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Abstract. Due to Fourier transforms nature between the field detected on the image and its 

corresponding input, astronomical imaging can be modelled mathematically. In exoplanetary 

imaging, we aim to detect exoplanets whose typical contrast are approximately one over a 

million times dimmer compared to their parent stars. Among the possible approaches to 
accomplish that is optical apodization, a technique to purposely modify the input signal profile 

such that the ‘Airy rings’ on the resulting image are suppressed while keeping the central 

brightness high. In the paper, we pedagogically describe this technique applying Fourier 

transforms of radially-symmetric functions; and investigate potential future uses 

at Timau National Observatory. 
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1. Introduction 
The existence of worlds other than the earth has always been a great interest for humankind. 

Beginning from Galileo Galilei’s observation of the phase of Venus in 1610, confirming that the 

planets orbit around the Sun, it then makes sense that other stars must also have companion planets. In 
fact, the discovery of exoplanets, planets around stars other than the Sun, has already started more than 

two decades ago. In 1992, Wolszczan and Frail detected the first exoplanet(s) orbiting not a solar-type 

star, but a pulsar [1]. They measured the timing of pulses of the pulsar which seemed to be irregular, 

indicating the existence of two planets. The first detection of an exoplanet around a Sun-like star 
follows not so long after, using radial velocity method. Mayor and Queloz observed a periodic 

variation on the radial velocity of 51 Pegasi. Another detection method is called transit method, first 

performed by Charbonneau et al., which measures periodic dimming of the starlight during the 
planetary transit across the host star [2]. The exoplanet itself, HD 209458b, was already discovered 

with radial velocity method [3]. Other important methods are astrometry and microlensing, which 

makes use of the variation of the position of the star and the gravitational perturbation due to the 

foreground planet, respectively [4, 5, 6]. 
The techniques mentioned above are indirect methods to probe exoplanets. Together, those allow 

for determination of the exoplanet properties, such as period, radius, mass and temperature. For further 

characterization of the exoplanet, however, direct imaging is required. It gives ways to a more 
complete story than the indirect counterparts. Yet, it comes with several challenges, the biggest of 

which is the extremely dim flux of the planet, overwhelmed by the glare of its host star. To date, only 

3 percent out of over 3500 exoplanet detections are detected directly, as shown in Figure 1. Only the 
largest telescopes and the most advanced techniques have been able to carry out such difficult tasks.  

 

http://creativecommons.org/licenses/by/3.0
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This paper is aimed to lessen those gaps, introducing a simple yet powerful principle behind 

exoplanetary imaging: optical apodization. Throughout the paper, we mostly use pedagogical 

approach in describing the technique; how and why it works, but we leave out the practical and/or 
manufacturing aspects, as those would require a different discussion and expertise. 

 

 

Figure 1. Cumulative number of 
exoplanet detections. Radial 

velocity and transits methods 

contribute the most with ~3600 

detections combined. Direct 
imaging, being the most difficult 

technique, only shares less than 

100 detections. Source: 
https://exoplanetarchi 

ve.ipac.caltech.edu/ 

 
 

 

 

2. Fourier transforms 
2.1. Physical backgrounds 

Using the Huygens-Fresnel principle which states that each point on a wave front can be regarded as a 

source of spherical secondary wavelets and the amplitude of the field at any point beyond is the 
superposition of these wavelets, one can arrive to the following result [7, 8, 9] 

 

 𝐸(𝑢, 𝑣) =
𝑒

𝑖𝑘[𝑧+
𝑢2+𝑣2

2𝑧
]

𝑖𝜆𝑧
∬ 𝐸̃(𝑥, 𝑦)𝑒−

𝑖2𝜋(𝑢𝑥+𝑣𝑦)

𝜆𝑧 𝑑𝑥𝑑𝑦
∞

−∞
, (2.1) 

 

where the field density, the aperture and the induced phase are embedded inside 𝐸̃(𝑥, 𝑦). This equation 

exactly resembles Fourier transform in two-dimension, with a multiplicative factor before the integral. 

