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In upper motor neuron diseases, like spinal cord injury, multiple sclerosis, cerebral palsy and 

stroke, motor areas in the brain and/or spinal cord are damaged or fail to develop normally. 

Cerebral palsy is due to abnormal development or damage in the developing brain and occurs 

in about 2 per 1000 life births1;2. Stroke is now the second leading cause of death worldwide 

and third most common cause of disability-adjusted life-years3-5 and the incidence of stroke 

increases with the graying of the society6;7. Improvement in acute stroke care results in a greater 

proportion of patients surviving stroke, but consequently a larger number of people that needs 

to deal with stroke related disabilities. Activities of daily living and quality of life are affected 

by motor, cognitive, speech and language disorders, depression and dementia8;9. Interfering 

motor disorders are stiffness, i.e. increased resistance to movement, decreased range of motion, 

flexion deformity resulting in a shift of joint rest angle towards flexion and paresis, i.e. the 

inability to voluntarily and selectively generate muscle strength and power10.  

Rehabilitation interventions at the ICF11 level of body functions and structures focus on 

reduction of stiffness and maintenance or increasing joint range of motions and correction of 

abnormal joint rest angle shifts. Clinically, the combination of stiffness and muscle over-

activity is often called “spasticity”, but the definition is under debate10;12. In stroke about 20-

30% of all patients suffer from spasticity13. Spasticity was assumed to originate from neurally 

induced reflexive stiffness, i.e. velocity dependent resistance of joint to passive stretching, 

according to the definition of Lance14. However nowadays it becomes accepted that in 

“spasticity”, the neural and non-neural components intermingle15-17. Neural and non-neural 

tissue components continuously interact within a closed loop: The tight coupling between 

afferent sensory information, the central neural system, efferent commands and motor 

properties16;18. Neural activity may modulate tissue properties; tissue shortening may alter 

reflexive thresholds. Moreover, the neural and non-neural properties are environment- and task 

dependent10;16. 

This poses a challenge to assess and quantify the neural, i.e. reflexive stiffness and involuntary 

background activation, and non-neural, i.e. muscle shortening and stiffening, components15;19. 

At these contributors selective treatment should be aimed, i.e. either targeted at the neural 

component or at the non-neural component. The clinical Ashworth and Tardieu tests20-22 are 

applied to quantify the joint stiffness by the observer while manually rotating the joint 

throughout its range of motion. These clinical tests do not differentiate between the neural 

 

reflexive and non-neural tissue components, besides being notoriously insensitive, ordinal and 

insufficient valid and reliable as a measure for spasticity16;23;24.  

 

The neural and non-neural components can be disentangled using a system identification and 

parameter estimation approach (SIPE). System identification uses robotic devices to deliver 

precise force and position perturbations to a joint to allow for assessment of input- output 

relations which can be used to describe the properties of a system18;25-27. Subsequent 

neuromuscular modeling allows for describing the neuromuscular system into clinically 

interpretable parameters. Linear SIPE techniques have been applied for analysis of the 

underlying neuromuscular system in patients with dystonia and stroke28;29 and analysis of 

standing balance in Parkinson’s disease and healthy elderly30-32. In these SIPE techniques, the 

non-linearity, e.g. increased resistance against movement near the maximal range of motion, of 

the (neuromuscular) system is described by a linear technique. Use of these linear techniques 

requires small deviations of e.g. joint angle and muscle contraction. These small deviations in 

movements and contraction do not resemble functional movement. Furthermore, the non-linear 

force-length and force-velocity properties of the connective and contractile tissue and the 

quantification of thresholds of spinal reflexes require non-linear methods16;33;34. Non-linear 

models were applied to predict recorded forces from ramp-and-hold joint perturbations by 

optimizing parameter values of the model of the wrist and ankle in healthy subjects and to 

discriminate groups of patient with stroke from controls35;36. 

 

Non-linear models are necessary to quantify underlying neural and non-neural contributors of 

increased joint stiffness, diminished range of motion and shift of joint rest angle. This 

quantification is important for understanding of underlying mechanisms of functional recovery 

and the effect of therapy on the underlying components to diminish or eventually prevent 

impairments of movement function. 
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The aim of the present thesis is:  

 

1. To quantify neural reflexive and non-neural tissue contributors in patients with upper 

motor neuron disease to understand underlying pathophysiological mechanism of 

increased joint stiffness, diminished range of motion and shifted joint rest angle. 

Therefore, an instrumented and EMG driven non-linear neuromuscular modeling 

approach is developed and validated that allows for high precision quantification of 

behavior of the neuromuscular system and by disentanglement of its underlying 

components (chapter 2, 3 and 4).  

2. The method will be used to understand underlying mechanisms of functional recovery 

and the effect of therapy in stroke:  

a) The development of aforementioned components over time will be analyzed in 

the sub-acute phase post-stroke to address possible targeted preventive measures 

and to improve understanding of underlying mechanisms of functional recovery 

(chapter 5). 

b) The effect of botulinum toxin A treatment on the neural reflexive and non-neural 

tissue properties in patients post-stroke will be determined to make a first step 

in predicting which patients will benefit from this therapy (chapter 6). 

 

The present thesis was founded on two research projects, i.e. ROBIN (STW) and Explicit Stroke 

(ZonMw). ROBIN (ROBot aided system identification: novel tools for diagnosis and 

assessment in Neurological rehabilitation) aimed to develop the required tools for applying 

SIPE techniques to clinical practice. The techniques developed in ROBIN were applied to 

clinical data obtained in Explicit-Stroke. The Explicit-Stroke project was a multi-center 

randomized controlled trial which studied the effect of early therapy on post-stroke recovery of 

the upper limb37;38. It further aimed to understand the underlying mechanisms of upper 

extremity functional recovery, encompassing brain plasticity by fMRI39 and end-point wrist 

neuromechanics by haptic robotics40;41. 
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Abstract 
Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be 

of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural 

origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity”  vs. “contracture”). 

Differentiation between these components is hard to achieve by common manual tests. We 

applied an assessment instrument to obtain quantitative measures of neural and non-neural 

contributions to ankle joint stiffness in CP. 

Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot 

fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were 

applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue 

stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps 

surae EMG activity using a neuromuscular model. 

In CP, triceps surae reflexive torque was on average 5.7 times larger (p=.002) and tissue 

stiffness 2.1 times larger (p=.018) compared to controls. High tissue stiffness was associated 

with reduced RoM (p<.001). Ratio between neural and non-neural contributors varied 

substantially within adolescents with CP. Significant associations of SPAT (spasticity test) 

score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. 

Using an instrumented and model-based approach, increased joint stiffness in CP could be 

mainly attributed to higher reflexive torque compared to control subjects. Ratios between 

contributors varied substantially within adolescents with CP. Quantitative differentiation of 

neural and non-neural stiffness contributors in CP allows for assessment of individual patient 

characteristics and tailoring of therapy. 

 

 

  

 

Background 

Cerebral palsy (CP) comprises a variety of non-progressive upper motor neuron (UMN) lesions 

occurring in the developing fetal or infant brain. The resulting movement and posture disorders 

are generally characterized by loss of muscle strength, i.e. paresis, improper muscle activation 

by e.g. increased reflexes and loss of coordination by e.g. flexion synergies. In addition, changes 

of tissue viscoelastic properties may modulate the characteristics of the primary motor 

disorders1;2. Spastic CP is the most common type of CP3, which is characterized by increased 

joint stiffness (resistance to movement). Increased joint stiffness in the relaxed condition can 

be of either neural (hyperreflexia, “spasticity”) or non-neural origin (altered tissue viscoelastic 

properties “contracture”)4. Treatment of spastic CP is generally aimed at diminishment of joint 

stiffness in order to improve passive and active joint range of motion. In case of suspected 

neural origin, therapy is aimed at reducing muscle activation and blocking the stretch reflex 

loop by botulinum toxin5, intra thecal baclofen6 or selective dorsal rhizotomy7. In case of 

suspected non-neural origin, i.e. changes in viscoelastic properties of muscle and connective 

tissues, corrective casting, splinting and surgical lengthening can be applied8. Current manual 

tests, like the Ashworth9 and Tardieu10, are based on the paradigm of increased reflex activity 

as a result of neural damage, leading to a velocity dependent joint resistance or spasticity11. 

This paradigm is however an oversimplification4. Inherently, by manual testing, it is not 

possible to quantitatively discriminate between underlying neural and non-neural contributors 

to joint stiffness as each of these contributors may generate a velocity dependent joint 

resistance. This makes the selection of treatment aiming at the dominant contributor difficult. 

De Vlugt et al.12 developed an instrumented method to quantify neural and non-neural 

contributors to joint stiffness for the ankle joint in patients with chronic stroke. The ankle was 

rotated in a precise and controlled way using a robotic manipulator. Using neuromuscular 

modeling, the key neural and non-neural contributors to ankle joint stiffness were quantified 

from recorded ankle torque and EMG of leg (below the knee) muscles. Compared to healthy 

subjects, patients with stroke showed increased tissue stiffness and to a lesser extent increased 

reflex activity. 

The objective of the present study was to quantify neural and non-neural contributors to ankle 

joint stiffness in patients with spastic CP and to assess its validity and reliability. A quantitative 

discrimination between the neural and non-neural components of joint stiffness in CP gives 
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contributors to joint stiffness for the ankle joint in patients with chronic stroke. The ankle was 

rotated in a precise and controlled way using a robotic manipulator. Using neuromuscular 

modeling, the key neural and non-neural contributors to ankle joint stiffness were quantified 

from recorded ankle torque and EMG of leg (below the knee) muscles. Compared to healthy 

subjects, patients with stroke showed increased tissue stiffness and to a lesser extent increased 

reflex activity. 
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discrimination between the neural and non-neural components of joint stiffness in CP gives 
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insight in pathophysiological mechanisms and may provide a strong instrument for 

development of tailored intervention strategies and their follow-up. 

 

Methods 

Participants 

Twenty-three adolescents with CP (mean age (SD) and range: 14.9 (2.4) y, 12-19 y, fifteen 

male) were recruited from the outpatient clinics of the Rijnlands Rehabilitation Centre and the 

Department of Rehabilitation Medicine of the Leiden University Medical Centre, Leiden, the 

Netherlands. Table 2.1 provides the patient characteristics. Inclusion criteria comprised 

diagnosis of spastic CP and a gross motor function13 (GMFCS) of I, II or III. Patients with a 

GMFCS of IV were excluded because of possible interference of the outcome with muscle 

disuse or atrophy. Other exclusion criteria were concomitant neurological diseases, orthopedic 

problems of the lower extremities, casting, botulinum toxin A injections within the previous 4 

months, previous orthopedic surgery or tendon and tissue surgery of the leg, orthopedic surgery 

of other body parts within the last 12 months, previous selective dorsal rhizotomy or intra thecal 

baclofen treatment and inability to participate in the tests. Eleven healthy subjects (mean age 

(SD) and range: 15.1 (2.1) y, 12-18 y, six males), matched for age and sex, were recruited as a 

control group. Required sample size estimation was based on previous data12. The medical 

ethics committee of the Leiden University Medical Centre approved the study. Written 

informed consent was obtained from participants. 

 

Instrumentation 

Subjects were seated with their foot fixated onto an electrically powered single axis footplate 

(Nissan Motor Company, Japan). Subjects were seated with their hip and knee positioned at 

approximately 80° and 70° of flexion respectively (Figure 2.1). The thigh was held in place 

through the seat support of the chair; movement of the shank in cranial- caudal direction was 

ensured by careful aligning axis of rotation of the motor with the ankle axis. Movement of the 

shank in medio-lateral was limited by fixation of the thigh. The ankle was positioned at zero 

degrees onto the footplate of the manipulator, perpendicular to the leg (neutral position). A 

 

positive rotation of the manipulator was defined to equal dorsiflexion of the foot and a negative 

rotation, plantar flexion of the foot. Range of motion of the manipulator was mechanically 

constrained to plus and minus 30 degrees with respect to the neutral position.  

 

Table 2.1: Characteristics of study population.  

Characteristics of study 

population 

Cerebral palsy  

(N = 23) 

 

Healthy subjects 

(N=11) 

Age, years (SD) 14.9 (2.4) 15.1 (2.1) 

Male gender, n (%) 15 (65) 6 (55) 

Unilateral, n (%)  8 (35) Na 

GMFCS* I, II, III, n (%) 20 (87), 2 (9), 1 (4) Na 

Ashworth, median (range) 1 (0-2)*** Na 

SPAT**, median (range) 2 (0-3)*** Na 
* GMFCS = Gross Motor Function Classification System **SPAT = Spasticity test  

***From one patient data is missing 

 

The axis of rotation of the ankle and footplate were aligned by visually minimizing knee 

translation in the sagittal plane during manual rotation of the footplate. The motor was driven 

to rotate the ankle by either a torque for the assessment of ankle range of motion (RoM), or by 

a position to impose ramp-and-hold (RaH) rotational stretches of the triceps surae for the 

identification of joint stiffness. During movement, flat foot placement was ensured by visual 

inspection. Muscle activation of the tibialis anterior (TA) and triceps surae muscles (TS: soleus, 

lateral and medial gastrocnemius) was recorded by surface electrodes (electromyography, 

EMG), using a Delsys Bagnoli 4 system (Delsys, Boston MA, USA). Inter electrode distance 

was 10 mm. EMG signals were sampled at 2500 Hz, online band pass filtered (20-450 Hz) and 

offline rectified and low pass filtered (3th-order Butterworth) at 20 Hz. Reaction torque and 

ankle rotational angle were recorded at 250 Hz sample rate and low pass filtered at 20 Hz (3th-

order Butterworth). 
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identification of joint stiffness. During movement, flat foot placement was ensured by visual 

inspection. Muscle activation of the tibialis anterior (TA) and triceps surae muscles (TS: soleus, 
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Figure 2.1: Measurement set-up (left) and applied ankle joint rotations (right). Ankle joint rotations were applied 

at 4 different velocities over the individual range of motion. 

 

Protocol 

Measurements were performed on the most affected ankle of each patient and at the right ankle 

in case of controls. Maximum plantar and dorsal flexion angles were assessed by a gradually 

increasing flexion torque from 0 to a maximum value of 15 Nm. RoM was defined as the 

difference between the maximum plantar and dorsal flexion angle and used as boundary for the 

subsequent RaH rotations. During the RaH rotations, the ankle was rotated at 4 different angular 

velocities (15, 30, 60, 120 deg/sec) over the individually assessed RoM, starting in maximal 

plantar flexion. RaH rotations were started at random time instants. The hold phase lasted 4 

seconds after which the ankle was moved back again to the neutral position. Time to cover a 

complete RaH rotation did not exceed 15 sec. Rest periods of about 30 sec were introduced 

between each RaH rotation to avoid hysteresis effects14. All RaH rotations were performed 

twice. Thus, the complete experimental procedure consisted of 1 RoM and 2 times 4 RaH 

rotations. Subjects were asked to remain relaxed during the entire experiment and not actively 

resist any motion. EMG prior to RaH rotation was offline checked to be between minus and 

plus 3 times standard deviation from the lowest EMG value over the whole signal as determined 

by a moving average procedure (window width 1 sec.). RaH rotations not fulfilling this 

requirement were discarded from further analysis. 

 

 

Model description and validation 

To distinguish between the neural and non-neural contributions to ankle joint stiffness, a 

nonlinear neuromuscular model of the ankle joint was used by which the ankle torque was 

predicted and matched to the measured ankle torque using EMG and ankle angle as input. The 

model included a Hill-type muscle model to describe the torque contribution from muscle 

activation induced by stretch reflexes. Hill-type models account for the effect of muscle length 

and lengthening velocity on muscle force. Passive torque from viscoelasticity (parallel elastic 

element) was modeled by exponential force-length and force-velocity functions. Tendon 

stiffness (series elastic element) was assumed to be infinitely stiff12. The full description of the 

model can be found in de Vlugt et al.12. The model was fitted to the measured ankle torque 

defined within a time frame starting 0.5 sec before the start of the ramp till 0.5 sec after the end 

of the ramp, which was in the hold phase. Model parameters where estimated for each single 

RaH rotation by minimizing the quadratic difference (error function) between the measured and 

predicted ankle torque. The validity of the model was determined for each RaH rotation by the 

variance accounted for (VAF):  
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With i the sample time and n the number of data points used for the parameter estimation. 

imeasuredT , is the measured ankle reaction torque and ielT ,mod the predicted ankle torque. Those 

rotations exhibiting a VAF score lower than the mean VAF over all rotations minus 2 times 

standard deviation were excluded from analysis. 

Primary outcome parameters were RoM, tissue stiffness and viscosity and torque from triceps 

surae (TS) and tibialis anterior (TA) stretch reflexes. As passive tissue stiffness and viscosity 

strongly depend on joint angle, values at the maximal common dorsal flexion angle of all 

subjects were calculated for inter-subject analysis. This particular angle was chosen as 
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RaH rotation by minimizing the quadratic difference (error function) between the measured and 

predicted ankle torque. The validity of the model was determined for each RaH rotation by the 

variance accounted for (VAF):  
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With i the sample time and n the number of data points used for the parameter estimation. 

imeasuredT , is the measured ankle reaction torque and ielT ,mod the predicted ankle torque. Those 

rotations exhibiting a VAF score lower than the mean VAF over all rotations minus 2 times 

standard deviation were excluded from analysis. 

Primary outcome parameters were RoM, tissue stiffness and viscosity and torque from triceps 

surae (TS) and tibialis anterior (TA) stretch reflexes. As passive tissue stiffness and viscosity 

strongly depend on joint angle, values at the maximal common dorsal flexion angle of all 

subjects were calculated for inter-subject analysis. This particular angle was chosen as 
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exhibiting probably the largest contrast between subjects12. Model simulations and data 

analyses were performed in MATLAB (The Mathworks Inc., Natick MA). An extensive 

validity and reliability analysis of the used method and the estimated model parameters was 

performed previously12.  

 

Statistical analysis 

Difference in RoM between patients with CP and healthy controls was tested using an unpaired 

t-test. A linear mixed model was used to determine the difference in primary outcome variables 

between healthy controls and patients with CP (random factor) and to assess the effect of 

velocity (fixed, repeated factor). Stepwise linear regression procedures and one-way ANOVA 

with Bonferroni correction were applied to assess associations of primary outcome variables 

with RoM and secondary outcome variables i.e. speed of ankle rotation, age, gender, GMFCS13, 

Ashworth9 and spasticity test (SPAT)15 scores. Inter-trial variability was assessed using 

intraclass correlation coefficients (ICC, 2-way mixed model). Statistical analysis was 

performed using SPSS 17.0 (SPSS Inc.) and GraphPad Prism 5 (Graphpad Software) with a 

significant level of .05. 

 

Results 

One subject (healthy) could not complete the RaH measurement due to insufficient relaxation 

and in this particular case only the RoM was used. In 2 other healthy subjects 1 RaH rotation 

had to be excluded due to technical problems. In total, 16 of the 256 RaH rotations from 9 

subjects (8 CP), were excluded due to poor model fits (10, 4% of 256 RaH rotations) or 

insufficient relaxation (6, 2 % of 256 RaH rotations). The VAF of the remaining RaH rotations 

was above 98.9%, meaning that the model could well describe ankle torque dynamics. 

 

 

 

 

Range of motion 

RoM in dorsiflexion was significantly smaller in CP (t=2.10, p=.044), see Figure 2.2 (top left). 

Of all subjects, 4 patients with CP (12%) and 7 healthy controls (64%) had a RoM of at least 

60 deg. The smallest maximal dorsal flexion angle among all subjects was 2 deg.  

 

Non-neural contributors to joint stiffness: tissue stiffness and viscosity  

Tissue stiffness was independent of velocity (F=0.35, df=3, p=.79) and was significantly larger 

in CP compared to healthy controls (F=6.28, df=1, p=.018), see Figure 2.2 (bottom left). There 

was a large variation in tissue stiffness within the CP group. Viscosity decreased with angular 

velocity (F=9.86, df=3, p<.001). We found no significant difference between the groups 

regarding ankle viscosity (F=1.35, df=1, p=.254). 

 

Neural contributor to joint stiffness: reflexive torque 

TS reflexive torque (Figure 2.2, top right) was higher in CP than in healthy controls (F=11.6, 

df=1, p=.002) and the difference increased with velocity (F=4.61, df=3, p=.009). TS reflexive 

torque showed a large variation within the group with CP. TA reflexive torque was not 

significantly different between CP and healthy controls (F=2.864, df=1, p=.104) and did not 

change with velocity (F=0.602, df=3, p=.620). 

 

Relation tissue stiffness and range of motion 

Tissue stiffness at the lowest ankle rotation speed appeared to be the best predictor of ankle 

RoM (β=-0.45 se 0.06, p<.001, Figure 2.3) with a total explained variance of 84%. 
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Figure 2.2: Primary outcome parameters. Range of motion (top left), triceps surae reflexive stiffness (top right), 

tissue stiffness (bottom left) and viscosity (bottom right) for patients with cerebral palsy (CP) and healthy controls 

(H). The dotted line gives the mean value with the corresponding standard error. Each dot represents an individual 

result of a subject. Tissue stiffness and viscosity were determined at the same ankle angle for all subjects, which 

was 2 deg ankle dorsal flexion. 

 

 

 

 

Figure 2.3: Relation between tissue stiffness and range of motion for adolescents with cerebral palsy (CP). Tissue 

stiffness (15 deg/sec) was determined at 2 deg ankle dorsal flexion. Each dot represents the result of an individual 

subject. A linear regression line with its 95% confidence interval is fitted through the data. The total explained 

variance was 84%. 

 

Relation tissue stiffness and reflexive torque 

For patients with CP, tissue stiffness at the lowest ankle rotation speed (15 deg/sec) was on 

average 4.2 times higher than reflexive torque at the highest ankle rotation speed (120 deg/sec) 

with a standard deviation of 3.3 indicating a substantially variation between subjects. Total 

explained variation of reflexive torque (120 deg/sec) by tissue stiffness (15 deg/sec) was 38%. 

Association between tissue stiffness and reflexive torque was low (ICC: less than .5).  

 

Relation with clinical phenotype 

Using stepwise linear regression SPAT score was the only variable that was significantly 

associated with tissue stiffness (β=15.8 se 4, p=.001). For reflexive torque, both SPAT score 

and age were significant positive contributors (β=3.8 se 1.46, p=.02 and β=0.88 se 0.41, 

p=.049). Tissue stiffness (15 deg/sec, p=.002), TS reflexive torque (120 deg/sec, p=.032) and 

RoM (p=.001) differed significantly with respect to SPAT but not Ashworth score (Figure 2.4). 
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Figure 2.3: Relation between tissue stiffness and range of motion for adolescents with cerebral palsy (CP). Tissue 

stiffness (15 deg/sec) was determined at 2 deg ankle dorsal flexion. Each dot represents the result of an individual 

subject. A linear regression line with its 95% confidence interval is fitted through the data. The total explained 

variance was 84%. 
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with a standard deviation of 3.3 indicating a substantially variation between subjects. Total 

explained variation of reflexive torque (120 deg/sec) by tissue stiffness (15 deg/sec) was 38%. 

Association between tissue stiffness and reflexive torque was low (ICC: less than .5).  
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associated with tissue stiffness (β=15.8 se 4, p=.001). For reflexive torque, both SPAT score 

and age were significant positive contributors (β=3.8 se 1.46, p=.02 and β=0.88 se 0.41, 

p=.049). Tissue stiffness (15 deg/sec, p=.002), TS reflexive torque (120 deg/sec, p=.032) and 

RoM (p=.001) differed significantly with respect to SPAT but not Ashworth score (Figure 2.4). 
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Reliability 

Tissue stiffness showed a good conformity between the two repetitive RaH rotations especially 

at the lowest ankle rotation speed: ICC .93 at 15 deg/sec. For reflexive torque, inter-trial 

reliability was especially good at the highest ankle rotation speed: ICC .80 at 120 deg/sec. 

Reliability was similar for CP and healthy subjects. 

 

Discussion 

Ankle joint stiffness in CP was successfully separated into its neural and non-neural 

components using an instrumented and model-based approach. Compared to healthy subjects, 

patients with CP showed a smaller RoM, higher TS reflexive torque and higher tissue stiffness. 

Ratios between contributors varied substantially within the group with CP. 

 

Higher tissue stiffness and smaller range of motion in cerebral palsy 

Previously, in larger groups of children with CP, RoM was associated with level of spasticity 

as expressed by Ashworth score and GMFSC I-II16-19. Decreased RoM in CP is explained by 

increased passive tissue stiffness17, likely originating from changes in the mechanical property 

of fiber bundles and/or fewer sarcomeres (in series) which might result in increased sarcomere 

length20-22 or actively, i.e. hypertonia23. In vivo measurements in CP show that muscles 

appeared to undergo much higher stresses with increased muscle length21 and torque-angle 

relationships are much steeper in CP24, which is supported in our study by the correlation 

between tissue stiffness and RoM (Figure 2.3). RoM measurements at low speed may therefore 

represent passive tissue stiffness, i.e. “static” contracture23. Note that despite the instruction to 

the subjects to relax, tissue stiffness may be modulated by a constant level of (increased muscle 

activation)25. Separation of these components requires further effort.    

 

 

 

 

Clinical implication: variation in tissue stiffness and reflexive torque 

Even in this relatively mild affected group of adolescents with CP, a large inter-subject variation 

was found for the ratio between TS reflexive torque and tissue stiffness. Association between 

the two was low. This variation is the rationale for pursuing the development of personalized 

therapy. A variation in CP may be induced by ageing and the corresponding growth spurt in 

puberty since we measured adolescents in a wide age range (12-19 years). It was suggested 

previously that the role of passive stiffness may increase over reflex activity with age in children 

with spastic diplegic CP26 and that the range of dorsiflexion of the ankle joint in CP decreases 

on average 19 deg during the first 18 years of life18.  We found an association of reflex activity 

but not tissue stiffness with age in the present study. The present study was however not 

designed to study age effects.  

Correlation of SPAT score with both tissue stiffness and reflexive torque underlines the fact 

that it is difficult to split the neural and non-neural component with the manual tests such as 

SPAT. In future work we will measure more patients and with a wider range of GMFCS and 

SPAT scores to study this correlation more extensively. 

The present and former12 studies show that the instrumented approach can be used in different 

patient groups to quantitatively determine neural and non-neural contributors of ankle joint 

stiffness. 

 

Non-neural and neural components in cerebral palsy compared to stroke 

TS reflexive torque was more dominant in CP than in stroke12. For the patients with an 

Ashworth score of 1, the ratio between TS reflexive torque at the highest ankle rotation speed 

and tissue stiffness at the lowest ankle rotation speed was for CP three times higher than for 

stroke (CP ≈ 0.3 and stroke ≈ 0.1). In contrast to stroke, viscosity was not significantly increased 

in CP. RoM was smaller in stroke compared to CP, reflecting also the higher tissue stiffness 

component in the stroke group. CP differs from stroke by onset of the disease with respect to 

age. The main question is whether the differences between stroke and CP may be explained by 

purely an age effect or whether there might be etiological differences. 
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TS reflexive torque was more dominant in CP than in stroke12. For the patients with an 
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age. The main question is whether the differences between stroke and CP may be explained by 

purely an age effect or whether there might be etiological differences. 
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Figure 2.4: Relation of outcome parameters with Ashworth and spasticity test (SPAT). Mean with standard error 

for tissue stiffness (15 deg/sec), triceps surae (TS) reflexive torque (120 deg/sec) and range of motion (RoM) for 

groups of patients with different Ashworth and SPAT scores. *significantly different (p<.05) by one-way ANOVA 

with a Bonferroni post-hoc test. 
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Reliability and validity 

Tissue stiffness and reflexive torque could both be reliably estimated: tissue stiffness especially 

at the low ankle rotation speed and reflexive torque at the high speeds. This illustrates the 

feasibility of the method to distinguish contributors to joint stiffness on an individual basis. As 

expected, reflexive torque and not tissue stiffness was significantly influenced by ankle rotation 

speed and especially tissue stiffness was associated with RoM at low speed. Significant 

associations of SPAT score with both tissue stiffness and reflexive torque show agreement with 

clinical phenotype. 

 

Limitations 

We selected patients with CP with a relatively high GMFSC score (median of 1) to create a 

homogenous population. This limits validity of the present study and prevents more extensive 

elaboration of the relation with clinical phenotype which will be important for goal directed 

therapy. There were only 3 patients with a GMFCS score higher than 1, so correlations of 

GMFCS with neuromuscular parameters could not be studied well. The present study did not 

differentiate contributions of gastrocnemius and soleus and was performed at 1 knee angle. 

Joint stiffness should also be assessed in relation to functional movements, like walking using 

static and dynamic measurements27. In this study we were able to split neural and non-neural 

contributors to increased joint stiffness. However, the neural component in this study comprised 

only the reflex activity and not cross bridge dynamics and background muscle activity during 

passive (and active) conditions. Achilles tendon stiffness was assumed to be of a magnitude 

greater than the total (active and passive) muscle stiffness for the current conditions applied in 

this study28 and was taken in our model as infinitely stiff, considering the low torque and passive 

conditions12 applied in the present study.  

Future work will comprise the assessment of Achilles tendon stiffness by ultrasound 

measurements, the assessment of joint stiffness as a function of ankle rotation angle in a more 

detailed way, measurements at different knee angles and under functional (loaded) conditions.  
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Reliability and validity 

Tissue stiffness and reflexive torque could both be reliably estimated: tissue stiffness especially 

at the low ankle rotation speed and reflexive torque at the high speeds. This illustrates the 

feasibility of the method to distinguish contributors to joint stiffness on an individual basis. As 

expected, reflexive torque and not tissue stiffness was significantly influenced by ankle rotation 

speed and especially tissue stiffness was associated with RoM at low speed. Significant 

associations of SPAT score with both tissue stiffness and reflexive torque show agreement with 

clinical phenotype. 
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We selected patients with CP with a relatively high GMFSC score (median of 1) to create a 

homogenous population. This limits validity of the present study and prevents more extensive 

elaboration of the relation with clinical phenotype which will be important for goal directed 

therapy. There were only 3 patients with a GMFCS score higher than 1, so correlations of 

GMFCS with neuromuscular parameters could not be studied well. The present study did not 

differentiate contributions of gastrocnemius and soleus and was performed at 1 knee angle. 

Joint stiffness should also be assessed in relation to functional movements, like walking using 

static and dynamic measurements27. In this study we were able to split neural and non-neural 

contributors to increased joint stiffness. However, the neural component in this study comprised 

only the reflex activity and not cross bridge dynamics and background muscle activity during 

passive (and active) conditions. Achilles tendon stiffness was assumed to be of a magnitude 

greater than the total (active and passive) muscle stiffness for the current conditions applied in 

this study28 and was taken in our model as infinitely stiff, considering the low torque and passive 

conditions12 applied in the present study.  

Future work will comprise the assessment of Achilles tendon stiffness by ultrasound 

measurements, the assessment of joint stiffness as a function of ankle rotation angle in a more 

detailed way, measurements at different knee angles and under functional (loaded) conditions.  
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Conclusion 

Using a novel instrumented assessment technique, patients with CP showed a smaller RoM and 

higher tissue stiffness and reflexive torque compared to control subjects. Good reliability and 

validity of the assessment technique combined with considerable intra-individual variance are 

a base for individual tailored therapy. 
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Conclusion 
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Abstract 
Non-invasive estimation of the neural reflexive and non-neural tissue contributors viz. passive 

and active muscle force length characteristics, to increased joint stiffness after central neural 

motor lesions like stroke will contribute to fundamental understanding, clinical diagnosis, 

development and evaluation of therapy. Hereto we proposed an electromyography (EMG)-

driven model approach. 

Ramp-and-hold ankle rotations were applied and torques were measured by a robotic 

manipulator in 13 patients post-stroke (> 6 months, 59.9, SD 7.1 years) and 15 age matched 

healthy volunteers (64.0, SD 1.2 years). Stiffness coefficient and slack length of the passive and 

optimal length of the active force-length characteristics of triceps surae and tibialis anterior 

muscles were estimated together with the neural reflexive torque by minimizing the least 

squares difference between measured and simulated torque. Internal model validity, test-retest 

reliability, sensitivity and external validity were addressed. 

Internal model validity was good and test-retest reliability fair to good. Model parameters were 

sensitive for knee angles and disease. The neural reflexive torque, the stiffness coefficient and 

the slack length of the triceps surae were increased in patients post-stroke. 

