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1. Introduction

1.1. Preface
Over the past decades (and beyond), condensed matter theory has con-
cerned itself with the classification of physical systems into phases of matter,
from which generic features can be identified. This is exemplarized by the
recent efforts in studying topological physics: systems classified by global
properties that remain invariant under local deformation or perturbation.
Motivated originally by quantum Hall systems [1], many such phases have
been discovered: topological insulators [2, 3], Majorana wires [31, 35],
Weyl semimetals [4, 5, 92, 93] and quantum spin Hall systems [6, 7] being
perhaps the most famous examples. These systems promise various exotic
properties; anomalous responses to driving fields [62], conducting states
immune to localization [2], and perhaps most strikingly, the possibility
for excitations that satisfy non-Abelian statistics [8]. However, in lieu of
microscopic details of a specific system, the above properties are necessarily
qualitative, and quantitative features tend to vary between two systems
described by the same toy model.

The field of quantum information, concerned with precise control of single
degrees of freedom in small quantum systems, is in direct contrast the above
broad strokes. Recent advances in experimental work focus on improving
manufacture and measurement to below the one percent mark (in state-
of-the-art devices) for all gates and measurement pulses [167, 169, 183],
requiring unique, individual control over separate qubits. Then, as the
quantum community pushes ever closer to the goal of outperforming
classical computers at first any [9, 10] and then useful [263] tasks, we
become focused on stretching any advantage as far as can be, optimizing
algorithms [266, 290, 291], error mitigation techniques [11–15], and classical
control software in lieu of fault-tolerant qubits. This has also made
quantum information results-oriented, and less concerned with bigger
picture questions like classifying all topological phases of matter.
However, despite the gap above, the two fields remain intertwined

and co-dependent. Many quantum information platforms are based on
condensed matter systems, such as superconductors [88] and quantum

1



1. Introduction

dots [16]. Possibly the most famous such platform is that of Majorana
zero modes [35] (or Majorana bound states), which promise topological
protection for quantum operations, possibly negating some of the need
for the above fine tuning. On a slightly higher level, probably the most
studied quantum error correcting codes are topological codes, which find
their roots in Kitaev’s celebrated toric code in condensed matter [220].
In return, quantum computers promise to improve our ability to model
condensed matter physics, by solving the many-body problem (as originally
proposed by Feynman [17]). Also, ideas about entanglement entropy
and mutual information have allowed serious advances already in our
understanding of such quantum systems. It is very notable that the same
mathematics permeates the two fields; in particular the Pauli matrices
{X,Y, Z} ≡ {σx, σy, σz}, which are present as spins in condensed matter
systems and qubits in quantum information.

This thesis explores various topics on both sides of the boundary between
condensed matter and quantum information, and some directly at the
interface between the two. It has been split into three parts, containing
chapters loosely centered on three main topics. This introduction now
attempts to give some background required for the various topics therin.

1.2. Topological phases of matter

One of the most successful studies in theoretical physics has been the
classification of phases of matter: regions in the parameter space of physical
systems which display similar characteristics. This is important, as we are
often uninterested in precise details of a physical system. Experiments tend
to contain some level of unknown disorder, results requiring fine-tuning
tend not to be reproducible, and broad features are much more applicable
to the universe outside the lab.
To make connection between topological and non-topological phase

transitions, let us consider the textbook example of the difference between
metals and insulators [24, 25]. Let us take a toy model of a D-dimensional
non-interacting lattice Hamiltonian

ĤNI =
∑
~i,~j,a,b

H~i,a,~j,bĉ
†
~i,a
ĉ~j,b, (1.1)

where ĉ†i,a (ĉi,a) creates (annihilates) an electron on site ~i in spin-orbital

2



1.2. Topological phases of matter

a∗. Following Bloch’s theorem [26], if ĤNI is invariant under DTI linearly
independent translations ~i → ~i + ~δn, it may be block-diagonalized by a
Fourier transform of the creation and annihilation operators

ĉ~k,α =
∞∑

j1,...,jDTI=−∞
exp

(
i
∑
n

jn~δn · ~k

)
ĉ~iα+

∑
n
jn~δn, aα

. (1.2)

Here, α is taken from a maximal unit cell of spin-orbitals (iα, aα) that
cannot be joined by translations of ~δn, and ~k is taken from the Brillouin
zone:

ĉ~k′,α ≡ ĉ~k,α if ~k · ~δn = ~k′ · ~δn mod 2π (1.3)

We may then write

ĤNI = ⊕~kĤNI(~k), ĤNI(~k) =
∑
α,β

Hα,β(~k)ĉ†~k,αĉ
†
~k,β
. (1.4)

This construction is then a map from the DTI-dimensional torus to a set of
energy bands. Following the Fermi-Dirac principle, only a single electron
may occupy each spin-orbital in each point of the Brillouin zone, which
implies that only a single electron per unit cell may occupy any given
energy band.. Then, the many-body ground state can be found by filling
up each energy band with Eα(~k) < 0 One may add a chemical potential
µ
∑
α,~k ĉ

†
α(~k)ĉα(~k) to adjust this. Physically this is performed by doping

the system, or by applying an external potential. Band theory dictates
that when all energy bands are far from zero energy the system is an
insulator, and when some bands pass through E = 0 the system is a metal.

As physics is local, phases are necessarily local: a single system may be
split into different phases in different spatial regions. A boundary, being
caught between two phases, may then display different physical properties
to the regions on either side. In the above example, one may have two local
insulators at a PN junction, such that the Fermi level must pass through
a band as we shift between the two regions, creating a conducting surface.
One can then ask the question whether it is possible to have a boundary
without a (obvious) phase transition: is it possible to have two systems that
look locally identical, but necessitate a boundary between whenever they
touch? An equivalent question is whether phases can be non-local: can two
phases of matter exist such that a local observer within one phase cannot
∗Lattice models do not generally require that every site contains the same set of

orbitals, in which case the sum over a and b is different for each choice of sites ~i and ~j
in Eq. 1.1.
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1. Introduction

determine which of the two they are in? The answer to these questions
is yes, and such non-local phases are called ‘topological’ [27]. We note
that the above example is explicitly not an example of such a topological
phase; one may distinguish phases by the local electron density per unit
cell

∑
a〈ĉ†aĉa〉. Importantly, this means that the conducting interface in

a PN junction is not robust against disorder or interactions, which lead
to other types of insulating behaviour [28, 29]. By contrast, topological
phase transitions are robust against such behaviour.
The vauge notion of ‘similar characteristics’ in topological phases is

quantified by a topological invariant [27]. This is a similar object to
the order parameters of Landau [30] which characterise regular phases.
However, there are two key differences:

1. Two phases characterised by an order parameter o have o = 0 in one
phase and o > 0 in the other, such that o → 0 as one approaches
the phase boundary from either side. Phases characterised by a
topological invariant χ have strictly χ = χ1 in one phase and χ = χ2
in the other, and the topological invariant ceases to be defined at
the boundary (as it cannot be multivalued).

2. Order parameters are (typically) local - they may be calculated as
an expectation value of a sum of strictly local terms. Topological
invariants are by definition non-local, and cannot be written as such
an expectation value.

1.2.1. Topological quantum computation with
Majorana zero-modes

A system with a genuine topological phase transition is the one-dimensional
Kitaev chain [31]. This system (Fig. 1.1) has the Bogoliubov-de Gennes
superconducting Hamiltonian [32, 33]

ĤNI =
∑
i

(
−µĉ†i ĉi − tĉ

†
i ĉi+1 + tĉ†i+1ĉi + ∆ĉ†i ĉ

†
i+1 −∆ĉiĉi+1

)
, (1.5)

One may diagonalize such a Hamiltonian as in Eq. 1.4, but in order to
account for the non-particle conserving terms, we must make use of the
Bogoliubov transformation between a particle with wavevector k and its
hole at wavevector −k. This requires that the non-interacting blocks of

4



1.2. Topological phases of matter

the Hamiltonian take the form∗

ĤNI(k) =t(k)ĉ†k ĉk + t(k)ĉ−k ĉ†−k + ∆(k)ĉ†k ĉ
†
−k + ∆∗(k)ĉ−k ĉk. (1.6)

At k = 0 and k = π, k ≡ −k, and so ∆(0) = ∆(π) = 0 (as ĉ2k = ĉ†2k = 0).
This implies that the particle and hole sectors of the Hamiltonians are split;
if gapped, the two eigenstates of these Hamiltonians are either entirely
electron or entirely hole. Note that in the BdG formulation, only positive
energy eigenstates correspond to allowed excitations of the BCS ground
state [33]. Let us denote the particle-hole parity of the positive energy
eigenstate of ĤNI(k) as P (ĤNI(k)).† The only way then to continuously
tune t, µ and ∆ to change from P (ĤNI(0)) = −1to P (ĤNI(0)) = +1 is
to pass through a gapless state (and the same for P (ĤNI(π)). If two
phases have the same product χ = P (ĤNI(0))P (ĤNI(π)), it turns out that
continuously tuning from one to the other is equivalent to the PN transi-
tion described earlier (i.e. non-topological). In particular, such a phase
transition produces two zero energy states at k = 0 and k = π; these may
be gapped out by any perturbation that couples these two wavevectors [34].
However, a phase transition in which the sign of χ changes necessitates
a single zero energy state, which in turn cannot be coupled and gapped.
Such a zero-energy crossing cannot be gapped out by any mechanism
that does not break particle-hole symmetry (allowing the state to couple
to its hole counterpart) [31]. This scenario is complicated in realistic
settings by additional bands (and in particular electron spin), however
under appropriate conditions the topological phase can be retained [36–38],
and experimental signatures (such as those shown in Fig. 1.1) have been
obtained that suggest its existence in various physical systems [35, 39, 40]
(although this remains somewhat contentious [41, 42]).

A one-dimensional chain has two ends, and so the zero-energy excitation
at a topological-normal phase transition is split evenly across the two
ends. This implies that Majorana zero-modes γ̂1,2 that commute with ĤNI
are exponentially localised to either end of the chain. Such operators are
Hermitian, and anti-commute with each other. Majorana zero-modes may
be coupled by proximity, which adds terms of the form E

∏
i γ̂i to the

Hamiltonian. However, particle-hole symmetry requires such a term to be
a product of an even number of Majorana zero-modes only. Given a system

∗Please note that compared to Eq. 1.4, we have dropped the vector symbol from
the wavevector as we are in one dimension, and lost the α index as we have only one
fermion per unit cell.
†This is equivalent to the sign of the Pfaffian of the Hamiltonian in its antisymmetric

form [31].
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1. Introduction

Figure 1.1.: Experimental realization of the Kitaev chain in a superconducting
nanowire. (left) Conductance spectrum; the peak at zero bias is evidence for the
existence of a Majorana state at zero energy. (right) The experimental device;
when the central wire is in contact with the superconductor (labelled S), and the
external magnetic field is correctly tuned, it is hypothesized that the low-energy
effective theory is that of the Kitaev chain. Figure taken with permission from
Ref. [35].

of three Majorana zero-modes γ1,2,3 (say at the ends of three wires), such
interactions are insufficient to gap all three states; a linear combination
of the zero-modes will continue to commute with the Hamiltonian [34].
(In larger systems with the possibility of strong correlations, this is raised
from a 2-fold to an 8-fold periodicity [34].) Particle-hole symmetry also
prevents odd products of Majorana zero-modes from being measured; such
a measurement would project the system into a state which is not a parity-
eigenstate. However, a product of two Majorana zero-modes defines a
fermion, 1

2 (1−iγiγj), which has a well-defined parity in a superconductor. If
2N such Majorana zero-modes are share a common superconducting phase,
their ground state is 2N/2-fold degenerate (up to corrections exponentially
small in the separation of the Majorana zero-modes), with the broken
degeneracy being due to the Coulomb energy of the superconductor [34]. If
such a system is decoupled from other Majorana zero-modes and grounded,
it will decohere into a parity eigenstate [43] (separate from any decoupled
fermions); and may be measured by connection to a quantum dot or
lead [44].
The most interesting characteristic of Majorana zero-modes is their

evolution under exchange. Majorana zero-modes γi, γj may be swapped
by tuning external potentials adiabatically. This entails the evolution
of the ground state under a unitary U(0, t) such that U(0, t)γi|ψ(0)〉 =
eiφγj |ψ(t)〉 [43, 45, 46]. If done adiabatically, the system remains in the
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1.2. Topological phases of matter

ground state. This then requires a time both long enough to prevent
excitation to higher-energy states, and short enough to prevent accumula-
tion of phase from coupling Majorana zero-modes (which in turn requires
Majorana zero-modes be sufficiently separated at all times). The phase φ is
key here; one could imagine gauging it away by choosing |ψ(t)〉 differently,
but if |ψ(t)〉 = |ψ(0)〉 this is not possible. In this case, the remaining
Berry phase is a physical object, and could be observed by performing
the same operation on superpositions of different |ψ(0)〉. In particular,
one may show that the Berry phase incurred by a unitary that takes a
single Majorana zero-mode on a single loop around N other Majorana
zero-modes is φ = Nπ. Such a phase is a property of the topology of the
path (namely that it wraps around other Majorana zero-modes), and is
unaffected by local perturbations. We are free to choose any gauge for
our unitaries that produces this final result; one such choice is to assign
the operator eiπ4 γiγj to the exchange of Majorana zero-modes i and j.
With this choice of gauge, one may realise the entire Clifford group on
the parity-protected sector of 2N Majorana zero-modes by braiding [47].
As fault-tolerant universal quantum computation may be achieved with
noiseless Clifford gates and a single noisy non-Clifford unitary [48], this
makes Majorana zero-modes an attractive option for quantum devices.
In chapter 7 we will study this in more detail for the purposes of digital
quantum simulation of fermionic systems, and show that such quantum
computers allow for simpler such algorithms than devices using bosonic
qubit modes.

1.2.2. Weyl semimetals

In the previous section, a protected zero-energy mode emerged at the
boundary of a band insulator. One could ask whether it is possible to
arrange for such a mode to remain inside the bulk of the system instead
of the surface. To be specific, this corresponds to constructing an overlap
between two (or more [49], but in this work, we only consider two) energy
bands that cannot be lifted by local perturbations. Such a two-band
system is described by a Hamiltonian Ĥ(~k) that is a two-state system
for each ~k. Modulo a chemical potential, a band overlap implies that
Ĥ(~k0) = 0 for some ~k0. Perturbation theory suggests such a degeneracy
would be unstable against any perturbation [25], which would split the
states by introducing some non-trivial term δĤ =

∑
aEaσa for a = x, y, z.

However, suppose if, the Hamiltonian takes the structure of the (3D) Weyl

7



1. Introduction

Hamiltonian∗ [50],

ĤWeyl(~k) = ~σ · J · (~k − ~k0), (1.7)

where J is a invertible 3 × 3 matrix. Such a Hamiltonian has a conical
bandstructure that overlaps at ~k = ~k0 (see Fig. 1.2). In this system, the
perturbation described above could be absorbed into the Hamiltonian by
shifting ~k0 → ~k′0 = ~k0 − J−1 ~E. This result would then continue to have
a zero mode, although the position (the Weyl point) of this mode would
shift from ~k0 to ~k′0. One might consider a perturbation that varies in ~k
- δĤ(~k) =

∑
aEa(~k)σa + E0(~k). So long as Ea(~k) is bounded above, a

solution exists to the coupled equations J ·~k+Ea(~k) = 0, and at each such
point ~knew a Weyl cone exists to first order in ~k − ~knew. A system with
such a bandstructure near the Fermi surface is known as a Weyl semimetal.

The term E0(~k) does not change the band gap and thus does not affect
the cone position. However, it may distort the Weyl cone instead. In
particular, the first-order contribution E0(~k) ≈ ~a · (~k − ~k0) tilts the cone
in the direction ~a [51–59]. (One should note that this ‘tilting’ involves
making the cone broader, rather than rotating it in the ~a− E plane. The
latter would eventually fix the number of bands at a point ~k to be 6= 2,
which implies they can no longer be generated by a 2× 2 Hamiltonian.)
When ‖~a‖2 > ‖J~a‖, this tilting pushes both bands below the Weyl point
in the ~a direction (and both above the Weyl point in the -~a direction
- see Fig. 1.2). This type-II Weyl cone has a non-trivial Fermi surface,
which is conical when the chemical potential is fixed to the Weyl point
(as opposed to the Fermi surface of an un-tilted Weyl cone, which is a
point). In Chapter 2 we study the effect this Fermi surface might have in
magnetic transport experiments.

A topological invariant that captures the above physics is the existence
or non-existence of the Weyl point. However, one is not generally presented
with a Hamiltonian of the form Eq. 1.7. Instead, to construct this invariant
rigorously, one may integrate the Berry curvature [61] over a closed surface
containing the Weyl point, to give the chiral charge [154]. If |Ψ+(~k)〉 is
the ground state of ĤWeyl, this is defined as

χ = i

2π

∮
K
·∇~k × 〈Ψ(~k)|∇~k|Ψ(~k)〉 · d~K (1.8)

∗We choose to represent the Pauli matrices as σx, σy, σz here as this is more
common in the literature, and as we use the same notation in Part I.
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1.2. Topological phases of matter

Figure 1.2.: Bandstructure for tilted (or type-II) and untilted (or type-I) Weyl
cones. (left) Weyl cone cartoon, showing a two-dimensional cut through the
bandstructure of type-I and type-II Weyl cones, where the type-II Weyl cone
is tilted in the ky-direction. (right) Experimental observation of type-I Weyl
cones in TaAs (bottom) and type-II Weyl cones in LaAlGe (top) via ARPES
measurements. Right figure taken with permission from Ref. [60]
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1. Introduction

The integrand here is divergence-free as long as |Ψ(~k)〉 is well-defined, so
Gauss’ theorem implies this integral is independent of the exact choice of
K, and that a non-zero χ must imply a singularity at some point ~k0 inside
the surface.

One may evaluate the integral by substituting the wavevector ~k′ =
J(~k − ~k0), which sets ĤWeyl = ~σ · ~k′. This sends ∇~k → J∇~k′ , and
d~K → JT det(J)−1d~K′, which cancel out in the integral. If ~k′ is written
in polar co-ordinates (kr, kθ, kφ), we have

|Ψ+(~k′)〉 = sin(k′θ/2)|0〉 − cos(k′θ/2)eik
′
φ |1〉. (1.9)

Our integral is then

χ = −1
2π

∮
K
∇~k′ ×

(
0, 0, cos2(k′θ/2)

k′r sin(k′θ)

)
· d~K

= 1
2π

∮
K

(
1

2k′2r
, 0, 0

)
· d~K. (1.10)

We are free to choose our surface of integration, so let us take a unit sphere
in ~k′. However, the direction of the surface element matters - our surface
element originally pointed out, and if det(J) < 0 this will be inverted
under the transformation, so:

χ = sign(det(J))
2π

∫ 2π

0
dk′φ

∫ π

0

1
2 sin(k′θ)dk′θ = sign(det(J)) (1.11)

That the chiral charge χ is signed is no accident. We observed that χmay
only be affected by passing Weyl points (or other singularities) through the
surface of integration K, and so if it were absolute, it would be impossible
to perturb a bandstructure to create a Weyl point in the first place. Instead,
two Weyl points of opposite chiral charge may combine and annihilate to
create an entirely gapped spectrum [154]. Importantly, if one chooses K
to be the Brillouin zone of a periodic system, the integration cancels [154],
implying that the sum charge of all Weyl points in a bandstructure must be
0. This is important, as under applied electromagnetic fields, single Weyl
cones produce particles or holes, depending on their sign [62, 63]. This
is known as the chiral magnetic effect, and must cancel out to conserve
charge [64, 65]. In Chapter 3, we will explore how one can recover this
as a charge current in a superconductor, where this conservation law no
longer applies.
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1.3. Quantum error correction

1.3. Quantum error correction
The primary reason why quantum computers have not yet surpassed their
classical counterparts is due to the fragility of quantum states. As a
quantum computation proceeds, the physical system accumulates errors,
which are unwanted operations on the quantum state. Accumulation of
these operations will destroy any information contained in the quantum
state. This necessitates the spending of additional computational resources
to detect and correct errors as they accumulate.

The above is true also of classical computers, and the field of quantum
error correction finds its roots in the field of error correction (now classical
error correction) that began with the advent of the digital computer. In
both fields, error correction is applied by repeating three steps:

1. Errors are accumulated over a short piece of the computation.

2. Errors are diagnosed by probing the system.

3. Errors are either corrected, or kept track of for latter correction if
this is lower cost.

This procedure is not usually perfect; ‘correcting’ a particularly noisy
computation may lead to a remaining logical error. One wishes to be able
to make the logical error rate arbitrarily small. It is generally accepted that
this is achievable if the error rate can be made exponentially small in size
of the additional resources required to perform error correction [66–68].

Four main complications occur when shifting error correcting techniques
to quantum devices.

1. Quantum computers are more noisy than their classical counterparts.
Error rates in modern classical computers are now of the order of
10−14 per operation, driven by interference from cosmic rays [69]. By
comparison, state-of-the-art error rates in quantum computers are
between 0.5 and 5 percent [212]. As these error rates are somewhat
fundamental - classical bits are by nature less fragile than qubits - it
should be expected that quantum computers will always rely more
heavily upon error correction than their classical counterparts.

2. Measurement of the quantum state causes its collapse. If the mea-
surements to diagnose errors on a quantum computer were to gain
information about the desired logical state, they would be as bad
for the quantum system as the errors themselves. This makes error
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detection on a quantum computer far more costly than on a clas-
sical computer, as it must be designed to extract only information
pertaining to errors.

3. Quantum states are analog and not digital. This means that quantum
states can be subject to the gradual accumulation of noise over a
period of time, in comparison to a classical bit which is only ever
discretely flipped by errors. This gradual accumulation of error is
a lethal problem for classical analog computers [66]; how can one
determine whether a process x→ x+ δx has occurred or not? The
fact that this may be avoided by quantum mechanics is one of the few
desirable side-effects of the Born collapse for quantum computing.

4. Due to the no-cloning theorem [70–72], quantum information cannot
be copied. This prevents any error correction by making redundant
copies of quantum states, which necessitates thinking about error
correction in a different manner.

The above issues made quantum computing appear nigh-impossible
during the 90s. Though one could obtain a quantum speedup for certain
tasks, it appeared that one would need exponential resources to achieve
this [20, 21], negating any advantage. A breakthrough occurred when it
was realised that one could choose non-local degrees of freedom on which
to store quantum information [238]. Then, if error processes are local and
uncorrelated, unwanted operations that do not perturb any local degrees of
freedom are suppressed exponentially. If a local error occurs, the perturbed
local degrees of freedom may be measured to diagnose and correct the
error without disturbing the protected quantum information. In particular,
this local measurement discretizes a local error into either having occurred
or having not occurred, preventing its gradual accumulation as described
above.

1.3.1. Toy example - the repetition code
A comparison of quantum and classical error correction may be demon-
strated through the repetition code. This is a toy example as it cannot
correct all local errors on a quantum computer. Nethertheless, it demon-
strates the means by which quantum error correction may be performed
despite issues (2-4) above. (Issue (1) does not threaten a critical failure of
error correction, but causes an increase in the resource requirements for
QEC.)
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1.3. Quantum error correction

In the classical n-bit repetition code, a bit-worth xL = 0, 1 of information
is copied over n physical bits to give one of two code words xLxL . . . xL.
Classical errors accumulate to flip m physical bits, resulting in the system
state no longer being a code-word. One may diagnose the errors via a
‘majority vote’; choosing to return to either 00 . . . 0 or 11 . . . 1 by the least
number of flips. If n is odd, this choice is always well defined, and a logical
error occurs if m ≥ (n + 1)/2. If errors accumulate stochastically at a
uniform rate p on each logical bit, the chance of a logical error is then, to
lowest order in p

p
(n)
L =

(
n

(n+ 1)/2

)
p(n+1)/2(1− p)(n−1)/2. (1.12)

To see that this decreases exponentially with n, we calculate

lim
n→∞

p
(n+2)
L

p
(n)
L

= lim
n→∞

(n+ 2)!((n+ 1)/2)!((n− 1)/2)!
n!((n+ 3)/2)!((n+ 1)/2)! p(1− p)

= lim
n→∞

4(n+ 2)(n+ 1)
(n+ 3)(n+ 1) p(1− p) = 4p(1− p). (1.13)

We see that this is less than 1 for all p ∈ [0, 1], exponential error suppression
is achieved.

Though similar to the above, the quantum version of the repetition code
requires considerably different description to its classical counterpart. A
schematic of the Hilbert space of the n = 3-qubit repetition code is given
in Fig. 1.3. One cannot arbitrarily copy a quantum state a0|0〉+ a1|1〉 →
(a0|0〉 + a1|1〉)⊗n (issue (4)). However, it is possible to copy the basis
states to codeword states:

a0|0〉+ a1|1〉 → a0|00 . . . 0〉+ a1|11 . . . 1〉. (1.14)

Then, measuring any single physical qubit is sufficient to cause the collapse
of the state (issue (2)). However, coherent measurements of the operators
ZiZi+1 do not cause any such collapse, as the logical state is an eigenstate
of each such measurement. A bit flip error on qubit i is uniquely identifiable,
as it shifts the state into a new eigenspace of the measurements ZiZi+1 (if
i < n) and Zi−1Zi (if i > 1). This measurement further discretizes small
coherent errors (issue (3)); if say, qubit 1 is rotated by a small error eiδX1 ,
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Figure 1.3.: The three qubit repetition code. (left) a circuit to measure the
two stabilizers of the code using ancilla qubits. Any X error propogates onto
a unique combination of the ancilla qubits, and is detected as shown. (right)
The physical qubit Hilbert space split into the four possible choice for the
logical Hilbert space. Weight-1 errors may shift the qubit across the dashed
lines, but crossing the red lines requires a weight-3 operation. Following the
shown X error and its detection, a logical state prepared in an initial (green)
subspace will be coherently shifted to the blue subspace, whilst preserving any
quantum information encoded between the two logical states. Z errors, however,
create undetectable logical errors by causing the two logical states to pick up a
phase, making this not a true quantum error correcting code. Figure taken from
Chapter 5 with significant edits.

the system state evolves to

cos(δ)(a0|00 . . . 0〉+ a1|11 . . . 1〉) + i sin(δ)(a0|10 . . . 0〉+ a1|01 . . . 1〉),
(1.15)

and measurement of Z1Z2 either projects the system to a state where no
error has occurred (with probability 1− δ2), or to a state where a discrete
bit-flip has occurred (with probability δ2). If these are the only errors,
this detection is sufficient for diagnosis in a very similar manner to the
classical case, which we investigate in Chapter 5. However, error modes in
realistic quantum computers are not usually restricted to rotations around
a single axis. Any error of the form eiθZi on any qubit will rotate the
logical state, and so the repetition code enhances the possibility of these
errors, rather than reducing them. It turns out that this is not systemic
in quantum computing, but just a feature of the repetition code itself. In
the next sections, we will describe codes that can detect and diagnose all
local errors, and thus perform true quantum error correction.
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1.3. Quantum error correction

1.3.2. Stabilizer codes
Throughout the rest of this section, we will refer to measurements made
on a device with capital letters, and transformations that occur on a
device in lower case. This implies in particular to the Pauli matrices
{σ0, σx, σy, σz} ≡ {I, x, y, x} ≡ {I, X, Y, Z}, as on set of mathematical
objects can refer to both transformations and measurements. This is an
important distinction; if a system is in an eigenstate of Z, then after
performing (the transformation) x it remains in an eigenstate (though
it is no longer the same eigenstate). By contrast, after ‘performing’
(the measurement) X, the system is no longer in an eigenstate of Z, as
[X,Z] = 0.
A large class of important quantum error correcting codes are sta-

bilizer codes. This class was identified following the theorem, due to
Gottesman [68], that if a QEC code can correct unitary errors ê1, ê2,
it can correct any quantum channel Λ that can be written in terms of
with Kraus matrices that are linear combinations of ê1 and ê2. Then,
as ΠN = {σ0, σx, σy, σz}⊗N spans C2N , one may rewrite the problem of
correcting arbitrary CPTP maps on N qubits to one of correcting elements
of ΠN . The latter set, being discrete and finite, is much more tractable
than the former.
An [N,K]-stabilizer code is defined by a set S of N − K Hermitian

stabilizer measurements Ŝj ∈ ΠN that satisfy the following two proper-
ties [68]:

1. [Ŝj , Ŝk] = 0.

2. ±Ŝj cannot be generated by the other Ŝk.

The code space HL is then the space of all +1 eigestates of the Ŝj , which
exists due to the first property. The code space is stabilized by the group
S generated by the Ŝj

S := {Ŝ1Ŝ2 . . . , Ŝ1, Ŝ2, . . . ∈ S} ≡ {Ô ∈ Πn, Ô|ψ〉 = |ψ〉 ∀|ψ〉 ∈ HL}
(1.16)

Each stabilizer cuts the N -qubit Hilbert space C2N into two eigenspaces
of equal size. The second stabilizer property implies that cuts from
subsequent stabilizers continue this division [68], and the code space thus
has dimension 2N−(N−K) = 2K . This may then be identified as a space
containing K logical qubits.
Now, suppose we have a state ρ ∈ HL in our code space. An error
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channel Λ = {Λ̂i} sends ρ to ∑
i

Λ̂†iρΛ̂i. (1.17)

Let us further decompose each Λ̂i into Paulis êj ∈ Πn - Λ̂i =
∑
j Λi,j êj .

If a subsequent measurement of Ŝ produces a reading of +1, the state is
projected into

1
N

(1 + Ŝ)
∑
i,j,k

Λi,j êjρêkΛ∗k,i(1 + Ŝ), (1.18)

with N a normalization constant. Next, note that each êj either commutes
or anti-commutes with Ŝ. If {Ŝ, êj} = 0, we have (1 + Ŝ)êjρ = 0, as ρ was
in the +1 eigenstate of Ŝ. Thus, the only terms that appear in Eq. 1.18
are those of operators that commute with Ŝ.

If subsequent measurements of all stabilizers returns readings of +1,
this effect cumulates, and the only terms remaining in Eq. 1.18 are those
commuting with all stabilizers. Furthermore, if êj is generated by the
stabilizers, êjρ = ρ, and êj acts as the identity. Thus, the only non-trivial
action of the error channel on ρ comes from the set of pure errors

E = {ê ∈ Πn, ê /∈ S, [ê, Ŝ] = 0 ∀Ŝ ∈ S}. (1.19)

The resulting state is then

ρ0 = 1
N

∑
i

Λ0
i ρΛ0†

i (1.20)

where

Λ0
i =

∑
êj∈S

Λi,j +
∑
êj∈E

Λi,j êj

 , N = Trace
[∑

i

Λ0
i ρΛ0

i

]
. (1.21)

If Λi,j = 0 for all pure errors êj ∈ E , ρ0 = ρ, and the error channel has no
effect (when the stabilizer measurements all return +1).

Errors on quantum computers are generally local, as the underlying
physical processes are local. Assuming that errors are Markovian (i.e.
uncorrelated in time), an error channel acting between time ti and tf may
be approximated as Λ =

∏tf
t=ti Λ(t). Locality implies here that terms

Λ̂(t)i,j in the Kraus decomposition are 0 unless êj is distance k (has k
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non-trivial tensor factors) or less for some k. Then, suppose that no
pure error êj ∈ E is less than d-local, for some code distance d. Pure
errors in the full channel Λ must be generated by products of no less than
d/k non-trivial terms from each Λ(t). In general, these terms will be of
a magnitude pphys << 1, and the size of the pure error in Λ will scale
proportional to pd/kphys. The logical error rate εL is then also exponentially
suppressed in the code distance d.
The above demonstrates the ability to exponentially suppress errors

in the situation where none are detected. One must also consider the
situation where stabilizer measurements do not return +1. Repeating the
previous reasoning, the state ρ is then mapped to

ρ~s = 1
N

∑
i

Λ~siρΛ~s†i , (1.22)

where the syndrome ~s ∈ ZN−K2 contains a 1 for each Ŝj that measured −1
(and a 0 otherwise), and

Λ~si =

 ∑
êj∈E~s

Λi,j êj

 , E~s = {ê ∈ ΠN , {ê, Ŝj} = 0 iff sj = 1}. (1.23)

There exists a minimum distance d~s for errors in E~s, so we may choose
some ê~s ∈ E~s with distance d~s. Applying this error to ρ~s ‘corrects’ it,
sending it back to the code space HL. Lowest-order terms in the resulting
pure error must be a product of the correction ê~s and an error êother ∈ E~s
of distance (d−d~s). As ê~s was chosen to be a lowest-distance element of E~s,
we have that (d− d~s) ≥ d~s. In particular, for odd d, (d− d~s) ≥ (d+ 1)/2.
êother must then have been generated by (d+ 1)/(2k) products of physical
errors, and the error rate in turn should scale as

εL ∝ p(d+1)/2k
phys . (1.24)

Note that this implies that (when d is odd) all errors in E~s of minimal
distance d~s are equivalent - the product of two such errors acts as the
identity on HL, and is therefore a stabilizer.
The above is only a sketch of a proof that errors may be exponentially

suppressed at a polynomial resource cost. One must also confirm that it is
possible to create stabilizer codes of arbitrary distance d with polynomial
resources. This may be done by construction; many families of such codes
exist [74, 75, 207, 238], and codes may be additionally created from parity
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codes of classical error correction [73].
One must also confirm that the proportionality factor in εL ∝ p(d+1)/2k

phys
(which is combinatorial in the number of qubits) does not overwhelm
the exponential suppression. This is highly non-trivial, and we refer the
reader to [66] for further discussion of this point. In general, one requires
pphys to be smaller than some threshold error rate [76] for such correction.
However, thresholds for classical codes may be as high as pphys = 50%,
while the highest-known thresholds for quantum error correction are around
pphys = 1% (with pphys being the average error rate per physical gate or
measurement).

1.3.3. Stabilizer code dynamics
Traditionally, stabilizer error correction is broken up into cycles, each
cycle containing an error accumulation step, a stabilizer measurement step,
and a correction step [68]. More recently, it has been realised that the
correction step is often unnecessary. The results of the previous section
hold regardless of the chosen eigenvalue of the stabilizers; +1 is as good
as −1. For a syndrome ~s of a d-distance code, we can define the syndrome
space

H~s = {|ψ〉 ∈ Hphys, Ŝj |ψ〉 = −1sj |ψ〉}, (1.25)

and then the only Pauli operators that send H~s → H~s are precisely the
pure errors E . This implies that the logical error rate has the same scaling
in d regardless of which code space is used. (For most codes we expect the
logical error rate to be identical for all H~s, but this is not necessarily the
case.)

Then, let us consider t = 1, . . . , T of error correction of a state starting
in HL, giving syndromes ~s(t) (and defining ~s(0) = ~0. If one can choose for
each t a minimal-weight error ê~s(t−1),~s(t) that maps H~s(t) → H~s(t−1), the
product F̂ (t) =

∏T
t=1 ê~s(t−1),~s(t) will take the final state back to the logical

Hilbert space. This product F̂ (t) is known as a Pauli frame. A Pauli frame
does not need to be the shortest-distance error mapping H~s(t) → HL, as
it has to respect the path that the state took in time. After each cycle t,
the state accumulates a pure error of size proportional to pd−d(t)

phys , where
d(t) is the distance of ê~s(t−1),~s(t). This is bounded above by p(d+1)/2

phys , as
required.

With the logical Hilbert space HL defined, one may ask what the logical
operators acting on HL are in terms of the operators on the physical
Hilbert space. This choice has a large amount of freedom, as we are
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technically not concerned with the behaviour of an operator Ô on any
other part of the Hilbert space. However, following the above idea that
all syndrome spaces H~s should be treated equivalently, one wishes to
choose a set of operators that does so. Furthermore, one wishes to choose
operators that are not significantly altered by local errors. The most
natural such choice is to draw from the set of pure errors E . Each element
of E is block diagonal on the syndrome spaces H~s, and when combined
with the stabilizer operators, this forms a basis for all such block diagonal
operators. Individual elements ÔL ∈ E have the following advantage:
lowest-distance errors mapping H~s(t) → H~s(t+1) either all commute with
ÔL or all anticommute with ÔL (as the product of two such errors is a
stabilizer, which necessarily commutes with ÔL). This implies that the
difference between applying ÔL before or after such an error is simply to
apply a global sign change to the state ρ, which is irrelevant.

The above does not entirely fix the freedom in choosing logical operators;
given a stabilizer Ŝ ∈ S, ŜÔL acts identically to ÔL on every syndrome
space. This is a gauge degree of freedom; it is entirely at the users
discretion which logical operators to choose. The only requirement is that
the choice of operators give a map from ΠK → ΠN that respects the
algebraic structure of the logical operators (a homomorphism).

1.3.4. Topological quantum error correcting codes
An obvious motif for designing quantum error correcting codes is topology.
The general notion here is to generate a stabilizer group S via nearby Pauli
operators on a D-dimensional qubit lattice such that the lowest-distance
pure errors occupy D − 1-dimensional boundaries. If D > 1, the size
of these boundaries grows with the system size, and so does the code
distance. This is only true however if the pure errors extend across the
entire boundary, which in general occurs if the dimension K of the logical
Hilbert space HL is constant in the system size. Such a code is known
as a topological quantum error correcting code, or a topological code for
short. These codes are of interest as they require only local stabilizer
measurements, and can be scaled without any change to the local structure
of the code, allowing for modular designs [77].

In this work, we focus on the study of D = 2 topological codes. Higher
dimensional codes are an active area of research, and have some advantages
over two-dimensional codes [78, 174]. However, most current quantum
hardware is built on a two-dimensional architecture, and the challenges of
making vertical interconnects or long-range couplings usually presents too
great a challenge to overcome in the near-term. Two-dimensional codes
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also have the highest known thresholds [177], which are highly attractive
given current noise limitations [212].
Probably the most well-studied topological code is the 2-dimensional

surface code, first introduced in [207]. This code is defined on a checker-
board of d − 1 × d − 1 squares of alternating colour (Fig. 1.4. Qubits
are placed at the corners of each square, forming a d × d lattice. Each
square on the board defines a stabilizer measurement, being the tensor
product of either Z or X on the four surrounding qubits. One can observe
that neighbouring squares of different stabilizer type share two qubits,
and thus the stabilizer measurements commute as required. Every square
edge around the perimeter of the surface gives a remaining local degree of
freedom (either ZZ or XX). This can be pinned by making every second
such degree of freedom a stabilizer (noting that this pins the alternating
degrees of freedom, which do not commute) [79, 176, 180]. This pinning
fixes one pair of edges to be Z-edges, and the other X-edges. This leaves
no local pure errors, but the total number of stabilizer measurements
can be calculated as (d − 1)2 + 2d = d2 − 1. The remaining pure errors
can be constructed by drawing a path λ along the board edges from one
X(Z)-edge to another, and taking the tensor product of X(Z) on each
qubit crossed, such that λ crosses an even number of vertices on every
Z(X) stabilizer. The freedom in choosing the path is the gauge degree
of freedom in the code discussed earlier; one may deform between any
two paths by applying some combination of stabilizer operators. As the
minimum-length path between the two edges is a straight one, a surface
code on a d× d lattice will have a distance d.
A second well-known class of topological codes are color codes, first

studied in [75]. In two dimensions, color codes may be generically defined
on any tiling of a sphere, given that: [228]

1. Every vertex has exactly 3 edges leading to it.

2. The tiling is 3-colourable.

A possible such tiling is shown in Fig. 1.5. As the Euler characteristic of
the sphere is 2, and the number of edges ne is 3/2 the number of vertices
nv, this gives a tiling with nv qubits and

nf = 2(3/2nv − nv + 2) = nv + 4 (1.26)

faces.
If one then deletes a single qubit and the three faces associated, the tiling

may be flattened onto the plane. To each vertex we associate a qubit, and

20
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Figure 1.4.: Schematic of the surface code and an experimental implementation.
(left) The surface code is defined by fixing a d × d lattice of data qubits, and
colouring the squares in the formed lattice with a checkerboard pattern. This
colouring gives the stabilizers of the code, which are four-foldXXXX and ZZZZ
parity checks on the qubits surrounding any given square. Two-fold XX and
ZZ checks are performed on the edges, leaving a single logical degree of freedom.
(right) A prototype implementation of the distance-3 surface code, Surface-17, on
a superconducting transmon architecture, from TU Delft. Transmons are circled
and color-coded as per the schematic on the left. Photo credit: Alessandro
Bruno.

to each face we associate two stabilizers, being the product of all X and all
Z on surrounding vertex qubits. This gives a total of N = nv − 1 physical
qubits and N −K = nv − 2 stabilizer measurements. It is non-trivial to
check that the stabilizer measurements do not generate each other, but
this is indeed the case [80, 228], and the resulting code encodes a single
logical qubit. The logical XL(ZL) operators in the resulting code are the
product of individual X(Z) Pauli operators on the edges of the excised
faces.
Though similar, some key differences exist between the two codes de-

scribed above. The most obvious is that of qubit number: a distance-d
color code requires roughly 3/4 times the number of physical qubits for a
distance-d surface code [79]. A second important concern is that of the
threshold physical error rate pt. With perfect stabilizer measurements,
both codes have equal thresholds [79] of around 12%. However, this is
not the case when noisy measurements and decoding are considered, as
will be discussed in the next sections: the surface code significantly out-
performs the color code. A final distinction is the ease at which one may
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Figure 1.5.: (right) A tiling of the sphere for the color code. (left) The
reduction to a distance-5 encoding of a single logical qubit. Dots correspond to
data qubit location, and coloured tiles correspond to stabilizer measurements
(the type of measurement is independent of the colour). Taken from Chapter 6
with significant changes.

perform logical operations. One typically desires logical operations to be
transversal; to be able to be performed via either single-physical-qubit
rotations or two-qubit gates between corresponding physical qubits in the
case of logical two-qubit gates. On the color code, all Clifford gates may
be performed transversally [228], which is the best possible outcome for
any 2-dimensional code. By contrast, the surface code may only perform
Pauli operations, the Hadamard gate, and the CNOT gate transversally,
which does not generate the entire Clifford set. Although this makes the
color code possibly more attractive in the long-term, the ease of decoding
the surface code, and its large threshold pt, have made it a more typical
choice for current QEC experiments [77, 173, 212].

1.3.5. Decoding topological codes
The task of taking cycles of syndrome data ~s(t) and calculating a Pauli
frame F̂ (t) to correct the system is performed by a classical algorithm
called a decoder. Performing such a task optimally for a general error model
on a general code is known to be NP-complete [81]. However, for some
codes and some restricted error models, polynomial-time optimal decoding
is possible [82]. Moreover, decoding need not be optimal. A suboptimal
decoder D will have a reduced error rate ε(D)

L < ε
(opt)
L , but if ε(D)

L decreases
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exponentially in the code distance d, this may be compensated for by
increasing d. Of course, optimizing classical algorithms is in general
cheaper than improving physical hardware. As such, ‘good enough’ for the
decoder efficiency [212],

ηD = ε
(D)
L /ε

(opt)
L , (1.27)

really depends on who is asking the question.

Though a decoder is tasked with updating and returning a Pauli frame
F̂ , this contains a lot of unnecessary information. The redundancy is due to
a gauge degree of freedom: for all Ŝ ∈ S, ŜF̂ ≡ F̂ . This redundancy may
be removed if one shifts to the Heisenberg frame, and considers the action
of errors upon the set of logical Pauli operators. In particular, suppose
one has an uncorrected state ρ ∈ H~s, a Pauli frame F̂ , and wishes to
measure a logical Pauli operator ÔL. The probability of the post-corrected
measurement returning +1 is equal to

p(EC)(ÔL = +1) = Trace
[
(I + ÔL)F̂ ρF̂ †

]
. (1.28)

If [F̂ , ÔL] = 0, this is equal to the probability p(ÔL = +1) of measuring ÔL
without performing such a correction, while if {F̂ , ÔL} = 0, this is equal
to p(ÔL = −1). Thus, no Pauli frame or correction is required for such a
measurement. One may simply measure ÔL, and task the decoder with
deciding the logical parity: whether the labels attached to the output dial
should be ±1 or ∓1. Though many decoding algorithms inherently rely on a
Pauli frame representation, shifting to a Heisenberg frame can be important
for machine learning decoders, which tend to find the redundancy in a
Pauli frame confusing [83, 211, 247]. A Heisenberg frame is also incredibly
useful when one wishes to consider Clifford operations on logical qubits, as
logical parities map directly through these transformations with no need
to consider the action on the underlying qubits.

Algorithms for fast decoding of quantum error correcting codes tend
to be code-specific. For the surface code, the problem of correcting
independent x and z errors may be mapped to the minimum-weight
perfect matching problem on a graph, leading to thresholds above 1% for
Pauli channel noise models [173, 177]. In Chapter 4, we study how this
mapping performs for realistic error models of superconducting transmon
qubits, and in Chapter 5, we study how this mapping may be optimized
by analysing the correlations in repeated syndrome measurements. Other
codes do not unfortunately permit such a mapping. In lieu of this, much
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recent interest has gone into using machine learning to solve the decoding
problem [211, 246–251, 253]. In Chapter 6 we demonstrate that this is
a viable strategy for the color code, and study the performance of the
resulting decoder.

1.4. Quantum algorithms
Although fault-tolerant quantum computers still seem a relatively distant
fantasy, much preparation is still needed for their potential arrival. In
particular, as the cost of quantum error correction is significantly high,
algorithm optimization can pay dividends by reducing the resources needed
to solve useful problems (and by finding what useful problems are indeed
low-cost). Algorithm development on quantum computers is significantly
different to that on classical computers, as quantum operations are unitary
and continuous, so quantum coders have to work with a different set of
building blocks to develop their code. In this section, we describe a few
said building blocks.

1.4.1. Quantum phase estimation
Possibly the most important algorithm for quantum computing is that of
quantum phase estimation [22, 84]. Let us assume we have a means of
performing a unitary Û on Nsys qubits, conditional on an ancilla qubit (I.e.,
the unitary I⊕ Û). The unitary has eigenphases φj , and corresponding
eigenstates |φj〉

Û |φj〉 = eiφj |φj〉, (1.29)

Quantum phase estimation aims to estimate the value of a single target
eigenphase φt. To obtain a speedup over the best classical methods, this
estimation needs an accuracy ε ∝ 1/Poly(Nsys) in time T ∝ Poly(Nsys)
with failure probability δ ∝ 1/Poly(Nsys). To achieve such speed, we
require a means of preparing an initial state |Ψ0〉 =

∑
j aj |φj〉 with

|at|2 � 0 (otherwise this problem becomes QMA-hard [313]). Specifically,
one may replace Poly(Nsys) with Poly(Nsys/|at|2) in the requirements for
ε, δ and T . With this stated, QPE is BQP-complete [292], meaning that a
black box that solves the QPE problem is as good an oracle as a quantum
computer itself. Furthermore, a large fraction of the quantum algorithms
with a proven quantum speedup rely on QPE as a subroutine [84, 85],
making QPE one of the key building blocks for the field of quantum
algorithms.
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Various circuits for quantum phase estimation exist, with different
qubit overhead and classical computation requirements. However, the
fundamental building block of all such circuits is the notion of phase
kickback [23]. The result of acting I⊕Û on the state 1√

2 (|0〉+|1〉)
∑
j aj |φj〉

may be written as

1√
2

∑
j

aj |φj〉(|0〉+ eiφj |1〉). (1.30)

This can be interpreted as the ancilla qubit making a weak measurement
of the system register, and imprinting the result of the measurement on its
phase φj . One then wishes to turn this weak measurement into a strong
separation of phases, and to read the phases out to a required accuracy.
Traditionally this is done by performing I ⊕ Û2n on a register of qubits
n = 1, . . . , Nanc. If each ancilla is initialized in the |+〉 state, the resulting
state is

1√
2Nanc − 1

2Nanc−1∑
k=0

∑
j

aje
ikφj |k〉|φj〉. (1.31)

Then, applying the quantum Fourier transform [84],

|k〉 → 2−Nanc/2
2Nanc−1∑
l=1

ei
2πkl

2Nanc |l〉, (1.32)

creates destructive interference on states |l〉|φj〉 unless l − φj ≈ 0. This
then copies a Nanc-bit approximation of φj to the ancilla qubit, which may
be read out. This readout projects the system register to the state |φj〉
(assuming that |l − φj′ | is sufficiently large for j 6= j′). More recently, it
has been realised that one does not need to perform the Fourier transform
on the quantum computer. Instead, if one performs I⊕ Ûk conditional on a
single ancilla qubit at various k, and tomographs the resulting phase g(k) =∑
j e
ikφj on the ancilla qubit, one may treat this as a classical waveform

and extract its dominant frequencies. This can be shown to perform
with the same accuracy as its multi-ancilla counterpart [297, 299, 316],
although the system register is never projected to an eigenstate |φj〉 in
any experiment. In Chapter 8, we study this in some detail, and in
particular demonstrate that this performance remains when we are unable
to otherwise prepare the system in an eigenstate |φ0〉.
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1.4.2. Variational quantum eigensolvers

Though phase estimation and quantum error correction provide a means
by which a quantum computer might eventually obtain an exponential
advantage over classical computation, their large cost [263] has led to
a hunt for lower-overhead algorithms to replace them. A class of such
algorithms is that of variational quantum eigensolvers [86, 281], which aim
to approximate the true ground state |φ0〉 of an Nsys-qubit Hamiltonian
Ĥ. These algorithms consist of a starting state |ψ0〉, and a unitary Û(~θ)
parametrized by a set of continuously-tunable classical control parameters
~θ. Setting these parameters allows one to construct an approximation to
|φ0〉 and measure it’s energy, by defining

|ψ(~θ)〉 := Û(~θ)|ψ0〉, E(~θ) := 〈ψ(~θ)|Ĥ|ψ(~θ)〉. (1.33)

E(~θ) may be measured by tomographing |ψ(~θ)〉. By tomographing, we
mean writing Ĥ =

∑
P HP P̂ for Pauli operators P̂ ∈ ΠNsys , repeatedly

preparing |ψ(~θ)〉 and measuring P̂ , which has a probability 1
2 (1 + 〈P̂ 〉) of

observing 0. One may then infer 〈P̂ 〉 from N measurements with error
scaling as 1√

N
, and sum 〈Ĥ〉 =

∑
P HP 〈P̂ 〉. The final result E(~θ) is then

returned to a classical control script, which minimizes E(~θ) by tuning
~θ. The resulting energy, min~θ E(~θ) is then taken as an approximation
to the ground state energy E0 = 〈φ0|Ĥ|φ0〉, and the state |Ψ(~θ)〉 as an
approximation to |φ0〉

We are guaranteed that min~θ E(~θ) ≥ 〈φ0|Ĥ|φ0〉 by the variational princi-
ple [86], but the error in the estimation is unbounded. At best, a variational
quantum eigensolver explores a dim(~θ)-dimensional submanifold of the
entire Hilbert space. This takes Poly(dim(~θ)) time, making choosing suffi-
cient parameters to explore the entire Hilbert space unfeasible. Without
this, we have no guarantee that |φ0〉 lies in or nearby our chosen manifold,
and one must appeal to some physical intuition (e.g. perturbative ap-
proaches [86]) that this would be the case. Given current short coherence
times, an alternative approach is to choose those variational quantum
eigensolvers that require the least quantum circuitry to implement per
dimension of ~θ [87]. In Chapter 7, we suggest that Majorana hardware
may be able to combine the best of both worlds, as physical operations on
fermions are close in nature to the excitations required for perturbative
approaches.
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Figure 1.6.: Labeled photograph of a transmon qubit. The flux line adjusts
the magnetic field running through the SQUID loop, which in turn changes
the Josephson energy, allowing for the qubit frequency to be adjusted. Single
qubit gates and readout may be performed via microwave pulses through the
line labeled ‘control and readout’. Two-qubit gates are achieved by similar lines
coupling multiple qubits (none shown here), which provide a constant two-qubit
interaction. Fig taken from Ref. [182].

