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Towers of Solutions of qKZ Equations and
Their Applications to Loop Models

K. Al Qasimi, B. Nienhuis and J. V. Stokman

Abstract. Cherednik’s type A quantum affine Knizhnik–Zamolodchikov
(qKZ) equations form a consistent system of linear q-difference equations
for Vn-valued meromorphic functions on a complex n-torus, with Vn a
module over the GLn-type extended affine Hecke algebra Hn. The fam-
ily (Hn)n≥0 of extended affine Hecke algebras forms a tower of algebras,
with the associated algebra morphisms Hn → Hn+1, in the Hecke algebra
descending of arc insertion at the affine braid group level. In this paper,
we consider qKZ towers (f (n))n≥0 of solutions, which consist of twisted-

symmetric polynomial solutions f (n) (n ≥ 0) of the qKZ equations that
are compatible with the tower structure on (Hn)n≥0. The compatibility is

encoded by the so-called braid recursion relations: f (n+1)(z1, . . . , zn, 0) is
required to coincide up to a quasi-constant factor with the push-forward
of f (n)(z1, . . . , zn) by an intertwiner µn:Vn → Vn+1 of Hn-modules, where
Vn+1 is considered as an Hn-module through the tower structure on
(Hn)n≥0. We associate with the dense loop model on the half-infinite

cylinder with nonzero loop weights, a qKZ tower (f (n))n≥0 of solutions.

The solutions f (n) are constructed from specialized dual non-symmetric
Macdonald polynomials with specialized parameters using the Cherednik–
Matsuo correspondence. In the special case that the extended affine Hecke
algebra parameter is a third root of unity, f (n) coincides with the (suitably
normalized) ground state of the inhomogeneous dense O(1) loop model
on the half-infinite cylinder with circumference n.

1. Introduction

Quantum Knizhnik–Zamolodchikov (qKZ) equations are consistent systems of
linear q-difference equations that naturally arise in the context of represen-
tation theory of quantum affine algebras [14] and affine Hecke algebras [5].
They appear as consistency equations for form factors and correlation func-
tions of various integrable models (see e.g., [19,26] for the first examples).
In this paper, we focus on Cherednik’s qKZ equations associated with the
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GLn-type extended affine Hecke algebra Hn. This case relates to integrable
one-dimensional lattice models with quasiperiodic boundary conditions, with
the integrability governed by the extended affine Hecke algebra Hn. Important
examples, also in the context of the present paper, are the XXZ spin-12 chain
and the dense loop model.

The collection (Hn)n≥0 of extended affine Hecke algebras forms a tower of
algebras with respect to algebra morphisms Hn → Hn+1 that arise as descen-
dants of arc insertion morphisms Bn → Bn+1 for the groups Bn of affine
n-braids, cf. [1,3,15]. In this paper, we study families (f (n))n≥0 of solutions
f (n) of qKZ equations taking values in Hn-modules Vn that are naturally com-
patible with the tower structure.

It leads us to introducing the notion of a tower (f (n))n≥0 of solutions
of qKZ equations. The constituents f (n) of the tower are polynomials in n
complex variables z1, . . . , zn, taking values in a finite-dimensional Hn-module
Vn. They are twisted-symmetric solutions of Cherednik’s qKZ equations
interrelated by the so-called braid recursion relations, meaning that f (n+1)

(z1, . . . , zn, 0) coincides, up to a quasi-constant factor, with the push-forward of
f (n)(z1, . . . , zn) by an Hn-intertwiner μn: Vn → Vn+1, where Vn+1 is regarded
as an Hn-module through the tower structure of (Hn)n≥0. In the terminol-
ogy of [3], the collection {(Vn, μn)}n≥0 of Hn-modules Vn and Hn-intertwiners
μn: Vn → Vn+1 is a tower of extended affine Hecke algebra modules. From this
perspective, towers of solutions of qKZ equations are naturally associated with
towers of extended affine Hecke algebra modules. The braid recursion relations
are then determined by the module tower up to the quasi-constant factors.

In [3], the first and third authors constructed a family of module towers,
called link pattern towers, which depends on a twist parameter v. The link
pattern tower actually descends to a tower of extended affine Temperley–Lieb
algebra modules. The representations Vn are realized on spaces of link patterns
on the punctured disk, which alternatively can be interpreted as the quantum
state spaces for the dense O(τ) loop models on the half-infinite cylinder (with
n the circumference of the cylinder). The intertwiners μn in the link pattern
tower are constructed skein theoretically (for even n this goes back to [11]), and
are in fact closely related to arc insertion morphisms in a relative version of the
Roger and Yang [25] skein module in the presence of a pole (see [3, Rem. 8.11]).
In this paper, we construct towers (f (n))n≥0 of solutions of qKZ equations
relative to the link pattern tower with twist parameter one and describe the
corresponding quasi-constant factors in the braid recursion relations explicitly.
We consider two cases.

We show that the (suitably normalized) ground states f (n) of the inho-
mogeneous dense O(1) loop model on the half-infinite cylinder with circum-
ference n form a tower of solutions relative to the link pattern tower. In this
case, the associated affine Hecke algebra parameter is a third root of unity.
This generalizes results from [11], where the braid recursion relations relat-
ing f (2k+1)(z1, . . . , z2k, 0) to f (2k)(z1, . . . , z2k) were derived under the implicit
additional assumption that a unique normalized ground state for the inhomo-
geneous dense O(1) loop model exists when one of the rapidities is set equal
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to zero (the latter is not guaranteed, since the transfer operator is no longer
stochastic when one of the rapidities is set equal to zero). In an upcoming
paper [2], the full set of braid recursion relations for the ground states is used
to derive explicit formulas for various observables of the dense O(1) loop model
on the infinite cylinder.

We generalize this example by constructing a tower of solutions (f (n))n≥0

for twist parameter one and for all values of the affine Hecke algebra parameter
for which the loop weights of the associated dense loop model are nonzero. In
this case, the constituents f (n) are constructed using the Cherednik–Matsuo
correspondence [22,27]. The Cherednik–Matsuo correspondence, relating solu-
tions of qKZ equations to common eigenfunctions of Cherednik’s commut-
ing Y -operators, can be applied in the present context since the link pattern
modules are principal series modules, as we shall show in Theorem 6.6. It
leads to the construction of the constituents f (n) of the tower in terms of
non-symmetric Macdonald polynomials. Subtle issues arise here since the two
parameters of the associated double affine Hecke algebra satisfy an algebraic
relation that breaks down the semisimplicity of the Y -operators. We resort
to Kasatani’s [20] work to deal with these issues. See [21] for an alternative
approach to construct polynomial twisted-symmetric solutions f (n) of the qKZ
equations using Kazhdan–Lusztig bases.

In both towers, the constituent f (n) is a nonzero twisted-symmetric homo-
geneous polynomial solution of the qKZ equations of total degree 1

2n(n−1). In
fact, this property characterizes f (n) up to a nonzero scalar multiple, a result
that plays a crucial role in establishing the explicit braid recursion relations.
In particular, it allows us to prove the braid recursion relations for the suit-
ably normalized ground states of the inhomogeneous dense O(1) loop models
without addressing the issue of the existence of a unique normalized ground
state when the rapidities are outside the stochastic regime.

The content of the paper is as follows. In Sect. 2, we recall the definitions
of extended affine Hecke algebras and qKZ equations and introduce the notion
of a qKZ tower of solutions. In Sect. 3, we recall from [3] the definition of the
link pattern tower. In Sect. 4, we determine necessary conditions for the exis-
tence of nonzero twisted-symmetric homogeneous polynomial solutions f (n) of
total degree 1

2n(n − 1) of the qKZ equations with values in the link pattern
modules. We show that the existence implies that (f (n))n≥0 forms a tower of
solutions relative to the link pattern tower, and we explicitly write down the
corresponding braid recursion relations. The construction of the tower of solu-
tions when the Hecke algebra parameter is a third root of unity is discussed
in Sect. 5. The general case is discussed in Sect. 6. We derive a dual version
of the braid recursion relations in Sect. 7. Lastly, in “Appendix A” we dis-
cuss uniqueness properties for various classes of twisted-symmetric solutions
to qKZ equations, some of which were considered before in [8,11,21].
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2. Towers of Solutions of qKZ Equations

In this section, we begin by recalling the extended affine Hecke algebra, the
qKZ equations, and introduce what we call a qKZ tower of solutions. The
extended affine Hecke algebra can be defined using two different presentations.
We make use of both presentations as one is more convenient for defining qKZ
equations, while the other is more suitable for relating the algebra to the
extended affine Temperley–Lieb algebra.

2.1. Extended Affine Hecke Algebras

Let t
1
4 ∈ C

∗.

Definition 2.1. Let n ≥ 3. The extended affine Hecke algebra Hn = Hn(t
1
2 ) of

type ̂An−1 is the complex associative algebra with generators Ti (i ∈ Z/nZ)
and ρ, ρ−1 and defining relations

(Ti − t−
1
2 )(Ti + t

1
2 ) = 0,

TiTj = TjTi (i − j �≡ ±1),
TiTi+1Ti = Ti+1TiTi+1,

ρTi = Ti+1ρ,

ρρ−1 = 1 = ρ−1ρ,

(2.1)

where the indices are taken modulo n. For n = 2, the extended affine Hecke
algebra H2 = H2(t

1
2 ) is the algebra generated by T0, T1, ρ

±1 with defining
relations (2.1) but with the third relation omitted. For n = 1, we set H1 :=
C[ρ, ρ−1] to be the algebra of Laurent polynomials in one variable ρ, and for
n = 0 we set H0 := C[X], the polynomial algebra in the variable X.

Note that Ti is invertible with inverse T−1
i = Ti − t−

1
2 + t

1
2 . For n ≥ 1,

the element ρn ∈ Hn is central.
For n ≥ 2, the affine Hecke algebra Ha

n = Ha
n(t

1
2 ) of type ̂An−1 is the

subalgebra of Hn generated by Ti (i ∈ Z/nZ). For n ≥ 3, the first three
relations of (2.1) are the defining relations of Ha

n in terms of these generators
(for n = 2 the first two relations are the defining relations). Furthermore,
Hn is isomorphic to the crossed product algebra Z � Ha

n, where m ∈ Z acts
on Ha

n by the algebra automorphism Ti �→ Ti+m (with the indices modulo
n). Equivalently, m ∈ Z acts by restricting the inner automorphism h �→
ρmhρ−m of Hn to Ha

n. For n ≥ 2, the (finite) Hecke algebra of type An−1 is
the subalgebra H0

n of Ha
n generated by T1, . . . , Tn−1. The defining relations of

H0
n in terms of the generators T1, . . . , Tn−1 are given again by the first three

relations of (2.1), restricted to those indices that they make sense.
Bernstein and Zelevinsky [23] obtained the following alternative presen-

tation of the extended affine Hecke algebra (see also [18] for a detailed discus-
sion).

Theorem 2.2. Let n ≥ 2 and define Yj ∈ Hn for j = 1, . . . , n by

Yj := T−1
j−1T

−1
j−2 . . . T−1

1 ρTn−1 . . . Tj+1Tj .
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Then, Hn is generated by T1, . . . , Tn−1, Y
±1
1 , . . . , Y ±1

n . The defining relations
of Hn in terms of these generators are given by

(Ti − t−
1
2 )(Ti + t

1
2 ) = 0 (1 ≤ i < n),

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i < n − 1),
TiTj = TjTi (1 ≤ i, j < n : |i − j| > 1),
TiYi+1Ti = Yi (1 ≤ i < n),
TiYj = YjTi (1 ≤ i < n, 1 ≤ j ≤ n: j �= i, i + 1),
YiYj = YjYi (1 ≤ i, j ≤ n),
YiY

−1
i = 1 = Y −1

i Yi (1 ≤ i ≤ n).
(2.2)

Note that ρ ∈ Hn can be expressed as

ρ = T1T2 . . . Tn−1Yn

with respect to the Bernstein–Zelevinsky presentation of Hn. Let An be the
commutative subalgebra of Hn generated by Y ±1

1 , . . . , Y ±1
n .

More can be said about the structure of Hn in terms of the Bernstein–
Zelevinsky presentation (see [18,23]). Let f ∈ C[z±1] := C[z±1

1 , . . . , z±1
n ] be a

Laurent polynomial in n variables z1, . . . , zn. Let f =
∑

α∈Zn cαzα (cα ∈ C)
be its expansion in monomials zα := zα1

1 . . . zαn
n . Then, we write f(Y ) :=

∑

α∈Zn cαY α ∈ An, where Y α := Y α1
1 . . . Y αn

n . The map f �→ f(Y ) defines
an isomorphism C[z±1] ∼−→ An of commutative algebras. In addition, the
multiplication map

H0
n ⊗ An → Hn, h ⊗ f(Y ) �→ hf(Y ),

is a linear isomorphism.
In [3, §8], it was shown that there exists a unique unit-preserving algebra

map νn : Hn → Hn+1 satisfying for n ≥ 2,

νn(Ti) = Ti, i = 1, . . . , n − 1,

νn(T0) = TnT0T
−1
n ,

νn(ρ) = t−
1
4 ρT−1

n , (2.3)

satisfying ν1(ρ) = t−
1
4 ρT−1

1 for n = 1, and satisfying ν0(X) = t
1
4 ρ + t−

1
4 ρ−1

for n = 0. The νn was obtained in [3, §8] as the Hecke algebra descent of an
algebra homomorphism C[Bn] → C[Bn+1], with Bn the extended affine braid
group on n strands, defined topologically by inserting an extra braid going
underneath all the other braids it meets. At the end of this section, we require
the algebra maps νn in constructing towers of Hn-modules and qKZ towers of
solutions.

2.2. qKZ Equations

We consider Cherednik’s [5,6] qKZ equations of type GLn. We will follow
closely [27], and we will restrict attention to twisted-symmetric solutions
of qKZ equations. The notations (m, k, ξ) in [27, §4.3] correspond to our
(n,−t

1
2 , ρ). The qKZ equations depend on an additional parameter q, which

we for the moment take to be an arbitrary nonzero complex number.
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Recall that for n ≥ 1 and t
1
2 = 1, the extended affine Hecke algebra Hn(1)

is isomorphic to the group algebra C[Wn] of the extended affine symmetric
group Wn 
 Sn � Z

n. Writing si (i ∈ Z/nZ) and ρ for the (Coxeter type)
generators of Wn, acting on C[z±1] and C(z) := C(z1, . . . , zn) by

(sif)(z) := f(. . . , zi+1, zi, . . .) (1 ≤ i < n),

(s0f)(z) := f(qzn, z2, . . . , zn−1, q
−1z1),

(ρf)(z) := f(z2, . . . , zn, q−1z1), (2.4)

cf. Definition 2.1. Note that the Wn-action on C[z±1] is by graded algebra
automorphisms, with the grading defined by the total degree. In addition, Wn

preserves the polynomial algebra C[z] := C[z1, . . . , zn].
Define for n ≥ 1 and i ∈ Z/nZ,

˜Ri(x) :=
xT−1

i − Ti

t
1
2 − t−

1
2 x

,

which we view as rational Hn(t
1
2 )-valued function in x. The key point in the

construction of qKZ equations is the fact that for any Hn(t
1
2 )-module Vn with

representation map σn: Hn(t
1
2 ) → End(Vn) and for q ∈ C

∗, the formulas
(

∇(si)f
)

(z) := σn( ˜Ri(zi+1/zi))(sif)(z) 1 ≤ i < n,
(

∇(s0)f
)

(z) := σ( ˜R0(z1/qzn))(s0f)(z),
(

∇(ρ)f
)

(z) := σ(ρ)(ρf)(z), (2.5)

define a left Wn-action on the space Vn(z) := C(z) ⊗ Vn of Vn-valued rational
functions in z1, . . . , zn, where the Wn-action in the right-hand side is the action
on the variables as given by (2.4). For n = 0, we simply take ∇ = σ0 acting on
V0. The fact that (2.5) defines a Wn-action is a consequence of the following
identities for the R-operators ˜Ri(x),

˜Ri(x) ˜Ri+1(xy) ˜Ri(y) = ˜Ri+1(y) ˜Ri(xy) ˜Ri+1(x),

˜Ri(x) ˜Rj(y) = ˜Rj(y) ˜Ri(x) i − j �≡ ±1,

˜Ri(x) ˜Ri(x−1) = 1,

ρ ˜Ri(x) = ˜Ri+1(x)ρ (2.6)

with the indices taken modulo n. The first equation is the Yang–Baxter equa-
tion [13, Vol. 5] in braid form.

Note that in (2.4) and (2.5) the action of s0 is determined by the action of
si (1 ≤ i < n) and of ρ, and hence does not have to be specified. We will often
omit the explicit formula for the action of s0 in the remainder of the paper.
Following [27], we call the subspace Vn(z)∇(Wn) of ∇(Wn)-invariant elements
in Vn(z), the space of twisted-symmetric solutions of the qKZ equations on
Vn. We need a more refined class of qKZ solutions, defined as follows.
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Definition 2.3. Let q ∈ C
∗ and c ∈ C. Fix a Hn(t

1
2 )-module Vn with represen-

tation map σn: Hn(t
1
2 ) → End(Vn). For n ≥ 2 write Soln(Vn; q, c) ⊆ Vn[z] for

the Vn-valued polynomials f ∈ Vn[z] in the variables z1, . . . , zn satisfying

σn( ˜Ri(zi+1/zi))f(. . . , zi+1, zi, . . . ) = f(z) (1 ≤ i < n),

σn(ρ)f(z2, . . . , zn, q−1z1) = cf(z). (2.7)

For n = 1, we write Sol1(V1; q, c) for the V1-valued polynomials f ∈ V1[z] in
the single variable z satisfying the q-difference equation σ1(ρ)f(q−1z) = c f(z).
Finally, for n = 0 write Sol0(V0; q, c) ⊆ V0 for the eigenspace of σ0(X) ∈
End(V0) with eigenvalue c.

