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In 1983, Silverman and Tate showed that the set of points in a 1-dimensional family
of abelian varieties where a section of infinite order has “small height” is finite. We
conjecture a generalization to higher-dimensional families, where we replace “finite” by
“not Zariski dense.” We show that this conjecture would imply the uniform boundedness
conjecture for torsion points on abelian varieties. We then prove a few special cases of
this new conjecture.
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1. Introduction

The uniform boundedness conjecture predicts that the number of rational torsion
points on an abelian variety over Q is bounded uniformly in the dimension of the
abelian variety. It is a theorem of Mazur for elliptic curves (with generalizations
to number fields by Kamienny, Merel and others), but is wide open for higher
dimensional abelian varieties.

An easy consequence of this conjecture is that, given a family of abelian varieties
over Q and a section of infinite order, the set of rational points in the base where
the section becomes torsion is not Zariski dense. This is known unconditionally for
families of elliptic curves by Mazur’s theorem, but not in general. However, it is
also known unconditionally for abelian varieties of any dimension if the base of the
family has dimension 1 — this is a consequence of a theorem of Silverman [32] and
Tate [35] (with refinements by a number of authors — [1, 5, 10, 19]).

The first main result of this paper is that the uniform boundedness conjecture
is in fact equivalent to showing that the set of points where a section of infinite
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order becomes torsion is not Zariski dense (Theorem 2.4). In particular, if we could
generalize the theorem of Silverman and Tate to families of arbitrary dimension
(cf. Theorem 2.2), this would imply uniform boundedness. The proof of the equiv-
alence is not difficult, it mainly uses induction on dimension and the fact that the
stack of principally polarized abelian varieties of fixed dimension is a noetherian
Deligne–Mumford stack.

By a recent result of Cadoret and Tamagawa, the uniform boundedness con-
jecture for abelian varieties is equivalent to the same conjecture for Jacobians of
curves. Using this, we can also show that the restriction of Theorem 2.2 to Jacobians
implies the full uniform boundedness conjecture.

In fact Silverman and Tate ([32, 35]) show not only the finiteness of the number
of points where the section becomes torsion, but (stronger) the finiteness of the set
of points where the section has bounded Néron–Tate height. Motivated by this, we
wonder whether the same may be true for families of higher dimension. Fix a global
field K. Writing ĥ for the Néron–Tate height, we define

Definition 1.1. Given a variety S/K, an abelian scheme A/S, and a section σ ∈
A(S), we say (A/S, σ) has sparse small points if for all d ∈ Z≥1 there exists ε > 0
such that the set

Tε(d) = {s ∈ S(K̄)|[κ(s) : K] ≤ d and ĥ(σ(s)) ≤ ε}
is not Zariski dense in S.

We tentatively propose

Conjecture 1.2. Every pair (A/S, σ) with σ of infinite order has sparse small
points.

This is a theorem of Silverman and Tate when S has dimension 1. Since torsion
points have height zero the above conjecture would imply that sets of points where
a section of infinite order becomes torsion are not Zariski dense, and hence (by
Theorem 2.4 mentioned above) the uniform boundedness conjecture. The conjecture
is true for families of elliptic curves, subject to a conjecture of Lang on lower bounds
for heights in families (Theorem 3.2).

In the second half of this paper we prove some special cases of Theorem 1.2. In
[15] we proved that torsion points are sparse for families of Jacobians which admit
Néron models. Here, we consider again families admitting Néron models, but the
proof is far more involved, and we are forced to impose some additional assumptions
in order for our methods to work, see Theorem 3.17. Most important is a condition
on the base S; a precise statement can be found in Theorem 3.17, but here we note
that it is satisfied whenever dimQ Pic(S) ⊗Z Q = 1, yielding a slight simplification
of Theorem 3.17:

Theorem 1.3. Let S/Q be a projective variety with Pic(S) ⊗Z Q ∼= Q, and let
U ⊆ S be a dense open subscheme. Let C/S be a family of nodal curves, smooth
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over U , with C regular. Write J for the Jacobian of CU/U , and let σ ∈ J(S) be
a section of infinite order corresponding to the restriction to CU of a divisor on C

supported on some sections of C/S. Assume that S has a proper regular model over
Z over which C has a proper nodal model. Assume that J admits a Néron model
over S. Then (J/U, σ) has sparse small points.

For the sake of those readers not familiar with the theory of Néron models over
higher dimensional bases developed in [14] we note that the assumption that J

admit a Néron model over S can be replaced by the assumption that S\U (with
reduced induced scheme structure) is smooth over Q, or that the fibers of C → S

have tree-like dual graphs.
Unfortunately it seems at present difficult to give interesting new examples of

families to which the theorem applies. The family of nodal genus g curves C/S

induces a proper map s : S → Mg to the moduli space of stable curves of genus g,
and if for example s has image contained within the locus of tree-like curves and
the pullback of every boundary divisor in Mg is locally analytically irreducible in
S, then J admits a Néron model over S. If g ≤ 2 then the whole of Mg is tree-like,
so we only require that the pullback of every boundary divisor in Mg is locally
analytically irreducible in S, but constructing such families of dimension > 1 whose
Jacobain admits a section of infinite order does not seem straightforward.

We conclude the introduction by giving an outline of the proof of Theorem 3.17.
In [1] we gave a new proof of the theorem of Silverman and Tate over curves, and
in this paper we follow essentially the same strategy of proof in higher dimensions.
Namely, given a family of Jacobians J/S and a section σ ∈ J(S) of infinite order,
we consider the function

ĥσ : S(Q̄) → R≥0; s �→ ĥ(σ(s)).

We decompose ĥσ as a sum of two functions,

ĥσ = hL +j

where hL is a Weil height on S with respect to a certain line bundle, and j is an
“error term”, called the height jump. When S is a curve, we were able to show that
the bundle L is ample and the function j is bounded, from which the theorem of
Silverman and Tate easily follows.

Recent work of DeMarco and Mavraki in the case where dimS = 1 and the
curve is of genus 1 shows that, by making a careful choice of metrics on the line
bundle L, the function j can even be made to vanish in that case. A key step in the
construction of their metrics is an application of Silverman’s [33, Theorem II.0.1],
which in our terminology can be said to hold exactly because the local height jumps
are bounded.

Unfortunately, in extending from curves to arbitrary varieties we encounter two
substantial technical difficulties; the line bundle L is not in general ample, and the
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function j does not seem to be boundeda. The assumptions in Theorem 3.17 allow us
to get around these problems. We will show that the jump is bounded if the Jacobian
J has a Néron model over a suitable compactification of S, and that L is ample if
S has sufficiently simple geometry (cf. our condition that dimQ Pic(S̄) ⊗Z Q = 1).

Many thanks to Owen Biesel, Maarten Derickx, Wojciech Gajda, Ariyan Javan-
peykar, Robin de Jong and Pierre Parent for helpful comments and discussions.
Particular thanks to Owen and Robin for allowing me to include the material in
Sec. 3.5 after we removed it from our joint paper [1] to avoid references to then-
unpublished results.

1.1. Conventions

Given a field k, by a variety over k we mean an integral separated k-scheme of finite
type. We write κ(p) for the residue field of a point p.

2. Reformulating the Uniform Boundedness Conjecture

In this section, we work exclusively in characteristic zero, to avoid problems with
inseparable Weil restrictions (cf. [7, Example A.3.8] for an example of an abelian
variety whose Weil restriction is not proper). We begin by recalling the uniform
boundedness conjecture:

Conjecture 2.1 (The strong uniform boundedness conjecture for abelian
varieties). Fix an integer g ≥ 0. There exists a constant B = B(g) ∈ Z>0 such
that for every g-dimensional abelian variety A/Q and point p ∈ A(Q), we have that
either p is of infinite order, or that the order of p is less than B.