1.5. Quantum computing with
superconducting qubits

In chapters 4,8,and 6, we have worked on quantum algorithms and quan-
tum error correction for near-term devices, necessitating connection to
experiment via simulation of real devices. One of the most promising
and popular physical platforms for quantum computing is that of super-
conducting transmon systems [88]. In this section we briefly outline the
construction of such a quantum device, and the leading source of errors
during algorithm execution. More in-depth details are given in Ch. 4, and
relevant numbers for state-of-the-art devices are also stated here.

1.5.1. Transmon architecture
A superconducting transmon system is constructed by lithographing two
superconducting parallel plates on a substrate, and connecting them
via a SQUID loop (see Fig. 1.6). A charge difference between the two
plates creates a capacitative energy (with the energy scale EC = e2/2C
determined by the capacitance C of the system). Similarly, a difference
in the superconducting phase on the two plates creates an inductive
energy (with the energy scale EJ = EJ,max| cos(πΦ/Φ0)| set by the flux
Φ passing through the SQUID loop). Quantum-mechanically, charge and
superconducting phase are conjugate variables (as the phase is obtained
from differentiating the superconducting condensate wavefunction). One
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may write the system’s Hamiltonian as [88]

Ĥ = 4EC(n̂− ng)2 − EJ cos(ϕ̂), (1.34)

where n̂ measures the charge difference between the two plates, and ϕ̂
measures the phase difference between the two plates. In the EJ >> EC
limit, this approximates an anharmonic oscillator

Ĥtransmon = − ~2

2m∂2
x + k

2 x̂
2 (1.35)

under the replacements

4EC →
~2

2mλ2 , (n̂− ng)→ iλ∂x, EJ → kλ2, ϕ̂→ x̂/λ (1.36)

with the anharmonicity given by the higher-order terms in the expansion
of cos(ϕ̂), and λ a unit of length (so that the dimensions match). The
resulting energy gap E1 − E0 between the ground |0〉 and first excited
state |1〉 is then

√
8ECEJ [88]. The anharmonicity reduces the energy of

the second state E2 − E1 < E1 − E0, allowing for excitations between the
first two energy levels without exciting higher levels |n〉.

Coupling a transmon qubit to a resonator allows for coherent control
and readout via an applied photon field. The system of a photon mode of
frequency ω coupled to a transmon qubit may be described via a generalized
Jaynes-Cummings model [88, 89]

ĤJC =
∑
n

En|n〉〈n|+~ωâ†â+1
2
∑
n

(gn|n〉〈n+1|â†+g∗n|n+1〉〈n|â), (1.37)

where â and â† are the photon annihilation and creation operators, and
the coupling constants gn are determined by the interaction of the photon
with the charge degree of freedom n̂. When E1 − E0 ≈ ω, the system
is in resonance, and if prepared in the state |0〉 it will oscillate between
absorbing and emitting a single photon from the readout line. As the
photon number is in general not conserved, this oscillation does not alter
the wavefunction of the line, and the operation can be restricted to a
unitary operation on the transmon subspace. This allows for arbitrary
rotations on the single qubit defined on the |0〉 and |1〉 states. When
|E1 −E0 − ω| >> 0, the system is off-resonant. This causes the resonator
to be dispersively coupled to the transmon; the |1〉 and |0〉 states cause
a slight difference in energy of resonator photons. This energy difference
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can be measured by the difference in phase accumulated by photons in the
resonator (compared to a coherent reference signal). This in turn projects
the qubit into a corresponding eigenstate, allowing for readout. Finally, a
resonator coupling two qubits induces a second-order coupling between
the qubits. Tuning two energy levels of the qubits into resonance then
causes this (otherwise small) coupling to dominate, which can be used to
entangle the pair. In particular, this is typically used to generate either
a controlled-phase rotation [199], which, combined with arbitrary single-
qubit rotations forms a universal gate-set. The above is then sufficient to
satisfy the DiVincenzo criterion, so long as sufficiently low error rates can
be obtained.

1.5.2. Sources of errors
The dominant source of error in superconducting transmon systems is
decay due to qubit decay, described by a T1 channel in the Kraus operator
formalism [23]

K̂
(T1)
1 =

(
1 0
0
√
e−t/T1

)
, K̂

(T1)
2 =

(
0
√

1− e−t/T1

0 0

)
, (1.38)

and qubit dephasing, described by a T2 channel

K̂
(T2)
1 =

(
1 0
0
√
e−t/T2

)
, K̂

(T2)
2 =

(
0 0
0
√

1− e−t/T2

)
. (1.39)

The former is driven by coupling to stray modes and impurities on the chip,
decay into surrounding resonators, and external sources of radiation. The
latter is mostly driven by fluctuations in the magnetic field Φ through the
SQUID loop, known as ‘flux noise’, which in turn change the Josephson
energy EJ . These are mitigated somewhat by holding resting qubits at
the spot Φ = 0, such that ∂EJ/∂Φ = 0, making the qubit only second-
order sensitive to flux noise [88]. However, during two qubit gates qubits
are driven away from this ‘sweet-spot’ and become sensitive again. For
example, a C-Phase gate is performed by tuning two qubits such that
the |11〉 and |02〉 qubits are in resonance, which shifts the |11〉 state via
level repulsion, causing a phase to accumulate. Flux noise will cause
the accumulated phase to differ from its target Worse, such a gate can
cause the |11〉 state to be driven out of the computational subspace. To
see this, note that a C-Phase gate can be considered a fully-reflective
Landau-Zener process, which requires fine-tuning, and any fluctuations
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will generally break this fine-tuning. Such leakage errors are generally
considered to be worse for quantum computers, and in particular for
quantum error correction. However, schemes do exist to mitigate leakage
such that fault-tolerant thresholds remain [90, 91].
A further range of errors also exist on transmon qubits that remain

significant, but are generally smaller in magnitude than the above (though
this is highly dependent on the exact chip used). Most single qubit gates
have small residual control errors, though state-of-the-art single qubit gates
are mostly limited by qubit decay during the duration of the gate [183].
Classical readout error in measurement is also present, though this is again
usually smaller than the effect of decay. A more serious issue with readout
is leftover photons in the readout resonator, which must be depleted via
the Purcell effect [167] or depletion pulses [182] in order to operate on a
transmon post-measurement. Various types of crosstalk between qubits
also exists; measurements or operations directed at one qubit may affect
another, and the residual coupling between any connected pair of qubits
causes a slow coherent rotation over the course of an experiment. And
finally, qubits can only be re-prepared in the ground state via either
natural decay processes (i.e. waiting for times much longer than T1), or
conditional feedback schemes [185], both of which leave some probability
for a qubit to be erroneously excited. This residual excitation can be
minimized by measuring qubits prior to an experiment and pre-selecting
on a measurement of 0.
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1.6. Outline of this thesis

1.6.1. Part I

In the first part of this thesis, we investigate transport properties of exotic
and superconducting Weyl semimetals.

Chapter 2: Magnetic breakdown and Klein tunneling in a
type-II Weyl semimetal

In Chapter 2, we predict a topologically protected signature of type-II
Weyl cones in magnetic oscillation experiments. This signature arises from
the existence of maximal figure-of-eight orbits around the hourglass-like
Fermi surface of a type-II Weyl semimetal, which exist under surprisingly
general conditions due to the non-orientability of the projective plane. In
order to achieve these orbits, electrons must jump between electron and
hole pockets, in a momentum-space analogue of Klein tunnelling. We
numerically simulate these experiments on a toy lattice model of a type-II
Weyl semimetal, and obtain close agreement between experiment and
theory (shown in Fig. 1.7). We then finish with an investigation into the
effect of additional details in the Fermi surface on the predicted effect, in
particular the effect of multiple Weyl points.

Figure 1.7.: Simulated demonstration of Klein tunnelling in the momentum
space of a type-II Weyl semimetal. Peaks in the displayed Fourier transform
(right) correspond to maximal orbits in the Fermi surface of the crystal (left).
The green circles mark a peak that can only be explained by electron tunnelling
between the electron (blue square) and hole (red diamond) pockets in the Fermi
surface, which requires tunnelling between the two, as shown. Figure adapted
from Chapter 2; more details available there.
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Chapter 3: Superconductivity provides access to the chiral
magnetic effect of an unpaired Weyl cone

In Chapter 3, we predict that the equilibrium chiral magnetic effect, which
cannot exist in the presence of a U(1) symmetry [137–139], may re-emerge
as a charge current in a superconductor when this symmetry is broken.
This comes about due to the Bogoliubov-de Gennes Hamiltonian allowing
for a single cone to appear twice in the Brillouin zone (as the electron and
hole counterparts), as shown in Fig. 1.8. The resulting chiral current is
renormalized by the charge on the cone, which is increased as its particle
and hole halves are separated in the Brillouin zone. We again compare
numerical simulations on a toy lattice model with analytic predictions,
and find good agreement.

Figure 1.8.: Bandstructure of a Weyl superconductor in the kz − ky plane
under an applied magnetic field and supercurrent, coloured by the charge on
the Weyl cones. In the BdG formalism, only bands above the Fermi surface
(gray plane) correspond to real excitations; bands below are lost in the BCS
condensate. This system can be observed then to have only a single Weyl
cone, split into conjugate particle and hole pairs. An applied magnetic field
will then drive a charge current in equilibrium, allowing for observation of the
chiral-magnetic effect. The particle current remains zero however, as the surface
band replaces charged fermions with neutral Majorana particles flowing in the
opposite direction. Figure adapted from the system studied in Chapter 3, more
details available there.
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1.6.2. Part II

In the second part of this thesis, we switch to investigating the perfor-
mance of small quantum error correcting codes with realistic noise and to
optimizing decoders for said experiments.

Chapter 4: Density-matrix simulation of small surface codes
under current and projected experimental noise

In Chapter 4, we present a density-matrix simulation of superconducting
qubits, and use this to determine the performance of a small error correcting
code (the distance-3 code Surface-17). This simulation demonstrates that
state-of-the-art superconducting quantum devices are sufficient to construct
a logical qubit which outperforms its component qubits as a quantum
memory, as shown in Fig. 1.9. We are able to use our simulation to optimize
various design choices in the resulting code, and test the performance of
the code as various noise parameters are increased or decreased.

Fi
d
e
lit
y

Figure 1.9.: Simulation of performance of Surface-17 (drawn in inset) as a
quantum memory, under realistic noise simulations. Over multiple 800 ns cycles
(points), the system accumulates both uncorrectable and correctable errors. A
maximum likelihood decoder (red points) successfully corrects all correctable
errors, resulting in an upper bound of ε(UB)

L = 0.68% for the logical error rate per
cycle. However, this decoder is too computationally expensive for real-world use.
The amount by which a faster decoder falls below this bound gives the decoder
efficiency [212]; ηD = ε

(UB)
L /ε

(D)
L . Despite being slightly inefficient, we observe

that the MWPM decoder is sufficient to make the lifetime of the Surface-17
logical qubit longer than that of its physical components (black line). Figure
taken from Chapter 4, more details available there.
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Figure 1.10.: Schematic and convergence of the adaptive weight estimation
technique. (left) The estimator is fed stabilizer data (red filled and blue open
circles) from N QEC cycles, which are generated by unseen chains of errors (red
dashed lines). The estimator infers the rate at which each chain is generated,
which gives sufficient information for minimum-weight perfect matching. (right)
The resultant decoder converges to an optimal minimum-weight perfect matching
decoder as N increases, and by N ≈ 104 rounds is effectively completely trained.
Further details (including simulation details) can be found in Chapter 5.

Chapter 5: Adaptive weight estimator for quantum error
correction in a time-dependent environment

In Chapter 5, we improve the performance of minimum-weight perfect
matching decoders for surface and repetition codes by inferring the error
rates of such codes from repeated syndrome measurement. We are able to
derive an exact analytic formula for such inference, allowing for low-cost
weight extraction for minimum-weight perfect matching. The resulting
decoder converges to near-optimal decoder efficiency within only N =
10, 000 quantum error correcting cycles, as shown in Fig. 1.10, making
this a very attractive technique for future use. We further investigate the
performance of this decoder in the presence of fluctuating noise, and show
that the convergence rate gives an order of magnitude for the ability of a
decoder to adapt to said fluctuations.

Chapter 6: Neural network decoder for topological color codes
with circuit level noise

In Chapter 6, we investigate the performance of machine learning decoders
for color codes, for which no high-efficiency algorithm was previously
known. This follows a previous work on the Surface code [211], but is
complicated by the need to account for hook errors in the color code, which
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Figure 1.11.: Schematic and performance of the color code. (Left) The distance-
5 [6, 6, 6] color code. Pairs of (blue) ancilla qubits are used to make repeated
flagged parity checks on neighbouring (red) data qubits. The equivalent distance-
3 code may be obtained by choosing a smaller plaquette of the lattice (blue
shaded region). (Right) Repeated stablizer measurements and quantum error
correction allow for the correction of all combinations of errors that do not span
at least half the lattice, leading to a logical error rate exponentially small in
the resulting code distance d. That this exponential decay scales as (d+ 1)/2
implies that the single-flag fault-tolerance scheme protects against hook errors.

we do via the measurement of a flagging circuit along the lines of [243]. We
make critical improvements to both the decoder stability and flag circuit
size; in particular observing that a distance-d code may be corrected with a
single flag qubit per stabilizer rather than (d− 1)/2. This is demonstrated
by the observed p(d+1)/2 scaling in Fig. 1.11. We observe that with our
new decoder, the resulting code sits at the threshold of outperforming
its physical components as a memory, making it potentially attractive to
near-term quantum experiments.

1.6.3. Part III
In the final part of this thesis, we switch to developing new quantum
algorithms, primarily for the subject of digital quantum simulation, and
with a focus on near-term devices.

Chapter 7: Majorana-based fermionic quantum computation

In Chapter 7, we study the idea of using Majorana zero-modes to build
fermions for quantum computing, instead of qubits. We deconstruct various
digital quantum simulation circuits in terms of the evolution of Majorana
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Figure 1.12.: Scheme to simulate the Hubbard model on a 2D square lat-
tice using Majorana-based fermions for quantum computing. (Left) the 2-d
lattice of the Hubbard model; each site contains two interacting spins, and
electrons interact via a spin-conserving hopping term between neighbouring
sites. (Right) this may be encoded on a tesselatable lattice of superconducting
islands (green) connected by Josephson junctions (red lines) and nanowires
(black lines); Majorana zero modes may be isolated on sites where a nanowire
crosses a superconducting island (circles). Two Majoranas encode a fermion,
however we pattern the square lattice sparsely (1/3 filling) on the computer
architecture, using only the shaded sites. This allows free space for Majoranas
to be shuttled around for computation, allowing for simulated time evolution in
constant time. The Majorana hardware shown encodes only those spins circled
in the black dashed lines; single pairs of spins are associated as per the red
dashed lines.

zero-modes, and find a class of low-cost operations that can be used to
achieve all such operations. We demonstrate that this would result in lower
overhead for solving the electronic structure problem, and present schemes
(see Fig. 1.12) for simulation of the Hubbard model in a constant time
step (as a function of the system size). We further investigate magic state
distillation in Majorana-based circuits, as will be needed for fault-tolerance.

Chapter 8: Quantum phase estimation for noisy, small-scale
experiments

Finally, as an outlook, in Chapter 8 we study the ability of single-ancilla
variants of quantum phase estimation in realistic scenarios. Said variants
are attractive due to lower overhead requirements, but have till now not
been investigated in the situation where the phase estimation algorithm
is performed on starting states that are superpositions of Hamiltonian
eigenstates. We demonstrate that both Prony’s method and Bayesian
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Figure 1.13.: Error in quantum phase estimation of a two-eigenvalue system,
given a short, noisy signal and using an estimator based on Prony’s method.
This toy model may be parametrized in terms of the gap between the eigenvalues
and the amplitude of the target eigenvalue φ0. The resulting diagram may be
split into three regions. In region (a), the estimator cannot distinguish the two
phases, and estimates a single phase in between; the error then comes from
their separation. In region (b), the phases are separated enough to identify
individually, but the estimation of each is marred by the other’s presence. In
region (c), the phases are completely separated and do not affect the estimation
of each other. As the signal is lengthened, or made less noisy, regions (a) and
(b) retract, and the estimation precision improves.

techniques are able to resolve single eigenphases from these superpositions.
We are able to derive or numerically observe scaling laws for both methods
(see Fig. 1.13) in terms of various experimental and Hamiltonian parameters.
We further investigate the effect of noise on these methods, and find
methods for compensating simple noise methods by incorporating them
into the estimation itself.
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Part I.

Magnetotransport in
topological semimetals

39





2. Magnetic breakdown and
Klein tunneling in a type-II
Weyl semimetal

2.1. Introduction
Weyl semimetals provide a condensed matter realization of massless rela-
tivistic fermions [50]. Their spectrum features a diabolo-shaped surface in
energy-momentum space that separates helical electron-like states (moving
in the direction of the momentum) from hole-like states (moving opposite
to the momentum) [92]. These “Weyl cones” are the three-dimensional
analogue of the two-dimensional Dirac cones in graphene. The third spatial
dimension provides a topological protection, by which the conical point
(Weyl point) cannot be opened up unless two Weyl cones of opposite
helicity are brought together in momentum space [93].
Although the Weyl point cannot be locally removed, the cones can be

tilted and may even tip over [51–59]. For the relativistic Weyl cone such
a distortion is forbidden by particle-hole symmetry, but that is not a
fundamental symmetry in condensed matter. While in graphene the high
symmetry of the honeycomb lattice keeps the cone upright, strain providing
only a weak tilt [94], the tilting can be strong in 3D Weyl semimetals. This
leads to a natural division of Weyl cones into two topologically distinct
types [56]. In type I the cone is only weakly tilted so that the electron-like
states and hole-like states occupy separate energy ranges, above or below
the Weyl point. In type II the cone has tipped over so that electron and
hole states coexist in energy. Many experimental realizations of a type-II
Weyl semimetal have recently been reported [95–101].

In a magnetic field the coexisting electron and hole pockets of a type-II
Weyl semimetal are coupled by tunneling through the Weyl point (Fig. 2.1).

The contents of this chapter have been published in T.E. O’Brien, M. Diez and
C.W. J. Beenakker, Phys. Rev. Lett. 116 (23), 236401 (2016).
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Figure 2.1.: a) Fermi surface of a type-II Weyl semimetal, calculated from the
model Hamiltonian (2.1), showing the electron and hole pockets touching at the
Weyl point. Equi-energy contours in planes perpendicular to the magnetic field
B are indicated. The magnetic quantum oscillations have a periodicity in 1/B
determined by the contour that encloses an extremal area. b) Intersection of the
Fermi surface with a plane perpendicular to B that passes through the Weyl
point. Electron and hole pockets are bounded by a contour C± enclosing an area
A±. The semiclassical orbit of an electron follows the contour in the direction
of the arrow. Tunneling between the pockets happens with a probability T
that tends to unity when their minimal separation ∆k → 0. This magnetic
breakdown is a manifestation of Klein tunneling in momentum space.

Here we investigate how this process, a momentum space manifestation
of Klein tunneling [102], affects the magnetic quantum oscillations of
the density of states (De Haas-Van Alphen effect), providing a unique
thermodynamic signature of the topologically protected band structure
(an alternative to proposed transport signatures [56, 103–105]). Because
the quantum oscillations are governed by extremal cross-sections of the
Fermi surface, one might wonder whether some high symmetry is required
to align the extremal cross-section with the Weyl point, so that it becomes
observable. Our analysis shows that a magnetic field axis for this alignment
exists generically, because of the Möbius strip topology of the projective
plane. We first consider Klein tunneling through a single type-II Weyl
point, and then turn to pairs of Weyl cones of opposite helicity, which
can be combined in topologically distinct ways [55] — with a qualitatively
different dependence on the Klein tunneling probability.
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2.2. Semiclassical quantization

2.2. Semiclassical quantization
To first order in momentum k, the Hamiltonian of a Weyl cone has the
generic form

H =
∑
ijvijkiσj + atiltkxσ0, (2.1)

in terms of Pauli matrices σi, i ∈ {x, y, z} (unit matrix σ0). The eigenvalues
lie on two hyperboloid sheets E±,

E± = atiltkx ±
√∑

ijlvilvjlkikj , (2.2)

that touch at the Weyl point k = 0.
For sufficiently small atilt the Fermi surface contains either electron-like

states in E+ or hole-like states in E−, depending on the sign of the Fermi
energy. With increasing atilt the Weyl cone is tilted in the (arbitrarily
chosen) x-direction, and when it tips over coexisting electron and hole
states appear on the Fermi surface. This is the type-I to type-II Weyl
semimetal transition [56].

The hyperboloid dispersion (2.2) only holds near the Weyl point. In the
physical realizations of a type-II Weyl semimetal the Fermi surface closes
away from the Weyl point, forming compact electron and hole pockets. A
cross-section is defined by fixing an axis (unit vector n̂) and choosing a
coordinate q along that axis. The intersection of the Fermi surface with
the plane n̂ · k = q is an oriented contour C±(q) enclosing the signed
area A±(q) (positive for C+ and negative for C−). The contours are the
classical momentum-space orbits for a magnetic field B in the n̂-direction,
the change in orientation between C+ and C− resulting from the sign
change of the effective mass in the electron and hole pockets.
Semiclassical quantization of the orbits produces Landau tubes [25],

with quantized cross-sectional area

A±(q) = 2π(n+ ν)eB/~, n = ±1,±2. (2.3)

The Maslov index ν = 1/2 for massive electrons, while ν = 0 for massless
Weyl fermions [106]. The Landau tubes give rise to oscillations in the
density of states periodic in 1/B∗,

δρ/ρ0 = Re
{

[−iA′′±(qc)]−1/2e2πi(F±/B−ν)
}
, (2.4)

∗For a convex electron or hole pocket one has signA′′±(qc) = ∓1 so the factor
[−iA′′±(qc)]−1/2 in Eq. (2.4) contributes a phase shift ∓π/4 to the magnetic oscillations.

43



2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

with frequency given by the Onsager relation [107, 108]

F± = (~/2πe)|A±|. (2.5)

The extremal area A± = A±(qc) is the area at which the first derivative
dA±(q)/dq = 0. The contour enclosing the extremal area is denoted by
C±.

2.3. Magnetic breakdown
The two sheets E± of a type-II Weyl cone are coupled by quantum tunneling.
This magnetic-field-induced tunneling between electron and hole pockets
is the momentum space counterpart of Klein tunneling at a p–n junction
in graphene [109], and can be analyzed along the same lines [110].
The effect of a magnetic field B in, say, the y-direction, with vector

potentialA = (Bz, 0, 0), is accounted for by the substitution kx 7→ kx+eBz
(setting ~ = 1). In momentum representation, the Schrödinger equation
Hψ = Eψ reads

iU0
∂ψ

∂kz
= U(kz)ψ, U0 = eB

(∑
jvxjσj + atiltσ0

)
, (2.6a)

U(kz) = Eσ0 −
∑
ijvijkiσj − atiltkxσ0. (2.6b)

For atilt > (
∑
j v

2
xj)1/2 the matrix U0 is positive definite, so that it can be

factorized as U0 = V V † with invertible V and we may write

i∂ψ/∂kz = V −1U(kz)(V †)−1ψ ≡ H(kz)ψ, (2.7)

with H(kz) = H0 + H1kz. If we interpret kz ≡ t as “time”, this looks
like a Schrödinger equation for a spin-1/2 particle with “time”-dependent
Hamiltonian H(t). Because the t-dependence of H(t) is linear, we can
use the Landau-Zener formula for the tunneling probability between the
electron and hole pockets [111].

Quite generally, for a two-level system with time-dependent Hamiltonian

H(t) =
(
αt+ c γ

γ∗ βt+ c′

)
, (2.8)

the Landau-Zener tunnel probability is

T = exp
(
−2π|γ|2|α− β|−1). (2.9)
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2.3. Magnetic breakdown

Figure 2.2.: Energy spectrum at ky = 0 of the type-II Weyl semimetal with
Hamiltonian (2.11) (parameters t = 1, t′ = 2, µ = 3, b = 1.2, atilt = 1.7,
ξ = 0.08). The black dotted curves are the exact numerical results, the red
dashed lines form the semiclassical Landau fan (2.15) for tunnel-coupled electron
and hole pockets. The individual pockets are responsible for the high-frequency
oscillations superimposed on the fan.

The matrix (2.7) is of the form (2.8) in the basis where H1 is diagonal, so
in that basis we can read off the coefficients α, β, γ needed to determine T .

For a specific example we consider the Hamiltonian (2.1) with vij = viδij ,
which for atilt > vx represents a type-II Weyl cone. We find

T = exp
(
− π~
eB

v2
xE

2 + v2
yk

2
y(a2

tilt − v2
x)

vz(a2
tilt − v2

x)3/2

)
= exp

(
− π~

4eBvz
(∆k)2(a2

tilt − v2
x)1/2

)
, (2.10)

with ∆k the minimal separation of the contours C+ and C−. This has the
general form of the interband tunnel probability in the theory of magnetic
breakdown [108, 112, 113], with a breakdown field Bc ∝ (∆k)2. The
characteristic feature of Klein tunneling is that the tunnel probability
T → 1 and Bc → 0 at the conical point of the band structure — here a
3D Weyl point and a 2D Dirac point in Ref. 102.

To illustrate the effect of Klein tunneling between electron and hole
pockets on the magnetic quantum oscillations in the density of states, we
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2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

consider the model Hamiltonian [65]∗

H = τz(t′σx sin kx + t′σy sin ky) + tτzσ0 sin kz
+ τxσ0(µ− t cos kx − t cos ky − t cos kz)
+ bτ0σz +

[
atilt sin kx + ξ(1− cos kx)

]
τ0σ0. (2.11)

This is a tight-binding Hamiltonian on a cubic lattice (lattice constant
a0 = 1), with a spin and orbital degree of freedom on each lattice site (Pauli
matrices σi and τi, respectively). The time-reversal symmetry breaking
term b splits the Dirac cone into two Weyl cones separated along the z-axis.
To produce a type-II Weyl semimetal we have added a tilting term atilt
and a term ξ that breaks the symmetry between the electron and hole
pockets.

As derived in App. A, near a Weyl point the effective low-energy Hamil-
tonian has the form (2.1) with diagonal velocity tensor vij = viδij given
by

vx = vy = (2t− µ)2 − t2 + b2

2b(2t− µ) t′, (2.12a)

vz = 1
2b
√

[(t− µ)2 − b2] [b2 − (3t− µ)2]. (2.12b)

The Hamiltonian (2.11) retains a mirror symmetry in the x–z plane
(to be removed later on), which implies that for a magnetic field in the
y-direction the areas A±(ky) are extremal for ky = 0. By means of
exact diagonalization† we have calculated the partial density of states
ρ(E,B, ky) =

∑
p δ[E − Ep(B, ky)] for ky = 0, assuming that this gives

the dominant contribution to the magnetic quantum oscillations. We
choose the gauge A = (0, 0,−Bx), with a rational flux Ba2

0 = 1/N × h/e
through a unit cell. The lattice has dimensions N ×NM in the x–z plane
(M � N � 1), with periodic boundary conditions in both directions.

Fig. 2.2 shows the energy spectrum as a function of magnetic field and
Fig. 2.3 shows the periodicity of the magnetic oscillations, extracted from
a Fourier transform of the density of states. When the Fermi level is far
from the Weyl point E = 0, the electron and hole pockets contribute
separately with frequencies F± set by the extremal areas A±. The slopes

∗The Hamiltonian (2.11) differs from that in this reference by the addition of the
atilt and ξ terms, and also in the replacement of τyσ0 sin kz by τzσ0 sin kz . This last
change was introduced to produce small electron and hole pockets that do not spread
out over the entire Brillouin zone.
†To discretize the model Hamiltonian (2.11) we used the kwant toolbox of [114].
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2.3. Magnetic breakdown

Figure 2.3.: Fourier amplitudes of the magnetic quantum oscillations. The
numerical data for the partial density of states ρ(E, ky = 0) (smoothed with
a Gaussian of width Γ = t/500) is Fourier transformed over the field range
B . 0.005h/ea2

0 (200 < N < 1500). The fundamental frequencies from the
electron and hole pockets are indicated by F+ and F−, respectively (the first
harmonics are also faintly visible). Klein tunneling between the pockets when the
Fermi energy approaches the Weyl point (E = 0) suppresses these high-frequency
oscillations, introducing a new component at the difference frequency |F+ − F−|.
The colored data points for F± are the semiclassical prediction (2.5) from the
extremal areas.

dF±/dE have opposite sign in the two pockets, signifiying the opposite
sign of the cyclotron effective mass

m± = ~2

2π
d

dE
|A±|. (2.13)

Near the Weyl point a low-frequency component appears at the differ-
ence |F+ − F−|, and the individual high-frequency components F± are
suppressed. In a semiclassical description, the orbit responsible for the
difference frequency is the “figure of eight” orbit formed by joining C+ to
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C− at the Weyl point (see Fig. 2.1b). The corresponding effective mass

mΣ = ~2

2π
d

dE
|A+ +A−| (2.14)

governs the Landau fan in Fig. 2.2,

Ep(B) = Ep(0) + p× ~eB/mΣ. (2.15)

Notice the absence of a 1/2 offset from the integer p, canceled by a Berry
phase.

Figure 2.4.: Energy dependence of the Fourier amplitudes from Fig. 2.3. The
curves are fits to Ω±

√
1− T and ΩΣT , with the transmission probability T (E)

calculated from Eq. (2.10) and energy-independent fit parameters Ω±,ΩΣ. When
two frequency lines in Fig. 2.3 cross we cannot reliably determine the individual
amplitudes — which explains some of the large scatter in the data points.

The tunnel probability (2.10) evaluates for our model parameters to
T (E) = exp[−0.52N(E/t)2]. The contribution of an orbit to the Fourier
amplitude contains a factor t =

√
T for each transmission through the

Weyl point and a factor r =
√

1− T for each reflection. In Fig. 2.4 we plot
the peak heights of Fig. 2.3 as a function of energy. The solid lines are fits
to Ω±

√
1− T (E) and ΩΣT (E), with energy-independent fit parameters

Ω±,ΩΣ. We take for the inverse field strength N = 850, half-way the
interval used in the Fourier transform. A good match to the predicted
Gaussian T (E) is obtained.
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2.3. Magnetic breakdown

Figure 2.5.: Magnetic field axis L± = (θ±, φ±) for which the extremal contour
C± at E = 0 touches the Weyl point. The dashed curves correspond to the
Hamiltonian (2.11) with the parameters of Fig. 2.1. For the solid curves we have
broken the mirror symmetry by adding the term V0τ0σ0 sin ky with V0 = 0.5. The
intersection of L+ and L− (encircled) is the special axis at which Klein tunneling
between electron and hole pockets produces magnetic quantum oscillations with
the difference frequency |F+ − F−|, suppressing both the electron and hole
frequencies F±. The intersection is protected by the topology of the Möbius
strip (indicated by arrows, which show how the edges at φ = 0, π should be
glued with a twist).

The above analysis was simplified by the mirror symmetry in the x–z
plane, because we could immediately identify the special magnetic field
axis for which the extremal contours C± in the electron and hole pockets
both touch the Weyl point when E → 0, allowing for Klein tunneling. One
might wonder how restrictive this alignment is — is it possible to find
such a special axis in the absence of any symmetry? The answer is yes, as
we demonstrate with the help of Fig. 2.5. At E = 0 we plot the polar and
azimuthal angles θ±, φ± of the magnetic field axis for which the extremal
contour C± touches the Weyl point. Because (θ, φ) and (π − θ, π + φ)
represent the same axis, we may restrict φ to the range [0, π] — half the
usual range for spherical coordinates — identifying the end points (θ, 0)
and (π − θ, π). The (θ, φ) plane with these “twisted” periodic boundary
conditions is the so-called projective plane P2, and has the topology of a
Möbius strip.
If the loops L+ = (θ+, φ+) and L− = (θ−, φ−) both wind around the

Möbius strip, as they do in Fig. 2.5, they must necessarily intersect because
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Figure 2.6.: Left panels: Dependence on the orientation of the magnetic field of
the amplitude of the magnetic quantum oscillations (normalized to unit maximal
amplitude), for a fixed Fermi energy EF = 0. Pairs of type-II Weyl points at
E = 0 with disconnected or connected Fermi surfaces are compared. The right
panels show a cross-section through the electron and hole pockets. For each
curve in the left panels the corresponding orbit is indicated. The calculations,
detailed in App. C, are for the Hamiltonian (2.11) with parameters t = 1, µ = 3,
b = 1.2, atilt = 1.7 for all panels and t′ = 2, ξ = 0.08 (top panels); t′ = 1.7,
ξ = 0.24 (bottom panels).

of the twist. The point of intersection is the special axis at which both
C+ and C− touch the Weyl point. In App. B we show that such non-
contractible loops always exist if the Fermi surface is convex, independent
of any symmetry requirement.

2.4. Conclusion
So far we considered Klein tunneling at a single Weyl point. A second
Weyl point of opposite helicity necessarily exists in the Brillouin zone, and
this allows for topologically distinct Fermi surfaces [55]. In Fig. 2.6 we
illustrate how Klein tunneling can distinguish connected from disconnected
pairs of type-II Weyl cones, by the qualitatively different dependence on
the magnetic field orientation.
Experimentally, Klein tunneling through a type-II Weyl point can be

detected in measurements of the De Haas-Van Alphen effect in the magnetic
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Figure 2.7.: Dispersion close to a type-II Weyl point. Shown are five kz-
subbands at ky = 0; blue-solid lines show the dispersion of the four-band
model (2.11); yellow-dashed lines show the corresponding low energy descrip-
tion (2.23). Parameters are the same as in Fig. 2.2.

susceptibility: If the magnetic axis is rotated towards the special alignment
of Fig. 2.5, the high-frequency magnetic quantum oscillations from the
electron and hole pockets would both be suppressed in favor of a low-
frequency oscillation from the coupled orbits. The characteristic field
for this magnetic breakdown would depend quadratically on the energy
mismatch E between the Weyl point and the Fermi energy, with unit
tunnel probability in the limit E → 0 as the defining signature of Klein
tunneling in momentum space. With sufficient doping WTe2 would produce
disconnected type-II Weyl cones near the Fermi energy [56, 115]∗, while
they are connected in undoped LaAlGe [96]. Klein tunneling is a powerful
diagnostic for such topologically distinct Fermi surfaces.

∗The recent experimental study [115] of magnetic quantum oscillations in semimetal-
lic WTe2 reports the sudden appearance of a new frequency above a critical field. Since
the new frequency is the sum rather than the difference of the low-field frequencies, it
cannot be associated with Klein tunneling through a Weyl point.
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2.A. Low-energy limit of the four-band
model Hamiltonian of a type-II Weyl
semimetal

The dispersion along the kz-axis (for kx = ky = 0) of the four-band
Hamiltonian (2.11) is given by

Ehigh
± = ±b±

√
(2t− µ)2 + t2 + 2t(2t− µ) cos kz, (2.16)

Elow
± = ±b∓

√
(2t− µ)2 + t2 + 2t(2t− µ) cos kz. (2.17)

For µ > 2t the two low-energy bands Elow
± form a pair of Weyl cones

located at

Kz = ± arccos
(

(2t− µ)2 + t2 − b2

2t(µ− 2t)

)
. (2.18)

We wish to derive the corresponding low-energy Hamiltonian. Notice that
for kx = ky = 0 the Hamiltonian (2.11) commutes with σz and is thus
block-diagonal. Each of the two blocks contains one low and one high
energy band. At K = (0, 0,Kz) the corresponding low energy eigenstates
are given by

Ψlow
+ = 1

N+

(
(2t− µ)(2b− 2t

√
1− cos2Kz)

(2t− µ)2 − t2 + b2
, 1, 0, 0

)
, (2.19)

Ψlow
− = 1

N−

(
0, 0,− (2t− µ)(2b+ 2t

√
1− cos2Kz)

(2t− µ)2 − t2 + b2
, 1
)
. (2.20)

We expand the four-band Hamiltonian in the basis of these eigenstates:
〈Ψlow

+ |H|Ψlow
+ 〉 〈Ψlow

+ |H|Ψlow
− 〉 〈Ψlow

+ |H|Ψhigh
+ 〉 〈Ψlow

+ |H|Ψhigh
− 〉

〈Ψlow
− |H|Ψlow

+ 〉 〈Ψlow
− |H|Ψlow

− 〉 〈Ψlow
− |H|Ψhigh

+ 〉 〈Ψlow
− |H|Ψhigh

− 〉
〈Ψhigh

+ |H|Ψlow
+ 〉 〈Ψhigh

+ |H|Ψlow
− 〉 〈Ψhigh

+ |H|Ψhigh
+ 〉 〈Ψhigh

+ |H|Ψhigh
− 〉

〈Ψhigh
− |H|Ψlow

+ 〉 〈Ψhigh
− |H|Ψlow

− 〉 〈Ψhigh
− |H|Ψhigh

+ 〉 〈Ψhigh
− |H|Ψhigh

− 〉


=
(

Hlow Vhigh,low

V †high,low Hhigh

)
. (2.21)

AtK the high and low energy blocks are uncoupled (Vhigh,low(0, 0,Kz) =
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0). Close to the Weyl point we have

H ≈ Hlow + V †high,low(Hhigh)−1Vhigh,low. (2.22)

Thus, to linear order in the deviation from K we can neglect this coupling
and simply linearize Hlow. After some algebra we find the corresponding
low-energy Weyl Hamiltonian,

H = atiltkxσ̃0 − vxkxσ̃x + vykyσ̃y + vz(kz −Kz)σ̃z. (2.23)

The matrices σ̃0,x,y,z are the identity and the Pauli matrices in the basis
of |Ψlow

± 〉. The anisotropic velocity components were given in the main
text, Eq. (2.12).
Fig. 2.7 shows a comparison between the type-II Weyl cone of the

four-band model and its effective low-energy description.

2.B. Topological protection of the special
magnetic field axis for Klein tunneling
between electron and hole pockets

Figure 2.8.: Same as Fig. 2.5, but now the incontractible loop L+ is replaced
by a set of contractible loops, containing the entire set of magnetic field axes
with extremal contours in the electron pocket that touch the Weyl point. This
arrangement would avoid the topological protection of the intersection of incon-
tractible loops in a Möbius strip, but we show by contradiction that it cannot
happen in a convex electron pocket.

The topology of the Möbius strip (the projective plane P2) protects the
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intersection of two incontractible loops, ensuring the existence of a special
magnetic field axis where the extremal contours C± in the electron and
hole pockets both touch the Weyl point at E = 0. This is the arrangement
shown in Fig. 2.5. Contractible loops can avoid the intersection, as they
do in Fig. 2.8. For convex electron and hole Fermi surfaces the existence
of incontractable loops is guaranteed by the following argument.
Consider the full set S+ of magnetic field axes for which the extremal

contour C+ in the electron pocket touches the Weyl point. If this set
would consist only of contractible loops, then we would be able to pass an
incontractible loop L through P2 that avoids S+. We will now see that
this leads to a contradiction.
For a convex Fermi surface each field axis n̂ on L is associated with a

unique extremal contour C(n̂). By construction, the contour C(n̂) lies
in a plane normal to n̂. The direction n̂ defines whether the Weyl point
lies above or below this plane. Inversion of the axis produces the same
extremal contour and therefore the same normal plane, with “above” and
“below” interchanged. As we follow the incontractible loop L from polar
angle φ = 0 to φ = π, the field axis is inverted, so at some axis n̂0 on L
the Weyl point must move from above to below the plane. As motion of
the plane is continuous, this can only happen if the Weyl point actually
lies on C(n̂0) ∈ L. This would mean that C(n̂0) ∈ S+, which we had
excluded by the construction of L.

The same argument can be applied to the hole pocket, and we conclude
that for both the (convex) electron and hole pockets there must exist
incontractible loops L± of field axes with extremal contours that touch
the Weyl point.

2.C. Klein tunneling for pairs of connected
type-II Weyl points

The curves in Fig. 2.6 are calculated as follows. The Fermi level is
fixed at the energy E = 0 of the Weyl points and the magnetic field B
is rotated in the x–y plane, staying close to the y-axis (angles θ = 0,
|φ/π − 1/2| � 1). We assume that the dominant φ-dependence of the
amplitude of the magnetic quantum oscillations is then given by the Klein
tunneling probability.
For a given field orientation n̂ we define T (q) as the Klein tunneling

probability between electron and hole pockets at E = 0 and n̂ · k = q.
Because of the symmetry of our band structure, both Weyl points have
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2.C. Klein tunneling for pairs of connected type-II Weyl points

the same T . We then take a planar cross-section of the Fermi surface
at a momentum q parallel to the field and select one of the contours
indicated in the left panels of Fig. 2.6. The contour encloses a signed area
A(q) and we determine the qc at which the area is extremal, A′(qc) = 0.
We calculate Tc = T (qc) using the general Landau-Zener formula (2.9).
Finally, we follow the contour for one period, collecting a factor

√
Tc for

each transmission through a Weyl point and a factor
√

1− Tc for each
reflection. The product of these factors is plotted in Fig. 2.6 (left panels)
as a function of the field orientation φ.
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3. Superconductivity provides
access to the chiral
magnetic effect of an
unpaired Weyl cone

3.1. Introduction
Massless spin-1/2 particles, socalled Weyl fermions, remain unobserved as
elementary particles, but they have now been realized as quasiparticles in
a variety of crystals known as Weyl semimetals [116–120]. Weyl fermions
appear in pairs of left-handed and right-handed chirality, occupying a pair
of cones in the Brillouin zone. The pairing is enforced by the chiral anomaly
[64]: A magnetic field induces a current of electrons in a Weyl cone, flowing
along the field lines in the chiral zeroth Landau level. The current in the
Weyl cone of one chirality has to be canceled by a current in the Weyl
cone of opposite chirality, to ensure zero net current in equilibrium. The
generation of an electrical current density j along an applied magnetic field
B, the socalled chiral magnetic effect (CME) [63, 121], has been observed
as a dynamic, nonequilibrium phenomenon [122–126] — but it cannot be
realised in equilibrium because of the fermion doubling [65, 127–136].

Here we present a method by which single-cone physics may be accessed
in a superconducting Weyl semimetal, allowing for observation of the CME
in equilibrium. The geometry is shown in Fig. 3.1. Application of a flux
bias gaps out all but a single particle-hole conjugate pair of Weyl cones, of
a single chirality ± set by the sign of the flux bias. At nonzero chemical
potential µ, one of the two Weyl points sinks in the Cooper pair sea, the
chiral anomaly is no longer cancelled, and we find an equilibrium response

The contents of this chapter have been published in T.E. O’Brien, C.W. J.
Beenakker and İ. Adagideli, Phys. Rev. Lett. 118 (20), 207701 (2017).
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.1.: Left panel: Slab of a Weyl superconductor subject to a magnetic
field B in the plane of the slab (thickness W less than the London penetration
depth). The equilibrium chiral magnetic effect manifests itself as a current
response ∂j/∂B = ±κ(e/h)2µ along the field lines, with κ a charge renormaliza-
tion factor and µ the equilibrium chemical potential. The right panel shows the
flux-biased measurement circuit and the charge-conjugate pair of Weyl cones
responsible for the effect, of a single chirality ± determined by the sign of the
flux bias.

∂j/∂B = ±(e∗e/h2)µ, with e∗ the charge expectation value at the Weyl
point.

We stress that the CME in a superconductor is not in violation of ther-
modynamics, which only demands a vanishing heat current in equilibrium.
Indeed, in previous work on magnetically induced currents [137–139] it
was shown that the fundamental principles of Onsager symmetry and
gauge invariance forbid a linear relation between j and B in equilibrium.
However, in a superconductor the gauge symmetry is broken at a fixed
phase of the order parameter, opening the door for the CME.

3.2. Pathway to single-cone physics
We first explain the mechanism by which a superconductor provides access
to single-cone physics. A pair of Weyl cones at momenta ±k0 of opposite
chirality has Hamiltonian [93]

H = 1
2vF
∑
k

[
ψ†k(k − k0) · σψk − φ

†
k(k + k0) · σφk

]
, (3.1)
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3.3. Model Hamiltonian of a Weyl superconductor

where k · σ = kxσx + kyσy + kzσz is the sum over Pauli matrices acting
on the spinor operators ψ and φ of left-handed and right-handed Weyl
fermions. The Fermi velocity is vF and we set ~ ≡ 1 (but keep h in the
formula for the CME).

If H would be the Bogoliubov-De Gennes (BdG) Hamiltonian of a super-
conductor, particle-hole symmetry would require that φk = σyψ

†
−k. With

the help of the matrix identity σyσασy = −σ∗α and the anticommutator
ψσ∗αψ

† = −ψ†σαψ we rewrite Eq. (3.1) as

H = 1
2vF
∑
k

[
ψ†k(k − k0) · σψk − ψ

†
−k(k + k0) · σψ−k

]
= vF

∑
kψ
†
k(k − k0) · σψk, (3.2)

producing a single-cone Hamiltonian. If we then, hypothetically, impose
a magnetic field B = ∇ ×A via k 7→ k − eA, the zeroth Landau level
carries a current density j = (e/h)2µB in an energy interval µ. This is
the chiral anomaly of an unpaired Weyl cone [64].

3.3. Model Hamiltonian of a Weyl
superconductor

As a minimal model for single-cone physics we consider the BdG Hamilto-
nian [140]

H =
∑
kΨ†kH(k)Ψk, Ψk =

(
ψk, σyψ

†
−k
)
, (3.3a)

H(k) =
(
H0(k − eA) ∆0

∆∗0 −σyH∗0 (−k − eA)σy

)
, (3.3b)

H0(k) =
∑
ατzσα sin kα + τ0(βσz − µσ0) +mkτxσ0,

mk = m0 +
∑
α(1− cos kα). (3.3c)

This is a tight-binding model on a simple cubic lattice (lattice constant
a0 ≡ 1, nearest-neighbor hopping energy t0 ≡ 1, electron charge +e).
The Pauli matrices τα and σα, with α ∈ {x, y, z}, act respectively on the
orbital and spin degree of freedom. (The corresponding unit matrices are
τ0 and σ0.) Time-reversal symmetry is broken by a magnetization β in
the z-direction, µ is the chemical potential, A the vector potential, and
∆0 is the s-wave pair potential.