Valid, reliable and sensitive estimations of passive and active force-length characteristics next 

to neural reflexive torque could be estimated non-invasively from applied position and recorded 

torque signals using an EMG-driven ankle model. Increased ankle joint stiffness was explained 

by both an increased triceps surae stiffness and an increased reflexive torque.  

 

  

 

Introduction 
Upper motor neuron diseases, like stroke and cerebral palsy, may result in an increased 

resistance of the ankle to dorsiflexion under passive conditions, generally in combination with 

muscle weakness and an equinovarus malposition of the foot1-4. This combination of symptoms 

affects the functional ability of the patient in e.g. locomotion, and originates from altered neural 

input to the ankle muscles (hyperreflexia, “spasticity”) and non-neural tissue changes (stiffer 

and shorter muscles)5. Clinical treatment focuses on reducing the neural input e.g. by botulinum 

toxin infiltration6-8 and/or addressing the tissue contribution to increased joint stiffness by 

corrective casting, splinting or surgical lengthening9-11. Non-invasive quantification of 

underlying contributors to increased joint stiffness post-stroke is important for proper and 

tailored patient referral to therapeutic strategies and high resolution follow-up12;13 yet cannot 

reliably be achieved by current clinical tests14. 

Model driven approaches have been developed to quantitatively estimate the neural reflexive 

torques and non-neural peripheral tissue stiffness and viscosity contributing to ankle and wrist 

joint stiffness4;15;15-21. The clinical validity of these methods was demonstrated in patients with 

stroke4;15;17;21, cerebral palsy16;20;22, multiple sclerosis and spinal cord injury17. The passive and 

active force-length relationships represent the properties of the connective and contractile 

tissues. It is of importance to address these properties in patients longitudinally13;23 as the 

temporal changes of these properties24-26 needs further evaluation27. 

This study aims to estimate the passive and active tissue properties, i.e. the stiffness coefficient 

and slack length of the passive force-length relationship and the optimal length of the active 

force-length relationship, of the triceps surae and tibialis anterior muscles non-invasively in 

patients and healthy volunteers using an electromyography (EMG)-driven neuromuscular 

modeling approach, expanding on previous work4;15;20;22. To address the clinical potential of 

the method, we determined internal model validity (VAF ≥ 99%; SEM ≤ 0.1), test-retest 

reliability (ICC ≥ 0.4), and sensitivity next to external validity (MDC). The sensitivity of the 

model is assessed by comparing outcome measures between flexed and extended knee. Knee 

angle affects the relative contribution of the soleus (mono-articular ankle muscle) and the lateral 

and medial gastrocnemii (bi-articular ankle-knee muscles). With the knee in flexion, the 

contribution of the soleus is dominant. With the knee extended, a combined contribution of the 
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triceps muscles is expected to be observed in the passive and active force-length parameters 

(slack length, optimal length). Knee angle is expected to have no influence on the passive and 

active force-length parameters of the tibialis anterior. External validity is assessed by 

comparing healthy subjects to patients post-stroke and using the minimal detectable change 

(MDC) of healthy subjects. It is expected that patients differ from healthy subjects by an 

increased peripheral tissue stiffness due to stiffer and shortened muscles of the triceps surae and 

an increased reflexive torque of the triceps surae. Individual observations are compared to the 

clinical Ashworth score and it is expected that especially patients with a high Ashworth score 

(>2) have deviated outcome measures as defined by the MDC. To show the potential for 

longitudinal observations, e.g. to evaluate treatment, the MDC of stroke patients is assessed.  

 

Methods 

Study setting and participants 

Thirteen chronic stroke patients (115 months post-stroke, mean age 59.9 SD 7.1 years, 6 male, 

Table 3.1) and 15 healthy volunteers (mean age 64.0 SD 1.2 years, 8 male) were included in 

the study. Patients with clinically determined increased ankle stiffness were selected from the 

outpatient clinic of the department of rehabilitation medicine of the Leiden University Medical 

Center (LUMC). Exclusion criteria were concomitant neurological and/or orthopedic disorders, 

any new medical intervention within the last four months having possible interference with 

ankle joint stiffness; surgery of leg/foot within the last 12 months and total paralysis of the 

ankle. The medical ethics committee of the LUMC approved the study (P12.125, 

NL4083.058.12). Written informed consent was obtained from all participants. 

 

Measurement protocol 

Participants were measured during two consecutive visits within a time interval of 1-2 weeks. 

Each participant underwent two measurement sessions during the first visit, and one session 

during the second visit. At each session, measurements were performed at two knee flexion 

angles (20°, 70°) in order to discriminate the relative contribution of the gastrocnemius 

 

components of the triceps surae. During each visit, the Ashworth score28 was determined by an 

independent physician. 

 

Table 3.1: Characteristics of included patients. 

ID Age Sex Lesion Months  

post-stroke  

Passive  

dorsal RoM 

Ashworth 

1 56 F Hemorrhage L 72 19.5 3 

2 65 F Hemorrhage L 368 18.4 2 

3 60 F Ischemia L 177 9.7 1 

4 65 M Hemorrhage R 204 23.8 0 

5 57 M Ischemia R 108 7.3 4 

6 51 F Ischemia R 80 1.2 1 

7 46 F Ischemia R 11 13.2 3 

8 70 M Hemorrhage R 14 3.3 4 

9 57 M Ischemia L 6 19.5 1 

10 57 M Ischemia R  153 6.8 0 

11 67 M Ischemia R 76 13.7 2 

12 69 F Ischemia R 42 27.2 2 

13 59 F Ischemia R 185 23.5 3 

F: female, M: male, L: left hemisphere, R: right hemisphere 

 

Instrumentation 

Participants were seated on a car seat with their foot fixated onto an electrically powered single 

axis rotating footplate (Achilles, MOOG FCS Inc., Nieuw-Vennep, The Netherlands, 

Figure 3.1). The footplate was aligned visually at 25° plantar flexion with respect to the line 

connecting the head of the fibula and the lateral malleolus.  

Muscle activation of the tibialis anterior (tib) and triceps surae muscles (tri: soleus, SOL; lateral 

gastrocnemius, GL; medial gastrocnemius, GM) was recorded using surface electromyography 

(EMG, Porti, TMSi B.V. Oldenzaal, The Netherlands) according to the SENIAM guidelines29 

(Appendix 3A). Dorsal- and plantar flexion (positive and negative rotation respectively) was 

limited by individually pre-set manipulator hardware and software stops. During ramp-and-

hold (RaH) movements, EMG, torque and angle were simultaneously recorded. EMG signals 
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(Appendix 3A). Dorsal- and plantar flexion (positive and negative rotation respectively) was 

limited by individually pre-set manipulator hardware and software stops. During ramp-and-

hold (RaH) movements, EMG, torque and angle were simultaneously recorded. EMG signals 
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were sampled at 1000 Hz, offline high pass filtered (20Hz, 3th-order Butterworth), rectified and 

low pass filtered (20 Hz zero overshoot filter). Rest EMG, i.e. the minimal EMG determined 

for each muscle by applying a moving window of 8 ms, was subtracted from the total EMG 

because it was assumed not to contribute to ankle torque (noise). Torque and ankle angle were 

sampled at 1024 Hz and low pass filtered (20 Hz zero overshoot filter) and resampled to 1000 

Hz.  

 

 
Figure 3.1: Left: Measurement set-up. Measurements were performed at 70° (see figure) or 20° knee flexion. 

Right: Example of imposed angular rotation (bottom) and torque response with model fit (top row) for a healthy 

participant (extended knee, 15°/sec VAF=99.97%). 

 

Protocol 

Measurements were performed at the right ankle (healthy volunteers) or at the hemiparetic side 

(patients). Maximum dorsal- and plantar flexion angles within the predefined tolerated range 

of motion (RoM) were assessed by imposing torques of 15 Nm (dorsiflexion) and -7.5 Nm 

(plantar flexion). The resulting RoM defined the boundaries for the subsequent RaH rotations.  

During the RaH measurements, the ankle was rotated at two different angular velocities, 15°.s-1 

and 100°.s-1, starting from maximal plantar flexion and ending at maximal dorsiflexion (first 

ramp). After a hold phase the ankle was moved back to the maximal plantar flexion angle 

(second ramp, Figure 3.1). RaH rotations were started at random (thus unpredictable) time 

instants. A single session thus comprised one RoM assessment and four RaH trials (twice for 

 

each velocity) per knee angle. Participants were asked not to actively resist or to move with any 

motion.  

 
Biomechanical model 

A biomechanical model-based on a previous developed Hill-type muscle element ankle model4 

was adapted to estimate parameters of the passive and active force-length relationship of the 

connective and contractile tissue contribution of the triceps surae and tibialis anterior 

(Appendix 3B).  

The net ankle torque, Tmod, applied onto the manipulator was estimated based on 15 parameters 

(Appendix 3A) describing the inertial torque (I), the torque generated by the plantar flexors (tri) 

and the torque generated by the dorsiflexors (tib) as a function of time (t) and the combined 

gravitational torque of the foot and foot plate as a function of ankle angle (θ) (Eq. 3.1): 

𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) = 𝐼𝐼𝐼𝐼𝐼̈𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) + 𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) − 𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) + 𝑇𝑇𝑇𝑇����(𝐼𝐼𝐼𝐼)   (3.1) 

The measured joint torque (Tmeas) was simulated (Tmod) from ankle position and EMG by 

optimizing 15 parameters (Appendix 3) using a least squares gradient search algorithm 

(lsqnonlin, MATLAB). Primary outcome measures were:  

1) Slack length (lp,slack,m) and stiffness coefficient (km) for both dorsiflexors (m=tib) and 

plantar flexors (m=tri), represent the passive force-length relation of the parallel 

connective tissues. The higher km, the stiffer the muscle; the lower lp,slack,m the shorter 

the muscle. 

2) Optimal length (lopt,m), i.e. the length at which the activated plantar (tri) and dorsiflexor 

(tib) muscles generate their maximum force.  

3) Peripheral tissue stiffness (Kjoint) selectively derived from the (parallel) connective 

tissue model components at angle position  = 0o, i.e. foot perpendicular to the lower 

leg. 

4) Reflexive torque Treflex,m, i.e. the root mean square of the active muscle torque for the 

observed trial  
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(lsqnonlin, MATLAB). Primary outcome measures were:  

1) Slack length (lp,slack,m) and stiffness coefficient (km) for both dorsiflexors (m=tib) and 

plantar flexors (m=tri), represent the passive force-length relation of the parallel 

connective tissues. The higher km, the stiffer the muscle; the lower lp,slack,m the shorter 

the muscle. 

2) Optimal length (lopt,m), i.e. the length at which the activated plantar (tri) and dorsiflexor 

(tib) muscles generate their maximum force.  

3) Peripheral tissue stiffness (Kjoint) selectively derived from the (parallel) connective 

tissue model components at angle position  = 0o, i.e. foot perpendicular to the lower 

leg. 

4) Reflexive torque Treflex,m, i.e. the root mean square of the active muscle torque for the 

observed trial  
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Simulation and analysis was performed in MATLAB (The Mathworks Inc., Natick MA) and 

statistical analysis was performed using IBM SPSS statistics 22 and GraphPad Prism 6. 

 

Internal model validity, test-retest reliability, sensitivity and external validity 

Internal model validity: Model fit and parameter reliability 

The model fit was indicated by the torque variance accounted for (VAF), estimated for each 

trial: 
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with Tmean being the average of Tmod and Tmeas. VAF values less than 99% were disregarded from 

analysis for test-retest reliability, sensitivity and external validity. 

The standard error of the mean (SEM) represents the parameter reliability and is based on the 

partial derivatives of each parameter to the error function4. Low SEM values indicated that the 

specific parameter has substantial contribution to the error function. High values may indicate 

high co-variances or over-parameterization. SEM values were estimated for each trial before 

rejection based on low VAF value. 

For interpretation of the results we defined the following inclusion demands: Optimal lengths 

(lopt,m) were only included in the analysis in case of sufficient muscle activity, i.e. reflexive 

torque, Treflex,m larger than .75 Nm, combined with SEM’s lower than 0.1 Nm and for optimal 

length values that did not meet predefined parameter boundaries. Optimal tibialis length (lopt,tib) 

was excluded from further analysis when the model parameter Gtib, i.e. EMG weighting factor 

of tibialis anterior, was extremely high (>1*108) thereby introducing noise amplification. This 

was not an issue for the optimal triceps surae length (lopt,tri) because three EMG weighting 

factors were used to define the triceps surae muscle activation. 

 

Test-retest reliability 

Repeated measures were averaged for each participant for comparison between sessions on the 

same day and between days. Between-trial reliability of consecutive trials within a session, 

between-session reliability (on the same day) and between-day reliability with 1-2 weeks in 

between were assessed using the intra-class correlation coefficient (ICC using the two-way 

 

mixed model for absolute agreement and interpreted according to Fleiss30 (>.75 excellent, .4-.75 

fair to good, <.4 poor).   

 

Sensitivity for knee angle 

Repeated measures were averaged for each participant to compare groups of participants. 

Optimal length estimates were averaged for 15°.s-1 and 100°.s-1 observations. A paired t-test 

was used to compare outcome measures between flexed and extended knee condition in healthy 

subjects and stroke patients.   

 

External validity 

A linear mixed model was used to determine the difference in model parameters between 

healthy controls and stroke patients after transforming data to obtain a normal distribution using 

the square root of the estimated primary outcome measures. Data from the slow trials (15°.s-1) 

were used to estimate non-neural parameters while for the reflexive torques data from the fast 

trials (100°.s-1) were used, as reliability for passive parameters proved to be highest for slow 

movements and reflexive torques proved to be highest for fast movements22. Individual 

observations were compared to the clinical Ashworth score. The minimal detectable change 

(MDC)31;32 with a 95% confidence interval was used to identify deviated parameters in patients 

post-stroke relative to healthy volunteers, i.e. parameters exceeding the mean value +/- MDC. 

MDC values were calculated using the standard error of measurement (SEM) using ICC from 

healthy participants calculated between sessions on different days, Eq. 3.3: 

 

ICCSDSEM  1*       (3.3) 

EMSMDC *2*96.1       (3.4) 

 

MDC values were also calculated based on ICC from stroke patients to determine the potential 

for longitudinal observations to e.g. identify the effect of treatment.  
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Results 
From three patients and one healthy volunteer, the data of the second visit was missing or 

excluded due to muscular pain, measurement problems and medication possibly influencing 

muscle function. In total 640 trials from 28 participants were included for analysis of internal 

model validity. The requirements of sufficient muscle activation to optimal length analysis were 

met for 345 trials of 27 participants (13 stroke patients). Eight trials (1.25%) were excluded due 

to low VAF values not exceeding 99%. Data from 24 participants (10 patients) were available 

to assess between-day reliability. In 25 sessions of eight (out of 28) participants, RaH’s were 

not performed over the whole [-7.5–15 Nm] RoM at dorsiflexion (7 times, 5 participants) and 

plantar flexion (22 times, 5 participants). In these cases, safety stops were set at smaller ranges 

because of e.g. pain or discomfort. Dorsal passive RoM of patients post-stroke, 16.5° (SD 8.7) 

was reduced (p=.025) compared to healthy participants, 25.5° (SD 9.2).  

Detailed overview of all model parameter estimates and SEM values are presented in Appendix 

3A. Median VAF values of all 640 trials, i.e. including VAF < 99% observations, was 99.9% 

for both knee angles. Median SEM values were equal or below 0.1 for all estimated parameters 

except the EMG weighting factors.  

Test-retest reliability of model parameters varied dependent on ankle rotation speed and knee 

angle and was fair to excellent for parameters related to the passive force-length of the triceps 

(ktri, lp,slack,tri) (Table 3.2). For the optimal length of the triceps (lopt,tri), test-retest reliability was 

fair to good except for between-trial reliability with extended knee. Test-retest reliability for 

reflexive torque of the triceps (Treflex,tri) was poor at 15°.s-1 between days for the extended knee 

condition. Test-retest reliability of the peripheral tissue stiffness (Kjoint) was in all cases higher 

than 0.8 and excellent in 6 out of 12 conditions (ICC>.9). 

For healthy volunteers, peripheral tissue stiffness was higher in extended knee condition 

compared to flexed knee condition (P=.017) and slack length (P<.001), stiffness coefficient 

(P=.003) and optimal length (P=.024) of the triceps surae were increased in flexed knee 

condition (Figure 3.2, Table 3.3 and Table 3.4). There were no significant changes for the 

parameters involved in the passive and active force-length relationship of the tibialis anterior.  

 
  

 

Table 3.2: Intraclass correlation coefficients over observations of controls and patients for flexed and extended 

knee for movement velocity of 15°.s-1 and 100°.s-1. For analysis of the optimal lengths the parameters per knee 

angle were averaged due to small number of trials as not all trials met the requirements of sufficient muscle 

activation to estimate lopt,m. 

 Between-trial Between-session Between-day 

 15°.s-1    100°.s-1    15°.s-1    100°.s-1    15°.s-1    100°.s-1    

Flexed knee       

ktri [m-1] .636 .811 .948 .903 .937 .598 

ktib [m-1] .763 .716 .875 .845 .662 .773 

lslack,tri [m] .683 .563 .812 .778 .705 .564 

lslack,tib [m] .883 .859 .922 .839 .484 .775 

lopt,tri [m]* .600 .735 .565 

lopt,tib [m]* .569 .476 .050 

Kjoint [Nm.rad-1] .909 .986 .846 .861 .833 .823 

Treflex,tri [Nm] .722 .701 .839 .908 .707 .719 

Treflex,tib [Nm] .074 .390 .578 .805 .165 .246 

       

Extended knee       

ktri [m-1] .848 .646 .909 .755 .694 .530 

ktib [m-1] .585 .747 .617 .846 .679 .387 

lslack,tri [m] .739 .578 .831 .830 .689 .423 

lslack,tib [m] .604 .722 .553 .760 .736 .385 

lopt,tri [m]* .333 .756 .470 

lopt,tib [m]* .736 .097 .158 

Kjoint [Nm.rad-1] .916 .989 .899 .919 .930 .878 

Treflex,tri [Nm] .506 .631 .647 .775 .110 .647 

Treflex,tib [Nm] .732 .788 .690 .883 .203 .546 

*Parameters per knee angle were averaged 
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Table 3.3: Model outcome parameters (mean, SD) for healthy and stroke participants for flexed and extended knee 

condition.  

           Flexed knee          Extended knee 

 Healthy Stroke Healthy Stroke 

ktri [m-1] 270 (33) 328 (73) 252 (37) 321 (65) 

ktib [m-1] 210 (47) 188 (58) 204 (31) 197 (42) 

lslack,tri [m] .022 (.0028) .023 (.0029) .019 (.0029) .022 (.0030) 

lslack,tib [m] .067 (.0065) .060 (.015) .066 (.0048) .064 (.0068) 

lopt,tri [m] .050 (.0054) .046 (.0058) .046 (.0042) .043 (.0042) 

lopt,tib [m] .072 (.0050) .074 (.015) .073 (.011) .081 (.0097) 

Kjoint [Nm.rad-1] 53 (39) 94 (65) 65 (42) 103 (80) 

Treflex,tri [Nm] .85 (.39) 1.6 (1.1) 1.1 (.48) 2.0 (1.2) 

Treflex,tib [Nm] .61 (.46) .79 (.97) 1.4 (1.4) .76 (1.0) 

 

 

Reflexive torque of the tibialis anterior in extended knee condition was increased (P=.013) 

compared to the flexed knee condition. In patients post-stroke, optimal muscle length of the 

triceps surae was smaller (P=.016) and reflexive torque of the triceps surae higher (P=.003) in 

extended knee condition compared to flexed knee condition. Parameters involved in the passive 

force-length relationship of the triceps surae, i.e. the stiffness coefficient (ktri) and the slack 

length (lp,slack,tri), and the reflexive torque (Treflex,tri) of the triceps surae were higher in patients 

post-stroke relative to healthy volunteers (Figure 3.2, Table 3.3 and Table 3.4). No significant 

differences were found for the optimal length of the triceps surae and all tibialis anterior 

parameters between stroke patients and healthy controls. Based on calculated MDCs, individual 

patients could be identified with respect to healthy volunteers (Table 3.5). The variability in 

terms of individual parameters was high, as illustrated in Figure 3.2B.  

Non-neural tissue properties tended to be more prominent for the low Ashworth scores (0, 1 

and 2) and reflexive torque for the high Ashworth scores (3 and 4) (Table 3.6). MDCs of stroke 

patients were comparable with MDCs of healthy subjects (Table 3.7). Only for the reflexive 

torque of tibialis and slack length of tibialis in flexed knee condition, the MDC was more than 

two times higher in the stroke patients group than in the control group.  
 

 

 
Figure 3.2: A: Comparison between stiffness coefficient (ktri), slack length (lp,slack,tri), optimal length (lopt,tri), 

peripheral tissue stiffness (Kjoint) and reflexive torque (Treflex,tri) of the triceps surae between healthy participants 

(H) and stroke patients (P). Figures show boxplots. Asterisks denote significant differences (p<.05). B: The Venn 

diagram of outcome parameters for extended knee. Values indicate nine patients with deviated values for one or 

more outcome measures. The patient with increased stiffness coefficient (ktri), slack length (lp,slack,tri), tissue stiffness 

(Kjoint) and reflexive torque (Treflex,tri) also had an smaller optimal length (lopt,tri). 
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Table 3.4: P-values for comparison between participant group and knee angle (flexed =70o, extended = 20o). 
 Healthy 

vs 

Stroke* 

Flexed versus extended knee** 

 

Healthy Stroke 

ktri [m-1] .003 .003 .38 

ktib [m-1] .319 .63 .40 

lslack,tri [m] .046 <.001 .22 

lslack,tib [m] .157 .79 .16 

lopt,tri [m] .243 .024 .016 

lopt,tib [m] .509 .82 .13 

Kjoint [Nm.rad-1] .051 .017 .44 

Treflex,tri [Nm] .011 .087 .003 

Treflex,tib [Nm] .354 .013 .87 

* Statistical analysis: linear mixed model **Statistical analysis: paired t-test 

 

 

Table 3.5: Minimal detectable change (MDC) and threshold (Th) to determine “deviated” values in stroke. The 

number of patients identified as deviated from healthy controls are indicated per parameter. The threshold and 

minimal detectable change for the optimal length of the tibialis anterior for the flexed knee condition was not 

determined because the intraclass correlation coefficient was zero for this parameter. 

 

 
Flexed knee Extended knee 

 Th;  MDC # deviating  

patients 

Th MDC # deviating  

patients 

ktri [m-1] > 301 32.3 7 > 318 65.3 7 

ktib [m-1] < 134 75.5 3 < 141 6.8 2 

lslack,tri [m] > .0267 .0047 1 > .0254 .0060 2 

lslack,tib [m] < .0547 .0119 3 < .0580 .0079 2 

lopt,tri [m] < .0357 .0133 1 < .0379 .0083 1 

lopt,tib [m] -  - <.0429 .0287 0 

Kjoint [Nm.rad-1] > 119 64.7 4 >114 48.1 4 

Treflex,tri [Nm] > 1.97 1.07 5 > 2.70 1.55 4 

Treflex,tib [Nm] > 1.72 1.08 3 > 3.99 2.59 0 

 

  

 

 

Table 3.6: Ashworth scores related to outcome measures. Percentage of patients with Ashworth score that show 

deviated values on outcome measures. 

Ashworth 

score Kjoint ktri lslack,tri lopt,tri Treflex,tri 

0 (n=2) 50% 50% 0% 0% 0% 

1 (n=3) 67% 100% 0% 0% 33% 

2 (n=3) 0% 67% 33% 0% 0% 

3 (n=3) 0% 33% 0% 0% 67% 

4 (n=2) 50% 50% 50% 50% 100% 

 

 

Table 3.7: Intraclass correlation coefficients (ICC) and minimal detectable changes (MDC) of stroke patients. 

The ICC and MDC for the optimal length of the tibialis anterior for the extended knee condition were not 

determined because the intraclass correlation coefficient was negative for this parameter. 

 Flexed knee Extended knee 

 ICC MDC ICC MDC 

ktri [m-1] .937 49.1 .567 122 

ktib [m-1] .613 100 .777 56.4 

lslack,tri [m] .76 .0043 .728 .0046 

lslack,tib [m] .44 .030 .776 .00875 

lopt,tri [m] .658 .011 .234 .012 

lopt,tib [m] .947 .0086 - - 

Kjoint [Nm.rad-1] .925 46.7 .955 49.9 

Treflex,tri [Nm] .8 1.26 .665 2.02 

Treflex,tib [Nm] .153 3.1 .182 2.54 
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ktib [m-1] < 134 75.5 3 < 141 6.8 2 

lslack,tri [m] > .0267 .0047 1 > .0254 .0060 2 

lslack,tib [m] < .0547 .0119 3 < .0580 .0079 2 

lopt,tri [m] < .0357 .0133 1 < .0379 .0083 1 

lopt,tib [m] -  - <.0429 .0287 0 

Kjoint [Nm.rad-1] > 119 64.7 4 >114 48.1 4 

Treflex,tri [Nm] > 1.97 1.07 5 > 2.70 1.55 4 

Treflex,tib [Nm] > 1.72 1.08 3 > 3.99 2.59 0 

 

  

 

 

Table 3.6: Ashworth scores related to outcome measures. Percentage of patients with Ashworth score that show 

deviated values on outcome measures. 

Ashworth 

score Kjoint ktri lslack,tri lopt,tri Treflex,tri 

0 (n=2) 50% 50% 0% 0% 0% 

1 (n=3) 67% 100% 0% 0% 33% 

2 (n=3) 0% 67% 33% 0% 0% 

3 (n=3) 0% 33% 0% 0% 67% 

4 (n=2) 50% 50% 50% 50% 100% 

 

 

Table 3.7: Intraclass correlation coefficients (ICC) and minimal detectable changes (MDC) of stroke patients. 

The ICC and MDC for the optimal length of the tibialis anterior for the extended knee condition were not 

determined because the intraclass correlation coefficient was negative for this parameter. 

 Flexed knee Extended knee 

 ICC MDC ICC MDC 

ktri [m-1] .937 49.1 .567 122 

ktib [m-1] .613 100 .777 56.4 

lslack,tri [m] .76 .0043 .728 .0046 

lslack,tib [m] .44 .030 .776 .00875 

lopt,tri [m] .658 .011 .234 .012 

lopt,tib [m] .947 .0086 - - 

Kjoint [Nm.rad-1] .925 46.7 .955 49.9 

Treflex,tri [Nm] .8 1.26 .665 2.02 

Treflex,tib [Nm] .153 3.1 .182 2.54 
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Discussion 
The aim of this study was to estimate the passive and active tissue properties, i.e. the stiffness 

coefficient and slack length of the passive force-length relationship and the optimal length of 

the active force-length relationship, of the triceps surae and tibialis anterior muscles non-

invasively in patients and healthy volunteers. Valid, reliable and sensitive estimations of 

passive and active force-length characteristics next to neural reflexive torque could be obtained 

using an EMG-driven ankle model. Increased ankle joint stiffness was explained by an increase 

in triceps stiffness next to an elevated reflexive torque, but not by a shorter triceps surae. Values 

for minimal detectable change were such that individual patients could be discerned from 

healthy volunteers further substantiating the clinical potential of the method.  

 

Internal model validity 

With the extension of the model relative to the preceding model of de Vlugt et al. (2010) 

additional parameters were introduced which generally resulted in a higher goodness of fit, but 

at a risk of over-parameterization. The internal model validity indicated high VAF values in 

98% of the cases without being over-parameterized as indicated by the low SEMs.  

 

Test-retest reliability 

Ramp velocity affected the test-retest reliability for tissue parameters and reflexive torque 

differently with optimal validity with velocities of 15°.s-1 and 100°.s-1 respectively. Sensitivity 

for the ramp velocity on the test-retest reliability of the outcome measures was also observed 

in patients with cerebral palsy20;22. The test-retest reliability of the triceps surae was higher than 

the test-retest reliability of the tibialis anterior, especially for the reflexive torque and optimal 

muscle length. 

 

Sensitivity to knee angle 

Changing the knee angle induces changes in the bi-articular muscle length and thus in the 

relative contribution of the mono-articular soleus and the bi-articular gastrocnemii and affected 

as expected the passive and active force-length characteristics of the bi-articular triceps surae 

in contrast to the mono-articular tibialis anterior thereby increasing the peripheral tissue 

stiffness in extended knee condition as was also shown in literature33;34.  

 

External validity  

Patients post-stroke showed an increased stiffness coefficient of the triceps surae in 

combination with an increased triceps surae slack length and increased reflexive torque of the 

triceps surae. Difference between stroke patients and healthy volunteers for the stiffness 

coefficient suggests the presence of tissue changes after stroke coinciding with increased 

reflexive torque of the triceps as prior observed in the ankle4;17 and wrist15;18;27. Stiffening of 

the muscle may be due to a change in collagen compound and/or structure in the extracellular 

matrix as was found in cerebral palsy26. It can be speculated that stiffer tissue in series with 

proprioceptive organs (muscle spindles and golgi tendon organs) may result in higher efferent 

responses and consequently higher reflexive torques.  

Increased slack length in patients post-stroke may be the result of reduced pennation angle as a 

consequence of muscle atrophy35. Pennation angles are not separately addressed by the current 

approach. 

The combination of the stiffness coefficients and slack muscle lengths of the triceps surae and 

tibialis anterior, determines the peripheral tissue stiffness. It is important to be aware that 

conclusions on joint stiffness depend on the ankle angle at which participants are compared. 

The difference in ankle angle of 3o dorsiflexion in our previous study4 and 0o dorsiflexion in 

the current study, may explain why significant differences of Kjoint were only found in the first 

study and not just in the current study (P=.051).  

Estimation of the stiffness coefficient and slack length of the passive force-length relationship 

in either triceps surae or tibialis anterior in patients helps to better characterize the underlying 

tissue changes of increased peripheral tissue stiffness (stiffened and/or shortened). Different 

combinations of neural reflexive and non-neural tissue parameters were found but overall, a 

high Ashworth score coincided with a high reflexive torque. Using the MDC values of healthy 

subjects, deviated parameters were found in both flexed and extended knee condition and can 

be used to identify deviated neural reflexive and non-neural tissue properties in patients. This 

method might be helpful in muscle specific treatment selection by measuring at different knee 

angles dependent on the muscle of interest, e.g. to assess the non-neural tissue parameters of 

the soleus, the patient can be measured in flexed knee condition.  
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Discussion 
The aim of this study was to estimate the passive and active tissue properties, i.e. the stiffness 
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the active force-length relationship, of the triceps surae and tibialis anterior muscles non-

invasively in patients and healthy volunteers. Valid, reliable and sensitive estimations of 

passive and active force-length characteristics next to neural reflexive torque could be obtained 
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in triceps stiffness next to an elevated reflexive torque, but not by a shorter triceps surae. Values 

for minimal detectable change were such that individual patients could be discerned from 

healthy volunteers further substantiating the clinical potential of the method.  

 

Internal model validity 

With the extension of the model relative to the preceding model of de Vlugt et al. (2010) 

additional parameters were introduced which generally resulted in a higher goodness of fit, but 

at a risk of over-parameterization. The internal model validity indicated high VAF values in 

98% of the cases without being over-parameterized as indicated by the low SEMs.  

 

Test-retest reliability 

Ramp velocity affected the test-retest reliability for tissue parameters and reflexive torque 

differently with optimal validity with velocities of 15°.s-1 and 100°.s-1 respectively. Sensitivity 

for the ramp velocity on the test-retest reliability of the outcome measures was also observed 

in patients with cerebral palsy20;22. The test-retest reliability of the triceps surae was higher than 

the test-retest reliability of the tibialis anterior, especially for the reflexive torque and optimal 

muscle length. 

 

Sensitivity to knee angle 

Changing the knee angle induces changes in the bi-articular muscle length and thus in the 

relative contribution of the mono-articular soleus and the bi-articular gastrocnemii and affected 

as expected the passive and active force-length characteristics of the bi-articular triceps surae 

in contrast to the mono-articular tibialis anterior thereby increasing the peripheral tissue 

stiffness in extended knee condition as was also shown in literature33;34.  

 

External validity  

Patients post-stroke showed an increased stiffness coefficient of the triceps surae in 

combination with an increased triceps surae slack length and increased reflexive torque of the 

triceps surae. Difference between stroke patients and healthy volunteers for the stiffness 

coefficient suggests the presence of tissue changes after stroke coinciding with increased 

reflexive torque of the triceps as prior observed in the ankle4;17 and wrist15;18;27. Stiffening of 

the muscle may be due to a change in collagen compound and/or structure in the extracellular 

matrix as was found in cerebral palsy26. It can be speculated that stiffer tissue in series with 

proprioceptive organs (muscle spindles and golgi tendon organs) may result in higher efferent 

responses and consequently higher reflexive torques.  