If n ≥ 1 and Soln(Vn; q, c) �= {0}, then necessarily c ∈ C
∗. In this case,

Soln(Vn; q, c) = V (c)
n (z)∇(Wn) ∩ V (c)

n [z],

with V
(c)
n denoting the vector space Vn endowed with the twisted action σc

n :
Hn → End(Vn) defined by σc

n(Ti) := σn(Ti) for i ∈ Z/nZ and σc
n(ρ) :=

c−1σn(ρ). We call c a twist parameter.

For n ≥ 2, let πt
1
2 ,q

n : Hn(t
1
2 ) → End(C[z±1]) be Cherednik’s [7] basic

representation, defined by

πt
1
2 ,q

n (Ti) := −t
1
2 +

(

t
1
2 zi − t−

1
2 zi+1

zi+1 − zi

)

(si − 1) (1 ≤ i < n),

πt
1
2 ,q

n (T0) := −t
1
2 +

(

t
1
2 qzn − t−

1
2 z1

z1 − qzn

)

(s0 − 1),

πt
1
2 ,q

n (ρ) := ρ

(see [27, Thm. 3.1] with (m, ki, ξ) replaced by (n,−t
1
2 , ρ) and specializing

to type A as in [27, §4.3]). For n = 1, we define the basic representation

πt
1
2 ,q

1 : H1(t
1
2 ) → End

(

C[z±1]
)

by πt
1
2 ,q

1 (ρ) := ρ. Note that C[z] is a πt
1
2 ,q

n (Hn)-
submodule of C[z±1].

By [27, Prop. 3.10] (see also [24, §4.1] and [22]), we have for n ≥ 1 and
c ∈ C

∗ the following alternative description of Soln(Vn; q, c):

Soln(Vn; q, c) =
{

f ∈ Vn[z] | πt− 1
2 ,q

n (h)f = σc
n(J(h))f ∀h ∈ Hn(t−

1
2 )
}

,

where J : Hn(t−
1
2 ) → Hn(t

1
2 ) is the unique anti-algebra isomorphism satisfying

J(Ti) := T−1
i (i ∈ Z/nZ) and J(ρ) := ρ−1. Here, the basic representation

πt− 1
2 ,q

n acts on the first tensor component of Vn[z] = C[z]⊗Vn. More concretely,

Soln(Vn; q, c) =

{

f ∈ Vn[z]
∣

∣

∣

∣

πt− 1
2 ,q

n (Ti)f = σn(T−1
i )f (1 ≤ i < n)

πt− 1
2 ,q

n (ρ)f = cσn(ρ−1)f

}

(2.8)

where one needs to be well aware that the action on the variables through
the basic representation is with respect to the extended affine Hecke algebra
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Hn(t−
1
2 ) and the action on Vn through σn is with respect to the extended

affine Hecke algebra Hn(t
1
2 ).

Before we can conclude this section with the introduction of the notion
of a qKZ tower of solutions we need to establish some notation. Let A be a
complex associative algebra and write CA for the category of left A-modules.
Write HomA(M,N) for the space of morphisms M → N in CA, which we will
call intertwiners. Suppose that η:A → B is a (unit preserving) morphism of
C-algebras, then we write Indη: CA → CB and Resη: CB → CA for the corre-
sponding induction and restriction functor. Concretely, if M is a left A-module,
then

Indη(M) := B ⊗A M

with B viewed as a right A-module by b · a := bη(a) for b ∈ B and a ∈ A. If
N is a left B-module, then Resη(N) is the complex vector space N , viewed as
an A-module by a · n := η(a)n for a ∈ A and n ∈ N .

For a left Hn+1-module Vn+1, we use the shorthand notation V νn
n+1 for

the left Hn-module Resνn(Vn+1). The following lemma introduces the concept
of the module lift of a qKZ solution.

Lemma 2.4. Let n ≥ 0. Let Vn be a left Hn(t
1
2 )-module and Vn+1 a left

Hn+1(t
1
2 )-module, with representation maps σn and σn+1, respectively. Let

μn ∈ HomHn
(Vn, V νn

n+1) be an intertwiner. Extend μn to a C[z]-linear map
Vn[z] → V νn

n+1[z], which we still denote by μn. Then, its restriction to
Soln(Vn; q, cn) is a linear map

μn: Soln(Vn; q, cn) → Soln(V νn
n+1; q, cn).

Proof. This is immediate from the intertwining property

μn ◦ σn(h) = (σn+1νn)(h) ◦ μn ∀h ∈ Hn. (2.9)

Indeed, if f ∈ Soln(V ; q, cn), then it follows for n ≥ 1 from (2.9) that

(σn+1νn)( ˜Ri(zi+1/zi))μn(f(. . . , zi+1, zi, . . . ))

= μn

(

σn( ˜Ri(zi+1/zi))f(. . . , zi+1, zi, . . . )
)

= μn(f(z))

for 1 ≤ i < n and

(σn+1νn)(ρ)f(z2, . . . , zn, q−1z1) = μn

(

σn(ρ)f(z2, . . . , zn, q−1z1)
)

= cnμn(f(z)),

hence μn(f) ∈ Soln(V νn
n+1; q, cn). For n = 0 and f ∈ Sol0(V0; q, c0), i.e., f ∈ V0

satisfying σ0(X)f = c0f , we have

(σ1ν0)(X)μ0(f) = μ0(σ0(X)f) = c0μ0(f),

hence μ0(f) ∈ Sol0(V ν0
1 ; q, c0). �
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By the intertwiner μn a qKZ solution f (n)(z) ∈ Soln(Vn; q, cn) gets lifted
to a solution in Soln(V νn

n+1; q, cn), taking values in the Hn+1-module Vn+1.
Along with this upward module lift, there is also a downward descent of a
solution, which reduces the number of variables. It is defined as follows.

Recall the algebra map νn: Hn → Hn+1 defined by (2.3).

Lemma 2.5. Let n ≥ 0 and let Vn+1 be a left Hn+1(t
1
2 )-module with associated

representation map σn+1. Then, for n ≥ 1 and f ∈ Soln+1(Vn+1; q, cn+1),

f(z1, . . . , zn, 0) ∈ Soln(V νn
n+1; q,−t−

3
4 cn+1),

and for n = 0 and f ∈ Sol1(V1; q, c1),

f(0) ∈ Sol0(V ν0
1 ; q, t

1
4 c1 + t−

1
4 c−1

1 ).

Proof. Let n ≥ 1 and f ∈ Soln+1(Vn+1; q, cn+1). Set g(z1, . . . , zn)
:= f(z1, . . . , zn, 0). For 1 ≤ i < n, we have

(σn+1νn)( ˜Ri(zi+1/zi))g(. . . , zi+1, zi, . . . )

= σn+1( ˜Ri(zi+1/zi))f(z1, . . . , zi+1, zi, . . . , zn, 0)

= f(z1, . . . , zn, 0) = g(z1, . . . , zn).

Hence, to prove that g ∈ Soln(V νn
n+1; q,−t−

3
4 cn+1) it remains to show that

(σn+1νn)(ρ)g(z2, . . . , zn, q−1z1) = −t−
3
4 cn+1g(z). (2.10)

To prove (2.10), first note that

σn+1(ρ ˜Rn(z1/qzn+1))f(z2, . . . , zn, q−1z1, zn+1)

= σn+1(ρ)f(z2, . . . , zn+1, q
−1z1)

= cn+1f(z1, . . . , zn+1).

Setting zn+1 = 0 and using that ˜Rn(∞) := limx→∞ ˜Rn(x) = −t
1
2 T−1

n , we get

−t
1
2 σn+1(ρT−1

n )g(z2, . . . , zn, q−1z1) = cn+1g(z1, . . . , zn).

Then, (2.10) follows from the fact that νn(ρ) = t−
1
4 ρT−1

n .
For n = 0 and f ∈ Sol1(V1; q, c1), we have

(σ1ν0)(X)f(0) = σ1(t
1
4 ρ + t−

1
4 ρ−1)f(0) = (t

1
4 c1 + t−

1
4 c−1

1 )f(0),

hence f(0) ∈ Sol0(V ν0
1 ; q, t

1
4 c1 + t−

1
4 c−1

1 ). �

By lifting solutions of qKZ equations by intertwiners μn and descending
solutions of qKZ equations by setting variables equal to zero, we can con-
nect qKZ solutions of different ranks. This leads to the definition of a qKZ
tower of solutions. The starting point is the following definition of a tower of
extended affine Hecke algebra modules (compare with [3], where this notion
was introduced for modules over extended affine Temperley–Lieb algebras, see
also Sect. 3).
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Definition 2.6. A tower

V0
μ0−→ V1

μ1−→ V2
μ2−→ V3

μ3−→ · · ·

of extended affine Hecke algebra modules is a sequence {(Vn, μn)}n∈Z≥0 with
Vn a left Hn-module and μn ∈ HomHn

(

Vn, V νn
n+1

)

.

To lift this notion of a tower to solutions of qKZ equations, it is conve-
nient to disregard quasiperiodic (with respect to the action of ρ) symmetric
normalization factors h, i.e., polynomials h ∈ C[z]Sn satisfying ρh = λh for
some λ ∈ C

∗. We call such h a λ-recursion factor, and λ the scale param-
eter. We write Tn,λ ⊂ C[z] for the space of λ-recursion factors. Note that
hf ∈ Soln(Vn; q, λcn) if f ∈ Soln(Vn; q, cn) and h ∈ Tn,λ. By convention, we
define the space T0,λ of λ-recursion factors for n = 0 to be C if λ = 1 and {0}
otherwise.

If q is a root of unity, then we write e ∈ Z>0 for the smallest natural
number such that qe = 1. We take e = ∞ if q is not a root of unity.

Lemma 2.7. Let n ≥ 1. Then, Tn,λ = {0} unless λ = q−m for some 0 ≤ m < e.
If 0 ≤ m < e, then

Tn,q−m = C[ze
1, . . . , z

e
n]Sn(z1 . . . zn)m.

The latter formula should be read as Tn,q−m = span
C
{(z1 . . . zn)m} if e = ∞.

Proof. Let α ∈ Z
n
≥0. It suffices to show that

∑

β∈Snα zβ ∈ C[z]Sn is a λ-
recursion factor if and only if there exists a 0 ≤ m < e such that λ = q−m

and αi ≡ m mod e for all i (where the latter condition for e = ∞ is read as
αi = m for all i).

Note that

ρ
(
∑

β∈Snα

zβ
)

=
∑

β∈Snα

q−βnzβn

1 zβ1
2 . . . zβn−1

n =
∑

β∈Snα

q−β1zβ ,

hence
∑

β∈Snα zβ ∈ Tn,λ if and only if λ = q−αi for all i = 1, . . . , n. This is
equivalent to λ = q−m and αi ≡ m mod e for some 0 ≤ m < e. �

The following lemma shows that by rescaling a nonzero symmetric poly-
nomial solution of the qKZ equations by an appropriate recursion factor, it
will remain nonzero if one of its variables is set to zero.

Lemma 2.8. Let n ≥ 1 and let Vn be a left Hn-module with representation map
σn. If 0 �= f ∈ Soln(Vn; q, cn), then there exists a unique m ∈ Z≥0 and g ∈
Soln(Vn; q, qmcn) such that f(z) = (z1 . . . zn)mg(z) and g(z1, . . . , zn−1, 0) �≡ 0.

Proof. Recall that the existence of a nonzero f ∈ Soln(Vn; q, cn) guarantees
that cn �= 0. Suppose that f(z1, . . . , zn−1, 0) ≡ 0. Using σn(ρ)f(z2, . . . , zn,
q−1z1) = cnf(z) repeatedly, we conclude that f(. . . , zi−1, 0, zi+1, . . . ) ≡ 0.
Hence, f(z) is divisible by the q−1-recursion factor z1 . . . zn in Vn[z]. Now
divide this factor out and apply induction to the total degree of f . �
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Definition 2.9 (qKZ tower). Let {(Vn, μn)}n∈Z≥0be a tower of extended affine
Hecke algebra modules. We call (f (n))n≥0 an associated qKZ tower of solutions
with twisting parameters cn ∈ C

∗ (n ≥ 1) if there exist recursion factors
h(n) ∈ Tn,λn

(n ≥ 0) such that

(a) 0 �= f (n) ∈ Soln(Vn; q, cn) for n ≥ 0, with c0 := t
1
4 c1 + t−

1
4 c−1

1 .
(b) f (n+1)(z1, . . . , zn, 0) �≡ 0 for all n ≥ 0.
(c) For all n ≥ 0, we have

f (n+1)(z1, . . . , zn, 0) = h(n)(z1, . . . , zn)μn(f (n)(z1, . . . , zn)). (2.11)

We call (2.11) the braid recursion relations for the qKZ tower (f (n))n≥0

of solutions.

Note that by Lemmas 2.4 and 2.5, we necessarily must have the compat-
ibility condition

− t−
3
4 cn+1 = λncn n ≥ 1 (2.12)

between the twist and scale parameters in a qKZ tower of solutions (note that
for n = 0 we have t

1
4 c1 + t−

1
4 c−1

1 = c0 by definition).

3. Extended Affine Temperley–Lieb Algebra

The qKZ towers we construct are built using modules of the extended affine
Temperley–Lieb algebra, which is a quotient of Hn. In this section, we recall the
definition of the extended affine Temperley–Lieb algebra and discuss the rele-
vant tower of extended affine Temperley–Lieb algebra modules, following [3].

The extended affine Temperley–Lieb algebras arise as the endomorphism
algebras of the skein category of the annulus, see [3] and references therein.
We first give the definition of the extended affine Temperley–Lieb algebra in
terms of generators and relations and then discuss its relation to Hn and the
qKZ equations. For more details on the theory discussed in this section, see
[3] and references within.

Definition 3.1. Let n ≥ 3. The extended affine Temperley–Lieb algebra T Ln =
T Ln(t

1
2 ) is the complex associative algebra with generators ei (i ∈ Z/nZ) and

ρ, ρ−1, and defining relations

e2i =
(

−t
1
2 − t−

1
2
)

ei,

eiej = ejei if i − j �≡ ±1,

eiei±1ei = ei,

ρei = ei+1ρ,

ρρ−1 = 1 = ρ−1ρ,
(

ρe1
)n−1 = ρn(ρe1), (3.1)

where the indices are taken modulo n. For n = 2, the extended affine
Temperley–Lieb algebra T L2 = T L2(t

1
2 ) is the algebra generated by e0, e1, ρ

±1

with the defining relations (3.1) but with the third relation omitted. For n = 1,
we set T L1 = H1 = C[ρ, ρ−1], and for n = 0 we set T L0 = H0 = C[X].
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The affine Temperley–Lieb algebra is the subalgebra T La
n of T Ln gen-

erated by ei (i ∈ Z/nZ). The first three relations in (3.1) are the defining
relations in terms of these generators (the first relation is the defining relation
when n = 2). The (finite) Temperley–Lieb algebra is the subalgebra T L0

n of
T La

n generated by e1, . . . , en−1. The first three relations in (3.1) for the rele-
vant indices are then the defining relations. Note that the dependence on the
parameter t

1
2 of T Ln is actually a dependence on t

1
2 + t−

1
2 .

It is well known that for n ≥ 2 the assignments

Ti �→ ei + t−
1
2 , ρ �→ ρ

for i ∈ Z/nZ extend to a surjective algebra homomorphism ψn: Hn(t
1
2 ) �

T Ln(t
1
2 ) see e.g., [3, Prop. 7.2] and references therein. For n = 1 and n = 0,

we take ψn: Hn → T Ln to be the identity map.
Via the map ψn, the R-operators Ri(x) := ψn( ˜Ri(x)) (i ∈ Z/nZ) on the

extended affine Temperley–Lieb level are

Ri(x) = a(x)ei + b(x) (3.2)

as rational T Ln-valued function in x, with a(x) = a(x; t
1
2 ) and b(x) = b(x; t

1
2 )

given by

a(x) :=
x − 1

t
1
2 − t−

1
2 x

, b(x) :=
xt

1
2 − t−

1
2

t
1
2 − t−

1
2 x

. (3.3)

Note that the Ri(x) (i ∈ Z/nZ) satisfy the Yang–Baxter-type equations (2.6)
in T Ln. The weights a(x) and b(x) will play an important role in the next
section, where they appear as the Boltzmann weights of the dense loop model.

We can now define the following analog of the qKZ solution space
Soln(Vn; q, c) (Definition 2.3) for left T Ln-modules Vn. For n ≥ 2, it is the
space of Vn-valued polynomials f ∈ Vn[z] in the variables z1, . . . , zn satisfying

σn(Ri(zi+1/zi))f(. . . , zi+1, zi, . . . ) = f(z) (1 ≤ i < n),

σn(ρ)f(z2, . . . , zn, q−1z1) = cf(z), (3.4)

where σn is the representation map of the T Ln-module Vn. For n = 1, it
is the space of V1-valued polynomials f in the single variable z satisfying
σ1(ρ)f(q−1z) = cf(z). For n = 0, it is the eigenspace of σ0(X) with eigenvalue
c. By a slight abuse of notation, we will denote this space of solutions again
by Soln(Vn; q, c). No confusion can arise, since Soln(Vn; q, c) for the left T Ln-
module Vn coincide with Soln(˜Vn; q, c), where ˜Vn is the Hn-module obtained
by endowing Vn with the lifted Hn-module structure with representation map
σn ◦ ψn.