The single-electron Hamiltonian H0 in the upper-left block of H is the
four-band model [65, 141] of a Weyl semimetal formed from a topological

59



3. Chiral magnetic effect of an unpaired Weyl cone

insulator in the Bi2Se3 family, layered in the x–y plane. For a small mass
term m0 < β it has a pair of Weyl cones centered at

(
0, 0,±

√
β2 −m2

0
)
,

displaced in the kz-direction by the magnetization. (We retain inversion
symmetry, so the Weyl points line up at the same energy.) A coupling of
this pair of electron Weyl cones to the pair of particle-hole conjugate Weyl
cones in the lower-right block of H is introduced by the pair potential,
which may be realized by alternating the layers of topological insulator with
a conventional BCS superconductor [142, 143]. (Intrinsic superconducting
order in a doped Weyl semimetal, with more unconventional pair potentials,
is an alternative possibility [144–153].) The superconductor does not gap
out the Weyl cones if ∆0 <

√
β2 −m2

0.

3.4. Flux bias into the single-cone regime

As explained by Meng and Balents [142], a Weyl superconductor has
topologically distinct phases characterized by the number N ∈ {2, 1, 0} of
ungapped particle-hole conjugate pairs of Weyl cones. We propose to tune
through the phase transitions in an externally controllable way by means
of a flux bias, as shown in the circuit of Fig. 3.1. For a real ∆0 > 0 the flux
bias Φbias enters in the Hamiltonian via the vector potential component
Az = Φbias/L ≡ Λ/e. The Φbias-dependent band structure is shown in
Fig. 3.2, calculated [114] in a slab geometry with hard-wall boundaries
at x = ±W/2 and periodic boundary conditions at y = ±W ′/2 (sending
W ′ →∞).
The two pairs of particle-hole conjugate Weyl cones are centered at

(0, 0,K±) and (0, 0,−K±), with

K2
± =

(√
β2 −m2

0 ± Λ
)2 −∆2

0. (3.4)

We have assumed Λ, K± � 1, so the Weyl cones are near the center of
the Brillouin zone. A cone is gapped when K± becomes imaginary, hence
the N = 1 phase is entered with increasing Λ > 0 when√

β2 −m2
0 + Λ > ∆0 >

∣∣√β2 −m2
0 − Λ

∣∣. (3.5)

This is the regime in which we can observe the CME of an unpaired Weyl
cone, as we will show in the following.
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3.5. Magnetic response of an unpaired Weyl cone

Figure 3.2.: Effect of a flux bias on the band structure of a Weyl superconductor.
The plots are calculated from the Hamiltonian (3.3) in the slab geometry of
Fig. 3.1 (parameters: m0 = 0, ∆0 = 0.2, β = 0.5, µ = −0.05, ky = 0, W = 100,
Bz = 0). The color scale indicates the charge expectation value, to distinguish
electron-like and hole-like cones. As the flux bias is increased from Λ = 0 in
panel (a), to Λ = 0.1 and 0.4 in panels (b) and (c), one electron-hole pair of
Weyl cones merges and is gapped by the pair potential. What remains in panel
(c) is a single pair of charge-conjugate Weyl cones, connected by a surface Fermi
arc. This is the phase that supports a chiral magnetic effect in equilibrium.

3.5. Magnetic response of an unpaired Weyl
cone

We assume that the slab is thinner than the London penetration depth, so
that we can impose an unscreened magnetic field Bz in the z-direction∗.
The vector potential including the flux bias is A = (0, xBz,Λ/e). To
explain in the simplest terms how single-cone physics emerges we linearize
in k and A and set m0 = 0, so the mass term mk can be ignored. (A
discussion of the nonlinearities may be found in App. 3.A.)
The Hamiltonian (3.3) is approximately block-diagonalized by the Bo-

∗For magnetic lengths lm =
√

~/eB below the thickness W of the slab, the parallel
magnetic field B may induce vortices in the order parameter. We take a uniform order
parameter in our analysis, however, the numerical data in Fig. 3.4 shows that our results
extend down to the lowest fields with lm �W , when vortex formation is suppressed.
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.3.: Chirality switch of a pair of charge-conjugate Weyl cones, induced
by a sign change of the flux bias Λ = 0.15, -0.45, and 0.45 in panels a, b, and c,
respectively. All other parameters are the same in each panel: m0 = 0, ∆0 = 0.6,
β = 0.5, W = 100, ky = 0, µ = −0.05, and Bz = 0.001 a−2

0 h/e. The charge
color scale of the band structure is as in Fig. 3.2. Particles in the zeroth Landau
level propagate through the bulk in the same direction both in the electron-like
cone and in the hole-like cone, as determined by the chirality χ = −sign Λ∗.
A net charge current appears in equilibrium because µ < 0, so there is an
excess of electron-like states at E > 0. [States at E < 0 do not contribute to
the equilibrium current (3.11).] The particle current is cancelled by the Fermi
arc that connects the charge-conjugate Weyl cones. The Fermi arc carries an
approximately neutral current, hence the charge current in the chiral Landau
level is not much affected by the counterflow of particles in the Fermi arc.
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3.5. Magnetic response of an unpaired Weyl cone

Figure 3.4.: Data points: numerical calculation of the equilibrium supercurrent
in the flux-biased circuit of Fig. 3.1. The parameters are m0 = 0, ∆0 = 0.6,
β = 0.5, Λ = 0.45, W = 100, kBT = 0.01; the green data points are for a
fixed µ with variation of Bz and the blue points for a fixed Bz with variation
of µ. The data is antisymmetrized as indicated, to eliminate the background
supercurrent from the flux bias. The solid curves are the analytical prediction
(3.10), with κ = 0.775 following directly from Eq. (3.9) (no fit parameters). The
Bz-dependent data is also shown with a zoom-in to very small magnetic fields,
down to 10−7a−2

0 h/e, to demonstrate that the linear Bz-dependence continues
when lm > W .

goliubov transformation

ψ̃k = cos(θk/2)ψk + i sin(θk/2)τzσxψ†−k,
H̃ = U†HU, U = exp

( 1
2 iθkνyτzσz

)
,

(3.6)

where the Pauli matrix να acts on the particle-hole degree of freedom. If

∗The chirality χ of a Weyl cone determines the sign of the dispersion of the zeroth
Landau level in a magnetic field: sign (dE/dkz) = χ sign (Bz). In the flux-biased Weyl
superconductor χ = −sign Λ, as one can see in this figure.
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3. Chiral magnetic effect of an unpaired Weyl cone

we choose the kz-dependent angle θk such that

cos θk = −(sin kz)/∆k, sin θk = ∆0/∆k,

∆k =
√

∆2
0 + sin2 kz,

(3.7)

the gapless particle-hole conjugate Weyl points at k2
z = K2

+ ≈ 2∆0(β +
Λ−∆0)� 1 are predominantly contained in the (ν, τ) = (−,−) block of
H̃. Projection onto this block gives the low-energy Hamiltonian

H̃ =
∑
kψ̃
†
k

[∑
αvα(δkα − qαAα)σα − q0µσ0

]
ψ̃k, (3.8)

where k = (0, 0,K+) + δk, v = (1, 1,−κ), q0 = κ,
q = (κe, κe, e/κ), and

κ ≈ K+/
√

∆2
0 +K2

+ =
√

1−∆2
0/(β + Λ)2. (3.9)

Eq. (3.8) represents a single-cone Hamiltonian of the form (3.2), with
a renormalized velocity vα and charge qα. As a consequence, the CME
formula for the equilibrium current density jz is renormalized into∗

∂jz
∂Bz

= qyqz
h2 q0µ = e∗e

h2 µ, e∗ = κe. (3.10)

The renormalization of v does not enter because the CME is independent
of the Fermi velocity. One can understand why the product e∗e appears
rather than the more intuitive (e∗)2, by noticing that ∂jz/∂Bz changes
sign upon inversion of the momentum — hence only odd powers of κ ∝ K+
are permitted.

3.6. Consistency of a nonzero equilibrium
electrical current and vanishing particle
current

For thermodynamic consistency, to avoid heat transport at zero tempera-
ture, the CME should not produce a particle current in the superconductor.
The flow of charge e∗ particles in the z-direction should therefore be can-
celled by a charge-neutral counterflow. This counterflow is provided by
∗A more formal derivation of the effective charge formula (3.10) for the equilibrium

CME is given in App. C
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3.7. Numerical simulation

the surface Fermi arc, as illustrated in Fig. 3.3. The Fermi arc is the
band of surface states connecting the Weyl cones [154, 155], to ensure
that the chirality of the zeroth Landau level does not produce an excess
number of left-movers over right-movers. In a Weyl superconductor one
can distinguish a trivial or nontrivial connectivity, depending on whether
the Fermi arc connects cones of the same or of opposite charge [140, 156].
Here the connectivity is necessarily nontrivial, because there is only a
single pair of charge-conjugate Weyl cones. As a consequence, the Fermi
arc is approximately charge neutral near the Fermi level (near E = 0), so
it can cancel the particle current without cancelling the charge current∗†.

3.7. Numerical simulation

We have tested these analytical considerations in a numerical simulation
of the model Hamiltonian (3.3), in the slab geometry of Fig. 3.1. At
temperature T the equilibrium current is given by [159]

Iz = 1
2
∑
n,m

∫
dkz
2π tanh

(
Enm
2kBT

)
Θ(Enm)∂Enm

∂Az
, (3.11)

where Θ(E) is the unit step function and the prefactor of 1/2 takes care of
a double counting in the BdG Hamiltonian H. The eigenvalues Enm(kz) of
H are labeled by a pair of mode indices n,m for motion in the x–y plane
transverse to the current. In Fig. 3.4 we show results for the current density
jz = Iz/WW ′ in the T = 0 limit, including a small thermal broadening in
the numerics to improve the stability of the calculation.
We see that the numerical data is well described by the analytical

result (3.10), with charge renormalization factor κ = 0.775 from Eq. (3.9).
That analytical formula was derived upon linearization in k and A. A
more accurate calculation‡ that includes the nonlinear terms in the BdG
Hamiltonian gives κ = 0.750, so the simple formula (3.9) is quite accurate.

∗A cancellation of a particle current in the bulk by a particle current at the surface
is possible without superconductivity, but then also the charge current is cancelled. For
such a spatial separation of counter-propagating particle currents in the normal state
see [157, 158].
†See App. B for a detailed calculation of the approximately neutral current carried

by the surface Fermi arc.
‡Details of the calculation of the charge renormalization factor, including all nonlin-

earities in k and A, are given in App. A.
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.5.: Same as Fig. 3.4 in the current-biased circuit show in the inset.
No antisymmetrization of the data is needed because the measured current is
perpendicular to the current bias.

3.8. Extensions
We mention extension of our findings that may help to observe the equi-
librium CME in an experiment. A first extension is to smaller flux biases
in the N = 2 regime, when two pairs of charge-conjugate cones remain
gapless. The supercurrent is then given by

∂jz
∂Bz

= (κ+ − κ−) e
2

h2µ, κ± =
√

1−∆2
0/(β ± Λ)2, (3.12)

so the CME can be observed without fully gapping out one pair of cones.
A second extension is to a current-biased, rather than flux-biased circuit,

with the applied magnetic field By perpendicular to the current bias j0 in
the z-direction. The current bias then drives the Weyl superconductor into
the N = 1 phase via the vector potential component Az = µ0λ

2j0 ≡ Λ/e,
with λ the London penetration depth [159]. The analytical theory for this
alternative configuration is more complicated, and not given here, but
numerical results are shown in Fig. 3.5. While the effect is smaller than in
the flux-biased configuration, it is not superimposed on a large background
supercurrent so it might be more easily observed.
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3.9. Conclusion

A third extension concerns the inclusion of disorder. Our analysis is
simplified by the assumption of a clean slab, without disorder. We expect
that the chirality of the zeroth Landau level will protect the equilibrium
CME from degradation by impurity scattering, in much the same way as
the nonequilibrium CME is protected.

3.9. Conclusion
We have shown how the chiral anomaly of an unpaired Weyl cone can be
accessed in equilibrium in a superconducting Weyl semimetal. A flux bias
drives the system in a state with a single charge-conjugate pair of Weyl
cones, that responds to an applied magnetic field as a single species of
Weyl fermions. The cancellation of the chiral magnetic effect (CME) for
left-handed and right-handed Weyl fermions is removed, resulting in an
equilibrium current along the field lines. The predicted size of the induced
current is the same as that of the nonequilibrium CME, up to a charge
renormalization of order unity, and since that dynamical effect has been
observed [122–126] the static counterpart should be observable as well —
perhaps even more easily because decoherence and relaxation play no role.
In closing we note that the chiral anomaly in a crystal was originally

proposed [64] as a condensed matter realization of an effect from relativistic
quantum mechanics, and has since been an inspiration in particle physics
and cosmology [160–163]. The doorway to single-cone physics that we
have opened here might well play a similar role.

3.A. Charge renormalization in a
superconducting Weyl cone

We develop an effective low-energy description of the BdG Hamiltonian
(3.3), to determine the charge renormalization factors that govern the
equilibrium CME. In the main text we gave a simplified description,
linearized in k and A, valid if the Weyl points are near the center of the
Brillouin zone. Here we retain the nonlinear terms to obtain more accurate
expressions valid throughout the Brillouin zone. As it turns out, our final
result (3.34) for the charge renormalization factor is within a few percent
of the simple formula (3.9) for the parameters in the simulation of Fig.
3.4.

In this Appendix 3.A we focus on the bulk spectrum, the surface states
are considered in the next Appendix 3.B.
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3. Chiral magnetic effect of an unpaired Weyl cone

3.A.1. Block diagonalization

For a real pair potential ∆0 and including the flux bias Az = Λ/e by the
substitution kz 7→ kz − Λνz, the BdG Hamiltonian is

H = νzτz(σx sin kx + σy sin ky + σz sin kz cos Λ)
+mkνzτxσ0 − µνzτ0σ0 + βν0τ0σz + ∆0νxτ0σ0

− ν0τzσz cos kz sin Λ− ν0τxσ0 sin kz sin Λ, (3.13)
mk = m0 +

(
3− cos kx − cos ky − cos kz cos Λ). (3.14)

The 8 × 8 matrix H is constructed from the tensor product νατβσγ ≡
να ⊗ τβ ⊗ σγ of the Pauli matrices να, τβ , σγ , acting respectively on the
particle-hole, orbital, and spin degree of freedom.

Adapting the block-diagonalization procedure of Ref. 140, we carry out
a sequence of kz-dependent unitary transformations,

H̃ = U†3U
†
2U
†
1HU1U2U3, (3.15a)

U1 = exp
(
− 1

2 ikzν0τyσz
)
, U2 = exp

( 1
2 iθνyτzσz

)
,

U3 = exp
( 1

2 i(φ0ν0 + φzνz)τyσz
)
, (3.15b)

where the angles θ, φ0, φz are determined by

cos θ = uk
M0

, sin θ = ∆0

M0
, (3.16a)

cos(φ0 ± φz) = M0 ± sin Λ
M±

, (3.16b)

sin(φ0 ± φz) = vk
M±

, (3.16c)

uk = −mk sin kz − sin kz cos kz cos Λ, (3.16d)
vk = mk cos kz − sin2 kz cos Λ, (3.16e)

M0 =
√

∆2
0 + u2

k, (3.16f)

M± =
√

(M0 ± sin Λ)2 + v2
k. (3.16g)
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3.A. Charge renormalization in a superconducting Weyl cone

We thus arrive at a transformed Hamiltonian,

H̃ = νzτz(σx sin kx + σy sin ky) + βν0τ0σz

− νzτzσz
√

(M0 + νz sin Λ)2 + v2
k − µ cos θνzτ0σ0

− µ sin θ cosφ0νxτzσz − µ sin θ sinφ0νxτxσ0, (3.17)

that for small µ is predominantly block-diagonal in the ν and τ degree of
freedom.
We focus on the parameter range M− < β < M+ where two of the

four Weyl cones are gapped by the phase bias Λ, leaving one gapless
particle-hole conjugate pair. The effective low-energy Hamiltonian Heff is
then obtained by projecting H̃ onto the νz = −1, τz = −1 band,

Heff = σx sin kx + σy sin ky + (β −M−)σz + µσ0 cos θ. (3.18)

The two Weyl points are at the momenta ±K = (0, 0,±Kz) where
M− = β. Near one of the Weyl points, to first order in δk = k −K, the
effective Hamiltonian represents an anisotropic Weyl cone:

HK =
∑
α

vαδkασα + µσ0 cos θ, (3.19)

with effective velocity v = (1, 1,−∂M−/∂kz) evaluated at k = K.

3.A.2. Current and charge operators
The electrical current operator

j = − lim
a→0

∂

∂a
H(k − eνza) (3.20)

associated with the BdG Hamiltonian (3.13) has components

jx = eν0τzσx cos kx + eν0τxσ0 sin kx, (3.21a)
jy = eν0τzσy cos ky + eν0τxσ0 sin ky, (3.21b)
jz = eν0τzσz cos kz cos Λ + eν0τxσ0 sin kz cos Λ

+ eνzτzσz sin kz sin Λ− eνzτxσ0 cos kz sin Λ. (3.21c)

The unitary transformation (3.15) maps this into

̃α = U†3U
†
2U
†
1 jαU1U2U3, (3.22)
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3. Chiral magnetic effect of an unpaired Weyl cone

resulting in

̃x = eν0τzσx cos kx cos θ
− eν0τzσz sin kx

[
cos kz cos θ sin(φ0 + νzφz)− sin kz cos(φ0 + νzφz)

]
+ eν0τxσ0 sin kx

[
cos kz cos θ cos(φ0 + νzφz) + sin kz sin(φ0 + νzφz)

]
− eνxτ0σ0 sin kx cos kz sin θ sinφz + eνyτ0σy cos kx sin θ cosφ0

+ eνyτyσz sin kx cos kz sin θ cosφz − eνyτyσx cos kx sin θ sinφ0, (3.23a)

̃y = eν0τzσy cos ky cos θ
− eν0τzσz sin ky

[
cos kz cos θ sin(φ0 + νzφz)− sin kz cos(φ0 + νzφz)

]
+ eν0τxσ0 sin ky

[
cos kz cos θ cos(φ0 + νzφz) + sin kz sin(φ0 + νzφz)

]
− eνxτ0σ0 sin ky cos kz sin θ sinφz − eνyτ0σx cos ky sin θ cosφ0

+ eνyτyσz sin ky cos kz sin θ cosφz − eνyτyσy cos ky sin θ sinφ0, (3.23b)

̃z = eν0τzσz cos(Λ + φ0 + νzφz) + eν0τxσ0 sin(Λ + φ0 + νzφz). (3.23c)

Upon projection onto the νz = −1, τz = −1 band we thus arrive at

̃x = eσz sin kx(cos kz cos θ sinφ− − sin kz cosφ−)
− eσx cos kx cos θ (3.24a)

̃y = eσz sin ky(cos kz cos θ sinφ− − sin kz cosφ−)
− eσy cos ky cos θ, (3.24b)

̃z = − eσz cos(Λ + φ−) = eσz∂M−/∂Λ. (3.24c)

We have abbreviated φ− ≡ φ0 − φz.
The corresponding charge operator is simply

Q = −e∂Heff/∂µ = −eσ0 cos θ, (3.25)

resulting in a charge expectation value

〈Q〉 = −e cos θ

= e(3 +m0 − cos kx − cos ky) sin kz√
∆2

0 + (3 +m0 − cos kx − cos ky) sin2 kz

(3.26)

of the gapless quasiparticles. The charge changes sign as we move from
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3.A. Charge renormalization in a superconducting Weyl cone

one Weyl cone at K to its particle-hole conjugate at −K.
Notice that 〈Q〉 is independent of Az = eΛ. We will make us of this

later on to explain why the off-shell contributions to the CME can be
neglected [see Eq. (3.56)].

3.A.3. Effective Hamiltonian in the zeroth Landau
level

To apply the effective low-energy Hamiltonian (3.18) to the zeroth Landau
level we include the vector potential A from an applied magnetic field to
first order,

Heff(A) = σx sin kx + σy sin ky + (β −M−)σz
+ µσ0 cos θ −

∑
α

̃αAα. (3.27)

We take the vector potential A = (0, Bzx, 0) for a magnetic field Bz in
the z-direction and linearize with respect to kx. This linearization also
eliminates kx from the mass term mk, which would otherwise interfere
with the x-dependent A when we perform the unitary transformations
(3.15). We thus obtain

Heff = σxkx + σy sin ky + (β −M−)σz
+ µσ0 cos θ − eBzx(Vyσy + Vzσz), (3.28a)

Vy = − cos ky cos θ, (3.28b)
Vz = sin ky(cos kz cos θ sinφ− − sin kz cosφ−). (3.28c)

The x and kx = −i∂/∂x dependent parts of the Hamiltonian govern the
decay of the wave function when x→ ±∞, according to

∂ψ/∂x = iσxeBzx(Vyσy + Vzσz)ψ,

⇒ ψ(x) ∝ exp
(
− 1

2eBzx
2
√
V 2
y + V 2

z

)
|V 〉, (3.29a)

|V 〉 =
(
Vy +

√
V 2
y + V 2

z

−iVz

)
. (3.29b)

The energy E0(ky, kz) of the zeroth Landau level then follows upon
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.6.: Data points: Numerical results for the band structure of the
Weyl superconductor near the hole-like Weyl point at −Kz, showing the first
few Landau levels in a magnetic field Bz = 5 · 10−4 a−2

0 h/e (other parameters
m0 = 0, ∆0 = 0.6, β = 0.5, Λ = 0.45, W = 50, ky = 0, µ = 0). Red curve:
Analytical result (3.30) in the chiral zeroth Landau level, plotted without any
fit parameters.

projection of Heff onto |V 〉,

E0(ky, kz) = 〈V |Heff |V 〉
〈V |V 〉

= (β −M−)Vy − Vz sin ky√
V 2
y + V 2

z

+ µ cos θ. (3.30)

Near each of the two Weyl points at k = (0, 0,±Kz) + δk this reduces
to the dispersion

E±(kz) = v0δkz − q±µ+O(δk2),

q± = − cos θ
∣∣
Kz
, v0 = − ∂M−

∂kz

∣∣∣∣
Kz

.
(3.31)

of a zeroth Landau level that propagates chirally (unidirectionally) in the
z-direction with the same velocity v0 and opposite charge q±.
In Fig. 3.6 we compare the dispersion (3.30) in the zeroth Landau
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3.A. Charge renormalization in a superconducting Weyl cone

level, derived from the effective low-energy Hamiltonian (3.27), with the
numerical result from the full Hamiltonian (3.13). The agreement is very
good without any adjustable parameters, giving confidence in the reliability
of the low-energy description.

3.A.4. Renormalized charge for the CME

To make contact with the single-cone Hamiltonian (3.8) from the main
text, we seek the charge and velocity renormalization near the Weyl point
at K. The current and charge operators (3.24) and (3.25) enter into the
effective Hamiltonian (3.19) as

HK =
∑
α

vα(δkα − qαAα)σα − q0µσ0, (3.32a)

v = (1, 1,−∂M−/∂kz),
q0 = − cos θ,
q = −e (cos θ, cos θ, 1/ cos θ) ,

 at k = K. (3.32b)

We have linearized in the momentum δk = k −K and vector potential A
and we have used the fact that

∂M−/∂Λ
∂M−/∂kz

= 1
cos θ . (3.33)

From Eq. (3.10) we find the contribution from the zeroth Landau level
to the equilibrium supercurrent density,

∂jz
∂Bz

= q0qyqz
h2 µ = κ

e2

h2µ,

κ = − cos θ
∣∣
k=K = (1 +m0) sinKz√

∆2
0 + (1 +m0)2 sin2Kz

,

(3.34)

with K = (0, 0,Kz) determined by the equation M− = β.
For the parameter values of Fig. 3.4 we find Kz = 0.747, resulting in

the charge renormalization factor κ = 0.750. The formula (3.9) from the
linearized theory in the main text gives κ = 0.775 for the same parameter
values. It is remarkable how accurate that simple formula is, see Fig. 3.7,
even when Kz is not much smaller than unity.
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.7.: Black curve: Momentum Kz of the Weyl point as a function of the
flux bias Λ, calculated from the solution of M− = β for the parameters m0 = 0,
∆0 = 0.6, β = 0.5. Red curves: The corresponding charge renormalization factor
κ, from Eq. (3.34) (solid curve) and from the small-Kz approximation (3.9)
(dashed curve). The curves terminate at the value Λ = ∆0 − β = 0.1 where a
gap opens in the Weyl cone and the solution to M− = β becomes imaginary.

3.B. Surface Fermi arc

In App. 3.A we gave a low-energy description of the bulk Weyl cones. We
now turn to the surface states, to derive the dispersion relation shown in
Fig. 3.3 of the main text and to demonstrate that the Fermi arc carries an
approximately neutral current along the surface.

3.B.1. Boundary condition

In the slab geometry of Fig. 3.1 the Weyl superconductor is confined to the
inner region |x| < W/2 by an infinite mass in the outer region |x| > W/2.
The requirement of a decaying wave function in the outer region, where
m0 →∞, implies that the wave function at the interfaces satisfies

(1± ν0τyσx)ψ(±W/2) = 0. (3.35)
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3.B. Surface Fermi arc

The unitary transformation (3.15) changes this boundary condition into

(1± Ub)ψ̃(±W/2) = 0, (3.36)

Ub = U†3U
†
2U
†
1ν0τyσxU1U2U3

= ν0τ0σy[cos kz sin(φ0 + νzφz)− cos θ sin kz cos(φ0 + νzφz)]
+ ν0τyσx[cos kz cos(φ0 + νzφz) + cos θ sin kz sin(φ0 + νzφz)]
+ νyτzσx sin θ sin kz cosφz + νxτxσy sin θ sin kz sinφz, (3.37)

for the transformed wave function ψ̃ = U†3U
†
2U
†
1ψ.

For later use we note that the two matrices U0 = νzτzσy and Ub commute,
so they can be jointly diagonalized. Each matrix has eigenvalues ±1, we
seek the eigenspace where both eigenvalues have same sign. The two
orthonormal eigenvectors u1 and u2 with eigenvalue −1 are given by

u1 = 1
2Z
−2
0
(
iZ1, Z1,−iZ2, Z2, 0, 0, iZ4, Z4

)
, (3.38a)

u2 = 1
2Z
−2
0
(
i cosφzZ4, cosφzZ4, i sinφzZ4,

− sinφzZ4,−iZ0, Z0,−iZ3,−Z3
)
, (3.38b)

Z0 = 1− cos kz sinφ− + sin kz cos θ cosφ−, (3.38c)
Z1 = sinφ0 sin kz cos θ + cosφ0 cos kz + sinφz, (3.38d)
Z2 = cosφ0 sin kz cos θ − sinφ0 cos kz + cosφz, (3.38e)
Z3 = cos kz cosφ− + sin kz cos θ sinφ−, (3.38f)
Z4 = sin kz sin θ. (3.38g)

The eigenspace with eigenvalue +1 of U0 and Ub is spanned by u3 =
ν0τ0σzu1 and u4 = ν0τ0σzu2.

3.B.2. Construction of the surface state

For M− < β < M+ there is only one pair of gapless Weyl cones, so there
is a single low-energy surface state connecting them. We assume that
W is sufficiently large that we can treat the two surfaces at x = ±W/2
independently. Let us consider the surface state ψ̃ at x = W/2. It should
be a solution of H̃ψ̃ = Eψ̃ that decays for x→ −∞ and that satisfies the
boundary condition Ubψ̃ = −ψ̃ at x = W/2.
We first solve this matching problem to zeroth order in µ, when the
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3. Chiral magnetic effect of an unpaired Weyl cone

Hamiltonian (3.17) reduces to

H̃0 = νzτz(σx sin kx + σy sin ky) + βν0τ0σz

− νzτzσz
√

(M0 + νz sin Λ)2 + v2
k. (3.39)

We linearize in kx = −i∂/∂x and obtain the solution of H̃0ψ̃ = E0ψ̃ in
the form

ψ̃(x) = exp
[
iδx νzτzσx

(
E0 − νzτzσy sin ky − βν0τ0σz

+ νzτzσz

√
(M0 + νz sin Λ)2 + v2

k

)]
ψ̃(W/2), (3.40)

abbreviating δx = x−W/2.

For E0 = − sin ky the solution (3.40) that decays for δx → −∞ is an
eigenvector of U0 = νzτzσy with eigenvalue −1:

ψ̃(x) =
(

0, 0,−iC1e
(β+M+)δx, C1e

(β+M+)δx,

− iC2e
(β+M−)δx), C2e

(β+M−)δx,

iC3e
(β−M−)δx, C3e

(β−M−)δx
)
. (3.41)

To satisfy the boundary condition at x = W/2, the coefficients C1, C2, C3
should be chosen such that ψ̃(W/2) = (0, 0,−iC1, C1,−iC2, C2, iC3, C3) is
a superposition of the eigenvectors u1 and u2 in Eq. (3.38). This results in

C1 = Z1Z4 sinφz + Z2Z4 cosφz, C2 = −Z0Z1,

C3 = Z1Z3 + Z2
4 cosφz,

(3.42)

up to an overall normalization constant.
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3.B. Surface Fermi arc

3.B.3. Surface dispersion relation

We now add to the zeroth order energy E0 = − sin ky the contribution
δEµ from the chemical potential in first order perturbation theory,

δEµ = 〈ψ̃|δH̃|ψ̃〉
〈ψ̃|ψ̃〉

, (3.43)

δH̃ = H̃ − H̃0 = −µ cos θνzτ0σ0 − µ sin θ cosφ0νxτzσz

− µ sin θ sinφ0νxτxσ0. (3.44)

Two of the three µ-dependent terms in δH̃ mix the ν = ±1 bands in the
bulk. The small parameter that governs the ν-band mixing is δmix =
(β −M−)/(β +M+). If we neglect this mixing and project both ψ̃ and H̃
onto the ν = −1 band, we have simply

δEµ = µ cos θ. (3.45)

In the same way we include to first order the contribution δEB from
the magnetic field with vector potential Ay = Bzx,

δEB = −Bz
〈ψ̃|x̃y|ψ̃〉
〈ψ̃|ψ̃〉

= − 1
2WeBz cos ky cos θ, (3.46)

where we have projected ψ̃ and ̃y onto the ν = −1 band and taken the
large-W limit of the expectation value.

Collecting results we thus obtain the dispersion relation Esurface(ky, kz)
for the surface Fermi arc,

Esurface = − sin ky − ( 1
2WeBz cos ky − µ) cos θ

= − sin ky

+
( 1

2WeBz cos ky − µ)(2 +m0 − cos ky) sin kz√
∆2

0 + (2 +m0 − cos ky) sin2 kz

. (3.47)

This is for the surface at x = W/2. For the opposite surface at x = −W/2
we should substitute ky 7→ −ky.

From Eq. (3.47) we calculate the expectation values of the charge 〈Q〉
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.8.: Data points: Dispersion of the surface states connecting the
electron-like and hole-like zeroth Landau levels, for the same parameters as Fig.
3.6. The color scale gives the charge expectation value. The black curve is the
analytical dispersion (3.47) of the surface Fermi arc.

and the electrical current 〈jz〉 of the surface state,

〈Q〉 = −e∂Esurface

∂µ
= −e cos θ,

〈jz〉 = −e∂Esurface

∂Λ = 0,
(3.48)

the same on both surfaces. The Fermi arc transports no charge in the
z-direction — up to corrections of order δmix from the band mixing. The
approximately neutral current in a Fermi arc explains why the calculation
of the CME including only the chiral Landau level in the bulk agrees so
well with the numerics in Fig. 3.5.

In Figs. 3.8 and 3.9 we compare these analytical results for the surface
dispersion, charge, and current with the numerical data. The agreement is
quite satisfactory, without any adjustable parameter.
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3.C. Derivation of the renormalized-charge formula for the CME

Figure 3.9.: Solid curves: Expectation value of charge Q (red, left axis) and
electrical current jz (green, right axis), for the same parameters as Fig. 3.8. The
black dashed curves are the analytical result (3.48) for the surface state. The
electrical current is predominantly carried by the bulk Landau level, while the
surface Fermi arc carries an approximately neutral current.

3.C. Derivation of the renormalized-charge
formula for the CME

Equation (3.10) in the main text for the equilibrium CME in a supercon-
ductor has the form expected for a single Weyl cone, modified by charge
renormalization. We give a derivation of this formula.

3.C.1. On-shell and off-shell contributions
The equilibrium supercurrent

Iz = 1
2
∑
n,m

∫
dkz
2π Θ(E) tanh

(
E

2kBT

)
∂E

∂Az
(3.49)

is not a Fermi surface property, but contains contributions over a range
of energies E = Enm(kz) > 0 even in the limit that the temperature T
goes to zero. For the CME we seek a contribution to Iz that is linear in
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3. Chiral magnetic effect of an unpaired Weyl cone

the chemical potential µ, measured relative to the Weyl points. As we
will now show, the derivative ∂I/∂µ in the limit µ→ 0 has predominantly
Fermi-surface (on-shell) contributions, which at T = 0 can be written as a
sum over propagating modes at the Fermi energy E = 0.

Using particle-hole symmetry (relating states at energy ±E carrying
opposite current ±∂E/∂Az) we rewrite Eq. (3.49) as an integral over all
states of positive and negative energies,

Iz = −1
2
∑
n,m

∫
dkz
2π f(E) ∂E

∂Az
, (3.50)

weighted by the Fermi function

f(E) =
(

1 + eE/kBT
)−1

= 1
2 −

1
2 tanh(E/2kBT ). (3.51)

The derivative of the energy in Eq. (3.50) gives the expectation value of
the electrical current operator jz = −∂H/∂Az in the state with energy E,

〈jz〉E = −〈∂H/∂Az〉E = −∂E/∂Az, (3.52)

according to the Hellmann-Feynman theorem. Two other expectation
values that we need are those of the velocity operator vz = ∂H/∂kz and
the charge operator Q = −e∂H/∂µ, given by

〈vz〉E = ∂E/∂kz, 〈Q〉E = −e∂E/∂µ. (3.53)

We take the derivative with respect to µ of Eq. (3.50):

∂Iz
∂µ

= Jon-shell + Joff-shell, (3.54)

Jon-shell = − 1
2e
∑
n,m

∫
dkz
2π f

′(E)〈Q〉E〈jz〉E , (3.55)

Joff-shell = 1
2e
∑
n,m

∫
dkz
2π f(E) ∂

∂Az
〈Q〉E . (3.56)

At low temperatures, when −f ′(E)→ δ(E) becomes a delta function, the
on-shell contribution Jon-shell involves only Fermi surface properties. It
is helpful to rewrite it as a sum over modes at the Fermi energy. For
that purpose we replace the integration over kz by an energy integration
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3.C. Derivation of the renormalized-charge formula for the CME

weighted with the density of states:

Jon-shell = − 1
4πe

∑
n,m

∫ ∞
−∞

dE f ′(E)
∣∣∣∣ ∂E∂kz

∣∣∣∣−1
〈Q〉E〈jz〉E . (3.57)

This equation may be written in a more suggestive form by defining a
vector charge

Q = (Qx, Qy, Qz), with Qα(E) ≡ 〈jα〉E
〈vα〉E

, (3.58)

which may be different from the average (scalar) charge Q0 ≡ 〈Q〉E because
the average of the product of charge and velocity may differ from the
product of the averages.(For example, the coherent superposition of a
right-moving electron and a left-moving hole has zero average charge and
zero average velocity, but nonzero average electrical current.) We finally
arrive at

Jon-shell = − 1
4πe

∑
n,m

∫ ∞
−∞

dE f ′(E)

×Q0(E)Qz(E)
(
sign 〈vz〉E

)
. (3.59)

At zero temperature a sum over modes remains,

Jon-shell = 1
2
e

h

∑
n,m

Q0Qz
e2

(
sign 〈vz〉

)∣∣∣∣
Enm=0

, (3.60)

where we have restored the units of ~ = h/2π. The subscript n,m labels
the mode indices of a propagating mode in the z-direction at the Fermi
energy (E = 0).

3.C.2. Application to the zeroth Landau level

We evaluate Eq. (3.60) for the effective Hamiltonian (3.32) in the zeroth
Landau level near the Weyl point at K and its charge-conjugate at −K.
The two Weyl points have opposite sign of both the scalar charge Q0 =
−e cos θ and the vector charge Qz = −e/ cos θ, and the same sign 〈vz〉 =
χ (signBz), so their contributions add. The Landau level degeneracy is

N = 1
h
WW ′|BzQy| =

e

h
WW ′|Bz cos θ|, (3.61)
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3. Chiral magnetic effect of an unpaired Weyl cone

Substitution into Eq. (3.60), times two for two Weyl points, gives the
on-shell contribution to the zero-temperature equilibrium current,

Jon-shell = e

h
N Q0Qz

e2 χ( signBz) = WW ′
e2

h2κχBz, (3.62)

with charge renormalization factor

κ = lim
k→K

| cos θ|. (3.63)

This confirms Eq. (3.10) in the main text (where we took a positive
chirality χ), provided that we can neglect 1) contributions from the surface
states; and 2) off-shell contributions from the bulk states. A numerical
demonstration that these contributions can be neglected is provided in
Fig. 3.5, where the full expression (3.49) is evaluated in a slab geometry.
Analytical justification comes from the effective low-energy Hamiltonian,
which shows that 1) ∂E/∂Az = e∂E/∂Λ vanishes on the surface in view of
Eq. (3.48); and 2) ∂〈Q〉E/∂Az vanishes in the bulk in view of Eq. (3.26).
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Part II.

Topological codes and
quantum error correction
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4. Density-matrix simulation
of small surface codes under
current and projected
experimental noise

4.1. Introduction
Recent experimental demonstrations of small quantum simulations [164–
166] and quantum error correction (QEC) [167–170] position supercon-
ducting circuits for targeting quantum supremacy [171] and quantum fault
tolerance [172], two outstanding challenges for all quantum information
processing platforms. On the theoretical side, much modeling of QEC
codes has been made to determine fault-tolerance threshold rates in various
models [173–175] with different error decoders [176–178]. However, the
need for computational efficiency has constrained many previous studies
to oversimplified noise models, such as depolarizing and bit-flip noise chan-
nels. This discrepancy between theoretical descriptions and experimental
reality compromises the ability to predict the performance of near-term
QEC implementations, and offers limited guidance to the experimentalist
through the maze of parameter choices and trade-offs. In the planar circuit
quantum electrodynamics (cQED) [179] architecture, the major contribu-
tions to error are transmon qubit relaxation, dephasing from flux noise
and resonator photons leftover from measurement, and leakage from the
computational space, none of which are well-approximated by depolarizing
or bit-flip channels. Simulations with more complex error models are now
essential to accurately pinpoint the leading contributions to the logical
error rate in the small-distance surface codes [173, 176, 180] currently
pursued by several groups worldwide.

The contents of this chapter have been published in T. E. O’Brien, B. Tarasinski
and L. DiCarlo, npj Quant. Inf. 3, 27 (2017)
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4. Density-matrix simulation of small surface codes

In this chapter, we perform a density-matrix simulation of the distance-3
surface code named Surface-17, using the concrete quantum circuit recently
proposed in [181] and the measured performance of current experimental
multi-transmon cQED platforms [182–185]. For this purpose, we have
developed an open-source density-matrix simulation package named quan-
tumsim ∗. We use quantumsim to extract the logical error rate per QEC
cycle, εL. This metric allows us to optimize and trade off between QEC
cycle parameters, assess the merits of feedback control, predict gains from
future improvements in physical qubit performance, and quantify decoder
performance. We compare an algorithmic decoder using minimum-weight
perfect matching (MWPM) with homemade weight calculation to a simple
look-up table (LT) decoder, and weigh both against an upper bound (UB)
for decoder performance obtainable from the density-matrix simulation.
Finally, we make a low-order approximation to extend our predictions to
the distance-5 Surface-49. The combination of results for Surface-17 and
-49 allows us to make statements about code scaling and to predict the
code size and physical qubit performance required to achieve break-even
points for memory and computational performance.

4.2. Results
4.2.1. Error rates for Surface-17 under current

experimental conditions
To quantify the performance of the logical qubit, we first define a test
experiment to simulate. Inspired by the recent experimental demonstration
of distance-3 and -5 repetition codes [167], we first focus on the performance
of the logical qubit as a quantum memory. Specifically, we quantify the
ability to hold a logical |0〉 state, by initializing this state, holding it for
k ∈ {1, . . . , 20} cycles, performing error correction, and determining a final
logical state (see Fig. 4.6 for details). The logical fidelity FL[k] is then
given by the probability to match the initial state. We observe identical
results when using |1〉 or |±〉 = 1√

2 (|0〉 ± |1〉) in place of |0〉.
We base our error model for the physical qubits on current typical

experimental performance for transmons in planar cQED, using param-
eters from the literature and in-house results (e.g., gate-set tomography
measurements). These are summarized in Table 4.1, and further de-
tailed in Table 4.2. We focus on the QEC cycle proposed in [181], which
pipelines the execution of X- and Z-type stabilizer measurements. Each
∗Please visit https://github.com/brianzi/quantumsim
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Figure 4.1.: Logical fidelity FL[k] of Surface-17 with current experimental
parameters (Tables 4.1 and 4.2), simulated with quantumsim as described in
Fig. 4.6. The results from a MWPM decoder (green) and an implementation of
the LT decoder of [176] (blue) are compared to the decoder upper bound (red).
The labeled error rate is obtained from the best fit to Eq. (4.2) (also plotted). A
further comparison is given to majority voting (purple, dashed), which ignores
the outcome of individual stabilizer measurements, and to the fidelity Fphys
of a single transmon (black) [Eq. (4.1)]. Error bars (2 s.d.) are obtained by
bootstrapping.

stabilizer measurement consists of three parts: a coherent step (duration
τc = 2τg,1Q + 4τg,2Q), measurement (τm), and photon depletion from
readout resonators (τd), making the QEC cycle time τcycle = τc + τm + τd.

Simulating this concrete quantum circuit with the listed parameters using
quantumsim, we predict FL[k] of Surface-17 (Fig. 4.1). We show FL[k] for
both a homemade MWPM decoder (green, described in App. 4.F), and an
implementation of the LT decoder of [176] (blue, described in App. 4.G).
To isolate decoder performance, we can compare the achieved fidelity
to an upper bound extractable from the density-matrix simulation (red,
described in Sec. 4.4.1). To assess the benefit of QEC, we also compare
to a single decohering transmon, whose fidelity is calculated by averaging
over the six cardinal points of the Bloch sphere:

Fphys(t) = 1
6

(
1 + e−t/T1

)
+ 1

3

(
1 + e−t(1/2T1+1/Tφ)

)
. (4.1)
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The observation of FL[k] > Fphys(kτcycle) for large k would constitute a
demonstration of QEC beyond the quantum memory break-even point [170].
Equivalently, one can extract a logical error rate εL from a best fit to FL[k]
(as derived in Sec. 4.4.1 as the probability of an odd number of errors
occurring),

FL[k] = 1
2 [1 + (1− 2εL)k−k0 ]. (4.2)

Here, k0 and εL are the parameters to be fit. We compare εL to the
physical error rate

εphys = −τcycle
dFphys(t)

dt

∣∣∣∣
t=0

= τcycle

3T1
+ τcycle

3Tφ
. (4.3)

We observe εL = 1.44 %c for the LT decoder, εL = 1.07 %c for the MWPM
decoder, and εL = 0.68 %c at the decoder upper bound (%c = % per cycle).
The latter two fall below εphys = 1.33 %c. Defining the decoder efficiency
ηd = ε

(UB)
L /εL, we find η(LT)

d = 0.47 and η(MWPM)
d = 0.64.

We can also compare the multi-cycle error correction to majority voting,
in which the state declaration is based solely on the output of the final
data qubit measurements (ancilla measurements are ignored). Majority
voting corrects any single data qubit error (over the entire experiment),
and thus exhibits a quadratic decay for small k ∗. A decoder should also
be able to correct (at least) a single error, and thus should produce the
same behavior at low k, delaying the onset of exponential decay in FL[k].
In fact, a good test for the performance of a MWPM decoder is to ensure
it can outperform the majority vote at short timescales, as suboptimal
configuration will prevent this (as seen for the look-up table decoder).
With the baseline for current performance established, we next inves-

tigate εL improvements that may be achieved by two means. First, we
consider modifications to the QEC cycle at fixed physical performance.
Afterwards, we consider the effect of improving physical qubit T1 and Tφ.

4.2.2. Optimization of logical error rates with current
experimental conditions

Error sources in current cQED setups derive primarily from transmon
decoherence, as opposed to gate and measurement errors produced by
control electronics. Thus, a path to reducing εL may be to decrease

∗A distance-d code with majority voting alone should exhibit a (d + 1)/2-order
decay
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τcycle. Currently, the cycle is dominated by τm + τd. At fixed readout
power, reducing τm and τd will reduce τcycle at the cost of increased
readout infidelity εRO (described in Sec. 4.4.2). We explore this trade-
off in Fig. 4.2, using a linear-dispersive readout model [186], keeping
τm = τd and assuming no leftover photons. Because of the latter, ε(MWPM)

L
reduces from 1.07 %c (Fig. 4.1) to 0.62 %c at τm = 300ns. The minimum
ε
(MWPM)
L = 0.55 %c is achieved at around τm = 260 ns. This is perhaps
counterintuitive, as εphys reduces only 0.13 %c while εRO increases 0.5 %.
However, it reflects the different sensitivity of the code to different types of
errors. Indeed, ε(MWPM)

L is smaller for τm = 200 ns than for τm = 300 ns,
even though εRO increases to 5 %. It is interesting to note that the optimal
τm for quantum memory, which minimizes logical error per unit time,
rather than per cycle, is τm = 280ns (Fig. 4.2 inset). This shows that
different cycle parameters might be optimal for computation and memory
applications.
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Figure 4.2.: Optimization of the logical error rate (per cycle) of Surface-17 as
a function of measurement-and-depletion time [182]. Changes in the underlying
physical error rates are shown as well. Decreasing the measurement time
causes an increase in the readout infidelity (solid black curve with dots), whilst
decreasing the single qubit decay from T1 and T2 (black dashed curve) for all
qubits. The logical rate with an MWPM decoder (green curve) is minimized
when these error rates are appropriately balanced. The logical error rate is
calculated from the best fit of Eq. (4.2). Error bars (2 s.d.) are obtained by
bootstrapping (N = 10, 000 runs). Inset: Logical error rate per unit time,
instead of per cycle.
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4. Density-matrix simulation of small surface codes

Next, we consider the possibility to reduce εL using feedback control.
Since T1 only affects qubits in the excited state, the error rate of ancillas
in Surface-17 is roughly two times higher when in the excited state. The
unmodified syndrome extraction circuit flips the ancilla if the corresponding
stabilizer value is -1, and since ancillas are not reset between cycles, they
will spend significant amounts of time in the excited state. Thus, we
consider using feedback to hold each ancilla in the ground state as much
as possible. We do not consider feedback on data qubits, as the highly
entangled logical states are equally susceptible to T1.

The feedback scheme (Inset of Fig. 3) consists of replacing the Ry(π/2)
gate at the end of the coherent step with a Ry(−π/2) gate for some of the
ancillas, depending on a classical control bit p for each ancilla. This bit
p represents an estimate of the stabilizer value, and the ancilla is held in
the ground state whenever this estimate is correct (i.e. in the absence of
errors). Figure 4.3 shows the effect of this feedback on the logical fidelity,
both for the MWPM decoder and the decoder upper bound. We observe
εL improve only 0.05 %c in both cases. Future experiments might opt not
to pursue these small gains in view of the technical challenges added by
feedback control.

4.2.3. Projected improvement with advances in
quantum hardware

We now estimate the performance increase that may result from improving
the transmon relaxation and dephasing times via materials and filtering
improvements. To model this, we return to τcycle = 800 ns, and adjust
T1 values with both Tφ = 2T1 (common in experiment) and Tφ =∞ (all
white-noise dephasing eliminated). We retain the same rates for coherent
errors, readout infidelity, and photon-induced dephasing as in Fig. 4.1.
Figure 4.4 shows the extracted εL and εphys over the T1 range covered.
For the MWPM decoder (upper bound) and Tφ = 2T1, the memory figure
of merit γm = εphys/εL increases from 1.3 (2) at T1 = 30 µs to 2 (5) at
100 µs. Completely eliminating white-noise dephasing will increase γm by
10% with MWPM and 30% at the upper bound.