Increased slack length in patients post-stroke may be the result of reduced pennation angle as a 

consequence of muscle atrophy35. Pennation angles are not separately addressed by the current 

approach. 

The combination of the stiffness coefficients and slack muscle lengths of the triceps surae and 

tibialis anterior, determines the peripheral tissue stiffness. It is important to be aware that 

conclusions on joint stiffness depend on the ankle angle at which participants are compared. 

The difference in ankle angle of 3o dorsiflexion in our previous study4 and 0o dorsiflexion in 

the current study, may explain why significant differences of Kjoint were only found in the first 

study and not just in the current study (P=.051).  

Estimation of the stiffness coefficient and slack length of the passive force-length relationship 

in either triceps surae or tibialis anterior in patients helps to better characterize the underlying 

tissue changes of increased peripheral tissue stiffness (stiffened and/or shortened). Different 

combinations of neural reflexive and non-neural tissue parameters were found but overall, a 

high Ashworth score coincided with a high reflexive torque. Using the MDC values of healthy 

subjects, deviated parameters were found in both flexed and extended knee condition and can 

be used to identify deviated neural reflexive and non-neural tissue properties in patients. This 

method might be helpful in muscle specific treatment selection by measuring at different knee 

angles dependent on the muscle of interest, e.g. to assess the non-neural tissue parameters of 

the soleus, the patient can be measured in flexed knee condition.  
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MDC values of the passive and active force-length characteristics of stroke patients being 2-7 

times smaller than the average parameter values showed the potential for longitudinal 

observations e.g. to evaluate treatment.   

 

Limitations and recommendations 

The series elastic muscle tendon and the pennation angle both affect the (optimal) length 

characteristic of a muscle, but were not yet included within the model. Van de Poll showed by 

simulation, that including an Achilles tendon did not significantly affects the model 

parameters36. Pennation angle is a potential covariate of the length parameters, and affects the 

passive and active force-length characteristics of the model structure. Increased slack length in 

patients post-stroke may also be the result of a reduced pennation angle compared to healthy 

volunteers as a consequence of muscle atrophy35. Further addressing pennation (or muscle fiber 

length) requires direct observations, e.g. by ultrasound recordings.  

Rest EMG, i.e. the minimal EMG determined for each muscle, was subtracted from the total 

EMG because assumed not to contribute to ankle torque. However, important information of 

background muscle activation, which might be elevated in stroke patients37, was discarded. In 

case of increased background activation this might be accounted for by other parameters, e.g. 

the peripheral tissue stiffness, muscle stiffness coefficient and (optimal) muscle length, due to 

changed pennation angle. 
 

Conclusion 

A non-invasive EMG-driven neuromuscular modeling approach was demonstrated to estimate 

the properties of the passive and active force-length relationship of the triceps surae and tibialis 

anterior next to neural reflexive torque in patients and healthy volunteers. The model provided 

for valid, reliable and sensitive parameters and can be used to identify deviated neural reflexive 

and non-neural tissue properties in stroke patients. Non-invasive quantification of underlying 

contributors to increased joint stiffness post-stroke is important for proper and tailored patient 

referral to therapeutic strategies and high resolution follow-up. 
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Appendix 3A: Supplementary tables 

 

Table 3A: Electrode placement according to seniam guidelines (www.seniam.org) 

Muscle Location 

Tibialis anterior At 1/3 on the line between the tip of the fibula and the tip of the medial 
malleolus. 

Soleus At 2/3 of the line between the medial condylis of the femur to the medial 
malleolus. 

Gastrocnemius medialis On the most prominent bulge of the muscle. 

Gastrocnemius lateralis At 1/3 of the line between the head of the fibula and the heel. 

 

 

 

Table 3B: Description of model parameters (n=15) and optimization values (initial value and min and max)  

 

Model parameters Description Initial value  [Min Max] 

M Mass [kg] 1.5 [1.2 3] 

ktri, ktib  Stiffness coefficients [m-1] 200 [10 600] 

lp,slack,tri,  

lp,slack,tib 
Slack length of connective tissue [m] 

0.05 

0.05 

[0.01 0.09] 

[0.01 0.11]            

Gtri,(3x)  Gtib EMG weighting factors [-] 1*104 [0 1010]  (all muscles) 

f0 Activation cutoff frequency [Hz] 2 [0.5 4] 

Beta Relative damping [-] 1 [0.5 1.25] 

Lopt,tri 

lopt,tib 
Optimal muscle lengths [m] 

0.048 

0.068 

[0.02 0.09] 

[0.02 0.11] 

taurel Tissue relaxation time constant [s] 2 [0.1 6] 

krel Tissue relaxation factor [-] 0.1 [0.05 1] 
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Appendix 3B: Ankle model 

The model structure was based on the ankle model from de Vlugt et al.1 with the following 

adaptations: 

a) the model is able to describe plantar- and dorsiflexion forces during both dorsi-flexion 

and plantar flexion motions2 estimating parameters that model the relaxation effects 

during the hold phase where Sloot et al.2 used an offset torque constant to account for 

the relaxation effect. 

b) Optimal muscle length parameters, i.e. the length at which the muscle can generate its 

maximum force, of the contractile element of the Hill-models were estimated 

c) Other equations were used for the moment arm and muscle length to better resemble  

literature  

The total ankle reaction torque, Tmod [Nm], applied by the ankle to the manipulator was modeled 

and described by: 

𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) = 𝐼𝐼𝐼𝐼𝐼̈𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) + 𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) − 𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) + 𝑇𝑇𝑇𝑇����(𝐼𝐼𝐼𝐼)   (A3.1) 

where t is the independent time variable [s], 𝐼𝐼𝐼𝐼𝐼̈𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) the ankle angular acceleration [rad/s2], I the 

inertia of ankle plus footplate [kg.m2], Ttri the torque generated by the plantar flexion muscles 

(tri: SL, GL, GM) or triceps surae [Nm], Ttib the torque generated by the dorsiflexion muscle 

(tib: TA) [Nm], and Tgrav the torque due to gravity [Nm]. 

Muscle torques for tri and tib muscle were described by: 

)()),,()((),( ,,  mmactmelasm rlvFlFtT      (A3.2) 

with Felas,m the elastic force of the parallel connective tissues [N/m], Fact,m the active or 

“reflexive” muscle forces and )(mr  the angle dependent moment arm [m] of the tendon: 

0480.0*0104.0)(  trir      (A3.3) 

0393.0*0171.0)(  tibr       (A3.4) 

 

Muscle length (lm) was obtained from its muscle moment arm (rm) from tri and tib using data 

from literature3;4 

118.0)(*67.1  tritri rl       (A3.5) 

136.0)(*56.1  tibtib rl       (A3.6)  

Inertia of ankle plus footplate was modeled as a point mass m [kg] at distance la (fixed at 0.10 

m) from the center of rotation, i.e. 2
aI ml  [kg.m2]. Torque due to gravity equals: 

)cos( fgndagrav mglT         (A3.7) 

Where g is the gravitational acceleration (g = 9.8 m/s2). θfgnd represents the angle of the foot 

with respect to the horizontal (ground) at zero degrees ankle angle [rad] using the anatomical 

reference angle.         

The elastic components were modeled as follows: 

𝐹𝐹𝐹𝐹����,�(𝑡𝑡𝑡𝑡) = 𝑒𝑒𝑒𝑒��(��(�)���,�����,�)      (A3.8) 

Where km is the stiffness coefficient of the muscle and lp,slack,m the slack length of the connective 

tissue. Muscle connective tissue under tension exhibits relaxation or force decrease5-7, which is 

modeled by a first order filter, according to: 

𝐹𝐹𝐹𝐹����,�(𝑠𝑠𝑠𝑠) =
�������

������������
𝐹𝐹𝐹𝐹����,�(𝑠𝑠𝑠𝑠)     (A3.9) 

with rel the tissue relaxation time constant and relk the tissue relaxation factor. In the previous 

version of the ankle model by de Vlugt et al.1 tissue relaxation was approximated by a viscous 

damper.    

For clinical comparison between subjects, peripheral tissue stiffness, Kjoint, was calculated at a 

unique joint angle (comp) for all subjects and patients. This angle was set at zero degrees (foot 

perpendicular to the lower leg). 

, ,( ) 2
joint,m ( )m m comp p slackk l l

m m compK k e r   for comp = 0°   (A3.10) 
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where lm,comp is the muscle length at comp. Eq. (A3.10) was obtained by differentiation of Eq. 

(A3.8) with respect to muscle length and multiplied by the squared moment arm. The total 

tissue stiffness was derived by summation of the stiffness from both muscles: 

tibjotrijojo KKK int,int,int        (A3.11) 

Neural muscle activity for tri and tib due to stretch reflexes was estimated from corresponding 

EMG signals according to: 

)()()()( tEMGGtEMGGtEMGGtU GMGMGLGLSOLSOLtri    (A3.12) 

)()( tEMGGtU TATAtib        (A3.13) 

with U the excitation input to the muscle model (1/Volt) of the muscle serving as input to the 

Hill-type muscle model; G the dimensionless EMG weight scaling factors and EMG the activity 

of each muscle. 

The neural excitations of both muscles were filtered with a linear second order filter to describe 

the activation process of a contracted muscle1: 

)(
2

)( 2
00

2

2
0 sU

ss
s m

m
m 




       (A3.14) 

αm is the dimensionless active state of the muscle m, mf ,00 2   the cut off frequency of the 

activation filter, s the Laplace operator denoting the first time derivative, βm the relative 

damping and Um (s) the modeled neural muscle activity. 

The Hill-type muscle model was used to compute the muscle force from the active state and the 

muscle length and velocity according to: 

mmoptlmvmact llfvfF ),()( ,,        (A3.15) 

with fv the force-velocity relationship and fl the force-length relationship. The optimal muscle 

lengths (lopt,m ) were estimated by the model and used to derive the force-length relationships 

by 

 

     mwflll
l

moptmef ,/2
,        (A3.16) 

With wfl,m a shape factor defined as: 

 
2

,, * moptmfl lcfw                                                                                   (A3.17) 

 

with cf the shape parameter of the force-length relationship with value 0.1 to resemble the force-

generating range of the muscles. 

By introducing the optimal muscle length, the active component was uncoupled from the 

passive component, i.e. the slack length of the muscle which is often assumed to be equal to the 

optimal muscle length8-10. 
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Abstract 
About half of all chronic stroke patients experience loss of arm function coinciding with 

increased stiffness, reduced range of motion and a flexed wrist due to a change in neural and/or 

structural tissue properties. Quantitative assessment of these changes is of clinical importance, 

yet not trivial. The goal of this study was to quantify the neural and structural properties 

contributing to wrist joint stiffness and to compare these properties between healthy subjects 

and stroke patients. 

Stroke patients (n=32) and healthy volunteers (n=14) were measured using ramp-and-hold 

rotations applied to the wrist joint by a haptic manipulator. Neural (reflexive torque) and 

structural (connective tissue stiffness, optimal muscle lengths and slack lengths of connective 

tissue) parameters were estimated using an electromyography driven antagonistic wrist model. 

Kruskal-Wallis analysis with multiple comparisons was used to compare results between 

healthy subjects, stroke patients with modified Ashworth score of zero and stroke patients with 

modified Ashworth score of one or more. 

Stroke patients with modified Ashworth score of one or more differed from healthy controls 

(P<0.05) by increased tissue stiffness, increased reflexive torque, decreased optimal muscle 

length and decreased slack length of connective tissue of the flexor muscles.  

Non-invasive quantitative analysis, including estimation of optimal muscle lengths, enables to 

identify neural and non-neural changes in chronic stroke patients. Monitoring these changes in 

time is important to understand the recovery process and to optimize treatment. 

 

 

  

 

Introduction 
Movement disorders of central neurological origin, like stroke and cerebral palsy, are 

characterized by increased resistance to imposed movement in the relaxed condition. Increased 

joint stiffness can be of neural origin (hyperreflexia, “spasticity”) and/or non-neural, structural 

origin (altered tissue viscoelastic properties, “contracture”)1;2. Separation of joint stiffness into 

neural and non-neural contributions has gained much attention recently, both from technical 

and clinical research, resulting in new and promising instrumented methods2;3. The separation 

of joint stiffness into different components is important for treatment selection aiming to 

improve joint dexterity. In case of suspected neural origin, botulinum toxin may be 

administered4;5, while in case of suspected non-neural origin patients may benefit from 

corrective casting, splinting or surgical lengthening6-8. The use of an instrumented joint 

manipulator and an electromyography driven biomechanical model was successfully used 

previously to quantitatively discriminate joint stiffness into contributions from connective 

tissue viscoelasticity and stretch reflex activity in the ankle of patients with stroke9 and cerebral 

palsy10;11. 

About half of all stroke survivors experience loss of arm function12;13 often due to a flexed 

position of the wrist at the affected side due to developing contractures at about 0.5 degrees per 

week in the first 8 months post-stroke14. The origin of these contractures is not fully clear, but 

may be the result of reduced number of sarcomeres in series15-18 and/or shortened optimal 

sarcomere length17, increased stiffness of the extracellular matrix18, functional 

immobilization14;19 and co-activation synergies20. Biomechanically, these tissue changes mean 

a shift in slack length of the connective tissues and/or shift of the muscle force-length curve and 

a reduction of the optimal muscle length of the flexor muscles, i.e. the length of the muscle 

where it generates highest forces.  

In the acute and sub-acute phase post-stroke, quantification of neural and non-neural 

contributors to joint stiffness, including optimal muscle length and slack length of connective 

tissue, could help understanding the mechanism of (poor) recovery after stroke and 

characterization of changes over time using longitudinal observations21;22. Also the effect of 

therapies, like botulinum toxin, on the neural and non-neural parameters is not yet understood 

and should be measured to evaluate and optimize treatment23. 
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The goal of this study was to quantify the neural and non-neural contributions to wrist joint 

stiffness from both flexor and extensor muscles in a cohort of chronic stroke patients. The 

current model is an extended version of a previous ankle model9 now including an antagonistic 

pair of muscle elements to allow for property analysis of both wrist flexor and extensor muscle 

groups. Three demands were imposed to the model: The structure of the model should represent 

the (non-linear) joint physiology, the predicted torques should resemble the measured torques 

and the parameters should be sensitive to discriminate clinical different patients from healthy 

subjects. Optimal muscle lengths, slack muscle lengths, tissue stiffness and reflexive torques 

from both flexor and extensor muscles were estimated by model optimization and compared 

between healthy subjects, stroke patients with a modified Ashworth score of 0 (MAS = 0) and 

stroke patients with modified Ashworth score of one or more (MAS ≥ 1). We hypothesized an 

increase in tissue stiffness and reflexive torque and decrease of optimal muscle length and slack 

length of connective tissue of the flexor muscles in chronic stroke patients with modified 

Ashworth score of one or more (MAS ≥ 1). We addressed the validity and agreement of the 

method.   

 

Methods 
Subjects 

Instrumented ramp-and-hold (RaH) measurements at the wrist at rest were performed as part of 

the EXPLICIT-stroke study21;24;25. Exclusion criteria were neurological deficiencies additional 

to stroke, (prior) orthopedic problems in hand or shoulder and inability to comply with the 

protocol. Patients were measured on two occasions within a month. Healthy volunteers were 

measured as a reference group. The study was approved by the medical ethics committee of the 

Leiden University Medical Center. All participants gave their written informed consent prior to 

the experimental procedure. Measurements from fourteen healthy volunteers (mean age 49.4, 

SD 15.1 years), 21 chronic stroke patients with MAS = 0 (mean age 60.4, SD 13.1 years) and 

11 chronic stroke patients with MAS ≥ 1 (mean age 54.4, SD 12.7 years) were analyzed in this 

study. Subject characteristics are provided in Table 4.1. 

 

 
  

 

Table 4.1: Subject characteristics25 
 Healthy 

volunteers 

(n=14) 

Chronic patients 

MAS = 0 

(n = 21) 

Chronic patients 

MAS ≥ 1 

(n = 11) 

Age (years) (SD) 49.4 (15.1) 60.4 (13.1) 54.5 (12.7) 

Men (n) (%) 9 (64%) 10 (48%) 3 (27%) 

Right side dominant (n) (%) 13 (93%) 21 (100%) 8 (73%) 

Measured side dominant (n) (%) 14 (100%) 10 (48%) 4 (36%) 

Time between measurements (days) (SD) 27 (21) 18 (7) 29 (17) 

Time after stroke (months) (SD) - 30 (27.6) 53 (34.4) 

Age at moment of stroke (years) (SD) - 58 (13.1) 50 (14.5) 

Passive range of motion deg,(median 

min;max) 
138 (118; 148) 132 (100; 151) 100 (42; 133) 

 

Instrumentation 

The subjects were seated with their shoulder relaxed and elbow flexed in approximately 90°. A 

haptic wrist manipulator (Wristalyzer, 1 degree of freedom (dorsi- and plantar flexion), Moog, 

Nieuw Vennep, the Netherlands) was used (Figure 4.1). Forearm and hand were strapped to a 

cuff and handle respectively using Velcro straps. The rotation axis of the wrist joint was aligned 

visually to the rotation axis of the handle. Handle rotation was driven by a vertically positioned 

servo motor (Parker SMH100). Positive direction was assigned to flexion movement and 

extension torque. Muscle activation was recorded by bipolar surface electrodes 

(electromyography, EMG) using a Delsys Bagnoli 8 system (Delsys Inc., Boston MA, USA). 

Two bipolar electrodes were placed on the flexor carpi radialis (FCR) and two on the extensor 

carpi radialis (ECR) in order to have a good representation for the FCR and ECR activation26;27. 

EMG signals were sampled at 2048 Hz, online band pass filtered (20-450 Hz), rectified and 

low pass filtered (20 Hz, 3rd order Butterworth) to obtain the EMG envelope. The minimal EMG 

value (average of moving window of 0.06 sec) was subtracted from the total EMG to ensure 
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noise was minimal in the data. Wrist torque and joint angle were recorded at 2048 Hz and 

filtered with the same 20 Hz low pass 3rd order Butterworth filter. 

 

 
Figure 4.1: Experimental setup. The forearm and hand of the subject were fixed to the manipulator (Wristalyzer® 

by MOOG, the Netherlands). Ramp-and-hold rotations in flexion and extension were imposed to the wrist while 

the subject was instructed to remain relaxed and not react to the rotations. Wrist joint torque, angle and EMG of 

the FRC and ECR muscles were recorded. 

 

Measurement protocol 

Measurements were performed on the right wrist in healthy subjects and on the impaired wrist 

in patients. The range of motion (RoM) was determined as the difference between maximal 

flexion and extension angle resulting from an imposed slow changing torque ranging between 

2 Nm (extension torque) and –2 Nm (flexion torque). Subsequently, RaH rotations were 

imposed onto the wrist at a constant velocity over the full RoM. Two RaH trials were imposed 

per measurement. Each trial contained a fast ramp in 1 second in extension or flexion direction 

(named “extension fast” or “flexion fast”), two slow ramps in the opposite direction and three 

hold periods in between the ramps in which the position of the wrist stayed the same (Figure 

4.2). The directions of the ramps in the second trial were opposite to the first trial. The 

individually determined RoM in combination with the duration of the ramp (1 second) 

 

determined the velocity of the imposed perturbations. Subjects were asked to remain relaxed 

during the entire experiment and not to react to the wrist movement. 

 

 
Figure 4.2: Example of imposed angular rotation (bottom) and torque response with model fit (top row) for a 

healthy subject (left, “extension fast”, VAF=99.6%) and stroke subject with MAS=3 (right, “flexion fast”, 

VAF=99.8).  
 

Model description  

A biomechanical EMG driven antagonistic muscle model was used to predict wrist torque from 

wrist angle and EMG. The model was based on the ankle model from de Vlugt et al.9  and 

extended with a second Hill-type model to describe the passive and active force of the 

antagonist muscles.  

Wrist joint stiffness is described by: 

 

 𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) = 𝐼𝐼𝐼𝐼𝐼̈𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) + 𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) − 𝑇𝑇𝑇𝑇����(𝑡𝑡𝑡𝑡)    (4.1) 

 

where t is the independent time variable [s], Tmod the modeled wrist reaction torque [Nm], 𝐼̈𝐼𝐼𝐼(t) 

the wrist angular acceleration [rad/s2], I the inertia of wrist and handle [kg.m2], Text the torque 

generated by the extensor muscles [Nm] and Tflex the torque generated by the flexor muscles 

[Nm]. 

Muscle torques (Tm) for extensor and flexor muscle are described by: 

 

, ,( , ) ( ( ) ( , , )) ( )m elas m act m m m m mT t F l F v l r        (4.2) 
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with Felas,m the elastic force of the parallel connective tissues [N], Fact,m the active or “reflexive” 

muscle forces [N] according to the Hill-type model, vm the muscle lengthening velocity [m/s], 

lm the muscle length [m], αm the active state [-] and )(mr  the angle dependent moment arm [m] 

of the tendon. 

The elastic components for the extensor and flexor muscles were modeled as follows: 

))((
,

,,)( mslackpmm llk
melas etF          (4.3) 

Where km is the estimated stiffness coefficient of the muscle and lp,slack,m the estimated slack 

length of the connective tissue. Muscle length lm for FCR and ECR equals: 

 

 *)(0, FCRFCRFCR rll         (4.4) 

 *)(0, ECRECRECR rll         (4.5) 

 

Where FCRl and ECRl  are the lengths of the muscle at each position  and 0,FCRl  and 0,ECRl the 

muscle length at zero degrees wrist angle position (handle in line with forearm). rm is the 

moment arm defined by Ramsay et al.28.  

The Hill-type muscle model was used to compute the muscle force from the active state and the 

muscle length and velocity according to: 

 

mmoptlmvmact llfvfF ),()( ,,        (4.6) 

 

with fv the force-velocity relationship and fl the force-length relationship. 

The optimal muscle lengths (lopt,m) were estimated using the model and used to derive the force-

length relationships by 

 

 

    mflmoptm wll
l ef ,

2
, /         (4.7) 

      

With wfl,m a shape factor. 

The complete model is described in the Appendix 4.   

The modeled force-length and force-velocity characteristics are shown in Figure 4.3 together 

with the modeled tissue and neural forces. In estimating the optimal muscle lengths, the active 

filament overlap component was decoupled from the passive component, i.e. the slack length 

of the muscle which is often assumed to be equal to the optimal muscle length29-31 was 

decoupled. The parameters of the wrist model that were optimized including the initial values 

and constraints are listed in Table 4.2.  

 

Table 4.2: Estimated model parameters and optimization parameters. 

Model wrist Description Initial value and [Min Max] of optimization 

M Mass (kg) 2 [0.5-5]   

kext, kflex  
Stiffness coefficients 

(1/m) 
240 [10 800] 230 [10 800]  

lp,slack,ext, lp,slack,flex 
Slack lengths of 

connective tissue (m) 
0.06 [-0.1 0.1] 0.04 [-0.1 0.1]            

Gext, Gflex 
EMG weighting 

factors (-) 
1*104 [1*100  1*1011]  (both muscles) 

f0 
Activation cutoff 

frequency (Hz) 
0.2 [0.01 10]  

lopt,ext, lopt,flex 
Optimal muscle 

lengths (m) 
0.070 [0.04 0.11] 0.063 [0.04 0.11] 

taurel 
Tissue relaxation 

time constant (s) 
0.9 [0 10]  

krel 
Tissue relaxation 

factor (-) 
1 [0 50]  

12 
(Number of 

parameters) 
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Figure 4.3: Example of model characteristics of a stroke patient (MAS = 0). Top panel: applied movement, second 

row: normalized force-length and force-velocity curves of the extensor (left) and flexor (right) muscles (grey lines) 

including the perturbed length and velocity domains by the red and green intervals. Bottom row: Tissue and neural 

forces from the extensor (left) and flexor (right) muscles.   
 

The predicted model torque (Tmod) was fitted to the measured wrist torque (Tmeas), except for 

the first second of the data to ensure data quality. Model parameters were estimated for the 

complete movement by minimizing the quadratic difference (error function) between the 

measured and predicted wrist torque using a non-linear least-square optimization algorithm 

(steepest descent, Matlab function lsqnonlin).  

The main estimated outcome measures used to characterize subjects were tissue stiffness at 

joint level (Kjoint), optimal muscle length (lopt,m), slack muscle length (lp,slack,m) and the reflexive 

torque (Treflex) determined for both the extensor and flexor muscle groups. The estimated 

reflexive torque was calculated by using the root mean square of the active muscle torque9. 

Tissue stiffness at joint level (Kjoint) was derived from the passive force-length relationship, see 

Appendix 4. For clinical comparison between subjects, Kjoint, was compared at the same wrist 

 

angle (comp) for all subjects. This angle was chosen at zero degrees, i.e. where the handle is in 

line with the forearm. 

Repeated measures were averaged for each subject in order to be able to compare groups of 

subjects. 

Simulation and analysis was performed in Matlab (The Mathworks Inc., Natick MA). 

 

Validity and agreement 

Model validity was assessed using the standard error of the mean (SEM) and variance accounted 

for (VAF). Validity of the measurements was determined by systematic error assessment. 

Agreement of measurement32 was determined by the minimal detectable change (MDC) and 

was used to assess clinical potential to discriminate pathological deviating parameters from 

normal values. 

  

Model fit and parameter confidence 

The standard error of the mean (SEM) represents the parameter confidence and is based on the 

sensitivity (first and second partial derivatives) of each parameter to the error function (Jacobian 

and Hessian respectively)9;33. High sensitivity, indicated by low SEM values, means that the 

parameter has substantial contribution to the error function. Model fit was indicated by the 

torque variance accounted for (VAF): 
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The VAF was estimated for each trial. Estimated torques with a VAF less than 98% were 

disregarded from group analysis.  
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Figure 4.3: Example of model characteristics of a stroke patient (MAS = 0). Top panel: applied movement, second 

row: normalized force-length and force-velocity curves of the extensor (left) and flexor (right) muscles (grey lines) 

including the perturbed length and velocity domains by the red and green intervals. Bottom row: Tissue and neural 

forces from the extensor (left) and flexor (right) muscles.   
 

The predicted model torque (Tmod) was fitted to the measured wrist torque (Tmeas), except for 

the first second of the data to ensure data quality. Model parameters were estimated for the 

complete movement by minimizing the quadratic difference (error function) between the 

measured and predicted wrist torque using a non-linear least-square optimization algorithm 

(steepest descent, Matlab function lsqnonlin).  

The main estimated outcome measures used to characterize subjects were tissue stiffness at 

joint level (Kjoint), optimal muscle length (lopt,m), slack muscle length (lp,slack,m) and the reflexive 

torque (Treflex) determined for both the extensor and flexor muscle groups. The estimated 

reflexive torque was calculated by using the root mean square of the active muscle torque9. 

Tissue stiffness at joint level (Kjoint) was derived from the passive force-length relationship, see 

Appendix 4. For clinical comparison between subjects, Kjoint, was compared at the same wrist 

 

angle (comp) for all subjects. This angle was chosen at zero degrees, i.e. where the handle is in 

line with the forearm. 

Repeated measures were averaged for each subject in order to be able to compare groups of 

subjects. 

Simulation and analysis was performed in Matlab (The Mathworks Inc., Natick MA). 

 

Validity and agreement 

Model validity was assessed using the standard error of the mean (SEM) and variance accounted 

for (VAF). Validity of the measurements was determined by systematic error assessment. 

Agreement of measurement32 was determined by the minimal detectable change (MDC) and 

was used to assess clinical potential to discriminate pathological deviating parameters from 

normal values. 

  

Model fit and parameter confidence 

The standard error of the mean (SEM) represents the parameter confidence and is based on the 

sensitivity (first and second partial derivatives) of each parameter to the error function (Jacobian 

and Hessian respectively)9;33. High sensitivity, indicated by low SEM values, means that the 

parameter has substantial contribution to the error function. Model fit was indicated by the 

torque variance accounted for (VAF): 
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The VAF was estimated for each trial. Estimated torques with a VAF less than 98% were 

disregarded from group analysis.  
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Assessment of systematic error 

A Wilcoxon signed rank test with significant level 0.05 was used to determine systematic errors 

between the measurements of two different visits.  

 

Clinical potential 

Using post-hoc analysis based on variance (Levene’s test) we observed significant higher 

parameter variances in stroke patients compared to controls for the tissue stiffness and reflexive 

torque of the FCR. Conform the analysis of25 we introduced an a priory subdivision of stroke 

patients based on MAS.  

Kruskal-Wallis one-way analysis of variance with multiple comparisons was used to compare 

stroke patients with modified Ashworth scores of 0 (MAS = 0) and greater than 0 (MAS ≥ 1) 

respectively with healthy subjects. The minimal detectable change (MDC)32;34 with confidence 

interval of 95% was calculated to identify deviated parameters i.e. parameters that are outside 

the range of mean value +/- MDC indicating that the observed value was not likely to be due to 

chance variation. Thus, values above the threshold of mean value +/- MDC were classified as 

“deviated” and can be used to identify pathological cases. 

 

For statistical analysis IBM SPSS statistics 22 and GraphPad Prism 6 was used. 
 

Results 
One patient was unable to comply with the protocol. All other trials (93 in “extension fast” 

direction and 93 in “flexion fast” direction were used to estimate model parameters, VAF and 

SEM values (Table 4.3). Twenty trials (10%, 5 (5%) in “extension fast” and 15 (16%) in 

“flexion fast” direction) were excluded for further analysis based on VAF values below 98% 

and in one case (1 of 93, “extension fast”) the input signal was corrupt. In only one (out of 45) 

subject, the parameters could not be estimated because the patient had low VAF values in both 

movement direction and for both trials. From all other subjects, through repeated trials in 

flexion and extension, data were available to estimate the relevant parameters. In total data from 

14 healthy subjects and 30 stroke were used for further analysis. Low VAF values may have 

originated from experimental artefacts e.g. poor fixation or misalignment or voluntary 

interaction with the passive protocol.  

 

Table 4.3: Model parameters (estimated value and standard error of the mean (SEM)) for all healthy subjects 
(A), stroke patients with MAS = 0 (B) and stroke patients with MAS ≥ 1(C). 

A 

Parameter 
Estimated Value* SEM* 

Extension fast Flexion fast Extension fast Flexion fast 

m (kg) 0.89 (0.65-1.1) 0.96 (0.73-1.1) 0.012 (0.0094-0.016) 0.015 (0.010-0.019) 

kext (1/m) 206 (164-313) 307 (227-441) 0.012 (0.0059-0.019) 0.023 (0.013-0.037) 

kflex (1/m) 211 (162-265) 218 (205-288) 0.0057 (0.0037-0.012) 0.0059 (0.0043-0.0097) 

lp,slack,ext, (m) 0.066 (0.058-0.072) 0.072 (0.065-0.076) 0.0045 (0.0028-0.0066) 0.0047 (0.0027-0.0082) 

lp,slack,flex (m) 0.048 (0.038-0.052) 0.047 (0.043-0.055) 0.0039 (0.0032-0.0072) 0.0044 (0.0026-0.0086) 

lopt,ext (m) 0.057 (0.050-0.066) 0.064 (0.054-0.072) 0.0066 (0.0031-0.025) 0.017 (0.0054-0.38) 

lopt,flex (m) 0.067 (0.051-0.078) 0.070 (0.060-0.090) 0.0083 (0.0050-0.020) 0.023 (0.0077-0.093) 

Taurel (s) 2.1 (0.79-3.5) 1.6 (0.74-4.0) 0.028 (0.010-0.058) 0.052 (0.018-0.14) 

krel (-) 0.65 (0.48-1.3) 1.1 (0.64-2.2) 0.0098 (0.0054-0.019) 0.022 (0.0086-0.050) 

Gext  (-) 5676 (1858-17038) 1756 (201-8411) 0.019 (0.0070-0.22) 0.025 (0.0041-0.27) 

Gflex (-) 15192 (5280-62793) 35866 (4764-112308) 0.071 (0.021-0.16) 0.22 (0.042-0.94) 

 f0 (Hz) 0.19 (0.062-0.52) 0.19 (0.072-0.67) 0.012 (0.0039-0.028) 0.019 (0.0042-0.067) 

* median, 25-75 percentile 

 

B 

Parameter 
Estimated Value* SEM* 

Extension fast Flexion fast Extension fast Flexion fast 

m (kg) 1.4 (1.0-2.0) 1.1 (0.72-1.6) 0.040 (0.022-0.052) 0.034 (0.021-0.053) 

kext (1/m) 207 (155-253) 244 (207-287) 0.019 (0.011-0.040) 0.025 (0.014-0.034) 

kflex (1/m) 204 (171-235) 215 (198-280) 0.010 (0.008-0.016) 0.011 (0.0076-0.019) 

lp,slack,ext, (m) 0.065 (0.056-0.070) 0.067 (0.062-0.073) 0.0092 (0.0050-0.016) 0.0084 (0.0053-0.013) 

lp,slack,flex (m) 0.046 (0.040-0.050) 0.048 (0.042-0.055) 0.0098 (0.0055-0.013) 0.0076 (0.0048-0.014) 

lopt,ext (m) 0.064 (0.053-0.084) 0.068 (0.058-0.095) 0.026 (0.011-0.11) 0.024 (0.012-0.14) 

lopt,flex (m) 0.059 (0.050-0.069) 0.064 (0.056-0.11) 0.0098 (0.0051-0.045) 0.022-0.0079-0.18) 

Taurel (s) 0.87 (0.57-1.2) 0.69 (0.47-1.5) 0.026 (0.012-0.037) 0.019 (0.014-0.060) 

krel (-) 0.95 (0.66-1.9) 1.3 (0.66-2.2) 0.025 (0.016-0.050) 0.037 (0.012-0.068) 

Gext  (-) 3285 (550-11671) 2147 (668-8556) 0.031 (0.0080-0.23) 0.040 (0.0092-0.19) 

Gflex (-) 12534 (5499-29479) 10440 (5908-32914) 0.050 (0.016-0.27) 0.087 (0.032-1.8) 

 f0 (Hz) 0.68 (0.14-1.3) 0.83 (0.22-2.0) 0.080 (0.031-0.12) 0.084 (0.037-0.18) 

* median, 25-75 percentile  
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Assessment of systematic error 

A Wilcoxon signed rank test with significant level 0.05 was used to determine systematic errors 

between the measurements of two different visits.  