Fixing λ = z = 1 to be unity and expressing the resulted lengths in terms of λ, the corresponding 
Fourier transform is then 

 

 𝐹(𝑢, 𝑣) = ∬ 𝑓(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦
∞

−∞
. (2.2) 

 

After the normalization, the electric field pair 𝐸̃(𝑥, 𝑦) − 𝐸(𝑢, 𝑣) and the Fourier transform pair 

𝑓(𝑥, 𝑦) − 𝐹(𝑢, 𝑣) are completely interchangeable, with (𝑥, 𝑦) and (𝑢, 𝑣) represent the coordinate 

systems in the pupil plane and the focal plane, respectively. In other words, from this point on it is 
possible to switch completely to mathematics without losing any physical meaning. 

2.2. Fourier transforms in polar coordinates 

Due to circular shape of telescope apertures, it is naturally more convenient to work in polar 

coordinate system instead of Cartesian. Moreover, when a function in the pupil plane has a circular 
symmetry, so does its resulting image, since they are related through Fourier transforms and Fourier 

transforms preserve the symmetry. If this is true, suppressing 360 degrees of starlight halo would also 

require patterns with circular symmetry, which suggests the use of polar coordinates. It will be more 
evident once the expressions are derived. Cartesian to polar coordinate system conversion is 

performed by introducing the following coordinates 
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 𝑥 = 𝑟 cos 𝜃 , 𝑦 = 𝑟 sin 𝜃 , 𝑢 = ρ cos 𝜓 , 𝑣 = ρ sin𝜓. (2.3) 

 

Substituting them into equation (2.2), we obtain 
  

 𝐹(𝜌, 𝜓) = ∫ ∫ 𝑟𝑓(𝑟, 𝜃)𝑒−𝑖2𝜋𝜌𝑟 cos(𝜃−𝜓)𝑑𝑟𝑑𝜃
2𝜋

0

∞

0
 (2.4) 

 

Any function 𝑓(𝑟, 𝜃) is always periodic in angular direction, so rewriting it in terms of Fourier series 

is possible 

 𝑓(𝑟, 𝜃) = ∑ 𝑎𝑛𝑒
𝑖2𝜋(

𝑛

𝑇
)𝜃∞

𝑛=−∞  with 𝑎𝑛 =
1

𝑇
∫ 𝑓(𝑟, 𝜃)

𝑇

2

−
𝑇

2

𝑒
−𝑖2𝜋(

𝑛

𝑇
)𝜃

𝑑𝜃, (2.5) 

 

to which we can plug a period of 𝑇 = 2𝜋, since it is periodic every full circle, and obtain 
 

 𝑓(𝑟, 𝜃) = ∑ 𝑓𝑛(𝑟)𝑒
𝑖𝑛𝜃∞

𝑛=−∞  with 𝑓𝑛(𝑟) =
1

2𝜋
∫ 𝑓(𝑟, 𝜃)

𝜋

−𝜋
𝑒−𝑖𝑛𝜃𝑑𝜃. (2.6) 

 

Hence, the overall Fourier transform becomes 
 

 𝐹(𝜌, 𝜓) = ∑ ∫ ∫ 𝑟𝑓𝑛(𝑟)𝑒𝑖𝑛𝜃−𝑖2𝜋𝜌𝑟 cos(𝜃−𝜓)𝑑𝑟𝑑𝜃
2𝜋

0

∞

0
∞
𝑛=−∞ . (2.7) 

 
Part of the exponents can be expanded with the following relation which contains Bessel function of 

the first kind 𝐽𝑛  of order 𝑛 [10] 

 