A key question for any QEC code is how εL scales with code distance d.
Computing power limitations preclude similar density-matrix simulations
of the d = 5 surface code Surface-49. However, we can approximate the
error rate by summing up all lowest-order error chains (as calculated for the
MWPM decoder), and deciding individually whether or not these would be
corrected by a MWPM decoder (see App. 4.H for details). Figure 4.5 shows
the lowest-order approximation to the logical error rates of Surface-17
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Figure 4.3.: Logical fidelity of Surface-17 with (solid) and without (dashed)
an additional feedback scheme. The performance of a MWPM decoder (green)
is compared to the decoder upper bound (red). Curves are fits of Eq. (4.2) to
the data, and error bars (2 s.d.) are given by bootstrapping, with each point
averaged over 10, 000 runs. Inset: Method for implementing the feedback scheme.
For each ancilla qubit Aj , we store a parity bit pj , which decides the sign of
the Ry(π/2) rotation at the end of each coherent step. The time Aj spends in
the ground state is maximized when pj is updated each cycle t by XORing with
the measurement result from cycle t− 1, after the rotation of cycle t has been
performed.

and -49 over a range of T1 = Tφ/2. Comparing the Surface-17 lowest-
order approximation to the quantumsim result shows good agreement and
validates the approximation. We observe a lower εL for Surface-49 than
for -17, indicating quantum fault tolerance over the T1 range covered. The
fault-tolerance figure of merit defined in [172], Λt = ε

(17)
L /ε

(49)
L , increases

from 2 to 4 as T1 grows from 30 to 100 µs.
As a rough metric of computational performance, we offer to compare εL

(per cycle) to the error accrued by a physical qubit idling over τg,1Q. We
define a metric for computation performance, γc = (εphysτg,1Q)/(εLτcycle)
and γc = 1 as a computational break-even point. Clearly, using the QEC
cycle parameters of Table 4.1 and even with T1 improvements, neither
Surface-17 nor -49 can break-even computationally. However, including
the readout acceleration recently demonstrated in [185], which allows
τm = τd = 100 ns and τcycle = 400 ns, Surface-49 can cross γc = 1 by
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Figure 4.4.: T1 dependence of the Surface-17 logical error rate (MWPM and
UB) and the physical error rate. We either fix Tφ = 2T1 (solid) or Tφ = ∞
(dashed). Logical error rates are extracted from a best fit of Eq. (4.2) to FL[k]
over k = 1, . . . , 20 QEC cycles, averaged over N = 50, 000 runs. Error bars (2
s.d.) are calculated by bootstrapping.

T1 = 40 µs. In view of first reports of T1 up to 80 µs emerging for planar
transmons [187, 188], this important milestone may be within grasp.

4.3. Discussion

4.3.1. Computational figure of merit

We note that our metric of computational power is not rigorous, due to
the different gate sets available to physical and logical qubits. Logical
qubits can execute multiple logical X and Z gates within one QEC cycle,
but require a few cycles for two-qubit and Hadamard gates (using the
proposals of [175, 180]), and state distillation over many cycles to perform
non-Clifford gates. As such, this metric is merely a rough benchmark
for computational competitiveness of the QEC code. However, given the
amount by which all distance-3 logical fidelities fall above this metric, we
find it unlikely that these codes will outperform a physical qubit by any
fair comparison in the near future.
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Figure 4.5.: Analytic approximation of εL for Surface-17 (green) and Surface-49
(orange) using a MWPM decoder. Details of the calculation of points and error
bars are given in App. 4.H. All plots assume Tφ = 2T1, and τcycle = 800 ns
(crosses) or 400 ns (dots). Numerical results for Surface-17 with τcycle = 800 ns
are also plotted for comparison (green, dashed). The physical-qubit computation
metric is given as the error incurred by a single qubit over the resting time of a
single-qubit gate (black, dashed).

4.3.2. Decoder performance
A practical question facing quantum error correction is how best to balance
the trade-off between decoder complexity and performance. Past proposals
for surface-code computation via lattice surgery [180] require the decoder
to provide an up-to-date estimate of the Pauli error on physical qubits
during each logical T gate. Because tracking Pauli errors through a non-
Clifford gate is inefficient, however implemented, equivalent requirements
will hold for any QEC code [66]. A decoder is thus required to process
ancilla measurements from one cycle within the next (on average). This
presents a considerable challenge for transmon-cQED implementations, as
τcycle < 1µs. This short time makes the use of computationally intensive
decoding schemes difficult, even if they provide lower εL.

The leading strategy for decoding the surface code is MWPM using the
blossom algorithm of Edmonds [173, 177, 189]. Although this algorithm
is challenging to implement, it scales linearly in code distance [189]. The
algorithm requires a set of weights (representing the probability that two
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4. Density-matrix simulation of small surface codes

given error signals are connected by a chain of errors) as input. An
important practical question (see App. 4.F) is whether these weights can
be calculated on the fly, or must be precalculated and stored. On-the-fly
weight calculation is more flexible. For example, it can take into account
the difference in error rates between an ancilla measured in the ground
and in the excited state. The main weakness of MWPM is the inability
to explicitly detect Y errors. In fact, in App. 4.C we see that MWPM is
nearly perfect in the absence of Y errors. The decoder efficiency ηd may
significantly increase by extending MWPM to account for correlations
between detected X and Z errors originating from Y errors [190, 191].
If computational limitations preclude a MWPM decoder from keeping

up with τcycle, the look-up table decoder may provide a straightforward
solution for Surface-17. However, at current physical performance, the ηd
reduction will make Surface-17 barely miss memory break-even (Fig. 4.1).
Furthermore, memory requirements make look-up table decoding already
impractical for Surface-49. Evidently, real-time algorithmic decoding by
MWPM or improved variants is an important research direction already
at low code distance.

4.3.3. Other observations
The simulation results allow some further observations. Although we
have focused on superconducting qubits, we surmise that the following
statements are fairly general.
We observe that small quasi-static qubit errors are suppressed by the

repeated measurement. In our simulations, the 1/f flux noise producing
0.01 radians of phase error per flux pulse on a qubit has a diamond norm
approximately equal to the T1 noise, but a trace distance 100 times smaller.
As the flux noise increases εL by only 0.01 %c, it appears εL is dependent
on the trace distance rather than the diamond norm of the underlying
noise components. Quasi-static qubit errors can then be easily suppressed,
but will also easily poison an experiment if unchecked.

We further observe that above a certain value, ancilla and measurement
errors have a diminished effect on εL. In our error model, the leading
sources of error for a distance d code are chains of (d−1)/2 data qubit errors
plus either a single ancilla qubit error or readout error, which together
present the same syndrome as a chain of (d+ 1)/2 data qubit errors. An
optimal decoder decides which of these chains is more likely, at which
point the less-likely chain will be wrongly corrected, completing a logical
error. This implies that if readout infidelity (εRO) or the ancilla error rate
(εanc) is below the data qubit (εphys) error rate, εL ∝ (εanc + εRO)ε(d−1)/2

phys .
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However, if εRO (εanc) > εphys, εL becomes independent of εRO (εanc), to
lowest order. This can be seen in Fig. 4.2, where the error rate is almost
constant as εRO exponentially increases. This approximation breaks down
with large enough εanc and εRO, but presents a counterintuitive point for
experimental design; εL becomes less sensitive to measurement and ancilla
errors as these error get worse.

A final, interesting point for future surface-code computation is shown in
Fig. 4.2: the optimal cycle parameters for logical error rates per cycle and
per unit time are not the same. This implies that logical qubits functioning
as a quantum memory should be treated differently to those being used
for computation. This idea can be extended further: at any point in time,
a large quantum computer performing a computation will have a set Sm
of memory qubits which are storing part of a large entangled state, whilst
a set Sc of computation qubits containing the rest of the state undergo
operations. To minimize the probability of a logical error occurring on
qubits within both Sc and Sm, the cycle time of the qubits in Sc can be
reduced to minimize the rest time of qubits in Sm. As a simple example,
consider a single computational qubit qc and a single memory qubit qm
sharing entanglement. Operating all qubits at τcycle = 720 ns to minimize
εL would lead to a 1.09% error rate for the two qubits combined. However,
shortening the τcycle of qc reduces the time over which qm decays. If qc
operates at τcycle = 600 ns, the average error per computational cycle
drops to 1.06%, as qm completes only 5 cycles for every 6 on qc. Although
this is only a meager improvement, one can imagine that when many more
qubits are resting than performing computation, the relative gain will be
quite significant.

4.3.4. Effects not taken into account
Although we have attempted to be thorough in the detailing of the circuit,
we have neglected certain effects. We have used a simple model for C-Z gate
errors as we lack data from experimental tomography (e.g. one obtained
from two-qubit gate-set tomography [192]). Most importantly, we have
neglected leakage, where a transmon is excited out of the two lowest energy
states, i.e., out of the computational subspace. Previous experiments have
reduced the leakage probability per C-Z gate to ∼ 0.3% [193], and per
single-qubit gate to ∼ 0.001% [194]. Schemes have also been developed to
reduce the accumulation of leakage [195]. Extending quantumsim to include
and investigate leakage is a next target. However, the representation of the
additional quantum state can increase the simulation effort significantly
[by a factor of (9/4)10 ≈ 3000]. To still achieve this goal, some further
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approximations or modifications to the simulation will be necessary. Future
simulations will also investigate the effect of spread in qubit parameters,
both in space (i.e., variation of physical error rates between qubits) and
time (e.g., T1 fluctuations), and cross-talk effects such as residual couplings
between nearest and next-nearest neighbor transmons, qubit cross-driving,
and qubit dephasing by measurement pulses targeting other qubits.

4.4. Methods

4.4.1. Simulated experimental procedure

Surface-17 basics

A QEC code can be defined by listing the data qubits and the stabilizer
measurements that are repeatedly performed upon them [68]. In this way,
Surface-17 is defined by a 3× 3 grid of data qubits {D0, . . . D8}. In order
to stabilize a single logical qubit, 9− 1 = 8 commuting measurements are
performed. The stabilizers are the weight-two and weight-four X- and
Z-type parity operators X2X1, Z3Z0, X4X3X1X0, Z5Z4Z2Z1, Z7Z6Z4Z3,
X8X7X5X4, Z8Z5, and X7X6, where Xj (Zj) denotes the X (Z) Pauli
operator acting on data qubit Dj . Their measurement is realized indirectly
using nearest-neighbor interactions between data and ancilla qubits ar-
ranged in a square lattices, followed by ancilla measurements [Fig. 4.6(a)].
This leads to a total of 17 physical qubits when a separate ancilla is used
for each individual measurement. We follow the circuit realization of
this code described in [181], for which we give a schematic description in
Fig. 4.6(b) (see App. 4.A for a full circuit diagram).

In an experimental realization of this circuit, qubits will regularly accu-
mulate errors. Multiple errors that occur within a short period of time
(e.g., one cycle) form error ‘chains’ that spread across the surface. Errors
on single qubits, or correlated errors within a small subregion of Surface-17,
fail to commute with the stabilizer measurements, creating error signals
that allow diagnosis and correction of the error via a decoder. However,
errors that spread across more than half the surface in a short enough
period of time are misdiagnosed, causing an error on the logical qubit
when wrongly corrected [173]. The rate at which these logical errors arise
is the main focus of this chapter.
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Protocol for measurement of logical error rates

As the performance measure of Surface-17, we study the fidelity of the
logical qubit as a quantum memory. We describe our protocol with an
example ‘run’ in Fig. 4.6. We initialize all qubits in |0〉 and perform
k = 1, 2, . . . , 20 QEC cycles [Fig. 4.6(b)]. Although this initial state is not
a stabilizer eigenstate, the first QEC cycle projects the system into one of
the 16 overlapping eigenstates within the +1 eigenspace for Z stabilizers,
which form the logical |0〉 state [173]. This implies that, in the absence
of errors, the first measurement of the Z stabilizers will be +1, whilst
that of the X stabilizers will be random. In the following cycles, ancilla
measurements of each run [Fig. 4.6(c)] are processed using a classical
decoding algorithm. The decoder computes a Pauli update after each
QEC cycle [Fig. 4.6(d)]. This is a best estimate of the Pauli operators
that must be applied to the data qubits to transform the logical qubit
back to the logical |0〉 state. The run ends with a final measurement of all
data qubits in the computational basis. From this 9-bit outcome, a logical
measurement result is declared [Fig. 4.6(e)]. First, the four Z-type parities
are calculated from the 9 data-qubit measurement outcomes and presented
to the decoder as a final set of parity measurements. This ensures that
the final computed Pauli update will transform the measurement results
into a set that measures +1 for all Z stabilizers. This results in one of 32
final measurements, from which the value of a logical Z operator can be
calculated to give the measurement result (any choice of logical operator
gives the same result). The logical fidelity FL[k] after k QEC cycles is
defined as the probability of this declared result matching the initial +1
state.

At long times and with low error rates, Surface codes have a constant
logical error rate εL. The fidelity FL[k] is obtained by counting the
probability of an odd number of errors having occurred in total (as two
σx errors cancel)∗ [183]:

FL[k] = 1−
∑
l odd

(
k

l

)
εlL(1− εL)k−l. (4.4)

Here, the combinatorial factor counts the number of combinations of l
errors in k rounds, given an εL chance of error per round. This can be

∗We thank Barbara Terhal for providing this derivation.
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Figure 4.6.: Schematic overview of the simulated experiment. (a) 17 qubits
are arranged in a surface code layout (legend top-right). The red data qubits
are initialized in the ground state |0〉, and projected into an eigenstate of the
measured X- (blue) and Z- (green) type stabilizer operators. (b) A section of
the quantum circuit depicting the four-bit parity measurement implemented
by the A3 ancilla qubit (+/− refer to Ry(±π/2) single-qubit rotations). The
ancilla qubit (green line, middle) is entangled with the four data qubits (red
lines) to measure Z1Z2Z4Z5. Ancillas are not reset between cycles. Instead, the
implementation relies on the quantum non-demolition nature of measurements.
The stabilizer is then the product of the ancilla measurement results of successive
cycles. This circuit is performed for all ancillas and repeated k times before a final
measurement of all (data and ancilla) qubits. (c) All syndrome measurements
of the k cycles are processed by the decoder. (d) After each cycle, the decoder
updates its internal state to represent the most likely set of errors that occurred.
(e) After the final measurement, the decoder uses the readout from the data
qubits, along with previous syndrome measurements, to declare a final logical
state. To this end, the decoder processes the Z-stabilizers obtained directly from
the data qubits, finalizing its prediction of most likely errors. The logical parity
is then determined as the product of all data qubit parities (

∏8
j=0 Dj) once the

declared errors are corrected. The logical fidelity FL is the probability that this
declaration is the same as the initial state (|0〉).
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simplified to

FL[k] = 1− 1
2
∑
l

(
k

l

)
εlL(1− εL)k−l(1− (−1)l)

= 1− 1
2
[
(1− εL + εL)k − (1− εL − εL)k

]
= 1

2[1 + (1− 2εL)k]. (4.5)

However, at small k, the decay is dominated by the majority vote, for
which εL ∝ (kεphys)(d+1)/2. For example, for all the Surface-17 decay
curves, we observe a quadratic error rate at small k, as opposed to the
linear slope predicted by Eq. (4.5). In order to correct for this, we shift the
above equation in k by a free parameter k0, resulting in Eq. (4.2). This
function fits well to data with k ≥ 3 in all plots, and thus allows accurate
determination of εL.

The quantumsim simulation package

Quantumsim performs calculations on density matrices utilizing a graphics
processing unit in a standard desktop computer. Ancillas are measured
at the end of each cycle, and thus not entangled with the rest of the
system. As such, it is possible to obtain the effect of the QEC cycle on the
system without explicitly representing the density matrix of all 17 qubits
simultaneously. The simulation is set up as follows: the density matrix
of the nine data qubits is allocated in memory with all qubits initialized
to |0〉. One- and two-qubit gates are applied to the density matrix as
completely positive, trace preserving maps represented by Pauli transfer
matrices. When a gate involving an ancilla qubit must be performed, the
density matrix of the system is dynamically enlarged to include that one
ancilla.

Qubit measurements are simulated as projective and following the Born
rule, with projection probabilities given by the squared overlap of the
input state with the measurement basis states. In order to capture empiri-
cal measurement errors, we implement a black-box measurement model
(Sec. 4.4.2) by sandwiching the measurement between idling processes.
The measurement projects the system to a product state of the ancilla
and the projected sub-block of the density matrix. We can therefore
remove the ancilla from the density matrix and only store its state right
after projection, and continue the calculation with the partial density
matrix of the other qubits. Making use of the specific arrangement of the
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interactions between ancillas and data qubits in Surface-17, it is possible
to apply all operations to the density matrix in such an order (shown in
App. 4.A) that the total size of the density matrix never exceeds 210 × 210

(nine data qubits plus one ancilla), which allows relatively fast simulation.
We emphasize that with the choice of error model in this chapter, this
approach gives the same result as a full simulation on a 17-qubit density
matrix. Only the introduction of residual entangling interactions between
data and ancilla qubits (which we do not consider in this chapter) would
make the latter necessary. On our hardware (see App. 4.E), simulating
one QEC cycle of Surface-17 with quantumsim takes 25 ms.
We highlight an important advantage of doing density-matrix calcu-

lations with quantumsim. We do not perform projective measurements
of the data qubits. Instead, after each cycle, we extract the diagonal of
the data-qubit density matrix, which represents the probability distribu-
tion if a final measurement were performed. We leave the density matrix
undisturbed and continue simulation up to k = 20. This is a very useful
property of the density-matrix approach, because having a probability
distribution of all final readout events greatly reduces sampling noise.
Our measurement model includes a declaration error probability (see

Sec. 4.4.2), where the projected state of the ancilla after measurement is
not the state reported to the decoder. Before decoding, we thus apply
errors to the outcomes of the ancilla projections, and smear the probability
distribution of the data qubit measurement. To then determine the fidelity
averaged over this probability distribution, we present all 16 possible
final Z-type parities to the decoder. This results in 16 different final
Pauli updates, allowing us to determine correctness of the decoder for all
512 possible measurement outcomes. These are then averaged over the
simulated probability distribution. This produces good results after about
∼ 104 simulated runs.
A second highlight of quantumsim is the possibility to quantify the

sub-optimality of the decoder. The fidelity of the logical qubit obtained
in these numerical simulations is a combination of the error rates of the
physical qubits and the approximations made by the decoder. Full density-
matrix simulations make it possible to disentangle these two contributions.
Namely, the fidelity is obtained by assigning correctness to each of the 512
possible readouts according to 16 outputs of the decoder, and summing
the corresponding probabilities accordingly. If the probabilities are known,
it is easy to determine the 16 results that a decoder should output in order
to maximize fidelity (i.e., the output of the best-possible decoder). This
allows placing a decoder upper bound Fmax

L on logical fidelity as limited by
the physical qubits independent of the decoder. Conversely, it also allows
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quantifying sub-optimality in the decoder used. In fact, we can make the
following reverse statement: if our measurement model did not include
a declaration error, then we could use the simulation to find the final
density matrix of the system conditioned on a syndrome measurement.
From this, the simulation could output exactly the 16 results that give
Fmax

L , so that quantumsim could thus be used as a maximum-likelihood
decoder. In this situation, Fmax

L would not only be an upper bound, but
indeed the performance of the best-possible decoder. However, as we add
the declaration errors after simulation, we can only refer to Fmax

L as the
decoder upper bound.

4.4.2. Error models

We now describe the error model used in the simulations. Our motivation
for the development of this error model is to provide a limited number of
free parameters to study, whilst remaining as close to known experimental
data as possible. As such, we have taken well-established theoretical
models as a base, and used experimental tomography to provide fixed
parameters for observed noise beyond these models. The parameters of
the error model are provided in App. 4.B.

Parameter Symbol Value Reference
Qubit relaxation time T1 30 µs [182]
Qubit dephasing time (white noise) Tφ 60 µs [182, 184]
Single-qubit gate time τg,1Q 20 ns [182, 184]
Two-qubit gate time τg,2Q 40 ns [168]
Coherent step time τc 200 ns [181]
Measurement time τm 300 ns [182]
Depletion time τd 300 ns [182]
Fast measurement time τ

(fast)
m 100 ns [185]

Fast depletion time τ
(fast)
d 100 ns [185]

Table 4.1.: Standard simulation parameters: Summary of standard times used
in all density-matrix simulations, unless otherwise indicated. The two-qubit gate
is a conditional phase gate (C-Z). Other error rates and parameters are given in
Table 4.2.
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4. Density-matrix simulation of small surface codes

Idling qubits

While idling for a time τ , a transmon in |1〉 can relax to |0〉. Furthermore,
a transmon in superposition can acquire random quantum phase shifts
between |0〉 and |1〉 due to 1/f noise sources (e.g., flux noise) and broadband
ones (e.g., photon shot noise [196] and quasiparticle tunneling [197]). These
combined effects can be parametrized by probabilities p1 = exp(−τ/T1)
for relaxation, and pφ = exp(−τ/Tφ) for pure dephasing. The combined
effects of relaxation and pure dephasing lead to decay of the off-diagonal
elements of the qubit density matrix. We model dephasing from broadband
sources in this way, taking for Tφ the value extracted from the decay time
T2 of standard echo experiments:

1
T2

= 1
Tφ

+ 1
2T1

. (4.6)

We model 1/f sources differently, as discussed below.

Dephasing from photon noise

The dominant broadband dephasing source is the shot noise due to photons
in the readout resonator. This dephasing is present whenever the coupled
qubit is brought into superposition before the readout resonator has
returned to the vacuum state following the last measurement. This leads
to an additional, time-dependent pure dephasing (rates given in Table 4.2).

One-qubit Y rotations

We model y-axis rotations as instantaneous rotations sandwiched by idling
periods of duration τg,1Q/2. The errors in the instantaneous gates are
modeled from process matrices measured by gate-set tomography [192, 198]
in a recent experiment [183]. In this experiment, the GST analysis of
single-qubit gates also showed that the errors can mostly be attributed to
Markovian noise. For simplicity, we thus model these errors as Markovian.

Dephasing of flux-pulsed qubits

During the coherent step, transmons are repeatedly moved in frequency
away from their sweetspot using flux pulses, either to implement a C-Z gate
or to avoid one. Away from the sweetspot, transmons become first-order
sensitive to flux noise, which causes an additional random phase shift. As
this noise typically has a 1/f power spectrum, the largest contribution
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4.4. Methods

comes from low-frequency components that are essentially static for a
single run, but fluctuating between different runs. In our simulation, we
approximate the effect of this noise through ensemble averaging, with
quasi-static phase error added to a transmon whenever it is flux pulsed.
Gaussian phase errors with the variance (calculated in App. 4.B.4) are
drawn independently for each qubit and for each run.

C-Z gate error

The C-Z gate is achieved by flux pulsing a transmon into the |11〉 ↔ |02〉
avoided crossing with another, where the 2 denotes the second-excited
state of the fluxed transmon. Holding the transmons here for τg,2Q causes
the probability amplitudes of |01〉 and |11〉 to acquire phases [199]. Careful
tuning allows the phase φ01 acquired by |01〉 (the single-qubit phase φ1Q)
to be an even multiple of 2π, and the phase φ11 acquired by |11〉 to
be π extra. This extra phase acquired by |11〉 is the two-qubit phase
φ2Q. Single- and two-qubit phases are affected by flux noise because the
qubit is first-order sensitive during the gate. Previously, we discussed the
single-qubit phase error. In App. 4.B.5, we calculate the corresponding
two-qubit phase error δφ2Q. Our full (but simplistic) model of the C-Z
gate consists of an instantaneous C-Z gate with single-qubit phase error
δφ1Q and two-qubit phase error δφ2Q = δφ1Q/2, sandwiched by idling
intervals of duration τg,2Q/2.

Measurement

We model qubit measurement with a black-box description using parame-
ters obtained from experiment. This description consists of the eight proba-
bilities for transitions from an input state |i〉 ∈ {|0〉 , |1〉} into pairs (m,|o〉)
of measurement outcome m ∈ {+1,−1} and final state |o〉 ∈ {|0〉 , |1〉}. By
final state we mean the qubit state following the photon-depletion period.
Input superposition states in the computational bases are first projected
to |0〉 and |1〉 following the Born rule. The probability tree (the butterfly)
is then used to obtain an output pair (m, |o〉). These experimental param-
eters can be described by a six-parameter model (described in detail in
App. 4.B.6), consisting of periods of enhanced noise before and after a point
at which the qubit is perfectly projected, and two probabilities ε|i〉RO for
wrongly declaring the result of this projective measurement. In App. 4.B.6,
a scheme for measuring these butterfly parameters and mapping them to
the six-parameter model is described. In experiment, we find that the
readout errors ε|i〉RO are almost independent of the qubit state |i〉, and so we
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4. Density-matrix simulation of small surface codes

describe them with a single readout error parameter εRO in this chapter.

Figure 4.7.: The quantum circuit for Surface-17 syndrome measurement used
in all simulations. (a) Outline of the timing of the standard circuit, including
the time shift between X- and Z-type stabilizer measurements described by [181].
Qubit labels correspond to the position in Fig. 6. (b) Full quantum circuit of
the QEC cycle. The C-Z gates within each group are slightly offset horizontally
for visibility (in reality they are performed simultaneously).

4.A. Full circuit diagram for Surface-17
implementation

The quantum circuit [181] (Fig. 4.7) consists of Ry(π/2) (“+”) and
Ry(−π/2) (“−”) rotations, C-Z gates, and ancilla measurements. The
coherent steps of the X and Z ancillas are pipelined (shifted in time with
respect to each other) to prevent transmon-transmon avoided crossings.
As long as τm + τd ≥ τc, no time is lost due to this separation.
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In a simulation of the given circuit, gates on different qubits commute
and may be applied to the density matrix in any order, regardless of the
times at which they are performed in an experiment. As described in
Sec. IV A 3, by simulating gates in a specific order (Fig. 4.8), one can
ensure that only one ancilla is ancilla is entangled with the data qubits at
any point in the simulation. This allows a reduction in the maximum size
of the density matrix from 217 × 217 to 210 × 210.

4.B. Parameters of error models

Parameter Symbol Value Reference
In-axis rotation error paxis 10−4 [183]
In-plane rotation error pplane 5× 10−4 [183]
1/f flux noise. A (1µΦ0)2 [200, 201]
Readout infidelity εRO 5× 10−3 [182]
Photon relaxation time 1/κ 250 ns [182]
Dispersive shift χ/π −2.6 MHz [182]
photon # post-measurement n0 0.8 photons [182]

Table 4.2.: Standard parameters of error models used in quantumsim, unless
indicated otherwise.

This appendix provides mathematical details of the sources of error
described in the main text. Standard values for the parameters used
throughout the text are given in Table 4.2.

In the quantumsim module, all gates are applied in the Pauli transfer
matrix representation [324]. These are given in the form

(RΛ)ij = 1
2Tr (σiΛσj) , (4.7)

where matrices σi are the Pauli operators: σ0 = I, σ1 = X, σ2 = Y and
σ3 = Z.
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4. Density-matrix simulation of small surface codes

4.B.1. Qubit idling

Idling qubits are described by the amplitude-phase damping model [23],
corresponding to the transfer matrices

RΛT1
=


1 0 0 0
0
√

1− p1 0 0
0 0

√
1− p1 0

p1 0 0 1− p1

 (4.8)

RΛTφ =


1 0 0 0
0
√

1− pφ 0 0
0 0

√
1− pφ 0

0 0 0 1

 . (4.9)

Idling for a duration t is thus described by

RAP (t) = RΛT1
RΛTφ (4.10)

with p1 = 1− e−t/T1 and pφ = 1− e−t/Tφ .

4.B.2. Photon decay

In the presence of photons in a readout resonator, the coupled qubit is
affected according to the effective stochastic master equation [186]:

dρ

dt
= −iB2 [σz, ρ] + Γd

2 D[σz]ρ.

Here, ρ is the qubit density matrix, D[X] is the Lindblad operator D[X]ρ =
XρX†− 1

2X
†Xρ− 1

2ρX
†X, B = 2χRe(αgα∗e) is the measurement-induced

detuning (Stark shift), and Γd = 2χIm(αgα∗e) is the measurement-induced
dephasing, with αi the qubit-state-dependent photon field in the resonator
and 2χ the qubit frequency shift per photon. At time t− tg after the qubit
superposition is created,

αgα
∗
e = α(tm) exp (−κ (t− tm)) exp (2iχ (t− tg)) ,
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with t − tm the time since the end of measurement excitation pulse.
Integrating over the interval [t1, t2] gives a dephasing term with coefficient

pφ,photon = exp
(
−
∫ t2
t1

Γd(t)dt
)

= exp
(

2χα(0) exp(κ(tm − tg))

×
[

e−κt

4χ2+κ2 [−κ sin(2χt)− 2χ cos(2χt)]
]t2−tg
t1−tg

)
.

This dephasing is then implemented via the same Pauli transfer matrix
as (4.9).

4.B.3. Single-qubit Ry(π/2) rotations
Single-qubit rotations are modeled by sandwiching an instantaneous Pauli
transfer matrix, representing the rotation, with periods of duration τg,1Q/2
of amplitude and phase damping. This allows to model the gate for different
T1 and Tφ. However, comparison of this model with Pauli transfer matrices
obtained from gate-set tomography experiments shows that actual gates are
more accurately described when adding a phenomenological depolarizing
noise to the instantaneous part. In the Bloch sphere, this decay corresponds
to shrinking toward the origin, with factor 1− paxis along the y axis and
1− pplane along the x- and z-axes. We thus model

RRy(π/2) = RAP (τg,1Q/2)R
′
Ry(π/2)RdepRAP (τg,1Q/2), (4.11)

where

Rdep =


1 0 0 0
0 1− pplane 0 0
0 0 1− paxis 0
0 0 0 1− pplane

 ,

and R′Ry(π/2) is the Pauli transfer matrix describing a perfect π/2 rotation
around the y axis.

4.B.4. Flux noise
Shifting the transmon from its sweetspot fq,max to a lower frequency

fq(t) = (fq,max + EC)
√
|cos (πΦ(t)/Φ0)| − EC
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Figure 4.8.: Isolation of ancilla interactions in the Surface-17 circuit given in
Fig. 4.7. Throughout a simulation, quantumsim stores the density matrix of all
data qubits. Each error correction cycle is split up into 8 steps as labeled. In each
step, a single ancilla qubit is added to the density matrix, the correspondingly
colored pieces of the circuit are executed, and the ancilla is read out and removed
from the density matrix. This scheme is only possible because on each data
qubit all gates are executed in order. Note that steps after the final C-Z gate on
a data qubit are executed during the next cycle.

makes it first-order sensitive to flux noise, with sensitivity

∂fq

∂Φ = −π2Φ0
(fq + EC) tan

(
πΦ
Φ0

)
.

Here, Φ is the flux bias and Φ0 = h/2e is the flux quantum. For a deviation
of δΦ, the pulsed transmon incurs a phase error

δφ = −2πτg,2Q
∂fq

∂Φ δΦ.

Flux noise has a characteristic (single-sided) spectral density

SΦ(f) ≈ A/f,

where A ≈ (1 µΦ0)2 with f in Hz. We model this noise as quasi-static
over the duration (1/fmin ∼ 20 µs, or 20 QEC cycles) of individual runs,
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but fluctuating between subsequent runs (1/fmax ∼ 20 sec, or 105 runs
at 200 µs intervals). The root-mean-square (rms) fluctuations of flux are
therefore

δΦrms =
(∫ fmax

fmin
SΦ(f) df

)1/2

= A(ln (fmax/fmin))1/2

≈ 4 µΦ0.

For our quantum circuit based on [181], we estimate the corresponding
rms phase error induced in a pulsed transmon to be

δφrms ≈ 0.01 rad.

4.B.5. C-Z gates

We now focus on the two-qubit phase error. For an adiabatic gate,

φ2Q = φ11 − φ01 = −2π
∫ t2

t1

ζ(t)dt,

with t1 and t2 = t1 + τg,2Q the start and end of the gate and ζ the time-
dependent frequency deviation of the lower branch of the |11〉 ↔ |02〉
avoided crossing from the sum of frequencies for |01〉 and |10〉. Near the
flux center Φc of the |11〉 − |02〉 avoided crossing,

ζ ≈ β(Φ− Φc)−
√
β2(Φ− Φc)2 + (2J/2π)2

,

where 2J/2π ∼ 50 MHz is the minimum splitting between |11〉 and |02〉,
and

β = 1
2
∂fq

∂Φ |Φ=Φc .

Differentiating with respect to Φ at Φc gives

∂ζ

∂Φ |Φ=Φc = β.

To estimate the δφ2Q error, we make the following simplification: we replace
the exact trajectory created by the flux pulse by a shift to Φ = Φc + δΦ
with duration τg,2Q. For a deviation of δΦ,

δφ2Q ≈ −2πτg,2Q
∂ζ

∂Φ |Φ=ΦcδΦ.

109



4. Density-matrix simulation of small surface codes

Probability Value Probability Value
ε+1,0
0 0.9985 ε+1,0

1 0.0050
ε+1,1
0 0.0000 ε+1,1

1 0.0015
ε−1,0
0 0.0015 ε−1,0

1 0.0149
ε−1,1
0 0.000 ε−1,1

1 0.9786

Table 4.3.: Measurement butterfly matching a recent characteristic experi-
ment [182] using a Josephson parametric amplifier [203] in phase-preserving
mode as the front end of the readout amplification chain.

Note that this two-qubit phase error is correlated with the single-qubit
phase error on the fluxed transmon. The former is smaller by a factor ≈ 2.

4.B.6. Measurement
The probabilities εm,oi are calibrated using the statistics of outcomes in
back-to-back measurements (a followed by b) with the qubit initialized in
|i〉.

P(ma = +1)i = ε+1,0
i + ε+1,1

i ,

P(ma = +1)i = ε−1,0
i + ε−1,1

i ,

P(mb = ma = +1)i =
(
ε+1,0
0 + ε+1,1

0

)
ε+1,0
i

+
(
ε+1,0
1 + ε+1,1

1

)
ε+1,1
i ,

P(mb = −ma = +1)i =
(
ε+1,0
0 + ε+1,1

0

)
ε−1,0
i

+
(
ε+1,0
1 + ε+1,1

1

)
ε−1,1
i ,

P(−mb = ma = +1)i =
(
ε−1,0
0 + ε−1,1

0

)
ε+1,0
i

+
(
ε−1,0
1 + ε−1,1

1

)
ε+1,1
i ,

P(−mb = −ma = +1)i =
(
ε−1,0
0 + ε−1,1

0

)
ε−1,0
i

+
(
ε−1,0
1 + ε−1,1

1

)
ε−1,1
i .

We obtain the six free parameters of the black-box description from these 12
equations, using experimental values on the left-hand side [202]. Table 4.3
shows the values used, achieved in a recent experiment [182]. For the
simulation, we reproduce this behaviour of the measurement process by
a model with several steps. The qubit undergoes dephasing, followed by
periods of decay or excitation between which the measurement result is
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dephase

decay/
excitation

declaration
error

declared
measurement
outcome

decay/
excitation

Figure 4.9.: The model for measurements consists of a dephasing of the qubit
followed by a period of decay and excitation with probability p

(1)
↓/↑. At this

point, the qubit state is sampled. The sampling result is subject to a declaration
error εRO, and the qubit state is subject to further decay or excitation with
probabilities p(2)

↓/↑ before the end of the measurement block.

sampled. This measurement result is further subject to a state-dependent
declaration error εRO before reported to the decoder (see Fig.4.9). The
six parameters of this model are in a one-to-one correspondence with the
butterfly parameters described above, and can be mapped by solving the
corresponding system of equations. The experimental results in Tab.4.3
are very well explained by assuming unmodified amplitude-phase damping
(withe zero excitation probabilities) during the measurement period, and
an outcome-independent declaration error of εRO = ε1RO = ε0RO = 0.15%.
We use this result to extrapolate measurement performance to different
values of T1.

Reduction of measurement time is expected to reduce assignment fidelity.
For the results presented in Fig. 2, we do not rely on experimental results,
but assume a simplified model for measurement, following Ref. 186. A
constant drive pulse of amplitude ε and tuned to the bare resonator
frequency, ∆r = 0, excites the readout resonator for time τm. The dynamics
of the resonator is dependent on the transmon state (we approximate
linear behavior), and the transmitted signal is amplified and detected in a
homodyne measurement as a noisy transient. This transient is processed by
a linear classifier, which declares the measurement outcome. For resonator
depletion, we use a two-step clearing pulse with amplitude εc1 and εc2,
each active for τd/2 and chosen (by numerical minimization) so that, at the
end of the depletion pulse, the transients for both transmon states return
to zero. While the resonator dynamics is easily found if the transmon is
in the ground state, amplitude damping of the transmon in the excited
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state leads to non-deterministic behavior. We thus numerically obtain an
ensemble of noisy transients for each input qubit state, and optimize the
decision boundary of the linear classifier for this ensemble. Generating a
second verification ensemble, the “butterfly” of the measurement setup is
estimated.

The dynamics of the resonator is determined by the resonator linewidth
κ as well as the dispersive shift χ. We chose the parameters of the setup
used in [182], 1/κ = 250 ns and χ/π = −2.6MHz. The signal-to-noise ratio
of the detected transient is reduced by the quantum efficiency η = 12.5%.
The driving strength ε is chosen to approximate the “butterfly” used in
most of the main text, and corresponds to a steady-state average photon
population of about n̄ = 15. We then keep ε constant while changing
the measurement time, keeping τm = τd, to obtain the butterflies used in
the density matrix simulation. We ignore effects leading to measurement-
induced mixing and non-linearity of the readout resonator. Finally, since
these simulations do not allow to make a realistic prediction about residual
photon numbers achievable in experiments, we ignore this effect when
using these results.

4.C. Effect of over-rotations and two-qubit
phase noise on logical error rate

In this section we provide additional numerical data showing the effect of
some common noise sources on the logical error rate. In Fig. 4.10 we show
the effect of a coherent over-rotation, whereby the R′Y (π/2) operator in
Eq. 4.11 is replaced by R′Y (π/2 + δφ). This can be caused by inaccurate
calibration of the flux pulse used to perform the gate. In Fig. 4.11 we show
the effect of an increase in the two-qubit flux noise δφrms as described in
Sec. 4.B.4.

4.D. Calculation of decoder upper bound
We provide a detailed description how the decoder upper bound is obtained
from the simulation results. As described in the main text, after each
cycle of simulation, the diagonal of the reduced density matrix of the data
qubits in the Z basis is stored. It contains the probability distribution for
the 29 = 512 different possible measurement outcomes of the data qubits.
In the quantum memory experiment described in the main text, each of
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Figure 4.10.: Logical error rate for Surface-17 as a function of single-qubit
over-rotation, using the MWPM decoder. Other parameters are as given in the
main text.

these outcomes are passed to the decoder, which then declares a logical
measurement outcome.
It is evident that any decoder must declare opposite logical outcomes

if two of the 512 possible measurements m and m’ are related by the
application of a logical X operator. Thus, any decoder can give the
correct result only for half of the measurement outcomes. Subject to this
constraint, we can find the set of 256 declarations which maximize the
probability that the declaration is correct. It immediately follows that
no decoder can achieve a declaration fidelity larger than this maximal
probability. We thus refer to it as the decoder upper bound.

In practice, the upper bound is found according to the following approach.
Since declarations are opposite if two outcomes differ by a logical X
operator, they must be equal if they differ by the application of one or
more X stabilizers (applying two different logical X operators amounts to
the application of a product of X stabilizers). We thus group the outcomes
in 32 cosets which are related by the application of X-stabilizers. (There
are 4 X-stabilizers in Surface-17, so there are 512/24 = 32 cosets). For
outcomes from the same coset, the declaration from a decoder must be
the same. We obtain the probability of a final measurement falling within
each coset by summing the probabilities from the density matrix diagonal.
We further group the 32 cosets to 16 pairs, which differ by the application
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of a logical operator. The upper bound is then obtained by selecting
the more probable coset from each pair and summing the corresponding
probabilities. This upper bound can also be interpreted as the internal
decoherence of the logical qubit: it represents the maximal overlap of the
final state with the initial state, under any possible correction of errors.
We finally emphasize that the this upper bound can be found only

because we have access to the complete probability distribution of outcomes
(for a given result of syndrome measurements), a major advantage of the
density matrix simulation. However, we do not expect that any decoder
can actually achieve this upper bound: This is because we add syndrome
measurement events independently after the situation, which will decrease
the logical error rate further.
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Figure 4.11.: Logical error rate for Surface-17 as a function of two-qubit phase
error, using the MWPM decoder. Other parameters are as given in the main
text.

4.E. Hardware requirements of simulation
The simulations are performed using the quantumsim package ∗, which
were developed by the authors for this chapter. The package is accelerated
by performing the density matrix manipulations on a GPU (graphics
∗The quantumsim package can be found at http://github.com/brianzi/

quantumsim
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card). The simulations for this chapter were performed on a NVidia Tesla
K40 GPU, on which we observed runtimes of about 0.5 seconds for the
simulation of a run of k=20 cycles (25 ms per QEC cycle). We also had the
opportunity to test the software on a more modern GPU (NVidia Tesla
P100), observing about 15 ms per cycle, and on a consumer-grade GPU
(NVidia Quadro M2000), observing about 40 ms per cycle. By comparison,
the CPU is mostly idle during the simulation, except for handling of input
and output. The memory requirements are modest for both CPU and
GPU RAM. They are dominated by the storage of the density matrices
and amount to a few ten megabytes.

4.F. Homemade MWPM decoder with
asymmetric weight calculation

Every QEC code requires a decoder to track the most likely errors consistent
with a given set of stabilizer measurements. The MWPM decoder has
gained popularity since it was shown to have threshold values above
1% [177]. The motivation behind MWPM is that single X or Z errors
on data qubits in the bulk of a surface-code fabric cause changes of two
stabilizers in the code. These signals can then be considered vertices on a
graph, with the error the edge connecting them. Errors in measurement,
or errors on a single ancilla qubit, behave as changes in the stabilizer that
are separated in time. Multiple errors that would join the same vertices
create longer paths in the graph, of which an experiment only records the
endpoints. Thus, the problem becomes that of finding the most likely set
of generating errors given the error signals that mark their ends. This
is made slightly simpler, as in the surface code any chain of errors that
forms a closed loop does not change the logical state. This implies that
all paths that connect two points are equivalent, and can be considered
together. The problem then is to join error signals, either in pairs, or to
a ‘boundary’ vertex. The latter corresponds to errors on data qubits at
the boundary, which belong to only one X or Z stabilizer. This pairing P
should be chosen as the most likely combination of single-qubit errors that
could generate the measured error signals. This has then been reduced to
the problem of minimum-weight perfect matching on a graph, which can
be solved in polynomial time by the blossom algorithm [173, 209].

The MWPM decoder we use differs from previous methods by its weight
calculation. As part of the decoding process, it is required to calculate
to some degree of accuracy [204] the probability pe1,e2 of two measured
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error signals e1 and e2 being connected by a chain of individual logical
errors. This is then converted to a weight we1,e2 = − log(pe1,e2), which
form the input to the blossom algorithm of Edmonds to find the most
likely matching of error signals [173, 209]. An exact calculation of pe1,e2
requires a sum over all such chains between e1 and e2 that do not cross
the boundary (these are equivalent modulo stabilizer operators that do
not change the logical state). In this appendix we detail a method of
computing this sum, and approximations to make it viable within the
runtime of the experiment.
Let us define the ancilla graph GA = (VA, EA) containing a vertex

v ∈ VA for every ancilla measurement, and an edge e ∈ EA connecting
v, u ∈ VA if a single component (gate, single-qubit rest period, or faulty
measurement) in the simulation can cause the u and v measurements to
return an error. We include a special ‘boundary’ vertex vB, to which we
connect another vertex v if single components can cause errors on v alone.
Then, to each edge e we associate a probability pe, being the sum of the
probabilities of each component causing this error signal. These error
rates can be obtained directly from quantumsim, by cutting the circuit at
each C-Z gate and measuring the decay of single qubits between. Then,
for a given experiment with given syndrome measurements, let us define
the syndrome graph GS = (VS , ES) containing a vertex v ∈ VS for each
syndrome measurement that records an error, and an edge λu,v ∈ ES
connecting u, v ∈ VS if u and v are either both X ancilla qubits or both Z
ancilla qubits. To each edge λu,v we associate a probability pu,v given by
the sum of the probabilities of a chain of errors causing error signals solely
on u and v.

If we assume that single-qubit errors are uncorrelated, we have to lowest
order

pu,v ≈
∑

paths (e1,e2,...,en) between u and v

n∏
j=1

pej , (4.12)

Let AA be the adjacency matrix on GA weighted by the probabilities pe
(i.e., (AA)u,v = pe with e connecting u and v), and AS the same for GS .
Then, the above becomes

AS = AA +A2
A +A3

A + · · · = 1
1−AA

− 1, (4.13)

noting that AS contains a subset of the indices that are used to construct
AA.
The boundary must be treated specially in the above calculation. For
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4.F. Homemade MWPM decoder with asymmetric weight calculation

the purposes of the surface code, the boundary can be described as a
single vertex which has no limit on the number of other vertices it may
pair to [173]. For the purposes of weight calculation, any path that passes
through the boundary is already counted by pairing both end vertices to
the boundary. This can be treated by making GA directed, and breaking
the symmetry ATA = AA. In particular, either (AA)vB ,u = 0 for all u or
(AA)u,vB = 0 for all u.

The above calculation requires inversion of a Nmat × Nmat matrix,
with Nmat the total number of ancilla measurements per experiment.
Furthermore, as ancilla error rates depend upon the previous ancilla
state, elements in AA are not completely known until the previous cycle.
This implies that in an actual computation with runtime decoding, this
inversion would need to be completed within a few microseconds (with a
transmon-cQED architecture), which is practically unfeasible. We suggest
two approximations that can be made to shorten the decoding time. The
first is to average all errors over the ancilla population, ignoring any
asymmetry in the system. The adjacency matrix is now the same for any
experiment, and can be precalculated and stored as a look-up table for
the run-time decoder. We call this the decoder with symmetrized weights.
The size of such a look-up table scales poorly with the number of qubits
and the number of cycles. However, (AS)u,v is approximately invariant
under simultaneous translation of u and v (excluding boundary effects).
This implies that a precalculated AS can be vastly compressed, making
this method feasible.

The second approximation to the full AS calculation is to perform it
iteratively. We divide our graph GA (GS) by time steps; let GtA (GtS) be
the subgraph of GA (GS) containing only ancillas measured before time
step t, and let ∂GtA (∂GtS) be the subgraph of GA (GS) containing only
ancillas measured during time step t. Then, if we assume we have an
approximation to the matrix AtS (being the adjacency matrix of GtS), we
can approximate

At+1
S ≈

(
AtS Ct+1

S

(Ct+1
S )T (1− ∂At+1

A )−1

)
(4.14)

to lowest order in physical errors. Here, ∂At+1
A is the weighted adjacency

matrix on ∂Gt+1
A , and the coupling matrix Ct+1

S is approximated by

Ct+1
S = AtSC

t+1
A (1− ∂At+1

A )−1
, (4.15)
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4. Density-matrix simulation of small surface codes

with Ct+1
A the adjacency matrix containing only edges between ∂Gt+1

A

and GtA. This procedure corresponds to a sum over all paths that are
made by moving within ∂Gt+1

A , shifting back in time to GtA, and then
taking any precalculated path in GtA. Ct+1

A and (1− ∂At+1
A )−1 can be

precalculated, and so the runtime computation requirement is reduced to
the product in Eq. (4.15). This in turn can be sparsified, as Ct+1

A only
contains connections to vertices in GtA close to the time boundary, and
we can delete all terms in AtS that do not connect from these vertices to
errors.

We have used the second method for our MWPM decoder, as we expect
the error from neglecting higher-order combinations of errors to be small.
In order to check this assumption, in Fig. 4.12 we repeat our simulation
protocol with a modified physical error model that excludes all Y and
measurement errors. We see that in the absence of these errors, the MWPM
decoder performs within the error margin of the decoder upper bound.
Note that a small deviation is expected from the discrepancy between
a MWPM decoder and a maximum-likelihood decoder [178]. With the
parameters used in this chapter, we do not observe any loss of fidelity when
we stop accounting for the difference in error rates between ancilla states.
We account this to the large error contribution from photon noise and gate
infidelity on the ancilla qubits, which do not have this asymmetry. We
further note that we operate in a regime of large ancilla error; as described
in the text this makes the system counter-intuitively less sensitive to ancilla
noise. In systems where this is not the case, it could be that accounting
for ancilla asymmetry provides a useful computational method to improve
εL.

4.G. Implementation of a look-up table
decoder

In [176], the authors describe a decoding scheme specific to Surface-17,
which is optimized to be implementable with limited computational re-
sources in a short cycle time. This decoding scheme works by using a short
decision tree to connect errors to each other in a style similar to blossom.
Indeed, this scheme is equivalent to a blossom decoder with all horizontal,
vertical and diagonal weights equal [176]. As such, we have implemented
the new weights in the blossom decoder rather than utilizing the exact
method given.

118



4.H. Details of lowest-order approximation
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Figure 4.12.: Simulation of the experimental protocol used throughout the
chapter, but using an error model that has Y errors and readout infidelity
removed. With these errors absent, the MWPM decoder achieves the decoder
upper bound within simulation error. The look-up table approach (blue) retains
some inaccuracy beyond this.