From [3, Prop. 6.3], we have an algebra homomorphism In: T Ln(t
1
2 ) →

T Ln+1(t
1
2 ) for n ≥ 0 defined by I0(X) = t

1
4 ρ + t−

1
4 ρ−1 and

In(ei) = ei, 1 ≤ i < n,

In(ρ) = ρ(t−
1
4 en + t

1
4 )
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for n ≥ 1. In particular, In(ρ−1) = (t
1
4 en + t−

1
4 )ρ−1. Note that we have a

commutative diagram

Hn Hn+1

T Ln T Ln+1

νn

ψn ψn+1

In

(3.5)

Following [3, Def. 7.1], we say that {(Vn, μn)}n∈Z≥0 is a tower of extended
affine Temperley–Lieb modules if Vn is a left T Ln-module and μn ∈
HomT Ln

(

Vn, V In
n+1

)

for all n ≥ 0. We sometimes write the tower as

V0
μ0−→ V1

μ1−→ V2
μ2−→ V3

μ3−→ · · ·
Note that (3.5) implies that an intertwiner μn ∈ HomT Ln

(Vn, V In
n+1) is

also an intertwiner ˜Vn → ˜V νn
n+1 of the associated Hn-modules. Hence, the tower

{(Vn, μn)}n≥0 of extended affine Temperley–Lieb algebra modules gives rise to
the tower {(˜Vn, μn)}n≥0 of extend affine Hecke algebra modules. Conversely,
if {(˜Vn, μn)}n≥0 is a tower of extended affine Hecke algebra modules and the
representation maps σ̃n: Hn → End(Vn) factorize through ψn, then the tower
descends to a tower of extended affine Temperley–Lieb algebra modules. We
will freely use these lifts and descents of towers in the sequel of the paper.

The tower of extended affine Temperley–Lieb modules relevant for the
dense loop model is constructed from the skein category S = S(t

1
4 ) of the

annulus, defined in [3]. We shortly recall here the basic features of the category
S. For further details, we refer to [3, §3].

The category S is the complex linear category with objects Z≥0 and with
the space of morphisms HomS(m,n) being the linear span of planar isotopy
classes of (m,n)-tangle diagrams on the annulus A := {z ∈ C | 1 ≤ |z| ≤
2}, with m and n marked ordered points on the inner and outer boundary,
respectively, modulo the Kauffman skein relation

= t
1
4 + t−

1
4 ;

(3.6)

and the (null-homotopic) loop removal relation

= −(t
1
2 + t−

1
2 ) .

(3.7)
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We consider here planar isotopies that fix the boundary of A pointwise. The
ordered marked points on the boundary are ξi−1

m (1 ≤ i ≤ m) and ξj−1
n

(1 ≤ j ≤ n) with ξ� := e2πi/�. In these equations, the disk shows the local
neighborhood in the annulus where the diagrams differ. Let L be an (l,m)-
tangle diagram and L′ an (m,n)-tangle diagram. The composition [L′] ◦ [L] of
the corresponding equivalence classes in S is [L′ ◦ L], with L′ ◦ L the (l, n)-
tangle diagram obtained by placing L inside L′ such that the outer boundary
points of L match with the inner boundary points of L′. For example,

12 12 ◦ 12 1
2

3
4

= 12 1
2

3
4

By [17, Prop. 2.3.7] and [3, Thm. 5.3], we have an isomorphism
θn: T Ln(t

1
2 ) ∼−→ End

S(t
1
4 )

(n) of algebras for n ≥ 0, with the algebra iso-
morphism θn for n ≥ 1 determined by

ρ 1

2

1
n

, ei 1

i−1

i
i+1 i+2

1
i

and for n = 0 by

X .

Moreover, in [3, Def. 6.1] an arc insertion functor I: S → S is defined using
a natural monoidal structure on S. It maps n to n + 1 and, on morphisms, it
inserts on the level of link diagrams a new arc connecting the inner and outer
boundary while going underneath all arcs it meets (the particular winding
of the new arc is subtle, see [3, §6] for the details). The resulting algebra
homomorphisms I|EndS(n): EndS(n) → EndS(n+1) coincides with the algebra
homomorphism In by the identification of EndS(n) with T Ln(t

1
2 ) through the

isomorphism θn, see [3, Prop. 8.3].
Let v ∈ C

∗ and set u := t
1
4 v + t−

1
4 v−1. The one-parameter family of link

pattern towers

V0(u)
φ0−→ V1(v)

φ1−→ V2(u)
φ2−→ V3(v)

φ3−→ . . .
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of extended affine Temperley–Lieb algebra modules is now defined as follows
(see [3, §10]). For n = 2k, the T L2k-module V2k(u) is defined as

V2k(u) := HomS(0, 2k) ⊗T L0 C
(u)
0 ,

where HomS(0, 2k) is endowed with its canonical (T L2k, T L0)-bimodule struc-
ture and C

(u)
0 denotes the one-dimensional representation of T L0 = C[X]

defined by X �→ u. For n = 2k − 1, the T L2k−1-module V2k−1(v) is defined as

V2k−1(v) := HomS(1, 2k − 1) ⊗T L1 C
(v)
1

with C
(v)
1 denoting the one-dimensional representations of T L1 = C[ρ±1]

defined by ρ �→ v. For Y ∈ HomS(0, 2k), we write Yu := Y ⊗T L0 1 for
the corresponding element in V2k(u). Similarly, for Z ∈ HomS(1, 2k − 1)
we write Zv := Z ⊗T L1 1 for the corresponding element in V2k−1(v). We
sometimes omit the dependence of the representations V2k(u) and V2k−1(v)
on u = t

1
4 v + t−

1
4 v−1 and v, if it is clear from context.

The intertwiners φn (n ≥ 0) are defined as follows. Consider the skein
element

U := t
1
4 12 + v 12 ∈ HomS(0, 2).

Then,
φ2k([L]u) := I([L])v,

φ2k−1([L′]v) := (I([L′]) ◦ U)u,

for a (0, 2k)-link diagram L and a (1, 2k − 1)-link diagram L′.

Example 3.2.

1

2

3

4

φ4
1

2

3

4

5

1

2

3

φ3
t
1
4 1

2

3

4

+ v 1

2

3

4
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The rather peculiar form of the intertwiners φ2k−1 can be explained in
terms of a Roger and Yang [25]-type graded algebra structure on the total
space V0(u) ⊕ V1(v) ⊕ V2(u) ⊕ · · · of the link pattern tower, see [3, Rem. 8.11].

Let D = {z ∈ C | |z| ≤ 2} and D
∗ := D\{0}. A punctured link pattern

of size 2k is a perfect matching of the 2k equally spaced marked points 2ξi−1
2k

(1 ≤ i ≤ 2k) on the boundary of D
∗ by k non-intersecting arcs lying within

D
∗. A punctured link pattern of size 2k − 1 is a perfect matching of the 2k

marked points 2ξj−1
2k−1 (1 ≤ j < 2k) and 0 by k non-intersecting arcs lying

within D. Only the endpoints of the arcs are allowed to lie on {0} ∪ ∂D. Two
link patterns are regarded the same if they are planar isotopic by a planar
isotopy fixing 0 and the boundary ∂D of D pointwise. The arc connecting 0
to the outer boundary of D is called the defect line. An arc that connects two
points on the boundary are sometimes referred to as an arch, and an arch that
connects two consecutive points that does not contain the puncture is called
a little arch. We denote the set of punctured link patterns of size n by Ln. As
an example, the following punctured link patterns

1

2

3

* 1

2

3

* 1

2

3

*

constitute L3.
For twist parameter v = 1, we can naturally identify the nth represen-

tation space Vn in the link pattern tower with C[Ln] as a vector space by
shrinking the hole {z ∈ C | |z| ≤ 1} of the annulus to 0. The resulting action
of T Ln on C[Ln] can be explicitly described skein theoretically, see [3, §8].

4. qKZ Equations on the Space of Link Patterns

In this section, we fix v = 1. We discuss the qKZ equations associated with
the T Ln-modules Vn 
 C[Ln] (n ≥ 0) from the link pattern tower, and we
derive necessary conditions for the existence of qKZ towers of solutions. The
existence of qKZ towers of solutions will be the subject of later sections.

Let L∩ = L
(n)
∩ ∈ Ln denote the link patterns

* 1

2k

k

k+1 and 1

2k−1

k−1

k

k+1
*

for n = 2k and 2k − 1, respectively. We call L∩ ∈ Ln the fully nested dia-
gram. For g(n)(z) =

∑

L∈Ln
g
(n)
L (z)L ∈ Vn(z), we call g

(n)
L∩ (z) the fully nested

component of g(n)(z).
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The fully nested component plays an important role in the analysis of
polynomial twisted-symmetric solutions g(n)(z) ∈ V

(c)
n (z)∇(Wn) of the qKZ

equations. In [11, §2.2] and [21, §3.5.2], it was remarked that such solutions are
uniquely determined by their fully nested component, and an explicit expres-
sion for the fully nested component was determined in case the solution is
polynomial of total degree 1

2n(n − 1) (existence of such a solution is a subtle
issue). We recall these results here extend them to qKZ solutions taking values
in V In

n+1 and show how these results combined lead to explicit braid recursion
relations.

Lemma 4.1. Let n ≥ 1, q, c ∈ C
∗ and let

g(n)(z) =
∑

L∈Ln

g
(n)
L (z)L ∈ V (c)

n (z)

with coefficients g
(n)
L (z) ∈ C(z) (L ∈ Ln). Then, g(n)(z) ∈ V

(c)
n (z)∇(Wn) if and

only if for all L ∈ Ln and 1 ≤ i < n,

g
(n)
L (z) = b(zi+1/zi)g

(n)
L (siz) +

∑

L′∈Ln: eiL′∼L

γ
(i)
L′,La(zi+1/zi)g

(n)
L′ (siz),

g
(n)
L (z) = c−1g

(n)
ρ−1L(z2, . . . , zn, q−1z1), (4.1)

where eiL
′ ∼ L means that L is obtained from eiL

′ by removing the loops in
eiL

′ (there is in fact at most one loop). The coefficient γ
(i)
L′,L is

γ
(i)
L′,L =

⎧

⎪

⎨

⎪

⎩

−(t
1
2 + t−

1
2 ) if eiL

′ has a null-homotopic loop,

t
1
4 + t−

1
4 if eiL

′ has a non-null-homotopic loop,

1 otherwise.

Proof. This follows directly by rewriting the qKZ equations

g(n)(z) = Ri(zi+1/zi)g(n)(. . . , zi+1, zi, . . .), 1 ≤ i < n,

g(n)(z) = c−1ρg(n)(z2, . . . , zn, q−1z1)

component-wise. �

For the following lemmas concerning the uniqueness of solutions, we need
to impose that the loop weights −(t

1
2 + t−

1
2 ) and t

1
4 + t−

1
4 are both nonzero.

Lemma 4.2. Let n ≥ 1, q, c ∈ C
∗ and t

1
4 ∈ C

∗ with (t
1
2 + 1)(t + 1) �= 0. Let

g(n)(z) =
∑

L∈Ln

g
(n)
L (z)L ∈ V (c)

n (z)∇(Wn).

(a) If g
(n)
L∩ (z) = 0, then g(n)(z) = 0.

(b) If g
(n)
L∩ (z) ∈ C[z] is a homogeneous polynomial of total degree m, then so

is g
(n)
L (z) for all L ∈ Ln.
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Proof. In “Appendix A,” we show by induction that, given gL∩(z), the recur-
sion relations (4.1) determine the other coefficients g

(n)
L (z) (L ∈ Ln) uniquely.

For this, the first equation in (4.1) is used in the following way: for L′ ∈ Ln

and 1 ≤ i < n such that L′ does not have a little arch between i and i + 1,
denote by L ∈ Ln the link pattern such that eiL

′ ∼ L, then g
(n)
L′ (z) can be

computed from other base components by the formula

γ
(i)
L′,La(zi+1/zi)g

(n)
L′ (siz) = gL(z) − b(zi+1/zi)gL(siz)

−
∑

L′′∈Ln\{L′}: eiL′′∼L

γ
(i)
L′′,La(zi+1/zi)g

(n)
L′′ (siz)

since γ
(i)
L′,L �= 0. By substituting the explicit expressions of the weights a(x)

and b(x), this can be rewritten as

γ
(i)
L′,L(zi+1 − zi)g

(n)
L′ (siz) = (1 − si)

(

(t
1
2 zi − t−

1
2 zi+1)gL(z)

)

− (zi+1 − zi)
∑

L′′∈Ln\{L′}: eiL′′∼L

γ
(i)
L′′,Lg

(n)
L′′ (siz),

from which it is clear that g
(n)
L′ (z) will be a homogeneous polynomial of total

degree m if g
(n)
L (z) and g

(n)
L′′ (z) are homogeneous polynomials of total degree

m. �

A similar result holds true for the restricted modules V In
n+1:

Lemma 4.3. Let n ≥ 1, q, c ∈ C
∗ and t

1
4 ∈ C

∗ such that (t
1
2 + 1)(t + 1) �= 0.

Let

g(n)(z) =
∑

L∈Ln+1

g
(n)
L (z)L ∈ V

In,(c)
n+1 (z)∇(Wn).

(a) If g
(n)
L∩ (z) = 0 with L∩ = L

(n+1)
∩ ∈ Ln+1 the fully nested diagram, then

g(n)(z) = 0.
(b) If g

(n)
L∩ (z) ∈ C[z] is a homogeneous polynomial of total degree m, then so

is g
(n)
L (z) for all L ∈ Ln+1.

Proof. The proof is similar to the proof of the previous lemma, but the check
that the recursion relations coming from the qKZ equations for the representa-
tion V

In,(c)
n+1 determine all components in terms of the fully nested component

g
(n)

L
(n+1)
∩

(z) is more subtle. The details are given in “Appendix A.” �

Corollary 4.4. Let n ≥ 1 and

g(n)(z) =
∑

L∈Ln

g
(n)
L (z)L ∈ V (c)

n (z)∇(Wn).

Then,

g
(n)
L∩ (z) = Cn(z)

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)
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with Cn(z) ∈ C(z)Sn . If in addition g
(n)
L∩ (z) is a homogeneous polynomial of

total degree m and (t
1
2 + 1)(t + 1) �= 0, then m ≥ 1

2n(n − 1) and Cn(z) is a
homogeneous symmetric polynomial of total degree m − 1

2n(n − 1).

Proof. Note that L∩ does not have a little arch connecting i and i + 1 for
1 ≤ i < n. By the recursion relation (4.1), it follows that

g
(n)
L∩ (siz)

(

t
1
2 zi+1 − t−

1
2 zi

)

= g
(n)
L∩ (z)

(

t
1
2 zi − t−

1
2 zi+1

)

(4.2)

for 1 ≤ i < n. The first result now follows immediately.
For the second statement, suppose that g

(n)
L∩ (z) is a homogeneous poly-

nomial of total degree m. Then, (4.2) and t2 �= 1 imply that g
(n)
L∩ (z) is divisible

by t
1
2 z2 − t−

1
2 z1 in C[z] and the resulting quotient is invariant under inter-

changing z1 and z2. One now proves by induction on r that g
(n)
L∩ (z) is divisible

by
∏

1≤i<j≤r(t
1
2 zj − t−

1
2 zi) in C[z] and the resulting quotient is symmetric in

z1, . . . , zr. The second statement then follows by taking r = n. �
It follows from the previous result that if the loop weights are nonzero

and if there exists a nonzero g(n) ∈ Soln(Vn; q, cn) with coefficients being
homogeneous of total degree 1

2n(n − 1), then it is unique up to a nonzero
scalar multiple and

g
(n)
L∩ (z) = κ

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

for some κ ∈ C
∗.

The following lemma is important in the analysis of qKZ towers of solu-
tions relative to the link pattern tower {(Vn, φn)}n≥0.

Lemma 4.5. For L ∈ Ln, consider the expansion

φn(L) =
∑

L′∈Ln+1

cL,L′L′ (cL,L′ ∈ C)

of φn(L) in terms of the linear basis Ln of Vn. Then, c
L,L

(n+1)
∩

= t−
1
4 �n/2δ

L,L
(n)
∩

.

Proof. For n = 2k, consider a link pattern L ∈ L2k that has a little arch
connecting i, i + 1 for some i ∈ {1, . . . , 2k − 1}. All the link patterns in the
image φ2k(L) also contain the same little arch since the inserted defect line at
the skein module level does not cross it (possibly after an appropriate number
of applications of Reidemeister II moves). The only link pattern that does not
contain a little arch connecting i, i + 1 for any 1 ≤ i < 2k is L∩. By the
mapping φ2k, we have at the skein module level

* 1

2k

k

k+1

φ2k
1

2k+1

2k

k

k+1

*
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and note that the image has k under-crossings. Resolving all the crossings
using the Kauffman skein relations gives a linear combination of link patterns.
The contribution to link pattern L∩ ∈ L2k+1 comes from taking the smoothing

for each crossing . Each of these contributions gives a factor t−
1
4 ,

which establishes the result for n even.
For the case n = 2k − 1 odd the first step of the argument is similar. The

only link pattern that does not contain a little arch connecting i, i + 1 for any
1 ≤ i < 2k − 1 is L∩. By the mapping φ2k−1, we have at the skein module
level

1

2k−1

k − 1

k

k+1
*

φ2k−1
1

2k−1

k − 1

k

k+1

2k

* + t
1
4

1

2k−1

k − 1

k

k+1

2k

*

and note that each term in the image has k − 1 under-crossings. Resolving
all the crossings using Kauffman’s skein relations gives a linear combination
of link patterns. The contributions to the link pattern L∩ ∈ L2k come from
taking the smoothing for each crossing in the first term. Each of
these contributions gives a factor t−

1
4 , which establishes the result for n odd.

