that ϕ(fA + gB) = ϕ(fA) + ϕ(gB) = 0 for all A ∈ A and 
B ∈ B. Since fA + gB ↑ h, the order continuity of ϕ then implies that ϕ(h) = 0, as we intended to show.

Since this is true for all h ∈ E such that 0 ≤ h ≤ 1 and X \ Z(h) ⊆ U ∪ V , we see that ρ(U ∪ V ) = 0. 
We have thus established the second conclusion.

We turn to the third conclusion. Fix x0 ∈ X and ε > 0. We are to show that there exists U ∈ Vx0 such 
that ρ(U) < ε. Suppose that this were not the case. Then, for every U ∈ Vx0 , there exists fU ∈ E such that 
0 ≤ fU ≤ 1, X \ Z(fU ) ⊆ U , and ϕ(fU ) ≥ ε/2. We shall use Proposition 4.12 to show that this leads to a 
contradiction.

First of all, if x ∈ X is such that x �= x0, then, since X is T1, X \ {x} is an open neighbourhood of x0. 
The first part of the hypotheses then implies that there exists fx ∈ E+ such that fx(x) = 0 and fx(x0) = 1.
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The first part of the hypotheses also implies that there exist V0 ∈ Vx0 and f0 ∈ E such that 0 ≤ f0 ≤ 1
and f0(x) = 1 for all x ∈ V 0. Let Ṽx0 denote the collection of open neighbourhoods of x0 that are contained 
in V0, ordered by reverse inclusion, and consider the net (fW )W∈Ṽx0

in E+.
This net is bounded from above in E by f0.
Furthermore, if U ∈ Vx0 is given, then X \ Z(fW ) ⊆ U for all W ∈ Ṽx0 such that W ⊆ U ∩ V0 ∈ Ṽx0 .
We can now apply Proposition 4.12 to the net (fW )W∈Ṽx0

to conclude that inf{ ϕ(fW ) : W ∈ Ṽx0 } = 0. 
This, however, contradicts the fact that ϕ(fW ) ≥ ε/2 for all W ∈ Ṽx0 . We have thus established the third 
conclusion.

We now turn to the fourth conclusion. Suppose that x ∈ X \ Sϕ. By the definition of Sϕ, there exists 
V ∈ Vx such that ρ(V ) = 0. Since V is an open subset of X, we have V ∈ Vy for all y ∈ V . Hence V ⊆ X\Sϕ. 
We conclude that Sϕ is a closed subset of X.

We now show that Sϕ has non-empty interior if ϕ �= 0. Suppose, to the contrary, that the interior of 
Sϕ were empty. Since ϕ > 0, there exists u ∈ E+ such that ϕ(u) > 0. Choose and fix such u. Since Sϕ

is a closed subset of X with empty interior, X \ Sϕ is a non-empty open and dense subset of X. For each 
z ∈ X \ Sϕ, there exists V ∈ Vz such that ρ(V ) = 0 and u is bounded on V . Denote by K the non-empty 
set of all pairs (z, V ), where z ∈ X \ Sϕ and V is an open neighbourhood of z such that ρ(V ) = 0 and u
is bounded on V , and by L the non-empty collection of non-empty finite subsets of K. It follows from the 
first part of the hypotheses and the fact that E is a vector lattice that, for each (z, V ) ∈ K, there exists a 
function f(z,V ) ∈ E+ such that

f(z,V ) ≤ u, f(z,V )(z) = u(z), and X \ Z(f(z,V )) ⊆ V.

If (z, V ) ∈ K, then u is bounded on V . Hence f(z,V ) is also bounded on V . Since ρ(V ) = 0, the preliminary 
remark in the beginning of this proof shows that ϕ(f(z,V )) = 0. For each T = {(z1, V1), . . . , (zk, Vk)} ∈ L, 
set

fT := f(z1,V1) ∨ · · · ∨ f(zk,Vk) ∈ E+.

Then

fT ≤ u, fT (zi) = u(zi) for i = 1, . . . , k, and X \ Z(fT ) ⊆ V1 ∪ . . . ∪ Vk.

By the second conclusion, ρ(V1∪ . . .∪Vk) = 0. Furthermore, u and therefore fT is bounded on V1 ∪ . . .∪Vk. 
It follows from the preliminary remark in the beginning of the proof that ϕ(fT ) = 0 for all T ∈ L.

The set { fT : T ∈ L } is upward directed, and fT ≤ u for all T ∈ L. We claim that fT ↑ u in E. To 
see this, suppose that v ∈ E is such that fT ≤ v for all T ∈ L. If x ∈ X \ Sϕ, then u(x) = fT (x) for some 
T ∈ L, which implies that u(x) = fT (x) ≤ v(x). Since X \ Sϕ is dense in X, it follows that u ≤ v. Hence 
fT ↑ u, as claimed.