 

Clinical potential 

Using post-hoc analysis based on variance (Levene’s test) we observed significant higher 

parameter variances in stroke patients compared to controls for the tissue stiffness and reflexive 

torque of the FCR. Conform the analysis of25 we introduced an a priory subdivision of stroke 

patients based on MAS.  

Kruskal-Wallis one-way analysis of variance with multiple comparisons was used to compare 

stroke patients with modified Ashworth scores of 0 (MAS = 0) and greater than 0 (MAS ≥ 1) 

respectively with healthy subjects. The minimal detectable change (MDC)32;34 with confidence 

interval of 95% was calculated to identify deviated parameters i.e. parameters that are outside 

the range of mean value +/- MDC indicating that the observed value was not likely to be due to 

chance variation. Thus, values above the threshold of mean value +/- MDC were classified as 

“deviated” and can be used to identify pathological cases. 

 

For statistical analysis IBM SPSS statistics 22 and GraphPad Prism 6 was used. 
 

Results 
One patient was unable to comply with the protocol. All other trials (93 in “extension fast” 

direction and 93 in “flexion fast” direction were used to estimate model parameters, VAF and 

SEM values (Table 4.3). Twenty trials (10%, 5 (5%) in “extension fast” and 15 (16%) in 

“flexion fast” direction) were excluded for further analysis based on VAF values below 98% 

and in one case (1 of 93, “extension fast”) the input signal was corrupt. In only one (out of 45) 

subject, the parameters could not be estimated because the patient had low VAF values in both 

movement direction and for both trials. From all other subjects, through repeated trials in 

flexion and extension, data were available to estimate the relevant parameters. In total data from 

14 healthy subjects and 30 stroke were used for further analysis. Low VAF values may have 

originated from experimental artefacts e.g. poor fixation or misalignment or voluntary 

interaction with the passive protocol.  

 

Table 4.3: Model parameters (estimated value and standard error of the mean (SEM)) for all healthy subjects 
(A), stroke patients with MAS = 0 (B) and stroke patients with MAS ≥ 1(C). 

A 

Parameter 
Estimated Value* SEM* 

Extension fast Flexion fast Extension fast Flexion fast 

m (kg) 0.89 (0.65-1.1) 0.96 (0.73-1.1) 0.012 (0.0094-0.016) 0.015 (0.010-0.019) 

kext (1/m) 206 (164-313) 307 (227-441) 0.012 (0.0059-0.019) 0.023 (0.013-0.037) 

kflex (1/m) 211 (162-265) 218 (205-288) 0.0057 (0.0037-0.012) 0.0059 (0.0043-0.0097) 

lp,slack,ext, (m) 0.066 (0.058-0.072) 0.072 (0.065-0.076) 0.0045 (0.0028-0.0066) 0.0047 (0.0027-0.0082) 

lp,slack,flex (m) 0.048 (0.038-0.052) 0.047 (0.043-0.055) 0.0039 (0.0032-0.0072) 0.0044 (0.0026-0.0086) 

lopt,ext (m) 0.057 (0.050-0.066) 0.064 (0.054-0.072) 0.0066 (0.0031-0.025) 0.017 (0.0054-0.38) 

lopt,flex (m) 0.067 (0.051-0.078) 0.070 (0.060-0.090) 0.0083 (0.0050-0.020) 0.023 (0.0077-0.093) 

Taurel (s) 2.1 (0.79-3.5) 1.6 (0.74-4.0) 0.028 (0.010-0.058) 0.052 (0.018-0.14) 

krel (-) 0.65 (0.48-1.3) 1.1 (0.64-2.2) 0.0098 (0.0054-0.019) 0.022 (0.0086-0.050) 

Gext  (-) 5676 (1858-17038) 1756 (201-8411) 0.019 (0.0070-0.22) 0.025 (0.0041-0.27) 

Gflex (-) 15192 (5280-62793) 35866 (4764-112308) 0.071 (0.021-0.16) 0.22 (0.042-0.94) 

 f0 (Hz) 0.19 (0.062-0.52) 0.19 (0.072-0.67) 0.012 (0.0039-0.028) 0.019 (0.0042-0.067) 

* median, 25-75 percentile 

 

B 

Parameter 
Estimated Value* SEM* 

Extension fast Flexion fast Extension fast Flexion fast 

m (kg) 1.4 (1.0-2.0) 1.1 (0.72-1.6) 0.040 (0.022-0.052) 0.034 (0.021-0.053) 

kext (1/m) 207 (155-253) 244 (207-287) 0.019 (0.011-0.040) 0.025 (0.014-0.034) 

kflex (1/m) 204 (171-235) 215 (198-280) 0.010 (0.008-0.016) 0.011 (0.0076-0.019) 

lp,slack,ext, (m) 0.065 (0.056-0.070) 0.067 (0.062-0.073) 0.0092 (0.0050-0.016) 0.0084 (0.0053-0.013) 

lp,slack,flex (m) 0.046 (0.040-0.050) 0.048 (0.042-0.055) 0.0098 (0.0055-0.013) 0.0076 (0.0048-0.014) 

lopt,ext (m) 0.064 (0.053-0.084) 0.068 (0.058-0.095) 0.026 (0.011-0.11) 0.024 (0.012-0.14) 

lopt,flex (m) 0.059 (0.050-0.069) 0.064 (0.056-0.11) 0.0098 (0.0051-0.045) 0.022-0.0079-0.18) 

Taurel (s) 0.87 (0.57-1.2) 0.69 (0.47-1.5) 0.026 (0.012-0.037) 0.019 (0.014-0.060) 

krel (-) 0.95 (0.66-1.9) 1.3 (0.66-2.2) 0.025 (0.016-0.050) 0.037 (0.012-0.068) 

Gext  (-) 3285 (550-11671) 2147 (668-8556) 0.031 (0.0080-0.23) 0.040 (0.0092-0.19) 

Gflex (-) 12534 (5499-29479) 10440 (5908-32914) 0.050 (0.016-0.27) 0.087 (0.032-1.8) 

 f0 (Hz) 0.68 (0.14-1.3) 0.83 (0.22-2.0) 0.080 (0.031-0.12) 0.084 (0.037-0.18) 

* median, 25-75 percentile  
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C 

Parameter 
Estimated Value* SEM* 

Extension fast Flexion fast Extension fast Flexion fast 

m (kg) 0.50 (0.50-1.5) 0.97 (0.50-1.4) 0.069 (0.035-0.090) 0.037 (0.026-0.061) 

kext (1/m) 253 (174-303) 220 (167-277) 0.028 (0.011-0.057) 0.023 (0.012-0.028) 

kflex (1/m) 167 (130-209) 178 (134-256) 0.0090 (0.0045-0.015) 0.0085 (0.0057-0.013) 

lp,slack,ext, (m) 0.066 (0.058-0.073) 0.064 (0.059-0.069) 0.0084 (0.0050-0.016) 0.0085 (0.0049-0.016) 

lp,slack,flex (m) 0.027 (0.012-0.035) 0.035 (0.019-0.044) 0.013 (0.0079-0.019) 0.0079 (0.0058-0.015) 

lopt,ext (m) 0.059 (0.042-0.11) 0.066 (0.054-0.10) 0.038 (0.015-0.077) 0.045 (0.014-0.18) 

lopt,flex (m) 0.054 (0.050-0.060) 0.057 (0.048-0.092) 0.0056 (0.0038-0.011) 0.0096 (0.0048-0.11) 

Taurel (s) 1.1 (0.81-1.9) 1.3 (0.87-2.2) 0.020 (0.014-0.032) 0.030 (0.019-0.043) 

krel (-) 2.2 (1.1-3.5) 1.4 (0.97-2.2) 0.031 (0.020-0.10) 0.029 (0.018-0.042) 

Gext  (-) 50920 (13062-125798) 12023 (3627-36043) 1.6 (0.35-5.9) 0.42 (0.11-1.8) 

Gflex (-) 15010 (7010-22856) 15134 (7540-26495) 0.045 (0.017-0.088) 0.044 (0.020-0.81) 

 f0 (Hz) 0.72 (0.29-1.0) 0.33 (0.20-0.56) 0.043 (0.022-0.10) 0.042 (0.024-0.071) 

* median, 25-75 percentile  

 

Validity and agreement 

Model fit and parameter confidence 

Estimated values of model parameters and SEM values are presented in Table 4.3 for “extension 

fast” and “flexion fast” direction for all healthy subjects and stroke patients with MAS = 0  and 

MAS ≥ 1, i.e. without excluding data based on low VAF values. The median VAF for the 

“extension fast” were 99.6 (interquartile range (IQR): 99.4 - 99.7)%, 99.5 (IQR: 98.9-99.8)% 

and 99.8 (IQR: 99.6-99.9)% for healthy subjects, patients with MAS = 0 and patients with MAS 

≥ 1 respectively and for “flexion fast” direction 99.3 (IQR: 98.1 - 99.7)%, 99.5 (IQR: 98.5-

99.7)%.and 99.8 (IQR: 99.7-99.9)%. Median SEM values were lower than 0.1, except for Gflex 

for “flexion fast” (0.22) for healthy subjects and Gext for both movement directions (1.6 and 

0.42) for patients with MAS ≥ 1.  

 

Assessment of systematic error 

We observed no significant differences for almost all outcome parameters between the 

measurements of two different visits based on the Wilcoxon signed rank test, indicating that no 

systematic error between measurements was present for these parameters. One exception was 

observed for the reflexive torque Treflex of the flexors in “flexion fast” direction (P=0.022). 

 

 

Clinical potential 

Figure 4.4 shows the results of the comparison between healthy controls and patients with MAS 

= 0 and MAS ≥ 1 score. Patients with MAS ≥ 1, MAS = 0 and healthy controls significantly 

differed for tissue stiffness, Kjoint (P=0.0023 “extension fast”; P=0.0020 “flexion fast”), 

reflexive torque, Treflex of the flexors (P=0.0011 “extension fast”; P=0.014 “flexion fast”), 

optimal muscle length, lopt of the flexors (P=0.047 “extension fast”) and slack muscle length, 

lp,slack  of  the flexors (P=0.0031 “extension fast”; P=0.0177 “flexion fast”) and extensors 

(P=0.020 for “flexion fast”). Multiple comparison showed significant differences between 

patients with MAS ≥ 1 and healthy controls for Kjoint (both movement directions), Treflex of the 

flexors (“extension fast”), lopt of the flexors and lp,slack  of the flexors (both movement directions) 

and extensors. Between MAS = 0 and MAS ≥ 1 significant differences were found for Kjoint 

(both movement directions), Treflex of the flexors (both movement directions) and lp,slack  of the 

flexors (“extension fast”). Healthy subjects and stroke patients with MAS = 0 did not differ.  

When using the MDC, ten patients had a deviated Kjoint value (≥3.13 Nm/rad, MDC=1.79 

Nm/rad) in “extension fast” direction, eight patients a deviated Kjoint (≥3.45 Nm/rad; 

MDC=2.34 Nm/rad) in the “flexion fast” direction and ten patients a deviated Treflex of the flexor 

muscles (≥ 0.72 Nm; MDC=0.457 Nm) in “extension fast” direction. Almost all of these 

patients had a MAS ≥ 1: 9 out of 10 for Kjoint in “extension fast” direction, 8 out of 8 for Kjoint 

in “flexion fast” direction and 8 out of 10 for Treflex of the flexors in “extension fast” direction. 

For the “extension fast” direction 9 out of 11 patients had an increased Kjoint together with an 

increased Treflex of the FCR. All patients that showed an increased Kjoint in the “flexion fast” 

direction had an increased Kjoint in the “extension fast” direction.  
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C 

Parameter 
Estimated Value* SEM* 

Extension fast Flexion fast Extension fast Flexion fast 

m (kg) 0.50 (0.50-1.5) 0.97 (0.50-1.4) 0.069 (0.035-0.090) 0.037 (0.026-0.061) 

kext (1/m) 253 (174-303) 220 (167-277) 0.028 (0.011-0.057) 0.023 (0.012-0.028) 

kflex (1/m) 167 (130-209) 178 (134-256) 0.0090 (0.0045-0.015) 0.0085 (0.0057-0.013) 

lp,slack,ext, (m) 0.066 (0.058-0.073) 0.064 (0.059-0.069) 0.0084 (0.0050-0.016) 0.0085 (0.0049-0.016) 

lp,slack,flex (m) 0.027 (0.012-0.035) 0.035 (0.019-0.044) 0.013 (0.0079-0.019) 0.0079 (0.0058-0.015) 

lopt,ext (m) 0.059 (0.042-0.11) 0.066 (0.054-0.10) 0.038 (0.015-0.077) 0.045 (0.014-0.18) 

lopt,flex (m) 0.054 (0.050-0.060) 0.057 (0.048-0.092) 0.0056 (0.0038-0.011) 0.0096 (0.0048-0.11) 

Taurel (s) 1.1 (0.81-1.9) 1.3 (0.87-2.2) 0.020 (0.014-0.032) 0.030 (0.019-0.043) 

krel (-) 2.2 (1.1-3.5) 1.4 (0.97-2.2) 0.031 (0.020-0.10) 0.029 (0.018-0.042) 

Gext  (-) 50920 (13062-125798) 12023 (3627-36043) 1.6 (0.35-5.9) 0.42 (0.11-1.8) 

Gflex (-) 15010 (7010-22856) 15134 (7540-26495) 0.045 (0.017-0.088) 0.044 (0.020-0.81) 

 f0 (Hz) 0.72 (0.29-1.0) 0.33 (0.20-0.56) 0.043 (0.022-0.10) 0.042 (0.024-0.071) 

* median, 25-75 percentile  

 

Validity and agreement 

Model fit and parameter confidence 

Estimated values of model parameters and SEM values are presented in Table 4.3 for “extension 

fast” and “flexion fast” direction for all healthy subjects and stroke patients with MAS = 0  and 

MAS ≥ 1, i.e. without excluding data based on low VAF values. The median VAF for the 

“extension fast” were 99.6 (interquartile range (IQR): 99.4 - 99.7)%, 99.5 (IQR: 98.9-99.8)% 

and 99.8 (IQR: 99.6-99.9)% for healthy subjects, patients with MAS = 0 and patients with MAS 

≥ 1 respectively and for “flexion fast” direction 99.3 (IQR: 98.1 - 99.7)%, 99.5 (IQR: 98.5-

99.7)%.and 99.8 (IQR: 99.7-99.9)%. Median SEM values were lower than 0.1, except for Gflex 

for “flexion fast” (0.22) for healthy subjects and Gext for both movement directions (1.6 and 

0.42) for patients with MAS ≥ 1.  

 

Assessment of systematic error 

We observed no significant differences for almost all outcome parameters between the 

measurements of two different visits based on the Wilcoxon signed rank test, indicating that no 

systematic error between measurements was present for these parameters. One exception was 

observed for the reflexive torque Treflex of the flexors in “flexion fast” direction (P=0.022). 

 

 

Clinical potential 

Figure 4.4 shows the results of the comparison between healthy controls and patients with MAS 

= 0 and MAS ≥ 1 score. Patients with MAS ≥ 1, MAS = 0 and healthy controls significantly 

differed for tissue stiffness, Kjoint (P=0.0023 “extension fast”; P=0.0020 “flexion fast”), 

reflexive torque, Treflex of the flexors (P=0.0011 “extension fast”; P=0.014 “flexion fast”), 

optimal muscle length, lopt of the flexors (P=0.047 “extension fast”) and slack muscle length, 

lp,slack  of  the flexors (P=0.0031 “extension fast”; P=0.0177 “flexion fast”) and extensors 

(P=0.020 for “flexion fast”). Multiple comparison showed significant differences between 

patients with MAS ≥ 1 and healthy controls for Kjoint (both movement directions), Treflex of the 

flexors (“extension fast”), lopt of the flexors and lp,slack  of the flexors (both movement directions) 

and extensors. Between MAS = 0 and MAS ≥ 1 significant differences were found for Kjoint 

(both movement directions), Treflex of the flexors (both movement directions) and lp,slack  of the 

flexors (“extension fast”). Healthy subjects and stroke patients with MAS = 0 did not differ.  

When using the MDC, ten patients had a deviated Kjoint value (≥3.13 Nm/rad, MDC=1.79 

Nm/rad) in “extension fast” direction, eight patients a deviated Kjoint (≥3.45 Nm/rad; 

MDC=2.34 Nm/rad) in the “flexion fast” direction and ten patients a deviated Treflex of the flexor 

muscles (≥ 0.72 Nm; MDC=0.457 Nm) in “extension fast” direction. Almost all of these 

patients had a MAS ≥ 1: 9 out of 10 for Kjoint in “extension fast” direction, 8 out of 8 for Kjoint 

in “flexion fast” direction and 8 out of 10 for Treflex of the flexors in “extension fast” direction. 

For the “extension fast” direction 9 out of 11 patients had an increased Kjoint together with an 

increased Treflex of the FCR. All patients that showed an increased Kjoint in the “flexion fast” 

direction had an increased Kjoint in the “extension fast” direction.  

  



Chapter 4

80
 

 

Fi
gu

re
 4

.4
: O

ut
co

m
e 

m
ea

su
re

s (
m

ed
ia

n 
wi

th
 in

te
rq

ua
rti

le
 ra

ng
e)

 fo
r “

ex
te

ns
io

n 
fa

st
” 

(to
p)

 a
nd

 “
fle

xi
on

 fa
st

” 
(b

ot
to

m
) d

ire
ct

io
n 

fo
r h

ea
lth

y 
su

bj
ec

ts 
an

d 
pa

tie
nt

s 

wi
th

 st
ro

ke
 w

ith
 M

AS
 =

 0
 a

nd
 M

AS
 ≥

 1
. A

ste
ris

ks
 d

en
ot

e 
sig

ni
fic

an
t d

iff
er

en
ce

s b
et

w
ee

n 
gr

ou
ps

. 

 

Discussion 

Neural and non-neural outcome parameters including optimal muscle length and slack length 

of connective tissue were quantitatively assessed for the wrist joint in a cohort of chronic stroke 

patients using an EMG driven antagonistic muscle model. High VAF values and low SEM 

illustrated the validity of the model approach. Differences in tissue stiffness, reflexive torque, 

optimal muscle length and slack length of connective tissues between patients with MAS score 

≥ 1 and healthy controls demonstrated clinical potential of the method.  

 

Validity and agreement 

We advocate the use of an EMG driven model because non-invasive techniques to estimate the 

physiological parameters are yet lacking. This imposes both the quest for validation and the 

implicit inability to do so. Three demands were imposed to the model: The structure of the 

model should represent the (non-linear) joint physiology, the predicted torques should resemble 

the measured torques and the parameters should be sensitive to discriminate clinical different 

patients from healthy volunteers.  

 

Model fit and parameter confidence 

The model structure was able to describe the relation between joint position and EMG input 

and the torque output as indicated by the high variance accounted for (VAF) of 98% or higher 

in 90% of the cases) in the healthy group and both stroke groups.  

The model contains 12 parameters. Sensitivity and the absence of parameter redundancy within 

the model were checked using the standard error of the mean (SEM). The estimation of the 

model parameters was sufficiently accurate indicated by the low SEM values (Table 4.3).  

The SEM for the gain factor Gflex for “flexion fast” (0.22) in healthy subjects and the SEM for 

the gain factor Gext in “extension fast” (1.6) and “flexion fast” (0.42) was largest. These scaling 

factors are essential in relating muscle activation with torque, but only relevant in case of 

sufficient (reflexive) activation, explaining the relatively high SEM for Gflex for the “flexion 

fast” direction and Gext for the “extension fast” direction.  
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illustrated the validity of the model approach. Differences in tissue stiffness, reflexive torque, 

optimal muscle length and slack length of connective tissues between patients with MAS score 

≥ 1 and healthy controls demonstrated clinical potential of the method.  

 

Validity and agreement 

We advocate the use of an EMG driven model because non-invasive techniques to estimate the 

physiological parameters are yet lacking. This imposes both the quest for validation and the 

implicit inability to do so. Three demands were imposed to the model: The structure of the 

model should represent the (non-linear) joint physiology, the predicted torques should resemble 

the measured torques and the parameters should be sensitive to discriminate clinical different 

patients from healthy volunteers.  

 

Model fit and parameter confidence 

The model structure was able to describe the relation between joint position and EMG input 

and the torque output as indicated by the high variance accounted for (VAF) of 98% or higher 

in 90% of the cases) in the healthy group and both stroke groups.  

The model contains 12 parameters. Sensitivity and the absence of parameter redundancy within 

the model were checked using the standard error of the mean (SEM). The estimation of the 

model parameters was sufficiently accurate indicated by the low SEM values (Table 4.3).  

The SEM for the gain factor Gflex for “flexion fast” (0.22) in healthy subjects and the SEM for 

the gain factor Gext in “extension fast” (1.6) and “flexion fast” (0.42) was largest. These scaling 

factors are essential in relating muscle activation with torque, but only relevant in case of 

sufficient (reflexive) activation, explaining the relatively high SEM for Gflex for the “flexion 

fast” direction and Gext for the “extension fast” direction.  
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Assessment of systematic error 

There was no systematic error between measurements at two different visits except for the the 

reflexive torque, Treflex of the flexors in “flexion fast” direction, possibly due to varying muscle 

activity in stroke patients. This was confirmed by systematic error assessment between 

measurements of two different visits for Treflex of the flexors for healthy subjects (P=0.314) and 

stroke patients (P=0.033) separately. 

 

Clinical potential: Increased neural and structural contributors of joint stiffness in stroke 

Patients with MAS ≥ 1 differed from healthy controls in neural (Treflex) and non-neural or 

structural (Kjoint, lopt,m  and lp,slack,m) parameters. The decrease in optimal muscle length (lopt) and 

muscle slack length (lp,slack) of the flexor muscles indicates a shift in the active and passive 

force-length relationship. Functionally, this structural change implies a flexed joint rest position 

with a smaller RoM for the impaired wrist, the latter confirmed by a previous study on the same 

cohort25 where the authors found significant differences for the passive and active RoM 

between MAS ≥ 1 and both the MAS = 0 and healthy group. However, van der Krogt et al.25 

could not establish a significant change in the passive angle at rest (angle at zero torque), which 

could be explained by the influence of active components (e.g. muscle tone) which could have 

resulted in a rest angle comparable to healthy controls. 

When using the MDC, ten patients had a deviating tissue stiffness, Kjoint and ten patients had a 

deviating reflexive torque, Treflex of the flexor muscles in “extension fast” direction. Nine of 

these eleven patients with deviated outcome measures had a MAS score ≥ 1. One patient with 

MAS ≥ 1 (for flexor muscles) score showed tissue stiffness and reflexive torque values within 

the range observed in healthy subjects. Differences between patients in outcome measures 

indicate that there may be a large variety in the neural and non-neural characteristics in stroke 

patients as also shown by the variation in the MAS.  

Nine out of the eleven identified patients had an increased Kjoint together with an increased Treflex 

of the flexors. Increased values for both Kjoint and Treflex are comparable with results found for 

the ankle where Kjoint and Treflex were also both increased with elevated MAS9. This is in contrast 

with results in cerebral palsy where a large variation was found between the neural (reflexive 

torque of triceps surae) and structural (tissue stiffness of triceps surae) contributors of joint 

stiffness in the ankle10;11. This variation in the manifestation of neural and non-neural 

 

contributors suggests a different mechanism in development of increased joint stiffness in 

stroke and cerebral palsy. 

 

Estimation of optimal muscle length and slack muscle length 

Parameters represent physiology of subjects but these in vivo estimated parameters for lumped 

muscle groups cannot directly be related to muscular parameter values as muscle activation 

dynamics (slow and fast fibre types) and muscle structure (e.g. pennation angle, muscle and 

tendon) is not exactly represented. The goal of this model is to systematically discriminate 

neural contributions from secondary structural changes in connective and contractile tissue 

observed in patients with upper neuron motor diseases like stroke. The exact value for the 

outcome measures can be different with literature, but the values and changes need to be of the 

same order of magnitude.  

In literature an optimal fiber length of 0.064-0.099 m was reported for the ECR35-41 and 0.081 

m and 0.059 m for the ECR longus and brevis42-44. An optimal fiber length of 0.052-0.080 m 

was reported for the FCR35-42;44. A fiber length of 0.076 m and 0.048 m was reported for the 

ECRL and ECRB and 0.051 m for the FCR42. Our optimal length and slack length were in the 

same order of magnitude as the parameters in literature (median lopt of 0.061 m and 0.071 m for 

extensor and flexor muscles respectively;  median lp,slack  of 0.069 m for the extensors and 0.047 

m for the flexors).  

The estimated lopt and lp,slack  of the flexors of the MAS ≥ 1 group were smaller compared to the 

values for healthy controls indicating that the range the flexor can generate force is reduced and 

connective tissue is stiffer and shortened. By uncoupling the slack muscle length and optimal 

muscle length we allow the model to estimate the passive and active characteristics of the 

muscle independently. Physiologically, the parameters may be related. E.g. longer sarcomeres, 

i.e. less sarcomeres in series, result in higher passive stiffness through the intrinsic fiber skeletal 

properties. However, an increase in extracellular matrix stiffness, described in children with 

cerebral palsy18, results in a decoupled increase of passive stiffness: the slack muscle length 

becomes smaller while the optimal muscle length remains unchanged.  
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Clinical implication 

Patients with MAS ≥ 1 can be discriminated from healthy controls and patients with MAS = 0 

by neural and non-neural contributors of joint stiffness using the presented bidirectional EMG 

driven model describing the position and force signals including EMG obtained with a wrist 

manipulator at high temporal resolution. We now have a method to study longitudinal changes 

of the neuromuscular system and the effect of treatment, like botulinum toxin injections, on the 

different neural and non-neural contributors of joint stiffness. Individual stroke patients with 

deviated tissue stiffness and reflexive torque can be discriminated from healthy controls using 

the minimal detectable change (MDC). This method gives the clinician the opportunity to 

monitor the different components of joint stiffness in time and to adjust treatment in individual 

stroke patients. 

The mechanism of muscle shortening after an upper motor neuron disease is not yet 

understood16. Longitudinal observation of the neural and non-neural contributors of joint 

stiffness, including the estimation of parameters representing the optimal muscle length and 

slack length of connective tissue, in the acute and sub-acute phase post-stroke and during ageing 

in children with cerebral palsy, could be of great value to e.g. better understand the mechanism 

of development of structural changes after a neural lesion.  

 

Limitations 

The wrist was rotated over its full RoM in one second to approximate the clinical Ashworth 

test. Because RoM in patients was generally reduced, movement velocity for the stroke patients 

was lower as compared to the healthy group. As stretch reflexes are velocity dependent 

reflexive muscle forces in the patients may even have been underestimated compared to the 

observations in the healthy group.  

Optimal muscle length is a characteristic observable only in the active muscles, while the 

presented data are measured during a passive task. There was generally sufficient muscle 

activity present to estimate the optimal muscle length in a valid way as demonstrated by the 

SEM values (median SEM value <0.05 for optimal muscle length for all conditions). Additional 

active tasks should be considered to ensure sufficient muscle activation to estimate the optimal 

muscle length in all cases.  

 

10% of the trials were rejected based on VAFs lower than 98%. In only one (out of 45) subject, 

the parameters could not be estimated because the patient had low VAF values in both 

movement direction and for both trials. From all other subjects, in repeated trials in flexion or 

extension, data became available to estimate the relevant parameters. Repetition of trials is 

therefore recommended. The constraint of VAF to be larger than 98% in order to approve trials 

was quite strict to ensure sufficient quality of the model fits. Low VAF values may have 

originated from experimental artefacts or voluntary interaction with the passive protocol.  

In our model the moment arms and muscle lengths at zero degrees wrist angle position of the 

ECR longus and brevis are averaged which is a simplification of reality45.  Furthermore, as the 

torque measured is the result of all extensor and flexor muscles, the modeled extensor and flexor 

muscle elements are lumped descriptions of the wrist muscles affecting the wrist flexion and 

extension torques (e.g. extensor carpi ulnaris, flexor carpi ulnaris). The characteristics of the 

ECR and FCR were used as initial parameter values for the corresponding muscle elements. 

Pennation angles were not included in the model, i.e. pennation angles were defined zero and 

consequently muscle and fiber length were defined to be equal. Since pennation angle changes 

the relationship between muscle length and force, the outcome parameters may be biased by 

this assumption. However, as this is the case in all subjects, differences in optimal muscle length 

and slack muscle length, parameterized by lopt,m  and lp,slack,m are assumed to represent 

physiological adaptation of the neuromuscular system and although the model is a 

simplification of the wrist joint it appeared to be sensitive to evaluate changes after stroke.  

 

Conclusions 
The EMG driven model in combination with the applied ramp-and-hold movements in both 

patients and healthy controls enabled us to estimate parameters representing tissue stiffness, 

reflexive torques, optimal muscle lengths and slack muscle lengths of connective tissue at the 

wrist in rest. Patients with an elevated MAS (MAS ≥ 1) were distinguished from healthy 

controls and patients with MAS = 0. Patients with MAS ≥ 1 differed from healthy controls 

through increased tissue stiffness and reflexive torque and reduced optimal muscle length and 

slack length of flexor connective tissue. The differentiation of joint stiffness into different 

neural and structural components is essential for individualized treatment selection in patients 

with upper motor neuron diseases and will be of benefit to follow the disease in time in acute 
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and sub-acute stroke patients and during ageing in children with cerebral palsy. Validation 

remains a point of attention in future applications. Next studies will focus on the effect of 

botulinum toxin treatment in chronic stroke patients and the quantification of joint stiffness 

during the acute and sub-acute phase of stroke.  
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Appendix 4: Wrist model 
The model structure was based on the ankle model from de Vlugt et al.1 and adapted to the 

neuromechanical characteristics of the wrist joint. The following structure aspects were added 

in the wrist model compared to the ankle model: Optimal muscle length parameters were 

estimated, the stiffness components were modeled for both flexor and extensor muscles making 

the model fully bi-directional and tissue relaxation was included. Model parameters are listed 

in Table 4.2. 

 

Wrist joint stiffness is described by: 

 

𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) = 𝐼𝐼𝐼𝐼𝐼̈𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) + 𝑇𝑇𝑇𝑇���(𝑡𝑡𝑡𝑡) − 𝑇𝑇𝑇𝑇����(𝑡𝑡𝑡𝑡)    (A4.1) 

 

where t is the independent time variable [s], Tmod the modeled wrist reaction torque [Nm], 𝐼𝐼𝐼𝐼𝐼̈𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) 

the wrist angular acceleration [rad/s2], I the inertia of wrist and handle [kg.m2], Text the torque 

generated by the extensor muscles [Nm] and Tflex the torque generated by the flexor muscles 

[Nm]. 