�

The next lemma provides necessary conditions on the parameters q, cn

for the existence of a qKZ tower of solutions of minimal degree relative to the
link pattern tower.

Lemma 4.6. Let v = 1 and q, cn, t
1
4 ∈ C

∗ (n ≥ 1) with (t
1
2 + 1)(t + 1) �= 0.

Suppose that for each n ≥ 1 there exists a g(n) ∈ Soln(Vn; q, cn) with

g
(n)
L∩ (z) =

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

.

Write g(0) := 1 ∈ V0.
Then, the following two statements are equivalent:

(a)
(

g(n)
)

n≥0
is a qKZ tower of solutions relative to the link pattern tower

{(Vn, φn)}n≥0.
(b) q = t

3
2 , cn =

(

−t−
3
4
)n−1 (n ≥ 1) and c0 = t

1
4 + t−

1
4 .

If these equivalent conditions are satisfied, then λn := q−1 (n ≥ 1), λ0 = 1,

h(n)(z) = t
1
4 (�n/2−2n)z1z2 . . . zn (n ≥ 1)

and h(0) = 1. In other words, the corresponding braid recursion relations are
then given by

g(n+1)(z1, . . . , zn, 0) = t
1
4 (�n/2−2n)z1z2 . . . znφn

(

g(n)(z1, . . . , zn)
)

, n ≥ 0.
(4.3)
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Proof. Note that for n ≥ 1,

(cn)ng(n)(z) = ρng(n)(q−1z1, . . . , q
−1zn) = q− 1

2n(n−1)g(n)(z) (4.4)

since ρn acts as the identity on Vn and g(n) is homogeneous of total degree
1
2n(n − 1). Hence, (cn)n = q− 1

2n(n−1) (n ≥ 1). Furthermore, c1 = 1 since g(1)

is constant.
By the rank descent lemma, we have

g(n+1)(z1, . . . , zn, 0) ∈ Soln
(

V In
n+1; q,−t−

3
4 cn+1),

while the representation lift lemma gives φn(g(n)(z1, . . . , zn)) ∈ Soln
(

V In
n+1;

q, cn). The fully nested component of g(n+1)(z1, . . . , zn, 0) is

g
(n+1)

L
(n+1)
∩

(z1, . . . , zn, 0) =
(

−t−
1
2
)n

z1z2 . . . zn

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

.

Using Lemma 4.5, the fully nested component of φn(g(n)(z1, . . . , zn)) is

t−
1
4 �n/2

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

.

(a) ⇒ (b): assume that (g(n))n≥0 is a qKZ tower of solutions. Then, the above
analysis of the fully nested components implies that λn = q−1 and

h(n)(z) = t
1
4 (�n/2−2n)z1z2 . . . zn

for n ≥ 1, while λ0 = 1, h(0) = 1 for n = 0. Hence, the corresponding braid
recursion takes on the explicit form (4.3). Note that c0 = t

1
4 + t−

1
4 since g(0) =

1. For n ≥ 1, the left-hand side of (4.3) lies in Soln(V In
n+1; q,−t−

3
4 cn+1), while

the right-hand side lies in Soln(V In
n+1; q, q

−1cn); hence, the twist parameters cn

must satisfy cn+1 = −q−1t
3
4 cn (n ≥ 1). Since c1 = 1, we conclude that

cn =
(

−q−1t
3
4
)n−1

, n ≥ 1.

Combined with (4.4), we obtain for n ≥ 1,
(

q−2t
3
2
) 1

2n(n−1) = q− 1
2n(n−1),

which is satisfied if and only if q = t
3
2 . It follows that cn = (−t−

3
4 )n−1 for

n ≥ 1, as desired.
(b) ⇒ (a) in view of Lemmas 4.2 and 4.3 we only have to show that under
the parameter conditions as stated in (b), the fully nested components of the
left- and right-hand side of (4.3) match. This can be confirmed by a direct
computation. �

We can now state the main theorem of the paper.

Theorem 4.7. Let t
1
4 ∈ C

∗ with (t
1
2 + 1)(t + 1) �= 0 and set v = 1, q = t

3
2 .

There exists, for all n ≥ 1, a unique solution g(n)(z) ∈ Soln
(

Vn; t
3
2 , (−t−

3
4 )n−1

)

homogeneous of total degree 1
2n(n − 1), such that

g
(n)
L∩ (z) =

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

.
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Then, (g(n))n≥0, with g(0) := 1 ∈ Sol0(V0; t
3
2 , t

1
4 + t−

1
4 ), is a qKZ tower of

solutions, with the associated braid recursion relations given by (4.3).

The proof of the theorem will be given in Sect. 6. The key step is the con-
struction of g(n)(z) for generic t

1
4 ∈ C

∗ in terms of specialized non-symmetric
dual Macdonald polynomials using the Cherednik–Matsuo correspondence [27]
and using results of Kasatani [20]. The generic conditions on t

1
4 can then be

removed by noting that the constructed solution g(n)(z) is well defined over
C(t

1
4 ) and the fact that the coefficients g

(n)
L (z) for L ∈ Ln are regular at the

values t
1
4 ∈ C

∗ for which (t
1
2 + 1)(t + 1) �= 0. Indeed, g

(n)
L∩ (z) is clearly regular

at t
1
4 ∈ C

∗. By the recursion relations expressing g
(n)
L (z) in terms of g

(n)
L∩ (z)

(see the proof of Lemma 4.2 and “Appendix A”), it then follows inductively
that all coefficients g

(n)
L (z) (L ∈ Ln) are regular at the values t

1
4 ∈ C

∗ for
which (t

1
2 + 1)(t + 1) �= 0.

Remark 4.8. Note that for t
1
4 = exp(πi/3), we have t

3
2 = 1 and −t

1
2 − t−

1
2 =

1 = t
1
4 + t−

1
4 . The resulting qKZ tower of solutions (g(n))n≥0 from The-

orem 4.7 is closely related to the inhomogeneous dense O(1) loop model
on the half-infinite cylinder, see Sect. 5 and [11]. In fact, the constituents
g(n) ∈ Soln

(

Vn; 1, 1
)

then are the renormalized ground states of the inhomo-
geneous O(1) dense loop models on the half-infinite cylinder. In this case, the
braid recursion relations reduce to

g(2k)(z1, . . . , z2k−1, 0) = (−1)kt−
1
2 z1 . . . z2k−1φ2k−1(g(2k−1)(z1, . . . , z2k−1)),

g(2k+1)(z1, . . . , z2k, 0) = (−1)kz1 . . . z2kφ2k

(

g2k)(z1, . . . , z2k)).

5. Existence of Solution for t
1
4 = exp(πi/3)

In this section, we recall the construction of the polynomial solutions g(n)(z) ∈
Soln(Vn(1); 1, 1) of degree 1

2n(n − 1) for v = 1 and t
1
4 = exp(πi/3) (see Theo-

rem 4.7). In this special case, the construction of the qKZ tower of solutions
is facilitated by the fact that the underlying integrable model, the inhomoge-
neous dense O(1) loop model on the half-infinite cylinder, is stochastic. This
allows one to construct g(n)(z) as a suitably renormalized version of the ground
state of the inhomogeneous dense O(1) loop model, following [11].

The section begins with discussing the Temperley–Lieb transfer operator,
and then we specialize the analysis to the inhomogeneous dense O(1) loop
model on the half-infinite cylinder. In this section v = 1.

5.1. Transfer Operator

The transfer operator ̂T (n) := ̂T (x; z1, . . . , zn): C[Ln] → C[Ln] can be defined
as follows [9,11]. For n > 0 consider the following two tiles
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which we denote by τnw and τne, respectively, where ‘nw’ and ‘ne’ indicate
that the north edge of the tile is connected to the west or east edge by an arc.
Then, ̂T (n)(x; z) = ̂T (n)(x; z1, . . . , zn) is defined by

T (n)(x; z) :=
τ1,...,τn

n

i=1

Pτi(x/zi)

τ1
τ2

τi

where τi ∈ {τnw, τne},

Pτnw(x/zi) = a(x/zi) =
x − zi

t
1
2 zi − t−

1
2 x

,

Pτne(x/zi) = b(x/zi) =
t
1
2 x − t−

1
2 zi

t
1
2 zi − t−

1
2 x

.

Note that the inner boundary of the annulus is always taken as the north
edge of the tile. Moreover, for the case n = 1, tiling the annulus is done by
stretching the tile so that the east and west edges are identified. The string
of tiles covering the annulus can immediately be interpreted as an element in
Sn(t

1
4 ). Hence, by the algebra isomorphism θn: T Ln(t

1
2 ) ∼−→ End

S(t
1
4 )

(n) we

have ̂T (n)(x; z) ∈ C(x, z) ⊗ T Ln(t
1
2 ).

The case n = 0 is special. We define ̂T (0) := θ0(X) (recall that T L0 =
C[X]). We also point out that since T L1 = C[ρ, ρ−1] we have

̂T (1)(x; z1) =
x − z1

t
1
2 z1 − t−

1
2 x

θ1(ρ−1) +
t
1
2 x − t−

1
2 z1

t
1
2 z1 − t−

1
2 x

θ1(ρ).

We will drop the isomorphism θn when it is clear from context. Using
diagrams, we write the R-operator as

Ri(zi+1/zi) =
zi+1 − zi

t
1
2 zi − t−

1
2 zi+1

z1

zi−1

zi
zi+1 zi+2

1
i

+
t
1
2 zi+1 − t−

1
2 zi

t
1
2 zi − t−

1
2 zi+1

z1

zi−1

zi
zi+1 zi+2

1
i

,

(5.1)
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and also as

Ri(zi+1/zi) = z1

zi−1

zi
zi+1 zi+2

1
i

where we view the crossing in the annulus as a weighted sum of the two
diagrams given in (5.1). Using the diagram description of the R-operator, the
Yang–Baxter equations and inversion relation [lines 1 and 3 of (2.6)] can be
depicted as

x
y

z

z
y

x

=

z
y

x

x
y

z

and

x

x

y

y

=

y

y

x

x

(5.2)
respectively. The area within the dotted lines is a local neighborhood in the
annulus.

The transfer operator can now be defined in terms of the R-operators
Ri(x) for i ∈ Z/nZ as follows. Let

M
(n)
0 (x; z) := ρRn−1(x/zn)Rn−2(x/zn−1) . . . R0(x/z1) ∈ T Ln+1

be the monodromy operator where we view the auxiliary point as n + 1 ≡ 0
(modulo n + 1). Then,

̂T (n)(x; z) := cl0
(

M
(n)
0 (x; z)

)

where cl0 corresponds to the tangle closure [16] at the auxiliary point 0. In
this specific case, cl0 amounts to disconnecting the two arcs from the inner-
and outer boundary points labeled ‘0’ and connecting them in EndS(n) by an
arc that under-crosses all arcs one meets.

The transfer operators with different values of x commute in T Ln,

[ ̂Tn(x; z), ̂Tn(x′, z)] = 0.

This can be shown by interlacing two T operators with R-operators. In the
literature, it is usually shown diagrammatically using the inversion relation
and Yang–Baxter equation (5.2) of the R-operators. For an example of this
technique, we refer the reader to [9] for dense loop models and [4] in general.
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Using the Yang–Baxter equation and the relations involving ρ [see (3.1)], one
shows that

Ri(zi+1/zi)̂T (n)(x; . . . , zi+1, zi, . . . ) = ̂T (n)(x; z)Ri(zi+1/zi),

ρ ̂T (n)(x; z2, . . . , zn, z1) = ̂T (n)(x; z)ρ. (5.3)

In [11], the authors made the crucial observation that the R-operators
Ri(0), Ri(∞) ∈ T Ln can be interpreted as a single crossing in the skein descrip-
tion of the element,

Ri(0) = −t−
3
4 11

i
i + 1

i
, Ri(∞) = −t

3
4 11

i
i + 1

i
.

Consequently,

T (n)(x; z1, . . . , zn−1, 0) = −t
3
4

τ1,...,τn−1

n−1

i=1

Pτi(x/zi)

τ1

τn−1

.

Noting this over-crossing and recalling the algebra map In−1: T Ln−1 → T Ln

arising from the arc insertion functor, we obtain the following braid recursion
relation for the transfer operator, which is due to [11, §2.4]:

Proposition 5.1. For n ≥ 1,

̂T (n)(x; z1, . . . , zn−1, 0) = −t
3
4 In−1

(

̂T (n−1)(x; z1, . . . , zn−1)
)

.

5.2. The Inhomogeneous Dense O(1) Loop Model

The transfer operator ̂T (n)(x; z) ∈ T Ln acting on the link pattern tower rep-
resentation Vn in the special case v = 1 is by definition the transfer operator
T (n)(x; z) ∈ End(Vn) of the inhomogeneous dense O(−t

1
2 − t−

1
2 ) loop model

on the punctured disk [11,21]. We specialize in this section further to the case
t
1
4 = exp(πi/3), in which case

−t
1
2 − t−

1
2 = 1 = t

1
4 + t−

1
4 .

This means that all loops can be removed by a factor 1. As we shall discuss
in a moment, the resulting O(1)-model is not only Bethe integrable but also
stochastic. We identify Vn with C[Ln] as vector spaces (see the end of Sect. 3).

In [11], the authors stated the existence and uniqueness of a suitably
normalized ground state of the inhomogeneous dense O(1) loop model, with
z regarded as formal variables. For the convenience of the reader, we provide
a full proof of this result. It uses the irreducibility and stochasticity of the
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transfer operator ̂T (n)(x; z) for a particular parameter regime, and it uses the
algebraic dependence of ̂T (n)(x; z) on x and z.

Consider the matrix A(n)(x; z) := (ALL′(x; z))L,L′∈Ln
of T (n)(x; z) with

respect to the link pattern basis,

T (n)(x; z)L′ =
∑

L∈Ln

ALL′(x; z)L.

The coefficients ALL′(x; z) depend rationally on x, z1, . . . , zn. For the special
value t

1
4 = exp(πi/3) the Boltzmann weights a(x) and b(x) [see (3.3)] satisfy

a(x) + b(x) = 1,

hence
∑

L∈Ln
ALL′(x; z) = 1 for all L′ ∈ Ln. Furthermore, 0 < a(x) < 1 if

x = eiθ with 0 < θ < 2π/3, hence A(n)(x; z) is left-stochastic if x/zj = eiθj with
0 < θj < 2π/3 for j = 1, . . . , n. In this situation, A(n)(x; z) is irreducible; this
follows from the fact that each L ∈ Ln is a cyclic vector for the T Ln-module
Vn, which can be proven as follows.

For n = 2k even, let Lln ∈ L2k be the least-nested link pattern, which is
the link pattern that has little arches connecting boundary points (2i − 1, 2i)
for 1 ≤ i ≤ k such that the little arches do not contain the puncture. All
L ∈ Ln can be mapped to Lln by acting with e1e3 . . . e2k−1. In turn, Lln can
be mapped to the fully nested link pattern L∩ by the action of ρkgkgk−1 . . . g2
with gi := eiei+2 . . . e2k−i. Lastly, by the inductive argument in “Appendix A,”
L∩ can be mapped to any L ∈ Ln. The case for n odd is analogous.

Lemma 5.2. Let v = 1, q = 1 and t
1
4 = exp(πi/3). There exists a unique

ĝ(n)(z) =
∑

L∈Ln
ĝ
(n)
L (z)L with ĝ

(n)
L (z) ∈ C(z) such that

T (n)(x; z)ĝ(n)(z) = ĝ(n)(z)

for all x ∈ C and such that
∑

L∈Ln
ĝ
(n)
L (z) = 1. Furthermore,

ĝ(n)(z) ∈
(

C(z) ⊗ Vn

)∇(Wn)
.

Proof. Consider A(n)(z) := A(n)(1; z). Since the matrix coefficients ALL′(z) :=
ALL′(1; z) satisfy

∑

L∈Ln
ALL′(z) = 1, we have det

(

A(n)(z)−1
)

= 0 and hence
there exists a nonzero vector κ(z) =

(

κL(z)
)

L∈Ln
with κL(z) ∈ C(z) such that

A(n)(z)κ(z) = κ(z). Consider

N(z) :=
∑

L∈Ln

κL(z).