By the order continuity of ϕ, we have ϕ(fT ) ↑ ϕ(u). Hence ϕ(u) = 0, contrary to the fact that ϕ(u) > 0. 
This contradiction concludes the proof of the fact that Sϕ has non-empty interior.

We now turn to the fifth part of the conclusion.
Let f ∈ E+ be such that ϕ(f) = 0, and suppose that there exists x0 ∈ Sϕ such that f(x0) �= 0. Since 

f ≥ 0, it follows that there exist a real number ε0 > 0 and V ∈ Vx0 such that ε0 < f(x) for all x ∈ V . Since 
x0 ∈ Sϕ, we have ρ(V ) > 0. Hence there exists u ∈ E+ such that 0 ≤ u ≤ 1, X \ Z(u) ⊆ V , and ϕ(u) > 0. 
Then ε0u ≤ f . Indeed, if x ∈ V , then ε0u(x) ≤ ε0 < f(x), and if x ∈ X \ V , then ε0u(x) = 0 ≤ f(x). This 
implies that 0 < ε0ϕ(u) = ϕ(ε0u) ≤ ϕ(f), so that ϕ(f) > 0. This is a contradiction, and we conclude that 
f(x) = 0 for all x ∈ Sϕ.

Conversely, suppose that f ∈ E+ is such that f(x) = 0 for all x ∈ Sϕ. We shall show that ϕ(f) = 0. If 
Sϕ = X, then f = 0, and all is clear. If Sϕ �= X, consider all pairs (z, V ), where z ∈ X \ Sϕ and V is an 
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open neighbourhood of z such that V ⊆ X \ Sϕ, ρ(V ) = 0, and f is bounded on V . Then there exists a 
function f(z,V ) ∈ E+ such that f(z,V ) ≤ f , f(z,V )(z) = f(z), and X \Z(f(z,V )) ⊆ V . We note that, since f is 
bounded on V , so is f(z,V ). As ρ(V ) = 0, it follows that ϕ(f(z,V )) = 0. Employing a method as in the proof 
of the fourth conclusion above, we find, using that f(x) = 0 for all x ∈ Sϕ, that there exists a net fα ↑ f in 
E such that ϕ(fα) = 0 for each α. Once again, the order continuity of ϕ implies that ϕ(f) = 0.

It remains to establish the sixth and final conclusion.
Suppose that ϕ is strictly positive. Choose and fix x0 ∈ X, and let V ∈ Vx0 be arbitrary. By the first part 

of the hypotheses, there exists a function fV ∈ E such that 0 ≤ fV ≤ 1, f(x0) = 1, and X \ Z(fV ) ⊆ V . 
By the strict positivity of ϕ and the definition of ρ, it follows that ρ(V ) ≥ ϕ(fV ) > 0. Hence x0 ∈ Sϕ. We 
conclude that Sϕ = X.

Conversely, suppose that Sϕ = X, and that u ∈ E is such that u > 0 and ϕ(u) = 0. Choose and fix a point 
x0 in X such that u(x0) > 0. By scaling u, we may suppose that u(x0) > 1. Let V0 = { x ∈ X : u(x) > 1 }. 
Then V0 ∈ Vx0 . If f ∈ E is such that 0 ≤ f ≤ 1 and X \ Z(f) ⊆ V0, then 0 ≤ f ≤ u. Since ϕ(u) = 0, 
this implies that ϕ(f) = 0. This shows that ρ(V0) = 0. Hence x0 /∈ Sϕ = X, which is a contradiction. We 
conclude that ϕ is strictly positive. �

Proposition 4.14 is used to establish the following result, which makes contact with resolvability.

Proposition 4.15. Let X be a non-empty locally connected T1 Baire space without isolated points, and let E
be a vector lattice of continuous functions on X such that, for every point x0 ∈ X and every U ∈ Vx0 , there 
exist V ∈ Vx0 and f ∈ E such that V ⊆ U , 0 ≤ f ≤ 1, f(x) = 1 for all x ∈ V , and X \ Z(f) ⊆ U .

Suppose that there exists a strictly positive order continuous linear functional on E.
Then there exists an at most countably infinite collection { Γn : n ∈ N } of closed nowhere dense subsets 

of X such that 
⋃

n∈N Γn resolves X.

Proof. Choose and fix a strictly positive order continuous linear functional ϕ on E. For all non-empty open 
subsets U of X, let ρ(U) be as defined in Proposition 4.14. We observe that, due to the strict positivity of 
ϕ, ρ is strictly positive on the non-empty open subsets of X, by the sixth conclusion of Proposition 4.14.