4.H. Details of lowest-order approximation

We detail the approximation made to study Surface-49 in Sec. II C. Note
that this calculation is only for X errors, which are measured by the Z
ancillas. This implies that our approximation should attempt to realize
the result of blossom, rather than the decoder upper bound.
We begin with the GA graph defined in App. 4.F. In the absence of

correlated errors that cause more than two error signals, any experiment
can be approximately described by choosing a set S ⊂ EA of edges on
the graph and assuming the errors that correspond to these edges have
occurred. Each ancilla measurement corresponds to a vertex in GA, which
records an error if an odd number of edges in S point to the vertex. Each
combination Ma of ancilla measurements can be generated by multiple
error sets S.
Formally, let us write M for the set of all combinations of ancilla

measurements and S for the set of all combinations of errors (so S = 2EA).
We then define a function φ : S →M that takes a combination of errors
to the resultant measurement outcomes. Let us fix a logical Z operator
ZL on the surface-code fabric. Then to each S ∈ S we can assign a parity
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4. Density-matrix simulation of small surface codes

p(S) = ±1 depending on whether the product of all errors in S commute
with Z or not. A decoding then consists of a choice of parity pd(M) for each
M ∈M. Such a decoding correctly decodes S ∈ S if pd(φ(S)) = p(S), and
creates a logical error otherwise. The source of logical errors in a perfect
decoder is then precisely the fact that we can have two error combinations
S1, S2 ∈ S such that φ(S1) = φ(S2) but p(S1) 6= p(S2).
The above suggests a method by which a perfect decoder can be con-

structed. As defined, φ−1(M) ⊂ S is the set of error combinations S
that return a measurement M∈M. For each error combination S, we can
calculate the probability of this occurring:

r(S) =
∏
e∈S

pe
∏
e/∈S

(1− pe). (4.16)

The optimal choice of pd(Ma) is the one maximizing∑
S∈φ−1(M),p(S)=pd(M)

r(S), (4.17)

and the fidelity of such a decoder (over the entire experiment) can be
calculated as

FL = 1−
∑
M∈M

min

 ∑
S∈φ−1(M)

δp(S),+1 r(S) ,

∑
S∈φ−1(M)

δp(S),−1 r(S)

 . (4.18)

At this point the only approximation that has been made is to neglect
the T1 asymmetry in the system, which we have shown previously in this
chapter to be negligible. Unfortunately, the above function cannot be
evaluated exactly; the number of error combinations S is approximately
2200 for 4 cycles of Surface-49. Our goal instead is to approximate this to
the lowest order in the physical qubit error rate.

Let us make the approximation that our error combinations S can be split
into small, well-separated pieces of errors containing separate correctable
and non-correctable parts, S = ∪iSi. To each Si we can assign a time
step t(Si), being the earliest time of the first error measurement observed
(in φ(Si)). The error rate per round, εL, can be determined by summing
Eq. 4.18 over all pieces Si of all combinations S such that t(Si) = T (with
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4.H. Details of lowest-order approximation

arbitrary T ), as the effect of repeated errors from Si, Sj ⊂ S is taken into
account during the derivation of the logical fidelity equation (Eq. 2 in the
main text).

εL =
∑
M∈M

min

 ∑
S∈φ−1(M)

∑
t(Si)=T

δp(Si),+1 r(S) ,

∑
S∈φ−1(M)

∑
t(Si)=T

δp(Si),−1 r(S)

 . (4.19)

Let us also extend the above division of S to a division of M into separate
pieces Ma, and rewrite our sum slightly,

εL =
∑
Ma

min

 ∑
Si∈φ−1(Ma),t(Si)=T

δp(Si),+1r̄(Si) ,

∑
Si∈φ−1(Ma),t(Si)=T

δp(Si),−1 r̄(Si)

 , (4.20)

Where here we have brought the sum over the global combinations of
syndromes and measurements inside a new function r̄

r̄(Si) =
∏
e∈Si

pe
∑

M⊃Ma

∑
(S⊃Si,S∈φ−1(M))∏

f∈S/Si
pf
∏
g/∈Si

(1− pg)

=
∏
e∈Si

pe
∑
S⊃Si

∏
f∈S/Si

pf
∏
g/∈Si

(1− pg) (4.21)

If we took this approximation literally and considered the sum over every
possible combination S containing Si, the final sum in Eq. 4.21 would
reduce to

r̄(u)(Si) =
∏
e∈Si

pe. (4.22)

However, this includes error combinations S that cannot be easily separated
into Si and ‘something else’, i.e. they contain other errors e that cannot
be separated from Si. Eq. 4.22 is then equivalent to assuming that if Si is
an uncorrectable logical error, no nearby combination of physical errors
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4. Density-matrix simulation of small surface codes

S′ can be combined such that Si ∪ S′ is correctable unless S′ itself is an
uncorrectable logical error. Such combinations would serve to reduce the
calculated εL, and so r̄(u) gives an upper bound for εL in Eq. 4.20. For a
lower bound, we approximate that for any uncorrectable error combination
Si, approximately one rounds-worth of single errors would undo the logical
error, leading to the approximation

r̄(l)(Si) =
∏
e∈Si

pe
∏

t({e})=T

(1− pe). (4.23)

We now make one further approximation, and sum Eq. 4.20 only over
the shortest Si that can be expected to contribute to the final error rate.
That is, we sum over those Si with |Si| ≤ (d + 1)/2, and that spread
directly across the chain. The error incurred from this approximation is
roughly proportional to the largest single error, which is no more than 5%
throughout our study. We use r̄(u) and r̄(l) to give the error bars shown
in Fig. 5. Points in the plot are taken as a log average of the upper and
lower bounds, and thus have no particular relevance themselves. We see
that the numerical calculation falls within the corresponding error bars for
almost the entire dataset, giving verification for our method, save a slight
deviation at one point where it falls below. Moreover, as the simulated
Surface-17 error rate lies above the upper bound found for the Surface-49
error rate (with the standard set of parameters from the main text), our
claim that Surface-17 will operate below the fault-tolerant threshold is
quite strong.
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5. Adaptive weight estimator
for quantum error
correction in a
time-dependent
environment

5.1. Introduction
To execute algorithms on a quantum computer, one must prevent the
accumulation of errors by monitoring and correcting them in control hard-
ware. The monitoring is made possible by a nonlocal encoding of the
quantum information in a redundant set of qubits, allowing for repeated
measurements via auxiliary (ancilla) qubits without collapsing and destroy-
ing the quantum superposition of the logical degrees of freedom [66, 205].
Parity-check measurements produce strings of bits, the so-called error
syndrome, that must be decoded to infer the correction which should be
applied to the logical qubits.

For an important class of error correcting codes, the syndrome identifies
the end points of an error chain in a space-time graph of ancilla measure-
ments. (See Fig. 5.1.) The dimensionality of space can differ; it equals 1 in
the repetition code [67, 206], 2 in the surface code [167, 173, 207], and 3
for topological cluster states [208]. The identification is not unique: there
is in general no unique way to construct a chain of error events consistent
with a given syndrome (the decoding problem). One approach to decoding
refers to the optimization problem of minimum-weight perfect matching
on a graph, which may be solved by the “blossom” algorithm [209, 210] in

The contents of this chapter have been published in S. Spitz, B. Tarasinski, C.W. J.
Beenakker, and T.E. O’Brien, Adv. Quant. Tech. 1 (1), 1870015 (2018)
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5. Quantum error correction in a time-dependent environment

polynomial time. The blossom decoder is sub-optimal [178, 190, 191, 211],
but it performs sufficiently well for current quantum hardware to achieve
the fault-tolerance threshold [212].
The weights that govern the optimization problem can be readily ob-

tained if one has a calibrated model of the sources of error in the sys-
tem [213]. Such an error model may not be available, and moreover the
error rates may vary in time during the quantum computation. This
complication has motivated the search for an adaptive decoder, that would
infer the weights from the syndrome without requiring updates of the error
model [189, 214–217]. Since the syndrome depends nonlinearly on the
weights, this inversion problem is nontrivial — a recent approach [217] em-
ploys a machine learning algorithm to learn the weights from the measured
data.
Here we show that the inversion can be actually carried out by purely

algebraic means: The covariance of measurements on pairs of ancillas
exactly determines the weight of their matching. We demonstrate the
method on the repetition code with time-dependent error rates.

5.2. Quantum error correction and the
repetition code

To set the stage, we summarize the elements of quantum error correction [66,
218] that we need in what follows. The expert reader may skip this section.

A quantum error correcting code stores quantum information nonlocally
in an array of physical qubits, such that it is protected from local errors
(bit flips or sign flips). The encoded state |ψ〉 evolves for a cycle time δt,
after which a set of ‘stabilizer’ measurements is carried out. The stabilizers
project |ψ〉 onto a state |ψ′〉 that may differ from |ψ〉 if an error occured
during the cycle. The outcome of the stabilizer measurements, called the
syndrome, identifies the error and allows for a correction. It is crucial
that the stabilizer measurements do not measure the degrees of freedom
of |ψ〉 in which the relevant quantum information is stored, otherwise this
information will be lost upon projection.
The simplest example of error correction via stabilizer measurement

is a one-dimensional array, in which a logical qubit is encoded into d
data qubits via |0〉L = |00 · · · 0〉, |1〉L = |11 · · · 1〉. In a classical setting,
this would correspond to a distance-d repetition code, for which one
would compare the value of adjacent bits to identify up to (d− 1)/2 bit
flips. A quantum parity check achieves this goal without collapsing the
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5.2. Quantum error correction and the repetition code

Figure 5.1.: Panel a: Space-time circuit of a d = 5 quantum repetition code.
Five data qubits (green) are entangled with four ancilla qubits (black) by means of
a CNOT gate (⊕). The ancillas are measured at the end of each cycle (blue boxes,
spaced by δt, with measurement outcomes πi(t), i = 1, 2, 3, 4). A bit flip (red X)
produces an error chain (red line) with end points on an ancilla measurement
or on the boundary of the array. Panel b: Syndrome si(t) = πi(t)⊕ πi(t− 2δt)
corresponding to the error events in panel a). The measurements that are
connected by an error chain can be separated in space, in time, or in both space
and time. Panel c: Alternative matching consistent with the same syndrome.
The minimum weight decoder associates a weight to each error chain and finds
the matching with the smallest total weight.
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superposition |ψ〉 = a0|0〉L +a1|1〉L onto the state |0〉L or |1〉L. The parity-
check measurements are performed on d − 1 ancilla qubits, which are
entangled with pairs of data qubits (see Fig. 5.1). Each ancilla measures
the stabilizer operator ZiZi+1 (i = 1, 2, . . . d − 1, with Z ≡ σz a Pauli
matrix). The stabilizer does not distinguish between the states |0〉L and
|1〉L〉 and thus preserves their quantum superposition. A bit flip error of
qubit j (Xj error) is detected by the stabilizer measurements ZjZj+1 and
Zj−1Zj , which change their value from +1 to −1. A decoder may infer
the underlying error from this signature and correct it without needing to
measure qubit j itself (which would collapse the state).

The stabilizer measurements in cycle t form a binary parity-check vector
~π(t). The error syndrome

~s(t) = ~π(t) + ~π(t− 2δt) (5.1)

is defined such that an error event is signaled by a nonzero element si(t) = 1.
A single error event is not sufficient to diagnose an error, as ZiZi+1 would
trigger an error event for either Xi or Xi+1. To identify which qubit
flipped we match pairs of error events. As indicated in Fig. 5.1, the match
can be between error events that are separated in both space and time,
at the end points of an error chain from ancilla i0 at time t to ancilla j0
at time t + nδt. The error chain may terminate at the boundary of the
lattice (corresponding to errors on the boundary data qubits), so some
error events may remain unmatched.
This simple description to detect bit flips in a repetition code can be

extended to the detection of both bit flips and phase flips (Xi and Zi
errors) and by encoding in 2D and 3D (surface codes and topological
cluster states). The generic feature of this class of stabilizer codes is that
the decoding entails the pairwise matching of error events in a space-time
graph. The method of adaptive quantum error correction presented in the
next section applies to this general setting, while for a demonstration we
will return to the repetition code.

5.3. Weight inference from error syndromes
5.3.1. Formulation of the inversion problem
We collect the binary output of the stabilizer measurements in the error
syndrome ~s(t). The discrete time variable t counts the error correction
cycle and the elements of the vector ~s identify the ancilla qubits. For
N ancillas and T cycles there are a total of NT variables vi ∈ {0, 1},
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arranged as vertices in a space-time graph. (See Fig. 5.2.) An error event
corresponds to vi = 1, while vi = 0 if the ancilla has not detected an error.

Figure 5.2.: Space-time graph showing a pair of vertices vi0 , vj0 connected
by an edge ei0j0 . A few other vertices and connecting edges are also shown, as
well as edges that connect a vertex to a boundary (ei0i0 and ej0j0). The line
thickness of an edge eij is proportional to the probability pij that a single error
affects the ancilla qubit measurements on vertices i and j. We seek to determine
these probabilities from measurements of the error syndrome.

The vertices are pairwise connected by undirected edges eij ≡ eji ∈
{0, 1} such that eij = 1 with probability pij . We allow for i = j, the edge
eii connects a vertex to the boundary of the graph. We say that the edge
is on or off depending on whether eij = 1 or 0. The state of a vertex
depends on the edges according to

vi = 1
2
[
1− (−1)

∑
j
eij ]. (5.2)

Each edge that is on toggles its vertex between the states 0 and 1, so that
vi = 1 if an odd number of connecting edges is on.

The pij ’s are probabilities of a single-qubit error that correlates ancilla
measurements i and j. Correlations of ancilla measurements due to
uncorrelated multiple-qubit errors are described by weights wij . The
weight wij for i 6= j is determined from the p’s by following all paths
through the graph from i to j:

wij = − ln

pij +
∑
n

∑′

k1,k2,...kn

pik1pk1k2 · · · pknj

 . (5.3)

The prime in the sum indicates that the path should not pass through the
boundary (i 6= k1 6= k2 · · · 6= kn 6= j). For a boundary weight wii the path
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terminates on the boundary,

wii = − ln

pii +
∑
n

∑′

k1,k2,...kn

pik1pk1k2 · · · pknkn

 . (5.4)

These sums over error chains can be carried out in terms of the matrix
Aij = (1− δij)pij by matrix inversion [212],

e−wij =
{

[(1−A)−1]ij if i 6= j,∑
k[(1−A)−1]ikpkk if i = j.

(5.5)

Given a set of error events V = {vi|vi = 1} the minimum-weight perfect
matching decoder searches for a subsetM = {eij , wij} of weighted edges
such that each vertex in V is connected either to one other vertex in V or
to the boundary, at minimal total weight

∑
M wij .

Modern implementations [210] of the blossom algorithm [209] solve this
optimization problem efficiently given an error model: A physical model
for qubit errors from which the error probabilities p and hence the weights
w can be calculated. Here we consider the opposite approach: can we infer
the weights from the measured error syndromes, without an underlying
error model? This is an inversion problem for Eq. (5.2), where we seek to
reconstruct the statistics of the edges eij from the measured statistics of
the vertices vi. The inversion is possible, in spite of the nonlinearity of Eq.
(5.2), as we now show.

5.3.2. Solution for edges connecting pairs of vertices
We first consider a pair of distinct vertices i0 6= j0, connected by an edge
ei0j0 . (The case of a single vertex connected to the boundary will be dealt
with later.) We define

Ei0\j0 = 1
2
[
1 + (−1)

∑
j 6=j0

ei0j
]
. (5.6)

In words, Ei0\j0 equals 1 or 0 depending on whether the vertex i0 has an
even or an odd number of connecting edges that are on — excluding the
connection to vertex j0. Note that the sum over j includes j = i0, it only
excludes j = j0.
We then rewrite Eq. (5.2) for vertex i0 as

vi0 = ei0j0Ei0\j0 + (1− ei0j0)(1− Ei0\j0). (5.7)
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Similarly, for vertex j0 one has

vj0 = ej0i0Ej0\i0 + (1− ej0i0)(1− Ej0\i0). (5.8)

Since ei0j0 = ej0i0 = e2
i0j0

, the product (AND) of vi0 and vj0 equals

vi0vj0 = (1− ei0j0)(1− Ei0\j0 − Ej0\i0)
+ Ei0\j0Ej0\i0 , (5.9)

while the binary sum (XOR) equals

vi0 ⊕ vj0 ≡ vi0 + vj0 mod 2
= Ei0\j0 + Ej0\i0 − 2Ei0\j0Ej0\i0 . (5.10)

By construction, all three variables ei0j0 , Ei0\j0 , and Ej0\i0 are statisti-
cally independent. We denote the average by 〈· · · 〉, with

〈ei0j0〉 = pi0j0 (5.11)

by definition. The averages of the E’s are unknown, but they can be
eliminated by combining the four equations (5.7)–(5.10). We thus arrive
at

pi0j0(1− pi0j0) = 〈vi0vj0〉 − 〈vi0〉〈vj0〉1− 2〈vi0 ⊕ vj0〉
. (5.12)

The left-hand-side is symmetric under the exchange pi0j0 ↔ 1− pi0j0 . We
may safely assume that the error probabilities are < 1/2, resulting in the
probability

pi0j0 = 1
2 −

√
1
4 −
〈vi0vj0〉 − 〈vi0〉〈vj0〉

1− 2〈vi0 ⊕ vj0〉
. (5.13)

This is an exact relation between the probability of an edge and correlators
of the pair of connected vertices. These correlators are measurable from
the error syndrome, without any prior knowledge of the error model.

5.3.3. Solution for boundary edges

The probability pi0i0 of an edge ei0i0 connecting the vertex vi0 to the
boundary cannot be determined by a correlator, since there is nothing to
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correlate with. We do have access to the average

〈vi0〉 = 1− pi0i0 − (1− 2pi0i0)〈Ei0\i0〉, (5.14)

Ei0\i0 = 1
2
[
1 + (−1)

∑
j 6=i0

ei0j
]

= 1
2 + 1

2

∏
j 6=i0

(1− 2ei0j). (5.15)

Using again the independence of the variables, we find

pi0i0 = 1
2 + 〈vi0〉 − 1/2∏

j 6=i0(1− 2pi0j)
. (5.16)

So once the probabilities pi0j for non-boundary edges are determined from
Eq. (5.13), we can use Eq. (5.16) to obtain the probability of a boundary
edge.

5.4. Implementation of the adaptive decoder

5.4.1. Convergence in the large-time limit

We test the adaptive decoder on the repetition code of Fig. 5.1, for a bit-flip
error model: at the end of a cycle of duration δt each qubit i is flipped
independently with probability γi. The time-dependent density matrix of
the quantum circuit is calculated using the quantumsim simulator of Ref.
212.

We implement the blossom decoder without any prior knowledge of the
error probabilities, using Eqs. (5.13) and (5.16) to determine them from
the measured syndrome data. We assume local sources of error and set
pij ≡ 0 for ancilla measurements i and j that are not connected by any
local error. In a nonlocal situation, e.g. because of non-negligible crosstalk,
a proliferation of negligibly small error probabilities can be avoided by
setting pij ≡ 0 when the deviation from zero is statistically insignificant.
The adaptive decoder needs sufficient syndrome data in the training

stage to estimate the probabilities. Since pij is the mean of a Bernoulli
random variable with variance σ2

ij = pij(1−pij), the statistical uncertainty
δpij in the estimation after N = t/δt error cycles is of order

δpij = N−1/2
√
pij(1− pij). (5.17)
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The requirement that δpij � pij � 1 implies that a minimum of

Nmin ' 1/p̄ (5.18)

measurements are needed for a reliable estimation of error probabilities
of typical magnitude p̄. After the training stage the probabilities are
inserted into Eq. (5.5) to determine the weights which are passed to the
minimum-weight perfect matching (blossom) decoder for error correction.
As a figure of merit we introduce a testing stage after the training

stage in which we calculate the probability εadaptive(N) of a logical error
per cycle using the adaptive decoder trained on N rounds of data. The
error rates are calculated following the method of Ref. 212, measuring the
average logical qubit fidelity over 100 cycles. The combination of training
and testing is repeated a few hundred times to obtain an accurate value of
εadaptive(N). We compare this with the probability ε0 that would follow
from a blossom decoder with pre-determined weights calculated from the
error model. The relative error

∆ = εadaptive/ε0 − 1 (5.19)

measures how well the adaptive decoder has converged to the ideal blossom
decoder.
Results are shown in Fig. 5.3, for a depth d = 3 repetition code with

uniform single-qubit error rate γi = 5 · 10−3. We observe a power law
convergence ∆ ∝ N−α with α ≈ 1.2. (We do not have an analytical result
for this exponent.)

5.4.2. Performance in a time-dependent environment
The adaptive decoder can be readily applied to sources of noise that vary
in time, by recalibration of the weights as time proceeds. We implement
this by estimating the error probabilities at time t from the syndrome
data in the time interval (t − T, t). The optimal time window T = Nδt
should not be too short in view of the statistical error (5.17), and it should
not be too large in view of the variation ωTpij of the probabilities in the
time-dependent environment (with characteristic frequency ω). The sum
of these sources of error is minimized for

Nopt ' (pijω2δt2)−1/3 ⇒ δpopt
ij ' p

2/3
ij (ωδt)1/3. (5.20)

The adaptive decoder fails if the noise fluctuates too rapidly to acquire
sufficient data for the probability estimation. The condition δpopt

ij � pij
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5. Quantum error correction in a time-dependent environment

Figure 5.3.: Convergence of the adaptive decoder towards the ideal blossom
decoder, as determined by the relative decoder error ∆ as a function of the
number of cycles N used to estimate the error probabilities in the training stage.
Each data point with error bars results from the repetition of 400 training stages,
the inset shows the statistics for one particular data point. The dashed line
through the data points is a guide to the eye.

implies an upper bound
ωc ' p̄/δt (5.21)

on the frequency of the noise variations that is adaptable for a typical
error probability p̄.
We test the adaptive decoder in the presence of time dependent errors

by taking γi = γ0 for the data qubits and γi = γ0(1+sinωt) for the ancilla
qubits (with γ0 = 5 · 10−3 and 2π/ω = 2 · 104 δt). The predicted optimal
time window at this frequency, for p̄ = 5·10−3, is Nopt ≈ 1265. As shown in
Fig. 5.4, when a larger window N � Nopt is used, the decoder experiences
a time lag in determining optimal weights; for a smaller window N < Nopt
the weight estimation is degraded by sampling errors.

5.5. Conclusion
We have demonstrated that it is possible to analytically calculate the
underlying error probabilities from measured error syndromes in a broad
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Figure 5.4.: Performance of the adaptive decoder in the presence of a fluctuating
noise (d = 3, γi = 0.005 for data qubits, γi = 0.005 + 0.005 sin(πt/104δt)
for ancilla qubits) using three different time windows T = Nδt for the error
estimation. The average over 200 training stages is compared to a blossom
decoder (black) with optimally chosen weights at every point in time. Small
time windows suffer from sampling error, but adapt quickly to changing error
rates, while a decoder with a larger time window lags behind. The optimal time
window that balances the two effects is around T = 2000 δt in this case.

class of stabilizer codes. As this requires inverting a set of non-linear
equations, it is surprising that it should be possible at all, let alone with
such small overhead. Because the inversion is exact, the convergence of
our adaptive decoder to the ideal blossom decoder should be optimal in
the absence of additional information about the error rates. This implies
that fluctuations faster than a critical frequency ωc are uncorrectable; we
have estimated ωc ' p̄/δt, with p̄ the single-qubit error probability and
δt the duration of one error-correction cycle. Such rapid fluctuations will
contribute relatively more to the logical error rate of a quantum error
correcting code than slow fluctuations to which the decoder can adapt.

It would be interesting for future work to test the adaptive decoder on
more complex noise models, where the optimal window must be chosen for
an entire noise frequency spectrum, instead of for a single frequency. We
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5. Quantum error correction in a time-dependent environment

expect white noise to be significantly worse for quantum error correction
than 1/f noise, due to the much larger contributions from high frequencies.
Future work could also extend our results to simulations of the surface
code or topological cluster states.
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6. Neural network decoder for
topological color codes with
circuit level noise

6.1. Introduction
In fault-tolerant quantum information processing, a topological code stores
the logical qubits nonlocally on a lattice of physical qubits, thereby pro-
tecting the data from local sources of noise [66, 205]. To ensure that this
protection is not spoiled by logical gate operations, they should act locally.
A gate where the j-th qubit in a code block interacts only with the j-th
qubit of another block is called “transversal” [219]. Transversal gates are
desirable both because they do not propagate errors within a code block,
and because they can be implemented efficiently by parallel operations.
Two families of two-dimensional (2D) topological codes have been ex-

tensively investigated, surface codes [79, 173, 207, 220] and color codes
[75, 222]. The two families are related: a color code is equivalent to multi-
ple surface codes, entangled using a local unitary operation [223, 224] that
amounts to a code concatenation [225]. There are significant differences
between these two code families in terms of their practical implementation.
On the one hand, the surface code has a favorably high threshold error
rate for fault tolerance, but only cnot, X, and Z gates can be performed
transversally [221]. On the other hand, while the color code has a smaller
threshold error rate than the surface code [174, 226], it allows for the
transversal implementation of the full Clifford group of quantum gates
(with Hadamard, π/4 phase gate, and cnot gate as generators) [227, 228].
While this is not yet computationally universal, it can be rendered universal
using gate teleportation [229] and magic state distillation [48]. Moreover,
color codes are particularly suitable for topological quantum computation

The contents of this chapter have been published in P. Baireuther, M.D. Caio, B.
Criger, C.W. J. Beenakker and T.E. O’Brien, New J. Phys. 21 (1), 013003 (2019)
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with Majorana qubits, since high-fidelity Clifford gates are accessible by
braiding [230, 231].
A drawback of color codes is that quantum error correction is more

complicated than for surface codes. The identification of errors in a surface
code (the “decoding” problem) can be mapped onto a matching problem
in a graph [232], for which there exists an efficient solution called the
“blossom” algorithm [209]. This graph-theoretic approach does not carry
over to color codes, motivating the search for decoders with performance
comparable to the blossom decoder, some of which use alternate graph-
theoretic constructions [233–237].
An additional complication of color codes is that the parity checks are

prone to “hook” errors, where single-qubit errors on the ancilla qubits
propagate to higher weight errors on data qubits, reducing the effective
distance of the code. There exist methods due to Shor [238], Steane [239],
and Knill [240] to mitigate this, but these error correction methods come
with much overhead because of the need for additional circuitry. An
alternative scheme with reduced overhead uses dedicated ancillas (“flag
qubits”) to signal the hook errors [241–245].
Here we show that a neural network can be trained to fault-tolerantly

decode a color code with high efficiency, using only measurable data as
input. No a priori knowledge of the error model is required. Machine
learning approaches have been previously shown to be successful for the
family of surface codes [211, 246–249], and applications to color codes are
now being investigated [250, 251, 253]. We adapt the recurrent neural
network of Ref. 211 to decode color codes with distances up to 7, fully
incorporating the information from flag qubits. A test on a density matrix-
based simulator of a superconducting quantum computer [212] shows that
the performance of the decoder is close to optimal, and would surpass the
quantum memory threshold under realistic experimental conditions.

6.2. Description of the problem

6.2.1. Color code
The color code belongs to the class of stabilizer codes [68], which operate by
the following general scheme. We denote by I,X, Y, Z the Pauli matrices
on a single qubit and by Πn = {I,X, Y, Z}⊗n the Pauli group on n qubits.
A set of k logical qubits is encoded as a 2k-dimensional Hilbert space HL
across n noisy physical qubits (with 2n-dimensional Hilbert space HP ).
The logical Hilbert space is stabilized by the repeated measurement of
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n− k parity checks Si ∈ Πn that generate the stabilizer S(HL), defined as

S(HL) = {S ∈ B(HP ), S|ψL〉 = |ψL〉∀|ψL〉 ∈ HL}, (6.1)

where B(HP ) is the algebra of bounded operators on the physical Hilbert
space.

As errors accumulate in the physical hardware, an initial state |ψL(t =
0)〉 may rotate out of HL. Measurement of the stabilizers discretizes
this rotation, either projecting |ψL(t)〉 back into HL, or into an error-
detected subspace H~s(t). The syndrome ~s(t) ∈ Zn−k2 is determined by
the measurement of the parity checks: SiH~s(t) = (−1)si(t)H~s(t). It is the
job of a classical decoder to interpret the multiple syndrome cycles and
determine a correction that maps H~s(t) 7→ HL; such decoding is successful
when the combined action of error accumulation and correction leaves the
system unperturbed.
This job can be split into a computationally easy task of determining

a unitary that maps H~s(t) 7→ HL (a socalled ‘pure error’ [252]), and a
computationally difficult task of determining a logical operation within
HL to undo any unwanted logical errors. The former task (known as
‘excitation removal’ [253]) can be performed by a ‘simple decoder’ [247].
The latter task is reduced, within the stabilizer formalism, to determining
at most two parity bits per logical qubit, which is equivalent to determining
the logical parity of the qubit upon measurement at time t [211].
We implement the color code [75, 222] on an hexagonal lattice inside

a triangle, see Fig. 6.1. (This is the 6,6,6 color code of Ref. 174.) One
logical qubit is encoded by mapping vertices v to data qubits qv, and tiles
T to the stabilizers XT =

∏
v∈T Xv, ZT =

∏
v∈T Zv. The simultaneous

+1 eigenstate of all the stabilizers (the “code space”) is twofold degenerate
[228], so it can be used to define a logical qubit. The number of data
qubits that encodes one logical qubit is ndata = 7, 19, or 37 for a code with
distance d = 3, 5, or 7, respectively. (For any odd integer d, a distance-d
code can correct (d− 1)/2 errors.) Note that ndata is less than d2, being
the number of data qubits used in a surface code with the same d [79].
An X error on a data qubit switches the parity of the surrounding ZT

stabilizers, and similarly a Z error switches the parity of the surrounding
XT stabilizers. These parity switches are collected in the binary vector
of syndrome increments δ~s(t)∗, such that δsi = 1 signals some errors on
the qubits surrounding ancilla i. The syndrome increments themselves
∗The syndrome increment is usually δ~s(t) ≡ ~s(t)− ~s(t− 1) mod 2. When ancilla

qubits are not reset between QEC cycles, we use a somewhat different definition, see
App. 6.A.2 for details.
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Figure 6.1.: Schematic layout of the distance-5 triangular color code. A
hexagonal lattice inside an equilateral triangle encodes one logical qubit in 19
data qubits (one at each vertex). The code is stabilized by 6-fold X and Z
parity checks on the corners of each hexagon in the interior of the triangle, and
4-fold parity checks on the boundary. For the parity checks, the data qubits are
entangled with a pair of ancilla qubits inside each tile, resulting in a total of
3d2−1

2 qubits used to realize a distance-d code. Pauli operators on the logical
qubit can be performed along any side of the triangle, single-qubit Clifford
operations can be applied transversally, and two-qubit joint Pauli measurements
can be performed through lattice surgery to logical qubits on adjacent triangles.

are sufficient for a classical decoder to infer the errors on the physical
data qubits. Parity checks are performed by entangling ancilla qubits at
the center of each tile with the data qubits around the border, and then
measuring the ancilla qubits (see App. 6.A for the quantum circuit).

6.2.2. Error model
We consider two types of circuit-level noise models, both of which in-
corporate flag qubits to signal hook errors. Firstly, a simple Pauli error
model allows us to develop and test the codes up to distance d = 7. (For
larger d the training of the neural network becomes computationally too
expensive.) Secondly, the d = 3 code is applied to a realistic density-matrix
error model derived for superconducting qubits.

In the Pauli error model, one error correction cycle of duration tcycle =
N0tstep consists of a sequence of N0 = 20 steps of duration tstep, in which
a particular qubit is left idle, measured, or acted upon with a single-qubit
rotation gate or a two-qubit conditional-phase gate. Before the first cycle
we prepare all the qubits in an initial state, and we reset the ancilla qubits
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after each measurement. Similarly to Ref. 173, we allow for an error to
appear at each step of the circuit and during the preparation, including
the reset of the ancilla qubits, with probability perror. For the preparation
errors, idle errors, or rotation errors we introduce the possibility of an X,
Y , or Z error with probability perror/3. Upon measurement, we record the
wrong result with probability perror. Finally, after the conditional-phase
gate we apply with probability perror/15 one of the following two-qubit
errors: I ⊗ P , P ⊗ I, P ⊗ Q, with P,Q ∈ {X,Y, Z}. We assume that
perror � 1 and that all errors are independent, so that we can identify
perror ≡ εphys with the physical error rate per step.
The density matrix simulation uses the quantumsim simulator of Ref.

212. We adopt the experimental parameters from that work, which match
the state-of-the-art performance of superconducting transmon qubits. In
the density-matrix error model the qubits are not reset between cycles
of error correction. Because of this, parity checks are determined by the
difference between subsequent cycles of ancilla measurement. This error
model cannot be parametrized by a single error rate, and instead we
compare to the decay rate of a resting, unencoded superconducting qubit.

6.2.3. Fault-tolerance

The objective of quantum error correction is to arrive at a error rate
εL of the encoded logical qubit that is much smaller than the error rate
εphys of the constituting physical qubits. If error propagation through the
syndrome measurement circuit is limited, and a “good” decoder is used,
the logical error rate should exhibit the power law scaling [173]

εL = Cd ε
(d+1)/2
phys , (6.2)

with Cd a prefactor that depends on the distance d of the code but not on
the physical error rate. The so-called “pseudothreshold”∗ [254],

εpseudo = 1
C

2/(d−1)
d

(6.3)

is the physical error rate below which the logical qubit can store information
for a longer time than a single physical qubit.

∗The quantity εpseudo defined in Eq. (6.3) is called a pseudo-threshold because it is
d-dependent. In the limit d→∞ it converges to the true threshold.
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Figure 6.2.: Architecture of the recurrent neural network decoder. After a
body of recurrent layers the network branches into two heads, each of which
estimates the probability p or p′ that the parity of bit flips at time T is odd.
The upper head does this solely based on syndrome increments δ~s and flag
measurements ~sflag from the ancilla qubits, while the lower head additionally
gets the syndrome increment δ ~f from the final measurement of the data qubits.
During training both heads are active, during validation and testing only the
lower head is used. Ovals denote the two long short-term memory (LSTM)
layers and the fully connected evaluation layers, while boxes denote input and
output data. Solid arrows indicate data flow in the system (with ~h(1)

t and ~h(2)
T

the output of the first and second LSTM layer), and dashed arrows indicate the
internal memory flow of the LSTM layers.

6.2.4. Flag qubits
During the measurement of a weight-w parity check with a single ancilla
qubit, an error on the ancilla qubit may propagate to as many as w/2
errors on data qubits. This reduces the effective distance of the code in
Eq. (6.2). The surface code can be made resilient to such hook errors, but
the color code cannot: Hook errors reduce the effective distance of the
color code by a factor of two.

To avoid this degradation of the code distance, we take a similar approach
to Refs. 241–245 by adding a small number of additional ancilla qubits,
socalled “flag qubits”, to detect hook errors. For our chosen color code with
weight-6 parity checks, we opt to use one flag qubit for each ancilla qubit
used to make a stabilizer measurement. (This is a much reduced overhead
in comparison to alternative approaches [238–240].) Flag and ancilla qubits
are entangled during measurement and read out simultaneously (circuits
given in App. 6.A). Our scheme is not a priori fault-tolerant, as previous
work has required at least (d− 1)/2 flag qubits per stabilizer. Instead, we
rely on fitting our numeric results to Eq. (6.2) with d fixed to the code
distance to demonstrate that our scheme is in fact fault tolerant.
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6.3. Neural network decoder

6.3.1. Learning mechanism
Artificial neural networks are function approximators. They span a function
space that is parametrized by variables called weights and biases. The
task of learning corresponds to finding a function in this function space
that is close to the unknown function represented by the training data.
To do this, one first defines a measure for the distance between functions
and then uses an optimization algorithm to search the function space for a
local minimum with respect to this measure. Finding the global minimum
is in general not guaranteed, but empirically it turns out that often local
minima are good approximations. For a comprehensive review see for
example Refs. 255, 256.
We use a specific class of neural networks known as recurrent neural

networks, where the “function” can represent an algorithm [257]. During
optimization the weights and biases are adjusted such that the resulting
algorithm is close to the algorithm represented by the training data.

6.3.2. Decoding algorithm
Consider a logical qubit, prepared in an arbitrary logical state |ψL〉, kept
for a certain time T , and then measured with outcome m ∈ {−1, 1}
in the logical Z-basis. Upon measurement, phase information is lost.
Hence, the only information needed in addition to m is the parity of bit
flips in the measurement basis. (A separate decoder is invoked for each
measurement basis.) If the bit flip parity is odd, we correct the error by
negating m 7→ −m. The task of decoding amounts to the estimation of
the probability p that the logical qubit has had an odd number of bit flips.
The experimentally accessible data for this estimation consists of mea-

surements of ancilla and flag qubits, contained in the vectors δ~s(t) and
~sflag(t) of syndrome increments and flag measurements, and, at the end
of the experiment, the readout of the data qubits. From this data qubit
readout a final syndrome increment vector δ ~f(T ) can be calculated. De-
pending on the measurement basis, it will only contain the X or the Z
stabilizers.
Additionally, we also need to know the true bit flip parity ptrue. To

obtain this we initialize the logical qubit at |ψL〉 ≡ |0〉 (|ψL〉 ≡ |1〉 would
be an equivalent choice) and then compare the final measured logical state
to this initial logical state to obtain the true bit flip parity ptrue ∈ {0, 1}.

An efficient decoder must be able to decode an arbitrary and unspecified
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number of error correction cycles. As a feedforward neural network requires
a fixed input size, it is impractical to train such a neural network to decode
the entire syndrome data in a single step, as this would require a new
network (and new training data) for every experiment with a different
number of cycles. Instead, a neural network for quantum error correction
must be cycle-based: It must be able to parse repeated input of small
pieces of data (e.g. syndrome data from a single cycle) until called upon by
the user to provide output. Importantly, this requires the decoder to be
translationally invariant in time: It must decode late rounds of syndrome
data just as well as the early rounds. To achieve this, we follow Ref. 211
and use a recurrent neural network of long short-term memory (LSTM)
layers [258] — with one significant modification, which we now describe.
The time-translation invariance of the error propagation holds for the

ancilla qubits, but it is broken by the final measurement of the data
qubits — since any error in these qubits will not propagate forward in
time. To extract the time-translation invariant part of the training data,
in Ref. 211 two separate networks were trained in parallel, one with and
one without the final measurement input. Here, we instead use a single
network with two heads, as illustrated in Fig. 6.2. The upper head sees
only the translationally invariant data, while the lower head solves the
full decoding problem. In appendix 6.B we describe the details of the
implementation.
The switch from two parallel networks to a single network with two

heads offers several advantages: (1) The number of LSTM layers and the
computational cost is cut in half; (2) The network can be trained on a
single large error rate, then used for smaller error rates without retraining;
(3) The bit flip probability from the upper head provides a so-called Pauli
frame decoder [66].
In the training stage the bit flip probabilities p′ and p ∈ [0, 1] from

the upper and lower head are compared with the true bit flip parity
ptrue ∈ {0, 1}. By adjusting the weights of the network connections a cost
function is minimized in order to bring p′, p close to ptrue. We carry out
this machine learning procedure using the TensorFlow library [259].
After the training of the neural network has been completed we test

the decoder on a fresh dataset. Only the lower head is active during the
testing stage. If the output probability p < 0.5, the parity of bit flip errors
is predicted to be even and otherwise odd. We then compare this to ptrue
and average over the test dataset to obtain the logical fidelity F(t). Using
a two-parameter fit to [212]

F(t) = 1
2 + 1

2 (1− 2εL)(t−t0)/tstep , (6.4)
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Figure 6.3.: Decay of the logical fidelity for a distance-3 color code. The
curves correspond to different physical error rates εphys per step, from top to
bottom: 1.6 ·10−5, 2.5 ·10−5, 4.0 ·10−5, 6.3 ·10−5, 1.0 ·10−4, 1.6 ·10−4, 2.5 ·10−4,
4.0 · 10−4, 6.3 · 10−4, 1.0 · 10−3, 1.6 · 10−3, 2.5 · 10−3. Each point is averaged
over 103 samples. Error bars are obtained by bootstrapping. Dashed lines are
two-parameter fits to Eq. (6.4).

we determine the logical error rate εL per step of the decoder.

6.4. Neural network performance

6.4.1. Power law scaling of the logical error rate
Results for the distance-3 color code are shown in Fig. 6.3 (with similar
plots for distance-5 and distance-7 codes in App. 6.C). These results
demonstrate that the neural network decoder is able to decode a large
number of consecutive error correction cycles. The dashed lines are fits to
Eq. (6.4), which allow us to extract the logical error rate εL per step, for
different physical error rates εphys per step.
Figure 6.4 shows that the neural network decoder follows a power law

scaling (6.2) with d fixed to the code distance. This shows that the decoder,
once trained using a single error rate, operates equally efficiently when
the error rate is varied, and that our flag error correction scheme is indeed
fault-tolerant. The corresponding pseudothresholds (6.3) are listed in
Table 6.1.
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Figure 6.4.: In color: Log-log plot of the logical versus physical error rates
per step, for distances d = 3, 5, 7 of the color code. The dashed line through
the data points has the slope given by Eq. (6.2). Quality of fit indicates that at
least

⌊
1
2 (d+ 1)

⌋
independent physical errors must occur in a round to generate

a logical error in that round, so syndrome extraction is fault-tolerant. In gray:
Error rate of a single physical (unencoded) qubit. The error rates at which this
line intersects with the lines for the encoded qubits are the pseudothresholds.

6.4.2. Performance on realistic data

To assess the performance of the decoder in a realistic setting, we have
implemented the distance-3 color code using a density matrix based sim-
ulator of superconducting transmon qubits [212]. We have then trained
and tested the neural network decoder on data from this simulation. In
Fig. 6.5 we compare the decay of the fidelity of the logical qubit as it
results from the neural network decoder with the fidelity extracted from
the simulation [212]. The latter fidelity determines via Eq. (6.4) the logical
error rate εoptimal of an optimal decoder. For the distance-3 code we find
εL = 0.0148 and εoptimal = 0.0132 per microsecond. This can be used to
calculate the decoder efficiency [212] εoptimal/εL = 0.89, which measures
the performance of the neural network decoder separate from uncorrectable
errors. The dashed gray line is the average fidelity (following Eq. (6.4)) of a
single physical qubit at rest, corresponding to an error rate of 0.0164 [212].
This demonstrates that, even with realistic experimental parameters, a
logical qubit encoded with the color code has a longer life-time than a
physical qubit.
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distance d pseudothreshold εpseudo

3 0.0034
5 0.0028
7 0.0023

Table 6.1.: Pseudothresholds calculated from the data of Fig. 6.4, giving the
physical error rate below which the logical qubit can store information for a
longer time than a single physical qubit.

6.5. Conclusion
We have presented a machine-learning based approach to quantum error
correction for the topological color code. We believe that this approach to
fault-tolerant quantum computation can be used efficiently in experiments
on near-term quantum devices with relatively high physical error rates (so
that the neural network can be trained with relatively small datasets). In
support of this, we have presented a density matrix simulation [212] of
superconducting transmon qubits (Fig. 6.5), where we obtain a decoder
efficiency of ηd = 0.89.

Independently of our investigation, three recent works have shown how
a neural network can be applied to color code decoding. Refs. 250 and 253
only consider single rounds of error correction, and cannot be extended to
a multi-round experiment or circuit-level noise. Ref. 251 uses the Steane
and Knill error correction schemes when considering color codes, which are
also fault-tolerant against circuit-level noise, but have larger physical qubit
requirements than flag error correction. None of these works includes a
test on a simulation of physical hardware.

6.A. Quantum circuits

6.A.1. Circuits for the Pauli error model
Fig. 6.6 shows the circuits for the measurements of the X and Z stabilizers
in the Pauli error model. To each stabilizer, measured with the aid of an
ancilla qubit, we associate a second “flag” ancilla qubit with the task of
spotting faults of the first ancilla [241–245]. This avoids hook errors (errors
that propagate from a single ancilla qubit onto two data qubits), which
would reduce the distance of the code. After the measurement of the X
stabilizers, all the ancillas are reset to |0〉 and reused for the measurement
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Figure 6.5.: Same as Fig. 6.3, but for a density matrix-based simulation of
an array of superconducting transmon qubits. Each point is an average over
104 samples. The density matrix-based simulation gives the performance of an
optimal decoder, with a logical error rate εoptimal = 0.0132 per microsecond.
From this, and the error rate εL = 0.0148 per microsecond obtained by the
neural network, we calculate the neural network decoder efficiency to be 0.89.
The average fidelity of an unencoded transmon qubit at rest with the same
physical parameters is plotted in gray.

of the Z stabilizers. Before finally measuring the data qubits, we allow the
circuit to run for T cycles.

6.A.2. Measurement processing for the
density-matrix error model

For the density matrix simulation, neither ancilla qubits nor flag qubits
are reset between cycles, leading to a more involved extraction process of
both δ~s(t) and ~sflag(t), as we now explain.

Let ~m(t) and ~mflag(t) be the actual ancilla and flag qubit measurements
taken in cycle t, and ~m0(t), ~m0

flag(t) be compensation vectors of ancilla and
flag measurements that would have been observed had no errors occurred
in this cycle. Then,

δ~s(t) = ~m(t) + ~m0(t) mod 2, (6.5)
~sflag(t) = ~mflag(t) + ~m0

flag(t) mod 2. (6.6)
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Figure 6.6.: Top left: Schematic of a 6-6-6 color code with distance 3. Top
right: Stabilizer measurement circuits for a plaquette on the boundary. Bottom
left: Partial schematic of a 6-6-6 color code with distance larger than 3. Bottom
right: Stabilizer measurement circuits for a plaquette in the bulk. For the
circuits in the right panels, the dashed Hadamard gates are only present when
measuring the X stabilizers, and are replaced by idling gates for the Z stabilizer
circuits; the grayed out gates correspond to conditional-phase gates between the
considered data qubits and ancillas belonging to other plaquettes; and the data
qubits are only measured after the last round of error correction, otherwise they
idle whilst the ancillas are measured.

Calculation of the compensation vectors ~m0(t) and ~m0
flag(t) requires knowl-

edge of the stabilizer ~s(t− 1), and the initialization of the ancilla qubits
~m(t − 1) and the flag qubits ~mflag(t − 1), being the combination of the
effects of individual non-zero terms in each of these.

Note that a flag qubit being initialized in |1〉 will cause errors to prop-
agate onto nearby data qubits, but these errors can be predicted and
removed prior to decoding with the neural network. In particular, let us
concatenate ~m(t), ~mflag(t) and ~s(t) to form a vector ~d(t). The update may
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then be written as a matrix multiplication:

~m0
flag(t) = Mf

~d(t− 1) mod 2, (6.7)

Where Mf is a sparse, binary matrix. The syndromes ~s(t) may be updated
in a similar fashion

~s(t) = ~s(t− 1) + δ~s(t) +Ms
~d(t− 1) mod 2, (6.8)

where Ms is likewise sparse. Both Mf and Ms may be constructed by
modeling the stabilizer measurement circuit in the absence of errors. The
sparsity in both matrices reflect the connectivity between data and ancilla
qubits; for a topological code, both Mf and Ms are local. The calculation
of the syndrome increments δ~s(t) via Eq. (6.5) does not require prior
calculation of ~s(t).

6.B. Details of the neural network decoder

6.B.1. Architecture
The decoder consists of a double headed network, see Fig. 6.2, which
we implement using the TensorFlow library [259]∗. The network maps
a list of syndrome increments δ~s(t) and flag measurements ~sflag(t) with
t/tcycle = 1, 2, ..., T to a pair of probabilities p′, p ∈ [0, 1]. (In what follows
we measure time in units of the cycle duration tcycle = N0tstep, with
N0 = 20.) The lower head gets as additional input a single final syndrome
increment δ ~f(T ). The cost function I that we seek to minimize by varying
the weight matrices w and bias vectors~b of the network is the cross-entropy

H(p1, p2) = −p1 log p2 − (1− p1) log(1− p2) (6.9)

between these output probabilities and the true final parity ptrue ∈ {0, 1}
of bit flip errors:

I = H(ptrue, p) + 1
2H(ptrue, p

′) + c||wEVAL||2. (6.10)

The term c||wEVAL||2 with c� 1 is a regularizer, where wEVAL ⊂ w are
the weights of the evaluation layer.
The body of the double headed network is a recurrent neural network,
∗The source code of the neural network decoder can be found

at https://github.com/baireuther/neural_network_decoder.
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6.B. Details of the neural network decoder

consisting of two LSTM layers [258, 260, 261]. Each of the LSTM layers
has two internal states, representing the long-term memory ~c(i)t ∈ RN and
the short-term memory ~h(i)

t ∈ RN , where N = 32, 64, 128 for distances
d = 3, 5, 7. Internally, an LSTM layer consists of four simple neural
networks that control how the short- and long-term memory are updated
based on their current states and new input xt. Mathematically, it is
described by the following equations [260, 261]:

~it = σ(wi~xt + vi~ht−1 +~bi), (6.11a)
~ft = σ(wf~xt + vf~ht−1 +~bf ), (6.11b)

~ot = σ(wo~xt + vo~ht−1 +~bo), (6.11c)

~mt = tanh(wm~xt + vm~ht−1 +~bm), (6.11d)

~ct = ~ft � ~ct−1 +~it � ~mt (6.11e)
~ht = ~ot � tanh(~ct). (6.11f)

Here w and v are weight matrices, ~b are bias vectors, σ is the sigmoid
function, and � is the element-wise product between two vectors. The
letters i, m, f , and o label the four internal neural network gates: input,
input modulation, forget, and output. The first LSTM layer gets the
syndrome increments δ~s(t) and flag measurements ~sflag(t) as input, and
outputs its short term memory states ~h(1)

t . These states are in turn the
input to the second LSTM layer.
The heads of the network consist of a single layer of rectified linear

units, whose outputs are mapped onto a single probability using a sigmoid
activation function. The input of the two heads is the last short-term
memory state of the second LSTM layer, subject to a rectified linear
activation function ReL(~h(2)

T ). For the lower head we concatenate ReL(~h(2)
T )

with the final syndrome increment δ ~f(T ).