 𝑒−2𝜋𝜌⃗⃗ .𝑟 = 𝑒−2𝜋𝜌𝑟 cos(𝜃−𝜓) = ∑ (−𝑖)𝑛2𝜋 𝐽𝑛(2𝜋𝜌𝑟)𝑒−𝑖𝑛𝜃𝑒𝑖𝑛𝜓∞
𝑛=−∞ . (2.8) 

 

Plugging equation (2.8) into (2.7), we get the general expression of Fourier transforms in polar 

coordinates 

 𝐹(𝜌, 𝜓) = ∑ (−𝑖)𝑛𝑒𝑖𝑛𝜓2𝜋 ∫ 𝑟𝑓𝑛(𝑟)𝐽𝑛(2𝜋𝜌𝑟)𝑑𝑟
∞

0
∞
𝑛=−∞ , (2.9) 

 

where the azimuthal variation is stored in 𝑓𝑛(𝑟), taking the form 

 

 𝑓𝑛(𝑟) =
1

2𝜋
∫ 𝑓(𝑟, 𝜃)

𝜋

−𝜋
𝑒−𝑖𝑛𝜃𝑑𝜃. (2.10) 

 

If we examine the last two equations, it is made clear that the function 𝑓(𝑟, 𝜃) can consist of both 

radial and azimuthal modes. In this paper, we restrict ourselves only to the radial mode due to some 
considerations. First, working in radial mode would simplify the problem significantly. Removing 

angular mode in polar coordinates basically leaves one dimension to work with while keeping the two-

dimensional shape. Second, Fourier transform symmetry-preserving nature suggests radially 

symmetric patterns for 360 degrees dark zone. However, when there is a need for further investigation 
in azimuthal functions, such as examining the effect of secondary mirror spiders, it is suggested to 

begin with equation (2.9) and (2.10). 

2.3. Radial Fourier transforms 

For radially symmetric functions, it is assumed that 𝑓(𝑟, 𝜃) = 𝑓(𝑟) only depends on the radius. Hence, 

the Fourier series coefficients in equation (10) can be calculated as 

 

 𝑓𝑛(𝑟) =
𝑓(𝑟)

2𝜋
∫ 𝑒−𝑖𝑛𝜃𝑑𝜃

𝜋

−𝜋
=

𝑓(𝑟)

2𝜋
[
𝑒−𝑖𝑛𝜃

−𝑖𝑛
]
−𝜋

𝜋

= {
  0        𝑛 ≠ 0,
𝑓(𝑟)    𝑛 = 0.

 (2.11) 
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Figure 2. Airy function, a pattern resulted from a circular aperture. It closely resembles damped 

sinusoidal function. If there are more than one source, each source through the aperture would 

result in the same pattern with different amplitude based on its brightness. 

 
This result significantly reduces the summation in equation (9) to only remains one non-zero term, 

which is for n = 0 

 𝐹(𝜌) = 2𝜋 ∫ 𝑟𝑓(𝑟)𝐽0(2𝜋𝜌𝑟)𝑑𝑟
∞

0
. (2.12) 

 
The expression above makes it clearer that radial patterns at the pupil plane would surely generate 

radially symmetric structure at the focal plane. Hereafter, we refer Fourier transforms for radially 

symmetric functions as Radial Fourier Transforms (RFT). 

3. Applying RFT 

3.1. Apodization 

Using equation (2.12), we can, for instance, calculate the image detected at the focal plane for a 

circular aperture by putting circular function 
 

 𝑓(𝑟) = circ (
𝑟

𝑎
) = {

1      𝑟 < 𝑎,
0      𝑟 > 𝑎,

 (3.1) 

 
where a is the radius of the aperture. Then, making use of the following integral property of Bessel 

function 

 ∫ 𝑥𝐽0(𝑥)𝑑𝑥
𝛼

0
= 𝛼𝐽1(𝛼), (3.2) 

 

we arrive at the historical Airy function 

 𝐹(𝜌) = 𝑎
𝐽1(2𝜋𝜌𝑎)