Note that A(n)(z) is irreducible left-stochastic if zj = e−iθj with 0 < θj <
2π/3; hence, for generic specialized values of the rapidities in this stochastic
parameter regime, A(n)(z) has a one-dimensional eigenspace with eigenvalue
1, spanned by the Frobenius–Perron eigenvector vFP(z), and the Frobenius–
Perron eigenvector vFP(z) (normalized such that the sum of the coefficients is
one) has the property that all its coefficients are > 0. Hence, for generic values
of the rapidities in the stochastic parameter regime, N(z) �= 0. In particular,
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N(z) ∈ C(z)\{0}, and we may set ĝ(n)(z) :=
∑

L∈Ln
g
(n)
L (z)L with ĝ

(n)
L (z) :=

κL(z)/N(z) ∈ C(z). Then,

T (1)(1; z)ĝ(n)(z) = ĝ(n)(z)

and
∑

L∈Ln
ĝ
(n)
L (z) = 1. It follows from restricting to the stochastic parameter

regime again that these two properties determine ĝ(n)(z) uniquely.
Let x ∈ C and set

ĝ(n)(x; z) := T (n)(x; z)ĝ(n)(z).

Write

ĝ(n)(x; z) =
∑

L∈Ln

ĝ
(n)
L (x; z)L

with ĝ
(n)
L (x; z) ∈ C(z). Since [T (n)(1; z), T (n)(x; z)] = 0, we have

T (n)(1; z)ĝ(n)(x; z) = ĝ(n)(x; z).

Since
∑

L∈Ln
ALL′(x; z) = 1 for all L′ ∈ Ln, we furthermore have

∑

L∈Ln
ĝ
(n)
L (x; z) = 1. Hence, ĝ(n)(x; z) = ĝ(n)(z), i.e.,

T (n)(x; z)ĝ(n)(z) = ĝ(n)(z).

This completes the proof of the uniqueness and existence of ĝn(z).
For the second statement, let 1 ≤ i < n and set hi(z) := Ri(zi+1/zi)ĝ(n)

(siz). Then, by the first formula of (5.3),

̂T (n)(x; z)hi(z) = hi(z),

and the sum of the coefficients of hi(z) is one since a(x) + b(x) = 1. Hence,
hi(z) = ĝ(n)(z), i.e.,

Ri(zi+1/zi)ĝ(n)(siz) = ĝ(n)(z).

In the same way, one shows that ρĝ(n)(z2, . . . , zn, z1) = ĝ(n)(z), now using the
second equality of (5.3). This completes the proof of the lemma. �

Now, we are ready to prove Theorem 4.7 in the special case that t
1
4 =

exp(πi/3). By Corollary 4.4, the fully nested component is of the form

ĝ
(n)
L∩ (z) = Cn(z)

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

with 0 �= Cn(z) ∈ C(z)Sn . Since in the present situation q = 1 and Cn(z) is
symmetric, we have that the renormalized function

g(n)(z) := Cn(z)−1ĝ(n)(z)

is also a symmetric solution of the qKZ equations, g(n)(z) ∈
(

C(z)⊗Vn

)∇(Wn).
Now, g(n)(z) has fully nested component

g
(n)
L∩ (z) =

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

. (5.4)
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By Lemma 4.2, we conclude that g(n)(z) ∈ Soln(Vn; 1, 1) is a homogeneous
polynomial solution of total degree 1

2n(n − 1), which completes the proof of
Theorem 4.7 in the special case that t

1
4 = exp(πi/3).

Remark 5.3. From Proposition 5.1, it follows immediately that

In(̂T (n)(x; z1, . . . , zn))g(n+1)(z, 0) = g(n+1)(z, 0)

when t
1
4 = exp(πi/3). In [11], the authors use this equation to prove the braid

recursion relation for v = 1, 1 = q t
1
4 = exp(πi/3) and n even (see Remark 4.8).

However, they implicitly assume that g(n+1)(z, 0) is uniquely characterized as
ground state of ̂T (n+1)(1; z, 0), which is though not clear since there is no
stochastic parameter regime when one of the rapidities is set equal to zero. We
have circumvented this problem here by using the characterization of g(n)(z)
as a twisted-symmetric solution of qKZ equations.

6. Existence of Solutions for Generic t
1
4

In this section, we construct for generic t
1
4 (i.e., for values t

1
4 in a nonempty

Zariski open subset of C) nontrivial polynomial twisted-symmetric solutions
to the qKZ equations for link pattern modules, leading to the proof of The-
orem 4.7 for generic t

1
4 ∈ C

∗. As we remarked in the paragraph following
Theorem 4.7, the generic condition on t

1
4 can subsequently be weakened to

the condition that the loop weights are nonzero.
A major difference between the generic case and the case that t

1
4 =

exp(πi/3) is that we do not have the argument of a stochastic matrix to
construct g(n) using the Frobenius–Perron theorem. We instead use the
Cherednik–Matsuo correspondence [27]. This is different from the approach
in [21], where Kazhdan–Lusztig bases are used.

In order to be able to apply the Cherednik–Matsuo correspondence, we
first need to identify the link pattern representations Vn with principal series
representations. This is done in the first subsection, for general twist parameter
v. In the subsequent subsection, we recall the Cherednik–Matsuo correspon-
dence and rephrase it in terms of dual Y -operators. In the last subsection,
we prove Theorem 4.7 by constructing the polynomial solution of the qKZ
equation from dual non-symmetric Macdonald polynomials with specialized
parameters.

For fixed v ∈ C
∗, the link patterns Ln form a (non-canonical) basis of

Vn. We can naturally identify Vn with C[Ln] as a vector space by shrinking
the hole {z ∈ C | |z| ≤ 1} of the annulus to 0. A choice needs to be made for
the winding of the defect line, unless v = 1.

6.1. Vn as a Principal Series Module

In this section, we take n ≥ 2, and we fix v ∈ C
∗. We recall first the definition

of the principal series representation M I(γ) of the affine Hecke algebra Hn =
Hn(t

1
2 ).
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Let εi (1 ≤ i ≤ n) denote the standard basis of R
n. Set R0 := {εi −εj |1 ≤

i �= j ≤ n}, the root system of type An−1. We take R+
0 := {εi − εj |1 ≤

i < j ≤ n} the set of positive roots. The corresponding simple roots are
αi := εi − εi+1 (1 ≤ i < n). We write sα (α ∈ R0) for the reflection in α.
Then, the simple reflections si := sαi

(1 ≤ i < n) correspond to the simple
neighboring transpositions i ↔ i+1. For α = εi − εj ∈ R0 we write zα = zi/zj

and Y α = Yi/Yj in C[z±1] and Hn, respectively.
For I ⊆ {1, . . . , n − 1}, we write

T I = T I,t :=
{

γ ∈ (C∗)n | γi/γi+1 = t−1 ∀ i ∈ I
}

.

For γ ∈ T I , let χI
γ := HI(t

1
2 ) → C be the one-dimensional representation of

the parabolic subalgebra HI = HI(t
1
2 ) := C〈Y ±1

j , Ti|i ∈ I, j = 1 . . . , n〉 of
Hn(t

1
2 ) satisfying χI

γ(Yj) = γj (1 ≤ j ≤ n) and χI
γ(Ti) = t−

1
2 (i ∈ I). It is well

defined since γ ∈ T I . The corresponding principal series module M I(γ) with
central character γ is

M I(γ) := Hn ⊗HI
CχI

γ
.

Comparing with the notations from [27, §4.3]: (k,m, ζ,H(k)) correspond to
our (−t

1
2 , n, ρ,Hn(t

1
2 )). The principal series module M I(γ) then corresponds

to the principal series module M−t
1
2 ,−,I(γ) from [27, Lem. 2.5].

Let Sn,I = 〈si | i ∈ I〉 ⊆ Sn be the standard parabolic subgroup gener-
ated by the simple neighboring transpositions si (i ∈ I), and SI

n the minimal
coset representatives of Sn/Sn,I . For w ∈ Sn, let Tw ∈ H0

n be the element
Tw = Ti1Ti2 . . . Tir

if w = si1si2 . . . sir
is a reduced expression. This is well

defined since the Ti’s satisfy the braid relations. A linear basis of M I(γ) is
given by {vI

w(γ) := Tw ⊗HI
1χI

γ
}w∈SI

n
.

For a finite-dimensional left Hn-module V and ξ ∈ (C∗)n, we define the
subspace of vectors of weight ξ by

Vξ := {v ∈ V | Yjv = ξjv (1 ≤ j ≤ n)}.

The module V is said to be calibrated if V =
⊕

ξ Vξ.
For 1 ≤ i < n set

Ii := Ti(1 − Y αi) + (t−
1
2 − t

1
2 )Y αi ∈ Hn. (6.1)

The following theorem is well known, see [27, Thrm. 2.8, Cor. 2.9] and refer-
ences therein.

Theorem 6.1. For w ∈ Sn and w = si1si2 . . . sir
a reduced expression,

Iw := Ij1Ij2 . . . Ijr
∈ Hn

is well defined (independent of the choice of reduced expression). Furthermore,
for all f(z) ∈ C[z±1] and w ∈ Sn we have

Iwf(Y ) = (wf)(Y )Iw,

Iw−1Iw = ew(Y )
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1

2

2j1−12j1

2j2−1

2j2

2j
r −

1

2jr

(a) D2k
J ∈ V2k

1

2

2j1−12j1

2j2−1

2j2

2j
r −

1

2jr

2k + 1

(b) D2k+1
J ∈ V2k+1

Figure 1. The element Dn
J ∈ Vn

in Hn, with

ew(z) :=
∏

α∈R+
0 ∩w−1R−

0

(t
1
2 − t−

1
2 zα)(t

1
2 − t−

1
2 z−α) ∈ C[z±1].

If V is a left Hn-module, then the previous theorem implies that Iw(Vξ) ⊆
Vwξ for w ∈ Sn and ξ ∈ (C∗)n.

It is known that M I(γ) is calibrated for generic γ ∈ T I with correspond-
ing weight decomposition

M I(γ) =
⊕

w∈SI
n

M I(γ)wγ , M I(γ)wγ = CbI
w(γ)

with bI
w(γ) := Iw ⊗HI

1χI
γ

(see e.g., [27, Prop. 2.12], for the specific additional
conditions on γ).

We now view the T Ln-module Vn from the link pattern tower as an Hn-
module through the surjective algebra map ψn: Hn � T Ln satisfying ψn(Ti) =
ei + t−

1
2 (1 ≤ i < n) and ψn(ρ) = ρ. The aim is to show that Vn is isomorphic

to M I(γ) for an appropriate subset I ⊆ {1, . . . , n − 1} and γ ∈ T I for generic
t
1
4 . As a first step, we create explicit weight vectors in Vn.

Write k = �n
2 � and let J ⊆ {1, . . . , k} be a subset, say J =

{j1, . . . , jr}, 1 ≤ j1 < · · · < jr ≤ k. Let Dn
J be the element in Vn shown

in Fig. 1. Note that in the definition of Dn
J , the arches (2m − 1, 2m) include

the hole of the annulus if m ∈ J , and (2js+1 − 1, 2js+1) is positioned over
(2js −1, 2js). Furthermore, D2k+1

J is obtained from D2k
J by inserting the defect

line at 2k + 1, which is positioned over all other paths.
We require the skein theoretic description of ψn(Yj) ∈ T Ln. From the

expression Yj = T−1
j−1 . . . T−1

1 ρTn−1 . . . Tj , we obtain

ψn(Yj) = t
2j−n−1

4 ̂Yj
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with ̂Yj ∈ T Ln 
 EndS(n) the skein class of

1

2

j

j + 1

n

Set εn := (−1)n.

Lemma 6.2. Write η = (η1, . . . , η�n/2) with ηj ∈ {vεn , t−
1
2 v−εn}. Let ̂ξ(η) ∈

(C∗)n be given by

̂ξ(η) :=

{

(η−1
1 , η1, η

−1
2 , η2, . . . , η

−1
�n/2, η�n/2) if n even,

(η−1
1 , η1, η

−1
2 , η2, . . . , η

−1
�n/2, η�n/2, v) if n odd

and write for J ⊆ {1, . . . , �n/2�},

cJ(η) := t
#J
4

∏

j∈J

η−1
j .

Then, ̂YjQn(η) = ̂ξj(η)Qn(η) in Vn for j = 1, . . . , n, where

Qn(η) :=
∑

J⊆{1,...,�n/2}
cJ(η)Dn

J ∈ Vn.

In particular, we have Qn(η) ∈ Vn,ξ(η) with weight

ξ(η) =

⎧

⎨

⎩

(t
1−n

4 η−1
1 , t

3−n

4 η1, t
5−n

4 η−1
2 , . . . , t

n−3
4 η−1

�n/2�, t
n−1
4 η�n/2�) if n even,

(t
1−n

4 η−1
1 , t

3−n

4 η1, t
5−n

4 η−1
2 , . . . , t

n−5
4 η−1

�n/2�, t
n−3
4 η�n/2�, t

n−1
4 v) if n odd.

Proof. It suffices to show that ̂YjQn(η) = ̂ξj(η)Qn(η). Write k := �n/2�.
There are three cases to consider, j = 2i, 2i − 1 (for 1 ≤ i ≤ k) and, if n is
odd, j = n = 2k + 1. We consider first j = 2i. Note that by the definition
of Dn

J an arch is placed on top of the previous arch if they both encircle the
hole of the annulus. For ̂Y2iD

n
j , the path connected to 2i that is wound around

the diagram passes over all paths connected to l < 2i and under all paths
connected to l > 2i. Due to these properties, the action of ̂Y2i on Dn

J will only
affect the arch (2i − 1, 2i) and leave the others unchanged.

Consider now ̂Y2iQn(η) and combine the terms J and J ∪ {i} for subsets
J not containing i,

̂Y2iQn(η) =
∑

J⊆{1,...,k}
cJ(η)̂Y2iD

n
J

=
∑

J⊆{1,...,k}\{i}
cJ(η)̂Y2i

(

Dn
J + t

1
4 η−1

i Dn
J∪{i}

)

.
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Focusing on the action of ̂Y2i on the terms in the bracket, we claim that

̂Y2i

(

Dn
J + t

1
4 η−1

i Dn
J∪{i}

)

= (vεn + t−
1
2 v−εn − t−

1
2 η−1

i )Dn
J + t

1
4 Dn

J∪{i}

for all J ⊆ {1, . . . , k}\{i}. Since ηi satisfies

ηi = vεn + t−
1
2 v−εn − t−

1
2 η−1

i ,

it then follows that ̂Y2iQn(η) = ηiQn(η). To prove the claim, we show

̂Y2iD
n
J = (vεn + t−

1
2 v−εn)Dn

J + t
1
4 Dn

J∪{i},

̂Y2iD
n
J∪{i} = −t−

3
4 Dn

J

for J ⊆ {1, . . . , �n/2�}\{i}. These equalities follow from the following dia-
grammatic calculations, in which we omit all paths that are not involved in
the computation. The first diagrammatic computation is for ̂Y2iD

2k
J in V2k,

the second for ̂Y2iD
2k+1
J in V2k+1 (note that the defect line creates a subtle

difference) and the third for ̂Y2iD
n
J∪{i} in Vn (in this case the defect line does

not affect the calculation):

Y2i

2i−1

2i

=

2i−1

2i

= t
1
4

2i−1

2i

+ (v + t−
1
2 v−1)

2i−1

2i

;

Y2i

2i−1

2i

2k+1

=

2i−1

2i

2k+1

= t
1
4

2i−1

2i

2k+1

+ t−
1
4

2i−1

2i

2k+1

= t
1
4

2i−1

2i

2k+1

+

2i−1

2i

2k+1

+ t−
1
2

2i−1

2i

2k+1

= t
1
4

2i−1

2i

2k+1

+ (v−1 + t−
1
2 v)

2i−1

2i

2k+1

;

Y2i

2i−1

2i

=

2i−1

2i

= −t−
3
4

2i−1

2i

.

The check that ̂Y2i−1Qn(η) = η−1
i Qn(η) is analogous.
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The proof that ̂Y2k+1Q2k+1(η) = vQ2k+1(η) with n = 2k + 1 odd is
simpler. All that the operator ̂Y2k+1 does is wind the defect line a full turn
around the hole of the annulus. The operator keeps the defect line above all
other curves. This full turn in V2k+1 can then be removed by the multiplicative
factor v. �

From now on, we choose

η = (vεn , . . . , vεn)

and we write Qn, ξ and ̂ξ for the corresponding Qn(η), ξ(η) and ̂ξ(η). Con-
cretely,

Qn =
∑

J⊆{1,...,�n/2}
t
#J
4 v−εn#JDn

J ∈ Vn,ξ,

and

ξ =

{

(t
1−n
4 v−1, t

3−n
4 v, t

5−n
4 v−1, . . . , t

n−3
4 v−1, t

n−1
4 v) if n even,

(t
1−n
4 v, t

3−n
4 v−1, t

5−n
4 v, . . . , t

n−5
4 v, t

n−3
4 v−1, t

n−1
4 v) if n odd.

(6.2)

Lemma 6.3. Qn �= 0 for generic t
1
4 .

Proof. Consider first n = 2k even. Let Z2k ∈ HomS(2k, 0) be the skein class of
the (2k, 0)-link diagram with little arches connecting 2i−1 and 2i for 1 ≤ i ≤ k.
Composing on the left with Z2k defines a linear map HomS(0, 2k) → EndS(0)
that descends to a well-defined linear map Z2k : V2k → V0 
 C. Then,

Z2k(Q2k) =
∑

J⊆{1,...,k}
t#J/4v−#J

(

vt
1
4 + v−1t−

1
4
)#J(−t

1
2 − t−

1
2
)k−#J

,

which is a nonzero Laurent polynomial in t
1
4 (look at its highest order term).