Fix n ∈ N. By the third conclusion of Proposition 4.14, there exists a non-empty open subset U of X
such that 0 < ρ(U) < 1

n , and Zorn’s Lemma then yields a maximal (with respect to inclusion) collection 
Fn of non-empty mutually disjoint open subsets U of X such that 0 < ρ(U) < 1

n for all U ∈ Fn. Let 
Gn =

⋃
U∈Fn

U . Clearly, Gn is an open subset of X.
We claim that Gn is dense in X. To see this, consider a non-empty open subset V of X. If x is a 

point in V , then there exists an open neighbourhood W of x such that 0 < ρ(W ) < 1
n . Since then also 

0 < ρ(V ∩W ) < 1
n , the maximality of Fn implies that (V ∩W ) ∩Gn �= ∅. Hence Gn is indeed dense in X.

We set Γn := X \ Gn. Then Γn is a closed nowhere dense subset of X, and we shall now show that ⋃
n∈N Γn resolves X.
Firstly, since X is a Baire space, it follows that X \

⋃
n∈N Γn =

⋂
n∈N Gn is dense in X.

Secondly, we claim that 
⋃

n∈N Γn is dense in X. Arguing by contradiction, suppose that V is a non-empty 
open subset of X such that

V ⊆ X \
⋃
n∈N

Γn =
⋂
n∈N

Gn.

Since X is locally connected, we may suppose that V is connected. Fix n ∈ N. We have V ⊆ Gn =
⋃

U∈Fn
U . 

Since V is connected and the members of Fn are mutually disjoint open subsets of X, there exists U ∈ Fn

such that V ⊆ U . The monotonicity of ρ then implies that ρ(V ) ≤ ρ(U) < 1
n . This is true for all n ∈ N, so 

that ρ(V ) = 0, contradicting the strict positivity of ρ on non-empty open subsets of X. This contradiction 
shows that 

⋃
Γn is dense in X, as claimed.
n∈N
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The proof is now complete. �
We shall see in Proposition 5.9 that, actually, a strictly positive order continuous linear functional on E

as in Proposition 4.15 does not exist.

5. Triviality of order continuous duals

With the material in the Sections 2, 3, and 4 in place, it is now easy to establish a number of results on 
the triviality of order continuous duals of vector lattices of continuous functions in several contexts of some 
practical interest.

As in Section 4, we divide this section into (non-disjoint) parts, corresponding to separable spaces, metric 
spaces, topological vector spaces, and locally connected Baire spaces, respectively.

5.1. Separable spaces

For separable resolvable spaces, the required separation property for E in the main triviality result 
Theorem 3.1 is simply one for a collection of pairs of points.

Theorem 5.1. Let X be a non-empty separable resolvable space. Then there exists an at most countably 
infinite resolving subset of X. In particular, if X is

(1) a separable space with the property that every non-empty open subset is uncountable;
(2) a separable T1 Baire space that has no isolated points,

then every at most countably infinite dense subset of X is a resolving subset of X.
If D is such an at most countably infinite resolving subset of X, suppose that E is a vector lattice of 

continuous functions on X with the property that, for every x /∈ D and every y ∈ D, there exists f ∈ E

such that f(x) = 1 and f(y) = 0.
Then E∼

n = E∼
c = {0}.

Proof. For an arbitrary non-empty separable resolvable space, Lemma 4.4 shows that there exists an at most 
countably infinite subset of X that resolves X. Propositions 4.2 and 4.3 show that the spaces under (1) 
and (2), respectively, are indeed separable resolvable spaces, and that every at most countably infinite dense 
subset is a resolving subset.

Let D = { dn : n ∈ N } be such a subset, where repetitions are allowed. For n ∈ N, set Γn := {dn}. Then 
Theorem 3.1 implies that E∼

n = E∼
c = {0}. �

Theorem 5.1 is as precise is possible, in the sense that the supposed separation properties of E are 
related to one specific decomposition of one specific subset that resolves X. If we strengthen these separation 
requirements a little, and also require that E contains the characteristic functions of singletons corresponding 
to isolated points (if any), we obtain the equivalence in the following result.

Theorem 5.2. Let X be a non-empty separable T1 Baire space, and let E be a vector lattice of continuous 
functions on X such that

(1) for every two different points x and y in X, there exists f ∈ E+ such that f(x) = 1 and f(y) = 0, and
(2) for every isolated point x of X, the characteristic function χ{x} of {x} is an element of E.

Then the following are equivalent:
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(1’) E∼
n = {0};

(2’) E∼
c = {0};

(3’) X has no isolated points.

Proof. In view of the separability of X, the equivalence of (1’) and (2’) follows from Proposition 2.4.
Since we have strengthened the separation properties of E to general pairs of different points, Theorem 5.1

shows that (3’) implies (1’) and (2’).
Lemma 2.5 shows that (1’) implies (3’), and this completes the proof. �
Since separable locally compact Hausdorff spaces are separable T1 Baire spaces, Theorem 5.2 applies to 

such spaces. In that context, Cc(X) is a natural ‘minimal’ sublattice of C(X) that meets all the requirements 
in Theorem 5.1, and it seems worthwhile to record explicitly the following consequence of Theorem 5.2. Quite 
obviously, it applies to Cc(X), C0(X), Cb(X), and C(X).