Note that this is equivalent to the usual formulation of the strong uniform bound-
edness conjecture (see for example [31, Conjecture 2.3.2]); Zarhin’s trick reduces the
general case to that of principally polarized abelian varieties, by Weil restriction we
can obtain a bound for abelian varieties over finite extensions of Q which is uniform
in the dimension of the variety and the degree of the field extension, and finally a
bound on the order of torsion points and on the dimension implies a bound on the
size of the torsion subgroup.

Our first main result (Theorem 2.4) is that Theorem 2.1 is equivalent to the
following conjecture:

Conjecture 2.2. Let S/Q be a variety and let A/S be an abelian scheme. Let d ≥ 1
be an integer. Let σ ∈ A(S) be a section of infinite order. Define

T(d) = {s ∈ S(Q̄) | [κ(s) : Q] ≤ d and σ(s) is torsion in As(Q̄)}.
Then T(d) is not Zariski dense in S.

aMore precisely, we can write j =
P

l jl as a sum of local terms indexed by primes l of Q, and
each jl is unbounded on Ql-valued points. We may hope that for Q-valued points all these local
jumps are bounded — indeed for torsion points on elliptic curves this should follow from Mazur’s
theorem — but we cannot prove this at present.
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Torsion points and height jumping in higher-dimensional families of abelian varieties 5

In the case when the base scheme S has dimension 1, this conjecture follows
from a theorem of Silverman [32], see also [1, 5, 10, 19, 35] for various strengthened
versions. In Sec. 3, we will discuss a variant which looks not only at torsion points
but at all points of “small height”.

Remark 2.3. This conjecture is reminiscent of conjectures of Pink [30] and Masser-
Zannier [24, p. 1668], concerning the distribution of torsion points in the Zariski
topology. But note that we always bound the degrees of the field extensions we
consider, in contrast to these other conjectures, and there does not seem to be a
more direct connection between them.

Theorem 2.4. Theorem 2.1 is equivalent to Theorem 2.2.

It is easy to see that Theorem 2.1 implies Theorem 2.2; we must show the
converse. Before giving the proof we need a lemma and a definition.

Lemma 2.5. Assume Theorem 2.2. Let S/Q be a variety, and let A/S be an abelian
scheme with a section σ ∈ A(S). Fix d ∈ Z>0. Then there exists an integer c =
c(d) > 0 such that for every L/Q of degree at most d and every point s ∈ S(L),
either σ(s) has infinite order, or σ(s) is torsion of order less than c.

Proof. We proceed by induction on the dimension of S. If dimS = 0 then S has
only finitely many Q̄-points, so the result is immediate.

In general, we fix an integer δ > 0 and assume the lemma holds for every variety
S of dimension less than δ. Now let S have dimension δ. If σ is torsion (say of order
c0) then for every s ∈ S(Q) it holds that c0σ(s) = 0, and we are done. As such, we
may and do assume that σ has infinite order. We apply Theorem 2.2 to obtain a
proper closed subscheme Z ⊆ S such that

{p ∈ S(L) | [L : Q] ≤ d and σ(p) is torsion in Ap(L)} ⊆ Z(Q).

Now Z has only finitely many irreducible components, and each has dimension less
than δ. We are done by the induction hypothesis.

Definition 2.6. Fix an integer g > 0. Let Ag denote the moduli stack of PPAV of
dimension g. Then Ag is a separated Deligne–Mumford stack of finite type over Z.
Given also an integer n ≥ 0, let Ag,n denote the moduli stack of PPAV of dimension
g together with a collection of n ordered marked sections (not assumed distinct).

We have natural maps φn : Ag,n+1 → Ag,n given by forgetting the last section.
The map φn has n natural sections τi, given by “doubling up” the sections σi. Then
(φn : Ag,n+1 → Ag,n, τ1, . . . , τn) is the “universal PPAV with n marked sections”.
In particular, each Ag,n is a Deligne–Mumford stack, separated and of finite type
over Z.

Proof of Theorem 2.4. Consider the universal map φ2 : Ag,2 → Ag,1 with its
tautological section σ1. The basic idea is to apply Theorem 2.5 to this family, but
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we must be careful since Ag,1 is a stack and not a scheme. However, since Ag,1 is
noetherian we can apply [21, Theorem 16.6] (every noetherian Deligne–Mumford
stack admits a finite, surjective and generically étale morphism from a scheme) to
construct a (separated) scheme S of finite type over K, a map S → Ag,1 and an
integer d ≥ 1 such that for every field-valued point s : Spec L → Ag,1 there is an
extension M/L of degree at most d and an M -valued point of S lying over s. We are
then done by Theorem 2.5 applied to the pullback of Ag,2 and σ1 to (the underlying
reduced subscheme of each irreducible component of) S.

Remark 2.7. In the argument above, we make use of a general existence result
of suitable finite covers of stacks by schemes, but in our setting one can make this
much more concrete. Namely, we can take S → Ag,1 simply to be the moduli of
pointed abelian varieties with sufficiently high level structure so that S is actually
a scheme.

In fact, the reader more comfortable with level structures than with stacks can
entirely avoid the use of the latter in the above argument. Let A ′

g,n be the moduli
space of n-pointed abelian varieties with sufficiently high level structure, so A ′

g,0

is the moduli of PPAV with level structure, A ′
g,1 is the universal abelian variety

over it, A ′
g,2 = A ′

g,1 ×A ′
g,0

A ′
g,1, and σ1 : A ′

g,1 → A ′
g,1 ×A ′

g,0
A ′

g,1 is the diagonal. We
apply Theorem 2.5 directly to this family to conclude the proof.

2.1. Extensions and generalizations

Remark 2.8. Using a recent result of Cadoret and Tamagawa [4], we can reduce
further to the case of families of curves:

Conjecture 2.9. Let S/Q be a variety and let C/S be a proper smooth curve with
Jacobian J/S. Let d ≥ 1 be an integer. Let σ ∈ J(S) be a section of infinite order.
Define

T(d) = {s ∈ S(Q̄) | [κ(s) : Q] ≤ d and σ(s) is torsion in Js(Q̄)}.
Then T(d) is not Zariski dense in S.

The equivalence of Theorem 2.1 with Theorem 2.9 may be proven in an almost
identical fashion to the equivalence of Theorem 2.1 with Theorem 2.2, after first
appealing to the main result of [4] to reduce Theorem 2.1 to the case of curves. We
omit the details.

Remark 2.10. It is possible to simultaneously “specialise” both conjectures to
again obtain equivalent statements; for example:

• Theorem 2.1 for Weil restrictions of elliptic curves is equivalent to Theorem 2.9
for elliptic curves over base schemes of dimension at most 2 = dimM1,2;

• Theorem 2.1 for Weil restrictions of principally polarized abelian surfaces is equiv-
alent to Theorem 2.9 for genus 2 curves over base schemes of dimension at most
5 = dimM2,2;
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Torsion points and height jumping in higher-dimensional families of abelian varieties 7

• Theorem 2.1 for Weil restrictions of principally polarized abelian varieties of
dimension g is equivalent to Theorem 2.9 for curves of genus G := 1 + 6g(g −
1)! g(g−1)

2 over base schemes of dimension at most dimMG,2�G
2 � (see [4, Theorem

1.2] for the origin of this expression for G).