For n = 2k + 1 odd, we apply a similar argument, now using the element
Z2k+1 ∈ HomS(2k+1, 1) which is the skein class of the (2k+1, 1)-link diagram
with little arches connecting the inner boundary points 2i−1 and 2i (1 ≤ i ≤ k)
and with a defect line connecting the inner boundary point at 2k+1 to the outer
boundary point at 1. Then, the resulting linear map Z2k+1: V2k+1 → V1 
 C

maps Q2k+1 to

vκ
∑

J⊆{1,...,k}
t#J/4v#J

(

v−1t
1
4 + vt−

1
4
)#J(−t

1
2 − t−

1
2
)k−#J

for some κ ∈ Z, which again is a nonzero Laurent polynomial in t
1
4 (the factor

for the removal of a closed loop around the hole with a defect line running
over it is (v−1t

1
4 + vt−

1
4 ), as shown in the proof of the previous lemma). �

To establish an identification Vn 
 M I(γ) as Hn-modules, we will use Qn

and the intertwiners Iw (w ∈ Sn) to construct the corresponding cyclic vector
in Vn. But first we determine what the subset I ⊆ {1, . . . , n − 1} should be.

Set

I(n) := {1, . . . , �n/2� − 1, �n/2� + 1, . . . , n − 1} .
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The associated parabolic subgroup Sn,I(n) of Sn is isomorphic to Sk × Sk if
n = 2k even, and Sk × Sk−1 if n = 2k − 1 is odd.

Lemma 6.4. Dim(Vn) = #(Sn/Sn,I(n)) = #SI(n)

n .

Proof. For n = 2k even, L2k is in bijective correspondence with the set of
binary words of length 2k with letters α, β of length 2k such that k letters
are α. The bijection is as follows. Orient the outer boundary of the punctured
disk anticlockwise. Given L ∈ L2k, orient the arcs in L in such a way that the
closed oriented loop obtained by adding a piece of the oriented outer boundary
of the punctured disk, is enclosing the puncture. Then, the word of length 2k
in the letters {α, β} is obtained by putting α as the ith letter if the orientation
of the arc at i is away from i, and β if it is toward i.

In the odd case n = 2k−1, we create a bijective correspondence of L2k−1

with the set of binary words of length 2k − 1 with letters α, β such that k
letters are α by a similar procedure, with the only addition that α is assigned
to the outer boundary point that is connected to the puncture.

Clearly, the cardinality of the set of such binary words is equal to
#(Sn/Sn,I(n)). �

Remark 6.5. The minimal coset representatives SI(n)

n are described as the set
of permutations σ ∈ Sn such that �(σsi) = �(σ) + 1 for all i ∈ I(n), where �

is the length function of Sn. It follows that SI(n)

n is the set of permutations
σ ∈ Sn such that

σ(1) < σ(2) < · · · < σ(�n/2�), σ(�n/2� + 1) < σ(�n/2� + 2) < · · · < σ(n).

We define wn ∈ Sn as follows:

w2k =
(

1 2 3 4 . . . 2k − 1 2k
1 k + 1 2 k + 2 . . . k 2k

)

,

w2k−1 =
(

1 2 3 4 . . . 2k − 2 2k − 1
1 k + 1 2 k + 2 . . . 2k − 1 k

)

. (6.3)

Note that w2k = ι2k−1(w2k−1) with ιn: Sn−1 ↪→ Sn the natural group embed-
ding extending σ ∈ Sn−1 to a permutation of {1, . . . , n} by σ(n) = n. Note
that

w−1
2k−1 =

(

1 2 3 . . . k k + 1 k + 2 . . . 2k − 1
1 3 5 . . . 2k − 1 2 4 . . . 2k − 2

)

.

It follows that w−1
n ∈ SI(n)

n , cf. Remark 6.5. We now define γ = γ(n) ∈ (C∗)n

by

γ := wnξ ∈ (C∗)n

with ξ the weight of Vn as given by (6.2). Concretely, we have

γ =

{

(t
1−n
4 v−1, t

5−n
4 v−1, . . . , t

n−3
4 v−1, t

3−n
4 v, t

7−n
4 v, . . . , t

n−1
4 v) if n even,

(t
1−n
4 v, t

5−n
4 v, . . . , t

n−1
4 v, t

3−n
4 v−1, t

7−n
4 v−1, . . . , t

n−3
4 v−1) if n odd.

(6.4)
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Note that γ ∈ T I(n)
, and hence we have the associated principal series module

M I(n)
(γ).

Theorem 6.6. For generic t
1
4 , we have M I(n)

(γ) 
 Vn as left Hn-modules, with
the isomorphism M I(n)

(γ) ∼−→ Vn mapping vI(n)

e (γ) ∈ M I(n)
(γ)γ to Iwn

Qn ∈
Vn,γ , where e is the unit element of the symmetric group Sn.

Proof. We have Iwn
Qn ∈ Vn,γ by Lemma 6.2 and Theorem 6.1. Furthermore,

by Theorem 6.1 again,

Iw−1
n

Iwn
Qn = ewn

(ξ)Qn

and

ewn
(ξ) =

∏

α∈R+
0 ∩w−1

n R−
0

(t
1
2 − t−

1
2 ξα)(t

1
2 − t−

1
2 ξ−α) �= 0

for generic t
1
4 , since R+

0 ∩ w−1
n R−

0 consists of the roots ε2l − ε2m−1 (l < m).
Hence, Iwn

Qn �= 0 for generic t
1
4 . Consider now the vectors

uw := IwIwn
Qn ∈ Vn,wγ , w ∈ SI(n)

n .

Then, for w ∈ SI(n)

n we have

Iw−1uw = ew(γ)Iwn
Qn

by Theorem 6.1. Furthermore, ew(γ) �= 0 for generic t
1
4 since for w ∈ SI(n)

n we
have

R+
0 ∩ w−1R−

0 ⊆ {εl − εm | 1 ≤ l ≤ �n/2� & �n/2� + 1 ≤ m < n}

for w ∈ SI(n)

n , in view of Remark 6.5. It follows that 0 �= uw ∈ Vn,wγ for all
w ∈ SI(n)

n . Hence, by Lemma 6.4, for generic t
1
4 ,

Vn =
⊕

w∈SI(n)
n

Vn,wγ

with Vn,wγ = Cuw for all w ∈ SI(n)

n , since the wγ’s (w ∈ SI(n)

n ) are pairwise
different for generic t

1
4 . It remains to show that Tiue = t−

1
2 ue for i ∈ I(n) and

generic t
1
4 . Fix i ∈ I(n). Then, Iiue ∈ Vn,siγ = {0} since

siγ �∈ {wγ | w ∈ SI(n)

n }

for generic t
1
4 . By the explicit expression of the intertwiner Ii (see (6.1)), we

then obtain

0 = Iiue = (1 − γαi)Tiue + (t−
1
2 − t

1
2 )γαiue

= (1 − t−1)Tiue + (t−
1
2 − t

1
2 )t−1ue

= (1 − t−1)(Ti − t−
1
2 )ue.

Hence, Tiue = t−
1
2 ue, as desired. �
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6.2. The Cherednik–Matsuo Correspondence

Now that we have identified the link pattern modules Vn with principal series
representations, we can apply the Cherednik–Matsuo correspondence to ana-
lyze the existence of polynomial solutions of the associated qKZ equations.

The Cherednik–Matsuo correspondence gives a bijective correspondence
between meromorphic twisted-symmetric solution to qKZ equations associated
with a principal series module and suitable classes of meromorphic common
eigenfunctions for the action of the Y -operators under the basic representa-
tion [22,27].

The version of the Cherednik–Matsuo correspondence we need is as fol-
lows. If I ⊆ {1, . . . , n − 1} and w ∈ Sn, then we write w ∈ Sn,I and w ∈ SI

n

for the unique elements such that w = ww. Let w0 ∈ Sn be the longest Weyl
group element, mapping j to n + 1 − j for j = 1, . . . , n. Let I∗ := {i∗ | i ∈ I}
with i∗ ∈ {1, . . . , n − 1} such that w0(αi) = αi∗ .

Theorem 6.7. Fix c ∈ C
∗, I ⊆ {1, . . . , n − 1} and ζ ∈ T I . Then, we have a

linear isomorphism
{

f(z) ∈ C[z]

∣

∣

∣

∣

πt− 1
2 ,q

n (Yj)f = c(w0ζ−1)jf for all 1 ≤ j ≤ n

πt− 1
2 ,q

n (Ti)f = t
1
2 f for all i ∈ I∗

}

∼−→
CMI,ζ

Soln(M
I(ζ), q, c)

(6.5)

with CMI,ζ given by

CMI,ζ(f) :=
∑

w∈SI
n

πt−1/2,q
n (Tww−1

0
)f ⊗ vI

w(ζ).

Proof. For c = 1, this is an easy consequence of [27, Cor. 4.4 & Thm. 4.14].
For general c, it then follows using the fact that M I(c−1ζ) 
 M I(ζ)(c

−1) with
isomorphism given by vI

w(c−1ζ) �→ vI
w(ζ) for w ∈ SI

n, and

Soln(M I(ζ)(c
−1); q, 1) = Soln(M I(ζ); q, c).

�

We want to re-express the common eigenspace for πt− 1
2 ,q(Yj)-operators

in the left-hand side of (6.5) in terms of the dual Cherednik operators, in order
to apply the results of [20] in the next subsection. The dual Y -operators are
defined by

Y j := Tj . . . Tn−1ρ
−1T−1

1 . . . T−1
j−1 ∈ Hn (1 ≤ j ≤ n),

cf. [20, §2.2]. The relation to our commuting Y -operators

Yj = T−1
j−1T

−1
j−2 . . . T−1

1 ρTn−1 . . . Tj+1Tj

is as follows.

Lemma 6.8. We have in Hn,

Tw0Ti = Tn−iTw0 , 1 ≤ i < n,

Tw0Yj = Y
−1

n+1−jTw0 , 1 ≤ j ≤ n.
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Proof. The first identity is well known. For the second identity, it suffices to
show that

Tw0ρT−1
w0

= Tn−1 . . . T1ρT−1
n−1 . . . T−1

1 .

This follows using ρTi = Ti+1ρ and the fact that
w0 = (sn−1 . . . s1)(sn−1 . . . s2) . . . (sn−1sn−2)sn−1,

= (s1 . . . sn−1)(sn−2 . . . s1) . . . (sn−2sn−3)sn−2

are two reduced expressions for w0 ∈ Sn. �

Returning to the Cherednik–Matsuo correspondence (see Theorem 6.7),
we can reformulate it as follows.

Corollary 6.9. Fix c ∈ C
∗, I ⊆ {1, . . . , n − 1} and ζ ∈ T I . Then, we have a

linear isomorphism
{

f(z) ∈ C[z]

∣

∣

∣

∣

πt− 1
2 ,q

n (Y j)f = c−1(w0ζ)jf for all 1 ≤ j ≤ n

πt− 1
2 ,q

n (Tn−i)f = t
1
2 f for, all i ∈ I∗

}

∼−→
CMI,ζ

Soln(M
I(ζ), q, c)

(6.6)

with CMI,ζ given by

CMI,ζ(f) :=
∑

w∈SI
n

πt−1/2,q
n (T−1

w−1T
−1
w0

)f ⊗ vI
w(ζ).

Proof. By the previous lemma, πt− 1
2 ,q(T−1

w0
) restricts to a linear isomorphism

from the space defined by the left-hand side of (6.6) onto the space defined by
the left-hand side of (6.5). Hence, it suffices to note that

CMI,ζ = CMI,ζ ◦ πt− 1
2 ,q(T−1

w0
),

which follows from the fact that for all w ∈ SI
n,

Tww−1
0

T−1
w0

= T−1
w−1Tw−1

0
T−1

w−1
0

T−1

w−1
0

= T−1
w−1T

−1
w0

.

�

6.3. Dual Non-symmetric Macdonald Polynomials

In this subsection, we take n ≥ 2. The next step will be to introduce the
polynomial eigenfunctions of the dual Cherednik operators πt− 1

2 ,q(Y j) (1 ≤
j ≤ n), called the dual non-symmetric Macdonald polynomials. We follow
Kasatani [20]: The (t

1
2 , ω, Yj) in [20] corresponds to our (−t−

1
2 , ρ−1, Y j).

For λ ∈ Z
n let

ρ(λ) :=
1
2

∑

1≤i<j≤n

χ(λi − λj)(εi − εj),

χ(a) :=

{

1 if a ≥ 0,

−1 if a < 0.

Then, 2ρ(λ) =
∑n

i=1 di(λ)εi with

di(λ) = 2#{j > i|λj = λi} + 2#{j|λi > λj} + 1 − n. (6.7)
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Write

sλ :=
(

−t−
1
2
)2ρ(λ)

qλ ∈ (C∗)n, λ ∈ Z
n,

i.e., sλ = (sλ,1, . . . , sλ,n) with sλ,i =
(

−t−
1
2
)di(λ)

qλi .

For generic q and t
1
4 (or indeterminates), the monic dual non-symmetric

Macdonald polynomial

Eλ = Eλ(z;−t−
1
2 , q) ∈ C[z±1]

of degree λ ∈ Z
n is the unique Laurent polynomial satisfying the eigenvalue

equations

πt− 1
2 ,q

n (f(Y ))Eλ = f(sλ)Eλ for all f ∈ C[z±1]

such that the coefficient of zλ in the expansion of Eλ in monomials {zν}ν∈Zn is
one. It is well known that Eλ is homogeneous of total degree |λ| := λ1+· · ·+λn.
In addition, Eλ ∈ C[z] if and only if λ ∈ Z

n
≥0. The intertwiners with respect

to the dual Y -operators are defined by

Bi := Ti(Y i+1Y
−1

i − 1) + t
1
2 − t−

1
2 , 1 ≤ i < n,

cf. [20, Lemma 2.6]. Then, for 1 ≤ i < n,

πt− 1
2 ,q(Bi)Eλ = −t

1
2

(

(tsλ,i+1s
−1
λ,i − 1)(t−1sλ,i+1s

−1
λ,i − 1)

(sλ,i+1/sλ,i − 1)

)

Esiλ (6.8)

if λ ∈ Z
n and λi > λi+1.

Kasatani [20] analyzed the dual non-symmetric Macdonald polynomials
Eλ with parameters specialized to t−k−1qr−1 = 1 with 1 ≤ k ≤ n − 1 and
r ≥ 2. In our situation, we are going to need the special case that k = 2 and
r = 3, i.e., when t−3q2 = 1 (cf. Theorem 4.7). In fact, for our purposes it
suffices to take q = t

3
2 . We recall some key results from [20] in this special

case.

Definition 6.10. We say λ ∈ Z
n has a neighborhood if it has a pair of indices

(i, j) such that conditions 1 and 2 are satisfied:

(1) ρ(λ)i − ρ(λ)j = 2,
(2) (a) λi − λj ≤ 1, or

(b) λi − λj = 2 and j < i.

Write

S(2,3) : = {λ ∈ Z
n | λ has a neighborhood}

B(2,3) : = Z
n\S(2,3).
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By [20, Thm. 3.11], the dual non-symmetric Macdonald polynomial Eλ can be
specialized at q = t

3
2 if λ ∈ B(2,3). For q = t

3
2 write

Z(2,3) := {z ∈ C
n | There exist distinct i1, i2, i3 ∈ {1, . . . , n}

and positive integers r1, r2 ∈ Z≥0

such that zia+1 = zia
tqra for a = 1, 2,

r1 + r2 ≤ 1, and ia < ia+1 if ra = 0},

and define the ideal I(2,3) ⊆ C[z] by

I(2,3) :=
{

f ∈ C[z±1] | f(z) = 0 for all z ∈ Z(2,3)
}

.

Then, for q = t
3
2 and generic t

1
4 , the ideal I(2,3) is a πt− 1

2 ,t
3
2

n (Hn(t−
1
2 ))-

submodule of C[z±1] and

I(2,3) =
⊕

μ∈B(2,3)

CEμ(z;−t−
1
2 , t

3
2 )

by [20, Thm. 3.11].

Remark 6.11. The conditions f(z) = 0 for z ∈ Z(2,3) are known as wheel
conditions. It originally appeared in [12] (see also [21]).

We recall now the notion of a (2, 3)-wheel in λ ∈ Z
n, following [20, Def.

3.5].

Definition 6.12. Let q = t
3
2 and fix λ ∈ Z

n. A three-tuple (i1, i2, i3) with
distinct i1, i2, i3 ∈ {1, . . . , n} is called a (2, 3)-wheel in λ if there exists r1, r2 ∈
Z≥0 such that

s−1
λ,i2

= s−1
λ,i1

t−1qr1 , s−1
λ,i3

= s−1
λ,i2

t−1qr2

with r1 + r2 ≤ 1, and ia < ia+1 if ra = 0 (a = 1, 2).

Two wheels (i1, i2, i3) and (j1, j2, j3) in λ are said to be equivalent if there
exists a σ ∈ S3 such that ia = jσ−1(a) for a = 1, 2, 3. We write #(2,3)(λ) for
the number of equivalence classes of (2, 3)-wheels in λ. Note that (still under
the assumption that q = t

3
2 ) we have #(2,3)(λ) = 0 if and only if s−1

λ ∈ Z(2,3).
Furthermore, from [20, §3] (Definition 3.7) we have

{μ ∈ Z
n | #(2,3)(μ) = 0} ⊆ B(2,3).