Corollary 5.3. Let X be a non-empty separable locally compact Hausdorff space, and let E be a vector lattice 
of continuous functions on X that contains Cc(X).

Then the following are equivalent:

(1) E∼
n = {0};

(2) E∼
c = {0};

(3) X has no isolated points.

5.2. Metric spaces

The following result is immediate from the combination of Propositions 4.5 and 4.6 and Theorem 3.1.

Theorem 5.4. Let the non-empty metric space X with metric d(·, ·) satisfy at least one of the following:

(1) X is a Baire space that has no isolated points;
(2) X is locally connected, contains at least two points, and contains a point x0 such that

(a) {x ∈ X : d(x0, x) < r } = { x ∈ X : d(x0, x) ≤ r } for every r > 0, and
(b) { d(x0, x) : x ∈ X } is connected in R.

Then there exists an at most countably infinite collection { Γn : n ∈ N } of closed nowhere dense subsets 
of X such that 

⋃
n∈N Γn resolves X.

If { Γn : n ∈ N } is any such collection, suppose that E is a vector lattice of continuous functions on X
with the property that, for every x /∈

⋃
n∈N Γn and every k ∈ N, there exists f ∈ E such that f(x) = 1 and 

f(y) = 0 for all y ∈ Γk.
Then E∼

n = {0}.
If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then also E∼

c = {0}.

If we stipulate that E has a stronger separation property, then we obtain the following analogue of 
Theorem 5.2. It is immediate from Theorem 5.4, Lemma 2.5, and Proposition 2.4.

Theorem 5.5. Let X be a non-empty metric Baire space, and let E be a vector lattice of continuous functions 
on X such that
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(1) for every point x and every closed nowhere dense subset A of X that does not contain x, there exists 
f ∈ E such that f(x) = 1 and f(y) = 0 for all y ∈ A, and

(2) for every isolated point x of X, the characteristic function χ{x} of {x} is an element of E.

Then the following are equivalent:

(1’) E∼
n = {0};

(2’) X has no isolated points.

If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then (1’) and (2’) are also 
equivalent to:

(3’) E∼
c = {0}.

In the context of a separable locally compact Hausdorff space X, we had chosen Cc(X) as a natural 
‘small’ vector lattice of continuous functions on X that has adequate separation properties and that also 
contains the characteristic functions of all singletons corresponding to isolated points. In the context of a 
metric space X, we assign this role to the vector lattice Lipb(X) of bounded Lipschitz functions on X. It 
is a consequence of [19, Theorem 1.5.6 (a)] that, for every x ∈ X and every closed subset A of X that does 
not contain x, there exists f ∈ Lipb(X) such that f(x) = 1 and f(y) = 0 for all y ∈ A. This shows that 
Lipb(X) separates points and closed nowhere dense subsets as we require it, and also that it contains the 
characteristic functions of all singletons corresponding to isolated points. Therefore, Theorem 5.5 yields the 
following analogue of Corollary 5.3.

Corollary 5.6. Let X be a non-empty metric Baire space, and let E be a vector lattice of continuous functions 
on X that contains Lipb(X). Then the following are equivalent:

(1) E∼
n = {0};

(2) X has no isolated points.

If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then (1) and (2) are also 
equivalent to:

(3) E∼
c = {0}.

Corollary 5.6 certainly applies to all vector sublattices of C(X) that contain Cb(X). Since this is a 
property that is preserved under the morphisms between vector sublattices that are induced by homeomor-
phisms between topological spaces, the following result is rather obvious. We include it nevertheless, because 
it shows, for example, that for Polish spaces (where separability is a consequence of their definition), (1), 
(2), and (3) in Corollary 5.6 are equivalent. This is a point that seems worth making explicit.

Corollary 5.7. Let X be a non-empty space that is homeomorphic to a metric Baire space, and let E be a 
sublattice of C(X) that contains Cb(X). Then the following are equivalent:

(1) E∼
n = {0};

(2) X has no isolated points.
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If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then (1) and (2) are also 
equivalent to:

(3) E∼
c = {0}.

5.3. Topological vector spaces

Every (not necessarily Hausdorff) topological vector space X is completely regular; we refer the reader to 
[15, p. 21, Exercise 41] or [11, p. 188, Corollary 17] for this. Hence the following result, which is immediate 
from Theorems 4.10 and Theorem 3.1, actually has substance, as it applies e.g. to the non-zero vector lattice 
Cb(X).

Theorem 5.8. Let the (not necessarily Hausdorff ) topological vector space X satisfy at least one of the 
following:

(1) X is a Baire space and 0 has an open neighbourhood that is not the whole space;
(2) 0 has a convex open neighbourhood that is not the whole space.

Then there exists an at most countably infinite collection { Γn : n ∈ N } of closed nowhere dense subsets of 
X such that 

⋃
n∈N Γn resolves X.