Muscle torques (Tm) for extensor and flexor muscle are described by: 

 

, ,( , ) ( ( ) ( , , )) ( )m elas m act m m m m mT t F l F v l r        (A4.2) 

 

with Felas,m the elastic force of the parallel connective tissues [N], Fact,m the active or “reflexive” 

muscle forces [N] according to the Hill-type model, vm the muscle lengthening velocity [m/s], 

lm the muscle length [m], αm the active state [-] and )(mr  the angle dependent moment arm [m] 

of the tendon. 

 

The ECR and FCR were used as representation of the extensor and flexor muscles. The moment 

arms [m] of the ECR and FCR muscles are dependent on the angular position of the joint and 

defined using the equations of Ramsay et al.2: 

 
3( ) 13.2040 1.5995   for  10   [x10 ]FCRr m       o    (A4.3) 

 

3
, ( ) 13.4337 2.1411   for  10   [x10 ]ECR brevisr m      o   (A4.4) 

3
, ( ) 11.7166 2.2850   for  10  [x10 ]ECR longusr m      o   (A4.5) 

2/))()(()( ,,  longusECRbrevisECRECR rrr      (A4.6) 

 

The ECR is in fact two separate muscles: the extensor carpi radialis longus and brevis. Since 

only a combined EMG signal can be measured the extensor moment arm is assumed to be the 

average of the two separate moment arms. Muscle length equals: 

 

 )(0, FCRFCRFCR rll         (A4.7) 

 )(0, ECRECRECR rll         (A4.8) 

 

Where FCRl and ECRl  are the lengths of the muscle at each position  and 0,FCRl  and 0,ECRl the 

muscle length at zero degrees wrist angle position (handle in line with the forearm). The zero 

muscle lengths are lFCR,0 = 6.3 cm and lECR,0 = 7.0 cm (average of ECR longus and brevis, 

optimal fiber lengths from3-5.  )(FCRr  and  )(ECRr  are the arc lengths of the tendon that 

stretches around the joint bone when the joint rotates about angle  6. Positive angles represent 

flexion, thus the flexor muscles shorten during flexion and the extensor muscles lengthen during 

flexion, and vice versa for extension.  

 

Inertia of hand and the handle is modeled as a point mass m [kg] at distance la (fixed at 0.1 m) 

from the axis of rotation: 

 
2
aI ml  [kg.m2]       (A4.9) 

 

The elastic components for the extensor and flexor muscles were modeled as follows: 
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,

,,)( mslackpmm llk
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Where km is the estimated stiffness coefficient of the muscle and lp,slack,m the estimated slack 

length of the connective tissue. Muscle connective tissue under tension exhibits relaxation or 

force decrease7-9, which is modeled by a first order filter, according to: 
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1)( ,, sF
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ssF melas
relrel

rel
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


     (A4.11) 

 

with rel the estimated tissue relaxation time constant and relk the estimated tissue relaxation 

factor. In the previous version of the model by de Vlugt et al.1 tissue relaxation was 

approximated by a viscous damper.    

For clinical comparison between subjects, tissue stiffness at joint level, Kjoint, was compared at 

the same wrist angle (comp) for all subjects. This angle was chosen at zero degrees, i.e. where 

the handle is in line with the forearm. 
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int,
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mmjo rekK mslackpcompmm   for comp = 0 degrees   (A4.12) 

 

where lm,comp is the muscle length at comp. Eq. (A4.12) was obtained by differentiation of Eq. 

(A4.10) with respect to muscle length and multiplied by the squared moment arm. The total 

tissue stiffness at joint level was derived by summation of the stiffness from both muscles: 

 

joint joint,ext joint,flexK K K        (A4.13) 

 

Neural muscle activity for the extensors and flexors due to stretch reflexes was estimated from 

corresponding EMG signals according to: 

 

 

)()( tEMGGtU mmm                    (A4.14) 

 

with U the excitation input to the muscle model [1/Volt]; Gm the dimensionless EMG weight 

scaling factor and EMGm the average of the recorded EMG signal values of both muscle 

electrodes.  

The neural excitations of both muscles were filtered with a linear second order filter to describe 

the activation process of a contracted muscle1: 
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αm is the dimensionless active state of the muscle, mf ,00 2   the estimated cut off frequency 

of the activation filter, s the Laplace operator denoting the first time derivative and βm the 

relative damping. 

The Hill-type muscle model was used to compute the muscle force from the active state and the 

muscle length and velocity according to: 

 

mmoptlmvmact llfvfF ),()( ,,        (A4.16) 

 

with fv the force-velocity relationship and fl the force-length relationship. The optimal muscle 

lengths (lopt,m ) were estimated using the model and used to derive the force-length relationships 

by 
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αm is the dimensionless active state of the muscle, mf ,00 2   the estimated cut off frequency 

of the activation filter, s the Laplace operator denoting the first time derivative and βm the 

relative damping. 

The Hill-type muscle model was used to compute the muscle force from the active state and the 

muscle length and velocity according to: 
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with fv the force-velocity relationship and fl the force-length relationship. The optimal muscle 

lengths (lopt,m ) were estimated using the model and used to derive the force-length relationships 

by 
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, /        (A4.17) 

 

With wfl,m a shape factor defined as: 

   

                     2
,, moptmfl lcfw                                                                                        (A4.18) 

 

with cf the shape parameter of the force-length relationship with value 0.1 to resemble the force-

generating range of the FCR and ECR10;11. The maximum shortening velocity was 8 times the 

optimal muscle length12, the maximum eccentric force was 1.5 times the isometric force and 

the isometric force was normalized to 1 because the force had been scaled by the weighting 

factors G.  
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with cf the shape parameter of the force-length relationship with value 0.1 to resemble the force-

generating range of the FCR and ECR10;11. The maximum shortening velocity was 8 times the 

optimal muscle length12, the maximum eccentric force was 1.5 times the isometric force and 

the isometric force was normalized to 1 because the force had been scaled by the weighting 

factors G.  
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Abstract  

The mechanism and time course of increased wrist joint stiffness post-stroke and clinically 

observed wrist flexion deformity is still not well understood. The components contributing to 

increased joint stiffness are of neural reflexive and peripheral tissue origin and quantified by 

reflexive torque and muscle slack length and stiffness coefficient parameters. 

To investigate the time course of the components contributing to wrist joint stiffness during the 

first twenty-six weeks post-stroke in a group of patients, stratified by prognosis and functional 

recovery of the upper extremity. 

36 stroke patients were measured on eight occasions within the first twenty-six weeks post-

stroke using ramp-and-hold rotations applied to the wrist joint by a robot manipulator. Neural 

reflexive and peripheral tissue components were estimated using an electromyography driven 

antagonistic wrist model. Outcome was compared between groups cross-sectionally at twenty-

six weeks post-stroke and development over time was analyzed longitudinally. 

At twenty-six weeks post-stroke, patients with poor recovery (ARAT≤9 points) showed a 

higher predicted reflexive torque of the flexors (P<.001) and reduced predicted slack length 

(P<.001) indicating shortened muscles contributing to higher peripheral tissue stiffness 

(P<.001), compared to patients with good recovery (ARAT≥10 points). Significant differences 

in peripheral tissue stiffness between groups could be identified around week four and five; for 

neural reflexive stiffness this was the case around week twelve.  

We found onset of peripheral tissue stiffness to precede neural reflexive stiffness. Temporal 

identification of components contributing to joint stiffness after stroke may prompt longitudinal 

interventional studies to further evaluate and eventually prevent these phenomena. 

 

  

 

Introduction 

Recovery of motor function of the upper limb after stroke mainly adheres to the first eight 

weeks post-stroke1;2. These early changes are related to underlying mechanisms of spontaneous 

neurologic repair3, which is still poorly understood. Most patients with a poor recovery of motor 

function show increased joint stiffness. The components contributing to increased joint stiffness 

are of neural reflexive and peripheral tissue origin and quantified by reflexive torque and muscle 

slack length and tissue stiffness coefficient4-6, determined by e.g. sarcomere length and collagen 

composition. The timing of developing increased joint stiffness and contribution of its 

underlying components post-stroke is not clear7.  

The goal of the current study was to investigate the time course of neural reflexive and 

peripheral tissue changes in the wrist joint during the first twenty-six weeks post-stroke in three 

groups of patients, stratified by prognosis and functional recovery of the upper extremity. With 

a recently developed and validated technique we were able to simulate the wrist torques using 

muscle activation (electromyography, EMG) and wrist position as input8;9. The time course of 

the contribution of estimated neural reflexes to wrist joint stiffness and the value of the 

estimated peripheral tissue parameters (muscle slack length and tissue stiffness coefficient) may 

ultimately explain the development of wrist joint stiffness over time7;8;10;11. We hypothesize that 

stroke patients with poor recovery of motor function of the arm have increased reflexive torque 

and shortened muscles of the flexor muscles at twenty-six weeks resulting in increased joint 

stiffness and wrist flexion deformity compared to patients with good recovery. As stroke 

primarily results in a neural paresis and muscle tissue may respond to muscle state changes 

caused by altered neural input4 we presume that neural reflexive changes precede the peripheral 

tissue changes in the patients with poor recovery. 

Knowledge about the time course of changes in the contributors of joint stiffness, i.e. neural 

reflexes and peripheral tissue stiffness, may significantly contribute to the choice of treatment 

during the early phase post-stroke and may hand us a key to understand underlying mechanisms 

of functional recovery. 
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Methods 

Study design 

In the multicenter randomized clinical EXPLICIT-stroke trial, the effects of early applied 

constrained induced movement therapy (CIMT) or EMG triggered neuromuscular stimulation 

of the finger extensors (EMG-NMS) were compared to usual care on recovery of arm-hand 

function after stroke7;12;13. A cohort of 36 acute patients was recruited within this EXPLICIT-

stroke trial7;12;13 (Dutch Trial register NTR1424, part B3). Inclusion criteria comprised first-

ever ischemic stroke in the area of middle cerebral artery, impairment of the arm, age 18-80 

year and able to travel to the Leiden University Medical Center (LUMC) or University Medical 

Center Utrecht (UMCU). Exclusion criteria were previous upper extremity orthopedic 

limitations on the affected side and insufficient communication.   

Patients were assessed for eligibility within a week after stroke. Depending on the prognostic 

presence of finger extension post-stroke and the National Institutes of Health Stroke Score 

(NIHSS) item 5a or 5b7;14;15, patients were initially stratified in two groups. In the first stratum 

(finger extension ten degrees or larger at the end of the first week post-stroke and a NIHSS 

score of 1 or 2 on item 5, good prognosis) patients were randomized to receive constrained-

induced movement therapy within their usual care programs16. In the second stratum (finger 

extension less than 10 degrees and NIHSS score 3 or 4 on item 5, poor prognosis) patients were 

randomized to receive electromyography-triggered neuromuscular stimulation of the finger 

extensors17 within their usual care programs16.  

Within the measurement framework of EXPLICIT-stroke, patients were measured on eight 

occasions, i.e. at 1–5, 8, 12, 26 weeks post-stroke. We applied stratification based on the 

Explicit-stroke study. Therefore, based on both the initial prognosis for functional recovery, i.e. 

good and poor, and functional outcome at 26 weeks post-stroke, three groups were identified: 

1)  a GG group of 15 patients with an initially good prognosis for upper extremity motor 

recovery and showing good recovery at 26 weeks post-stroke, i.e. a score of 10 points or more 

on the ARAT; 2) a  PG group of 12 patients with poor prognosis and good recovery; 3) a PP 

group of 9 patients with poor prognosis and poor recovery, i.e. a score of 9 points or less on the 

ARAT at 26 weeks post-stroke. 

The study was approved by the medical ethics committee of the LUMC and UMCU. All 

participants gave their written informed consent prior to the experimental procedure. 

 

Instrumentation and protocol 

Subjects were seated upright with the affected arm slightly abducted in the frontal plane. The 

lower arm was fixed in an arm rest with the elbow at approximately 90 degrees of flexion and 

the shoulder comfortably relaxed. The hand was fixed into a custom-made handle (Meester 

Techniek, Leiden, the Netherlands). The wrist joint was aligned to the motor axis of a robot 

manipulator (Wristalyzer, Moog, Nieuw Vennep, the Netherlands). The robot manipulator 

delivered precise angular position (rotation) perturbations to the handle via a vertically 

positioned servomotor (Parker SMH100 series, Parker Hannifin, Charlotte NC, USA) and 

synchronously recorded the angular position of the handle and torque at the vertical motor axis 

of the handle, representing the wrist angular position and wrist torque respectively (Figure 

5.1)9:13:14.  

 

 
Figure 5.1: Left: Experimental setup. The forearm and hand of the subject were fixed to the manipulator 

(Wristalyzer® by MOOG, the Netherlands). Ramp-and-hold rotations in flexion and extension direction (right) 

were imposed to the wrist while the subject was instructed to remain relaxed and not react to the rotations. Top 

right: measured torque and model fit; bottom right measured angle.  

 

Muscle activation was recorded by means of EMG with bipolar surface electrodes using a 

Delsys Bagnoli 8 system (Delsys Inc., Boston MA, USA). Electrodes were placed on the flexor 

carpi radialis (FCR) and on the extensor carpi radialis (ECR) muscles respectively.  For the 

FCR, electrodes were placed on the muscle belly at one third of the line originating from the 

medial epicondyle of the humerus to the radial styloid process and for the ECR, electrodes were 

placed on the muscle belly at one third of the line originating from the lateral epicondyle of the 

humerus to the ulnar styloid process. The EMG signals were sampled at 2048 Hz, online band 
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pass filtered (20–450 Hz), rectified and low pass filtered (20 Hz, 3rd order Butterworth) to 

obtain the EMG envelope. EMG at rest was subtracted from the total EMG in order to reduce 

noise. The filtered and rectified EMG was input for the model. The range of motion (RoM) was 

determined as the difference between maximal wrist flexion and wrist extension angle resulting 

from an imposed sinusoidal varying wrist torque starting from 0 Nm and ranging between 2 

Nm (extension torque) and –2 Nm (flexion torque) with a duration of about 80-100 seconds. 

Subsequently, ramp-and-hold (RaH) rotations were imposed onto the wrist over the full 

(individual) RoM within 1 second. Two RaH trials were imposed per measurement. Each trial 

encompassed a one second ramp in either extension or in flexion direction, two slow ramps in 

the opposite direction and three “hold” periods in between the ramps in which the position of 

the wrist did not change (Figure 5.1). Subjects were asked to remain relaxed during the entire 

experiment and not to voluntary react to the imposed wrist movements. 

 

Data analysis  

A validated biomechanical EMG driven antagonistic muscle model was used to predict wrist 

torque from the imposed wrist angle and recorded EMG8. The following twelve parameters of 

the model were predicted through least squares optimization by fitting the predicted torque 

derived from the model onto the experimentally recorded torque: of both flexor and extensor 

muscles: the stiffness coefficient, muscle slack length, optimal muscle length, EMG weighting 

factors and further: mass of the hand and the handle, activation cut-off frequency and 

parameters related to tissue relaxation, i.e. the tissue relaxation time constant and tissue 

relaxation factor8. The present study focused on four main outcome parameters: 1) The slack 

muscle length (lp,slack,m), which is the minimal muscle (m) length at which passive forces are 

generated and where m either represents the lumped system of wrist flexors or wrist extensors. 

2) The stiffness coefficient (km) representing the shape of the force-length curvature of the 

muscle tissue at lengths exceeding the slack muscle length: the higher the coefficient, the 

steeper the force-length curvature and the stiffer the muscle; the shorter the slack length, the 

higher the force at any given length exceeding the slack length. The force-length characteristics 

of the flexor and extensor muscle models were used to determine 3) the peripheral tissue 

dependent joint stiffness (peripheral tissue stiffness, Kjoint) which is both joint angle, i.e. muscle 

 

length, and direction dependent (described for the present study from neutral position towards 

wrist extension)8;9. 

For clinical comparison between subjects, the peripheral tissue stiffness was compared at an 

identical wrist angle for all subjects. This angle was chosen at zero degrees, i.e. where the robot 

manipulator handle is in line with the forearm. Besides the peripheral tissue stiffness component 

of wrist joint stiffness also the neural reflexive stiffness was predicted. As a measure of the 

amount of reflex activity, the root mean square reflex torques from the flexor and extensor 

muscles were derived by calculating the integral of the squared instantaneous measurements 

over the full observation period resulting in the reflexive torque8;9 (Treflex,m) (4). Trials were 

excluded from further analysis when the model was not able to predict the measured torque 

adequately, i.e. variance accounted for (VAF) below 98%. Calculated model parameters were 

discarded when identified as outlier based on standard deviation when compared to the values 

at adjacent time points or extraordinary parameter value.  

 

Statistical analysis 

A linear mixed model was used to assess the difference in outcome measures at twenty-six 

weeks post-stroke and each of the other consecutive measured time points between PP, PG and 

GG groups. A linear model was used to model the within subject correlation structure of the 

time points as auto-regressive order 1 (AR(1)). There were no random factors in the model. 

Fixed effects were modelled for the group factor indicating the PP, PG and GG groups, for the 

time points and for the interaction between the time and group. Alpha was set at .05. For 

statistical analysis IBM SPSS statistics 22 and GraphPad Prism 6 were used. 

 

Results 

The characteristics of the 36 included patients are illustrated in Table 5.1. On average, a patient 

had 4.6 visits with a total of 163 measurements. Each measurement resulted in a ramp-and-hold 

trial in flexion direction and a trial in extension direction. Each set of flexion and extension 

trials resulted in 7 outcome measures. Twenty trials (of 326) were excluded due to poor model 
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fit (VAF < 98%) and four trials (two measurements) due to corrupt measurement files. For the 

remaining trials in total 22 outlier outcome measures (~2%) in 11 subjects were identified and 

excluded for further analysis. Missing measurements exceeded 70% in the first three weeks due 

e.g. to late enrolment in this part of the EXPLICIT-stroke protocol, medical factors associated 

with stroke and logistic difficulties. Therefore we focused our statistical analysis on week four 

and onwards.  

 
Table 5.1: Patient characteristics for patients with good prognosis and good recovery (GG), patients with poor 

prognosis and good recovery (PG) and patients with poor prognosis and poor recovery (PP). 

 GG PG PP 

Number of patients 15 12 9 

Age, years (SD) 6.7 (8.2) 59.6 (14.6) 58.6 (8.6) 

Male gender, n (%) 12 (80) 8 (67) 7 (78) 

Preferred hand, right, n (%) 13 (87) 11 (91) 7 (78) 

Affected hand, right, n (%) 3 (20) 5 (42) 4 (44) 

Affected = preferred, n (%) 4 (27) 4 (33) 2 (22) 

 

Cross-sectional group comparison at 26 weeks post-stroke 

The PP patient group with poor prognosis and poor recovery of motor function had a significant 

higher reflexive torque of the flexors (Treflex,flexor), a higher peripheral tissue stiffness (Kjoint) and 

a smaller slack length of the flexors (lp,slack,flexor) compared to patient with good prognosis and 

good recovery (GG) and patients with poor prognosis and good recovery (PG) (Figure 5.2). The 

stiffness coefficient of the flexors (kflexor) was lower in the PP group compared to PG group 

(P=.029) and higher in the extensor muscles (kextensor) in the PP patient group compared to the 

PG patient group (P=.028). No other differences were observed for the wrist extensor muscles. 

 

 

Figure 5.2: Predicted outcome measures for the patients with good prognosis and good recovery (GG), patients 

with poor prognosis and good recovery (PG) and patients with poor prognosis and poor recovery (PP) at twenty-

six weeks post-stroke. Significant differences between groups are indicated with asterisks.  

 

  



Tissue and neural changes post-stroke

105

5

 

fit (VAF < 98%) and four trials (two measurements) due to corrupt measurement files. For the 

remaining trials in total 22 outlier outcome measures (~2%) in 11 subjects were identified and 

excluded for further analysis. Missing measurements exceeded 70% in the first three weeks due 

e.g. to late enrolment in this part of the EXPLICIT-stroke protocol, medical factors associated 

with stroke and logistic difficulties. Therefore we focused our statistical analysis on week four 

and onwards.  

 
Table 5.1: Patient characteristics for patients with good prognosis and good recovery (GG), patients with poor 

prognosis and good recovery (PG) and patients with poor prognosis and poor recovery (PP). 

 GG PG PP 

Number of patients 15 12 9 

Age, years (SD) 6.7 (8.2) 59.6 (14.6) 58.6 (8.6) 

Male gender, n (%) 12 (80) 8 (67) 7 (78) 

Preferred hand, right, n (%) 13 (87) 11 (91) 7 (78) 

Affected hand, right, n (%) 3 (20) 5 (42) 4 (44) 

Affected = preferred, n (%) 4 (27) 4 (33) 2 (22) 

 

Cross-sectional group comparison at 26 weeks post-stroke 

The PP patient group with poor prognosis and poor recovery of motor function had a significant 

higher reflexive torque of the flexors (Treflex,flexor), a higher peripheral tissue stiffness (Kjoint) and 

a smaller slack length of the flexors (lp,slack,flexor) compared to patient with good prognosis and 

good recovery (GG) and patients with poor prognosis and good recovery (PG) (Figure 5.2). The 

stiffness coefficient of the flexors (kflexor) was lower in the PP group compared to PG group 

(P=.029) and higher in the extensor muscles (kextensor) in the PP patient group compared to the 

PG patient group (P=.028). No other differences were observed for the wrist extensor muscles. 

 

 

Figure 5.2: Predicted outcome measures for the patients with good prognosis and good recovery (GG), patients 

with poor prognosis and good recovery (PG) and patients with poor prognosis and poor recovery (PP) at twenty-

six weeks post-stroke. Significant differences between groups are indicated with asterisks.  
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Table 5.2: Median and interquartile range for the predicted stiffness coefficient (km), slack length (lp,slack,m), 

reflexive torque (Treflex,m) and peripheral tissue stiffness (Kjoint) for patients with good prognosis and good recovery 

(GG), patients with poor prognosis and good recovery (PG) and patients with poor prognosis and poor recovery 

(PP). In the first three weeks most missing occasions are found. Therefore week four and onwards are shown. 

Numbers of patients per group and week are shown (n) for parameters related to flexor and extensor muscles. 

Differences between the two are due to bad model fits (variance accounted for < 98%) 

 kflex lp,slack,flex Kext lp,slack,ext TReflex,flex TReflex,ext Kjoint n 

(flex) 

n 

(ext) 

GG          

Week 4 268  

(236-391) 

.055  

(.054-.057) 

210  

(175-282) 

.070  

(.061-.075) 

.27  

(.07-.48) 

.066  

(.001-.25) 

.73 (.30-1.1) 5 6 

Week 5 260  

(234-329) 

.054  

(.050-.059) 

345  

(202-388) 

.074  

(.064-.078) 

.15  

(.009-.55) 

.088  

(.027-.25) 

.70 (.26-1.2) 12 11 

Week 8 268  

(213-321) 

.054  

(.047-.059) 

242  

(205-303) 

.067  

(.058-.070) 

.14  

(.033-.29) 

.16  

(.013-.22) 

.59 (.33-.84) 10 10 

Week 12 244  

(174-266) 

.052  

(.048-.054) 

214  

(167-319) 

.068  

(.063-.076) 

.085  

(.043-.29) 

.17  

(.083-.35) 

.78 (.57-1.3) 12 9 

Week 26 235  

(196-275) 

.049  

(.045-.054) 

185  

(111-290) 

.064  

(.053-.070) 

.17  

(.030-.24) 

.014  

(.000-.089) 

.69 (.54-.91) 11 10 

PG 
         

Week 4 251  

(239-263) 

.054  

(.051-.065) 

256  

(179-382) 

.070  

(.062-.078) 

.23  

(.028-.45) 

.15  

(.000-.36) 

.62  

(.052-1.0) 

3 3 

Week 5 217  

(187-244) 

.053  

(.042-.056) 

227  

(167-279) 

.065  

(.060-.070) 

.19  

(.073-.41) 

.15  

(.052-.41) 

.67 

 (.36-1.8) 

12 12 

Week 8 244  

(234-247) 

.052  

(.045-.055) 

218  

(154-239) 

.063  

(.056-.070) 

.20  

(.039-.57) 

.17 

 (.13-.33) 

1.2 

 (.57-2.2) 

8 8 

Week 12 252  

(168-385) 

.056  

(.037-.058) 

253  

(149-343) 

.065  

(.051-.074) 

.037  

(.000-.70) 

.20  

(.027-.95) 

.81 

 (.36-2.3) 

6 6 

Week 26 277  

(227-342) 

.056  

(.047-.061) 

148  

(76-192) 

.063  

(.052-.071) 

.21 

 (.18-.26) 

.078  

(.006-.34) 

.30 

 (.28-1.9) 

8 8 

PP 
         

Week 4 197  

(159-295) 

.042  

(.036-.056) 

242  

(189-400) 

.072  

(.067-.076) 

.27  

(.14-.39) 

.26  

(.098-.62) 

1.4 (.52-2.5) 5 5 

Week 5 187  

(132-255) 

.042  

(.025-.050) 

249  

(234-320) 

.069  

(.065-.074) 

.34  

(.18-.66) 

.027  

(.003-.40) 

2.8 (.82-4.5) 9 9 

Week 8 192  

(166-267) 

.036  

(.031-.046) 

252  

(225-290) 

.070  

(.062-.072) 

.54  

(.16-.71) 

.015  

(.001-.21) 

5.8 (4.4-6.9) 6 5 

Week 12 152  

(121-307) 

.029  

(.014-.047) 

253  

(198-330) 

.066  

(.065-.072) 

.71  

(.43-1.4) 

.14  

(.001-.18) 

5.0 (2.6-9.0) 5 7 

Week 26 137  

(119-217) 

.023  

(.010-.039) 

231  

(171-340) 

.066  

(.059-.074) 

.71  

(.51-2.1) 

.027  

(.000-.085) 

6.1 (4.3-11) 7 7 

 

 

Longitudinal group comparisons (repeated measures) 

Table 5.2 shows the medians with interquartile range (IQR) for the predicted outcome 

measures. Significant differences initiating at different moments of measurement between the 

different groups were observed for the reflexive torque of the flexors, the peripheral tissue 

stiffness (Kjoint) and the slack length of the flexors (Table 5.3, Figure 5.3).  

 

Table 5.3: Significant differences between patients with good prognosis and good recovery (GG), patients with 

poor prognosis and good recovery (PG) and patients with poor prognosis and poor recovery (PP) for the predicted 

slack length of the flexors (lp,slack,flex), reflexive torque of the flexors (Treflex,flex) and peripheral tissue stiffness (Kjoint). 

In the first three weeks most missing occasions are found. Therefore week four and onwards are shown. 

 lp,slack,flex TReflex,flex Kjoint 

 
PP vs 

GG 

PP vs 

PG 

GG vs 

PG 

PP vs 

GG 

PP vs 

PG 

GG vs 

PG 

PP vs 

GG 

PP vs 

PG 

GG vs 

PG 

Week 4 P=.025 P=.005 P=.37 P=.94 P=.94 P=.89 P=.577 P=.335 P=.69 

Week 5 P<.001 P=.013 P=.21 P=.30 P=.35 P=.91 P=.002 P=.069 P=.23 

Week 8 P=.002 P=.010 P=.72 P=.21 P=.36 P=.74 P<.001 P<.001 P=.51 

Week 12 P<.001 P<.001 P=.83 P=.001 P=.006 P=.73 P<.001 P<.001 P=.52 

Week 26 P<.001 P<.001 P=.42 P<.001 P<.001 P=.29 P<.001 P<.001 P=.60 

 

Overall effect of time and group and the interaction effect are shown in Appendix 5. At week 

four and onwards the slack length of the flexors was significantly smaller in the PP group 

compared to the GG and PG groups. The peripheral tissue stiffness was increased from week 

five to week twenty-six for the PP group compared to the GG and PG groups. At week twelve 

and twenty six the reflexive torque of the flexors was increased in the PP compared to GG and 

PG.  

Extensor reflexive torque differed at week twelve (P=.019) between the PG and the PP groups. 

The extensor slack length was smaller in PG compared to GG (P=.032) at week five.  
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Table 5.2: Median and interquartile range for the predicted stiffness coefficient (km), slack length (lp,slack,m), 

reflexive torque (Treflex,m) and peripheral tissue stiffness (Kjoint) for patients with good prognosis and good recovery 

(GG), patients with poor prognosis and good recovery (PG) and patients with poor prognosis and poor recovery 

(PP). In the first three weeks most missing occasions are found. Therefore week four and onwards are shown. 

Numbers of patients per group and week are shown (n) for parameters related to flexor and extensor muscles. 

Differences between the two are due to bad model fits (variance accounted for < 98%) 

 kflex lp,slack,flex Kext lp,slack,ext TReflex,flex TReflex,ext Kjoint n 

(flex) 

n 

(ext) 

GG          

Week 4 268  

(236-391) 

.055  

(.054-.057) 

210  

(175-282) 

.070  

(.061-.075) 

.27  

(.07-.48) 

.066  

(.001-.25) 

.73 (.30-1.1) 5 6 

Week 5 260  

(234-329) 

.054  

(.050-.059) 

345  

(202-388) 

.074  

(.064-.078) 

.15  

(.009-.55) 

.088  

(.027-.25) 

.70 (.26-1.2) 12 11 

Week 8 268  

(213-321) 

.054  

(.047-.059) 

242  

(205-303) 

.067  

(.058-.070) 

.14  

(.033-.29) 

.16  

(.013-.22) 

.59 (.33-.84) 10 10 

Week 12 244  

(174-266) 

.052  

(.048-.054) 

214  

(167-319) 

.068  

(.063-.076) 

.085  

(.043-.29) 

.17  

(.083-.35) 

.78 (.57-1.3) 12 9 

Week 26 235  

(196-275) 

.049  

(.045-.054) 

185  

(111-290) 

.064  

(.053-.070) 

.17  

(.030-.24) 

.014  

(.000-.089) 

.69 (.54-.91) 11 10 

PG 
         

Week 4 251  

(239-263) 

.054  

(.051-.065) 

256  

(179-382) 

.070  

(.062-.078) 

.23  

(.028-.45) 

.15  

(.000-.36) 

.62  

(.052-1.0) 

3 3 

Week 5 217  

(187-244) 

.053  

(.042-.056) 

227  

(167-279) 

.065  

(.060-.070) 

.19  

(.073-.41) 

.15  

(.052-.41) 

.67 

 (.36-1.8) 

12 12 

Week 8 244  

(234-247) 

.052  

(.045-.055) 

218  

(154-239) 

.063  

(.056-.070) 

.20  

(.039-.57) 

.17 

 (.13-.33) 

1.2 

 (.57-2.2) 

8 8 

Week 12 252  

(168-385) 

.056  

(.037-.058) 

253  

(149-343) 

.065  

(.051-.074) 

.037  

(.000-.70) 

.20  

(.027-.95) 

.81 

 (.36-2.3) 

6 6 

Week 26 277  

(227-342) 

.056  

(.047-.061) 

148  

(76-192) 

.063  

(.052-.071) 

.21 

 (.18-.26) 

.078  

(.006-.34) 

.30 

 (.28-1.9) 

8 8 

PP 
         

Week 4 197  

(159-295) 

.042  

(.036-.056) 

242  

(189-400) 

.072  

(.067-.076) 

.27  

(.14-.39) 

.26  

(.098-.62) 

1.4 (.52-2.5) 5 5 

Week 5 187  

(132-255) 

.042  

(.025-.050) 

249  

(234-320) 

.069  

(.065-.074) 

.34  

(.18-.66) 

.027  

(.003-.40) 

2.8 (.82-4.5) 9 9 

Week 8 192  

(166-267) 

.036  

(.031-.046) 

252  

(225-290) 

.070  

(.062-.072) 

.54  

(.16-.71) 

.015  

(.001-.21) 

5.8 (4.4-6.9) 6 5 

Week 12 152  

(121-307) 

.029  

(.014-.047) 

253  

(198-330) 

.066  

(.065-.072) 

.71  

(.43-1.4) 

.14  

(.001-.18) 

5.0 (2.6-9.0) 5 7 

Week 26 137  

(119-217) 

.023  

(.010-.039) 

231  

(171-340) 

.066  

(.059-.074) 

.71  

(.51-2.1) 

.027  

(.000-.085) 

6.1 (4.3-11) 7 7 

 

 

Longitudinal group comparisons (repeated measures) 

Table 5.2 shows the medians with interquartile range (IQR) for the predicted outcome 

measures. Significant differences initiating at different moments of measurement between the 

different groups were observed for the reflexive torque of the flexors, the peripheral tissue 

stiffness (Kjoint) and the slack length of the flexors (Table 5.3, Figure 5.3).  