𝜌
. (3.3) 

 

The function is visually illustrated in Figure 3. Typical hot Jupiters would be located at around 2 −
5𝜆/𝐷, covered completely by the second or third Airy rings. This makes it extremely difficult to 

directly image exoplanets without any additional optical components. Two different kinds of 

modifications can be applied at the pupil plane: amplitude- and phase-apodization.[11][12] Both 

methods are principally similar, deciding the function 𝑓(𝑟) in equation (2.12) 

 

  𝑓(𝑟) = {
𝐴(𝑟)                     amplitude-apodization,

𝐴(𝑟). 𝑒𝑖𝜙(𝑟)                 phase-apodization.
 (3.4) 
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Figure 3. Configuration of phase-apodization principle. An ‘apodizing’ optic is applied at the pupil 

plane to form an extended dark region around the peak of the resulting image. At the bottom panel 
is a RFT pair of a working sample design of phase-apodizing coronagraph. 

 

In amplitude-apodization, 𝐴(𝑟) consists of the original aperture shape and an amplitude mask to 

modify the signal; while in phase-apodization, 𝐴(𝑟) is the original aperture shape and 𝜙(𝑟) is a phase-
inducing optics. The configuration is illustrated at the top panel of Figure 3. The first phase inducing-

optics were made from ZnSe diamond-turned plates with varying height. Nowadays, devices to induce 

phases to liquid crystals have been created [13, 14]. Despite the different manufacturing methods, the 
desired outputs of those two methods are the same: suppressing the Airy rings within certain radius 

(hereafter working angle), while keeping the central brightness to be as high as possible. 

Mathematically, the first requirement translates to 

 

 minimize (
1

𝑁
∑ |

𝐹mod(𝜌𝑖)

𝐹mod(0)
|
2

𝑁
𝑖=0 − 10−6), (3.5) 

 

with 𝑁 = (𝜌𝑓 − 𝜌𝑖)/∆𝜌 is the number of points to be evaluated and ∆𝜌 is small enough value. The 

assumed required contrast of 10−6 can be adapted accordingly. The mod subscripts stand for modified. 

Similarly, the second requirement translates to 
 

 maximize |
𝐹mod(0)

𝐹init(0)
|
2
, (3.6) 

 
where mod represents the modified function with the mask/optic applied and init represents the initial 

function without one. These two requirements are generally sufficient to generate working 

coronagraph designs. In Figure 3, we present an example of phase-apodization with a working angle 

of (𝜌𝑖, 𝜌𝑓) = (3, 5) 𝜆/𝐷. 
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3.2. Potential uses 

There are at least three criteria to enable direct imaging of exoplanets: an extremely high contrast, a 

very high angular resolution, and a total field of view that includes the working angle.[15] Based on 
these criteria, we did a case study towards a future 3.8-meter optical telescope at Timau National 

Observatory, Indonesia,[16] coupled with a RFT-generated phase-apodizing coronagraph. With 

simulation, we managed to reach a high contrast of 10−6; a typical exoplanet has a relative brightness 

of 10−5 − 10−10 compared to its parent star. For the angular resolution, we found a value of 0.04 

arcsec at 700 nm, which can be considered to be high. Finally, an inner working angle of 3.1 𝜆/𝐷 from 

the simulation approximately coincides with 0.11 arcsec at 700 nm. As a reference, a ‘twin Jupiter’ at 

10 pc from us would have a separation of 0.5 arcsec, which would be within our simulated working 
angle. We positively conclude that the configuration can potentially detect exoplanets directly. 

4. Conclusion 

The basic principle behind one of exoplanetary imaging methods, optical apodization, has been 
discussed, starting from Huygens-Fresnel principle to a specific application of Fourier transforms for 

radially symmetric functions. With this technique, the future 3.8-meter telescope at Timau National 

Observatory should be able to directly image Jupiter-sized exoplanets at 10 pc distance. 
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