If { Γn : n ∈ N } is any such collection, suppose that E is a vector lattice of continuous functions on X
with the property that, for every point x /∈

⋃
n∈N Γn and every k ∈ N, there exists f ∈ E such that f(x) = 1

and f(y) = 0 for all y ∈ Γk.
Then E∼

n = {0}.
If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then also E∼

c = {0}.

5.4. Locally connected Baire spaces

In this section, we obtain a triviality result for order continuous duals of sufficiently rich vector lattices 
of continuous functions on locally connected T1 Baire spaces that have no isolated points.

The pertinent Theorem 5.11 follows from the combination of Theorem 3.1 and the material in Section 4.4.
We need the following two preparatory results.
The first of these shows that, actually, a strictly positive order continuous linear functional as in Propo-

sition 4.15 does not exist.

Proposition 5.9. Let X be a non-empty locally connected T1 Baire space that has no isolated points, and let 
E be a vector lattice of continuous functions on X such that, for every point x0 ∈ X and every U ∈ Vx0 , 
there exist V ∈ Vx0 and f ∈ E such that V ⊆ U , 0 ≤ f ≤ 1, f(x) = 1 for all x ∈ V , and X \ Z(f) ⊆ U .

Then E∼
n has no strictly positive elements.

Proof. Suppose that, to the contrary, E∼
n has a strictly positive element. Then, according to Proposi-

tion 4.15, there exists an at most countably infinite collection { Γn : n ∈ N } of closed nowhere dense 
subsets of X such that 

⋃
n∈N Γn resolves X.

The hypothesis implies that, for every point x in X and every closed subset A of X that does not contain 
x, there exists f ∈ E+ such that f(x) = 1 and f(y) = 0 for all y ∈ A. This, combined with Theorem 3.1, 
shows that E∼

n = {0}. This contradicts the fact that E∼
n has a strictly positive element. �
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The second preparatory result relies heavily on Proposition 4.14. By zooming in on the interior of the 
‘support’ of a non-zero order continuous linear functional as introduced in Proposition 4.14, a strictly positive 
order continuous linear functional on a vector lattice of continuous functions on this interior is located.

Lemma 5.10. Let X be a non-empty T1 space without isolated points, and let E be a vector lattice of 
continuous functions on X such that, for every point x0 ∈ X and every U ∈ Vx0 , there exist V ∈ Vx0 and 
f ∈ E such that V ⊆ U , 0 ≤ f ≤ 1, f(x) = 1 for all x ∈ V , and X \ Z(f) ⊆ U .

Suppose that there exists a non-zero positive order continuous linear functional ϕ on E.
Let Sϕ be as defined in Proposition 4.14, and let Y be the interior of Sϕ. According to the fourth conclusion 

of Proposition 4.14, Y is not empty. Set F := { g|Y : g ∈ E and X \ Z(g) ⊆ Y }.
Then F is a vector lattice of continuous functions on Y , and there exists a strictly positive order contin-

uous linear functional on F .

Proof. It is clear that F is a vector lattice of continuous functions on Y . We proceed to establish the existence 
of a strictly positive order continuous linear functional on F . Let f ∈ F , and suppose that functions g, h ∈ E

are such that X \Z(g) ⊆ Y , X \Z(h) ⊆ Y , and g|Y = f = h|Y . Then g(x) = h(x) for all x ∈ X. Hence the 
map ϕ̃ : F → R, given, for f ∈ F , by

ϕ̃(f) := ϕ(g),

where g ∈ E is such that g|Y = f and X \Z(g) ⊆ Y , is well defined. Clearly, ϕ̃ is a positive linear functional 
on F .

We shall now show that ϕ̃ is strictly positive. Suppose that f ∈ F+ is such that ϕ̃(f) = 0. Let g ∈ E

be such that g|Y = f and X \ Z(g) ⊆ Y . Then g ≥ 0 and ϕ(g) = ϕ̃(f) = 0. By the fifth conclusion of 
Proposition 4.14, it follows that g(x) = 0 for all x ∈ Sϕ. In particular, g(x) = 0 for all x ∈ Y . Hence 
f(x) = g(x) = 0 for all x ∈ Y , so that f = 0 in F . This shows that ϕ̃ is strictly positive on F .