 

Table 5.3: Significant differences between patients with good prognosis and good recovery (GG), patients with 

poor prognosis and good recovery (PG) and patients with poor prognosis and poor recovery (PP) for the predicted 

slack length of the flexors (lp,slack,flex), reflexive torque of the flexors (Treflex,flex) and peripheral tissue stiffness (Kjoint). 

In the first three weeks most missing occasions are found. Therefore week four and onwards are shown. 

 lp,slack,flex TReflex,flex Kjoint 

 
PP vs 

GG 

PP vs 

PG 

GG vs 

PG 

PP vs 

GG 

PP vs 

PG 

GG vs 

PG 

PP vs 

GG 

PP vs 

PG 

GG vs 

PG 

Week 4 P=.025 P=.005 P=.37 P=.94 P=.94 P=.89 P=.577 P=.335 P=.69 

Week 5 P<.001 P=.013 P=.21 P=.30 P=.35 P=.91 P=.002 P=.069 P=.23 

Week 8 P=.002 P=.010 P=.72 P=.21 P=.36 P=.74 P<.001 P<.001 P=.51 

Week 12 P<.001 P<.001 P=.83 P=.001 P=.006 P=.73 P<.001 P<.001 P=.52 

Week 26 P<.001 P<.001 P=.42 P<.001 P<.001 P=.29 P<.001 P<.001 P=.60 

 

Overall effect of time and group and the interaction effect are shown in Appendix 5. At week 

four and onwards the slack length of the flexors was significantly smaller in the PP group 

compared to the GG and PG groups. The peripheral tissue stiffness was increased from week 

five to week twenty-six for the PP group compared to the GG and PG groups. At week twelve 

and twenty six the reflexive torque of the flexors was increased in the PP compared to GG and 

PG.  

Extensor reflexive torque differed at week twelve (P=.019) between the PG and the PP groups. 

The extensor slack length was smaller in PG compared to GG (P=.032) at week five.  
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Figure 5.3: Longitudinal observations for 

the predicted outcome measures for the 

patients with good prognosis and good 

recovery (GG), patients with poor 

prognosis and good recovery (PG) and 

patients with poor prognosis and poor 

recovery (PP). Significant differences 

between the GG and PP groups are 

indicated with an asterisk (*) and 

significant differences between the PG and 

PP group are indicated with a cross (+). 

The dashed line denotes the onset of 

changes between the poor recovery and 

good recovery groups. 

 

 

Discussion 

Increased reflexive torque of the flexor muscles and shortened flexor muscles were predicted 

in patients with poor prognosis and poor recovery of the upper limb (PP, ARAT≤9 points) 

compared to patients with good prognosis and good recovery (GG, ARAT≥10 points) and 

patients with poor prognosis and good recovery (PG, ARAT≥10 points) using a validated 

electromyography driven modeling in 36 stroke patients at twenty-six weeks post-stroke8;9. As 

expected, patients with an initial poor prognosis and poor recovery showed increased reflexive 

torque of the flexor muscles (Treflex,flex), increased peripheral tissue stiffness (Kjoint) and 

shortened flexor muscles, indicated by smaller flexor slack length (lp,slack,flex) compared to 

patients with good recovery, at twenty-six weeks post-stroke. The current study suggests that 

peripheral tissue changes, i.e. slack length, around week four and five in the PP group preceded 

the neural reflexive stiffness, i.e. reflexive torque, changes observed around week twelve (Table 

5.3). 

 

Cross-sectional group comparison at 26 weeks post-stroke  

The PP patient group with poor prognosis and poor recovery had shortened flexor muscles at 

twenty-six weeks post-stroke, indicated by the smaller slack length of the modelled flexor 

muscles compared to the good recovery groups (PG and GG). The shortening of the muscle in 

the PP group is in concordance with the flexion deformity found by van der Krogt et al. 

(unpublished results), i.e. a marked shift of the wrist rest angle towards flexion, observed in 

these patients. Note that in the present study the peripheral tissue stiffness (Kjoint) was measured 

at a fixed angle of zero degrees. Peripheral tissue stiffness determined at the individual rest 

angles of patients may reveal a difference with the current study as was previously observed 

(unpublished results, van der Krogt et al.). This illustrates that peripheral tissue stiffness 

depends on the angle of observation. Additionally, at the rest position of the wrist (zero torque)3, 

the stiffness is lowest and contrast between the different groups is minimal. The stiffness 

coefficient was lower in the PP group compared to the PG group. This could be due to structural 

changes in the muscle or because of and interaction of the contractile state of passive tissue 

with the active state of the muscle, e.g. background activation18 which we currently do not 
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Increased reflexive torque of the flexor muscles and shortened flexor muscles were predicted 

in patients with poor prognosis and poor recovery of the upper limb (PP, ARAT≤9 points) 

compared to patients with good prognosis and good recovery (GG, ARAT≥10 points) and 

patients with poor prognosis and good recovery (PG, ARAT≥10 points) using a validated 

electromyography driven modeling in 36 stroke patients at twenty-six weeks post-stroke8;9. As 

expected, patients with an initial poor prognosis and poor recovery showed increased reflexive 

torque of the flexor muscles (Treflex,flex), increased peripheral tissue stiffness (Kjoint) and 

shortened flexor muscles, indicated by smaller flexor slack length (lp,slack,flex) compared to 

patients with good recovery, at twenty-six weeks post-stroke. The current study suggests that 

peripheral tissue changes, i.e. slack length, around week four and five in the PP group preceded 

the neural reflexive stiffness, i.e. reflexive torque, changes observed around week twelve (Table 

5.3). 

 

Cross-sectional group comparison at 26 weeks post-stroke  

The PP patient group with poor prognosis and poor recovery had shortened flexor muscles at 

twenty-six weeks post-stroke, indicated by the smaller slack length of the modelled flexor 

muscles compared to the good recovery groups (PG and GG). The shortening of the muscle in 

the PP group is in concordance with the flexion deformity found by van der Krogt et al. 

(unpublished results), i.e. a marked shift of the wrist rest angle towards flexion, observed in 

these patients. Note that in the present study the peripheral tissue stiffness (Kjoint) was measured 

at a fixed angle of zero degrees. Peripheral tissue stiffness determined at the individual rest 

angles of patients may reveal a difference with the current study as was previously observed 

(unpublished results, van der Krogt et al.). This illustrates that peripheral tissue stiffness 

depends on the angle of observation. Additionally, at the rest position of the wrist (zero torque)3, 

the stiffness is lowest and contrast between the different groups is minimal. The stiffness 

coefficient was lower in the PP group compared to the PG group. This could be due to structural 

changes in the muscle or because of and interaction of the contractile state of passive tissue 

with the active state of the muscle, e.g. background activation18 which we currently do not 
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account for. However, without further substantiating data these physiological explanations are 

speculative and obviously additional research endeavors and validation are warranted. 

The exact mechanism of muscle shortening after an upper motor neuron disease is still 

unclear19. A diminished neural input might results in disuse or immobilization and therefore 

muscle atrophy. Immobilized muscles in a shortened position adapt to their resting length and 

lose sarcomeres to develop maximal force at their shortened length5;20-23 . When stretching the 

shortened muscles, the diminished number of sarcomeres in series results in a higher tissue 

stiffness compared to normal muscles. Our data suggest that muscle shortening occurs soon 

(around week 4) after stroke. Immobilization and muscle over-activity in the sub-acute phase 

post-stroke may worsen shortening5;24.   

 

Peripheral tissue changes precede neural reflexes changes 

The current study suggests that tissue changes in the flexor muscles around week four and five 

in the poor recovery group (PP) preceded the neural reflexive changes observed around week 

twelve. The progressive increase in peripheral tissue stiffness and neural reflexive stiffness 

around the wrist in stroke patients is in accordance with results found by Mirbagheri et al.25 in 

the elbow joint.  

Movement disorders after stroke are the result of a complex interplay between tissue and neural 

properties4;26. After stroke, central neural drive changes with excessive responses to muscle 

stretch via several proposed mechanisms which encompass alpha motor neuron hyper 

excitability, changes in recruitment gain and plateau potentials of motor neurons, loss of 

presynaptic inhibition and changes in gamma- motor- neuron excitability24. Altered neural input 

may also comprise increased background muscle activation which may also explain hyper 

excitability of reflexes18;27. Loss of neural drive also results in flexion synergies at the wrist due 

to neural coupling with the shoulder and elbow28 which may worsen immobilization of the 

flexors in a short position. Increased muscle strain in shortened muscles may potentially result 

in increased spindle responses and subsequent increased spinal reflex activity5;29.  This may 

offer an alternative yet interesting explanation of the temporal delay between tissue changes 

and reflexive responses. We suppose that tissue changes occur within the first weeks after 

 

stroke. This was confirmed by the large differences between the groups at week four. The onset 

of shortening within the poor recovery group (PP) is likely to start in the weeks before.    

Changes were mainly observed in the flexor muscles. Changes in the extensor muscle were 

only found for the stiffness coefficient at twenty-six weeks: the stiffness coefficient of the 

extensors was higher for the PP group compared to the PG group meaning that the extensor 

muscle was stiffer in the PP group. The different adaptation of the extensor muscle in recovery 

is not yet clear. At week twenty-six, no differences were found in outcome measures between 

the GG patients and PG patients. Differences between these groups could arise earlier after 

stroke. Increased resolution of measurements by increasing the number of observations within 

these first weeks may reveal differences especially between the PG and PP and GG groups. 

 

Limitations 

For this study a validated EMG driven wrist model8 was used to predict the peripheral tissue 

stiffness and neural reflexive components of wrist joint stiffness. Using this method allows us 

to predict lumped parameters of the flexor and extensor muscle groups. The method can be 

useful in decisions for treatment and may hand us a key to understand underlying mechanisms 

of functional recovery9;30-34. However, the method has also some limitations. During the 

processing of EMG input data, background muscle activation, which is assumed to be noise, 

was removed from the EMG signal and only the variances in EMG amplitude were used to 

estimate the reflexive torque. As in stroke patients the rest level EMG may be elevated18 this 

elevated additional input is discarded and therefore not included in the active (contractile) 

contribution to torque. The background activation could not be identified by the model but 

might be traced back in the overall peripheral tissue stiffness meaning that the peripheral tissue 

stiffness might have been overestimated in patients with increased background activation. 

However, analysis of the EMG levels at rest showed no difference between the three groups 

which made it less likely that differences in background activation explain the observed 

elevated reflex activity and flexor muscle shortening.  

In the EMG driven wrist model8 the muscle length at which the highest forces are generated 

was also included. In the current study this optimal muscle length (i.e. due to the maximal 
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account for. However, without further substantiating data these physiological explanations are 

speculative and obviously additional research endeavors and validation are warranted. 

The exact mechanism of muscle shortening after an upper motor neuron disease is still 

unclear19. A diminished neural input might results in disuse or immobilization and therefore 

muscle atrophy. Immobilized muscles in a shortened position adapt to their resting length and 

lose sarcomeres to develop maximal force at their shortened length5;20-23 . When stretching the 

shortened muscles, the diminished number of sarcomeres in series results in a higher tissue 

stiffness compared to normal muscles. Our data suggest that muscle shortening occurs soon 

(around week 4) after stroke. Immobilization and muscle over-activity in the sub-acute phase 

post-stroke may worsen shortening5;24.   

 

Peripheral tissue changes precede neural reflexes changes 

The current study suggests that tissue changes in the flexor muscles around week four and five 

in the poor recovery group (PP) preceded the neural reflexive changes observed around week 

twelve. The progressive increase in peripheral tissue stiffness and neural reflexive stiffness 

around the wrist in stroke patients is in accordance with results found by Mirbagheri et al.25 in 

the elbow joint.  

Movement disorders after stroke are the result of a complex interplay between tissue and neural 

properties4;26. After stroke, central neural drive changes with excessive responses to muscle 

stretch via several proposed mechanisms which encompass alpha motor neuron hyper 

excitability, changes in recruitment gain and plateau potentials of motor neurons, loss of 

presynaptic inhibition and changes in gamma- motor- neuron excitability24. Altered neural input 

may also comprise increased background muscle activation which may also explain hyper 

excitability of reflexes18;27. Loss of neural drive also results in flexion synergies at the wrist due 

to neural coupling with the shoulder and elbow28 which may worsen immobilization of the 

flexors in a short position. Increased muscle strain in shortened muscles may potentially result 

in increased spindle responses and subsequent increased spinal reflex activity5;29.  This may 

offer an alternative yet interesting explanation of the temporal delay between tissue changes 

and reflexive responses. We suppose that tissue changes occur within the first weeks after 

 

stroke. This was confirmed by the large differences between the groups at week four. The onset 

of shortening within the poor recovery group (PP) is likely to start in the weeks before.    

Changes were mainly observed in the flexor muscles. Changes in the extensor muscle were 

only found for the stiffness coefficient at twenty-six weeks: the stiffness coefficient of the 

extensors was higher for the PP group compared to the PG group meaning that the extensor 

muscle was stiffer in the PP group. The different adaptation of the extensor muscle in recovery 

is not yet clear. At week twenty-six, no differences were found in outcome measures between 

the GG patients and PG patients. Differences between these groups could arise earlier after 

stroke. Increased resolution of measurements by increasing the number of observations within 

these first weeks may reveal differences especially between the PG and PP and GG groups. 

 

Limitations 

For this study a validated EMG driven wrist model8 was used to predict the peripheral tissue 

stiffness and neural reflexive components of wrist joint stiffness. Using this method allows us 

to predict lumped parameters of the flexor and extensor muscle groups. The method can be 

useful in decisions for treatment and may hand us a key to understand underlying mechanisms 

of functional recovery9;30-34. However, the method has also some limitations. During the 

processing of EMG input data, background muscle activation, which is assumed to be noise, 

was removed from the EMG signal and only the variances in EMG amplitude were used to 

estimate the reflexive torque. As in stroke patients the rest level EMG may be elevated18 this 

elevated additional input is discarded and therefore not included in the active (contractile) 

contribution to torque. The background activation could not be identified by the model but 

might be traced back in the overall peripheral tissue stiffness meaning that the peripheral tissue 

stiffness might have been overestimated in patients with increased background activation. 

However, analysis of the EMG levels at rest showed no difference between the three groups 

which made it less likely that differences in background activation explain the observed 

elevated reflex activity and flexor muscle shortening.  

In the EMG driven wrist model8 the muscle length at which the highest forces are generated 

was also included. In the current study this optimal muscle length (i.e. due to the maximal 
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overlap between contractile filaments) was not presented as reflexive muscle activation in these 

patients was low in most patients and estimation of contractile muscle properties was therefore 

unreliable.  

The model is a lumped representation of all flexor and extensor muscles. The differences 

between individual muscles (e.g. flexor carpi radialis and flexor carpi ulnaris) after stroke were 

therefore not identified.  

Most drop-outs were found in the first three weeks. Additional observations, thus increasing 

statistical power, are needed to obtain reliable information about the neural reflexes and 

peripheral tissue changes in the first weeks post-stroke for patients with different recovery 

patterns. Small sample size also prevented further substantiation of the additional effects of 

treatment. However, subgroup analysis in the present sample showed no substantial differences 

between intervention and control groups. We chose to use an interaction term in our statistical 

model, because of plausibility of group and time interaction. Small sample size prevented that 

this interaction term was significant in all cases.  

 

Clinical implications 

Clinically observed changes post-stroke, e.g. the altered wrist flexion deformity, were now 

further specified by predicting its components explaining increased joint stiffness, i.e. neural 

reflexive and peripheral tissue stiffness, and characterized over time. Around 4-5 weeks post-

stroke significant peripheral tissue changes were observed in a group of patients with initially 

poor prognosis for functional recovery and a poor recover (i,e, ARAT≤9 points) at 26 weeks; 

changes in reflex torque were only observed after 12 weeks. The exact interplay of properties 

of neural reflexive stiffness, i.e. reflexive torque and peripheral tissue stiffness, i.e. slack length 

and stiffness coefficient, background muscle activation and the interplay of both muscle groups 

need to be studied further to pinpoint the cause-and-effect of increased joint stiffness and 

whether it can be influenced by therapy shortly after stroke. 

Preventing immobilization in a shortening position early after stroke should be an important 

focus in clinical practice. The effect of therapies on neural reflexive and peripheral tissue 

stiffness in the acute and sub-acute stroke patients, e.g.  neuromuscular electrical stimulation of 

the wrist extensors (suggested to enhance motor recovery)35, the best timing of physical 

 

therapy36 or the effect of splinting of the wrist37, needs to be studied using longitudinal 

observations at fixed time points post-stroke. 
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Table 5A: Overall effect of time (weeks), overall effect of group (PP, PG, GG) and effect of interaction between 

group and time for patients with poor prognosis and poor recovery (PP) compared to the good recovery groups 

for the predicted slack length of the flexors (lp,slack,flex), reflexive torque of the flexors (Treflex,flex) and peripheral 

tissue stiffness (Kjoint). In the first three weeks most missing occasions are found. Therefore week four and onwards 

are shown. 

 lp,slack,flex  
 

TReflex,flex  
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Overall 
effect of 
time 

Overall 
effect of 
group 

Interaction 
effect 

Overall 
effect of 
time 

Overall 
effect of 
group 

Interaction 
effect 

Overall 
effect of 
time 

Overall 
effect of 
group 

Interaction 
effect 

Week 4 F=2.4 
(P=0.026) 

F=11.9 
(P<0.001) 

F=1.4 
(P=0.17) 

F=1.9 
(P=0.079) 

F=6.2 
(P=0.003) 

F=1.8 
(P=0.043) 

F=7.7 
(P<0.001) 

F=13.7 
(P<0.001) 

F=5.2 
(P<0.001) 

Week 5 F=3.5 
(P=0.002) 

F=10.5 
(P<0.001) 

F=1.9 
(P=0.034) 

F=1.9 
(P=0.077) 

F=6.2 
(P=0.003) 

F=1.8 
(P=0.043) 

F=7.1 
(P<0.001) 

F=13.9 
(P<0.001) 

F=5.4 
(P<0.001) 

Week 8 F=3.3 
(P=0.004) 

F=11.2 
(P<0.001) 

F=1.9 
(P=0.041) 

F=1.9 
(P=0.079) 

F= 6.2 
(P=0.003) 

F=1.8 
(P=0.045) 

F=5.3 
(P<0.001) 

F=14.5 
(P<0.001) 

F=3.8 
(P<0.001) 

Week 12 F=1.8 
(P=0.098) 

F=9.8 
(P<0.001) 

F=1.5 
(P=0.13) 

F=1.9 
(P=0.070) 

F=6.4 
(P=0.003) 

F=1.9 
(P=0.038) 

F=4.1 
(P=0.001) 

F=11.6 
(P<0.001) 

F=3.2 
(P=0.001) 

Week 26 F=1.7 
(P=0.13) 

F=10.0 
(P<0.001) 

F=1.3 
(P=0.22) 

F=1.8 
(P=0.090) 

F=5.5 
(P=0.006) 

F=1.7 
(P=0.06) 

F=4.5 
(P<0.001) 

F=10.2 
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F=3.2 
(P<0.001) 
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Week 26 F=1.7 
(P=0.13) 

F=10.0 
(P<0.001) 

F=1.3 
(P=0.22) 

F=1.8 
(P=0.090) 

F=5.5 
(P=0.006) 

F=1.7 
(P=0.06) 

F=4.5 
(P<0.001) 

F=10.2 
(P<0.001) 

F=3.2 
(P<0.001) 
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Abstract 

Clinical application of botulinum toxin (BoNT) will benefit from a better understanding and 

quantitative assessment of the underlying neural and non-neural properties of spasticity related 

joint stiffness increase and their response to BoNT treatment.  

The effect of BoNT on underlying ankle joint stiffness properties was estimated using an EMG-

driven ankle model in 15 chronic stroke patients who underwent instrumented passive ankle 

rotations before and after BoNT injections in the calf muscles.  

Dorsal range of motion (dRoM) increased after BoNT. Baseline values of and changes in non-

neural joint stiffness, triceps surae slack length and recorded soleus EMG rest activation were 

associated with changes in dRoM and neutral rest angle. No associations were found for reflex 

activity. 

Observed and estimated responses are in line with an effect of BoNT on background muscle 

activity. The instrumented approach may assist to identify those patients who will likely benefit 

from BoNT therapy. 

 

  

 

Introduction 

Botulinum neurotoxin-A (BoNT) is recommended for treatment of post-stroke spasticity1-8. 

BoNT blocks the release of acetylcholine from the nerve terminal, thereby uncoupling the 

excitation-contraction mechanism and thus reducing muscle (hyper)activity3. This results in a 

reduction of muscle tone and joint stiffness and a subsequent decrease in resistance to passive 

joint manipulation as clinically assessed by the (modified) Ashworth Score (mAS)9. Clinical 

application of BoNT for spasticity treatment post-stroke may benefit from a better 

understanding and quantitative assessment of the underlying properties of spasticity related 

joint stiffness increase and their response to BoNT treatment. Is spasticity defined by a velocity 

dependent resistance to passive stretch according to the concept of Lance10 or is it better 

explained by an increased muscle activation at rest, i.e. background muscle activation, 

according to the Burne concept11?   

Evaluation of BoNT treatment is hampered by e.g. differences in dosing regimens, injection 

sites, heterogeneity in patients, concurrent treatment, outcomes selected, and the poor 

methodological quality of insufficiently powered, placebo-controlled trials12-15. Furthermore, 

assessment of the effects of BoNT by clinical semi-quantitative scaling like the mAS is 

problematic as the mAS has a questionable reliability and a low responsiveness to change9;16. 

We recognize an urgent need for alternative, high-resolution assessment that enables us to 

understand the concept of spasticity and its response to BoNT in upper motor neuron diseases 

like stroke14. 

Neuromuscular modeling in combination with joint manipulation paradigms using high 

precision robotics is promising in terms of reliable and valid identification of the underlying 

contributors of joint stiffness17-23. An instrumented electromyography (EMG)-driven modeling 

approach would allow for quantitative estimation of the neural reflexive and non-neural tissue 

properties to joint stiffness, i.e. muscle shortening and muscle stiffening18;19;24. This method 

should potentially be able to identify (stroke) patient characteristics at baseline prior to BoNT 

treatment and assess the effects of BoNT post treatment.  

The aim of the present study was therefore to estimate the effect of BoNT on underlying neural 

reflexive and non-neural tissue properties of increased ankle joint stiffness in chronic stroke 

patients. 
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treatment and assess the effects of BoNT post treatment.  

The aim of the present study was therefore to estimate the effect of BoNT on underlying neural 

reflexive and non-neural tissue properties of increased ankle joint stiffness in chronic stroke 

patients. 
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Methods 

Subjects 

Fifteen stroke patients participated in the study. Patients were included following ischemic or 

hemorrhagic stroke over 6 months at inclusion and were clinically referred for BoNT treatment 

(Botox, Allergan, Inc., Irvine, CA) in the soleus (SOL), gastrocnemius medialis (GM), 

gastrocnemius lateralis (GL) and/or tibialis posterior (TP). Patients were recruited from the 

outpatient clinic of the Leiden University Medical Center between January 2013 and June 2015. 

The indication for treatment was based on clinical arguments and independent of the present 

study. Exclusion criteria comprised (other) concomitant neurological and/or orthopedic 

disorders, treatment within the last 4 months that could interfere with a stable ankle joint 

stiffness, surgery of leg/foot within last 12 months and inability to participate in the experiment, 

either physically (i.e. inability to be mounted in the experimental set-up), cognitively (i.e. 

unable to understand test instructions or to give informed consent). Participants were measured 

prior to BoNT treatment (baseline T0) and 6-8 weeks (T1) and 12-16 weeks (T2) after BoNT 

treatment. Written informed consent was obtained from the participants. The study was 

approved by the medical ethics committee of the Leiden University Medical Center.  

 

Instrumentation 

Subjects were seated with their foot fixated onto an electrically powered single axis footplate 

(Achilles, MOOG FCS Inc., Nieuw-Vennep) with their knee positioned at 70 degrees of flexion 

(Figure 6.1). The axis of rotation of the ankle and footplate were aligned by visually minimizing 

knee translation in the sagittal plane during manual rotation of the footplate. For safety reasons 

and to avoid pain, the maximum tolerated dorsal- and plantar flexion of the ankle were restricted 

by hard- and software stops of the manipulator and determined by manually moving the ankle 

through its RoM by a trained operator before starting the measurements. The footplate was 

aligned visually at 25° plantar flexion with respect to the line connecting the head of the fibula 

and the lateral malleolus. During robotic movements, EMG, torque and angle were 

simultaneously recorded. 

 

 

 

Figure 6.1: Measurement set-up. 

 

EMG assessment 

Muscle activation of the tibialis anterior (TA) and triceps surae (TS) was recorded using surface 

EMG (Porti, TMSi B.V. Oldenzaal, The Netherlands) according to the SENIAM guidelines25 

(supplementary table). EMG signals were sampled at 1000 Hz, offline high pass filtered (20Hz, 

3th-order Butterworth), rectified and low pass filtered (20 Hz zero overshoot filter). Rest EMG, 

i.e. the minimal EMG determined for each muscle by applying a moving window of 8 ms, was 

subtracted from the total EMG because assumed not to contribute to ankle torque. Rest EMG 

of the TA, SOL, GL and GM were also used as outcome measure. Torque and ankle angle were 

sampled at 1024 Hz and low pass filtered (20 Hz zero overshoot filter) and resampled to 1000 

Hz.  

 

Range of motion and ramp and hold measurements 

Maximum dorsal and plantar flexion angles were assessed by gradually increasing flexion 

torque from 0 to 15 Nm in dorsal flexion direction and subsequently to -7.5 Nm in plantar 

flexion direction and back to zero torque in dorsal flexion direction. From this measurement the 
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following outcome measures were determined: 1) dorsal range of motion (dRoM), i.e. the 

maximum ankle angle at 15 Nm or, in case the patients did not tolerate 15 Nm, at the highest 

common torque measured over all three measurements (T0,T1,T2) and 2) the neutral angle 

(NA) which is the ankle angle at zero torque, i.e. the ankle at rest. The zero torque angle is ankle 

flexion direction dependent (hysteresis) and the NA was defined as the average 0-Nm crossing 

angle determined for the plantar flexion and dorsiflexion movement. 

The instrumented RoM was used as boundary for the subsequent ramp-and-hold (RaH) trials. 

During the RaH measurements the ankle was rotated at two different angular velocities (15 and 

100 deg/sec), starting in maximal plantar flexion and ending in maximum dorsiflexion angle 

(first ramp). After an approximate 10 seconds hold phase, the ankle was moved back to the 

maximal plantar flexion angle (second ramp). The subjects were instructed to relax during the 

RaH trials. Each velocity was repeated, which resulted in four RaH trials and one RoM trial per 

measurement. 

 

Neuromuscular modeling  

A validated neuromuscular model was used to predict ankle torque from measured ankle angle 

and EMG and subsequently estimating neural reflexive and non-neural tissue properties of 

ankle joint stiffness26. The model encompassed in total 15 parameters, i.e. of both TS and TA: 

the stiffness coefficient, muscle slack length, optimal muscle length, EMG weighting factors 

(three for TS and one for TA) and further: mass of the foot and footplate, activation cut-off 

frequency, relative damping and parameters related to tissue relaxation, i.e. tissue relaxation 

time constant and tissue relaxation factor. The present study focused on the following 

properties: 1) The estimated non-neural muscle slack length of TS and TA; 2) The estimated 

non-neural stiffness coefficient of TS and TA and which is an indicator of muscle stiffness; 3) 

the estimated non-neural peripheral tissue stiffness, a function of joint angle determined by the 

combination of slack length and stiffness coefficient of both TA and TS muscles. For 

comparison purposes, the peripheral tissue stiffness was assessed at an ankle angle of 0 degrees 

over all subjects and trials, i.e. foot (plate) perpendicular to the lower leg; 4) the estimated 

neural reflexive torque of TS and TA. The estimated reflexive torque was calculated by the root 

 

mean square of the involuntary active muscle torque during the observed trial. Slack muscle 

length, stiffness coefficient and peripheral tissue stiffness were determined at an ankle rotation 

speed of 15 deg/sec; the reflexive torque was determined at an ankle rotation speed of 100 

deg/sec. Outcome parameters were averaged over two trials (repetitions), unless trials were 

excluded due to low variance accounted for (VAF<99%).  

 

Statistical analysis 

A linear mixed model was used to compare outcome measures between the different 

measurement time points. Secondly, a linear regression analysis was performed addressing the 

association between changes in outcome measures, i.e. estimated neural reflexive and non-

neural tissue properties and measured EMG rest activity, as independent variables and 

respectively changes in measured dRoM and NA as dependent variables. Thirdly, the same 

procedure was repeated for the baseline values (T0) of the outcome measures, i.e. estimated 

neural reflexive and non-neural tissue properties and EMG rest activity, as independent 

variables and changes in measured dRoM and NA as dependent variables to address the 

predictive value of aforementioned baseline parameters for the outcome after BoNT treatment. 

Significance level was set at 0.05. Statistical analysis was performed using IBM SPSS statistics 

22. 

 

Results 

One patient quitted the study after the first measurement due to various reasons leaving 14 

stroke patients for further analysis, encompassing a total of 42 measurements. Thus, 42 RoM 

trials were available, and due to lack of valid RaH data in 2 patients, 144 RaH trials. In 2 patients 

over 2 trials, the maximum dorsal flexion torque of 15 Nm exceeded the patient’s tolerance and 

thus hardware restricted dRoM was determined at a lower torque level. Of the 144 RaH trials, 

3 trials were excluded due to low VAF values (<99%). 9 out of 14 patients were injected in the 

soleus muscle. Patient characteristics are shown in Table 6.1. 
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Table 6.1: Patient characteristics. 

Patient Age Gender 
Affected 

side 

Years 

post-stroke 
Stroke type Injected muscles (dose)+ 

Ashworth 

score 
Splint**  

1 55 M R 2.6 Ischemic SOL (100), GM (50), GL (50) 4 1 

2 46 M L 3.0 Ischemic SOL (50), GM (50) 4 0 

3 46 F R 21.4 Ischemic SOL (50), TP (100), TA (100) 3 1 

4 52 F L 2.0 Hemorrhagic GM (25), GL (25), TP (50) 2 1 

5 61 M R 10.4 Ischemic SOL (100) 3 0 

6 41 M R 16.1 Hemorrhagic SOL (100) 3 0 

7 64 M R 5.6 Ischemic SOL (50) 2 1 

8 65 M L 2.5 Hemorrhagic SOL (100) 2 1 

9 68 M R 3.1 Ischemic TP (50) 1 1 

10 48 F L 1.6 Ischemic SOL (100), GM (50), GL (50) 1 1 

11 58 M R - - SOL (100), GM (50), GL (50) 3 1 

12 55 F R - Hemorrhagic GM (100), TP (50) 3 0 

13 54 M L 2.8 Ischemic GM (50), GL (50) 1 1 

14 69 F L ~4 Hemorrhagic GM (50), GL (50) 1 0 
+SOL: soleus, GM: gastrocnemius medialis, GL: gastrocnemius lateralis, TP: tibialis posterior, TA: tibialis anterior 

** unspecified, 1=yes; 0=no.  

 

Measured and estimated parameters before and after BoNT injection 

Measured and estimated parameters before and after BoNT injections are presented in 

Table 6.2. The dRoM improved on average with 4.1 (SD 6.7) degrees from T0 to T1 and the 

NA shifted from plantar flexion to the (neutral) anatomical ankle angle by 4.6 (SD 7.7) degrees. 

Significant changes between T0 and either T1 or T2 after BoNT injection were only observed 

for dRoM and NA (Table 6.2). Estimated neural reflexive and non-neural tissue properties 

showed no significant change after BoNT injections. 

 

 

 

 

 

Table 6.2: Overview of outcome measures before (T0) and after (6-8 weeks: T1 and 12-16 weeks: T2) BoNT 

injections. P-values for comparison between measurement moments. 