The proofs are identical and the possible variations numerous, so we do not give
further details. One can also reduce further to the case of families of curves admitting
compactifications with at-worst nodal singularities, etc.

Remark 2.11. Let A/S be an abelian scheme, σ a section of infinite order, and
f : S′ → S an alteration (a proper surjective generically finite map of varieties).
Then Theorem 2.2 holds for σ in A/S if and only if it holds for f∗σ in A×S S′/S′.
A corresponding statement holds for Theorem 2.9. This has several convenient corol-
laries; for example, it is enough to prove Theorem 2.9 for families of curves C/S

admitting stable models over some compactification of S. In Sec. 3, we will study
Theorem 2.9 in detail in the case of such families.

3. Conjecture on Sparsity of Small Points

In the introduction we proposed (Theorem 1.2) that the sets of points where a
section of infinite order has small height is not Zariski dense. It is clear that this
conjecture implies Theorem 2.2. The remainder of this paper will be devoted to
prove special cases of Theorem 1.2, first for elliptic curves and then for certain
special families of abelian varieties of higher dimension (Theorem 3.17).

3.1. Theorem 1.2 for elliptic curves

To suggest that Theorem 1.2 is not completely unreasonable, we show that a con-
jecture of Lang implies Theorem 1.2 for elliptic curves and d = 1 (see Theorem 3.2
for a precise statement). We begin by recalling Lang’s conjecture:

Conjecture 3.1 ([18] or [12, Conjecture F.3.4(a)]). Fix a finite field extension
k/Q, there exists a constant c = c(k) > 0 such that for all elliptic curves E/k and
all non-torsion points a ∈ E(k), we have

ĥ(a) ≥ c · log|Nk/Q∆E/k|.
Here ∆E/k is the discriminant, and Nk/Q denotes the norm down to Q.

Lemma 3.2. Assume Theorem 3.1 holds. Fix a finite extension k/Q and a variety
S/k. Then for every family of elliptic curves E/S together with a section σ of
infinite order, there exists ε > 0 such that the set Tε(1) is not Zariski dense in S

(cf. Theorem 1.1)

Proof. Let Σ denote the finite set of elliptic curves over k with everywhere good
reduction, and let b > 0 denote the smallest height of a non-torsion k-point appear-
ing on any curve in Σ, or set b = 1 if no such exists. Let c = c(k) be the constant
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from Lang’s conjecture, and let m denote the infimum of the values taken by the
expression c · log|∆E/Q| as E runs over all elliptic curves over k with at least
one place of bad reduction; this infimum is achieved (since there are only finitely
many elliptic curves of bounded discriminant) and is positive (by our bad-reduction
assumption).

Set δ = min(b, m). For all δ > ε ≥ 0 we have

Tε(1) = T(1).

Now Theorem 2.1 is known for elliptic curves over k by work of Merel Theo-
rem [25] so we know that Theorem 2.2 holds in our situation, hence T(1) is not
Zariski dense in S.

Pazuki has proposed a refined form of the Lang–Silverman conjecture in [28,
Conjecture 5.1], and remarked that it implies the strong torsion conjecture. In a
similar fashion to the proof of Theorem 3.2 one can show that his conjecture implies
the full form of Theorem 1.2. The author is grateful to an anonymous referee for
pointing out this reference.

3.2. Strategy for proving more special cases of Theorem 1.2

The remainder of the paper will be devoted to proving Theorem 1.2 for families of
curves over “simple” base schemes and assuming that the Jacobian admits a Néron
model over that base (see Theorem 3.17 for the precise statement). As discussed
in the introduction we will use a number of tools from the theory of Néron models
and height jumps developed in the papers [1, 3, 13, 14]. In an attempt to keep the
present work reasonably self-contained we will briefly recall the main definitions
and results we use as we go along.

The strategy of the proof was briefly discussed in the introduction, but we
will give a slightly more detailed outline here before proceeding. We begin with a
smooth projective variety S/Q and a nodal curve C/S; by a nodal curve we mean
a proper flat finitely presented morphism all of whose geometric fibers are reduced,
connected, of dimension 1, and have at worst ordinary double point singularities.
Write U ⊆ S for the locus where C/S is smooth; we assume U is dense in S. Write
J for the Jacobian of CU/U , and let σ ∈ J(S) be a section of infinite order. We
consider the function

ĥσ : U(Q̄) → R≥0; s �→ ĥ(σ(s)).

We decompose ĥσ as a sum of two functions,

ĥσ = hL +j,

where hL is a Weil height on U with respect to a certain line bundle on S, and j

is an “error term,” the height jump.
The line bundle L will be the admissible extension of the Deligne pairing of

σ with itself, cf. Sec. 3.3. In Sec. 3.3, we will also define the height jump j. In
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Sec. 3.4, we will make the jump explicit in certain situations, following closely the
presentation in [1]. This will require a discussion of Green’s functions on resistive
networks. In Sec. 3.5, we will show that the jump vanishes if and only if J admits a
Néron model over a suitable Z-model of S; this is not essential for our other results,
but demonstrates the close link between Néron models and the height jump. In
Sec. 3.6, we return to our main aim of proving Theorem 3.17, showing that the
jump is bounded for curves the Jacobians of whose generic fibers admit Néron
models. In Sec. 3.7, we compare ways of associating heights to line bundles which
are not ample, giving a key inequality needed for the proof of Theorem 3.17. Finally,
in Sec. 3.8, we put these ingredients together to prove our main result Theorem 3.17.

3.3. Defining the algebraic height jump

Let S be a regular scheme, C → S a generically smooth nodal curve, and U ⊆ S

the largest open over which C is smooth. Write J for the Jacobian of CU/U . Let
σ, τ ∈ J(U) be two sections. Write P for the rigidified Poincaré bundle on J ×U J

(cf. [26]). Write 〈σ, τ〉 for the dual of the pullback (σ, τ)∗P — it is a line bundle on
U called the Deligne pairing of σ and τ , cf. [1].

We know from [14] that there exists a largest open subset U ⊆ V ⊆ S such that
the complement of V in S has codimension 2 and such that J admits a Néron model
over V . The Néron model is of finite type by [15], so there exists n > 0 such that nσ

and nτ pass through the identity component N0 of the Néron model; choose such
an n. By [27, Definition II.1.2.7 and Theorem II.3.6] the Poincaré bundle admits a
unique rigidified extension to N0 ×S N0, which we pull back to V along (nσ, nτ).
Since S is regular and the complement of V has codimension 2, this line bundle
on V has a unique extension to a line bundle on S. Raising this line bundle to the
power 1/n2 we obtain a Q-line bundle on S which we call the admissible extension
of the Deligne pairing (or just the admissible pairing), and write as 〈σ, τ〉a — it is
independent of the choice of n. This is also known as the “Lear extension,” as in the
setting of complex geometry (or more generally Hodge theory) it can also be defined
by requiring that certain metrics extend continuously outside some codimension 2
subset of the boundary, see for example [3, 11, 22].

Suppose T is another regular scheme, and f : T → S is a morphism. We say f is
non-degenerate if f−1U is dense in T . Given a non-degenerate morphism f : T → S,
we have a canonical isomorphism of line bundles on f−1U

f∗〈σ, τ〉 | f−1U = 〈f∗σ, f∗τ〉 | f−1U = 〈f∗σ, f∗τ〉a | f−1U .

Thus the Q-line bundle

f∗〈σ, τ〉∨a ⊗ 〈f∗σ, f∗τ〉a
is canonically trivial over f−1U , and so the section “1” over U gives a canonical
rational section over T . We define the height jump j(σ, τ, f) associated to σ, τ and
f to be the corresponding Q-divisor on T .