6.4. Proof of Theorem 4.7

Let n ≥ 2 and specialize throughout this subsection v = 1 and q = t
3
2 . Fur-

thermore, we set

cn :=
(

−t−
3
4
)n−1

,

cf. Theorem 4.7. Recall the notation I(n) = {1, . . . , �n/2�−1, �n/2�+1, . . . , n−
1} and the central character γ = γ(n) ∈ T I(n)

with v = 1 (see (6.4)), so

γ =

{

(t
1−n
4 , t

5−n
4 , . . . , t

n−3
4 , t

3−n
4 , t

7−n
4 , . . . , t

n−1
4 ) if n even,

(t
1−n
4 , t

5−n
4 , . . . , t

n−1
4 , t

3−n
4 , t

7−n
4 , . . . , t

n−3
4 ) if n odd.

(6.9)
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In the even n = 2k case, the decomposition w0 = w0w0 of the longest element
w0 ∈ S2k as a product of w0 ∈ SI(2k)

2k and w0 ∈ S2k,I(2k) gives the expressions

w0 =
(

1 2 . . . k k + 1 k + 2 . . . 2k
k + 1 k + 2 . . . 2k 1 2 . . . k

)

,

w0 =
(

1 2 . . . k k + 1 k + 2 . . . 2k
k k − 1 . . . 1 2k 2k − 1 . . . k + 1

)

.

Hence, for n = 2k even, we have I(2k),∗ = I(2k) and

{2k − i | i ∈ I(2k),∗} = I(2k).

In the odd n = 2k − 1 case, the decomposition w0 = w0w0 of the longest
element w0 ∈ S2k−1 as a product of w0 ∈ SI(2k−1)

2k−1 and w0 ∈ S2k−1,I(2k−1) gives
the expressions

w0 =
(

1 2 . . . k k + 1 k + 2 . . . 2k − 1
k k + 1 . . . 2k − 1 1 2 . . . k − 1

)

,

w0 =
(

1 2 . . . k k + 1 k + 2 . . . 2k − 1
k k − 1 . . . 1 2k − 1 2k − 2 . . . k + 1

)

.

Therefore, I(2k−1),∗ = {1, . . . , k − 2, k, k + 1, . . . , 2k − 2} and

{2k − 1 − i | i ∈ I(2k−1),∗} = I(2k−1).

Hence, it follows from Theorem 6.6 and Corollary 6.9 that for generic t
1
4 , we

have
{

f(z) ∈ C[z]

∣

∣

∣

∣

πt− 1
2 ,t

3
2

n (Y j)f = c−1
n (w0γ)jf for all 1 ≤ j ≤ n

πt− 1
2 ,t

3
2

n (Ti)f = t
1
2 f for all i ∈ I(n)

}

∼−→̃
CMn

Soln(Vn, q, cn)

(6.10)

with ˜CMn given by

˜CMn(f) :=
∑

w∈SI(n)
n

πt− 1
2 ,t

3
2

n (T−1
w−1T

−1
w0

)f ⊗ TwIwn
Qn.

In the next lemma, we relate the spectral point c−1
n (w0γ) to the spectrum of

the dual non-symmetric Macdonald polynomials.

Lemma 6.13. For q = t
3
2 ,

c−1
n w0γ

(n) = sλ(n)

with λ(n) ∈ Z
n given by

λ(2k) = (2k − 2, 2k − 4, . . . , 0, 2k − 1.2k − 3, . . . , 1),

λ(2k−1) = (2k − 2, 2k − 4, . . . , 0, 2k − 3, 2k − 5, . . . , 1).

Proof. By a direct computation, for q = t
3
2 ,

c−1
2k w0γ(2k) =

(−t2k− 3
2 , −t2k− 5

2 , . . . , −tk− 1
2 , −t2k−1, −t2k−2, . . . , −tk

)

= sλ(2k) ,

c−1
2k−1w0γ(2k−1) =

(

t2k−2, t2k−3, . . . , tk−1, t2k− 5
2 , t2k− 7

2 , . . . , tk− 1
2
)

= sλ(2k−1) .

�
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Hence, we have for generic t
1
4 ,

{

f(z) ∈ C[z]

∣

∣

∣

∣

πt− 1
2 ,t

3
2

n (p(Y ))f = p(sλ(n) )f for all p(z) ∈ C[z±1]

πt− 1
2 ,t

3
2

n (Ti)f = t
1
2 f for all i ∈ I(n)

}

∼−→̃
CMn

Soln(Vn, q, cn).

(6.11)

Next, we need to verify that the dual non-symmetric Macdonald polynomials
Eλ(n) are nonzero under the specialization q = t

3
2 .

Lemma 6.14. Snλ(n) ∩ B(2,3) = {σλ(n) | σ ∈ SI(n)

n }. In particular, λ(n) ∈
B(2,3), and for generic t

1
4 ,

0 �= Eλ(n)(z;−t−
1
2 , t

3
2 ) ∈ C[z]

is well defined, homogeneous of total degree 1
2n(n − 1), and satisfies

πt− 1
2 ,t

3
2

n (p(Y ))Eλ(n)(·; t− 1
2 , t

3
2 ) = p(sλ(n))Eλ(n)(·;−t−

1
2 , t

3
2 ) ∀ p(z) ∈ C[z±1].

Proof. Note that by Remark 6.5 and the definition of λ(n),

{σλ(n) | σ ∈ SI(n)

n } = {μ ∈ Snλ(n) | μi − μj = 2 ⇒ i < j}. (6.12)

Now suppose that μ ∈ Snλ(n) ∩ B(2,3) and μi − μj = 2. By (6.7),

ρ(μ)i − ρ(μ)j = #{r | μr < μi} − #{r | μr < μj}
= #{r | μj ≤ μr ≤ μj + 1} = 2.

Since μ ∈ B(2,3), this implies that i < j. By (6.12), we conclude that μ ∈
{σλ(n) | σ ∈ SI(n)

n }.
Conversely, suppose that μ ∈ {σλ(n) | σ ∈ SI(n)

n }. Suppose that ρ(μ)i −
ρ(μ)j = 2. By (6.7), this implies that

#{r | μr < μi} − #{r | μr < μj} = 2.

It follows that μi > μj , and hence

#{r | μj ≤ μr < μi} = 2,

forcing μi − μj = 2. By (6.12), this implies that i < j, and hence μ ∈ Snλ(n) ∩
B(2,3). The remaining statements now follow immediately (note that the degree
of Eλ(n)(z) is

∑n
i=1 λ

(n)
i = 1

2n(n − 1)). �

Proposition 6.15. For generic t
1
4 , we have

πt− 1
2 ,t

3
2 (Ti)Eλ(n)(·;−t−

1
2 , t

3
2 ) = t

1
2 Eλ(n)(·;−t−

1
2 , t

3
2 ) ∀ i ∈ I(n).

In particular, there exists a unique κn ∈ C
∗ such that

g(n) := κn
˜CMn

(

Eλ(n)(·;−t−
1
2 , t

3
2 )
)

∈ Soln
(

Vn; t
3
2 , (−t−

3
4 )n−1

)

has fully nested component

g
(n)
L∩ (z) =

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

. (6.13)
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Proof. For the first statement, fix i ∈ I(n). In fact, for n = 2k even the (2, 3)-
wheels in siλ

(2k) are (i, i + 1, k + i + 1) and (k + i + 1, i, i + 1) if 1 ≤ i < k and
(i, i+1, i−k), (i−k, i, i+1) if k+1 ≤ i < 2k. For n = 2k−1, the (2, 3)-wheels
in siλ

(2k−1) are (i, i+1, k+ i), (k+ i, i, i+1) if 1 ≤ i < k and (i, i+1, i−k+1),
(i − k + 1, i, i + 1) if k + 1 ≤ i < 2k − 1. Hence, #(2,3)(siλ

(n)) = 1.
By [20, Lemma 4.13], it follows from #(2,3)(siλ

(n)) = 1 that Esiλ(n)

(z;−t−
1
2 , q) can be specialized to q = t

3
2 for generic t

1
4 . By (6.8), we then

obtain

πt− 1
2 ,t

3
2 (Bi)Eλ(n)(·;−t−

1
2 , t

3
2 ) = 0

since sλ(n),i+1/sλ(n),i = t−1 and λ
(n)
i > λ

(n)
i+1. Substituting the explicit expres-

sion of Bi then gives

0 = πt− 1
2 ,t

3
2 (Bi)Eλ(n)(·;−t−

1
2 , t

3
2 )

=
(

(sλ(n),i+1s
−1
λ(n),i

− 1)πt− 1
2 ,t

3
2

n (Ti) + (t
1
2 − t−

1
2 )
)

Eλ(n)(·;−t−
1
2 , t

3
2 )

= (t−1 − 1)
(

πt− 1
2 ,t

3
2 (Ti) − t

1
2
)

Eλ(n)(·;−t−
1
2 , t

3
2 ),

hence πt− 1
2 ,t

3
2

n (Ti)Eλ(n)(·;−t−
1
2 , t

3
2 ) = t

1
2 Eλ(n)(·;−t−

1
2 , t

3
2 ) for i ∈ I(n).

It follows that

0 �= g̃(n) := ˜CMn

(

Eλ(n)(·;−t−
1
2 , t

3
2 )
)

∈ Soln(Vn; t
3
2 , (−t−

3
4 )n−1)

is homogeneous of total degree 1
2n(n − 1). By Corollary 4.4,

g̃
(n)
L∩ (z) = κn

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

for some κn ∈ C
∗, hence the result. �

With the last proposition, we have completed the proof of Theorem 4.7
for generic t

1
4 ∈ C

∗ (note that uniqueness follows from Lemma 4.2 and that for
n = 1 the desired unique solution g(1) is simply given by the constant function
g(1) ≡ 1). The remark following Theorem 4.7 then completes the proof of
Theorem 4.7 for all values t

1
4 ∈ C

∗ for which (t
1
2 + 1)(t + 1) �= 0.

7. The Dual Braid Recursion

The extended affine Temperley–Lieb algebra T Ln(t
1
2 ) is invariant under the

inversion t
1
4 → t−

1
4 . In this last section of the article, we discuss how this

symmetry results in a dual braid recursion for the qKZ towers of solutions
(g(n))n≥0 from Theorem 4.7. We set v = 1 in this section.
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First, we discuss the inversion on the Kauffman skein relation (3.6). If we
invert t

1
4 and then rotate the diagrams by ninety degrees, we have

= t
1
4 + t−

1
4 .

Comparing this to the original equation, we see that all the over-crossings swap
to under-crossings and vice versa. Hence, in the identification of T Ln(t

1
2 ) with

EndS(n), the inversion t
1
4 → t−

1
4 amounts to replacing under-crossings by

over-crossing and vice versa.
Let Iι

n: T Ln → T Ln+1 be the algebra map In with the role of t
1
4 replaced

by t−
1
4 . Hence, in the skein theoretic description, the arc insertion is now done

by over-crossing all arcs its meets, instead of under-crossing. Similarly, we
write

φι
n ∈ HomT Ln

(Vn, V
Iι

n
n+1)

for the intertwiner obtained from replacing in the construction of φn ∈
HomT Ln

(

Vn, V In
n+1

)

the parameter t
1
4 by t−

1
4 and the role of In by Iι

n.

Theorem 7.1. With the assumptions as in Theorem 4.7, let g(n) ∈
Soln(Vn, t

3
2 , (−t−

3
4 )n−1) for n ≥ 1 be the homogeneous polynomial solution

qKZ of degree 1
2n(n − 1) with fully nested component

g
(n)
L∩ (z) =

∏

1≤i<j≤n

(

t
1
2 zj − t−

1
2 zi

)

and set g(0) := 1 ∈ Sol0(V0, t
3
2 , t

1
4 + t−

1
4 ). Write

g̃(n)(z) := (z1z2 . . . zn)n−1g(n)(z−1
1 , z−1

2 , . . . , z−1
n ).

Then, g̃(n)(z) ∈ Vn[z] is a Vn-valued homogeneous polynomial of total degree
1
2n(n − 1) and

g̃(n+1)(z1, . . . , zn, 0) = t
1
4 (2n−�n/2)z1 . . . znφι

n

(

g̃(n)(z1, . . . , zn)
)

, n ≥ 0.

Proof. Let Rι
i(x) ∈ T Ln be the R-operator Ri(x) with t

1
4 replaced by t−

1
4 ,

Rι
i(x) =

(

x − 1
t−

1
2 − t

1
2 x

)

ei +

(

xt−
1
2 − t

1
2

t−
1
2 − t

1
2 x

)

.

Note that Rι
i(x) = Ri(x−1), from which it follows that

Rι
i(zi+1/zi)g̃(n)(. . . , zi+1, zi, . . .) = g̃(n)(z)

for 1 ≤ i < n. Furthermore, with q = t
3
2 ,

ρg̃(n)(z2, . . . , zn, qz1) = qn−1(z1 . . . zn)n−1ρg(n)(z−1
2 , . . . , z−1

n , q−1z−1
1 )

= qn−1(−t−
3
4 )n−1(z1 . . . zn)n−1g(n)(z−1

1 , . . . , z−1
n )

= (−t
3
4 )n−1g̃(n)(z).
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Hence, g̃(n)(z) is a twisted-symmetric solution of the qKZ equation with
respect to the action ∇ι of Wn obtained from ∇ by inverting t

1
4 and setting

q = t
3
2 . Furthermore, the fully nested component of g̃(n)(z) is

g̃
(n)
L∩ (z) =

∏

1≤i<j≤n

(t
1
2 zi − t−

1
2 zj).

As in Lemma 4.2, it follows that g̃(n)(z), as symmetric solution of these qKZ
equations, is determined by the fully nested component and that all coefficients
g̃
(n)
L (z) are homogeneous polynomials in z1, . . . , zn of total degree 1

2n(n − 1).
In particular,

g̃(n)(z) ∈ Solιn
(

Vn; t
3
2 , (−t

3
4 )n−1

)

with Solιn
(

Vn; q, dn) being the polynomial Vn-valued functions f(z) ∈ Vn[z]
satisfying

Rι
i(zi+1/zi)f(. . . , zi+1, zi, . . .) = f(z), 1 ≤ i < n,

ρf(z2, . . . , zn, qz1) = dnf(z).

Using slightly modified versions of Lemmas 2.4 and 2.5 one now shows that

(z1 . . . zn)φι
n

(

g̃(n)(z1, . . . , zn)
)

∈ Solιn
(

V
Iι

n
n+1; t

3
2 , (−t

3
4 )n+1

)

,

g̃(n+1)(z1, . . . , zn, 0) ∈ Solιn
(

V
Iι

n
n+1; t

3
2 , (−t

3
4 )n+1

)

.

Furthermore, a modified version of Lemma 4.5 yields

φι
n(L) =

∑

L′∈Ln+1

dL′,LL′

with d
L,L

(n+1)
∩

= δ
L,L

(n)
∩

t
1
4 �n/2. Hence, g̃(n+1)(z1, . . . , zn, 0) and t

1
4 (2n−�n/2)

z1 . . . znφι
n

(

g̃(n)(z)
)

have the same fully nested component. The properly mod-
ified version of Lemma 4.3 then shows that they are equal. �
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Appendix A: Recursion Relations for Link Pattern Components
of qKZ Solutions

In this section, we prove Lemma 4.2(a) and Lemma 4.3(b), i.e., we show that
twisted-symmetric solutions of qKZ equations with values in link pattern mod-
ules are determined by the fully nested component. This proof is done for three
different representations of Hn: link patterns C[LP2k] (when n = 2k), punc-
tured link patterns C[Ln] 
 Vn (Lemma 4.2) and the restricted modules V νn

n+1

(Lemma 4.3). The first two cases have been considered before in the litera-
ture, see [8,11,21]. We recall these here in detail, since the technicalities play
an important role in proving the most delicate third case.

A link pattern of size 2k is a diagram with 2k equally spaced points on
the boundary of the disk D that are connected by k non-intersecting curves
lying within the disk. To establish convention, the points are numbered 1 to
2k going counterclockwise around the disk. We denote the set of link patterns
of size 2k by LP2k. As an example, LP6 consists of the following link patterns:

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

Link patterns can also be drawn by placing the endpoints on a horizontal line
such that the k non-intersecting curves lie above it. To establish convention,
the points are numbered in increasing order from left to right. As an example,
the link patterns of LP6 can be drawn as

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

respectively. Due to this form, the curves are sometimes referred to as arches
and a little arch is one that connects two consecutive points.

A Dyck path of length 2k is a lattice path from (0, 0) to (2k, 0) with steps
(1, 1) called a rise and (1,−1) called a fall, which never falls below the x-axis.
We denote the set of Dyck paths of length 2k by DP2k. As an example, DP6

consists of the following Dyck paths:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

A Dyck path can also be encoded by a string of 2k numbers (a1, . . . , a2k) where
aj for 1 ≤ j ≤ 2k is the height of the path after step j. Furthermore, for a
Dyck path L we define its content |L| to be the number of boxes within the
gray triangle that lie above the path. For example, if L ∈ DP6 denotes the
last Dyck path in the example above, then |L| = 3.

There exists a bijection between LP2k and DP2k. To go from link pat-
terns to Dyck paths, consider the link pattern drawn on a horizontal line
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and traverse along the line from left to right. Each point i that is the begin-
ning/end of an arch corresponds to a rise/fall at step i in the Dyck path.
To go from Dyck paths to link patterns, for each rise draw the start of an
arch and for each fall an end, and then complete the diagram by connecting
a start with an end such that the arches do not intersect. For example, the
ordered lists of elements in LP6 and DP6 are the same under the bijective
correspondence.