 

Associations between baseline values and changes in measured and estimated parameters with 

changes in dRoM and NA 

A decrease in estimated peripheral tissue stiffness, an increase in estimated TS slack length and 

a decrease in measured rest EMG of soleus significantly associated with an increase of 

measured dRoM and/or a shift in NA towards anatomical ankle angle after BoNT, while no 

significant changes of reflex torques were observed (Table 6.3). A high estimated peripheral 

tissue stiffness and a small estimated TS slack length appeared to be predictive for a 

respectively increase in measured dRoM and NA shift towards anatomical ankle angle. Again, 

no significant associations between estimated baseline reflex torque and measured dROM and 

NA were observed (Table 6.4).  

 Measurement moment  
 

Outcome measure 

 

T0 

 

T1 

 

T2 

 

N 

T0 vs T1 

P-value 

T0 vs T2 

P-value 

Dorsal RoM (deg) 5.5 (8.6) 9.5 (5.5) 8.6 (6.7) 14 .032 .093 

Neutral angle (deg) -30.1 (10.5) -25.5 (6.7) -23.6 (5.4)* 14 .052 .010* 

Peripheral tissue stiffness (Nm/rad) 245 (351) 132 (61) 125 (73) 12 .39 .21 

Slack length TS (mm) 22.8 (2.6) 23.2 (2.6) 23.6 (3.8) 12 .60 .38 

Slack length TA (mm) 63.6 (11) 60.2 (17) 58.5 (12) 12 .39 .10 

Stiffness coefficient TS (1/m) 346 (43) 343 (48) 360 (98) 12 .79 .58 

Stiffness coefficient TA (1/m) 186 (54) 192 (62) 185 (42) 12 .57 .96 

Reflexive torque TS (Nm) 2.9 (2.1) 3.0 (2.2) 2.7 (2.0) 12 .89 .49 

Reflexive torque TA (Nm) .25 (.20) .48 (.37) .31 (.48) 12 .052 .69 

Rest EMG SOL (µV) 2.3 (1.6) 2.3 (1.8) 2.3 (1.7) 12 .97 .99 

Rest EMG GM (µV) 1.3 (.50) 1.3 (.30) 1.6 (0.92) 12 .50 .21 

Rest EMG GL (µV) 1.2 (.24) 1.2 (.37) 1.3 (0.25) 12 .90 .69 

Rest EMG TA (µV) 1.5 (.87) 1.5 (.99) 1.5 (.60) 12 .75 .98 

*based on 13 stroke patients       
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Reflexive torque TS (Nm) 2.9 (2.1) 3.0 (2.2) 2.7 (2.0) 12 .89 .49 

Reflexive torque TA (Nm) .25 (.20) .48 (.37) .31 (.48) 12 .052 .69 

Rest EMG SOL (µV) 2.3 (1.6) 2.3 (1.8) 2.3 (1.7) 12 .97 .99 

Rest EMG GM (µV) 1.3 (.50) 1.3 (.30) 1.6 (0.92) 12 .50 .21 

Rest EMG GL (µV) 1.2 (.24) 1.2 (.37) 1.3 (0.25) 12 .90 .69 

Rest EMG TA (µV) 1.5 (.87) 1.5 (.99) 1.5 (.60) 12 .75 .98 

*based on 13 stroke patients       
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Table 6.3:  Association between changes estimated neural reflexive and non-neural tissue properties and 

measured EMG rest activity and changes in measured dorsal RoM and neutral angle before (T0) and 6-8 weeks 

after BoNT injections (T1). Unstandardized effects and 95% confidence interval. 

 Dorsal RoM Neutral angle 

 Unstandardized  Unstandardized  

 β 95% CI P-value β 95% CI P-value 

Peripheral tissue stiffness (Nm/rad) -.014 -.023; -.005 .006 -.016 -.027; -.005 .009 

Slack length TS (mm) 1.8 .54; 3.0 .010 2.1 .69; 3.5 .008 

Slack length TA (mm) -.15 -.60; .31 .49 -.40 -.85; .059 .081 

Stiffness coefficient TS (1/m) -.040 -.19; .11 .55 -.002 -.175; .171 .98 

Stiffness coefficient TA (1/m) -.005 -.12; .11 .93 -.054 -.18; 0.69 .35 

Reflexive torque TS (Nm) .35 -4.1; 4.8 .86 2.9 -1.8; 7.6 .20 

Reflexive torque TA (Nm) .56 -11.5; 12.6 .92 -1.1 -15.0; 12.8 .87 

Rest EMG SOL (µV) -1.5 -3.07;.005 .051 -1.9 -3.6; -.2 .032 

Rest EMG GM (µV) -.51 -14.5;13.5 .94 1.2 -15.0; 17.3 .88 

Rest EMG GL (µV) 3.7 -11.3;18.8 .59 8.1 -8.6; 24.8 .31 

Rest EMG TA (µV) -10.1 -22.1; 1.9 .090 -10.2 -24.6; 4.1 .14 

 

Table 6.4: Association between estimated neural and non-neural tisseu properties and measured EMG rest activity 

at baseline (T0) and changes in measured dorsal RoM and neutral angle between T0 and 6-8 weeks after BoNT 

injections (T1). Unstandardized effects and 95% confidence interval. 

 Dorsal RoM Neutral angle 

 Unstandardized  Unstandardized  

 β 95% CI P-value β 95% CI P-value 

Peripheral tissue stiffness (Nm/rad) .013 .004; .022 .010 .015 .004; .025 .010 

Slack length TS (mm) -1.5 -2.9; -0.084 .040 -1.6 -3.3; .070 .058 

Slack length TA (mm) .18 -.22; .58 .35 .016 -.47; .50  .94 

Stiffness coefficient TS (1/m) .056 -.040; .15 .23 .071 -.072; .21 .30 

Stiffness coefficient TA (1/m) .008 -.099; .12 .87 -.049 -.17; .070 .38 

Reflexive torque TS (Nm) -.45 -2.6; 1.7 .66 -.94 -3.4; 1.5 .41 

Reflexive torque TA (Nm) -7.7 -30.2; 14.8 .46 2.5 -24.1; 29.1 .84 

Rest EMG SOL (µV) 1.6 -.90; 4.1 .18 -2.0 -.90; 4.8 .16 

Rest EMG GM (µV) -2.2 -11.1; 6.8 .60 -1.8 -12.2; 8.6 .71 

Rest EMG GL (µV) -8.4 -26.6; 9.9 .33 -10.3 -31.2; 10.7 .30 

Rest EMG TA (µV) .042 -5.1; 5.2 .99 -.36 -6.3; 6.0 .90 

 

  

 

Discussion 

Significant improvements in measured dRoM and NA that coincided with an estimated 

lengthening of the musculo-tendon complex of the TS were observed using an instrumented 

EMG-driven model approach to evaluate the effect of BoNT injections in the calf muscles in 

chronic stroke patients on neural reflexive and non-neural tissue properties of ankle joint 

stiffness. Baseline values and changes of the estimated non-neural tissue parameters peripheral 

tissue stiffness and the slack length of triceps surae were associated with improvements of 

dRoM and the NA. The estimated neural and velocity dependent parameter reflexive torque did 

not associate. 

 
Applicability of the instrumented EMG-driven model approach 

With VAF values over 99% and only a few trials being discarded because of low VAF values 

(2%) the developed model approach seems well applicable to the present clinical case. Previous 

research showed that the internal model validity was good, test-retest reliability fair to good 

and that the method has clinical potential26. 

 
Measured and estimated parameters before and after BoNT injection 

The effect of BoNT treatment was reflected by the increase in dRoM and the shift of NA 

towards the anatomical ankle angle. This is assumed to originate from an increased length of 

the musculo-tendon complex of the TS muscle during rest conditions and may thus be regarded 

a main effect of BoNT treatment27;28. The other parameters did not show changes as a function 

of BoNT treatment, which might be due to a large variability within the included cohort and the 

current lack of means to discriminate potential responders from non-responders in combination 

with a small sample size. The estimated observations cannot be compared to a gold standard 

that measures the effect of BoNT treatment because yet lacking. Clinically, we have to do with 

scales like the mAS with its acknowledged problems of sensitivity and reliability16. Significant 

effects of BoNT on the mAS may only be found in large study samples29, averaging the large 

variation in e.g. doses, injection sites and techniques into account14. Changes in dRoM and shift 

of NA to the anatomical ankle angle may be an alternative clinical outcome parameter for 
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and that the method has clinical potential26. 
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the musculo-tendon complex of the TS muscle during rest conditions and may thus be regarded 
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that measures the effect of BoNT treatment because yet lacking. Clinically, we have to do with 
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effects of BoNT on the mAS may only be found in large study samples29, averaging the large 

variation in e.g. doses, injection sites and techniques into account14. Changes in dRoM and shift 

of NA to the anatomical ankle angle may be an alternative clinical outcome parameter for 
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treatment evaluation. Further studies on validity and sensitivity to e.g. variations in dose, are 

needed in order to fully judge the merits of RoM measurements. 

 
Associations between baseline values and changes in measured and estimated parameters 

Changes in measured ankle dRoM and NA were associated with baseline values and changes 

of the estimated non-neural tissue parameters slack length of TS and peripheral tissue stiffness 

and estimated EMG rest activity of soleus. Non-neural tissue parameters are assumed to relate 

to changes in length of musculo-tendon structures thus explaining dRoM and NA more than the 

neural reflexive torque. Relating the changes in ankle dRoM and NA to the estimated neural 

reflexive and non-neural tissue properties to joint stiffness and measured rest EMG at baseline 

provided for the opportunity to predict the effects of BoNT in a heterogeneous group of 

responders and non-responders to BoNT. 

 

BoNT may decrease background muscle activation: evidence for the “Burne” over the “Lance” 

concept of spasticity. 

Improvement of dRoM and NA following BoNT treatment can potentially be explained by a 

decrease in background activation of the TS muscle. BoNT results in the relaxation (i.e. 

lengthening) of the contractile element and thus a shortening and relaxation of the serial elastic 

length (Figure 6.2). This concept is substantiated by an increase in estimated slack length. Slack 

length is assumed to reflect the muscle fiber slack length in combination with the muscle fiber 

pennation angle.  

Additional evidence for background activation reduction is provided by the decrease in 

measured EMG rest activity of soleus, which is associated with the shift of the NA towards 

anatomical ankle angle. Also the absence of associations of BoNT treatment with reflexive 

torque suggests the evidence for background muscle activation reduction. The background 

muscle activation was not accounted for in the model and may therefore also affect the 

non-neural tissue parameters. 

 

 

 

Figure 6.2: Schematic illustration of a Hill type triceps surae and Achilles tendon (top) with the contractile 

element (CE), the parallel element (PE) and the serial elastic component (SE) and the muscle force-length 

relationship (bottom). Left: in the “normal” relaxed condition the foot is in a neutral position, with the SE and PE 

in ‘slack length’. Middle: In the spastic/contractile condition, the CE is activated and the PE is shortened, while 

the SE length is increased, the foot rotated in equines position. The passive force-length relation and the working 

point (state) at the active force-length relationships are shifted to the left, meaning that in the neutral position of 

the ankle, the joint stiffness is increased, resulting in decreased dorsal RoM. Right: BoNT results in the relaxation 

(i.e. lengthening) of the CE and thus a shortening and relaxation of the SE length. The triceps surae muscle slack 

length changes/normalizes: the passive force-length relationship and the contractile state of the active force-length 

relationship are shifted to the right, i.e. towards “normal”.  

Note: The shortened triceps surae in the contractile state is a combination of a shortening of the CE in combination 

with an increase of the muscle fiber pennation angle. 
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The combination of aforementioned findings is in favor of the “Burne” hypothesis of increased 

background activation as the underlying pathophysiological mechanism for spasticity11 and the 

observed clinical effects of BoNT treatment. The potential mechanism of BoNT treatment may 

be to reduce background muscle activity so that the contractile muscle tissue relaxes and dorsal 

RoM increases (Figure 6.2).  

All noticed effects are observed under resting task conditions. The higher contractile state of 

the resting muscle may have an indirect effect on the (increased) sensitivity of muscle spindles 

and Golgi tendon organs and the spinal reflex thresholds related to the “Lance” hypothesis as 

neural and non-neural tissue components are in tight interaction30. 

 

Strength, limitations and clinical implications 

This study shows the applicability and merits of high resolution clinimetrics by using a robotic 

manipulator in combination with an EMG-driven neuromuscular model approach that allows 

for estimation of underlying properties to joint stiffness, in order to understand the 

pathophysiological effects of BoNT treatment in stroke patients. Patients were instructed to 

relaxed and do therefore not require the ability to selectively and voluntary activate muscles, 

making the method applicable in clinical practice. Addressing effects of dose, injection site and 

technique and the potential to discriminate responders from non-responders may be important 

topics for further study considering the costs and the wide spread use of BoNT treatment14.  

There are a number of limitations to the present study. First, the study sample was small, 

especially considering the expected underlying heterogeneity in patients, history of treatment, 

dose, selected muscles, injection site etc. Also, the current choice for outcome stratification 

based on increase of dRoM and NA shift needs further investigation. As background activity 

cannot be estimated directly yet from the current models, evidence of influence on this 

component was circumstantial as is the relation of background activity to slack length. Slack 

length is assumed to reflect both the contractile state of the muscle fibers and the muscle fiber 

pennation angle. Pennation angles were not in the model nor were measured separately. 

Therefore the increase of estimated slack length could be indicative for a decrease in pennation 

angle27;28. Ultrasound recordings can strengthen the assumption of changed pennation angles. 

 

Conclusion 

We used an instrumented EMG-driven modeling approach to address the effects of BoNT 

treatment on underlying neural reflexive and non-neural tissue properties of ankle joint stiffness 

in chronic stroke patients. Significant improvement of measured dorsal range of motion and 

neutral angle following BoNT treatment were associated with baseline values and changes of 

estimated peripheral tissue stiffness, estimated triceps surae slack muscle length and measured 

EMG rest activity of soleus and can potentially be explained by a decrease in background 

activation of the triceps surae muscle. The approach may be a promising solution in treatment 

selection, quantifying the effect of treatment and exploring the pathophysiology of spasticity. 
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Appendix 6: Supplementary table 

 

Table 6A: Electrode placement according to seniam guidelines (www.seniam.org) 

Muscle Location 

Tibialis anterior At 1/3 on the line between the tip of the fibula and the tip of the medial 
malleolus. 

Soleus At 2/3 of the line between the medial condylis of the femur to the medial 
malleolus. 

Gastrocnemius medialis On the most prominent bulge of the muscle. 

Gastrocnemius lateralis At 1/3 of the line between the head of the fibula and the heel. 
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The aim of the studies in this thesis was to quantify neural reflexive and non-neural tissue 

contributors of ankle and wrist joint stiffness in patients with stroke and cerebral palsy using an 

instrumented electromyography (EMG) driven non-linear neuromuscular modeling approach. 

Underlying contributors of clinically observed increased joint stiffness, diminished range of 

motion and flexion deformity, i.e. a shift of joint rest angle, cannot be distinguished by current 

clinical tests like the Ashworth1 and Tardieu scale2;3, which are ordinal, subjective and of low 

resolution4-6. Quantification of underlying contributors is however important for understanding 

of underlying mechanisms of functional recovery and the effect of therapy on neural and non-

neural components to diminish or eventually prevent these motor disorders. The clinical 

potential of the neuromuscular modeling approach was illustrated by the development over time 

of neural and non-neural contributors in the sub-acute phase post-stroke and by the effect of 

botulinum toxin A treatment on these contributors in chronic stroke patients. 

 

Main findings 

In chapter 2 neural reflexive and non-neural tissue contributors of ankle joint stiffness were 

identified in patients with CP using an instrumented non-linear EMG-driven modeling 

approach7. Patients with CP showed a higher neural reflexive stiffness and peripheral tissue 

stiffness compared to healthy subjects. A large inter-subject variation was found for the ratio 

between reflexive stiffness and peripheral tissue stiffness showing the heterogeneity of the CP 

group. In patients with diminished range of motion, a high peripheral tissue stiffness was 

observed. The non-linear model7 was refined and extended with parameters describing the 

passive and active force-length relationships such to estimate the optimal muscle length, slack 

muscle length and muscle stiffness, of the triceps surae and tibialis anterior (chapter 3). The 

added parameters enabled to identify muscle shortening and stiffening in patients with stroke. 

It was demonstrated that the model was internally valid and sensitive for knee angles. In chapter 

4 the ankle model was translated to a wrist model. The model included an antagonistic pair of 

muscle elements reflecting the wrist flexor and extensor muscle groups. The model was valid 

and sensitive to demonstrate increased reflexive stiffness and peripheral tissue stiffness in 

chronic stroke patients compared to healthy controls and based on the smaller slack muscle 

length and smaller optimal muscle length it was suggested that flexor muscles were shortened 

 

in patients with stroke8. Development of contributors over time was shown in a longitudinal 

study in the first 26 weeks post-stroke in chapter 5. Shortening of the wrist flexor muscles was 

demonstrated to occur as early as 4 to 5 weeks in a group of patients with poor prognosis for 

functional outcome at 26 weeks post-stroke and poor functional recovery of the upper extremity 

that clinically showed increased joint stiffness and wrist flexion deformity compared to patients 

with good recovery. Onset of neural reflexive stiffness in the poor recovery group occurred 

around week 129. Temporal identification of components contributing to joint stiffness and 

flexion deformity post-stroke may prompt longitudinal interventional studies to further evaluate 

and eventually prevent the development of tissue shortening. 

The effect of a common clinical intervention to reduce stiffness, increase dorsiflexion range of 

motion and counteract undesirable rest angle shifts, i.e. botulinum toxin A injection, on the 

neural reflexive and non-neural tissue contributors was observed in a longitudinal study in 

chronic stroke patients (chapter 6). Significant improvements in dorsal range of motion and 

shift of neutral angle, i.e. the rest angle of the joint at zero torque, were observed, which 

coincided with an estimated lengthening of the musculo-tendon complex of the triceps surae 

after botulinum toxin A treatment. Aforementioned improvements could be related to 

peripheral tissue stiffness, muscle slack length and soleus rest activity and could not be related 

to reflex activity. The results found in this study support evidence of the effect of botulinum 

toxin A on background muscle activity, i.e. muscle activation at rest, in post-stroke spasticity. 

These findings show the possibility to relate clinical observed changes, i.e. diminished range of 

motion and shift of rest angle, to its underlying neural and non-neural contributors and further 

in its pathophysiological changes which is required for understanding, diagnosis and follow-

up. As the outcome parameters proved to be sensitive for treatment, these findings indicate that 

the modeling approach may be a powerful tool in treatment selection and quantifying the effect 

of treatment.  
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Reflection 

Non-neural tissue changes precede neural reflexes changes 

In the EXPLICIT-trial (chapter 5) patients were followed 6 months post-stroke and stratified 

by prognosis for functional outcome at 26 weeks post-stroke, based on presence of finger 

extension and NIHSS, and recovery, based on ARAT10. This resulted in three groups: patients 

with good prognosis for functional recovery and good recovery, patients with poor prognosis 

and good recovery and patients with poor prognosis and poor recovery. In the group with poor 

recovery smaller wrist flexor slack lengths, representing muscle shortening, and increased 

peripheral tissue stiffness were observed to occur within 4-5 weeks after stroke followed by 

increased neural reflexive stiffness starting around 3 months.  

Recovery after stroke varies with the nature and severity of the initial deficit after a 

cerebrovascular accident and is determined by unknown biological processes11. The mechanism 

of recovery of motor function on one side and development of shifted rest angle of the wrist on 

the other side are still poorly understood and mainly adhere to the first 8 weeks post-stroke12;13. 

A diminished neural input might result in disuse or immobilization; immobilized muscles in a 

shortened position adapt to their resting length and lose sarcomeres to develop force at their 

shortened length14-18. At comparable joint angles and compared to healthy muscles, the strain 

in spastic muscles is higher resulting in higher resistive muscle forces and a consequently higher 

joint stiffness due to the diminished number of sarcomeres in series19. Increased muscle strain 

in shortened muscle may potentially result in increased spindle response and consequently 

increased spinal reflex activity16. The development of increased background activation as a 

consequence of altered neural input may also result in hyperexcitability of reflexes20;21. There 

were no differences between the different groups in EMG magnitudes at rest suggesting that 

there was no difference in background muscle activation between the groups9. However, further 

substantiation requires a model that enables estimation of this neural contributor.  

Non-neural tissue changes between the different recovery groups were observed within four 

weeks. An important focus in these first weeks might be to prevent the development of tissue 

changes in the acute and sub-acute phase post-stroke. Avoiding immobilization in a shortened 

position early after stroke might be an important aspect to prevent tissue changes. Possible 

treatments in the poor prognosis group may be to start immediately with physical therapy, 

 

neuromuscular stimulation or splinting and casting to prevent flexion deformity. The 

instrumented non-linear neuromuscular modeling approach is a useful tool for follow-up to 

observe the neural and non-neural changes in time that correlate with the clinical observed 

changes, e.g. wrist flexion deformity, and it may be a useful tool to guide intervention at the 

right moment and at the right neuromuscular property. 

 

Botulinum toxin A lowers background muscle activation 

At 26 weeks post-stroke, patients with poor recovery showed increased neural reflexive torque 

and shortened and stiffened wrist flexor muscles resulting in increased peripheral tissue 

stiffness compared to stroke patients with good recovery9. This was in accordance with the 

results found in chronic stroke patients with an average of 30 (SD 27.6) months post-stroke 

(chapter 4). Here was found that patients with a modified Ashworth score of 1 or higher had 

increased reflexive stiffness of flexors, shortened flexor muscles and increased peripheral tissue 

stiffness compared to healthy subjects and patients with a modified Ashworth score of 08. 

Botulinum toxin A treatment is a common clinical procedure to reduce joint stiffness, to 

increase dorsal range of motion and to correct shifted joint resting positions22-29. Botulinum 

toxin A blocks the release of acetylcholine from the nerve terminal, thereby uncoupling the 

excitation- contraction mechanism and thus reducing muscle (hyper)activity26. A lack of 

understanding the concept of spasticity in stroke may prevent optimal use of botulinum toxin 

A. It is important to know what the effect is of botulinum toxin A on the neural and non-neural 

components of joint stiffness and what the effect is on the association between these 

components, e.g. how will changes in the neural component interact with the changes of the 

non-neural components after stroke?30  

After botulinum toxin A treatment, the dorsal range of motion increased and the neutral rest 

angle shifted (chapter 6). Baseline values and changes in peripheral tissue stiffness and triceps 

slack length were associated with the changes in dorsal range of motion and neutral angle and 

change in soleus EMG rest activity was associated with change in neutral angle. There were no 

associations found for changes in dorsal range of motion and neutral angle and changes in reflex 

activity. Large variation between patients was observed; not all of the patients showed 

improvements in outcome measures suggesting that there were responders and non-responders 
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to botulinum toxin A. Patients with high baseline peripheral tissue stiffness and/or small slack 

triceps muscle length seemed to benefit from botulinum toxin A. By examining patients on 

these properties, it may be possible to predict which patients might benefit from botulinum 

toxin A. Long term administration of botulinum toxin creates weakness and atrophy which may 

worsen motor function. Identifying the non-responders by low/normal peripheral tissue 

stiffness and/or normal slack length may help to prevent these undesirable effects and lowers 

medical expenses.  

Following the administration of botulinum toxin A we were able to identify changes in the 

neural and non-neural contributors that were associated to increased dorsal range of motion and 

shifted neutral rest angle. This offers opportunities for further research: e.g. to study the effect 

of botulinum toxin A at an early stage after brain injury or to study the dose-response in 

botulinum toxin treatment30. 

Botulinum toxin is generally administered to reduce the neural reflexive component as 

spasticity is often defined according to the concept of Lance as a velocity dependent resistance 

to passive stretch31. In the current study, spasticity was explained by increased muscle 

activation at rest, i.e. background muscle activation21. Improvement in dorsal range of motion 

and neutral rest angle after botulinum toxin A can be explained by a decrease in an active 

contributor under rest conditions of the triceps surae muscles: botulinum toxin A may reduce 

background muscle activity so that the muscle relaxes and muscle length and range of motion 

increases. No associations in changes in dorsal range of motion and neutral angle were found 

for the neural reflexive components. Lowering background muscle activation by botulinum 

toxin might lower the increased reflex activity in contracted muscles21, but this could not be 

confirmed in chapter 6 as the study was under passive conditions.  

Background muscle activation could not be identified directly but may affect other parameters 

resulting in e.g. increased peripheral tissue stiffness and decreased slack muscle length, 

indicative for a decrease in pennation angle due to relaxation of muscle32;33. Considering the 

importance of background muscle activation as a neural contributor of joint stiffness, future 

model developments should be aimed at quantification of aforementioned contributor. 

 

 

Development of joint stiffness in stroke and cerebral palsy 

This thesis mainly focuses on stroke but application of the neuromuscular modeling approach 

was also shown in a group of patients with cerebral palsy. Both stroke and cerebral palsy are 

upper motor neuron diseases. Stroke appears mostly in adults in the developed brain; Cerebral 

palsy occurs in the fetal or neonatal developing brain34. Consequently, the posture and 

movement disorders may have a different sequel between the groups, which might be reflected 

in the neural and non-neural tissue distribution of joint stiffness. In patients with stroke we 

observed shortening of wrist flexor muscles around week 4 to 5 post-stroke and reflexive 

stiffness around week 129. The development of contributors of joint stiffness over time in 

patients with cerebral palsy is not yet well described. From literature we learn that in cerebral 

palsy passive stiffness may increase over reflex activity with age35 and that the range of 

dorsiflexion of the ankle joint decreased on average 19 degrees during the first 18 years of life36. 

From these two studies it is suggested that contribution of underlying components of joint 

stiffness in cerebral palsy changes over time and that variability in a group of adolescents is 

expected to be high. This latter was confirmed in our study in cerebral palsy by a large inter-

subject variation for the ratio between triceps reflexive torque and peripheral tissue stiffness as 

we measured adolescents in a wide age range37. It would be interesting to study the change of 

underlying neural reflexive and non-neural tissue contributors of joint stiffness over time to 

learn more about the development of spasticity in cerebral palsy. As the contribution of neural 

reflexive and non-neural tissue stiffness might change over time, therapy in children with 

cerebral palsy needs to be evaluated whenever a new treatment strategy is considered.  

 

Future directions 

Assessment in clinical practice  

The presented instrumented EMG-driven non-linear neuromuscular modeling approach is 

applicable in patients showing a variable degree of flexion deformity, diminished range of 

motion and increased joint stiffness. Applicability was demonstrated in patients with stroke and 

cerebral palsy. The method is safe, as the range of motion is prevented by hard- and software 

stops, comfortable for the patient and does not require voluntary contraction. The method 
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botulinum toxin treatment30. 

Botulinum toxin is generally administered to reduce the neural reflexive component as 

spasticity is often defined according to the concept of Lance as a velocity dependent resistance 

to passive stretch31. In the current study, spasticity was explained by increased muscle 

activation at rest, i.e. background muscle activation21. Improvement in dorsal range of motion 

and neutral rest angle after botulinum toxin A can be explained by a decrease in an active 

contributor under rest conditions of the triceps surae muscles: botulinum toxin A may reduce 

background muscle activity so that the muscle relaxes and muscle length and range of motion 

increases. No associations in changes in dorsal range of motion and neutral angle were found 

for the neural reflexive components. Lowering background muscle activation by botulinum 

toxin might lower the increased reflex activity in contracted muscles21, but this could not be 

confirmed in chapter 6 as the study was under passive conditions.  

Background muscle activation could not be identified directly but may affect other parameters 

resulting in e.g. increased peripheral tissue stiffness and decreased slack muscle length, 

indicative for a decrease in pennation angle due to relaxation of muscle32;33. Considering the 

importance of background muscle activation as a neural contributor of joint stiffness, future 

model developments should be aimed at quantification of aforementioned contributor. 

 

 

Development of joint stiffness in stroke and cerebral palsy 

This thesis mainly focuses on stroke but application of the neuromuscular modeling approach 

was also shown in a group of patients with cerebral palsy. Both stroke and cerebral palsy are 

upper motor neuron diseases. Stroke appears mostly in adults in the developed brain; Cerebral 

palsy occurs in the fetal or neonatal developing brain34. Consequently, the posture and 

movement disorders may have a different sequel between the groups, which might be reflected 

in the neural and non-neural tissue distribution of joint stiffness. In patients with stroke we 

observed shortening of wrist flexor muscles around week 4 to 5 post-stroke and reflexive 

stiffness around week 129. The development of contributors of joint stiffness over time in 

patients with cerebral palsy is not yet well described. From literature we learn that in cerebral 

palsy passive stiffness may increase over reflex activity with age35 and that the range of 

dorsiflexion of the ankle joint decreased on average 19 degrees during the first 18 years of life36. 

From these two studies it is suggested that contribution of underlying components of joint 

stiffness in cerebral palsy changes over time and that variability in a group of adolescents is 

expected to be high. This latter was confirmed in our study in cerebral palsy by a large inter-

subject variation for the ratio between triceps reflexive torque and peripheral tissue stiffness as 

we measured adolescents in a wide age range37. It would be interesting to study the change of 

underlying neural reflexive and non-neural tissue contributors of joint stiffness over time to 

learn more about the development of spasticity in cerebral palsy. As the contribution of neural 

reflexive and non-neural tissue stiffness might change over time, therapy in children with 

cerebral palsy needs to be evaluated whenever a new treatment strategy is considered.  

 

Future directions 

Assessment in clinical practice  

The presented instrumented EMG-driven non-linear neuromuscular modeling approach is 

applicable in patients showing a variable degree of flexion deformity, diminished range of 

motion and increased joint stiffness. Applicability was demonstrated in patients with stroke and 

cerebral palsy. The method is safe, as the range of motion is prevented by hard- and software 

stops, comfortable for the patient and does not require voluntary contraction. The method 
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resembles clinical tests, like the Ashworth and Tardieu tests, by the movement over the full 

range of motion. In contrast to linear system identification methods that apply small deviations 

of e.g. joint angle, performing movement over the full range of motion resembles functional 

movement more closely. Awareness is needed in patients with small range of motion: the 

movement velocity needs to be high enough to induce reflexes.  

Assessment under passive conditions, as in the current study, does not resemble functional tasks 

that need voluntary muscle contraction, like walking. This requires assessment under active 

conditions. 

Clinical applicability could be enhanced by reducing the preparation time which is two to three 

times longer than the measurements time, e.g. due to placing EMG electrodes on the muscles 

which is a precise task and necessary to quantify the neural and non-neural tissue parameters. 

Methods without EMG were developed, like the NeuroFlexor method, which showed good 

agreement with EMG-driven optimization on the overall neural and non-neural 

components38;39, but lack the ability of precise quantification of parameters, e.g. slack muscle 

lengths, optimal muscle lengths and stiffness coefficients. This precise information is essential 

for insight in pathological mechanism in e.g. the sub-acute phase post-stroke and whether the 

muscle is shortened and/or stiffened which is of value in treatment selection. In case of e.g. a 

first exploration of overall joint stiffness in a patient, devices like the NeuroFlexor may be a 

good alternative. 

 

Neuromuscular model 

For administration of botulinum toxin A in e.g. the triceps surae, it can be of benefit to know 

whether the gastrocnemii are most affected or the soleus muscle. With the neuromuscular 

modeling approach it was possible to discriminate between groups of lumped muscle, e.g. 

plantar flexors and dorsiflexors, but not between individual muscles. An alternative method 

was presented for the ankle in chapter 3: by changing the knee angle, the contribution of the 

gastrocnemii muscles and soleus muscle was varying.  

Muscle relaxation and activation, background muscle activation and muscle atrophy interfere 

with the muscle pennation angle32;33;40. This parameter was not included in the present model. 

Also, the elastic muscle tendon was not included. Including the Achilles tendon in the ankle 

 

model did not significantly affect the model parameters in healthy subjects41, but could be of 

value in patients with different phenotypes as Achilles tendon mechanical properties might be 

altered post-stroke42. Changes in pennation angle affect the passive and active force-length 

curves and thus interfere with the model parameters slack length, stiffness and optimal length. 

Thus it was not possible to determine whether an increased slack length in patients post-stroke 

may be caused by a reduced pennation angle due to muscle atrophy40. Additional 

measurements, like ultrasound, are required to study pennation angles as an additional input to 

the model. 

 

Clinical implications and recommendations 

The results in this thesis are a step forward in answering “when” to treat stroke patients by 

performing longitudinal assessments. The EMG-driven neuromuscular modeling approach 

offers opportunity to gain more insight in the development of increased joint stiffness, 

diminished range of motion and rest angle shifts. This information is of value to prevent motor 

disorder developments in future. 