In
t. 

J.
 N

um
be

r 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
L

E
ID

E
N

 o
n 

08
/2

7/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

June 18, 2019 18:36 WSPC/S1793-0421 203-IJNT 1950101

10 D. Holmes

Lemma 3.3. Assume f : T → S is a non-degenerate morphism such that f−1(S\V )
has codimension at least 2 in T . Then the formation of 〈D, E〉a is compatible with
base change along f .

This is a slight generalization of [1, Proposition 3.4], and the proof is essentially
the same.

Proof. Recall that f being non-degenerate implies that T is regular. The formation
of 〈D, E〉a is compatible with base change along f if and only if the jump divisor
j(f ; D, E) is trivial. The triviality of a divisor can be checked on the complement
of a codimension 2 subscheme, so we may assume that the image of f is contained
in V .

Now the sections mD and nE of the Néron model N(JU ) are contained in the
fiberwise connected component of identity N0(JU ), by assumption. The pullback
of N0(JU ) along f is again semiabelian, and prolongs the pullback of the Jacobian.
Moreover, the sections mD and nE pull back to sections of f∗N0(JU ), and the
rigidified extension of the Poincaré bundle pulls back to a rigidified extension of
the Poincaré bundle. The result then follows from the uniqueness of semiabelian
prolongations, cf. Theorem 1.2 in [9].

Corollary 3.4. Assume that JU extends into a Néron model over S. Then for all
non-degenerate morphisms f : T → S, the height jump divisor on T is trivial.

In Theorem 3.10, we shall see that the sufficient condition of this corollary is
also essentially a necessary condition, even if we restrict our test objects to traits.

Remark 3.5. The jump is defined for arbitrary T , but it is generally enough to be
able to compute it when T is a trait, since the jump is stable under flat base-change
by Theorem 3.3, in particular under localization at generic points of prime divisors
in T .

3.4. Computing the algebraic height jump

In this section, we summarize some results on the height jump from [1]. In particular,
Eq. (3.1) shows how to compute the jump explicitly in certain situations, which
will be important for our later results. We will relate the height jump to Green’s
functions on graphs. For some of this we will use the language of electrical networks,
but we only use it as a language and as a guide to intuition; all our proofs are still
(intended to be) rigorous. More details of what follows in the remainder of this
section can be found in [1, §6 and §7].

3.4.1. Resistive networks and Green’s functions

For us graphs have finitely many edges and vertices, are allowed loops and multiple
edges, and are not directed. A resistive network is a graph Γ together with a labeling
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µ : Edges(Γ) → R≥0 of the edges by non-negative real numbers, which we can think
of as resistances (if the labels are all positive, it is called a proper resistive network,
otherwise it is improper, which is an important distinction in what follows).

The Laplacian of a proper resistive network (Γ, µ) is the linear map L : RVertΓ →
RVertΓ which sends a vector (xv : v ∈ Vert Γ) to the vector whose component at a
vertex u is ∑

v∈VertΓ

∑
e

xu − xv

µ(e)
,

where the second sum is over all edges with one endpoint at v and the other at u.
Note that the properness gives us that the µ(e) are nonzero.

Remark 3.6. If we think of a vector X = (xv : v ∈ Vert Γ) as an assignment of
a voltage to every vertex in Γ, then for a directed edge e from u to v, the term
(u−v)/e can be thought of as the current flowing along the edge e. The component
of the vector LX at a vertex v is then the total current flowing out of the vertex v

into the rest of the network.

Definition 3.7. Assume that (Γ, µ) is a proper resistive network with exactly one
connected component. Let X, Y ∈ RVert Γ. We define the Green’s function at X, Y

to be

gr(Γ, µ; X, Y ) = XL+Y,

where L+ is the Moore–Penrose pseudo inverse (see [29]) of L.

If we fix X and Y and allow µ to vary over R
EdgesΓ
>0 then it is easy to see that the

function sending µ to gr(Γ, µ; X, Y ) is continuous. We can also extend the definition
of the Green’s function to improper networks:

Definition 3.8. Let (Γ, µ) be a resistive network with exactly one connected com-
ponent and let X , Y ∈ RVert Γ. Let Γ′ be the graph obtained from Γ by contracting
every edge with resistance 0, and write µ′, X ′ and Y ′ for the corresponding resis-
tance function and vertex weightings on Γ′. Then we define the Green’s function at
X , Y to be

gr(Γ, µ; X, Y ) = X ′L′+Y ′,

where L′+ is the Moore–Penrose pseudo inverse of the Laplacian L′ on Γ′.

Now for fixed X and Y we get a function R
EdgesΓ
≥0 → R sending µ to

gr(Γ, µ; X, Y ). It is no longer obvious that this function should be continuous, but
it is in fact continuous, see [1, Proposition 6.6].

3.4.2. Some terminology for families of nodal curves

In what follows we will need some precise descriptions of the local structure of
families of nodal curves, which we will collect here. Let S be a scheme, and C/S a

In
t. 

J.
 N

um
be

r 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
L

E
ID

E
N

 o
n 

08
/2

7/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

June 18, 2019 18:36 WSPC/S1793-0421 203-IJNT 1950101

12 D. Holmes

nodal curve. If s ∈ S is a point then a non-degenerate trait through s is a morphism
f : T → S from the spectrum T of a discrete valuation ring, sending the closed point
of T to s, and such that f∗C is smooth over the generic point of T .

We say a nodal curve C/S is quasisplit if the morphism Sing(C/S) → S is
an immersion Zariski-locally on the source (for example, a disjoint union of closed
immersions), and if for every field-valued fiber Ck of C/S, every irreducible com-
ponent of Ck is geometrically irreducible.

Suppose we are given C/S a quasisplit nodal curve and s ∈ S a point. Then we
write Γs for the dual graph of C/S in the sense of [23, Definition 10.3.17] — this
makes sense because C/S is quasisplit and so all the singular points are rational
points, and all the irreducible components are geometrically irreducible. Assume
that C/S is smooth over a schematically dense open of S. If we are also given a
non-smooth point c in the fiber over s, then there exists an element α ∈ OS,s and
an isomorphism of completed étale local rings (after choosing compatible geometric
points lying over c and s)

Ôet
C,c

∼→ Ôet
S,s[[x, y]]

(xy − α)
.

This element α is not unique, but the ideal it generates in OS,s is unique. We label
the edge of the graph Γs corresponding to c with the ideal αOS,s. In this way the
edges of Γs can be labeled by principal ideals of OS,s.

If η is another point of S with s ∈ {η} then we get a specialization map

sp: Γs → Γη

on the dual graphs, which contracts exactly those edges in Γs whose labels gen-
erate the unit ideal in OS,η. If an edge e of Γs has label 	, then the label on the
corresponding edge of Γη is given by 	OS,η.

3.4.3. The jump in terms of Green’s functions

Now we will apply our discussion of Green’s functions above to compute the height
jump. Let S be a regular noetherian scheme, C/S a generically-smooth quasisplit
nodal curve, and U ⊆ S the largest open over which C is smooth. Let s ∈ S be
a point, and write (Γ, 	) for the labeled graph of C/S at s, where the labels take
values in the monoid of principal ideals of OS,s, cf. Sec. 3.4.2. Let Z1, . . . , Zr be
prime divisors in S forming the boundary of U , and for each i let zi be a local
equation of Zi in the local ring OS,s. Now if e is an edge of Γ, the label 	(e) is
generated by za1

1 · · · zar
r for some unique (a1, . . . , ar) ∈ Zr

≥0. Given I ⊆ {1, . . . , r}
we define a new labeled graph (Γ, 	I) by requiring that, if 	(e) = (za1

1 · · · zar
r ), then

	I(e) = (
∏

i∈I zai

i ). In particular, 	{1,...,r} = 	. We write 	i for 	{i}.
Given a horizontal divisor D on C/S supported on sections through the smooth

locus and of relative degree 0, we can define an associated combinatorial divisor D
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Torsion points and height jumping in higher-dimensional families of abelian varieties 13

in RVertΓ by setting

D(y) = deg D|Y
for each vertex y of Γ with corresponding irreducible component Y of Cs.