We claim that ϕ̃ is order continuous on F . To see this, consider a net (fi)i∈I in F such that fi ↓ 0 in 
F . For each i ∈ I, let gi ∈ E be such that fi = gi|Y and X \ Z(gi) ⊆ Y . Obviously, gi ≥ 0 for all i ∈ I, 
and gi ↓ in E. We claim that, in fact, gi ↓ 0 in E. To see this, let w ∈ E satisfy w ≤ gi for all i ∈ I. Then 
w+ ≤ g+

i = gi for all i ∈ I. This implies that 0 ≤ w+(x) ≤ 0 for all x ∈ X \ Y , so that w+(x) = 0 for 
all x ∈ X \ Y . Hence w+|Y ∈ F . Furthermore, if x ∈ Y , then w+(x) ≤ gi(x) = fi(x) for all i ∈ I, so that 
w+|Y ≤ fi in F for all i ∈ I. Since fi ↓ 0 in F , this implies that w+|Y ≤ 0. Hence w+(x) = 0 for all x ∈ Y . 
We conclude that w+ = 0 in E, so that w ≤ 0 in E. This establishes our claim that gi ↓ 0 in E. From 
the definition of ϕ̃ and the order continuity of ϕ on E, we then have ϕ̃(fi) = ϕ(gi) ↓ 0. Hence ϕ̃ is order 
continuous on F , as claimed. �

It is now just a matter of putting the pieces together to obtain the following triviality result for order 
continuous duals of vector lattices of continuous functions on locally connected Baire spaces.

Theorem 5.11. Let X be a non-empty locally connected T1 Baire space that has no isolated points, and let 
E be a vector lattice of continuous functions on X such that, for every point x0 ∈ X and every U ∈ Vx0 , 
there exist V ∈ Vx0 and f ∈ E such that V ⊆ U , 0 ≤ f ≤ 1, f(x) = 1 for all x ∈ V , and X \ Z(f) ⊆ U .

Then E∼
n = {0}.

If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then also E∼
c = {0}.

Proof. Suppose that, to the contrary, E∼
n has a non-zero element. Then E∼

n contains a non-zero positive 
element. With the non-empty space Y and the vector lattice F of continuous functions on Y as defined in 
Lemma 5.10, Lemma 5.10 asserts that there exists a strictly positive order continuous linear functional on 
F .
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We claim, however, that Proposition 5.9 applies to the space Y and the vector lattice F of continuous 
functions on Y . Assuming this for the moment, it then follows from Proposition 5.9 that there are no strictly 
positive order continuous linear functionals on F . This contradiction implies that we must have E∼

n = {0}
after all.

It remains to verify that Proposition 5.9 can be applied to the space Y and the vector lattice F of 
continuous functions on Y .

To start with, since Y is an open subspace of a locally connected T1 Baire space X that has no isolated 
points, Y inherits these properties from X.

Choose and fix x0 ∈ Y and an open neighbourhood U of x0 in Y . Then U is an open neighbourhood 
of x0 in X. Therefore, there exist an open neighbourhood V of x0 in X and a function f ∈ E such that 
V ⊆ U (the closure being taken in X), 0 ≤ f ≤ 1, f(x) = 1 for all x ∈ V , and X \ Z(f) ⊆ U . Clearly, V is 
also an open neighbourhood of x0 in Y , and the closure of V in Y is just the closure V of V in X, which is 
contained in U . Since U ⊆ Y , X \ Z(f) ⊆ Y so that g := f |Y ∈ F . Obviously, 0 ≤ g ≤ 1. Lastly, g, being 
the restriction of f to Y , is such that g(x) = f(x) = 1 for all x ∈ V , and Y \ Z(g) = X \ Z(f) ⊆ U .

We have now verified that Proposition 5.9 can be applied to the space Y and the vector lattice F of 
continuous functions on Y . The proof is complete. �

It should be noted that the separation properties imposed on E in Theorem 5.11 do not imply stronger 
separation properties of X than complete regularity. Indeed, if X is a completely regular T1 space, then 
every closed set F in X is the intersection of zero sets of continuous real-valued functions on X. Equivalently, 
the collection { X \Z(f) : f ∈ C(X) } is a basis for the topology of X. Furthermore, if A and B are subsets 
of X contained in disjoint zero sets, then there exists a continuous function f on X such that 0 ≤ f ≤ 1, 
f(x) = 0 for all x ∈ A, and f(x) = 1 for all x ∈ B. The standard reference for these facts is [8, Sections 
1.15 and 3.2].

As particular cases of Theorem 5.11 we have the following.

Corollary 5.12. Let X be a non-empty completely regular and locally connected T1 Baire space that has no 
isolated points. If E is a vector lattice of continuous functions on X that contains Cb(X), then E∼

n = {0}.
If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then also E∼

c = {0}.

Corollary 5.13. Let X be a non-empty and locally connected locally compact Hausdorff space that has no 
isolated points. If E is a vector lattice of continuous functions on X that contains Cc(X), then E∼

n = {0}.
If, in addition, X satisfies CCC (in particular, if, in addition, X is separable), then also E∼

c = {0}.

6. Measure-theoretic interpretation

In this section, we discuss the connection between our results on the triviality of order continuous duals of 
vector lattices of continuous functions on the one hand, and normal measures on the underlying topological 
spaces on the other hand. Normal measures were introduced in [6] for Stonean spaces, and later generalised 
to completely regular spaces in [7]. In essence, a normal measure on X corresponds to an order continuous 
linear functional on a vector lattice of continuous functions. We consider two cases, namely, Baire measures 
on completely regular spaces (see [12]), and Borel measures on locally compact Hausdorff spaces (see [4]).