The results in this thesis also gives direction to the question “how” to treat stroke patients, i.e. 

which treatment option is most effective in each individual patient, and is a step forward 

towards personalized treatment. Addressing effects of dose, injection site and technique and the 

potential to discriminate responders from non-responders are important subjects for further 

study considering the costs and the wide spread use of botulinum toxin A treatment. 

Quantification of neural and non-neural components is essential to diminish and eventually 

prevent motor disorders thereby improving activity of daily live and also quality of live in 

patients with stroke.  
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resembles clinical tests, like the Ashworth and Tardieu tests, by the movement over the full 

range of motion. In contrast to linear system identification methods that apply small deviations 

of e.g. joint angle, performing movement over the full range of motion resembles functional 

movement more closely. Awareness is needed in patients with small range of motion: the 

movement velocity needs to be high enough to induce reflexes.  

Assessment under passive conditions, as in the current study, does not resemble functional tasks 

that need voluntary muscle contraction, like walking. This requires assessment under active 

conditions. 

Clinical applicability could be enhanced by reducing the preparation time which is two to three 

times longer than the measurements time, e.g. due to placing EMG electrodes on the muscles 

which is a precise task and necessary to quantify the neural and non-neural tissue parameters. 

Methods without EMG were developed, like the NeuroFlexor method, which showed good 

agreement with EMG-driven optimization on the overall neural and non-neural 

components38;39, but lack the ability of precise quantification of parameters, e.g. slack muscle 

lengths, optimal muscle lengths and stiffness coefficients. This precise information is essential 

for insight in pathological mechanism in e.g. the sub-acute phase post-stroke and whether the 

muscle is shortened and/or stiffened which is of value in treatment selection. In case of e.g. a 

first exploration of overall joint stiffness in a patient, devices like the NeuroFlexor may be a 

good alternative. 

 

Neuromuscular model 

For administration of botulinum toxin A in e.g. the triceps surae, it can be of benefit to know 

whether the gastrocnemii are most affected or the soleus muscle. With the neuromuscular 

modeling approach it was possible to discriminate between groups of lumped muscle, e.g. 

plantar flexors and dorsiflexors, but not between individual muscles. An alternative method 

was presented for the ankle in chapter 3: by changing the knee angle, the contribution of the 

gastrocnemii muscles and soleus muscle was varying.  

Muscle relaxation and activation, background muscle activation and muscle atrophy interfere 

with the muscle pennation angle32;33;40. This parameter was not included in the present model. 

Also, the elastic muscle tendon was not included. Including the Achilles tendon in the ankle 

 

model did not significantly affect the model parameters in healthy subjects41, but could be of 

value in patients with different phenotypes as Achilles tendon mechanical properties might be 

altered post-stroke42. Changes in pennation angle affect the passive and active force-length 

curves and thus interfere with the model parameters slack length, stiffness and optimal length. 

Thus it was not possible to determine whether an increased slack length in patients post-stroke 

may be caused by a reduced pennation angle due to muscle atrophy40. Additional 

measurements, like ultrasound, are required to study pennation angles as an additional input to 

the model. 

 

Clinical implications and recommendations 

The results in this thesis are a step forward in answering “when” to treat stroke patients by 

performing longitudinal assessments. The EMG-driven neuromuscular modeling approach 

offers opportunity to gain more insight in the development of increased joint stiffness, 

diminished range of motion and rest angle shifts. This information is of value to prevent motor 

disorder developments in future. 

The results in this thesis also gives direction to the question “how” to treat stroke patients, i.e. 

which treatment option is most effective in each individual patient, and is a step forward 

towards personalized treatment. Addressing effects of dose, injection site and technique and the 

potential to discriminate responders from non-responders are important subjects for further 

study considering the costs and the wide spread use of botulinum toxin A treatment. 

Quantification of neural and non-neural components is essential to diminish and eventually 

prevent motor disorders thereby improving activity of daily live and also quality of live in 

patients with stroke.  
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Introductie  

Dit proefschrift gaat over het meten van de gevolgen van een hersenbeschadiging op stijfheid 

van gewrichten en haar onderliggende factoren: neurale (reflexen) en niet-neurale (spier) 

weefsel eigenschappen. In het bijzonder wordt gekeken naar de gevolgen na cerebrale parese 

en cerebro vasculair accident (CVA). Cerebrale parese is een beschadiging van de hersenen die 

voor of tijdens de geboorte ontstaat, bijvoorbeeld door zuurstofgebrek, en wordt gezien bij 2 

per 1000 levende geboortes1;2. Een CVA of beroerte is een hersenbeschadiging op latere leeftijd 

verkregen door een acute stoornis in de bloedvoorziening naar de hersenen, waardoor de 

hersenen te weinig zuurstof krijgen. In de meeste gevallen (80%) komt dit zuurstoftekort door 

een vernauwing of verstopping van een ader in de hersenen (herseninfarct); een andere oorzaak 

is een hersenbloeding3. Het merendeel van de mensen dat een CVA krijgt is ouder dan 65 jaar. 

Omdat onze samenleving vergrijst, zal daarom de mate waarin CVA voorkomt, toenemen. Op 

dit moment is het de tweede belangrijkste doodsoorzaak wereldwijd en staat het hoog op de 

ranglijst van ziekten die beperkingen met zich mee brengen4-6. 

De laatste decennia zijn verbeteringen doorgevoerd in de acute patiëntenzorg na een CVA wat 

resulteert in verhoogde overlevingskansen en vermindering van de initiële hersenschade. Dit 

laatste door toepassing van acute antistolling (trombolyse) en het verwijderen van het stolsel 

(trombectomie). Doordat de overleving beter is, moeten meer mensen leven met de gevolgen 

van een CVA. Dat kunnen problemen zijn met het bewegen, maar ook met taal, spraak en 

mentale en geestelijke gesteldheid7;8. Stoornissen in het bewegen gaan vaak gepaard met een 

verhoogde stijfheid van gewrichten, beperkingen in gewrichtsuitslagen, een abnormale 

buigstand (bijvoorbeeld een spitsvoet) en parese: een verminderde kracht en selectief kunnen 

aansturen van een spier9.  

De revalidatiegeneeskunde maakt in het handelen gebruik van instrumenten en terminologie 

die passen binnen het ICF model (International Classification of Functioning, Disability and 

Health)10;11. In het ICF model staat het functioneren van de patiënt in zijn omgeving centraal. 

Het menselijk functioneren en de factoren die daarop van invloed zijn, worden benaderd vanuit 

de wisselwerking tussen de verschillende aspecten van de gezondheidstoestand en de externe 

en persoonlijke factoren10. Op het ICF niveau “functies en anatomische eigenschappen” richten 

behandelingen zich onder andere op het verminderen van stijfheid, het stabiel houden of 

 

verbeteren van het bewegingsbereik van gewrichten en het corrigeren van de abnormale 

rusthoek. 

De combinatie van stijfheid en overactiviteit van spieren wordt klinisch vaak “spasticiteit” 

genoemd. Echter, de definitie van spasticiteit is nog steeds een punt van discussie9;12. 

Spasticiteit komt in 20-30% van de CVA patiënten voor13. Bij spasticiteit gaat men uit van een 

neuraal (uit de hersenen of ruggenmerg) geïnduceerde reflexstijfheid of anders gezegd een 

snelheidsafhankelijke weerstand van het gewricht bij passief bewegen (definitie van Lance)14. 

Het wordt echter steeds meer duidelijk dat bij gewrichtsstijfheid sprake is van een combinatie 

en/of interactie van neurale (reflexieve) en niet-neurale (spier) weefsel eigenschappen15-18. In 

de klinische praktijk is niet altijd duidelijk of de gewrichtsstijfheid het gevolg is van neurale 

over-activatie van spieren of door niet-neurale verstijving en/of verkorting van (spier) weefsel 

of een combinatie van beide15;19. Het onderscheid is van belang voor het juist toepassen van 

therapie, bijvoorbeeld botuline toxine bij gewrichtsstijfheid van neurale origine en spalk/gips 

of chirurgie bij gewrichtsstijfheid van niet-neurale origine. 

Bij klinische testen, zoals de Ashworth en Tardieu20-22, wordt het gewricht met een bepaalde 

snelheid handmatig bewogen (Figuur 8.1) en de weerstand als maat voor gewrichtsstijfheid 

bepaald. Door dit bij verschillende snelheden te doen wordt getracht de neurale en niet-neurale 

component te onderscheiden. Helaas zijn deze testen weinig gevoelig en onvoldoende 

betrouwbaar voor het meten van onderliggende componenten van toegenomen 

gewrichtsstijfheid. De testen zijn daarnaast subjectief en niet goed reproduceerbaar16;23;24.  
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Figuur 8.1: Demonstratie van de klinische Ashworth test. De voet wordt bewogen richting dorsaalflexie (pijl) om 

de mate van weerstand bij beweging te bepalen.  

 
De neurale en niet-neurale componenten kunnen ontrafeld worden door gebruik te maken van 

systeemidentificatie en parameterschatting (SIPE). Voor deze technieken worden robots 

gebruikt die precieze verstoringen in de vorm van beweging of kracht op het gewricht 

uitoefenen (input) en tegelijkertijd de reactie hierop in respectievelijk kracht en beweging meten 

(output). Door te kijken naar de relatie tussen de opgelegde beweging of kracht en gemeten 

kracht of beweging kunnen systeemeigenschappen van een gewricht worden bepaald18;25-27. 

Door middel van modellen kunnen systeemeigenschappen vertaald worden naar onderliggende 

componenten (parameterschatting) zoals de neurale reflexstijfheid en de niet-neurale 

weefselstijfheid18;28. SIPE is reeds toegepast bij gezonde proefpersonen en patiënten28-33; echter 

met gebruikmaking van kleine verstoringen waarbij het systeem (gewrichts-) gedrag niet 

representatief is voor functionele condities, zoals lopen of het bewegen van een arm. In dit 

proefschrift worden “Parameter Estimation” (PE-) methoden beschreven die zijn ontwikkeld en 

toegepast voor het bepalen van gewrichtsstijfheid onder meer functionele condities34. De 

verstoringen die gebruikt worden, lijken op de klinische testen, zoals de Ashworth en Tardieu. 

De gemeten signalen (spieractiviteit, gewrichtshoek en –moment, i.e. kracht maal arm) worden 

gecombineerd, waarbij ook gebruik wordt gemaakt van spiermodellen voor de flexoren en 

 

extensoren van het gewricht. Parameters in het spiermodel worden geoptimaliseerd zodat de 

gezamenlijke krachten rond het (enkel- of pols-) gewricht, ook wel netto gewrichtsmoment 

genoemd, en welke wordt gemeten met de robot, overeenkomt met het geschatte 

gewrichtsmoment door het model (Figuur 8.2). De waarden van parameters die vervolgens uit 

het model komen, bieden een schatting van onderliggende componenten zoals reflexstijfheid 

en weefselstijfheid. 

 

 

Figuur 8.2: Vereenvoudigde weergave van de in dit proefschrift gebruikte methode met de pols als voorbeeld voor 

het gewricht. Polshoek en spieractivatie (van de polsflexoren en -extensoren) zijn input voor het model. Het 

polsmodel berekent een polsmoment op basis van de (geschatte) parameters van het model. Dit geschatte moment 

wordt vergeleken met het moment gemeten door de polsrobot. De parameters van het model worden zo aangepast 

tot het verschil tussen het geschatte moment en gemeten moment minimaal is. De methode voor het schatten van 

de parameters van de enkel werkt vergelijkbaar met hier gepresenteerde methode voor de pols. 
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Doelen van de onderzoeken beschreven in dit proefschrift zijn: 

1. Het kwantificeren van neurale en niet-neurale eigenschappen van gewrichtsstijfheid bij 

patiënten na een CVA en met cerebrale parese om meer begrip te krijgen van de 

onderliggende mechanismen in het ontstaan en de ontwikkeling van gewrichtsstijfheid. 

Hiervoor is een methode ontwikkeld en gevalideerd (hoofdstuk 2, 3, 4). 

 

2. De ontwikkelde methode is vervolgens gebruikt om functioneel herstel na een CVA beter 

te begrijpen en om het effect van therapie te onderzoeken. Voor het bereiken van dit doel 

zijn de volgende studies uitgevoerd: 

a) De neurale en niet-neurale eigenschappen van gewrichtsstijfheid werden gemeten 

gedurende de eerste 26 weken na een CVA bij groepen patiënten met verschillende 

combinaties van prognose voor functioneel herstel van de bovenste extremiteiten en 

het uiteindelijke functioneel herstel van de bovenste extremiteiten (hoofdstuk 5). 

b) Het effect van botuline toxine A injecties op de neurale en niet-neurale componenten 

van gewrichtsstijfheid werd onderzocht om een eerste stap te maken naar selectie 

voor patiënt-specifieke therapie (hoofdstuk 6). 

 

Hoofdbevindingen 

In hoofdstuk 2 van dit proefschrift worden de neurale en niet-neurale eigenschappen van 

gewrichtsstijfheid in patiënten met cerebrale parese beschreven35. Hiervoor werd gebruikt 

gemaakt van een PE-methode, Figuur 8.2. Patiënten met cerebrale parese lieten een hogere 

reflexactiviteit (neurale component) en een hogere weefselstijfheid (niet-neurale component) 

zien, vergeleken met gezonde proefpersonen. Bovendien werd meer variatie in de verhouding 

van reflexactiviteit en weefselstijfheid gezien in de patiënten dan in de gezonde proefpersonen. 

In patiënten met een beperkt bewegingsbereik van de enkel was de weefselstijfheid groter dan 

in patiënten met een groot bewegingsbereik. Deze studie liet zien, naast de mogelijkheid 

gewrichtsstijfheid te ontbinden in zijn neurale en niet-neurale componenten in patiënten met 

cerebrale parese, dat de verhouding neuraal/niet-neuraal per patiënt varieert, wat de basis is 

voor patiënt-specifieke therapie. 

 

In hoofdstuk 3 werd het spiermodel verfijnd en uitgebreid met parameters om te bepalen of bij 

een patiënt met toegenomen weefselstijfheid sprake is van een verkorting of een verstijving van 

de spier. Hiervoor werden parameters aan het model toegevoegd en de spierlengte formules 

verfijnd voor het schatten van de passieve en actieve kracht-lengte relatie van de voetbuigers 

(kuitspieren, triceps surea) en voetheffers (tibialis anterior). De actieve kracht-lengte relatie 

geeft de mate weer waarin een spier kracht kan leveren bij een bepaalde lengte van de spier. Bij 

de optimale spierlengte kan de spier de meeste kracht leveren. Naast het bepalen van de 

reflexactiviteit, is het model nu in staat de optimale spierlengte, de rustlengte van de spier en 

de stijfheid van de spier te schatten. Het model bleek gevoelig voor het meten van de parameters 

bij verschillende kniehoeken. Op deze manier kan de bijdrage van de verschillende kuitspieren, 

de gastrocnemius spier (bi-articulair) en soleus spier (mono-articulair), gevarieerd worden. 

In hoofdstuk 4 werd het enkelmodel vertaald naar een polsmodel dat in staat is om de 

eigenschappen van de strekkers (extensoren) en buigers (flexoren) van het polsgewricht te 

schatten36. Bij een groep patiënten met een CVA meer dan 6 maanden voorafgaand aan de 

meting (chronische fase na CVA), werd het model toegepast en werd toegenomen 

reflexactiviteit en toegenomen weefselstijfheid aangetoond met het model. Het bleek dat de 

weefselstijfheid samenging met een kleinere optimale spierlengte en kortere rustlengte van de 

spier, waaruit geconcludeerd werd dat de buigspieren van de pols bij de CVA patiënten waren 

verkort. 

Veranderingen van de neurale en niet-neurale eigenschappen van de polsbuigers en -strekkers 

in de eerste 26 weken na een CVA worden beschreven in hoofdstuk 5. In deze studie werden 

de patiënten ingedeeld in groepen, gebaseerd op een goede of slechte prognose voor functionele 

uitkomst van de bovenste extremiteiten en een daadwerkelijk goed of slecht functioneel herstel 

van de bovenste extremiteiten na 26 weken. Dit resulteerde in drie groepen: patiënten met goede 

prognose en goed herstel, patiënten met een slechte prognose en goed herstel en patiënten met 

slechte prognose en slecht herstel. Bij patiënten met een slechte prognose voor functionele 

uitkomst na 26 weken en uiteindelijk ook een slecht functioneel herstel werd verkorting van 

polsbuigers waargenomen rond week 4 en 5 na het CVA37. De verkorting van spieren ging 

samen met een afgenomen rusthoek van de pols gevonden vanaf acht weken na het CVA38. Bij 

deze patiënten werd pas na twaalf weken een toegenomen neurale component gevonden37. Deze 
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resultaten laten zien dat de methode gebruikt kan worden in studies naar het verloop van 

onderliggende factoren van gewrichtsstijfheid en kan mogelijk ook bijdragen aan het 

ontwikkelen en evalueren van behandelingen om spierverkorting tegen te gaan. 

Botuline toxine A injecties worden veel gegeven in overactieve spieren om zo de 

gewrichtsstijfheid tegen te gaan, het bewegingsbereik van het gewricht te vergroten en om 

ongewenste ruststand van het gewricht te herstellen39-42. Het effect van deze behandeling op de 

neurale en niet-neurale componenten van gewrichtsstijfheid van de enkel werd onderzocht in 

chronische CVA patiënten en beschreven in hoofdstuk 6. Het bewegingsbereik en de ruststand 

van de enkel werden verbeterd door toepassing van botuline toxine A injecties. Deze 

verbeteringen gingen samen met een verandering van de weefselstijfheid, spierrustlengte en 

spieractiviteit (op basis van elektromyografie, EMG) van de achterste kuitspier (m. soleus). Er 

werd echter geen relatie met reflexactiviteit gevonden. Deze resultaten onderbouwen de 

hypothese dat botuline toxine A niet zozeer op reflexactiviteit werkt, maar op de rustactiviteit 

van spieren. Deze rustactiviteit van de spieren is een neurale component die we nog niet kunnen 

schatten met het huidige model. Ook in deze studie is te zien dat klinisch waarneembare 

veranderingen, zoals toegenomen gewrichtsstijfheid, verminderd bewegingsbereik en 

ongewenste ruststand van de enkel, gerelateerd kunnen worden aan onderliggende neurale en 

niet-neurale weefseleigenschappen van het gewricht. Deze informatie is nuttig voor het begrip 

van deze drie klinisch waarneembare veranderingen, voor de diagnose en het monitoren ervan. 

De resultaten laten daarnaast zien dat de methode gebruikt kan worden bij patiënt-specifieke 

therapiekeuze en vaststellen van het behandeleffect. 

 

  

 

Reflectie 

Niet-neurale weefselveranderingen gaan vooraf aan neurale reflexieve veranderingen 

De mate van functiebeperkingen in het bewegingsapparaat en het herstel na een CVA hangt 

samen met de plaats en omvang van de hersenschade en wordt bepaald door nog onbekende 

neurobiologische processen43. Van de groep patiënten met een slechte initiële prognose voor 

functioneel herstel van de bovenste extremiteiten zijn er die functioneel redelijk of goed 

herstellen, maar ook patiënten die een slecht functioneel herstel laten zien van de bovenste 

extremiteiten. De mechanismen die enerzijds een goed functioneel herstel en anderzijds de 

ontwikkeling van toegenomen gewrichtsstijfheid, veranderde ruststand van het gewricht en 

afgenomen bewegingsbereik bepalen, zijn nog onvoldoende begrepen en spelen zich 

voornamelijk af in de eerste acht weken na een CVA44;45. Een verminderde neurale aansturing 

van spieren resulteert mogelijk in het niet gebruiken en daardoor immobilisatie van spieren. 

Spieren die geïmmobiliseerd zijn in een verkorte positie gaan zich aanpassen aan deze verkorte 

spierlengte en verliezen sarcomeren (contractiele eenheden om spieren samen te trekken) om 

toch kracht te kunnen uitoefenen met deze kortere spierlengte46-50. Als gezonde proefpersonen 

vergeleken worden met CVA patiënten met verkorte spieren, op een vergelijkbare stand van 

het gewricht, zal de spanning in de spieren van patiënten veel hoger zijn en dus ook de 

weerstand bij bewegen, zoals ook beschreven door Lieber en Friden51. De verhoogde spanning 

in verkorte spieren kan bij rek ook bijdragen aan een hogere respons van spierspoeltjes. 

Spierspoeltjes zijn belangrijk in het genereren van reflexen. Verhoogde gevoeligheid van 

spierspoeltjes zal resulteren in een hogere reflexactiviteit48. Een verhoogde rustactivatie als 

gevolg van veranderde neurale input, zoals beschreven door Burne en collega’s, kan ook leiden 

tot verhoogde reflexactiviteit19. In de longitudinale studie is gekeken naar verhoogde 

spieractiviteit op basis van EMG gemeten in rust. Er konden geen verschillen worden 

aangetoond in spieractiviteit tussen de verschillende groepen37. Dit is een mogelijke aanwijzing 

dat de verhoogde reflexactiviteit bij patiënten met slecht functioneel herstel niet werd 

veroorzaakt door verhoogde spieractiviteit in rust. Omdat spieractiviteit gemeten met EMG een 

relatieve maat is, is het wenselijk om de bijdrage van de neurale activatie leidend tot 

spieractiviteit in rust met het model te kunnen kwantificeren. Hiermee zou de hypothese over 

de bijdrage van rustactiviteit van de spier met meer zekerheid kunnen worden getoetst.  
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Verschillen in de niet-neurale eigenschappen bij de verschillende groepen op basis van de mate 

van functioneel herstel van de bovenste extremiteiten waren te zien vanaf vier tot vijf weken na 

het CVA37. Een belangrijk aandachtsgebied voor de revalidatiegeneeskunde in deze eerste 

weken, kan zijn het voorkomen van weefselveranderingen in de acute en subacute fase (< 6 

maanden). In de praktijk betekent dat voorkomen van immobilisatie in flexiestand van het 

gewricht, waarbij verkorting van de spier wordt tegen gegaan, door op dag één na het CVA te 

starten met fysiotherapie, stimulatie van spieren en/of een splint of spalk om abnormale 

gewrichtsstand te voorkomen. De methode beschreven in dit proefschrift kan een belangrijke 

bijdrage leveren aan het monitoren van neurale en niet-neurale veranderingen en het 

ondersteunen bij het kiezen van de juiste behandeling gericht op de neurale en/of niet-neurale 

component op het juiste moment. 

 

Botuline toxine A verlaagt rustactiviteit van de spier 

Botuline toxine A wordt vaak toegepast in spieren om activatie van de spier te verminderen en 

zo de gewrichtsstijfheid te reduceren, het bewegingsbereik van het gewricht te vergroten en de 

rusthoek van het gewricht te corrigeren39;40;52-57. Voor een goed begrip van het effect van 

botuline toxine A is kennis nodig van de neurale en niet-neurale componenten van het gewricht 

en interactie(s) tussen beide componenten. De vraag is dan ook wat een verandering in één van 

deze componenten voor gevolgen heeft voor de andere component58. En dus ook wat het effect 

van een therapie voor invloed heeft op beide componenten. Deze kennis is een voorwaarde voor 

een optimaal gebruik van botuline toxine A voor het behandelen van bewegingsstoornissen na 

een CVA. 

In een groep met CVA patiënten zagen we na behandeling met botuline toxine A in de 

kuitspieren dat het bewegingsbereik van de enkel verbeterde richting “normaal” en ook de 

rusthoek van de enkel normaliseerde. Deze veranderingen in het enkelgewricht gingen samen 

met veranderingen in weefselstijfheid, lengte van de kuitspieren en verandering in spieractivatie 

van de achterste kuitspier (soleus, op basis van EMG). Tegen de verwachting in bleek er geen 

verband tussen de reflexactiviteit en het bewegingsbereik en de rusthoek van de enkel.  

 

Er werd een grote variatie in aanvankelijke weefselstijfheid en spierlengte tussen de patiënten 

gevonden en niet alle patiënten verbeterden in uitkomstparameters na botuline toxine A 

injecties. Patiënten met een hoge weefselstijfheid en/of korte lengte van de kuitspieren leken 

meer baat te hebben bij botuline toxine injecties. Door te “selecteren” op deze eigenschappen 

zou het succespercentage van botuline toxine A kunnen stijgen, onnodige behandelingen 

kunnen worden voorkomen en zo de zorgkosten verlaagd worden.  

Botuline toxine A wordt over het algemeen toegediend om de reflexcomponent tegen te gaan. 

In deze studie werd aangetoond dat er een effect lijkt te zijn op de rustactivatie van de spier. De 

werking van botuline toxine A kan als volgt uitgelegd worden: Botuline toxine A verlaagt de 

rustactivatie van de spier. Dit zorgt ervoor dat de spier ontspant, waardoor de spierlengte in rust 

en het bewegingsbereik vergroten. Rustactivatie van de spier is experimenteel lastig vast te 

stellen en kan met het huidige model niet geschat worden. Omdat we de gemeten kracht zo 

goed mogelijk willen voorspellen met het model (Figuur 8.2), kan het zijn dat de andere 

componenten van het spiermodel, zoals de weefselstijfheid en rustlengte van de spier, deze 

rustactivatie gaan beschrijven. De lengte van de spier kan namelijk ook veranderen door een 

afname van de pennatiehoek van de spier door ontspanning van de spier59;60. Aangezien de 

rustactivatie van de spier belangrijk lijkt te zijn voor de mate van reflexactiviteit19 en weerstand 

bij bewegen en tot nu toe alleen kan worden geschat op basis van het EMG, zal het 

kwantificeren van deze neurale component met het model een belangrijke volgende uitdaging 

zijn.  

 

Ontwikkeling van gewrichtsstijfheid in CVA patiënten en patiënten met cerebrale parese 

Dit proefschrift richt zich voornamelijk op patiënten na een CVA, maar toepasbaarheid van de 

methode is ook aangetoond in patiënten met cerebrale parese35. De ontwikkeling in de tijd van 

de neurale en niet-neurale componenten is onderzocht in CVA patiënten37, maar dit is nog niet 

gedaan in patiënten met cerebrale parese. Leeftijd heeft in deze CP-groep mogelijk een effect 

op de verhouding van neurale en niet-neurale componenten61 en een negatief effect op het 

bewegingsbereik van de enkel62. De invloed van leeftijd bij cerebrale parese dient nader 

onderzocht te worden om een beter inzicht te krijgen in de ontwikkeling van gewrichtsstijfheid 

en de mogelijke consequenties voor behandeling. 
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component op het juiste moment. 
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stellen en kan met het huidige model niet geschat worden. Omdat we de gemeten kracht zo 
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bij bewegen en tot nu toe alleen kan worden geschat op basis van het EMG, zal het 
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Toekomstperspectief 

Toepassing in de klinische praktijk 

De methode gebruikt in de studies kan toegepast worden bij patiënten met verschillende mate 

van afwijkende gewrichtsstand, afgenomen bewegingsbereik en toegenomen 

gewrichtsstijfheid. In dit proefschrift is de methode toegepast bij patiënten met cerebrale parese 

en CVA. De methode is veilig, comfortabel voor de patiënt en vereist geen vrijwillige 

aansturing van de spieren. In Figuur 8.3 is de huidige opstelling te zien voor het meten van 

enkelgewrichtsstijfheid.  

 

Figuur 8.3: Stoel Achilles (uit gebruikershandleiding (concept 12-03-2019) voor de Achillesstoelcombinatie 1.0, 

Facilitair Bedrijf, Instrumentele Zaken, ©Leids Universitair Medisch Centrum). 

 

 

De in het proefschrift toegepaste PE-methode maakt gebruik van op de klinische Ashworth en 

Tardieu test gebaseerde bewegingen over het hele bereik van het gewricht. Hierdoor is een 

vergelijk met klinische testen mogelijk, wat minder het geval zal zijn bij SIPE technieken 

waarbij met kleine bewegingen wordt gewerkt. Het passief bewegen van het gewricht wijkt wel 

af van actieve functionele taken zoals lopen.  

Klinische toepasbaarheid kan vergroot worden door de voorbereidingstijd te verkorten. De 

voorbereidingstijd is twee tot drie keer langer dan de meettijd door het plakken van de 

electroden voor spieractiviteit (EMG) en door het goed positioneren van de patiënt in het 

apparaat. Er zijn ook methodes zonder EMG. Een voorbeeld hiervan is de NeuroFlexor. De 

NeuroFlexor laat betrouwbare waarden zien voor de neurale en niet-neurale component63;64, 

maar maakt geen onderscheid in onderliggende eigenschappen zoals lengte en stijfheid van de 

spier. Echter, deze informatie is wel essentieel om onderliggende componenten van 

gewrichtsstijfheid te onderzoeken en de juiste behandeling te selecteren. Apparaten zoals de 

NeuroFlexor kunnen een goed alternatief zijn voor een eerste verkenning van de mate van 

toegenomen gewrichtsstijfheid.  

 

Het spiermodel 

De methode beschreven in dit proefschrift gaat uit van spiergroepen (bijvoorbeeld kuitspieren 

of buigspieren van de pols), maar nog niet van geïsoleerde spieren. Voor toediening van 

botuline toxine A kan het belangrijk zijn te weten welke spier in de spiergroep het meest 

bijdraagt aan de gewrichtsstijfheid. In hoofdstuk 3 is een eerste stap gezet door gebruik te 

maken van de selectieve bijdrage van de kuitspieren aan het enkelmoment bij verschillende 

kniehoeken. Op deze manier kan de bijdrage van de verschillende kuitspieren, de gastrocnemius 

spier (bi-articulair) en soleus spier (mono-articulair), gevarieerd worden.  

Het model is een vereenvoudiging van de werkelijkheid en keuzes zijn gemaakt welke 

componenten en parameters essentieel zijn in het model. De belangrijkste twee elementen die 

onderzocht moeten worden of het meerwaarde heeft deze toe te voegen zijn de pennatiehoek 

van de spier en de spierpees. In gezonde proefpersonen leek toevoegen van een peesmodel geen 

significant effect te hebben op de modelparameters van de spier65. Echter, na een CVA of 
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Toekomstperspectief 
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spier (bi-articulair) en soleus spier (mono-articulair), gevarieerd worden.  

Het model is een vereenvoudiging van de werkelijkheid en keuzes zijn gemaakt welke 

componenten en parameters essentieel zijn in het model. De belangrijkste twee elementen die 

onderzocht moeten worden of het meerwaarde heeft deze toe te voegen zijn de pennatiehoek 

van de spier en de spierpees. In gezonde proefpersonen leek toevoegen van een peesmodel geen 

significant effect te hebben op de modelparameters van de spier65. Echter, na een CVA of 
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cerebrale parese kan dit wel het geval zijn doordat de peeseigenschappen veranderd kunnen 

zijn66. De pennatiehoek van de spier kan veranderen door spierontspanning en -aanspanning, 

rustactivatie van de spier en spieratrofie59;60;67. Veranderingen in de pennatiehoek hebben 

invloed op de passieve en actieve kracht-lengte relatie van de spier en kunnen invloed hebben 

op de modelparameters “rustlengte van de spier”, “weefselstijfheid” en “optimale spierlengte”. 

Deze pennatiehoek kan door deze afhankelijkheid niet apart worden geschat met het model en 

zal dus als ‘input’ in het model moeten worden meegegeven. Echografie kan gebruikt worden 

om pennatiehoeken van de spieren te onderzoeken. Zoals eerder genoemd is het ook wenselijk 

om met het model de neurale component “rustactivatie van de spier” te schatten.  

 

Klinische implicaties 

De resultaten in dit proefschrift brengen ons een stap dichter bij het beantwoorden van de vraag 

“wanneer” behandeld moet worden, door in de tijd naar veranderingen in neurale en niet-

neurale componenten van het gewricht te kijken. Ook geeft het proefschrift richting in het “hoe” 

we beter kunnen behandelen: welke behandeling is het beste voor welke patiënt? Door verder 

onderzoek te doen naar dosis, injectieplaats en -techniek en door botuline toxine A alleen te 

injecteren bij patiënten bij wie vooraf bepaald is dat het effect heeft, kunnen de kosten en 

gebruik van botuline toxine A mogelijk gereduceerd worden. Het kwantificeren van de neurale 

en niet-neurale componenten van toegenomen gewrichtsstijfheid bij patiënten is essentieel voor 

het begrijpen en behandelen van bewegingsbeperkingen met het doel functioneren in de 

dagelijkse praktijk en kwaliteit van leven te verbeteren.  
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