Suppose now that we have a non-degenerate trait f : T → S through s. Then
we have a pullback map f# : OS,s → OT (T ). We obtain a labeling of the edges of
Γ with values in Z≥0 by sending an edge e to ordT f#	(e), and we write ordT f#	

for this labeling. We make corresponding definitions for the 	I .

Theorem 3.9 ([1], Theorem 7.8). Suppose we are given two horizontal divisors
D and E on C/S of relative degree 0 and supported on sections through the smooth
locus of C/S, with associated combinatorial divisors D and E. Write σ (respectively,
τ) for the section of the Jacobian J of CU induced by D (respectively, E). Then the
height jump associated to σ, τ and f is given by the formula j(σ, τ, f) = j · [t] where
t is the closed point of T , and the rational number j is given by

j = gr(Γ, ordT f#	;D, E) −
r∑

i=1

gr(Γ, ordT f#	i;D, E). (3.1)

3.5. Vanishing of the jump is equivalent to the existence of a

Néron model

Let S be an integral, noetherian, regular scheme, and let C → S be a generically
smooth nodal curve. Let U ⊂ S be the largest open subscheme of S over which C

is smooth. We have seen that if the Jacobian of the generic fiber of C → S has a
Néron model over S, then for each non-degenerate morphism f : T → S the height
jump divisor is trivial. In this section, we give a partial converse to this result,
using Eq. (3.1). This result is not needed to prove our main Theorem 3.17, but is
intended to demonstrate the close connection between the vanishing of the jump
and the existence of Néron models.

We recall the following definition of alignment of labeled graphs and curves from
[14]:

(1) given a graph Γ with an edge-labeling by a (multiplicatively written) monoid,
we say Γ is aligned if for all cycles γ in Γ, and for all pairs of edges e1, e2 on γ,
there exist positive integers n1, n2 such that

(label(e1))n1 = (label(e2))n2 ;

(2) given a geometric point s ∈ S, we say C → S is aligned at s if the labeled
reduction graph Γs of C above s is aligned (where the monoid is the monoid of
principal ideals in OS,s);

(3) we say C → S is aligned if C → S is aligned at s for all geometric points s in S.

Proposition 3.10. Assume C admits a regular nodal model over S. The following
conditions are equivalent:

(1) The Jacobian of CU → U has a Néron model over S;
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(2) For all nodal models C̃ → S of C, for all non-degenerate morphisms f : T →
S with T a trait and for all relative degree zero divisors D, E with support
contained in the smooth locus Sm(C̃/S) of C̃ → S, the height jump divisor
j(f ; D, E) is trivial;

(3) There exists a nodal model C̃ → S of C with the same property as in item (2);
(4) There exists an aligned regular model of C → S;
(5) Every nodal model of C over S is aligned.

We note that following [8, Proposition 3.6], a sufficient condition for the existence
of a regular nodal model of C is that C → S be split nodal (in the sense of [8]) and
smooth over the complement of a strict normal crossings divisor in S.

Proof. The equivalence of (1), (4) and (5) follows from the main results of [14]. It is
clear that (2) implies (3). The implication (1) ⇒ (2) follows from Theorem 3.3. We
will now show (3) implies (4). In fact we will show the contrapositive, that (¬4) ⇒
(¬3). Assume (¬4), and consider any regular nodal model of C over S. To simplify
notation, we will assume this model is C itself. By (¬4) we have that C → S is not
aligned. Both questions are étale-local on the base, and so we may assume that S is
the spectrum of a strictly henselian local ring, with closed point s, and that C → S

is not aligned at s. Note that C → S is quasisplit since S is strictly henselian. Let
z1, . . . , zr be distinct height 1 prime ideals in OS,s such that C is smooth over U :=
S\V (

∏r
i=1 zi). Write Γs for the labeled graph of C over s. Since C is regular, every

label on Γs is equal to one of the zi; non-trivial powers and products cannot occur.
Let γ be a cycle in Γs which contains two distinct labels — such a cycle exists

exactly because C → S is not aligned at s. After possibly reordering the zi, we may
and do assume that γ contains two adjacent edges e1, e2 with labels z1, z2, respec-
tively. Let p, q ∈ C(S) be sections through the smooth loci of the two irreducible
components of Cs corresponding to the (distinct) endpoints of e1. Let D = E = p−q,
degree-zero divisors on C → S supported on the smooth locus. Applying Eq. (3.1),
we find that for any non-degenerate test curve f : T → S the height jump is given by

g(Γs, ordt f#	s;D, E) −
r∑

i=1

g(Γs, ordt f#	s,i;D, E).

We find that all the terms g(Γs, ordt f#	s,i;D, E) vanish for i = 1. Indeed, if
i = 1 then all the edges e with 	s(e) = (z1) have 	s,i(e) = (1), in particular
	s,i(e1) = (1), so ordt f#	s,i(e1) = 0. It is then immediate from Theorem 3.8 that
g(Γs, ordt f#	s,i;D, E) = 0, since the edge e1 is contracted in the computation of
the Green’s function, and so the vertex weightings are both zero.

To prove (¬4), it suffices to show that the equality

g(Γs, ordt f#	s;D, E) = g(Γs, ordt f#	s,1;D, E) (3.2)

fails for some non-degenerate test curve f : T → S. Choose any non-degenerate
test curve f : T → S such that the image of the closed point t of T is the closed
point s of S. Then we find that every label of (Γs, ordt f#	s) is strictly positive.
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Equation (3.2) is equivalent to the statement that the effective resistance between
p and q on the graph Γs with edges given resistance equal to the ordt f#	s is equal
to the resistance between p and q on the same graph but with all the edges not
labeled by z1 being contracted (equivalently, having their resistances set to zero).
Then by [1, Corollary A.5], in the graph with “non-contracted” edges, no current
flows through any edge not labeled by z1 when 1 unit of current flows in at p and
out at q. But since there is a path (extendable to a spanning tree) from p to q

that either starts or ends with e2, [1, Eq. (A.2)] tells us that the current along the
z2-labeled edge e2 must be nonzero, so we have reached a contradiction.

Remark 3.11. We point out that the regularity assumption in part (4) of the
theorem is essential: a nodal curve over S = Spec C[[u, v]] with labeled graph over
the closed point a 1-gon with label (uv) — which is then necessarily not regular —
is aligned, but its Jacobian does not admit a Néron model over S.

3.6. Bounding the height jump for generically aligned curves

Recall from Theorem 3.10 that the height jump vanishes whenever the Jacobian of
a family of curves admits a Néron model. The aim of this section is to show that if
the base-change of our family to Q admits a Néron model, then the height jump is
bounded.

In this section, we work over an arbitrary global field K, since our proofs natu-
rally work in that generality. We write Λ for the spectrum of the ring of integers of
K if K is a number field, or for a smooth proper geometrically integral curve over a
finite field with field of rational functions K if K is a global function field. If L/K

is a finite extension then we define ΛL similarly.