6.B.2. Training and evaluation
We use three separate datasets for each code distance. The training dataset
is used by the optimizer to optimize the trainable variables of the network.
It consists of 2 · 106 sequences of lengths between T = 1 and T = 40 at a
large error rate of p = 10−3 for distances 3 and 5, and of 5 · 106 sequences
for distance 7. At the end of each sequence, it contains the final syndrome
increment δ ~f(T ) and the final parity of bit flip errors ptrue. After each
training epoch, consisting of 3000 to 5000 mini-batches of size 64, we
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6. Neural network decoder for topological color codes with circuit level noise

Figure 6.7.: Same as Fig. 6.4. The blue ellipse indicates the error rates used
during training, and the green ellipse indicates the error rates used for validation.

validate the network (using only the lower head) on a validation dataset
consisting of 103 sequences of 30 different lengths between 1 and 104 cycles.
By validating on sequences much longer than the sequences in the training
dataset, we select the instance of the decoder that generalizes best to long
sequences. The error rates of the validation datasets are chosen such that
they are the largest error rate for which the expected logical fidelity after
104 cycles is still larger than 0.6 (see Fig. 6.7), because if the logical fidelity
approaches 0.5 a meaningful prediction is no longer possible. The error
rates of the validation datasets are 1 ·10−4, 2.5 ·10−4, 4 ·10−4 for distances
3, 5, 7 respectively. To avoid unproductive fits during the early training
stages, we calculate the logical error rate with a single parameter fit to Eq.
(6.4) by setting t0 = 0 during validation. If the logical error rate reaches
a new minimum on the validation dataset, we store this instance of the
network.

We stop the training after 103 epochs. One training epoch takes about
one minute for distance 3 (network sizeN = 32) when training on sequences
up to length T = 20 and about two minutes for sequences up to length
T = 40 on an Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.60GHz. For distance
5 (N = 64, T = 1, 2, ..., 40) one epoch takes about five minutes and for
distance 7 (N = 128, T = 1, 2, ..., 40) about ten minutes.

To keep the computational effort of the data generation tractable, for the
density matrix-based simulation (Fig. 6.5) we only train on 106 sequences
of lengths between T = 1 and T = 20 cycles and validate on 104 sequences

150



6.B. Details of the neural network decoder

Figure 6.8.: Same as Fig. 6.3 for a distance-5 code; the physical error rate εphys
from top to bottom is: 1.0 · 10−4, 1.6 · 10−4, 2.5 · 10−4, 4.0 · 10−4, 6.3 · 10−4,
1.0 · 10−3, 1.6 · 10−3, 2.5 · 10−3.

of lengths between T = 1 and T = 30 cycles. For the density matrix-based
simulation, all datasets have the same error rate.
We train using the Adam optimizer [262] with a learning rate of 10−3.

To avoid over-fitting and reach a better generalization of the network to
unseen data, we employ two additional regularization methods: Dropout
and weight regularization. Dropout with a keep probability of 0.8 is applied
to the output of each LSTM layer and to the output of the hidden units of
the evaluation layers. Weight regularization, with a prefactor of c = 10−5,
is only applied to the weights of the evaluation layers, but not to the biases.
The hyperparameters for training rate, dropout, and weight regularization
were taken from [211]. The network sizes were chosen by try and error to
be as small as possible without fine-tuning, restricted to powers of two
N = 2n.
After training is complete we evaluate the decoder on a test dataset

consisting of 103 (104 for the density matrix-based simulation) sequences
of lengths such that the logical fidelity decays to approximately 0.6, but
no more than T = 104 cycles. Unlike for the training and validation
datasets, for the test dataset we sample a final syndrome increment and
the corresponding final parity of bit flip errors after each cycle. We then
select an evenly distributed subset of tn = n∆T < Tmax cycles, where ∆T
is the smallest integer for which the total number of points is less than 50,
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6. Neural network decoder for topological color codes with circuit level noise

Figure 6.9.: Same as Fig. 6.3 for a distance-7 code; the physical error rate εphys
from top to bottom is: 1.6 · 10−4, 2.5 · 10−4, 4.0 · 10−4, 6.3 · 10−4, 1.0 · 10−3,
1.6 · 10−3, 2.5 · 10−3.

for evaluation. This is done in order to reduce the needed computational
resources. The logical error rate ε per step is determined by a fit of the
fidelity to Eq. (6.4).

6.B.3. Pauli frame updater
We operate the neural network as a bit-flip decoder, but we could have
alternatively operated it as a Pauli frame updater. We briefly discuss the
connection between the two modes of operation.

Generally, a decoder executes a classical algorithm that determines the
operator P (t) ∈ Πn (the so-called Pauli frame) which transforms |ψL(t)〉
back into the logical qubit space H~0 = HL. Equivalently (with minimal
overhead), a decoder may keep track of logical parity bits ~p that determine
whether the Pauli frame of a ‘simple decoder’ [247] commutes with a set
of chosen logical operators for each logical qubit.

The second approach of bit-flip decoding has two advantages over Pauli
frame updates: Firstly, it removes the gauge degree of freedom of the Pauli
frame (SP (t) is an equivalent Pauli frame for any stabilizer S). Secondly,
the logical parity can be measured in an experiment, where no ‘true’ Pauli
frame exists (due to the gauge degree of freedom).
Note that in the scheme where flag qubits are used without reset, the
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6.C. Results for distance-5 and distance-7 codes

errors from qubits initialized in |1〉 may be removed by the simple decoder
without any additional input required by the neural network.

6.C. Results for distance-5 and distance-7
codes

Figures 6.8 and 6.9 show the decay curves for the d = 5 and d = 7 color
codes, similar to the d = 3 decay curves shown in figure 6.3 in the main
text.
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7. Majorana-based fermionic
quantum computation

7.1. Introduction
Particle exchange statistics is a fundamental quantum property that distin-
guishes commuting spin or qubit degrees of freedom from anticommuting
fermions, despite single particles in both systems only having two quantum
states. Different exchange statistics cause a different set of Hamiltonian
terms to be local, or even physically possible. For example, although it
is Hermitian, the linear superposition of a fermionic creation and anni-
hilation operator c + c† never occurs as a Hamiltonian term in nature
due to violating fermion parity conservation, whilst spin systems have
no such restrictions. Despite these differences, it is possible to simulate
fermions using qubits and vice versa [47]. Such simulation necessarily
incurs overhead because of the need to transform local fermion opera-
tors into non-local qubit ones by using, for example, the Jordan-Wigner
transformation. Because quantum simulation of the electronic structure of
molecules is a promising application of quantum computation [263], much
recent work focused on minimizing this overhead of simulating fermionic
Hamiltonians with qubits [264–266].
Majorana zero modes (also Majorana modes or just Majoranas) are

non-abelian particles, with two Majoranas combining to form a single
fermion (see e.g. Refs. [267–269] for a review). Spatially separating two
Majoranas protects this fermionic degree of freedom, and provides a natural
implementation of a topological quantum computer [31, 270]. Further,
conservation of fermion parity prevents creating a superposition between
the two different parity states of two Majoranas, and therefore most of the
existing proposals combine 4 Majoranas with a fixed fermion parity into a
single qubit.

The contents of this chapter have been published in T. E. O’Brien, P. Rożek and
A.R. Akhmerov, Phys. Rev. Lett. 120 (22), 220504 (2018).
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7. Majorana-based fermionic quantum computation

Fermionic quantum computation [47] was so far not actively pursued
because of the lack of known ways to protect fermionic degrees of freedom
from dephasing. In this chapter, we observe that Majoranas naturally offer
this protection, while in addition providing a platform for implementing
quantum chemistry algorithms. We therefore show that for the problem of
simulating fermionic systems on a Majorana quantum computing architec-
ture, it is both possible and preferable to use fermions composed from pairs
of Majoranas instead of further combining pairs of these fermions to form
single qubits. Formulating fermionic quantum simulation algorithms in
terms of fermions imposes the fermion parity conservation at the hardware
level, and prohibits a large class of errors bringing the simulator out of
the physical subspace. Furthermore, working natively with fermions, we
remove the need for the Jordan-Wigner (or related) transformation to
map a fermionic problem to a spin system. When simulating a typical
quantum chemistry Hamiltonian, our approach results in a more dense
encoding of the computational degrees of freedom. The benefit from using
the fermionic degrees of freedom becomes more important in simulating
local fermionic Hamiltonians, such as the Hubbard model, allowing the
simulation of unitary time evolution in O(1) time per Trotter step, and
further reducing the cost of pre-error-correction quantum simulation [271].
Finally, we show how to apply the known magic state distillation protocol
in fermionic quantum computation. Combined with the recent realiza-
tion of the fermionic error correction [272] this provides a fault-tolerant
fermionic quantum computer.

7.2. Description of the architecture
Our approach relies on the known set of ingredients to perform universal
operations with Majorana states [273]: controllable Josephson junctions,
direct Majorana coupling, and Coulomb energy. A possible architecture
implementing a Majorana-based fermionic quantum processor is shown
in Fig. 7.1. Because our system cannot be separated into blocks with a
fixed fermion parity, the protection of the quantum degrees of freedom is
only possible if different parts of the system are connected to a common
superconducting ground ∗. Turning off some of the Josephson junctions
(these may be either flux-controlled SQUIDs or gate-controlled [274, 275])
then isolates a part of the system, and generates a Coulomb interaction
∗The need to use a common superconducting ground makes it impossible to utilize

the partial protection from quasiparticle poisoning by applying Coulomb blockade to
superconducting islands containing individual qubits [288].
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7.2. Description of the architecture

Figure 7.1.: Top: a 1D implementation of a Majorana circuit. Majoranas (blue
dots) occur at either the edge of a nanowire (black line) or as it crosses the
boundary of a superconductor (light green). Josephson junctions (red crossed
lines) connect superconducting islands to a common base, allowing for parallel
joint parity measurements. Fully-tunable T-junctions (valve symbols) allow for
a computational Majorana to be shifted from one end of any coupled set of
itself and two braiding ancillas (prepared in a known state) to another end.
Bottom: an implementation of a weight-four Majorana rotation (Eq. 7.6) using
the labeled qubits in the design. The operation of individual circuit elements
is listen in Table. 7.1. The highlighted parity measurement is performed by
isolating the highlighted area of the architecture via tunable Josephson junctions,
and measuring the total charge parity. This requires a separate preparation of
the Majoranas γa0 and γb0 (dashed red box) in the iγa0γb0 = 1 state (which is also
required to use these as spare sites for braiding).

[276, 277]

HC = iN/2EC

N∏
k

γk, (7.1)

that couples all the Majorana modes γi belonging to the isolated part of
the system with the charging energy EC . An example of such coupling
acting on 8 Majorana modes is shown by a red box in Fig. 7.1. Finally,
gate-controlled T-junctions exert the interaction

HM = iEMγjγk, (7.2)
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7. Majorana-based fermionic quantum computation

on any two Majorana modes coupled by a T-junction, with EM the
Majorana coupling energy.
Controllable pairwise interactions between Majorana modes [278, 279]

or two-Majorana parity measurements [280] allow the implementation of
braiding, while the joint readout of the fermionic parity of more than 2
Majorana modes generates the rest of the Clifford group [273]. Finally,
a diabatic pulse of a two-Majorana coupling implements an unprotected
phase gate eθγiγj . We summarize these elementary gates that serve as
a basis of our protocol in Table 7.1. This gate set is computationally
universal within a fixed fermion parity sector [47].

Name Element Operation

Preparation Prepare
(

1
0

)

Braiding

(
eiπ/4 0

0 e−iπ/4

)

Braiding


1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1


Rotation

(
eiφ 0
0 e−iφ

)

Measurement
∑
P (φ)=m |φ〉〈φ|

Table 7.1.: Basic circuit elements we allow in our computation scheme. The
above is sufficient to generate universal quantum computation in the single-parity
sector. Computational degrees of freedom are formed by two Majoranas, and are
therefore represented as a double line. Preparation, braiding, and measurement
gates are assumed to be topologically protected. The Rz(θ) rotation is not
topologically protected, but may be distilled via our magic state distillation
protocol. The measurement projects our system onto a state of definite parity
P (φ), being the sum

∑
i,j

1
2 (1 + iγiγj) of the pairs of Majoranas γi, γj on islands

connected to ground via Josephson junctions.
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7.3. Quantum algorithms

Figure 7.2.: A 2d Majorana architecture to implement the Hubbard model on
a square lattice. (a) A schematic description of the initial layout of the fermions
(each of which is made of two Majoranas). Lines denote fermions separated
by ancilla Majoranas only. Our scheme groups the 11 Trotter steps into three
stages as numbered, which are performed in series. (b) A physical architecture to
support the schematic of (a). Wires on superconducting islands and T-junction
symbols from Fig. 7.1 have been removed to prevent cluttering; it is still assumed
that all T-junctions are fully tunable. Majoranas are colored according to their
designation; blue for system fermions, red for control ancillas, and white for
braiding and phase ancillas. An example spin-1/2 fermion supported on four
Majoranas (the minimum possible) is matched to (a)

The above gate set is sufficient to construct circuits for time evolution,
quantum phase estimation (QPE), and a variational quantum eigensolver—
the unitary coupled cluster ansatz (UCC). Most fermionic systems have
Hamiltonians constructed from twofold and fourfold fermionic terms:

H =
∑
i,j

hi,j f̂
†
i f̂j +

∑
i,j,k,l

f̂†i f̂
†
j f̂kf̂l. (7.3)
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Here, f̂†i (f̂i) is the creation (annihilation) operator for an electron. This
is equivalent to a sum over 2 and 4-fold Majorana terms:

H =
∑
i,j

igi,jγiγj +
∑
i,j,k,l

gi,j,k,lγiγjγkγl. (7.4)

Time evolution is performed by applying the Trotter expansion of the
evolution operator eiHt ∗:

eiH∆t ≈
∆t→0

∏
i,j

e−gi,jγiγj∆t
∏
i,j,k,l

eigi,j,k,lγiγjγkγl∆t, (7.5)

and thus requires consecutive application of the unitary operators eθγiγj
and eiθγiγjγkγl . We therefore introduce the weight-2N Majorana rotation
operator

exp
{
iθ

N∏
n=1

iγ2n−1γ2n

}
, (7.6)

that forms the basis of all the algorithms we consider.
A Majorana rotation may be performed using a generic circuit with

an additional four-Majorana ancilla qubit. To demonstrate, the circuit
of Fig. 7.1 applies a Majorana rotation eiθγiγjγkγl . The same scheme
implements weight-two Majorana rotations by removing Majoranas γk
and γl, and higher weight-2N Majorana rotations by adding 2N − 4 more
Majoranas to the correlated parity check and conditional final braiding.
The ancillary Majoranas γa0 and γb0 used for the braiding begin in the parity
eigenstate iγa0γb0 = 1. The eight-Majorana charge parity measurement
γiγjγkγlγ

a
0γ

b
0γ2γ1 (implemented by isolating the circled superconducting

islands in Fig. 7.1) therefore reduces to the 6-Majorana measurement
highlighted in the circuit. The unprotected rotation by the angle α = θ+ π

2
both corrects an unwanted phase from the braiding of γ2 and γ3, and
applies the non-Clifford rotation by θ.
Quantum phase estimation requires the unitary evolution of a state

(prepared across a set of system qubits) conditional on a set of ancilla qubits,
which then have the eigenphases of the unitary operator encoded upon
them [22]. For the purposes of simulating quantum chemistry, a common
choice of this operator is the time evolution operator, approximated by the
∗We have not discussed post-Trotter methods such as [289–291] in this chapter.

However, these methods still require the Jordan-Wigner transformation or equivalent to
represent a fermionic Hamiltonian on a qubit architecture. As such, they gain a similar
advantage to the studied Trotterized evolution of eiHt from a Majorana-based fermion
implementation.
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Trotter expansion. In App. 7.A, we show how to encode the ancilla qubit
non-locally across an array of fermions, each of those controlling the unitary
evolution of a local Hamiltonian term. This reduces the requirements for
QPE to consecutive operations of weight-four and weight-six Majorana
rotations, with two Majoranas in each rotation belonging to an ancilla
fermion. In App. 7.B we show how this circuit is used to execute a single
Trotter step for a fully-connected fourth-order Hamiltonian in O(N3) time.

Variational quantum eigensolvers prepare a trial state |ψ(~θ)〉 from a
circuit depending on a set of variational parameters ~θ, which are then tuned
to minimize the energy 〈ψ(~θ)|H|ψ(~θ)〉 [281]. One example of such ansatz
is the UCC-2, which uses the exponential of the second order expansion of
the cluster operator:

|ψ(trp, trspq)〉 = eT
(2)−T (2)†

|Φref〉,

T (2) =
∑
p,r

trpf̂
†
p f̂r +

∑
p,q,r,s

trspq f̂
†
p f̂
†
q f̂rf̂s.

After Trotterizing, this requires only weight-two or -four Majorana rotations
to prepare.

When the Hamiltonian contains a small fraction of all possible second- or
fourth-order terms, the lack of Jordan-Wigner strings gives our fermionic
architecture an advantage over qubit-based implementations. As an exam-
ple, we consider the Hubbard model on a square lattice, with Hamiltonian

H = −t
∑
〈i,j〉,σ

f̂†i,σ f̂jσ + U
∑
i

n̂i↑n̂i↓ − µ
∑
iσ

n̂iσ. (7.7)

Here σ is a spin index, and the first sum is goes over the pairs of nearest
neighbor lattice sites, while t, µ, and U are the model parameters [282].
Rewriting the Hubbard model Hamiltonian in terms of Majorana operators
f̂†iσ = 1

2 (γiσ,1 + iγiσ,2) gives:

H = t

2
∑
〈i,j〉,σ

iγiσ,1γ
j
σ,2 +N(U4 − µ)

+ i

4(U − 2µ)
∑
i,σ

γiσ,1γ
i
σ,2 −

U

4
∑
i

γi↑,1γ
i
↑,2γ

i
↓,1γ

i
↓,2. (7.8)

This gives in total 11 terms per site i that need to be simulated for
quantum phase estimation or unitary time evolution. In Fig. 7.2 we show
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Figure 7.3.: Circuits for magic state distillation of a non-Clifford fermionic
gate, following the scheme of [48]. (a) A noisy ρT state is prepared with a single
non-topologically protected gate. (b) 5 such-prepared states are distilled to give
a single state with higher fidelity. (c) Two |T 〉 states are consumed to perform a
non-Clifford rotation of Φ = π

12 on a single fermion, restoring universal quantum
computation. This requires that the first measurement returns a value of m = 1,
otherwise a new pair of |T 〉 states must be used. (d) To perform the state
distillation protocol, we split the multi-qubit conditional gates into two-qubit
controlled gates, and then into conditional-Z gates on the underlying fermions
by braiding. (e) controlled Z gate: it may be performed by a circuit requiring
braiding and correlated readout with a four-Majorana ancilla.
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a 2d architecture that implements parallel application of Trotter steps
across the entire lattice. For unitary evolution, this scheme is 33% dense,
with 12 Majoranas used per site with 2 fermions. For parallel QPE we use
an additional ancilla per site (following App. 7.A), making the scheme 50%
dense. We detail the computation scheme for QPE in App. 7.C, achieving
a O(1) circuit depth per controlled unitary evolution step. This should
be compared first to the O(N1/2) circuit depth in the case of a qubit
implementation via a parallelized Jordan-Wigner transformation [283].
This circuit depth can be reduced to O(log(N)) if the Bravyi-Kitaev
transformation [47] is used instead, but at the cost of requiring dense qubit
connectivity. Separate encodings [284, 285] also exist to reduce the circuit
depth to O(1), at a cost of doubling the required number of qubits. It
is likewise possible to achieve a similar O(1) circuit depth, assuming the
ability to couple a global resonator to every qubit in a superconducting
architecture [286].

The required ingredient for universal fermionic quantum computation—a
Majorana rotation by an arbitrary angle θ—is most simply implemented
using an unprotected coupling between two Majoranas. In a scalable
architecture this gate needs to have increasingly higher fidelity so that it
may be applied an arbitrary number of times without failure. In Fig. 7.3 we
develop a high fidelity Majorana rotation using the magic state distillation
protocol of [48] to perform fermionic gates. In this procedure, we generate
5 low-fidelity |T 〉 = cos(β)|0〉 + eiπ/4 sin(β)|1〉 states (cos(2β) = 1√

3 ) on
four-Majorana qubits, then combine them to obtain a single higher fidelity
|T 〉 state on a qubit (assuming topologically-protected Clifford gates). We
then use an average of 3 distilled |T 〉 states to perform a θ = ± π

12 Majorana
rotation. On average, this procedure requires 15 noisy |T 〉 states, 225
braidings and 66 measurements. We furthermore use 20 Majoranas to
make the 5 noisy |T 〉 qubit states, due to the |T 〉 state of a single fermion
breaking parity conservation.

7.4. Conclusion
In summary, we have demonstrated a Majorana-based scheme for fermionic
quantum computation. We then adapted this scheme to simulate inter-
acting fermionic Hamiltonians using both the QPE and VQC algorithms,
and modified it to simulate the Hubbard model using a constant-depth
circuit per time-evolution step. While our fermionic scheme has advan-
tages compared to using qubits, finding optimal circuit layouts for both
a general purpose fermionic quantum computation and problem-specific
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ones, like the Hubbard model simulator remain an obvious point for further
research. Further, our implementation of magic state distillation is a direct
translation of the original scheme, and it should be possible to find a
smaller circuit operating only on fermions, for example using the minimal
fermionic error correcting circuit of [287]. A final open direction of further
research is combining our circuits with quantum error correction [272, 287],
which would enable fault-tolerant fermionic quantum computation.

7.A. Preparing extended ancilla qubits for
quantum phase estimation

The QPE algorithm requires the application of a unitary operator condi-
tional on an ancilla qubit, which naively would require each Trotter step
to be performed in series as the ancilla qubit is passed through the system.
The following method parallelizes the QPE algorithm at a cost of O(N)
ancilla qubits and a constant depth preparation circuit, which may well be
preferable. We make this trade by preparing a large cat state on 4n Majo-
ranas by the circuit in Fig. 7.4. First, we prepare n× 4 Majoranas in the
1
2 (|00〉+ |11〉) state on Majoranas γ4jγ4j+1γ4j+2γ4j+3 for j = 0, . . . , n− 1.
Then, making the joint parity measurements γ4j+2γ4j+3γ4j+4γ4j+5 for
j = 0, . . . , n− 2 forces our system into an equal superposition of

1√
2

∣∣∣∣∣∣
n−1∏
j=0

x2jx2j+1

〉
+

∣∣∣∣∣∣
n−1∏
j=0

x̄2j x̄2j+1

〉 , (7.9)

where xj ∈ {0, 1} is the parity on the jth fermion (x̄ = 1 − x), and
x2j ⊕ x2j−1 is determined by the outcome of the joint parity measurement.
This can then be converted to the GHZ state 1√

2 (|00 . . . 0〉+ |11 . . . 1〉) by
braiding (or the value of xj can be stored and used to decide whether to
rotate by θ or −θ). The rotations to be performed for QPE may then be
controlled by any of the pairs of Majoranas defining a single fermion, and
so we may spread this correlated ancilla over our system as required to
perform rotations. As the interaction between ancilla qubits and system
qubits is limited to a single joint parity measurement per Trotter step,
we expect that although n should scale as O(N) to allow for parallelizing
the circuit, the prefactor will be quite small. At the end of the QPE
circuit, we recover the required phase by rotating exp(iπ4 γ4j+1γ4j+2) for
j = 0, . . . , n − 1 and reading out the parity of all Fermions individually.
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Starting from the state

1√
2
(
|00 . . . 0〉+ eiφ|11 . . . 1〉

)
, (7.10)

this prescription yields a cos2(φ/2) probability for the sum of all parities
to be 0 mod 4.

Figure 7.4.: Circuit for preparing an extended cat state on a set of ancilla
qubits with constant depth. The circuit need only be as local as the weight-four
parity checks allow. Afterwards, any pair {γ2j , γ2j+1} of Majoranas may be used
equivalently to perform a conditional Trotter step in QPE.

7.B. An algorithm to perform a Trotter step
for a fully-connected fourth-order
Hamiltonian in O(N 3) time.

We showed in the main text a compact circuit for a four-Majorana Trotter
step that does not require Jordan-Wigner strings, and in App. 7.A we
suggested a method to perform conditional evolution in parallel by using a
large GHZ state for an ancilla qubit. Assuming a Fermionic Hamiltonian
on N spin-orbitals with 4th order terms, this would imply an O(N3)
circuit depth for our QPE algorithm per Trotter step. However, there
is an additional complication; we need to ensure that we do not gain
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7. Majorana-based fermionic quantum computation

additional circuit depth from the requirement to bring sets of 4 Majoranas
close enough to perform this conditional evolution. To show this, we
consider a line of N Majoranas γ1, . . . γN . We allow ourselves at each
timestep t to swap a Majorana with its neighbour on the left or the right.
(Note that this is a simplification from our architecture where we may
not directly swap initialized Majoranas, but this brings only an additional
constant time cost.) We wish to give an algorithm of length O(N3) such
that for any set of four Majoranas {γi, γj , γk, γl}, there exists a timestep
t where these are placed consecutively along the line. As demonstrated
in [265], inverting the line by a bubblesort solves the equivalent problem
for pairs {γi, γj} in O(N) time, and this may be quickly extended to the
case of sets of four. Let us consider the problem of forming all groups of
3 Majoranas. We divide our line into the sets Γ0 = {γi, i ≤ N/2}, and
Γ1 = {γi, i > N/2}. We then group neighboring pairs of elements in Γ1 to
form subsets, which we then pair with all elements in Γ0 in O(N) time by
a reverse bubblesort. Then, upon restoring to our previous position, we fix
the position of elements of Γ0, and perform a single iteration of the reverse
bubblesort on the elements of Γ1 to form new subsets of pairs. Repeating
this procedure until the second bubblesort has finished generates all subsets
consisting of 2 Majoranas in Γ1 and 1 from Γ0 in O(N2) time. All groups
of 2 Majoranas from Γ0 and 1 from Γ1 may be given in the same manner.
Then, we may split the line in 2, and reapply the above method on Γ0
and Γ1 separately to obtain all groups consisting of 3 Majoranas within.
This final step takes O((N/2)2 + (N/4)2 + (N/8)2 + . . .) = O(N2) time.
From here, it is clear how to proceed for groups of 4. We again divide our
line into the sets Γ0 and Γ1, and split our problem into that of making all
groups of (m, 4−m) Majoranas, where the first index denotes the number
from Γ0 and the second from Γ1. For 1 ≤ m ≤ 3, we have an O(Nm−1)
circuit to prepare all groups of m Majoranas in Γ0, a O(N3−m) circuit
to prepare groups of 4−m Majoranas in Γ1, and an O(N) bubblesort to
pair all groups from Γ0 and Γ1. These three steps must be looped within
each other, giving a total time of O(Nm−1N3−mN) = O(N3). Finally,
we perform the m = 0 and m = 4 case simultaneously by repeating this
procedure on the sets Γ0, which takes again O(N3) time by the arguments
above.
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7.C. Details of parallel circuit for Hubbard model

7.C. Details of parallel circuit for Hubbard
model

In this section we expand upon the proposal in Fig. 7.2 to perform QPE
for the Hubbard model in constant time. This is a key feature of proposals
for pre-error correcting quantum simulation [271], and as such bears
further detail. There are 11 terms in equation 7.8 per site of our lattice,
corresponding to 11 Trotter steps that must be performed in series (as each
circuit piece requires accessing a prepared ancilla and additional Majoranas
for the controlled braiding). As part of these Trotter steps, we must move
Majoranas to their appropriate islands for parity measurements, and leave
sufficient space for the preparation of the controlled rotation gate. We split
the 11 Trotter steps into 3 stages, as indicated in Fig. 7.2(a). In the first
stage, the Trotter steps corresponding to hopping terms between nearest
neighbour fermions of the same spin are implemented, but only for those
neighbours that are directly connected on the graph of Fig. 7.2(a) (i.e. those
separated by a single braiding ancilla fermion). In the second stage, the
steps for onsite two and four fermion interactions are implemented. From
stage 2, as the qubits are being brought back to their resting position, the
spin up and spin down fermions on each site have their locations exchanged.
This allows for the final two Trotter steps to be applied between fermions
that are now locally connected, without the large overhead of bringing
distant fermions together and then apart. At the end of the unitary, the
system is in a spin-rotated version of itself, and the order of Trotter steps
for a second unitary evolution should be changed slightly to minimize
braiding overhead. In Table 7.2, we detail these three stages further. In
particular, we focus on the 10 terms involving the fermion f1,1

↑ , and the
onsite interaction term for the fermion f1,1

↓ . For each term, we specify
the location of all involved system Majoranas, parking spots for unused
system Majoranas, the control ancilla, three braiding ancillas (for the
implementation of the phase gate of Fig. 7.1), and which islands are
involved in the parity measurement. Each such set of operations should
then be tessellated across the lattice by a translation of a unit cell and
a spin rotation to generate 10 parallelized Trotter steps for all fermions.
(For example, the hopping steps involving f1,1

↓ or f1,2
↑ are implemented

in the operations from neighboring cells, and the hopping steps of f1,2
σ

are reflected compared to those of f1,1
σ , but those of f2,1

σ are not). One
should be careful then that this tessellation does not self-intersect, that
all required qubits are connected to an island being measured, that the
three braiding ancillas are connected in a way that allows for braiding, and
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7. Majorana-based fermionic quantum computation

that the measurement circuit does not isolate individual islands (which
would cause them to dephase). We assume that the conditional braidings
on system Majoranas is performed as they move between configurations
(or potentially cancelled), and so we do not account for these. We also
assume that our finite-sized lattice is surrounded by a common ground,
and so parallel lines of coupled islands will maintain a common phase by
connecting to this. We have further found paths to hop Majoranas between
their needed configurations and costed them in terms of the number of
hoppings. We make no claim that the found arrangement is optimal, and
invite any interested readers to attempt to beat our score for an optimal
braiding pattern.
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Stage Hamiltonian System Parking Control
term fermions sites ancilla

1a it
2 γ

1,1
↑,1γ

0,1
↑,2 f1,0

b,1 f1,0
b,0 f1,1

↑

1b it
2 γ

0,1
↑,1γ

1,1
↑,2 f1,0

b,0 f1,0
b,1 f1,1

↑

1c it
2 γ

1,1
↑,1γ

1,2
↑,2 f1,1

↑ f1,1
b,1 f1,2

c

1d it
2 γ

1,2
↑,1γ

1,1
↑,2 f1,1

b,1 f1,1
↑ f1,2

c

1e it
2 γ

1,1
↑,1γ

1,0
↑,2 f1,0

b,1 f1,0
↑ f1,1

c

1f it
2 γ

1,0
↑,1γ

1,1
↑,2 f1,0

↑ f1,0
b,1 f1,1

c

2a i
4 (U − 2µ)γ1,1

↑,1γ
1,1
↑,2 f1,1

c f1,1
b,2 f1,1

↓

2b i
4 (U − 2µ)γ1,1

↓,1γ
1,1
↓,2 f1,1

b,2 f1,1
c f1,1

↓

2c −U4 γ
1,1
↑,1γ

1,1
↑,2γ

1,1
↓,1γ

1,1
↓,2 f1,1

b,2 , f
1,1
c f1,1

↓

3a it
2 γ

1,1
↑,1γ

2,1
↑,2 f1,0

b,1 f1,0
b,0 f1,1

↑

3b it
2 γ

2,1
↑,1γ

1,1
↑,2 f2,0

b,0 f1,0
b,2 f1,1

↓

Table 7.2.: (split with Table 7.3) A three-stage implementation of QPE on
the Hubbard model (Eq. (7.8)), using the architecture in Fig. 7.2. We specify
a translatable layout for each Trotter step to be performed simultaneously, by
specifying which sites should be used to store system fermions, control ancilla
fermions, braiding ancilla fermions (on Table 7.3), and any additional fermions
not used in this rotation (parking sites). We further specify the island to be
used for any joint parity readout (on Table 7.3), and the cost of shuffling the
Majoranas around the layout (on Table 7.3).
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Stage Braiding Measurement Cost
ancillas island

1a f0,1
↑ , f0,1

c , f0,0
b,2 I1,1

L (11)

1b f0,1
↑ , f0,1

c , f0,0
b,2 I1,1

L 0

1c f1,1
b,2 , f

2,1
b,0 , f

1,1
↓ I1,1

C 11+7

1d f1,1
b,2 , f

2,1
b,0 , f

1,1
↓ I1,1

C 0

1e f1,0
b,2 , f

2,0
b,0 , f

1,0
↓ I1,0

C 7+7

1f f1,0
b,2 , f

2,0
b,0 , f

1,0
↓ I1,0

C 0

2a f1,1
b,1 , f

1,1
b,0 , f

1,1
↑ I1,1

C 7+6

2b f1,1
b,1 , f

1,1
b,0 , f

1,1
↑ I1,1

C 0

2c f1,1
b,1 , f

1,1
b,0 , f

1,1
↑ I1,1

C 0

3a f0,1
↑ , f0,1

c , f0,0
b,2 I2,1

L 28+11

3b f2,1
↓ , f2,1

c , f2,0
b,1 I2,1

L 0 (+11)

Table 7.3.: (Split with Table 7.2) A three-stage implementation of QPE on
the Hubbard model (Eq. (7.8)), using the architecture in Fig. 7.2. Description
of the Hamiltonian term to be simulated, and the use of each Majorana given
in Table 7.2. For each Trotter step we have costed the number of Majorana
hoppings required to rearrange the system from its previous state. When these
are written as a sum, the first term refers to restoring the configuration of
Fig. 7.2 from the configuration required for the previous step, and the second to
obtaining the configuration needed for the current step. Some steps require the
same configuration as the previous step, and as such incur a 0 rearrangement
cost. The cost in brackets for the final step is the requirement to return the
system to its shifted initial state (where up-spins and down-spins have been
swapped). This may not be required, especially as the configuration for the final
step and the initial steps are the same (modulo the swapping of the spins), and
so repeated unitary evolution would not need this nor the rearrangement cost
of the first step. This reduces the total rearrangement cost of the circuit to 85
Majorana hoppings.
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8. Quantum phase estimation
for noisy, small-scale
experiments

8.1. Introduction
It is known that any problem efficiently solvable on a quantum computer
can be formulated as eigenvalue sampling of a Hamiltonian or eigenvalue
sampling of a sparse unitary matrix [292]. In this sense the algorithm of
quantum phase estimation is the only quantum algorithm which can give
rise to solving problems with an exponential quantum speed-up. Despite
it being such a central component of many quantum algorithms, very little
work has been done so far to understand what quantum phase estimation
offers in the current NISQ (Noisy Intermediate Scale Quantum) era of
quantum computing [293] where quantum devices are strongly coherence-
limited. Quantum phase estimation comes in many variants, but a large
subclass of these algorithms (e.g. the semi-classical version of textbook
phase estimation [23, 294], Kitaev’s phase estimation [22], Heisenberg-
optimized versions [295]), are executed in an iterative sequential form using
controlled-Uk gates with a single ancilla qubit [296, 297] (see Fig. 8.1), or
by direct measurement of the system register itself [295]. Such circuits
are of practical interest in the near term when every additional qubit
requires a larger chip and brings in additional experimental complexity
and incoherence.

Some of the current literature on quantum phase estimation works under
limiting assumptions. The first is that one does not start in an eigenstate
of the Hamiltonian [298, 299]. A second limitation is that one does not
take into account the (high) temporal cost of running Uk [297] for large
k when optimizing phase estimation. The size and shallowness of the

The contents of this chapter has been accepted for publication as T.E. O’Brien,
B. Tarasinski and B.M. Terhal, New J. Phys. (2019), in press.
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8. Quantum phase estimation for noisy, small-scale experiments

quantum phase estimation circuit is important since, in the absence of
error correction or error mitigation, one expects entropy build-up during
computation. This means that circuits with large k may not be of any
practical interest.
The scenario where the input state is not an eigenstate of the unitary

matrix used in phase estimation is the most interesting one from the
perspective of applications, and we will consider it in this chapter. Such
an input state can be gradually projected onto an eigenstate by the phase
estimation algorithm and the corresponding eigenvalue can be inferred.
However, for coherence-limited low-depth circuits one may not be able to
evolve sufficiently long to project well onto one of the eigenstates. This
poses the question what one can still learn about eigenvalues using low-
depth circuits. An important point is that it is experimentally feasible to
repeat many relatively shallow experiments (or perform them in parallel on
different machines). Hence we ask what the spectral-resolving power of such
phase estimation circuits is, both in terms of the number of applications of
the controlled-U circuit in a single experiment, and the number of times
the experiment is repeated. Such repeated phase estimation experiments
require classical post-processing of measurement outcomes, and we study
two such algorithms for doing this. One is our adaptation of the Bayesian
estimator of [299] to the multiple-eigenvalue scenario. A second is a new
estimator based on a treatment of the observed measurements as a time-
series, and construction of the resultant time-shift operator. This latter
method is very natural for phase estimation, as one interprets the goal
of phase estimation as the reconstruction of frequencies present in the
output of a temporal sound signal. In fact, the time-series analysis that
we develop is directly related to what are called Prony-like methods in
the signal-processing literature, see e.g. [300]. The use of this classical
method in quantum signal processing, including in quantum tomography
[301], seems to hold great promise.
One can interpret our results as presenting a new hybrid classical-

quantum algorithm for quantum phase estimation. Namely, when the
number of eigenstates in an input state is small, i.e. scaling polynomially
with the number of qubits Nsys, the use of our classical post-processing
method shows that there is no need to run a quantum algorithm which
projects onto an eigenstate to learn the eigenvalues. We show that one can
extract these eigenvalues efficiently by classically post-processing the data
from experiments using a single-round quantum phase estimation circuits
(see Section 8.2) and classically handling poly(Nsys)× poly(Nsys) matrices.
This constitutes a saving in the required depth of the quantum circuits.

The spectral-resolution power of quantum phase estimation can be
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defined by its scaling with parameters of the experiment and the studied
system. We are able to derive analytic scaling laws for the problem of
estimating single eigenvalues with the time-series estimator. We find
these to agree with the numerically-observed scaling of both studied
estimators. For the more general situation, with multiple eigenvalues and
experimental error, we study the error in estimating the lowest eigenvalue
numerically. This is assisted by the low classical computation cost of
both estimators. We observe scaling laws for this error in terms of the
overlap between the ground and starting state (i.e. the input state of the
circuit), the gap between the ground and excited states, and the coherence
length of the system. In the presence of experimental noise we attempt
to adjust our estimators to mitigate the induced estimation error. For
depolarizing-type noise we find such compensation easy to come by, whilst
for a realistic circuit-level simulation we find smaller improvements using
similar techniques.

Even though this chapter focuses on quantum phase estimation where the
phases corresponds to eigenvalues of a unitary matrix, our post-processing
techniques may also be applicable to multi-parameter estimation problems
in quantum optical settings. In these settings the focus is on determining
an optical phase-shift [302–304] through an interferometric set-up. There is
experimental work on (silicon) quantum photonic processors [305–307] on
multiple-eigenvalue estimation for Hamiltonians which could also benefit
from using the classical post-processing techniques that we develop in this
chapter.

8.2. Quantum phase estimation

Quantum phase estimation (QPE) covers a family of quantum algorithms
which measure a system register of Nsys qubits in the eigenbasis of a
unitary operator U [22, 308]

U |φj〉 = eiφj |φj〉, (8.1)

to estimate one or many phases φj . Quantum phase estimation algorithms
assume access to a noisefree quantum circuit which implements U on our
system register conditioned on the state of an ancilla qubit. Explicitly, we
require the ability to implement

Uc = |0〉〈0| ⊗ I + |1〉〈1| ⊗ U , (8.2)
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where |0〉 and |1〉 are the computational basis states of the ancilla qubit,
and I is the identity operator on the system register.
In many problems in condensed matter physics, materials science, or

computational chemistry, the object of interest is the estimation of spec-
tral properties or the lowest eigenvalue of a Hamiltonian H. The eigen-
value estimation problem for H can be mapped to phase estimation for
a unitary Uτ = exp(−iτH) with a τ chosen such that the relevant part
of the eigenvalue spectrum induces phases within [−π, π). Much work
has been devoted to determining the most efficient implementation of
the (controlled)-exp(−iτH) operation, using exact or approximate meth-
ods [308–311]. Alternatively, one may simulate H via a quantum walk,
mapping the problem to phase estimating the unitary exp(−i arcsin(H)/λ)
for some λ, which may be implemented exactly [289–291, 312]. In this
chapter we do not consider such variations, but rather focus on the er-
ror in estimating the eigenvalue phases of the unitary U that is actually
implemented on the quantum computer. In particular, we focus on the
problem of determining the value of a single phase φ0 to high precision
(this phase could correspond, for example, to the ground state energy of
some Hamiltonian H).
Phase estimation requires the ability to prepare an input, or starting

state
|Ψ〉 =

∑
j

aj |φj〉, Aj ≡ |aj |2, (8.3)

with good overlap with the ground state; A0 � 0. Note here that the
spectrum of U may have exact degeneracies (e.g. those enforced by sym-
metry) which phase estimation does not distinguish; we count degenerate
eigenvalues as a single φj throughout this chapter. The ability to start
quantum phase estimation in a state which already has good overlap with
the ground state is a nontrivial requirement for the applicability of the
quantum phase estimation algorithm. On the other hand, it is a well-
known necessity given the QMA-completeness [313] of the lowest eigenvalue
problem ∗. For many quantum chemistry and materials science problems
it is known or expected that the Hartree-Fock state has good overlap with
the ground state, although rigorous results beyond perturbation theory

∗QMA stands for Quantum Merlin Arthur, which is a complexity class which
contains decision problems which are easy to verify on a quantum computer, though
not necessarily easy to solve. This class is the natural quantum counterpart to the
complexity class NP of problems that may be verified easily on a classical computer. A
QMA-complete problem is one of the ‘hardest possible’ such problems (in analogy with
NP-complete problems); the ability to solve these problems in polynomial time would
allow polynomial-time solving of any other problem in QMA.
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are far and few between (see e.g. [314]). Beyond this, either adiabatic
evolution [263, 309] or variational quantum eigensolvers [281] can provide
an approximate starting state to improve on via phase estimation.

Phase estimation is not limited to simply learning the value of φ0; it
may obtain information about all phases φj as long as Aj > 0. However,
the resources required to estimate φj are bounded below by 1/Aj . To see
this, note that the controlled-unitary Uc does not mix eigenstates, and so
there is no difference (in the absence of error) between starting with |Ψ〉
and the mixed state

ρΨ =
∑
j

Aj |φj〉〈φj |. (8.4)

The latter is then equivalent to preparing the pure state |φj〉 with probabil-
ity Aj , so if N preparations of |φj〉 are required to estimate φj to an error
ε, the same error margin requires at least N/Aj preparations of the state
|Ψ〉. As the number of eigenstates Neig with non-zero contribution to |Ψ〉
generally scales exponentially with the system size Nsys, estimating more
than the first few φj (ordered by the magnitude Aj) will be unfeasible.

Low-cost (in terms of number of qubits) quantum phase estimation
may be performed by entangling the system register with a single ancilla
qubit [22, 297, 299, 313]. In Fig. 8.1, we give the general form of the
quantum circuit to be used throughout this chapter. An experiment,
labeled by a number n = 1, . . . , N , can be split into one or multiple rounds
r = 1, . . . , Rn, following the preparation of the starting state |Ψ〉. In each
round a single ancilla qubit prepared in the |+〉 = 1√

2 (|0〉 + |1〉) state
controls Ukrc where the integer kr can vary per round. The ancilla qubit
is then rotated by Rz(βr) = exp(−iβrZ/2) (with the phase βr possibly
depending on other rounds in the same experiment) and read out in the
X-basis, returning a measurement outcome mr ∈ {0, 1}. We denote the
chosen strings of integers and phases of a single multi-round experiment by
k and β respectively. We denote the number of controlled-U iterations per
experiment as K =

∑Rn
r=1 kr. We denote the total number of controlled-U

iterations over all experiments as

Ktot =
N∑
n=1

Rn∑
r=1

kr. (8.5)

As the system register is held in memory during the entire time of the
experiment, the choice of K is dictated by the coherence time of the
underlying quantum hardware. Hence, we introduce a dimensionless
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Figure 8.1.: Circuit for the QPE experiments described in this chapter. The
state |Ψ〉 is defined in Eq. (8.3). The probability for the ancilla qubit to return
the vector m of results in the absence of error is given by Eq. (8.10). The
single-qubit rotation equals Rz(β) = exp(−iβZ/2) while H is the Hadamard
gate.

coherence length

Kerr = Terr

NsysTU
. (8.6)

Here TU is the time required to implement a single application of controlled-
U in Eq. (8.7), and Terr is the time-to-error of a single qubit, so that
Terr/Nsys is the time-to-failure of Nsys qubits. The idea is that Kerr
bounds the maximal number of applications of U in an experiment, namely
K ≤ Kerr.

A new experiment starts with the same starting state |Ψ〉. Values of kr
and βr may be chosen independently for separate experiments n, i.e. we
drop the label n for convenience. We further drop the subscript r from
single-round experiments (with R = 1).

In the absence of error, one may calculate the action of the QPE circuit
on the starting state (defined in Eq. (8.3)). Working in the eigenbasis
of U on the system register, and the computational basis on the ancilla
qubit, we calculate the state following the controlled-rotation Uk1

c , and the
rotation Rz(β1) on the ancilla qubit to be

1√
2

∑
j

aj

(
|0〉+ ei(k1φj+β1)|1〉

)
|φj〉. (8.7)

The probability to measure the ancilla qubit in the X-basis as m1 ∈ {0, 1}
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is then ∑
j

Aj cos2
(
k1φj

2 + β1 −m1π

2

)
, (8.8)

and the unnormalized post-selected state of the system register is∑
j

aje
i
2 (k1φj+β1) cos

(
k1φj

2 + β1 −m1π

2

)
|φj〉. (8.9)

The above procedure may then be repeated for r rounds to obtain the
probability of a string m of measurement outcomes of one experiment as

Pk,β(m|φ,A) =
∑
j

Aj

R∏
r=1

cos2
(
krφj

2 + βr −mrπ

2

)
.

(8.10)

Here, φ is the vector of phases φj and A the vector of probabilities for
different eigenstates. We note that Pk,β(m|φ,A) is independent of the
order in which the rounds occur in the experiment. Furthermore, when
Neig = 1, Pk,β(m|φ) = Pk,β(m|φ,A) is equal to the product of the
single-round probabilities Pkr,βr (mr|φ), as there is no difference between
a multi-round experiment and the same rounds repeated across individual
experiments.
One can make a direct connection with parameter estimation work

by considering the single-round experiment scenario in Fig. 8.1. The
Hadamard gate putting the ancilla qubit in |+〉 and measuring the qubit
in the X-basis are, in the optical setting, realized by beam-splitters, so
that only the path denoted by the state |1〉 will pick up an unknown
phase-shift. When the induced phase-shift is not unique but depends,
say, on the state of another quantum system, we may like to estimate all
such possible phases corresponding to our scenario of wishing to estimate
multiple eigenvalues. Another physical example is a dispersively coupled
qubit-cavity mode system where the cavity mode occupation number will
determine the phase accumulation of the coupled qubit [315].

8.3. Classical data analysis
Two challenges are present in determining φ0 from QPE experiments. First,
we only ever have inexact sampling knowledge of Pk,β(m|φ,A). That is,
repeated experiments at fixed k,β do not directly determine Pk,β(m|φ,A),
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but rather sample from the multinomial distribution Pk,β(m|φ,A). From
the measurement outcomes we can try to estimate Pk,β(m|φ,A) (and
from this φ0) as a hidden variable. Secondly, when Neig > 1 determining
φ0 from Pk,β(m|φ,A) poses a non-trivial problem.

Let us first consider the case Neig = 1. Let us assume that we do
single-round experiments with a fixed k for each experiment. Naturally,
taking k = 1 would give rise to the lowest-depth experiments. If we start
these experiments with k = 1 in the eigenstate |φ0〉, then one can easily
prove that taking β = 0 or β = π

2 for half of the experiments, suffices to
estimate φ0 with variance scaling as ∼ 1/N = 1/Ktot. This result can be
derived using standard Chernoff bounds, see e.g. [316, 317], and represent
standard sampling or shot noise behavior. When Neig = 1, N K-round
experiments each with k = 1 are indistinguishable from N×K single-round
experiments with k = 1. This implies that the same scaling holds for such
multi-round experiments, i.e. the variance scales as 1/(NK) = 1/Ktot.