Let X be a completely regular space, and denote by Bs the algebra of subsets of X generated by 
{ Z(f) : f ∈ Cb(X) }. A Baire measure on X is a positive totally finite and (finitely) additive function 
μ : Bs → R, which is inner regular in the sense that

μ(B) = sup{μ(Z(f)) : f ∈ Cb(X) and Z(f) ⊆ B }

for all B ∈ Bs.
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There is a bijective correspondence between Baire measures μ on X and positive linear functionals ϕ on 
Cb(X), given by

ϕ(f) =
∫
X

f dμ

for f ∈ Cb(X); see [12] and [18]. A Baire measure μ is called normal (see [12, Section 5]) if∫
X

fi dμ ↑
∫

f dμ

whenever fi ↑ f in Cb(X). That is to say, μ is normal if and only if the associated linear functional on 
Cb(X) is order continuous.

Specialising our results on the triviality of order continuous duals of vector lattices of continuous functions 
to the case of Cb(X), we therefore obtain the following.

Theorem 6.1. Let X be a non-empty completely regular space. Then there are no non-zero normal Baire 
measures on X in each of the following cases.

(1) X is a non-empty separable resolvable space, such as

(a) a separable space such that every non-empty open set is uncountable, or
(b) a separable T1 Baire space that has no isolated points.

(2) X is a metric space such that

(a) X is a Baire space that has no isolated points, or
(b) X is locally connected, contains at least two points, and contains a point x0 such that

i. {x ∈ X : d(x0, x) < r } = { x ∈ X : d(x0, x) ≤ r } for every r > 0, and
ii. { d(x0, x) : x ∈ X } is connected in R.

(3) X is a (not necessarily Hausdorff ) topological vector space such that

(a) X is a Baire space and 0 has an open neighbourhood that is not the whole space, or
(b) 0 has a convex open neighbourhood that is not the whole space.

(4) X is a locally connected T1 Baire space that has no isolated points.

We next consider measures on a locally compact Hausdorff space X. Denote by B the σ-algebra of Borel 
sets in X. As in [4, Section 4.1], by a regular Borel measure on X we mean a finite real-valued σ-additive 
measure μ on B such that

μ(B) = sup{μ(K) : K ⊆ B and K is compact}
= inf{μ(U) : B ⊆ U and U is open }

for all Borel sets B. We let M(X) denote the regular Borel measures on X; it is a Banach lattice when 
supplied with the total variation norm. If μ ∈ M(K), then μ induces a linear functional ϕμ : C0(X) → R

by setting



606 M. de Jeu, J.H. van der Walt / J. Math. Anal. Appl. 479 (2019) 581–607
ϕμ(f) :=
∫
X

f dμ

for f ∈ C0(X). The Riesz Representation Theorem [4, Theorem 4.1.3] states that the map sending μ to ϕμ

is an isometric lattice isomorphism between M(K) and C0(X)∼.
A regular Borel measure μ on X is called normal if ϕμ(fi) → 0 whenever fi ↓ 0 in C0(X); see [4, 

Definition 4.7.1]. This implies that ϕμ is an order continuous linear functional on C0(X). Conversely, if 
μ is a regular Borel measure on X such that ϕμ is an order continuous linear functional on C0(X), then 
(ϕμ)+ = ϕμ+ and (ϕμ)− = ϕμ− are also order continuous. Since these are positive linear functionals, their 
order continuity implies that μ+ and μ− are normal, and then evidently so is μ. All in all, the normal 
measures on X are in one-to-one correspondence with the order continuous linear functionals on X.

Specialising our results on the triviality of order continuous duals of vector lattices of continuous functions 
to the case of C0(X), we therefore obtain the following.

Theorem 6.2. Let X be a non-empty locally compact Hausdorff space that has no isolated points. There are 
no non-zero normal measures on X in each of the following cases.

(1) X is separable.
(2) X is metrizable.
(3) X is locally connected.

The first and third conclusions in Theorem 6.2 are also proved in [4, Proposition 7.20 and Theorem 4.7.23]. 
Earlier, see [16, Proposition 19.94], it had been shown that C(X)∼n = {0} if X is a separable compact 
Hausdorff space that has no isolated points.

It is unknown to the authors whether or not the following triviality result for C0(X)∼n can be obtained 
using the methods developed in this paper. We need a definition to be able to state it.

Definition 6.3. Let X be a completely regular space. Then X is an F -space when every finitely generated 
ideal in the algebra C(X) is principal.

Theorem 6.4. [4, Theorem 4.7.24] Let X be a non-empty connected locally compact Hausdorff F -space that 
has no isolated points. Then there are no non-zero normal measures on X, equivalently, C0(X)∼n = {0}.