Theorem 3.12. Let S be a regular scheme proper and flat over Λ, and let
C → S be a nodal curve smooth over a dense open subscheme U ↪→ S and
with C regular. Write J for the Jacobian of CU/U . Suppose we are given integers
d1, . . . , dn, e1, . . . , en with

∑
i di =

∑
i ei = 0 and sections σ1, . . . , σn, τ1, . . . , τn ∈

Csm(S), and set σ = [
∑

i di(σi)U ], τ = [
∑

i ei(τi)U ] ∈ J(U).
Suppose also that JK has a Néron model over SK . Then there exists a constant

B such that for all finite extensions L/K and for all x ∈ U(L) we have∣∣∣∣∣ d̂egj(σ, τ, x̄)
[L : K]

∣∣∣∣∣ ≤ B,

where j(σ, τ, x̄) denotes the height jump associated to σ, τ and x̄ : ΛL → S.

Proof. We proceed in several steps.

Step 1: Translate the problem into a statement which is local on Λ.
Recall from [14] that the existence of a Néron model of the Jacobian is

equivalent to alignment of the family of curves. Using that CK/SK is aligned
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and the finite presentation of C/S, we see that there is a nonempty Zariski
open Λ0 ↪→ Λ such that the Jacobian of CUΛ0 /UΛ0 admits a Néron model
over SΛ0 . Then by Theorem 3.4 we deduce that there is a finite set of primes
of Λ such that for every (finite flat quasi-)section, the height jump vanishes
outside that finite set. Because the claim is stable under unramified base-
change on Λ we may replace Λ by its strict henselization and completion
Λp at some prime p. Write Kp for the field of rational functions on Λp.

Step 2: Translate the problem into a statement which is local on S.
Let S′ → S be an étale cover, and let L/Kp be a finite extension. Write

ΛL for the normalization of Λp in L. Then ΛL is finite over Λp of degree
[L : K], and is strictly henselian. By properness of S/Λ the restriction map
S(ΛL) → S(L) is a bijection, and since ΛL is strictly henselian we know
that S′(ΛL) → S(ΛL) is surjective. By quasi-compactness of S, it therefore
suffices to bound the height jump on every connected component of some
étale cover of S.

Step 3: Make some reductions using the étale local nature of the statement.
To keep the notation concise we will write Λ in place of Λp, and (using

step 2 and [13, Lemma 6.3]) we will replace S by a flat finite-type integral
Λ-scheme such that for some s ∈ S (which we will refer to as a “controlling
point”), the induced specialization map Γs → Γt is surjective for all points
t ∈ S.

Since S is noetherian, it suffices to consider quasi-sections in S(ΛL)
(with L/K finite) such that the induced graph over the closed point of Λ
is the same as the graph of the controlling point s. If Z1, . . . , Zn are prime
Weil divisors on S such that every label on Γ can be written in terms of
the Zi (and the Zi are minimal with respect to this) then we can restrict
further to quasi-sections x ∈ S(ΛL) such that for all i, the divisor x∗Zi on
Λ is non-trivial. Write Σ for the set of such quasi-sections. If x : ΛL → S is
a quasi-section, we write L = Lx and Λx = ΛL.

Step 4: Conclude the argument by an appeal to a theorem about resistive networks.
We are now in the situation of Sec. 3.4, and we adopt the notation of

that section. Further, we know that CK/SK is aligned, where we write K

for the generic point of Λ. Some of the Zi may be trivial after pullback
to SK , and some may not. Re-ordering we assume that Z1, . . . , Zr are not
trivial on SK and Zr+1, . . . , Zn are. As such, for each r + 1 ≤ i ≤ n the
function

Σ → R>0; x �→ ordΛx x∗Zi

[Lx : K]

is bounded.

Define divisors on C/S by D =
∑

i diσi, E =
∑

i eiτi, so σ = [DU ] and τ = [EU ].
Write D, E for the combinatorial divisors associated to D and E. Then applying
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[1, Proposition 6.8] we find that∣∣∣∣∣gr
(

Γ,
ordΛx x#	

[Lx : K]
;D, E

)
− gr

(
Γ,

ordΛx x#	{1,...,r}
[Lx : K]

;D, E
)

−
r∑

i=1

gr
(

Γ,
ordΛx x#	i

[Lx : K]
;D, E

)∣∣∣∣∣
is bounded independent of x ∈ Σ. To complete the proof it suffices to bound the
absolute value of

B(x) := gr

(
Γ,

ordΛx x#	{1,...,r}
[Lx : K]

;D, E
)

−
r∑

i=1

gr
(

Γ,
ordΛx x#	i

[Lx : K]
;D, E

)
(3.3)

for which we will use that CK/SK is aligned. In fact, we will show that B(x) = 0
for all x ∈ Σ.

Let ΓK be the graph obtained from Γ by contracting every edge whose label
does not contain at least one of Z1, . . . , Zr with non-zero (i.e. positive) coefficient.
It is clear that all terms in Eq. (3.3) can be computed on ΓK just as well as on
Γ. Moreover, ΓK is the graph of C over a controlling point of SK , so we can see
easily what alignment of CK/SK means on ΓK ; namely, that all labels on edges
in 2-vertex-connected components are multiplicatively related over SK . Define a
labeling 	′ on the edges of ΓK by composing 	 with the map sending

∑n
i=1 aiZi to∑r

i=1 aiZi.
We will show B(x) = 0 in three steps:

Step 4.1: The case where ΓK is 2-vertex connected.
By alignment there exists a divisor δ =

∑r
i=1 aiZi and for each edge e

of ΓK a constant λe ∈ Q≥0 such that 	′(e) = λeδ. Let ρ : R
EdgesΓK

≥0 → R≥0

be the map sending a labeling µ to the Green’s function gr(ΓK , µ;D, E).
This function is homogenous of degree 1 by [1, Proposition 6.7(a)]. For
1 ≤ i ≤ r define

gi : Σ → R
EdgesΓK

≥0 ; x �→ ordΛx x#	i

[Lx : K]

and define g =
∑r

i=1 gi. Then by definition we have

gr

(
ΓK ,

ordΛx x#	{1,...,r}
[Lx : K]

;D, E
)

= ρ ◦ g

and

gr
(

ΓK ,
ordΛx x#	i

[Lx : K]
;D, E

)
= ρ ◦ gi

for 1 ≤ i ≤ r. Define

f : R≥0 → R
EdgesΓK

≥0 ; t �→ (λet)e∈Edges ΓK
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and define ρ0 := ρ ◦ f : R≥0 → R≥0, which is a “linear” map since ρ is
homogeneous of weight 1 and the source has dimension 1. Setting

hi : Σ → R≥0; x �→ ai
ordΛx x#Zi

[Lx : K]

and h =
∑r

i=1 hi, we find gi = f ◦ hi and g = f ◦ h. Thus ρ ◦ g = ρ0 ◦ h,
and ρ ◦ gi = ρ0 ◦ hi for each i. Then

B = ρ0 ◦ h −
r∑

i=1

ρ0 ◦ hi

= ρ0 ◦
(

h −
r∑

i=1

hi

)
(by linearity of ρ0)

= ρ0 ◦ (zero map) = (zero map).

Step 4.2: The case where D = E = u − v for some vertices u and v.
We may assume ΓK has no self-loops, since they do not contribute

to the Green’s functions. Write Γ′ for the graph obtained from ΓK by
contracting to a point every 2-vertex-connected component which is not
a single edge (so Γ′ is a tree). Thus there is a unique path γ from the
image of u to the image of v in Γ′.