Once the phase φ0 is known to sufficient accuracy, performing QPE
experiments with k > 1 is instrumental in resolving φ0 in more detail, since
the probability of a single-round outcome depends on kφ0 [295]. Once
one knows with sufficient certainty that φ0 ∈ [(2m− 1)π/k, (2m+ 1)π/k)
(for integer m), one can achieve variance scaling as O( 1

k2N ) (conforming
to so-called local estimation Cramer-Rao bounds suggested in [299, 318]).
A method achieving Heisenberg scaling, where the variance scales as
∼ 1/K2

tot (see Eq. (8.5)), was analyzed in [295, 316]. This QPE method
can also be compared with the information-theoretic optimal maximum-
likelihood phase estimation method of [297] where N ∼ logK experiments
are performed, each choosing a random k ∈ {1, . . . ,K} to resolve φ0 with
error ∼ 1/K. The upshot of these previous results is that, while the
variance scaling in terms of the total number of unitaries goes like 1/Ktot
when using k = 1, clever usage of k > 1 data can lead to 1/K2

tot scaling.
However, as K is limited by Kerr in near-term experiments, this optimal
Heisenberg scaling may not be accessible.

When Neig > 1, the above challenge is complicated by the need to
resolve the phase φ0 from the other φj . This is analogous to the problem
of resolving a single note from a chord. Repeated single-round experiments
at fixed k and varying β can only give information about the value of the
function:

g(k) =
∑
j

Aje
ikφj , (8.11)
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8.3. Classical data analysis

at this fixed k, since

Pk,β(m|φ) =1
2 + 1

2 cos(β +mπ)Re[g(k)]

− 1
2 sin(β +mπ)Im[g(k)]. (8.12)

This implies that information from single-round experiments at fixed k is
insufficient to resolve φ0 when Neig > 1, as g(k) is then not an invertible
function of φ0 (Try to recover a frequency from a sound signal at a
single point in time!). In general, for multi-round experiments using a
maximum of K total applications of Uc, we may only ever recover g(k)
for k ≤ K. This can be seen from expanding Pk,β(m|φ,A) as a sum
of
∑
j Aj cosm(φj) sinn(φj) terms with m + n ≤ K, which are in turn

linear combinations of g(k) for k ≤ K. As we will show explicitly in
the next Section 8.3.1 this allows us to recover up to K φj . However,
when Neig > K, these arguments imply that we cannot recover any phases
exactly. In this case, the accuracy to which we can estimate our target φ0
is determined by the magnitude of the amplitude A0 in the inital state |Ψ〉
as well as the gap towards the other eigenvalues. For example, in the limit
A0 → 1, an unbiased estimation of φ0 using data from k = 1 would be

Arg[g(1)] = Im[ln(
∑
j

Aje
iφj )], (8.13)

and the error in such estimation is

|Arg[g(1)]− φ0| = |
1
A0

Neig−1∑
j=1

Aj sin(φj − φ0) +O(A−2
0 )|

≤ 1−A0

A0
,

with our bound being independent of Neig. We are unable to extend this
analysis beyond the k = 1 scenario, and instead we study the scaling in
this estimation numerically in Sec. 8.4. In the remainder of this section,
we present two estimators for multi-round QPE. The first is an estimator
based on a time-series analysis of the function g(k) using Prony-like [300]
methods that has a low computation overhead. The second is a Bayesian
estimator similar to that of [299], but adapted for multiple eigenphases φj .

181



8. Quantum phase estimation for noisy, small-scale experiments

8.3.1. Time-series analysis
Let us assume that the function g(k) in Eq. (8.11) is a well-estimated
function at all points 0 ≤ k ≤ K, since the number of experiments N is
sufficiently large. We may extend this function to all points −K ≤ k ≤ K
using the identity g(−k) = g∗(k) to obtain a longer signal ∗. We wish to
determine the dominant frequencies φj in the signal g(k) as a function of
‘time’ k. This can be done by constructing and diagonalizing a time-shift
matrix T whose eigenvalues are the relevant frequencies in the signal, as
follows.
We first demonstrate the existence of the time-shift matrix T in the

presence of Neig < K separate frequencies. Since we may not know
Neig, let us first estimate it as l. We then define the vectors g(k) =
(g(k), g(k + 1), . . . g(k + l))T , k = −K, . . . ,K. These vectors can be
decomposed in terms of single-frequency vectors bj = (1, eiφj , . . . , eilφj )T

g(k) =
∑
j

Aje
ikφjbj . (8.14)

We can make a l ×Neig matrix B with the components bj as columns

Bk,j = eikφj . (8.15)

When Neig ≤ l, the columns of B are typically linearly independent †,
hence the non-square matrix B is invertible and has a (left)-pseudoinverse
B−1 such that B−1B = 1. Note however, when Neig > l the columns
of B are linearly-dependent, so B cannot be inverted. If B is invertible,
we can construct the shift matrix T = BDB−1 with Di,j = δi,je

iφj . By
construction, Tbj = eiφjbj (as TB = BD), and thus

Tg(k) =
∑
j

Aje
ikφjTbj

=
∑
j

Aje
i(k+1)φj = g(k + 1). (8.16)

This implies that T acts as the time-shift operator mapping g(k) to
g(k + 1). As the eigenvalues of T are precisely the required phases eiφj

∗Extending g(k) from 0 ≤ k ≤ K to −K ≤ k ≤ K is not required to perform a
time-series analysis, however numerically we observe that this obtains up to order of
magnitude improvement in estimating φ0.
†Counterexamples may exist, but are hard to construct and have not occurred in

any numerics.
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8.3. Classical data analysis

in case Neig ≤ l, constructing and diagonalizing T will obtain our desired
phases including φ0. When Neig > l, the eigen-equation for T cannot have
the solution bj since these are not linearly independent.

The above proof of existence does not give a method of constructing the
time-shift operator T, as we do not have access to the matrices B or D.
To construct T from the data that we do have access to, we construct the
l × (2K + 1− l) Hankel matrices G(0), G(1) by

G
(a)
i,j = g(i+ j + a−K), (8.17)

indexing 0 ≤ i ≤ l − 1, 0 ≤ j ≤ 2K − l. The k-th column of G(a) is the
vector g(k+ a−K), and so TG(0) = G(1). We can thus attempt to find T
as a solution of the (least-squares) problem of minimizing ||TG(0) −G(1)||.
The rank of the obtained T̃ is bounded by the rank of G(0). We have
that rank(G(0)) is at most Neig since it is a sum over rank-1 matrices.
At the same time rank(G(0)) ≤ min(l, 2K + 1− l). This implies that we
require both l ≥ Neig and 2K + 1 − l ≥ Neig to obtain a shift matrix
T with Neig eigenvalues. This is only possible when K ≥ Neig, giving
an upper bound for the number of frequencies obtainable. When G(0) is
not full rank (because Neig < l), this problem may have multiple zeros T̃.
However, when Neig < l each of these must satisfy T̃g(k) = g(k + 1) for
−K < k < K − l.
Then, as long as rank(G(0)) ≥ Neig, Eq. (8.14) is invertible by an

operator C ∑
k

Ci,kAje
ikφj = δi,j → bj =

∑
k

Cj,kg(k). (8.18)

It follows that∑
k

Cj,kg(k + 1) =
∑
k,l

Cj,kAle
ikφl(eiφlbl) = eiφjbj , (8.19)

and then

T̃bj =
∑
k

Ck,jT̃g(k) =
∑
k

Ck,jg(k + 1) = eiφjbj , (8.20)

so every T̃ obtained in this way must have eigenvalues eiφj .
The above analysis is completely independent of the coefficients Aj .

However, once the eigenvalues φj are known, the matrix B (eq. 8.15) may
be constructed, and the Aj may be recovered by a subsequent least-squares

183



8. Quantum phase estimation for noisy, small-scale experiments

Figure 8.2.: Convergence of the time-series estimator in the estimation of
Neig = 10 eigenvalues (chosen at random with equally sized amplitudes Aj =
1/10) when the exact function g(k) is known at points 0, . . . ,K. The estimator
constructs and calculates the eigenvalues of K ×K matrix which are shown as
the red plusses in the Figure. When K ≥ Neig (gray dashed line), the frequencies
are attained to within machine precision. When K < Neig, it is clear from the
Figure that the found eigenvalues provide some form of binning approximation
of the spectrum.

minimization of
||BA− g(0)||. (8.21)

This allows us to identify spurious eigenvalues if l > Neig (as these will have
a corresponding zero amplitude). Numerically, we find no disadvantage to
then choosing the largest l permitted by our data, namely l = K.
Assuming a sufficient number of repetitions N these arguments imply

that this strategy requires that K ≥ Neig to determine all eigenvalues
accurately. However, when K < Neig there still exists a least-squares
solution T̃ that minimizes ||T̃G(0) −G(1)||. When A0 � 0, we expect that
T̃ should have eigenvalues eiφ̃0 ≈ eiφ0 that we can take as the estimator
for φ0; the same is true for any other φj with sufficiently large Aj . In
Fig. 8.2 we show an example of convergence of this estimation for multiple
eigenvalues φj as K → Neig in the case where g(k) is known precisely (i.e.
in the absence of sampling noise). The error |φ̃0 − φ0| when K < Neig
depends on the eigenvalue gap above φ0, as well as the relative weights
Aj , as we will see in Section 8.4.3.

In App.8.B we derive what variance can be obtained with this time-series
method in the case ł = Neig = 1, using single-round circuits with k = 1 up
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8.3. Classical data analysis

to K. Our analysis leads to the following scaling in N and K:

Var(φ) ∝ 1
K2N

. (8.22)

We will compare these results to numerical simulations in Sec. 8.4.1.

Estimating g(k)

The function g(k) cannot be estimated directly from experiments, but
may instead be created as a linear combination of Pk,β(m|φ,A) for differ-
ent values of k and β. For single-round experiments, this combination is
simple to construct:

g(k) =Pk,0(0|φ,A)− Pk,0(1|φ,A)
− iPk,π2 (0|φ,A) + iPk,π2 (1|φ,A). (8.23)

For multi-round experiments, the combination is more complicated. In
general, Pk,β(m|φ,A) is a linear combination of real and imaginary parts of
g(l) with l < K =

∑
r kr. This combination may be constructed by writing

cos2(kφj/2 + β/2) and sin2(kφj/2 + β/2) in terms of exponentials, and
expanding. However, inverting this linear equation is a difficult task and
subject to numerical imprecision. For some fixed choices of experiments,
it is possible to provide an explicit expansion. Here we focus on K-round
k = 1 experiments with K/2 β = 0 and K/2 β = π

2 final rotations
during each experiment (choosing K even). The formula for Pk,β(m|φ,A)
is independent of the order in which these rounds occur. Let us write
P(m, n|φ,A) as the probability of seeing both m ∈ {0, . . . ,K/2} outcomes
withmr = 1 in theK/2 rounds with βr = 0 and n ∈ {0, . . . ,K/2} outcomes
with nr = 1 in the K/2 rounds with βr = π/2. In other words, m, n are
the Hamming weights of the measurement vectors split into the two types
of rounds described above. Then, one can prove that, for 0 ≤ k ≤ K/2:

g(k) =
K/2∑
m=0

K/2∑
n=0

χk(m, n)P(m, n|φ,A) (8.24)
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where

χk(m, n) =
k∑
l=0

(−i)k−l
(
k

l

)

×

bl/2c∑
p1=0

(
m

2p1

)(
K/2−m
l−2p1

)(
K/2
l

) − 1


×

b(k−l)/2c∑
p2=0

(
n

2p2

)(
K/2−n
k−l−2p2

)(
K/2
k−l
) − 1

 . (8.25)

The proof of this equality can be found in App.8.A.

Calculating g(k) from multi-round (k = 1) experiments contains an
additional cost: combinatorial factors in Eq. (8.24) relate the variance in
g(k) to the variance in P(m, n|φ,A) but the combinatorial pre-factor

(
k
l

)
can increase exponentially in k. This can be accounted for by replacing
the least squares fit used above with a weighted least squares fit, so that
one effectively relies less on the correctness of g(k) for large k. To do this,
we construct the matrix T row-wise from the rows g(1)

i of G(1). That is,
for the ith row ti we minimize

||tiG(0) − g(1)
i ||. (8.26)

This equation may be weighted by multiplying G(0) and g(1)
i by the weight

matrix
w

(i)
j,k = δj,k

1
σ
G

(1)
i,j

, (8.27)

where σ
G

(1)
i,j

is the standard deviation in our estimate of G(1)
i,j . Note that

the method of weighted least-squares is only designed to account for
error in the independent variable of a least squares fit, in our case this
is G(1). This enhanced effect of the sampling error makes the time-series
analysis unstable for large K. We can analyze how this weighting alters
the previous variance analysis when Neig = 1. If we take this into account
(see derivation in App.8.B), we find that

Var(φ) ∝ 1
KN

, (8.28)

for a time-series analysis applied to multi-round k = 1 experiments.
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Classical computation cost

In practice, the time-series analysis can be split into three calculations; (1)
estimation of Pk,β(m|φ,A) or P(m, n|φ,A), (2) calculation of g(k) from
these probabilities via Eq. (8.23) or Eq. (8.24), and (3) estimation of the
phases φ from g(k). Clearly (2) and (3) only need to be done once for the
entire set of experiments.

The estimation of the phases φ requires solving two least squares equa-
tions, with cost O(l2K) (recalling that l is the number of frequencies to
estimate, and K is the maximum known value of g(k)), and diagonalizing
the time-shift matrix T with cost O(l3). For single-round phase estimation
this is the dominant calculation, as calculating g(k) from Eq. (8.23) requires
simply K additions. As a result this estimator proves to be incredibly
fast, able to estimate one frequency from a set of N = 106 experiments
of up to K = 10000 in < 100 ms, and l = 1000 frequencies from N = 106

experiments with K = 1000 in < 1 min. However, for multi-round phase
estimation the calculation of g(k) in Eq. (8.24) scales as O(K4). This then
dominates the calculation, requiring 30 s to calculate 50 points of g(k).
(All calculations performed on a 2.4 GHz Intel i3 processor.) We note that
all the above times are small fractions of the time required to generate the
experimental data when N � K, making this a very practical estimator
for near-term experiments.

8.3.2. Efficient Bayesian analysis

When the starting state is the eigenstate |φ0〉, the problem of determining
φ0 based on the obtained multi-experiment data has a natural solution
via Bayesian methods [299, 319]. Here we extend such Bayesian methodol-
ogy to a general starting state. For computational efficiency we store a
probability distribution over phases P (φ) using a Fourier representation
of this periodic function P (φ) (see 8.C). This technique can also readily
be applied to the case of Bayesian phase estimation applied to a single
eigenstate.

A clearly information-theoretic optimal Bayesian strategy is to choose the
φ and A based on the data obtained in some N experiments [297]. After
these N experiments, leading to qubit measurement outcomes {mi}Ni=1,
one can simply choose A,φ which maximizes the posterior distribution:

Ppost(φ,A) =
P{ki},{βi}({mi}|φ,A)

P ({mi})
Pprior(φ,A), (8.29)
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In other words, one chooses

(φopt,Aopt) = arg max
φ,A

logPpost(φ,A)

= arg max
φ,A

[
logP{ki},{βi}({mi}|φ,A) + logPprior(φ,A)

]
.

A possible way of implementing this strategy is to (1) assume the prior
distribution to be independent of A and φ and (2) estimate the maximum
by assuming that the derivative with respect to A and φ vanishes at this
maximum.

Instead of this method we update our probability distribution over φ and
A after each experiment. After experiment n the posterior distribution
Pn(φ,A) via Bayes’ rule reads

Pn(φ,A) = Pk,β(m|φ,A)
P (m) Pn−1(φ,A). (8.30)

To calculate the updates we will assume that the distribution over the
phases φj and probabilities Aj are independent, that is,

Pn(φ,A) = P red
n (A)

Neig−1∏
j=0

P jn(φj). (8.31)

As prior distribution we take P0(φ,A) = Pprior(A)Pprior(φ) with a flat
prior Pprior(φ) = ( 1

2π )Neig , given the absence of a more informed choice.
We take Pprior(A) = e−(A−A0)2/2Σ2 , with A0 and Σ2 approximate mean
and covariance matrices. We need to do this to break the symmetry of
the problem, so that φ̃0 is estimating φ0 and not any of the other φs. We
numerically find that the estimator convergence is relatively independent
of our choice of A0 and Σ2.
The approximation in Eq. (8.31) allows for relatively fast calculations

of the Bayesian update of P jn(φj), and an approximation to the maximum-
likelihood estimation of P red

n (A). Details of this computational implemen-
tation are given in 8.C.1.

Classical computation cost

In contrast to the time-series estimator, the Bayesian estimator incurs a
computational cost in processing the data from each individual experiment.
On the other hand, obtaining the estimate φ̃0 for φ0 is simple, once one
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has the probability distribution P j=0(φ):

φ̃0 = arg(
∫
dφP j=0(φ)eiφ).

A key parameter here is the number of frequencies #freq stored in the
Fourier representation of P (φ); each update requires multiplying a vector of
length Nfreq by a sparse matrix. Our approximation scheme for calculating
the update to A makes this multiplication the dominant time cost of the
estimation. As we argue in 8.C.1 one requires #freq ≥ Ktot to store a fully
accurate representation of the probability vector. For the single-round
scenario with kr = 1, hence Ktot = N , we find a large truncation error
when #freq � N , and so the computation cost scales as N2. In practice we
find that processing the data from N < 104 experiments takes seconds on
a classical computer, but processing more than 105 experiments becomes
rapidly unfeasible.

8.3.3. Experiment design
Based on the considerations above we seek to compare some choices for
the meta-parameters in each experiment, namely the number of rounds,
and the input parameters kr and βr for each round.
Previous work [299, 320], which took as a starting state the eigenstate
|φ0〉, formulated a choice of k and β, using single-round experiments and
Bayesian processing, namely

k = min
(⌈

1.25
σP j=0

n (φ0)

⌉
,Kerr

)
, β ∼ P j=0

n (φ0 = β), (8.32)

Roughly, this heuristic adapts to the expected noise in the circuit by
not using any k such that the implementation of Uk takes longer than
Terr/Nsys. It also adapts k to the standard-deviation of the current pos-
terior probability distribution over φ0: a small standard-deviation after
the nth experiment implies that k should be chosen large to resolve the
remaining bits in the binary expansion of φ0

∗.
In this chapter we use a starting state which is not an eigenstate, and

as such we must adjust the choice in Eq. (8.32). As noted in Sec. 8.3, to

∗Note that this strategy is the opposite of textbook phase estimation in which one
necessarily learns the least-significant bit of φ0 first by choosing the largest k. One
chooses the next smallest k and β so that the next measurement outcome gives the
next more-significant bit etc.
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separate different frequency contributions to g(k) we need good accuracy
beyond that at a single value of k. The optimal choice of the number
of frequencies to estimate depends on the distribution of the Aj , which
may not be well known in advance. Following the inspiration of [299], we
choose for the Bayesian estimator

k ∈ {1, . . . ,K}

K = min
(⌈

1.25
σP j=0

n (φ0)

⌉
,Kerr

)
. (8.33)

We thus similarly bound K depending how well one has already converged
to a value for φ0 which constitutes some saving of resources. At large N
we numerically find little difference between choosing k at random from
{1, . . . ,K} and cycling through k = 1, . . . ,K in order. For this Bayesian
estimator we draw β at random from a uniform distribution [0, 2π). We
find that the choice of β has no effect on the final estimation (as long
as it is not chosen to be a single number) For the time-series estimator
applied to single-round experiments, we choose to cycle over k = 1, . . . ,K
so that it obtains a complete estimate of g(k) as soon as possible, taking
an equal number of experiments with final rotation β = 0 and β = π/2
at each k. Here again K ≤ Kerr, so that we choose the same number
of experiments for each k ≤ K. For the time-series estimator applied to
multi-round experiments, we choose an equal number of rounds with β = 0
and β = π/2, taking the total number of rounds equal to R = K.

8.4. Results without experimental noise
We first focus on the performance of our estimators in the absence of
experimental noise, to compare their relative performance and check the
analytic predictions in Sec. 8.3.1. Although with a noiseless experiment
our limit for K is technically infinite, we limit it to a make connection
with the noisy results of the following section. Throughout this section
we generate results directly by calculating the function Pk,β(m|φ,A) and
sampling from it. Note that Pk,β(m|φ,A) only depends on Neig and not
on the number of qubits in the system.

8.4.1. Single eigenvalues
To confirm that our estimators achieve the scaling bounds discussed pre-
viously, we first test them on the single eigenvalue scenario Neig = 1. In
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Figure 8.3.: Estimator performance for single eigenvalues with single and
multi-round k = 1 QPE schemes. Plots show scaling of the mean absolute
error (Eq. (8.34)) with (top) the number of experiments (at fixed K = 50), with
(middle)K for a fixed total number of experiments (N = 106), and (bottom) with
K with a fixed number (100) of experiments per k = 1, . . . ,K (i.e. N = 200K).
Data is averaged over 200-500 QPE simulations, with a new eigenvalue chosen
for each simulation. Shaded regions (top) and error bars (middle, bottom) give
95% confidence intervals. Dashed lines show the scaling laws of Eq. (8.22) (fitted
by eye). The top-right legend labeling the different estimation schemes is valid
for all three plots.
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Fig. 8.3, we plot the scaling of the average absolute error in an estima-
tion φ̃ of a single eigenvalue φ ∈ [−π, π), defined so as to respect the
2π-periodicity of the phase:

ε :=
〈
min

(
|φ− φ̃|, 2π − |φ− φ̃|

)〉
=
〈∣∣∣Arg

(
ei(φ−φ̃)

)∣∣∣〉 , (8.34)

as a function of varying N and K. Here 〈〉 represents an average over
repeated QPE simulations, and the Arg function is defined using the range
[−π, π) (otherwise the equality does not hold).
We see that both estimators achieve the previously-derived bounds

in 8.3.1 (overlayed as dashed lines), and both estimators achieve almost
identical convergence rates. The results for the Bayesian estimation match
the scaling observed in Ref. [299]. Due to the worse scaling in K, the
multi-round k = 1 estimation significantly underperforms single-round
phase estimation. This is a key observation of this chapter, showing that
if the goal is to estimate a phase rather than to project onto an eigenstate,
it is preferable to do single-round experiments.

8.4.2. Example behaviour with multiple eigenvalues
The performance of quantum phase estimation is dependent on both the
estimation technique and the system being estimated. Before studying
the system dependence, we first demonstrate that our estimators continue
to perform at all in the presence of multiple eigenvalues. In Fig. 8.4,
we demonstrate the convergence of both the Bayesian and time-series
estimators in the estimation of a single eigenvalue φ0 = −0.5 of a fixed
unitary U , given a starting state |Ψ0〉 which is a linear combination of 10
eigenstates |φj〉. We fix |〈φ0|Ψ0〉|2 = 0.5, and draw other eigenvalues and
amplitudes at random from [0, π] (making the minimium gap φj−φ0 equal
to 0.5). We perform 2000 QPE simulations with K = 50, and calculate the
mean absolute error ε (Eq. (8.34), solid), Holevo variance

∣∣∣〈eiφ̃〉∣∣∣−2
− 1

(dashed), and root mean squared error εRMS (dotted), given by

ε2RMS :=
〈

min
(
|φ− φ̃|, 2π − |φ− φ̃|

)2〉 =
〈∣∣∣Arg

(
ei(φ−φ̃)

)∣∣∣2〉 . (8.35)

We observe that both estimators retain their expected ε ∝ N−1/2, with
one important exception. The Bayesian estimator occasionally (10% of
simulations) estimates multiple eigenvalues near φ0. When this occurs, the
estimations tend to repulse each other, making neither a good estimation
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Figure 8.4.: Scaling of error for time-series (dark green) and Bayesian (red)
estimators with the number of experiments performed for a single shot of a
unitary with randomly drawn eigenphases (parameters given in text). Three
error metrics are used as marked (described in text - note that the mean squared
error and Holevo variance completely overlap for the time-series estimator). Data
is averaged over 2000 simulations. The peak near N = 3000 comes from deviation
in a single simulation and is not of particular interest. With this exception, error
bars are approximately equal to width of the lines used. (Inset) histogram of the
estimated phases after N = 104 experiments. Blue bars correspond to Bayesian
estimates that were rejected (rejection method described in text). These have
been magnified 10× to be made visible.

of the target. This is easily diagnosable without knowledge of the true
value of φ0 by inspecting the gap between estimated eigenvalues. While
using this data to improve estimation is a clear target for future research,
for now we have opted to reject simulations where such clustering occurs
(in particular, we have rejected datapoints where min(φ̄0 − φ̄j) < 0.05).
That this is required is entirely system-dependent: we find the physical
Hamiltonians studied later in this text to not experience this effect. We
attribute this difference to the distribution of the amplitudes Aj - physical
Hamiltonians tend to have a few large Aj , whilst in this simulation the
Aj were distributed uniformly.

In the inset to Fig. 8.4, we plot a histogram of the estimated eigenphases
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after N = 104 experiments. For the Bayesian estimator, we show both the
selected (green) and rejected (blue) eigenphases. We see that regardless of
whether rejection is used, the distribution appears symmetric about the
target phase φ0. This suggests that in the absence of experimental noise,
both estimators are unbiased. Proving this definitively for any class of
systems is difficult, but we expect both estimators to be unbiased provided
A0 � 1/K. When A0 ≤ 1/K, one can easily construct systems for which
no phase estimation can provide an unbiased estimation of φ0 (following
the arguments of Sec. 8.3). We further see that the scaling of the RMS
error εRMS and the Holevo variance match the behaviour of the mean
absolute error ε, implying that our results are not biased by the choice of
estimator used.

8.4.3. Estimator scaling with two eigenvalues
The ability of QPE to resolve separate eigenvalues at small K can be
tested in a simple scenario of two eigenvalues, φ0 and φ1. The input to
the QPE procedure is then entirely characterized by the overlap A0 with
the target state |φ0〉, and the gap δ = |φ0 − φ1|.
In Fig. 8.5, we study the performance of our time-series estimator

in estimating φ0 after N = 106 experiments with K = 50, measured
again by the mean error ε (Eq. (8.34)). We show a two-dimensional plot
(averaged over 500 simulations at each point A0, δ) and log-log plots of one-
dimensional vertical (lower left) and horizontal (lower right) cuts through
this surface. Due to computational costs, we are unable to perform this
analysis with the Bayesian estimator, or for the multi-round scenario. We
expect the Bayesian estimator to have similar performance to the time-
series estimator (given their close comparison in Sec. 8.4.1 and Sec. 8.4.2).
We also expect the error in multi-round QPE to follow similar scaling
laws in A0 and δ as single-round QPE (i.e. multi-round QPE should be
suboptimal only in its scaling in K).
The ability of our estimator to estimate φ0 in the presence of two

eigenvalues can be split into three regions (marked as (a), (b), (c) on the
surface plot). In region (a), we have performed insufficient sampling to
resolve the eigenvalues φ0 and φ1, and QPE instead estimates the weighted
average phase A0φ0 +A1φ1. The error in the estimation of φ0 then scales
by how far it is from the average, and how well the average is resolved

ε ∝ (1−A0)δK−1N−1/2. (8.36)

In region (b), we begin to separate φ0, from the unwanted frequency φ1,

194



8.4. Results without experimental noise

Figure 8.5.: Performance of the time-series estimator in the presence of two
eigenvalues. (top) Surface plot of the error after N = 106 experiments for
K = 50, as a function of the overlap A0 with the target state |φ0〉, and the gap
|φ0 − φ1|. Plot is divided by hand into three labeled regions where different
scaling laws are observed. Each point is averaged over 500 QPE simulations.
(bottom) log-log plots of vertical (bottom left) and horizontal (bottom right)
cuts through the surface, at the labeled positions. Dashed lines in both plots
are fits (by eye) to the observed scaling laws. Each point is averaged over 2000
QPE simulations, and error bars give 95% confidence intervals.

and our convergence halts,

ε ∝ A−1
0 δ−2. (8.37)

In region (c), the gap is sufficiently well resolved and our estimation returns
to scaling well with N and K

ε ∝ A−1
0 K−1N−1/2. (8.38)

The scaling laws in all three regions can be observed in the various cuts
in the lower plots of Fig. 8.5. We note that the transition between the
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8. Quantum phase estimation for noisy, small-scale experiments

three regions is not sharp (boundaries estimated by hand), and is K and
N -dependent.

8.4.4. Many eigenvalues

To show that our observed scaling is applicable beyond the toy 2-eigenvalue
system, we now shift to studying systems of random eigenvalues with
Neig > 1. In keeping with our insight from the previous section, in Fig. 8.6
we fix φ0 = 0, and study the error ε as a function of the gap

δ = min
j>1

(|φj − φ0|). (8.39)

We fix A0 = 0.5, and draw the other parameters for the system from a
uniform distribution: φj ∼ [δ, π], Aj ∼ [0, 0.5] (fixing

∑Neig
j=1 Aj = 1−A0).

We plot both the average error ε (line) and the upper 47.5% confidence
interval [ε, ε+ 2σε] (shaded region) for various choices of Neig. We observe
that increasing the number of spurious eigenvalues does not critically affect
the error in estimation; indeed the error generally decreases as a function
of the number of eigenvalues. This makes sense; at large Neig the majority
of eigenvalues sit in region (c) of Fig. 8.5, and we do not expect these to
combine to distort the estimation. Then, the nearest eigenvalue minj 6=0 φj
has on average an overlap Aj ∝ 1/Neig, and its average contribution to the
error in estimating φ0 (inasmuch as this can be split into contributions)
scales accordingly. We further note that the worst-case error remains
that of two eigenvalues at the crossover between regions (a) and (b). In
App.8.D we study the effect of confining the spurious eigenvalues to a
region [δ, φmax]. We observe that when most eigenvalues are confined to
regions (a) and (b), the scaling laws observed in the previous section break
down, however the worst-case behaviour remains that of a single spurious
eigenvalue. This implies that sufficiently long K is not a requirement for
QPE, even in the presence of large systems or small gaps δ; it can be
substituted by sufficient repetition of experiments. However, we do require
that the ground state is guaranteed to have sufficient overlap with the
starting state - A0 > 1/K (as argued in Sec. 8.3). As QPE performance
scales better with K than it does with N , a quantum computer with
coherence time 2T is still preferable to two quantum computers with
coherence time T (assuming no coherent link between the two).
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8.5. The effect of experimental noise

Figure 8.6.: Performance of the time-series estimator in the presence of multiple
eigenvalues. Error bars show 95% confidence intervals (data points binned from
4× 106 simulations). Shaded regions show upper 2σ interval of data for each
bin.

8.5. The effect of experimental noise

Experimental noise currently poses the largest impediment to useful compu-
tation on current quantum devices. As we suggested before, experimental
noise limits K so that for K & Kerr the circuit is unlikely to produce
reliable results. However, noise on quantum devices comes in various
flavours, which can have different corrupting effects on the computation.
Some of these corrupting effects (in particular, systematic errors) may be
compensated for with good knowledge of the noise model. For example,
if we knew that our system applied U = e−iH(t+ε) instead of U = e−iHt,
one could divide φ̃0 by (t+ ε)/t to precisely cancel out this effect. In this
study we have limited ourselves to studying and attempting to correct
two types of noise: depolarizing noise, and circuit-level simulations of
superconducting qubits. Given the different effects observed, extending
our results to other noise channels is a clear direction for future research.
In this section we do not study multi-round QPE, so each experiment
consists of a single round. A clear advantage of the single-round method
is that the only relevant effect of any noise in a single-round experiment is
to change the outcome of the ancilla qubit, independent of the number of
system qubits Nsys.
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8. Quantum phase estimation for noisy, small-scale experiments

8.5.1. Depolarizing noise

A very simple noise model is that of depolarizing noise, where the outcome
of each experiment is either correct with some probability p or gives a
completely random bit with probability 1− p. We expect this probability
p to depend on the circuit time and thus the choice of k ≥ 0, i.e.

p = p(k) = e−k/Kerr . (8.40)

We can simulate this noise by directly applying it to the calculated proba-
bilities Pk,β(m|φ) for a single round

Pk,β(m|φ)→ Pk,β(m|φ)p(k) + 1− p(k)
2 . (8.41)

In Fig. 8.7, we plot the convergence of the time-series (blue) and Bayesian
(green) estimators as used in the previous section as a function of the
number of experiments, with fixed K = 50 = Kerr/2 fixed, A0 = 0.5,
Neig = 10 and δ = 0.5. We see that both estimators obey N−1/2 scaling
for some portion of the experiment, however this convergence is unstable,
and stops beyond some critical point.
Both the Bayesian and time-series estimator can be adapted rather

easily to compensate for this depolarizing channel. To adapt the time-
series analysis, we note that the effect of depolarizing noise is to send
g(k) → g(k)p(k) when k > 0, via Eq. (8.23) and Eq. (8.41). Our time-
series analysis was previously performed over the range k = −K, . . . ,K
(getting g(−k) = g∗(k) for free), and over this range

g(k)→ g(k)p(|k|). (8.42)

g(k) is no longer a sum of exponential functions over our interval [−K,K],
as it is not differentiable at k = 0, which is the reason for the failure of
our time-series analysis. However, over the interval [0,K] this is not an
issue, and the time-series analysis may still be performed. If we construct
a shift operator T using g(k) from k = 0, . . . ,K, this operator will have
eigenvalues eiφj−1/Kerr . This then implies that the translation operator T
can be calculated using g(k) with k > 0, and the complex argument of the
eigenvalues of T give the correct phases φj . We see that this is indeed the
case in Fig. 8.7 (orange line). Halving the range of g(k) that we use to
estimate φ0 decreases the estimator performance by a constant factor, but
this can be compensated for by increasing N .

Adapting the Bayesian estimator requires simply that we use the correct
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8.5. The effect of experimental noise

Figure 8.7.: Convergence of Bayesian and time-series estimators in the presence
of depolarizing noise and multiple eigenvalues, both with and without noise
compensation techniques (described in text). Fixed parameters for all plots are
given in text. Shaded regions denote a 95% confidence interval (data estimated
over 200 QPE simulations). The black dashed line shows the N−1/2 convergence
expected in the absence of sampling noise. Data for the Bayesian estimator was
not obtained beyond N = 104 due to computational constraints.

conditional probability, Eq. (8.41). This in turn requires that we either have
prior knowledge of the error rate Kerr, or estimate it alongside the phases
φj . For simplicity, we opt to choose the former. In an experiment Kerr
can be estimated via standard QCVV techniques, and we do not observe
significant changes in estimator performance when it is detuned. Our
Fourier representation of the probability distribution of φ0 can be easily
adjusted to this change. The results obtained using this compensation are
shown in Fig. 8.7: we observe that the data follows a N−1/2 scaling again.

8.5.2. Realistic circuit-level noise

Errors in real quantum computers occur at a circuit-level, where individual
gates or qubits get corrupted via various error channels. To make connec-
tion to current experiments, we investigate our estimation performance
on an error model of superconducting qubits. Full simulation details
can be found in App.8.E. Our error model is primarily dominated by
T1 and T2 decoherence, incoherent two-qubit flux noise, and dephasing
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8. Quantum phase estimation for noisy, small-scale experiments

during single-qubit gates. We treat the decoherence time Terr = T1 = T2
as a free scale parameter to adjust throughout our simulations, whilst
keeping all other error parameters tied to this single scale parameter for
simplicity. In order to apply circuit-level noise we must run quantum
circuit simulations, for which we use the quantumsim density matrix sim-
ulator first introduced in [212]. We then choose to simulate estimating
the ground state energy of four hydrogen atoms in varying rectangular
geometries, with Hamiltonian H taken in the STO-3G basis calculated
via psi4 [321], requiring Nsys = 8 qubits. We make this estimation via
a lowest-order Suzuki-Trotter approximation [322] to the time-evolution
operator e−iHt. To prevent energy eigenvalues wrapping around the circle
we fix t = 1/

√
Trace[H†H]/(2Nsys) ∗. The resultant 9-qubit circuit is made

using the OpenFermion package [298].
In lieu of any circuit optimizations (e.g. [264, 290]), the resulting circuit

has a temporal length per unitary of TU = 42 µs (with single- (two-) qubit
gate times 20 ns (40 ns)). This makes the circuit unrealistic to operate
at current decoherence times for superconducting circuits, and we focus
on decoherence times 1− 2 orders of magnitude above what is currently
feasible, i.e. Terr = 5− 50 ms. However one may anticipate that the ratio
TU/Terr can be enlarged by circuit optimization or qubit improvement.
Naturally, choosing a smaller system, less than 8 qubits, or using error
mitigation techniques could also be useful.
We observe realistic noise to have a somewhat different effect on both

estimators than a depolarizing channel. Compared to the depolarizing
noise, the noise may (1) be biased towards 0 or 1 and/or (2) its dependence
on k may not have the form of Eq. (8.40).

In Fig. 8.8, we plot the performance of both estimators at four different
noise levels (and a noiseless simulation to compare), in the absence of
any attempts to compensate for the noise. Unlike for the depolarizing
channel, where a N−1/2 convergence was observed for some time before
the estimator became unstable, here we see both instabilities and a loss
of the N−1/2 decay to begin with. Despite this, we note that reasonable
convergence (to within 1−2%) is achieved, even at relatively low coherence
times such as Kerr = 10. Regardless, the lack of eventual convergence to
zero error is worrying, and we now shift to investigating how well it can

∗This normalization is not good for large systems since it makes t exponentially
small in system size. A scalable choice for normalization is to first determine upper
and lower bounds on the eigenvalues of H present in the starting state, assume that
they occur in a some numerical window W . Given W (which is at most poly(Nsys)),
one sets U = exp(−iπH/W ). The implementation of this U in Trotterized form with
sufficient accuracy determines TU .
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8.5. The effect of experimental noise

be improved for either estimator.

Figure 8.8.: Performance of Bayesian (solid) and time-series (dashed) esti-
mators in the presence of realistic noise without any compensation techniques.
Shaded regions denote 95% confidence intervals (averaged over 100− 500 QPE
simulations). The time-series analysis requires N > 2K experiments in order to
produce an estimate, and so its performance is not plotted for N < 100.

Adjusting the time-series estimator to use only g(k) for positive k gives
approximately 1−2 orders of magnitude improvement. In Fig. 8.9, we plot
the estimator convergence with this method. We observe that the estimator
is no longer unstable, but the N−1/2 convergence is never properly regained.
We may study this convergence in greater deal for this estimator, as we
may extract g(k) directly from our density-matrix simulations, and thus
investigate the estimator performance in the absence of sampling noise
(crosses on screen). We note that similar extrapolations in the absence of
noise, or in the presence of depolarizing noise (when compensated) give an
error rate of around 10−10, which we associate to fixed-point error in the
solution to the least squares problem (this is also observed in the curve
without noise in Fig. 8.9). Plotting this error as a function of Kerr shows
a power-law decay - ε ∝ K−αerr ∝ T−αerr with α = 1.9 ≈ 2. We do not have a
good understanding of the source of the obtained power law.
The same compensation techniques that restored the performance of

the Bayesian estimator in the presence of depolarizing noise do not work
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8. Quantum phase estimation for noisy, small-scale experiments

Figure 8.9.: Performance of time-series estimator with compensation techniques
(described in text). Shaded regions denote 95% confidence intervals (averaged
over 200 QPE simulations). Final crosses show the performance in the absence
of any sampling noise (teal cross is at approximately 10−10), i.e. in the limit
N → ∞; dashed lines are present to demonstrate this limit. (inset) Plot of
error without sampling noise as a function of the decoherence time Terr. Y-axis
corresponds to y-axis on main plot (as color-coded).

nearly as well for realistic noise. Most likely this is due to the fact that the
actual noise is not captured by a k-dependent depolarizing probability. In
Fig. 8.10 we plot the results of using a Bayesian estimator when attempting
to compensate for circuit-level noise by approximating it as a depolarizing
channel with a decay rate (Eq. 8.40) of Kerr = Terr/TUNsys. This can
be compared with the results of Fig. 8.8 where this compensation is not
attempted. We observe a factor 2 improvement at low Terr, however
the N−1/2 scaling is not regained, and indeed the estimator performance
appears to saturate at roughly this point. Furthermore, at Terr = 50 ms,
the compensation techniques do not improve the estimator, and indeed
appear to make it more unstable.
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Time-series estimator Bayesian estimator

Speed (scaling) O(K) O(N2)

Speed (timing) Processes large datasets
in milliseconds

Takes hours to process
105 experiments

Accuracy ε ∝ N−1/2K−1A−1
0 δ−2

demonstrated.

ε ∝ N−1/2K−1

demonstrated
ε ∝ A−1

0 δ−2 expected.
Number of eigenvalues

estimated
100− 200 with
relative ease Limited to 2− 5

Improve accuracy
via classical

approximation
Not obvious

Can get speedup via
choice of prior (not

attempted in this chapter)
Account for error Limited ability Limited ability

Table 8.1.: Table comparing metrics of interest between the two studied esti-
mators. All metrics are implementation-specific, and may be improvable.

To investigate this further, in Fig. 8.10 (inset) we plot a Bayes Factor
analysis of the Bayesian estimators with and without compensation tech-
niques. The Bayes Factor analysis is obtained by calculating the Bayes
Factors

F =
∏

expt n

P (mn|M)
P (mn|M0) , (8.43)

where M is the chosen Bayesian model (including the prior knowledge),
and M0 is a reference model, and P (m|M) is the probability of observing
measurement m given model M . As a reference model we take that of
random noise - P (m|M0) = 0.5. We observe that at large Terr the Bayes
factor with compensation falls below that without, implying that the
compensation techniques make the model worse. We also observe that at
very small Terr, the estimator makes worse predictions than random noise
(log(F ) < 0). Despite our best efforts we have been unable to further
improve the Bayesian estimator in noisy single-round QPE experiments.

8.6. Discussion
In this chapter, we have presented and studied the performance of two
estimators for quantum phase estimation at low K for different experiment
protocols, different systems (in particular those with one vs many eigenval-
ues), and under simplistic and realistic noise conditions. These findings are
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8. Quantum phase estimation for noisy, small-scale experiments

Figure 8.10.: Performance of single-round Bayesian QPE with four sets of
realistic noise using a compensation technique described in the text. Shaded
regions are 95% confidence intervals over 200 − 500 QPE simulations. (inset)
a Bayes factor analysis for the data below. Line color and style matches the
legend of the main figure.

summarized in Table 8.1. From our numerical studies, we observe scaling
laws for our time-series estimator; we find it first-order sensitive to the
overlap A0 between starting state and ground state, second-order sensitive
to the gap between the ground state and the nearest eigenstates, and
second-order sensitive to the coherence time of the system. The Bayesian
estimator appears to perform comparably to the time-series estimator in
all circumstances, and thus should obey similar scaling laws.

We further observe that realistic noise has a worse effect on QPE than
a depolarizing channel, for which the effects can largely be mitigated. We
have numerically explored (but not reported) multi-round QPE in the
presence of noise. Since each experiment has multiple outputs, it is harder
to adapt the classical data analysis to the presence of noise and our results
for realistic noise have not been convincing so far. Since the performance
of multi-round noiseless QPE is already inferior to single-round noiseless
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QPE, we do not advocate it as a near-term solution, although, for noiseless
long circuits it does have the ability to project onto a single eigenstate,
which single-round QPE certainly does not.

Despite our slightly pessimistic view of the effect of errors on the per-
formance of QPE, we should note that the obtained error of 10−3 at
Terr ≈ 13NsysTU or Kerr = 13 would be sufficient to achieve chemical
accuracy in a small system. However, as the energy of a system scales
with the number of particles, if we require a Hamiltonian’s spectrum to
fit in [−π, π), we will need a higher resolution for QPE, making error
rates of 10−3 potentially too large. This could potentially be improved by
improving the compensation techniques described in the text, applying
error mitigation techniques to effectively increase Terr, or by using more
well-informed prior distributions in the Bayesian estimator to improve accu-
racy. All of the above are obvious directions for future work in optimizing
QPE for the NISQ era. Another possible direction is to investigate QPE
performance in other error models than the two studied here. Following
Ref. [295], we expect SPAM errors to be as innocuous as depolarizing
noise. However, coherent errors can be particularly worrying as they
imitate alterations to the unitary U . The time-series estimator is a clear
candidate for such a study, due to its ease in processing a large number of
experiments and its ability to be studied in the absence of sampling noise.
We also expect that it is possible to combine the time-series estimator
with the Heisenberg-limited scaling methods of Refs. [295, 316] so as to
extend these optimal methods to the multiple-eigenvalue scenario with
Neig > 1 eigenvalues, and that these methods could be extended to analog
or ancilla-free QPE settings such as described in Ref. [295].

In this chapter we do not compare the performance of quantum phase
estimation with purely classical methods. Let’s assume that we have
a classical efficient representation of the starting state Ψ and one can
efficiently calculate TrHk|Ψ〉〈Ψ| for k = 1, . . . ,K with K = O(1) (for
fermionic Gaussian starting states and fermionic Hamiltonians this is
possible as a single fermionic term in Hk can be estimated as the Pfaffian
of some matrix). Then, if there are at most K = O(1) eigenstates in
this initial state, the time-series method would allow us to extract these
eigenvalues efficiently. Thus in this setting and under these assumptions
quantum phase estimation would not offer an exponential computational
advantage.
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8.A. Derivation of the identity in Eq. (8.25)
One first writes for 0 ≤ k ≤ K/2:∑

j

Aj exp(ikφj) =
∑
m,n

Πk
i=1[(−1)mi − i(−1)ni ]×

P(m1, . . . ,mK/2, n1, . . . nK/2|φ,A) (8.44)

where P(m1, . . . ,mK/2, n1, . . . nK/2|φ,A) is the probability for a specific
series of outcomes m1, . . . ,mK/2 for β = 0 and n1, . . . , nK/2 for β = π/2.
To see that the above is true, note that it is quickly true for Neig = 1 by
using Eq. (8.23) for g(1). By linearity on the left and right hand side it
then holds generally.
Since the order of the outcomes of the rounds does not matter, i.e.

P(m1, . . . ,mK/2, n1, . . . nK/2|φ,A) only depends on the Hamming weights
m = |m| and n = |n|, we can symmetrize the coefficient over per-
mutations of the rounds and replace P(m1, . . . ,mK/2, n1, . . . nK/2|φ,A)
by P(m, n|φ,A)/(

(
K/2
m

)(
K/2
n

)
). This gives the following expression for

χk(m,n):

χk(m, n) = 1
((K/2)!)2

∑
π1∈SK/2,π2∈SK/2

k∏
i=1

((−1)mπ1(i) − i(−1)nπ2(i)),

wheremi is the ith bit of a bitstring with Hamming weight m (and similarly
ni), and SK/2 is the symmetric group of permutations. We can expand
this last expression as

χk(m, n) =
l∑

k=0

(
k

l

)
(−i)k−lρ(l,m)ρ(k − l, n)

ρ(l,m) = 1
(K/2)!

∑
π

(−1)mπ(1) . . . (−1)mπ(l)

= −1 + 2
(K/2)!

∑
π:mπ(1)...mπ(l)is even

1

The sum
∑
π:mπ(1)...mπ(l)is even can be written as a sum over permutations

such that mπ(1) . . .mπ(l) has Hamming weight 2p with p = 0, 1, . . . bl/2c.
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Then one counts the number of permutations of a K/2-bitstring of Ham-
ming weight m such that some segment of length l has Hamming weight 2p
which equals

(
m
2p
)(
K/2−m
l−2p

)
l! (K/2− l)!. All together this leads to χk(m, n)

in Eq. (8.25). It is not clear whether one can simplify this equality or verify
it directly using other combinatorial identities or (Chebyshev) polynomials.

8.B. Variance calculations for time-series
estimator

For the case of estimating a single eigenvalue using single-round QPE
with the time-series estimator, one can directly calculate the error in the
estimation. In this situation, our matrices G0 and G1 are column vectors,

GT0 = (g(−K), g(−K + 1), . . . , g(K − 1)), (8.45)
GT1 = (g(−K + 1), g(−K + 2), . . . , g(K)). (8.46)

The least-squares solution for T is then

T = (G†0G0)−1G†0G1 =
∑K−1
k=−K g

∗(k)g(k + 1)∑K−1
k=−K g

∗(k)g(k)
. (8.47)

For a single frequency, g(k) = eikφ, and immediately T = eiφ. However,
we estimate the real and imaginary components of g(k) separately. Let us
write in terms of our independent components

T = Tr + iTi, g(k) = g0
k + ig1

k, (8.48)

remembering that g0
k = g0

−k and g1
k = −g1

−k (i.e. the variables are corre-
lated). Our target angle φ = tan−1 Ti/Tr, and so we can calculate

Var(φ) =
∑
a,k

[
∂φ

∂gak

]2
Var[gak ]

=
[

1
T2
r + T2

i

]2∑
a,k

[
Tr
∂Ti
∂gak
− Ti

∂Tr
∂gak

]2
Var[gak ]. (8.49)
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Let us expand out our real and imaginary components of T:

Tr =
∑K−1
k=−K(g0

kg
0
k+1 + g1

kg
1
k+1)∑K−1

k=−K(g0
k)2 + (g1

k)2
, (8.50)

Ti =
∑K−1
k=−K(g0

kg
1
k+1 − g0

kg
1
k+1)∑K−1

k=−K(g0
k)2 + (g1

k)2
(8.51)

Then, we can calculate their derivatives as (recalling again that g0
k = g0

−k
and g1

k = g1
−k)

∂Tr
∂gak

= 2
1 + δk,0

[
(1− δk,K)gak+1 + gak−1 − 2Trgak∑k+1

k=−K((g0
k)2 + (g1

k)2)

]
(8.52)

∂Ti
∂gak

= 2(−1)a

1 + δk,0

[
(1− δk,K)g1−a

k+1 − g
1−a
k−1 − 2Tigak∑k+1

k=−K((g0
k)2 + (g1

k)2)

]
. (8.53)

Substituting in for gak , we find that everything precisely cancels when
k 6= K!