In view of Theorems 5.11 and 6.4, it is worth noting that there exists a connected compact Hausdorff 
space (of weight c) that satisfies CCC such that C(X)∼n = C(X)∼c �= {0}. This result is due to Plebanek 
[14]; see also [4, Theorem 4.7.26].

References

[1] Y.A. Abramovich, C.D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics, vol. 50, American 
Mathematical Society, Providence, RI, 2002.

[2] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006, reprint of the 1985 original.
[3] W.W. Comfort, S. García-Ferreira, Resolvability: a selective survey and some new results, in: Proceedings of the Interna-

tional Conference on Set-Theoretic Topology and Its Applications, Matsuyama, 1994, vol. 74, 1996, pp. 149–167.
[4] H.G. Dales, F.K. Dashiell Jr., T.-M. Lau, D. Strauss, Banach Spaces of Continuous Functions as Dual Spaces, CMS Books 

in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2016.
[5] B. de Pagter, C.B. Huijsmans, On z-ideals and d-ideals in Riesz spaces. II, Ned. Akad. Wet. Indag. Math. 42 (4) (1980) 

391–408.
[6] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Bras. Math. 2 (1951) 151–182.
[7] B. Fishel, D. Papert, A note on hyperdiffuse measures, J. Lond. Math. Soc. 39 (1964) 245–254.
[8] L. Gillman, M. Jerison, Rings of Continuous Functions, The University Series in Higher Mathematics, D. Van Nostrand 

Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960.
[9] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943) 309–333.

http://refhub.elsevier.com/S0022-247X(19)30513-X/bib6231s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib6231s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib6232s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib436F6D666F72744761726369612D466572726569726131393934s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib436F6D666F72744761726369612D466572726569726131393934s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib44616C65734461736869656C6C4C617553747261737332303136s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib44616C65734461736869656C6C4C617553747261737332303136s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib64655061677465724875696A736D616E73313938304949s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib64655061677465724875696A736D616E73313938304949s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib4469786D69657231393531s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib46697368656C50617065727431393634s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib47696C6C6D616E4A657269736F6E31393630s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib47696C6C6D616E4A657269736F6E31393630s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib48657769747431393433s1


M. de Jeu, J.H. van der Walt / J. Math. Anal. Appl. 479 (2019) 581–607 607
[10] O. Karlova, V. Mykhaylyuk, On Gibson functions with connected graphs, Math. Slovaca 63 (3) (2013) 479–492.
[11] J.L. Kelley, General Topology, Graduate Texts in Mathematics, vol. 27, Springer-Verlag, New York-Berlin, 1975, reprint 

of the 1955 edition.
[12] J.D. Knowles, Measures on topological spaces, Proc. Lond. Math. Soc. (3) 17 (1967) 139–156.
[13] W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces, vol. I, North-Holland Publishing Co./American Elsevier Publishing Co., 

Amsterdam-London/New York, 1971.
[14] G. Plebanek, A normal measure on a compact connected space, arXiv :1507 .02845, 2015.
[15] W. Rudin, Functional Analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., 

New York, 1991.
[16] Z. Semadeni, Banach Spaces of Continuous Functions, vol. I, Monografie Matematyczne, vol. 55, PWN—Polish Scientific 

Publishers, Warsaw, 1971.
[17] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
[18] V.S. Varadarajan, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961) 35–100.
[19] N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.
[20] A.C. Zaanen, Riesz Spaces. II, North-Holland Mathematical Library, vol. 30, North-Holland Publishing Co., Amsterdam, 

1983.
[21] A.C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin, 1997.

http://refhub.elsevier.com/S0022-247X(19)30513-X/bib4B61726C6F76614D796B6861796C79756B32303133s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib623131s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib623131s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib4B6E6F776C657331393637s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib4C7578656D627572675A61616E656E31393731525349s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib4C7578656D627572675A61616E656E31393731525349s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib506C6562616E656B32303135s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib623135s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib623135s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib53656D6164656E6931393731s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib53656D6164656E6931393731s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib623137s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib56617261646172616A616E31393631s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib576561766572313939394C697073636869747A416C676562726173s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib5A61616E656E3139383352534949s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib5A61616E656E3139383352534949s1
http://refhub.elsevier.com/S0022-247X(19)30513-X/bib5A61616E656E31393937496E74726F64756374696F6Es1

	On order continuous duals of vector lattices of continuous functions
	1 Introduction and overview
	2 Preliminaries
	3 Main triviality theorem
	4 Resolvable spaces
	4.1 Separable spaces
	4.2 Metric spaces
	4.3 Topological vector spaces
	4.4 Locally connected Baire spaces

	5 Triviality of order continuous duals
	5.1 Separable spaces
	5.2 Metric spaces
	5.3 Topological vector spaces
	5.4 Locally connected Baire spaces

	6 Measure-theoretic interpretation
	References