Let H1, . . . , Hn be the vertices appearing along γ, so the image of u lies
in H1 and the image of u lies in Hn. Let b1, . . . , bn−1 be the edges along γ.
Each Hi corresponds to either a vertex or a 2-vertex-connected subgraph
of ΓK , which we will denote by the same symbol Hi. For 1 ≤ i ≤ n − 1
let ti ∈ Hi be the vertex which the edge of γ out of Hi lifts to, and for
2 ≤ i ≤ n let si ∈ Hi be the vertex of Hi where the edge of γ into Hi

lifts to. The result might look something like Fig. 1. Then by additivity
of Green’s functions in trees we find that

B(x) = Bx(H1; u, t1) +
n−1∑
i=2

Bx(Hi; si, ti) +
n−1∑
i=1

Bx(bi; ti, si)

+ Bx(Hn; tn, v), (3.4)

where for a subgraph G ⊆ ΓK and two vertices a and b we write

Bx(G; a, b) := gr

(
G,

ordΛx x#	{1,...,r}
[Lx : K]

∣∣∣∣∣
G

; a − b, a − b

)

−
r∑

i=1

gr
(

G,
ordΛx x#	i

[Lx : K]

∣∣∣∣
G

; a − b, a − b

)
.

But all the terms on the right-hand side of Eq. (3.4) vanish by step 4.1,
so we are done.
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Fig. 1. An example of a graph ΓK when n = 4.

Step 4.3: The general case.
To deduce the general case from the case where D = E = u− v, we fix

x and consider B as a bilinear function on the space Div of combinatorial
divisors of degree zero on ΓK . Then B is positive semi-definite by [1,
Corollary 6.7(b)] and it vanishes on a basis of Div by Step 4.2, so by the
Cauchy–Schwarz inequality we find that B is zero.

3.7. Heights and rational maps

In this section, we continue to work over a global field K. Let S/K be a projective
scheme, and L on S a line bundle. To this data we can attach a Weil height

hL : S(K̄) → R (3.5)

which is unique up to addition of a bounded function on S(K̄). For example, this
can be done via Arakelov theory, or by writing L as a difference of very ample
line bundles and applying the usual height machinery on a variety embedded in
projective space. In either case a number of choices must be made, but the resulting
heights all differ by bounded amounts. We say hL (or L) is weakly non-degenerate
if the sets of points of bounded height with residue fields of bounded degree are
not Zariski dense in S. For example, Northcott’s theorem tells us that if L is ample
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then sets of points of bounded height and degree for hL are finite, so certainly not
Zariski dense if S has positive dimension. The main goal of this section is to show
that if h0(S,L) ≥ 2, then hL is weakly non-degenerate. We will start by developing
a bit of theory about heights associated to rational maps. Since we are ultimately
interested in weak non-degeneracy, we will work up to O(1) everywhere.

In the above setup, let V be a non-zero sub-K-vector space of H0(S,L). In the
usual way we obtain a rational map

fV : S ��� P(V )

(we think of P(V ) as the space of rank-1 quotients of V , to avoid writing duals
everywhere). Let U be an open subset of its domain of definition. By composing
the map fV with a standard height on P(V ) (say after choosing a basis of V ) we
get a height

hV : U(K̄) → R.

For example, the reader will easily verify that if V ⊆ V ′ ⊆ H0(S,L) then fV ′ is
defined on U and we have hV ≤ hV ′ on U(K̄) (up to addition of a bounded function
on U(K̄)). It is slightly harder to compare hL with hV , but we have

Lemma 3.13. On U(K̄) we have hV ≤ hL, up to addition of a bounded function
on U(K̄).

Note that hL is not in general equal to hV . In the proof we will say that two
functions on U(K̄) are “equal up to O(1)” if their difference is bounded.

Proof. Let S be a proper flat reduced model of S over OK such that L extends
to a line bundle on S; choose such an extension and denote it L . Let LV be the
sub-OS-module of L generated by V , and let LV be an extension to a coherent
submodule of L . Let

IV := LV ⊗OS L ∨ → OS ,

a coherent sheaf of ideals in OS . Let π : S̃ → S be the blowup of S in IV .
Over each Archimedean place of K we choose a continuous metric on OS and

on L . The metric on OS induces a norm on each section of IV . The choices of these
metrics are not important, since any two will have bounded difference by properness
of S, but it is important to make a choice so that the arithmetic degrees below make
sense.

For a point p ∈ U(K), we write p̄ for the corresponding OK-point of S, and
p̃ for the corresponding OK-point of S̃. Write f = fV : U → P(V ), and define
f̃ : S̃K → P(V ) to be the natural map extending f . Then we have

h(f(p)) = h(f̃(p))

(1)
= d̂eg

(
p̃∗(π−1Iv ⊗OS L )

)
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(2)
= d̂eg (p̄∗(Iv ⊗OS L ))

(3)

≤ d̂eg (p̄∗L ).

See for example [34, §1.2] or [20, IV, §3] for the definition of the arithmetic degree
d̂eg; note that in the function field case it is just the usual degree of a line bundle
on a proper smooth curve. We now justify the above (in)equalities:

(1) holds up to O(1); it follows from the fact that on S̃K we have(
π−1Iv ⊗ π∗L

) |S̃K
= f̃∗O(1), and h(f̃(p)) is equal (up to O(1)) to the arith-

metic degree of p̃∗ of any invertible model of f̃∗O(1);
(2) is where the content lies; because p is in U we know that IV pulls back along p̄

to a submodule of the line bundle p̄∗L which is invertible on the generic point
of OK , and hence is itself a line bundle. Then from the proof of [23, 8.1.5] we
find that p̄∗IV = p̃∗π−1IV , from which the result follows;

(3) is because IV ⊆ OS , so p̄∗Iv ⊗OS L ⊆ p̄∗L .

Now up to O(1) we have that hV (p) = h(f(p)) and hL(p) = d̂eg (p̄∗L ) and we are
done.

For the reader less comfortable with Arakelov theory, we provide an alternative
proof of this lemma. By the remark just above the lemma we reduce to the case
where V = H0(S,L). Write LV for the coherent subsheaf of L generated by the
elements of V , then tensoring the inclusion LV → L with L∨ yields an injection
IV := LV ⊗ L∨ → OS . Let π : S̃ → S be the blowup of S along the ideal sheaf
IV and write π−1IV for the inverse-image ideal sheaf, then F := π−1Iv ⊗ π∗L is
the subsheaf of π∗L generated by the pullbacks of the global sections of L, and
is an invertible sheaf by construction. Since F is invertible and globally generated
it induces a morphism S̃ → P(V ) (noting H0(S̃,F) = V ), and for points in U

the height induced by this map evidently coincides with hV . So on S̃ we have an
inclusion of line bundles F ⊆ π∗L, and (for points in U), hV = hF and hL = hπ∗L.
The inequality hF ≤ hπ∗L is clear e.g., from the height machine.

Corollary 3.14. Let S/K be a connected projective scheme, and L on S a line
bundle with h0(S,L⊗n) ≥ 2 for some n > 0. Then L is weakly non-degenerate.

Proof. We may assume n = 1. In the above notation, let V = H0(S,L). Then we
can find a dominant rational map fV : S ��� P1 which is defined on some dense
open U ⊆ S. From the Northcott property for P1 we see that hV is weakly non-
degenerate, and the result then follows from Theorem 3.13.