∂Tr
∂g0

k

= −∂Ti
∂g1

k

= −2δk,K
cos((K + 1)φ)∑k+1

k=−K((g0
k)2 + (g1

k)2)
(8.54)

∂Ti
∂g0

k

= ∂Tr
∂g1

k

= −2δk,K
sin((K + 1)φ)∑k+1

k=−K((g0
k)2 + (g1

k)2)
. (8.55)

Our variance is then

Var(φ) =
[

2
(T2
r + T2

i )
∑k+1
k=−K((g0

k)2 + (g1
k)2)

]2

×{
Var[g0

K ] (− cos(φ) sin((K + 1)φ) + sin(φ) cos((K + 1)φ))2

+Var[g1
K ] (cos(φ) cos((K + 1)φ) + sin(φ) sin((K + 1)φ))2

}
=
[

1
K

]2 {
Var[g0

K ] sin2(Kφ) + Var[g1
K ] cos2(Kφ)

}
. (8.56)

If gaK is estimated with N shots, we expect Var[g0
K ] = 1

N , and

Var(φ) ∝ 1
K2N

. (8.57)
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As described in Sec. 8.3.1, for multi-round experiments we weight the
least-squares inversion as per Eq. (8.27). This weighting adjusts the gak
values in Eqs. (8.52,8.53) so that ∂φ

∂gA
k

is no longer zero when k < K. The
sum over k in Eq. (8.49) then lends an extra factor of K to the variance,
reducing it to

Var(φ) ∝ 1
KN

. (8.58)

8.C. Fourier representation for Bayesian
updating

For simplicity, we first consider when the starting state is a simple eigen-
state |φj〉. After each multi-round experiment we would like to update the
probability distribution P (φj = φ), i.e. Pn(φ) = Pk,β(m|φ)

P (m) Pn−1(φ). We
will represent the 2π-periodic probability distribution Pn(φ) by a Fourier
series with a small number of Fourier coefficients Nfreq which are updated
after each experiment, that is, we write

P (φ) = p0 +
Nfreq−1∑
j=1

(p2j−1 sin(jφ) + p2j cos(jφ)) ≡ p. (8.59)

We thus collect the coefficients as a Nfreq-component vector p. The
Fourier representation has the advantage that integration is trivial i.e.∫ π
−π P (φ)dφ = 2πp0 so that the probability distribution is easily normalized.
In addition, the current estimate φ̃ is easy to obtain:

φ̃ = arg(〈eiφ〉P ) = arg(p2 + ip1). (8.60)

Another observation is that the Holevo phase variance is easily obtained
from this Fourier representation as

Var(P (φ)) = 1
|〈eiφ〉P |2

− 1 = 1
π2(p2

2 + p2
1) − 1. (8.61)

Note that this is the Holevo phase variance of the posterior distribution of
a single simulation instance. By comparison, in Fig. 8.4 we have calculated
the same quantity over repeat simulations. However, in general we find
the two to be equivalent.

The other advantage of the Fourier representation is that a single-round
in an experiment is the application of a sparse matrix on p. One has
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8. Quantum phase estimation for noisy, small-scale experiments

P (φ)→ Pkr,βr (mr|φ)P (φ) = cos2(krφ/2 +γ/2)P (φ), where γ = βr +mrπ
which is equivalent to

p→ 1
2p + 1

4 cos(γ)M0(kr)p + 1
4 sin(γ)M1(kr)p. (8.62)

The coefficients of the update matrices M0,1(kr) can be simply calculated
using the double angle formulae and employing

cos2(kφ/2 + γ/2) cos(jφ)

= 1
2 cos(jφ) + 1

4 cos(γ) (cos((j + k)φ) + cos((j − k)φ))

+ 1
4 sin(γ) (sin((j − k)φ)− sin((j + k)φ)) , (8.63)

and

cos2(kφ/2 + γ/2) sin(jφ)

= 1
2 sin(jφ) + 1

4 cos(γ) (sin((j + k)φ) + sin((j − k)φ))

+ 1
4 sin(γ) (cos((j + k)φ)− cos((j − k)φ)) . (8.64)

The matrices Ma(n) are then calculated from the above equations. When
j > k, we have

[M0(k)]2j+2k,2j = 1, [M0(k)]2j−2k,2j = 1,
[M0(k)]2j+2k−1,2j−1 = 1, [M0(k)]2j−2k−1,2j−1 = 1,
[M1(k)]2j+2k−1,2j = −1, [M1(k)]2j−2k−1,2j = 1,
[M1(k)]2j+2k,2j−1 = 1, [M1(k)]2j−2k,2j−1 = −1,

When j ≤ k, we have to account for the sign change in sin((j − k)φ):

[M0(k)]j+2k,j = 1, [M0(k)]2k−2j,2j = 1,
[M0(k)]2k−2j−1,2j−1 = −1
[M0(k)]2k,0 = −2, [M0(k)]4k−1,2k−1 = 1
[M1(k)]2j+2k−1,2j = −1, [M1(k)]2k−2j−1,2j = −1,
[M1(k)]2j+2k,2j−1 = 1, [M1(k)]2k−2j,2j−1 = −1,
[M1(k)]2k−1,0 = 2, [M1(k)]4k−1,2k = 1.
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8.C. Fourier representation for Bayesian updating

For a multi-round experiment with R rounds, one thus applies such
sparse matrices to the vector p R times. Note that each round with given
kr requires at most kr more Fourier components, hence an experiment with
at most K controlled-U applications adds at most K Fourier components.
Thus, when the total number of unitary rotations summed over all exper-
iments Ktot =

∑
n

∑
r kr > Nfreq, our representation of the distribution

is no longer accurate. When Ktot ≤ Nfreq on the other hand, it will be
accurate.

8.C.1. Bayesian updating for multi-eigenvalue
starting state

In this section we detail the method by which we store the distributions
P jn(φj) and P red

n (A) of Eq. (8.31) and perform the Bayesian update of
Eq. (8.30). We do so by representing the marginal probabilities P jn(φj)
by a Fourier series with a small number of Fourier coefficients which are
updated after each experiment as shown in the previous section. We
assume that there are most Neig coefficients Aj > 0 and thus Neig φj .

From our independence assumption, individual updates of P j(φj) may
be calculated by integrating out the other unknown variables in Eq. (8.30):

P jn(φj) =
∫ ∏

l 6=j
dφlP

l
n−1(φl)

∫ dA P red
n−1(A)Pk,β(m|φ,A)P jn−1(φj).

(8.65)
Expanding the conditional probability of Eq. (8.10) and rewriting leads to
the form

P jn(φj) = 1
Pk,β(m)

(
C +Bj

∏
r

Pkr,βr (mr|φj)
)
P jn−1(φj), (8.66)

with

C =
∑
k 6=j

Bk

∫
dφkP

k
n−1(φk)

∏
r

Pkr,βr (mr|φk),

and Bj =
∫
dA P red

n−1(A)Aj . Here we have used that
∫
dφlP

l
n−1(φl) = 1.

One can concisely write Bj as the components of a vector B. Computing
Eq. (8.30) then involves creating an ‘update’ distribution for each φj ,
calculating the integral of each distribution, and then forming the new
distribution from a weighted sum from the ‘update’ distributions.
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8. Quantum phase estimation for noisy, small-scale experiments

Calculating the distribution P red
n (A) is complicated slightly by the

restriction that
∑
j Aj = 1, Aj ≥ 0, meaning that we cannot assume

the distribution of individual Aj terms is uncorrelated. The marginal
probability distribution equals

P red
n (A) =

P red
n−1(A)
Pk,β(m)

∑
j

Aj

∫
dφjP

j
n−1(φj)

∏
r

Pkr,βr (mr|φj). (8.67)

or
P red
n (A) =

P red
n−1(A)
Pk,β(m) A · qn−1, (8.68)

where the jth component (qn−1)j is the integral

(qn−1)j =
∫
dφjP

j
n−1(φj)

∏
r

Pkr,βr (mr|φj). (8.69)

As A only enters our estimation through the vector B = (B0, . . . , BNeig),
we only need approximate this value. Assuming we know the marginal
probabilities Pn(φj) for all experiments n = 1, . . . , N , we can estimate B
after all experiments by the maximum likelihood value A(max),

A(max)
N = argmax

A
f(A)

f(A) = log
(
Pprior(A)

N∏
n=1

A · qn

)

= log(Pprior(A)) +
N∑
n=1

log(A · qn).

Evaluating this equation for up N = 1000 experiments, taking Nfreq =
10000 frequency components of Neig = 2 eigenvalues takes less than a
second on a laptop using a method such as sequential least-squares pro-
gramming [323]. However, beyond this it becomes fairly computationally
intensive. Thus, after N > 100 experiments have been performed, we
switch to a local optimization method. We determine the optimal Bn

after n experiments from its prior value Bn−1 via a single step of an
approximate Newton’s method, that is, we take

Bn = Bn−1 −Π[H−1(f(Bn−1)) (~∇f)(Bn−1)].
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8.C. Fourier representation for Bayesian updating

where ~∇f(A) is the first derivative of f at A and H is the Hessian matrix
of f , i.e. Hij = ∂Ai∂Ajf(A). Here Π[A] is the projector onto the plane∑Neig
j=0 Aj = 1 so that the update preserves the normalization. We have

∂Aif(A) = ∂AiPprior(A)
Pprior(A) +

N∑
n=1

(qn)i
A · qn

We approximate the second term for each step as coming from only from
the added term, i.e.

~∇f(Bn−1) ≈ qn
Bn−1 · qn

, (8.70)

The Hessian equals

Hij(f(A)) = −
N∑
n=1

(qn)i(qn)j
(A · qn)2 , (8.71)

but we approximate this at the nth step

H
(n)
ij (f(Bn−1)) ≈ H(n−1)

ij − (qn)i(qn)j
(Bn · qn)2 . (8.72)

This approximation allows H to be updated without summing over each
experiment.

With the above implemented, we observe that our estimator can process
data from N = 10, 000 experiments to estimate Neig = 2 eigenvalues with
N = 20, 000 Fourier components within approximately two minutes on
a laptop. Unfortunately, this method scales as N2, as the number of
frequencies required for accurate estimation grows as the total number of
unitaries applied.

As the mean, variance and integration calculations only require the first
few frequencies of the distribution, it may be possible to reduce this cost
by finding approximation techniques for higher frequency components.
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8. Quantum phase estimation for noisy, small-scale experiments

8.D. Convergence of the (noiseless)
time-series analysis in case of multiple
eigenvalues.

In this section we present an expansion of Fig. 8.6, namely Fig. 8.11, by
drawing the spurious eigenvalues φj from a range closer to the target
eigenvalue φ0. This negates the drop in estimation error observed in
Fig. 8.6 that was caused by the majority of eigenvalues lying in region
(c) of Fig. 8.5. We observe that for certain gaps δ, multiple eigenvalues
confined to a thin region [δ, φmax] can have a worse effect on our ability
to estimate φ0 than that of a single eigenvalue at δ. However, this loss in
accuracy does not get critically worse with the addition of more eigenvalues.
Neither is it worse than the worst-possible estimation with two eigenvalues.

8.E. Details of realistic simulation
In this Appendix we give details of the method for the realistic noisy circuit
simulation of Sec. 8.5.2. Our density-matrix simulator is fairly limited in
terms of qubit number, and so we opt to simulate H4 in the STO-3G basis.
This molecule has 8 spin orbitals and thus requires 9 qubits for the QPE
simulation (with the additional qubit being the ancilla). We choose 10
rectangular molecular geometries for the H4 system, parametrized by a
horizontal distance dx and a vertical distance dy (i.e. the four H atoms
are in the positions (±dx/2,±dy/2, 0)). We calculate the Hartree-Fock
and full-CI solutions to the ground state using the psi4 package [321] with
the openfermion interface [298]. This allows to calculate the true ground
state energy E0 for each geometry, and the overlap A0 between the ground
state and the Hartree-Fock state, which we choose as our starting state
|Ψ〉. Due to symmetry and particle number conservation, |Ψ〉 has non-zero
overlap with only 8 eigenstates of the full-CI solution, separated from
the ground state by a minimum gap δ. (When dx = dy, the true ground
state of H4 is actually orthogonal to the Hartree-Fock state, and so we
do not include any such geometries in our calculation.) The full error in
our calculation of the energy (at a fixed geometry) is then a combination
of three separate contributions: basis set error (i.e. from the choice of
orbitals), Trotter error, and the estimator error studied in this chapter
(which includes error from experimental noise). The Trotter error εTrotter
is reasonably large due to our use of only the first-order Suzuki-Trotter
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8.E. Details of realistic simulation

Figure 8.11.: Variations of Fig. 8.6, but with eigenstates φj drawn from a
range [0, φmax] as labeled. Error bars are 95% confidence intervals for each point,
shaded regions denote top 2σ interval (i.e. region containing the top 2.5%− 50%
of the population).
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8. Quantum phase estimation for noisy, small-scale experiments

approximation U =
∏
i e
−iHit ≈ e−iHt. Higher-order Suzuki-Trotter

expansions require longer quantum circuits, which in turn increase the
estimator error from experimental noise. Balancing these two competing
sources of error is key to obtaining accurate calculations and a clear target
for future study. In Tab. 8.2, we list some parameters of interest for each
studied geometry. We normalize the gap and the Trotter error by the
Frobenius norm ‖H‖F =

√
Trace[H†H]/2Nsys , as we chose an evolution

time t = 1/‖H‖F , making this the relevant scale for comparison with
scaling laws and errors calculated in the text.

dx [Å] dy [Å] E0 A0 δ/‖H‖F εTrotter/‖H‖F
0.4 0.5 -0.26 0.98 0.09 3.7× 10−4

0.6 0.7 -1.46 0.94 0.17 3.1× 10−3

0.8 0.9 -1.84 0.88 0.24 0.016
1.0 1.1 -1.96 0.80 0.23 0.017
1.2 1.3 -1.98 0.71 0.18 0.013
1.6 1.7 -1.94 0.55 0.09 6.0× 10−3

0.2 1.8 0.32 0.996 0.67 2.0× 10−4

0.4 1.6 -1.80 0.993 1.14 2.6× 10−3

0.6 1.4 -2.15 0.98 1.27 0.014
0.8 1.2 -2.09 0.96 0.73 0.021

Table 8.2.: Parameters of the H4 geometries used in the text. Terms are
described in App.8.E. ||H||F =

√
Trace[H†H]/2Nsys .

8.E.1. Error model and error parameters
Throughout this chapter we simulate circuits using an error model of
superconducting qubits first introduced in Ref. [212]. This captures a range
of different error channels with parameters either observed in experimental
data or estimated via theory calculations. All error channels used are
listed in Tab. 8.3, and we will now describe them in further detail.
Transmon qubits are dominated primarily by decoherence, which is

captured via T1 and T2 channels [23]. Typical T1 and T2 times in state-of-
the-art devices are approximately 10− 100 µs. As other error parameters
are derived from experimental results on a device with T1 = T2 ≈ 30 µs,
we take these as a base set of parameters [182, 183]. Single-qubit gates in
transmon qubits incur slight additional dephasing due to inaccuracies or
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Parameter Symbol Standard Value Scaling
Qubit relaxation time T1 30 µs λ

Qubit dephasing time T2 30 µs λ

Single-qubit gate time Tsq 20 ns 1
Two-qubit gate time T2q 40 ns 1
In-axis rotation error paxis 10−4 λ−1

In-plane rotation error pplane 5× 10−4 λ−1

Incoherent flux noise A (1µΦ0)2 λ−1

Measurement time Tmeas 300 ns 1
Depletion time Tdep 300 ns 1
Readout infidelity εRO 5× 10−3 λ−1

Measurement induced decay pd,i, pd,f 0.005, 0.0015 λ−1

Table 8.3.: Standard parameters of error models used in density matrix
simulation. Table adapted from Ref. [212] with all parameters taken from
therein (with the exception of the 1/f flux noise, which is made incoherent as
described in text).

fluctuations in microwave pulses. We assume such dephasing is Markovian,
in which case it corresponds to a shrinking of the Bloch sphere along the
axis of rotation by a value 1 − paxis, and into the perpendicular plane
by a value 1 − pplane. We take typical values for these parameters as
paxis = 10−4, pplane = 5 · 10−4 [212].

Two-qubit gates in transmon qubits incur dephasing due to 1/f flux noise.
Assuming that the phase in an ideal C-Phase gate G = diag(1, 1, 1, eiφ))
is controlled by adjusting the time of application, this suggests a model
for the applied gate which is

G(δflux) =


1 0 0 0
0 1 0 0
0 0 eiδfluxφ 0
0 0 0 ei(1+δflux/2)φ

 , (8.73)

where δflux is drawn from a normal distribution around 0 with standard
deviation σflux. One can estimate σflux ≈ 0.01 rad for a typical gate length
of 40 ns [212]. The noise is in general non-Markovian, as δflux fluctuates
on longer timescale than a single gate. However, to make the simulation
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8. Quantum phase estimation for noisy, small-scale experiments

tractable, we approximate it as Markovian. The Pauli transfer matrix of
this averaged channel [324] reads

Λ[G] =
∫
dδfluxP (δflux)Λ[G(δflux)], (8.74)

where the Pauli transfer matrix of a channel G is given by Λ[G]i,j =
Tr[σiGσj ].

During qubit readout, we assume that the qubit is completely dephased
and projected into the computational basis. We then allow for a Tmeas =
300 ns period of excitation and de-excitation (including that from T1-decay),
during which the qubit state is copied onto a classical bit. This copying is
also assumed to be imperfect, with a probability εRO of returning the wrong
result. The qubit then has an additional Tdep = 300 ns waiting period
before it may participate in gates again (to allow resonator depletion [182]),
over which additional excitation and de-excitation may occur. Though
simple, this description is an accurate model of experimental results.
Typically experiments do not observe measurement-induced excitation to
the |1〉 state, but do observe measurement-induced decay [212]. Typical
values of such decay are 0.005 prior to the copy procedure, and 0.015 after.

Though reasonably accurate, this error model does fail to capture some
details of real experimental systems. In particular, we do not include
leakage to the |2〉 state, which is a dominant source of two-qubit gate error.
Furthermore, we have not included cross-talk between qubits.
To study the effect of changing noise levels while staying as true as

possible to our physically-motivated model, we scale our noise parameters
by a dimensionless parameter λ such that the contribution from each error
channel to the simulation remains constant. In Tab. 8.3 we show the
power of λ that each error term is multiplied by during this scaling. We
report Terr := T1 = T2 in the main text instead of λ to make connection
to parameters regularly reported in experimental works.
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Samenvatting
Dit proefschrift behandelt onderwerpen uit twee onderzoeksgebieden. De
eerste twee hoofdstukken hebben betrekking op het bestuderen en voor-
spellen van elektronische eigenschappen van een exotische klasse van nieuwe
materialen — zogenaamde Weyl-semimetalen. De resterende vijf hoofd-
stukken bestuderen enkele van de vereiste onderdelen voor de besturing
en werking van een toekomstige quantumcomputer — de hardware laag,
de software laag, en de laag van foutcorrectie die daartussen nodig is. Het
thema dat deze delen verbindt, is topologie; het idee dat de eigenschappen
van een systeem afhangen van macroscopische in plaats van microscopische
kenmerken. In quantuminformatie leidt dit tot de contra-intuïtieve voor-
spelling dat er macroscopische vrijheidsgraden kunnen worden ontworpen
die bestand zijn tegen ruis. Dit is contra-intuïtief aangezien quantumver-
schijnselen in principe sneller vervallen in grotere systemen, dan in kleinere
systemen. Om deze reden is de quantumwereld tot de 20e eeuw onopge-
merkt gebleven.

In het eerste deel onderzoeken we topologische effecten in de vaste stof
fysica. In de vaste stof zorgt topologie voor het bestaan van systemen met
bijzondere deeltjes, die niet aan de gebruikelijk Schrödingervergelijking
voldoen: deeltjes in een Weyl-semimetaal voldoen aan de Weyl-vergelijking,
en deeltjes in supergeleidende nanodraden voldoen aan de Majorana-
vergelijking. Deze vergelijkingen komen uit de hoge-energiefysica en het
was onverwacht dat ze in de lage-energie fysica van de vaste stof zijn
opgedoken. De topologie van de elektronische bandstructuur zorgt ervoor
dat deze deeltjes stabiel zijn ook als er imperfecties in het materiaal
aanwezig zijn.
Een belangrijk kenmerk dat voortkomt uit de elektronische structuur

van een metaal is hoe de eigenschappen ervan variëren onder invloed
van een magnetisch veld. Dit heeft toepassingen in de elektronische-
en computerindustrie, maar biedt ook een middel om de elektronische
structuur zelf te bestuderen. Een Leidse ontdekking is de periodieke variatie
van materiaaleigenschappen (specifieke warmte, elektrische weerstand) als
functie van het magneetveld, effecten die naar de ontdekkers genoemd zijn
(het de Haas-van Alphen effect en het Shubnikov-de Haas effect — prof.
W.J. de Haas was een opvolger van Kamerlingh Onnes). In hoofdstuk 2
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laten we zien hoe een speciaal soort Weyl-semimetalen (type-II genaamd)
door deze metingen bestudeerd kan worden. Het effect dat optreedt is
dat elektronen kunnen tunnelen tussen verschillende toegestane orbitalen
op een manier die analoog is aan het Klein-tunnelingeffect uit de hoge-
energiefysica. De topologie van dit effect vindt haar oorsprong in het feit
dat twee lijnen die rond een Möbius-band lopen elkaar op minstens één
punt moeten kruisen.

Een van de meest verrassende voorspellingen in Weyl-semimetalen staat
bekend onder de naam chiraal magnetisch effect, wat verwijst naar het
optreden van een elektrische stroom parallel aan een aangelegd magnetisch
veld. Dit is onverwacht omdat geladen deeltjes, volgens de Lorentzkracht,
loodrecht op een magnetisch veld worden versneld. Men kan inder-
daad bewijzen dat de ijksymmetrie van het elektromagnetisme een even-
wichtsstroom evenwijdig aan een aangelegd magnetisch veld verbiedt. De
ijksymmetrie is echter gebroken in een supergeleider, waardoor het chiraal
magnetische effect in evenwicht tot de mogelijkheden behoort. In hoofd-
stuk 3 demonstreren we het optreden van een superstroom in evenwicht
langs het magnetische veld, als manifestatie van het chiraal magnetische
effect. De stroom van geladen deeltjes wordt gecompenseerd door een
tegengestelde stroom van neutrale deeltjes, zodat er netto geen warmte-
stroom optreedt in evenwicht — hetgeen door thermodynamische principes
verboden wordt. De richting van de elektrische stroom is afhankelijk van
de vraag of de Weyl-deeltjes een linkshandige of rechtshandige chiraliteit
hebben.

In deel twee van dit proefschrift verleggen we onze focus naar topologische
effecten in quantumcomputers. Allereerst onderzoeken we quantumfout-
correctie, waarbij topologie wordt gebruikt om de informatie op een meer
robuuste wijze in een quantumcomputer op te slaan. Hoewel algemeen
wordt aangenomen dat fouttolerante quantumberekeningen uiteindelijk
mogelijk zullen zijn, ontbraken nauwkeurige numerieke voorspellingen
van de mate waarin fouten met de huidige hardware gecorrigeerd kunnen
worden. In hoofdstuk 4 verhelpen we dit door een simulatie uit te voeren
van een prototype van een code voor quantumfoutcorrectie, bekend als
de “surface code”, op supergeleidende quantum hardware met 17 qubits
(“Surface-17”). Als onderdeel hiervan beschrijven en ontwikkelen we een
expliciet schema voor het meten van de prestaties van de Surface-17-chip.
Met de simulatie die in dit werk is ontwikkeld, kunnen we de experimentele
prestaties nauwkeurig modelleren als functie van het soort verstoringen
wat op kan treden. Deze mogelijkheid is sindsdien essentieel gebleken voor
zowel theoretische als experimentele studies van de quantum hardware.

Zoals vermeld in het vorige hoofdstuk, is quantumfoutcorrectie gebaseerd
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op een methode om lokale fouten te diagnosticeren en te corrigeren (“de-
coderen”), voordat ze zich ophopen en de quantuminformatie onherstelbaar
beschadigen. Het optimaliseren van deze decodering vereist gedetailleerde
kennis van de onderliggende foutpercentages. In hoofdstuk 5 onderzoeken
we hoe iemand deze kennis precies kan bepalen binnen het kader van één
van de meest populaire decodeeralgoritmen, gebaseerd op een probleem
uit de grafentheorie. We testen en demonstreren deze decoder zowel voor
het schatten van onderliggende foutenpercentages in een statisch systeem,
als voor het bijhouden van veranderingen in de tijd in een dynamisch
systeem. We vinden dat de decoder de tijdsafhankelijke variaties van de
foutpercentages in een supergeleidende quantumchip tot op een tijdschaal
onder de milliseconde kan bijhouden.
De voorgaande twee hoofdstukken hadden betrekking op foutcorrectie

voor de surface code, wat een populaire topologische code is voor quan-
tumfoutcorrectie. Een andere topologische code, de “color code”, heeft
voordelen boven de surface code, maar onderzoek aan deze alternatieve
code wordt gehinderd door het gebrek aan goede decoders. In hoofdstuk 6
gebruiken we de techniek van machinaal leren door middel van een neuraal
netwerk om een decoder voor de color code te ontwikkelen. We demonstre-
ren in een simulatie dat ons effectief bescherming biedt tegen veelvuldig
voorkomende fouten in de quantumberekening. Voor zover aan ons bekend
is dit de best presterende decoder voor de color code tot nu toe. Een
bijkomend voordeel van het neurale netwerk, is dat het bruikbaar is voor
andere topologische codes, voor de methode van machinaal leren maakt
het immers niet uit welke de code is. Dit biedt interessante mogelijkheden
voor vervolgonderzoek.

In de laatste twee hoofdstukken onderzoeken we toekomstige implemen-
taties van quantumcomputers en de algoritmen die daarop kunnen worden
uitgevoerd. Majoranadeeltjes zijn veelbelovend voor quantumberekeningen
en worden om die reden intensief onderzocht als mogelijke qubits. Vanwege
hun topologische bescherming verwacht men lagere foutenpercentages dan
met de gangbare qubits (die ook met foutencorrectie nog heel beperkte
mogelijkheden hebben). Wij hebben onderzocht of Majoranadeeltjes nuttig
ingezet kunnen worden voor berekeningen uit de quantumchemie. Dat
is niet vanzelfsprekend, omdat de deeltjes in een molekuul elektronen
(of meer in het algemeen fermionen) zijn en geen Majoranadeeltjes. In
hoofdstuk 7 stellen we een schema voor waarin men paren van Majo-
ranadeeltjes kan combineren om er fermionen van te maken. We laten zien
hoe bekende quantumoperaties voor qubits kunnen worden herschreven in
de taal van fermionen, zonder eerst de gebruikelijke omweg te maken via
spinvariabelen.
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Om quantumchemieberekeningen op een quantumcomputer uit te voeren
met een versnelling ten opzichte van klassieke computers, moet men
bestaande algoritmen aanpassen aan de mogelijkheden en onmogelijkheden
van quantumcomputers. Het belangrijkste algoritme heet quantumfas-
eschatting. Zoals de naam aangeeft, biedt dit algoritme een manier aan
om de fase te bepalen die wordt opgebouwd in de tijd wanneer een quan-
tumtoestand via de Schrödingervergelijking evolueert. Bekende algoritmes
voor quantumfaseschatting vereisen een nauwkeurige bereiding van de
golffunctie, wat veel extra qubits kost. In het laatste hoofdstuk van dit
proefschrift laten we zien hoe men de efficiëntie van het algoritme aanzien-
lijk kan verbeteren door gebruik te maken van de methode van Prony om
fase-informatie uit een quantumcomputer te extraheren. Deze methode
heeft voordelen boven de gangbare Fourieranalyse, omdat het minder
qubits nodig heeft om toch een fijne resolutie te behalen. We bestuderen
de prestatie van deze methode met behulp van de simulatietechniek uit
hoofdstuk 4.

256



Summary
This thesis is split between different topics over two fields. The first two
chapters are concerned with studying and predicting electronic properties
of an exotic class of new materials — Weyl semimetals. The remaining five
chapters study some of the required parts for the control and operation of
a future quantum computer — the architecture and software, and the layer
of error correction needed in between. A theme that connects these parts
is topology; the idea that one may find behaviour in a system that depends
on macroscopic rather than microscopic features. In quantum information
this leads to the rather counterintuitive prediction that these macroscopic
degrees of freedom may be designed to be resilient against noise. This is
counterintuitive as quantum phenomena traditionally decohere faster in
larger systems, not smaller, allowing them to remain mostly unnoticed
until the 20th century. In condensed matter, topology allows for the
existence of systems with exotic effective particles: electronic excitations
in a Weyl semimetal with momentum near specific Weyl points obey the
Weyl equation, and low-energy electronic excitations in superconducting
nanowires obey the Majorana equation. Engineering such systems without
defect or disorder is a very difficult task, so we cannot expect to realise
such quasiparticles via fine-tuning alone. Luckily, topological protection
allows us to circumvent these concerns, and even construct systems (such
as effective single Weyl cones) that are fundamentally prohibited in nature.

In part one of this thesis, we investigate novel features of Weyl semimetals.
A key feature arising from the electronic structure of a metal (or any
conductor) is how its properties vary under the application of a magnetic
field. This has applications in the electronics and computing industry, but
also gives a means to study the electronic structure itself. The celebrated
de Haas-van Alphen and Shubnikov-de Haas effects (discovered in Leiden),
and their related counterparts, have been used with great success to probe
metals for the last fifty years. These effects appear as fluctuations of
various material properties (e.g. magnetic susceptibility, specific heat,
and electrical resistivity), periodic in one over the strength of an applied
magnetic field. In chapter 2, we show how a signature of a broad class of
Weyl semimetals (type-II Weyl semimetals) appears in measurements of
this type. This signature manifests by electrons tunneling between different
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allowed orbitals in a manner forbidden by a semi-classical description, in
a momentum-space analogue to the celebrated Klein tunneling effect.
Interestingly, we find that this effect has a topological protection separate
to that of a Weyl semimetal, that emerges from the inability to prevent
two lines running around a Mobius band from crossing at at least one
point.
One of the most stunning predictions in Weyl semimetals is the chiral

magnetic effect, whereby electrons are accelerated parallel to an applied
magnetic field. This is in contradiction to the standard behaviour of
charged particles which, following the Lorentz rule, are accelerated per-
pendicular to an applied magnetic field. Indeed, one may prove that the
gauge symmetry of the electron forbids an equilibrium current parallel to
an applied magnetic field. Thus, the chiral magnetic effect is not observ-
able in a regular metal in equilibrium. However, the gauge symmetry of
the electron is broken in a superconductor, re-opening the possibility of
such an observation, which we demonstrate and study in chapter 3. This
manifests as a charge current balanced by a flow of zero-charge particles
in the opposite direction to balance the heat current (which must remain
net-zero). The flow of these charged particles depends on the chirality
of an effective single Weyl cone in the bulk of the system, which may be
switched by an applied supercurrent, thus providing a ‘chirality switch’ for
this effect.

In part two of this thesis we switch our focus to quantum error correction,
where topology is used to enhance control over quantum degrees of free-
dom, rather than ensuring their existence. Although it is widely-accepted
that fault tolerant quantum computing is eventually possible, accurate
numerical predictions of the performance of current efforts to demonstrate
scalable full quantum error correction have been lacking, in part due to
the complexity of the system. In chapter 4 we rectify this, by performing
a full-density matrix simulation of a small quantum error correcting code
prototype, known as Surface-17, on superconducting quantum hardware.
As part of this, we explicitly detail and develop a scheme for measuring the
experimental performance of the Surface-17 chip, and provide and bench-
mark a decoder to analyze the information from repeated parity checks
performed during this experiment. The density-matrix simulation toolbox
developed during this work allows us to accurately model experimental
performance as noise parameters are varied, which has proved essential in
both theory and experimental studies since then.

As mentioned in the previous chapter, quantum error correction requires
classical processing of repeated syndrome measurements to diagnose and
correct local errors before they accumulate to kill the macroscopically-
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spread logical quantum information. Optimizing this decoding requires
detailed knowledge of the rates at which these local errors occur in order to
determine the most-likely set of underlying events from the error syndrome.
In chapter 5 we investigate how one may determine this knowledge exactly
within the framework of one of the most popular decoding algorithms, based
on the minimum-weight perfect matching problem in graph theory. We
test and demonstrate this adaptive decoder both in estimating underlying
error rates in a static system, and in keeping up with noise fluctuations
on the time-scale of a single quantum error correcting experiment. We
find that the decoder may keep up with what would be sub-millisecond
fluctuations on a superconducting transmon chip, and demonstrate the
trade-off between lagging behind said fluctuations and trying too hard to
keep up (resulting in insufficient convergence).
The previous two chapters dealt with error correction for the surface

code, which is a popular choice for quantum error correction due to
the excellent performance of minimum-weight perfect matching decoders.
Other topological quantum error correcting codes, such as the color code,
have even lower qubit counts and easier access to logical operations than
the surface code, however research in these has been somewhat stymied
due to the lack of good decoders. In chapter 6, we extend a class of
neural network quantum error correction decoders to work on the color
code. Importantly, this requires both processing of traditional parity-check
measurements, and additional flag measurements, which are required to
diagnose a small class of particularly dangerous ‘hook’ errors that appear
in the color code. We demonstrate numerical evidence that our scheme
protects against these hook errors, despite using fewer flag measurements
than expected in the rigorous theoretical proofs of their performance.
This allows us significant savings in measurement overhead, giving us
(to the best of our knowledge) the best-performing color code decoder
yet. Furthermore, the presented scheme is usable for any quantum error
correcting code, opening up a range of interesting possibilities for code
design.

In the final part of this thesis, we look towards future implementations
of quantum computers and the algorithms to run thereon. Majorana
modes, or Majorana bound states, have emerged as an exciting prospect
for quantum computing. Their topological protection raises hopes of
lower error rates than current state-of-the-art devices (which is potentially
the largest barrier to future useful quantum computers, even with quan-
tum error correction). However, most work studying Majorana modes
as a platform for quantum computing has paid little attention to their
non-abelian quasiparticle nature, save for the purposes of constructing
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a universal quantum gate set. This is of importance when looking to
perform future quantum chemistry calculations on a quantum computer:
these calculations typically study electronic behaviour, the simulation of
which on a bosonic qubit system incurs a significant overhead. In chapter
7, we propose a scheme where one might circumvent this overhead on a
Majorana architecture by directly combining pairs of Majoranas to make
fermions. We demonstrate how one may decompose traditional quantum
operations into the language of fermions (albeit in a non-fault tolerant
setting), and show a large advantage over traditional quantum computing
implementations in simulating lattice fermionic systems.

In order to perform quantum chemistry calculations, or any calculations,
on a quantum computer (with a quantum speedup over classical computers),
one must tailor new algorithms to quantum devices. The work-horse behind
most (if not all) algorithms with a provable quantum speedup is quantum
phase estimation. As suggested in the name, this algorithm provides
a means to determine the relative phase accumulated by an otherwise
stationary state (also known as an eigenstate) as it evolves following the
Schrödinger equation (simulated on a quantum register). Traditionally, this
has either required accumulating this phase onto multiple ancillary qubits,
or precise preparation of the eigenstate itself, both of which come with
significant overhead. In the last chapter of this thesis, we demonstrate how
one may separate the phase information from a superposition or mixture
of eigenstates by single rounds of the quantum phase estimation protocol
with a single ancilla qubit. This work pioneers the use of Prony’s method
to extract phase information from a quantum computer, which is preferable
to more traditional Fourier-type methods as it allows for finer resolution
of a small number of phases with a low classical computation cost. We
finally study the performance of this method, and that of Bayesian post-
processing, in the presence of nearby eigenenergies (which make distinction
of a single frequency difficult), and two prototypical noise models (including
the accurate density-matrix simulations presented in Chapter 4).

260



Curriculum Vitæ
I was born on the 18th of November 1990 in Otahuhu, Auckland, New
Zealand. In 1996, I emigrated with my parents to Wollongong, Australia,
where I remained for the rest of my childhood.

In 2009, I began attending the University of Wollongong, graduating in
2012 with a Bachelor of Science (Chemistry and Physics) and a Bachelor of
Mathematics (Advanced). During this time I undertook research projects
in biochemistry (under Prof. Nicholas Dixon), physical chemistry (under
Prof. Adam Trevitt), algebraic topology (under Prof. David Pask), and
theoretical condensed matter physics (under Dr. Anthony Wright and
Prof. Chao Zhang). In 2013, I shifted to the University of Queensland,
Australia, to study for an BSc(Honours)(Physics) for a year, taking on a
project studying Majorana bound states (under Dr. Wright) in strongly
correlated systems, and graduating first in this class. In 2014, I was
accepted into the Perimeter Insitute’s PSI Master’s program, in Waterloo,
Canada. As part of this 9-month intensive program I wrote my Master’s
thesis on numerical investigations of many-body localization under the
tutelage of Prof. Guifre Vidal, Prof. Dmitry Abanin, and Dr. Zlatko Papic.
In 2015, I was accepted for a PhD position in the group of Prof. Carlo

Beenakker at Leiden University on a project with QuTech in Delft funded
by a Synergy grant from the European Research Council. I began in
August 2015, studying transport properties of Weyl semimetals, but to-
wards the end of that year I took on an additional project; to provide
theoretical assistance to the IARPA project of Prof. Leonardo DiCarlo
(Delft University of Technology) on quantum error correction in supercon-
ducting transmon qubits. Collaboration on this quantum error correction
project continues actively to this day, and both this and the Weyl project
play a large role in this thesis. In 2017, with Prof. DiCarlo, Prof. Lieven
Vandersypen (Delft University of Technology), and industry partners, I
applied for and successfully obtained an NWA Start-Impuls grant from the
Dutch National Science Foundation, to hire a postdoctoral fellow for three
years to study quantum chemistry on a quantum computer. This project
was the seed for a collaboration with Shell Research that will occupy me
for the next several years.

261





List of publications
• T.E. O’Brien, B. Senjean, R. Sagastizabal, X. Bonet-Monroig, A.
Dutkiewicz, F. Buda, L. DiCarlo, and L. Visscher. Calculating
energy derivatives for quantum chemistry on a quantum computer.
ArXiv:1905.03742 (2019).

• R. Sagastizabal, X. Bonet-Monroig, M. Singh, M.A. Rol, C.C.
Bultink, X. Fu, C.H. Price, V. P. Ostroukh, N. Muthusubramanian,
A. Bruno, M. Beekman, N. Haider, T. E. O’Brien, and L. DiCarlo.
Error mitigation by symmetry verification on a variational quantum
eigensolver.
ArXiv:1902.11258 (2019).

• P. Baireuther, M.D. Caio, B. Criger, C.W. J. Beenakker, and T. E.
O’Brien. Neural network decoder for topological color codes with
circuit level noise. New Journal of Physics 21 (1), 013003 (2019).

[Chapter 6]

• T.E. O’Brien, B. Tarasinski, and B.M. Terhal. Quantum phase
estimation of multiple eigenvalues for small-scale (noisy) experiments.
New Journal of Physics (2019), in press. [Chapter 8]

• X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T.E. O’Brien.
Low-cost error mitigation by symmetry verification. Physical Review
A 98 (6), 062339 (2018).

• S.T. Spitz, B. Tarasinski, C.W. J. Beenakker, and T.E. O’Brien.
Adaptive weight estimator for quantum error correction in a time-
dependent environment. Advanced Quantum Technologies 1 (1),
1870015 (2018). [Chapter 5]

• T.E. O’Brien, P. Rożek, and A.R. Akhmerov. Majorana-based
fermionic quantum computation. Physical Review Letters 120 (22),
220504 (2018). [Chapter 7]

• N. Bovenzi, M. Breitkreiz, T. E. O’Brien, J. Tworzydło, and C.W. J.
Beenakker. Twisted Fermi surface of a thin-film Weyl semimetal.
New Journal of Physics 20 (2), 023023 (2018).

263



List of publications

• P. Baireuther, T. E. O’Brien, B. Tarasinski, and C.W. J. Beenakker.
Machine-learning-assisted correction of correlated qubit errors in a
topological code. Quantum 2, 48 (2018).

• J.R. McClean, I. D. Kivlichan, K. J. Sung, D. S. Steiger, Y. Cao,
C. Dai, E. S. Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner,
T. Hardikar, V. Havlíček, C. Huang, J. Izaac, Z. Jiang, X. Liu,
M. Neeley, T. E. O’Brien, I. Ozfidan, M.D. Radin, J. Romero, N.
Rubin, N.P.D. Sawaya, K. Setia, S. Sim, M. Steudtner, Q. Sun,
W. Sun, F. Zhang, and R. Babbush. OpenFermion: the electronic
structure package for quantum computers. ArXiv:1710.07629 (2017).

• T.E. O’Brien, B. Tarasinski, and L. DiCarlo. Density-matrix simu-
lation of small surface codes under current and projected experimental
noise. npj Quantum Information 3, 27 (2017). [Chapter 4]

• N. Bovenzi, M. Breitkreiz, P. Baireuther, T. E. O’Brien, J. Tworzy-
dło, İ. Adagideli, and C.W. J. Beenakker. Chirality blockade of
Andreev reflection in a magnetic Weyl semimetal. Physical Review
B 96 (3), 035437 (2017).

• T.E. O’Brien, C.W. J. Beenakker, and İ. Adagideli. Supercon-
ductivity provides access to the chiral magnetic effect of an unpaired
Weyl cone. Physical Review Letters 118 (20), 207701 (2017).
[Chapter 3]

• M.A. Rol, C.C. Bultink, T. E. O’Brien, S. R. de Jong, L. S. Theis,
X. Fu, F. Luthi, R. F. L. Vermeulen, J. C. de Sterke, A. Bruno, D.
Deurloo, R.N. Schouten, F.K. Wilhelm, and L. DiCarlo. Restless
tuneup of high-fidelity qubit gates. Physical Review Applied 7 (4),
041001 (2017).

• T.E. O’Brien, D. .A Abanin, G. Vidal, and Z. Papić. Explicit
construction of local conserved operators in disordered many-body
systems. Physical Review B 94 (14), 144208 (2016).

• C.C. Bultink, M.A. Rol, T. E. O’Brien, X. Fu, B.C. S. Dikken,
C. Dickel, R. F. L. Vermeulen, J. C. de Sterke, A. Bruno, R.N.
Schouten, and L. DiCarlo. Active resonator reset in the nonlinear
dispersive regime of circuit QED. Physical Review Applied 6 (3),
034008 (2016).

• T.E. O’Brien, M. Diez, and C.W. J. Beenakker. Magnetic break-
down and Klein tunneling in a type-II Weyl semimetal. Physical
Review Letters 116 (23), 236401 (2016). [Chapter 2].

264



List of publications

• T.E. O’Brien, and A.R. Wright. A many-body interpretation of
Majorana bound states, and conditions for their localisation.
ArXiv:1508.06638 (2015).

• T.E. O’Brien, A.R. Wright, and M. Veldhorst. Many-particle
Majorana bound states: derivation and signatures in superconducting
double quantum dots. Physica Status Solidi (b) 252 (8), 1731-1742
(2015).

• T.E. O’Brien, C. Zhang, and A.R. Wright. Universal geometric
classification of armchair honeycomb nanoribbons by their properties
in a staggered sublattice potential. Applied Physics Letters 103 (17),
171608 (2013).

• T.E. O’Brien, and C. Zhang. Optical conductance of a two-
dimensional semiconductor in the presence of Rashba spin-orbit cou-
pling and a periodic potential. Modern Physics Letters B 26 (26),
1250174 (2012).

• A.R. Wright, T. E. O’Brien, D. Beaven, and C. Zhang. Gapless
insulator and a band gap scaling law in semihydrogenated graphene.
Applied Physics Letters 97 (4), 043104 (2010).

265




	Introduction
	Preface
	Topological phases of matter
	Topological quantum computation with Majorana zero-modes
	Weyl semimetals

	Quantum error correction
	Toy example - the repetition code
	Stabilizer codes
	Stabilizer code dynamics
	Topological quantum error correcting codes
	Decoding topological codes

	Quantum algorithms
	Quantum phase estimation
	Variational quantum eigensolvers

	Quantum computing with superconducting qubits
	Transmon architecture
	Sources of errors

	Outline of this thesis
	Part I
	Part II
	Part III


	Magnetotransport in topological semimetals
	Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal
	Introduction
	Semiclassical quantization
	Magnetic breakdown
	Conclusion
	Low-energy limit of the four-band model Hamiltonian of a type-II Weyl semimetal
	Topological protection of the special magnetic field axis for Klein tunneling between electron and hole pockets
	Klein tunneling for pairs of connected type-II Weyl points

	Superconductivity provides access to the chiral magnetic effect of an unpaired Weyl cone
	Introduction
	Pathway to single-cone physics
	Model Hamiltonian of a Weyl superconductor
	Flux bias into the single-cone regime
	Magnetic response of an unpaired Weyl cone
	Consistency of a nonzero equilibrium electrical current and vanishing particle current
	Numerical simulation
	Extensions
	Conclusion
	Charge renormalization in a superconducting Weyl cone
	Block diagonalization
	Current and charge operators
	Effective Hamiltonian in the zeroth Landau level
	Renormalized charge for the CME

	Surface Fermi arc
	Boundary condition
	Construction of the surface state
	Surface dispersion relation

	Derivation of the renormalized-charge formula for the CME
	On-shell and off-shell contributions
	Application to the zeroth Landau level



	Topological codes and quantum error correction
	Density-matrix simulation of small surface codes under current and projected experimental noise
	Introduction
	Results
	Error rates for Surface-17 under current experimental conditions
	Optimization of logical error rates with current experimental conditions
	Projected improvement with advances in quantum hardware

	Discussion
	Computational figure of merit
	Decoder performance
	Other observations
	Effects not taken into account

	Methods
	Simulated experimental procedure
	Error models

	Full circuit diagram for Surface-17 implementation
	Parameters of error models
	Qubit idling
	Photon decay
	Single-qubit Ry(/2) rotations
	Flux noise
	C-Z gates
	Measurement

	Effect of over-rotations and two-qubit phase noise on logical error rate
	Calculation of decoder upper bound
	Hardware requirements of simulation
	Homemade MWPM decoder with asymmetric weight calculation
	Implementation of a look-up table decoder
	Details of lowest-order approximation

	Adaptive weight estimator for quantum error correction in a time-dependent environment
	Introduction
	Quantum error correction and the repetition code
	Weight inference from error syndromes
	Formulation of the inversion problem
	Solution for edges connecting pairs of vertices
	Solution for boundary edges

	Implementation of the adaptive decoder
	Convergence in the large-time limit
	Performance in a time-dependent environment

	Conclusion

	Neural network decoder for topological color codes with circuit level noise
	Introduction
	Description of the problem
	Color code
	Error model
	Fault-tolerance
	Flag qubits

	Neural network decoder
	Learning mechanism
	Decoding algorithm

	Neural network performance
	Power law scaling of the logical error rate
	Performance on realistic data

	Conclusion
	Quantum circuits
	Circuits for the Pauli error model
	Measurement processing for the density-matrix error model

	Details of the neural network decoder
	Architecture
	Training and evaluation
	Pauli frame updater

	Results for distance-5 and distance-7 codes


	Quantum Algorithms for digital quantum simulation
	Majorana-based fermionic quantum computation
	Introduction
	Description of the architecture
	Quantum algorithms
	Conclusion
	Preparing extended ancilla qubits for quantum phase estimation
	Algorithm to perform Trotter steps in O(N3) time
	Details of parallel circuit for Hubbard model

	Quantum phase estimation for noisy, small-scale experiments
	Introduction
	Quantum phase estimation
	Classical data analysis
	Time-series analysis
	Efficient Bayesian analysis
	Experiment design

	Results without experimental noise
	Single eigenvalues
	Example behaviour with multiple eigenvalues
	Estimator scaling with two eigenvalues
	Many eigenvalues

	The effect of experimental noise
	Depolarizing noise
	Realistic circuit-level noise

	Discussion
	Appendices
	Derivation of the identity in Eq. (8.25)
	Variance calculations for time-series estimator
	Fourier representation for Bayesian updating
	Bayesian updating for multi-eigenvalue starting state

	Convergence of the (noiseless) time-series analysis in case of multiple eigenvalues.
	Details of realistic simulation
	Error model and error parameters


	Bibliography
	Acknowledgments
	Samenvatting
	Summary
	Curriculum Vitæ
	List of publications