3.8. Proof of the second main Theorem 3.17

Remark 3.15. In the proof of Theorem 3.17 we want to talk about two metrics
on a line bundle having “bounded difference.” If X is a finite-type scheme over C
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and L is a line bundle on X with metrics ‖−‖1 and ‖−‖2, we say ‖−‖1 and ‖−‖2

have bounded difference if there exists an open Zariski cover Ui of X and generating
sections 	i ∈ L(Ui) such that the function

|‖	i‖1 − ‖	i‖2|
is bounded on Ui for every i.

Again, K is a global field and Λ its scheme of integers. Now let X be a proper
scheme over Λ and L a line bundle on X . Let X = XC and let L = LC. To any
metric ‖−‖ on L we associate as usual a height function

hL,‖−‖ : X (K̄) → R.

If ‖−‖1 and ‖−‖2 are two metrics on L having bounded difference in the above
sense, then one checks without difficulty that the functions hL,‖−‖1 and hL,‖−‖2

have bounded difference.

Definition 3.16. Let S/K be a smooth projective connected scheme of dimension
d. We say a line bundle L on S is ample-positive if for every ample H on S, we have
that L · Hd−1 > 0.

Theorem 3.17. Let S be a regular scheme, projective and flat over Λ. Let C/S be
a nodal curve, smooth over a dense open of S and with CSK regular. Assume:

(1) CSK /SK is aligned ;
(2) for every ample-positive L on SK there exists n > 0 such that h0(SK , L⊗n) ≥ 2.

Let S ⊆ SK be any open over which C is smooth and write J for the Jacobian
of CS/S. Let σ ∈ J(S) be a section of infinite order corresponding to a divisor
supported on some sections of C/SK . Then given any d ∈ Z≥1 there exist ε ∈ R>0

such that the set

Tε(d) = {p ∈ S(K̄) | [κ(p) : K] ≤ d and ĥ(σ(p)) ≤ ε}.
is not Zariski dense in S.

Examples of varieties for which the second condition of the theorem holds include
curves, and varieties X with dimQ Pic(X) ⊗Z Q = 1.

Proof.

Step 1: Preliminary reductions.
We may assume S is integral; write L for its field of rational functions.

Suppose first that the section σ lies in the image of the L/K trace of JK

(cf. [6]). Then after shrinking S we may assume there is an abelian variety
B/K and a map BL → JL such that σ is the base-change to L of some
section τ ∈ B(K). The section τ cannot have finite order since anything
which kills τ also kills σ, and if τ is of infinite order then the result is clear
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since the set of points of sufficiently small height is empty. We may thus
assume that σ does not lie in the image of the L/K trace of JK .

We have already assumed that σ corresponds to a divisor supported on
some sections of C/S but we may further assume that these sections extend
C/S and (for example by looking at case I in the proof of Theorem 2.4
of [17]) are contained in the smooth locus of C/S. This can be achieved
by modifications which do not affect the fiber over K, since the sections
already necessarily go through the smooth locus over K by our assumption
that CSK be regular.

Step 2: Checking the admissible pairing has enough global sections.
Define a line bundle on S by L = 〈σ, σ〉a, the admissible pairing as

defined in Sec. 3.3. We want to show that h0(SK ,L⊗n) ≥ 2 for some n > 0.
By Theorem 3.14 it is enough to show that L is ample-positive, which we
will deduce from the proof of the Lang–Néron theorem (of which a modern
exposition can be found in [6]). Let H be any ample line bundle on SK ,
then the pair (SK , H) gives rise to a generalized global field structure on L,
cf. [6, Example 8.4]. After quite some work unravelling the definitions, we
find that the Néron–Tate height

ĥH : J(L̄)/ Tr(J/K̄) → R

differs by a bounded amount from the function

J(L̄)/ Tr(J/K̄) → R; τ �→ c1(〈τ, τ〉a) · c1(H)dimSK−1.

By [6, Theorem 9.15] the function ĥH is positive definite, so (after possibly
replacing σ by a positive multiple, which is harmless for the argument) we
find that c1(L) · c1(H)dimSK−1 > 0 as required.

Step 3: Comparing metrics on L.
This step is obvious trivial if our global field K has no Archimedean

places, i.e. has positive characteristic.
Since SK is projective there exists a continuous metric on the line bundle

L (e.g., write L as a difference of very ample line bundles, to which we can
pull back the Fubini–Study metric). This metric is far from unique, but (by
compactness) any two such metrics have bounded difference. Write ‖−‖c for
one such metric. The bundle L also comes with a natural metric ‖−‖P over
S given by pulling back the unique rigidified translation-invariant metric on
the Poincaré bundle. We do not knowb if this metric extends continuously
to the whole of SK , but nonetheless we will see in the next paragraph how
to use results from [3] to show that ‖−‖P has bounded difference from ‖−‖c.

bThe metric does extend continuously if dimSK = 1 by [16], it does not extend continuously in
general in higher dimension (due to height-jumping), and in the present case (when we have a
Néron model) we do not know whether it extends.
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By [3, Theorem 1.1(1)] the logarithm of the norm in ‖−‖P of a local
generating section of L differs by a bounded amount from a function of the
form

q(log(|z1|) . . . , log(|zn|)),
where z1, . . . , zn are suitably chosen local analytic coordinates, and q is some
homogeneous rational function of degree 1. However, using that CSK /SK is
aligned one can check (using test curves in SK) that this rational function q

is in fact linear. Thus we see that ‖−‖P and ‖−‖c have bounded difference.
Associated to the metrized line bundles (L, ‖−‖c) and (L, ‖−‖P) we get

height functions hc
L and hP

L : S(K̄) → R respectively. Then hc
L is weakly

non-degenerate by Theorem 3.14 since h0(SK ,L⊗n) ≥ 2. Because hc
L and

hP
L have bounded difference (cf. Theorem 3.15) we deduce that hP

L is also
weakly non-degenerate.

Step 4: Concluding the proof using that the jump is bounded.
To conclude the proof of the theorem, we compare three functions from

S(K̄) to R:

(a) ĥσ sending s ∈ S(K̄) to the Néron–Tate height of σ(s);
(b) j : S(K̄) → R sending s ∈ S(K̄) to deg j(σ,σ,s̄)

[κ(s):K] where j(σ, σ, s̄) is the
jump corresponding to σ and s̄;

(c) the height hP
L ,

and by construction these satisfy

ĥσ = hP
L −j.

We have seen above that hP
L is weakly non-degenerate, and |j| is bounded

by Theorem 3.12, so we see that ĥσ is also weakly non-degenerate as
required.

Note that the main results of [1–3] concern the nonnegativity of j (as conjectured
in [11]), but for our purposes this does not seem very helpful, since we want to
deduce positivity of ĥσ from positivity of hL. In the presence of a Néron model on
the generic fiber we can show that j is bounded (which is sufficient), but without
this assumption it seems hard to control j.

It is interesting to compare our result to [36, Theorem 1.3.5] where Zhang proves
a similar result where the section σ of the Jacobian is replaced by the Gross–Schoen
cycle on the product of C with itself, and where the family of curves C/S is assumed
to be smooth. It seems reasonable to speculate that it might be possible to generalize
Zhang’s result to the case where C/S is assumed only to be regular and aligned,
rather than smooth.
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22(5) (2015) 1337–1371.

[17] F. F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks
Mg,n. Math. Scand. 52(2) (1983) 161–199.

[18] S. Lang, Elliptic Curves: Diophantine Analysis, Vol. 231 (Springer, 1978).
[19] S. Lang, Fundamentals of Diophantine Geometry (Springer-Verlag, New York, 1983).
[20] S. Lang, Introduction to Arakelov Theory (Springer, 1988).
[21] G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und
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