The bijection allows us to establish a containment ordering on link pat-
terns. For two link patterns L,L′ ∈ LP2k, we say that L contains L′ if the entire
corresponding Dyck path of L′ can be drawn along or below the Dyck path of
L. More formally, let L and L′ correspond to the Dyck paths (a1, . . . a2k) and
(b1, . . . b2k), respectively. Then, L contains L′ if aj ≥ bj for all 1 ≤ j ≤ 2k. As
an example, in the list of Dyck paths in DP6 the first path contains all other
paths. Furthermore, note that if L contains L′ then |L| ≤ |L′|.

Using the disk diagrams, one can define the action of T L2k on C[LP2k]
similarly to that on C[L2k], one just ignores the puncture so we do not have
the loop removal rule for non-contractible loops. Using the horizontal line
diagrams is more suitable when discussing the action of the finite Temperley–
Lieb algebra T Lf

2k. The induced action of T Lf
2k on C[DP2k] can then be

described as follows.
At step i for 1 ≤ i ≤ 2k − 1, a Dyck path can have one of three different

local situations:

(1) Steps i, i + 1 form a local maximum, i.e., a rise followed by a fall;
(2) Steps i, i + 1 form a local minimum, i.e., a fall followed by a rise;
(3) Steps i, i + 1 form a slope, i.e., two consecutive rises or falls.

If steps i, i + 1 form a local maximum, then the action of ei acts as a scalar,
leaving the path unchanged and multiplying by a factor −(t

1
2 + t−

1
2 ) (line 1,

Fig. 2). If steps i, i + 1 form a local minimum, then ei changes it into a local
maximum (line 2, Fig. 2). For a slope, if it is two consecutive rises, say with
heights ai = m and ai+1 = m + 1, then let j > i + 1 be the first step that is a
fall with aj = m. The action of ei then changes step i + 1 into fall and j into
a rise, creating a local maximum at i, i + 1 and decreasing the height of the
path between i and j by two (line 3, Fig. 2). This decrease in height shifts the
internal path down, and we refer to it as a collapse. If the slope is downwards
with height ai = m,ai+1 = m − 1, let j < i be the last rise with aj = m + 1.
Then, the action of ei changes step i and j to a rise and fall, respectively. This
creates a local maximum at i, i + 1 and causes a collapse decreasing al by two
for j ≤ l < i. Note that a collapse leads to a smaller Dyck path in the inclusion
order.

Figure 2 shows a diagrammatic definition of the action on Dyck paths.
The dotted frame indicates the section of the paths where they differ, and the
dotted line in the third mapping represents a Dyck path of length j − i − 2.
The case for two consecutive falls is the same as the third line but with the
diagrams reflected across a vertical line in the middle of the diagrams.
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i i+1
ei (t

1
2 + t−

1
2 ) i i+1

i i+1
ei

i i+1

i i+1 j
ei

i i+1 j

Figure 2. The action of ei on Dyck paths

A.1. Link Patterns

Let L0 ∈ DP2k denote the Dyck path with k rises followed by k falls, i.e.,
(1, 2, . . . , k, k − 1, . . . , 0). Note that L0 contains all Dyck paths in DP2k and
|L0| = 0. We show that the solution g(2k)(z) ∈ Sol2k(C[LP2k]; q, c2k) is deter-
mined by its base component g

(2k)
L0

(z).

We prove this by showing that if g
(2k)
L0

(z) ≡ 0, then we have g
(2k)
L (z) ≡ 0

for all L ∈ DP2k. This is done using the qKZ equations (4.1), which give for
1 ≤ j < 2k,

g
(n)
L (z) − b(zj+1/zj)g

(n)
L (sjz) =

∑

L′∈LP2k: ejL′∼L

γ
(j)
L′,La(zj+1/zj)g

(n)
L′ (sjz),

(A.1)

where ejL
′ ∼ L means that L is obtained from ejL

′ by removing the loops in
ejL

′ (there is in fact at most one loop). The coefficient γ
(j)
L′,L is defined by

γ
(j)
L′,L =

{

−(t
1
2 + t−

1
2 ) if ejL

′ has a null-homotopic loop,

1 otherwise.

We begin with the inductive hypothesis,

g
(2k)
L (z) ≡ 0 if |L| ≤ m,

where m ∈ Z≥0. Now consider a Dyck path L such that |L| = m with a local
maximum at, say, step i with ai > 1 (if such a local maximum does not exist,
then L is the unique Dykh path with maximal content |L|, and hence there
is nothing to prove). We use Eq. (A.1) for j = i and examine the pre-images
L′ in the sum on the right-hand side. We find that besides L there is only
one pre-image that is contained by L. This is the pre-image that has a local
minimum turned into a local maximum by the action of ei. Let us denote this
particular Dyck path by N . Switching a local minimum to a local maximum is
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equivalent to removing a box, so we have |N | = m + 1. Furthermore, all other
pre-images L′ �= N contain L so |L′| ≤ m and g

(2k)
L′ (z) ≡ 0. Thus, g

(2k)
N (z) ≡ 0

with |N | = m + 1 by (A.1). Since |L0| = 0, it provides the base case of the
induction and determines all other components.

Remark A.1. The algorithm of this proof can be viewed as collapsing the local
maxima till we end up at the last component, which has k local maxima with
height 1. Since a Dyck path cannot fall below the x-axis we cannot collapse a
local maximum with a height 1. Thus, the algorithm never uses (A.1) at j if
the height aj is one. This is an important remark for the proofs that follow.

Remark A.2. The Dyck path L0 corresponds to the link pattern that connects
point i with 2k − i + 1. The same arguments used in this proof can be found
in [10] where they prove the unique solution for the model with reflecting
boundaries.

A.2: Punctured Link Patterns

Here, we present the proof to Lemma 4.2. Let L∩ denote the link pattern

* 1

2k

k

k+1 and 1

2k+1

k

k+1

k+2
*

in L2k and L2k+1, respectively. A little arch in a punctured link patterns is
an arch connecting points j, j + 1 that does not contain the puncture. For
example, L∩ only has one little arch, it connects points 2k + 1 to 1.

We show that the solution g(n)(z) ∈ Soln(C[Ln]; q, cn) is determined by
its base component g

(n)
L∩ (z). The qKZ equations written component-wise are

g
(n)
L (z) − b(zi+1/zi)g

(n)
L (siz) =

∑

L′∈Ln: eiL′∼L

γ
(i)
L′,La(zi+1/zi)g

(n)
L′ (siz), (A.2)

g
(n)
L (z) = c−1g

(n)
ρ−1L(z2, . . . , zn, q−1z1), (A.3)

where eiL
′ ∼ L means that L is obtained from eiL

′ by removing the loops in
eiL

′ (there is in fact at most one loop), see (4.1). The coefficient γ
(i)
L′,L is

γ
(i)
L′,L =

⎧

⎪

⎨

⎪

⎩

−(t
1
2 + t−

1
2 ) if eiL

′ has a null-homotopicloop,

t
1
4 + t−

1
4 if eiL

′ has a non null-homotopic loop,

1 otherwise.

We treat the even and odd case separately.

A.2.1. Case n = 2k. Let LP(∗,j)
2k denote the set of punctured link patterns

in L2k such that the puncture could be connected to a point on the bound-
ary between points j and j + 1 (modulo 2k) without crossing a line. Then,
L2k =

⋃2k
j=1 LP(∗,j)

2k (not necessarily disjoint) and ρ: LP(∗,j)
2k → LP(∗,j+1)

2k . Note



Vol. 20 (2019) Towers of Solutions of qKZ Equations 3791

that L∩ is in LP(∗,k)
2k and if we define L2k := ρk ·L∩ then L2k ∈ LP(∗,2k)

2k . Define
a bijection from LP(∗,2k)

2k to LP2k by simply removing the puncture. This map-
ping preserves the action of T Lf

2k. Furthermore, it maps L2k ∈ LP(∗,2k)
2k to

L0 ∈ LP2k.
To prove that g

(2k)
L∩ (z) determines the solution, we have the following

steps. First, if g
(2k)
L∩ (z) ≡ 0 then by using Eq. (A.3) k times we have g

(2k)
L2k

(z) ≡
0. Second, by the mapping from LP(∗,2k)

2k to LP2k and the proof on LP2k we
have g

(2k)
L (z) ≡ 0 for all L ∈ LP(∗,2k)

2k . Last, we use Eq. (A.3) to show that if
g
(2k)
L (z) ≡ 0 for all L ∈ LP(∗,i)

2k then g
(2k)
L′ (z) ≡ 0 for all L′ ∈ LP(∗,i+1)

2k .
There is one key subtlety that we have ignored, which we point out and

address. There is a difference between Eq. (A.1) and (A.2); in the latter equa-
tion, the pre-images are in L2k and not just LP2k. So when determining all the
components for L ∈ LP(∗,2k)

2k we must check that all the pre-images L′ are also
in LP(∗,2k)

2k . Recall Remark A.1; each step of the algorithm is on a local max-
imum, which corresponds to a little arch in a link pattern. For the equation
ei · L′ = L, the only case where we have L′ �∈ LP(∗,2k)

2k is if the little arch in
L is on the boundary of the domain that contains the puncture. Such a little
arch corresponds to a local maximum of height 1. Recalling again Remark A.1,
we do not collapse such local maxima, and therefore we do not have this case
and can conclude all pre-images are in LP(∗,2k)

2k . If L ∈ LP(∗,2k)
2k has a little

arch (i, i + 1) on the boundary of the domain containing the puncture, then
L′ �∈ LP(∗,2k)

2k is the link pattern identical to L but with the puncture inside
the little arch.

A.2.2. Case n = 2k+1. Let LP(∗,j)
2k+1 denote the set of punctured link patterns

in L2k+1 such that the defect line connects the puncture to point j on the
boundary. Then, we have L2k+1 =

⊔2k+1
j=1 LP(∗,j)

2k+1 and ρ : LP(∗,j)
2k+1 → LP(∗,j+1)

2k+1 .

Note that L∩ is in LP(∗,k+1)
2k and if we define L2k+1 := ρk · L∩ then L2k+1 ∈

LP(∗,2k+1)
2k+1 . Define a bijection from LP(∗,2k+1)

2k+1 to LP2k by simply removing the
defect line, puncture and boundary point 2k + 1. This mapping preserves the
action of T Lf

2k. Furthermore, it maps L2k+1 ∈ LP(∗,2k+1)
2k+1 to L0 ∈ LP2k.

Now to prove that g
(2k+1)
L∩ (z) determines the solution we have the fol-

lowing steps. First, if g
(2k+1)
L∩ (z) ≡ 0 then by using Eq. (A.3) k times we have

g
(2k+1)
L2k+1

(z) ≡ 0. Second, by the mapping from LP(∗,2k+1)
2k+1 to LP2k and the proof

on LP2k we have g
(2k)
L (z) ≡ 0 for all L ∈ LP(∗,2k+1)

2k+1 . Last, by Eq. (A.3), if

g
(2k+1)
L (z) ≡ 0 for all L ∈ LP(∗,i)

2k+1 then g
(2k+1)
L′ (z) ≡ 0 for all L′ ∈ LP(∗,i+1)

2k+1 .
The same subtle issue occurs in this case and the argument is identical.

The only case a pre-image L′ is not in LP(∗,2k+1)
2k+1 is when the little arch in L is

on the boundary of the domain that contains the puncture. Such a little arch
corresponds to a local maximum of height 1. Again, recalling Remark A.1, we
do not collapse such local maxima, and therefore we do not have this case and
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can conclude all pre-images are in LP(∗,2k+1)
2k+1 . If L ∈ LP(∗,2k+1)

2k+1 has a little
arch (i, i + 1) on the boundary of the domain containing the puncture, then
L′ �∈ LP(∗,2k+1)

2k+1 is the link pattern with either point i or i+1 connected to the
puncture and the other to the point 2k + 1.

A.3. The Restricted Module V νn

n+1

Here, we present the proof to Lemma 4.3. Let g(n)(z) ∈ Soln(V νn
n+1; q, cn). The

qKZ equations associated with the representation V νn
n+1 written component-

wise are

g
(n)
L (z) − b(zj+1/zj)g

(n)
L (sjz) =

∑

L′∈Ln+1: ejL′∼L

γ
(j)
L′,La(zj+1/zj)g

(n)
L′ (sjz),

(A.4)

t−
1
4

∑

L′∈Ln+1: enL′∼L

γ
(n)
L′,Lg

(n)
L′ (z2, . . . , zn, q−1z1)

+ t
1
4 g

(n)
L (z2, . . . , zn, q−1z1) = c−1

n g
(n)
ρ·L(z) (A.5)

for 1 ≤ j < n. It is important to note that the link patterns are in Ln+1

but the first equation is only for 1 ≤ j < n; there is one equation less than
in the previous cases. Note furthermore that (A.5) follows from the fact that
In(ρ) = ρ(t−

1
4 en + t

1
4 ).

The proof for the even and odd case are treated separately.

A.3.1. The Case n = 2k. Note that for the case n = 2k the link patterns are in
L2k+1. Recall from “Appendix A.2” the definitions for L∩, L2k+1 ∈ L2k+1 and
LP(∗,j)

2k+1. We show the solution g(2k)(z) is determined by its base component

g
(2k)
L∩ (z) in three steps.

First, consider Eq. (A.5) for L = L∩. Since L∩ does not have a little
arch connecting (2k, 2k + 1) there is no pre-image L′ such that e2k · L′ ∼ L∩.
Therefore, there are no terms in the sum (over L′) on the left-hand side of
the equation, and if g

(2k)
L∩ (z) ≡ 0 then g

(2k)
ρ·L∩(z) ≡ 0. Continuing this way, we

conclude that g
(2k)
ρiL∩

(z) ≡ 0 for all 0 ≤ i ≤ 2k. But then we have covered

all the possible rotations of L∩, so g
(2k)
ρiL∩

(z) ≡ 0 for all i ∈ Z. In particular,
g

L
(2k)
2k+1

(z) ≡ 0.
The second step is identical to “Appendix A.2.” By the mapping from

LP(∗,2k+1)
2k+1 to LP2k and the proof on LP2k, we have g

(2k)
L (z) ≡ 0 for all L ∈

LP(∗,2k+1)
2k+1 . The fact that we have one equation less does not play a role here

as the mapping from LP(∗,2k+1)
2k+1 to LP2k decreases the size of the link patterns

by one.
The last step is to use Eq. (A.5). However, this is not as simple as “Appen-

dix A.2” because Eq. (A.5) has an extra term on the left-hand side. It is a sum
over pre-images for the action of en. We will refer to it as the pre-image sum.
Consider Eq. (A.5) for L ∈ LP(∗,2k)

2k+1 . Since L has the defect line connected
to point 2k there are no pre-images L′ such that e2k · L′ ∼ L. Therefore, the
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Figure 3. Pre-images of L ∈ LP(∗,i)
2k+1 for the action of e2k

pre-image-sum of (A.5) does not give a contribution and g
(2k)
L (z) ≡ 0 because

g
(2k)
ρ·L (z) ≡ 0 as ρ · L ∈ LP(∗,2k+1)

2k+1 . Now consider (A.5) for L ∈ LP(∗,2k+1)
2k+1 . By

the same argument, the pre-image-sum gives no contribution and g
(2k)
ρ·L (z) ≡ 0.

Since each L′ ∈ LP(∗,1)
2k+1 is of the form ρ · L for some L ∈ LP(∗,2k+1)

2k+1 we have

g
(2k)
L (z) ≡ 0 for all L ∈ LP(∗,1)

2k+1.

Having shown that g
(2k)
L (z) ≡ 0 for L ∈ LP(∗,1)

2k+1�LP(∗,2k)
2k+1 �LP(∗,2k+1)

2k+1 , we
now use an inductive argument to complete the proof. The induction hypoth-
esis is

g
(2k)
L (z) ≡ 0ifL ∈ LP(∗,2k)

2k+1 � LP(∗,2k+1)
2k+1

⊔

1≤j≤i

LP(∗,j)
2k+1

for some 1 ≤ i < 2k. Consider Eq. (A.5) for L ∈ LP(∗,i)
2k+1. If L does not have a

little arch connecting (2k, 2k+1), then we have the same argument used before:
There are no pre-images and the pre-image sum does not give a contribution,
and hence g

(2k)
L (z) ≡ 0 for L ∈ LP(∗,i+1)

2k+1 . If L does have a little arch connecting
(2k, 2k + 1), then the pre-image L′ must have the defect line connected to
points i, 2k or 2k + 1. The case that the link pattern L′ in the pre-image
lies in LP(∗,i)

2k+1 is obvious. For the other two cases, the parts of the pre-images
connected to i, 2k, 2k + 1 are shown in Fig. 3. It follows that the pre-image
L′ is in LP(∗,2k)

2k+1 � LP(∗,2k+1)
2k+1 � LP(∗,i)

2k+1 and the pre-image sum is equivalently

zero. Hence, in both cases g
(2k)
ρ·L (z) ≡ 0 and since ρ: LP(∗,i)

2k+1 → LP(∗,i+1)
2k+1 we
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Figure 4. Pre-images of L ∈ LP(∗,i)
2k for the action of e2k−2

have g
(2k)
L (z) ≡ 0 for all L ∈ LP(∗,i+1)

2k+1 . This completes the induction and the
base case is i = 1 which was discussed in the previous paragraph.

A.3.2. The Case n = 2k − 1 (k ≥ 1). Note that for the case n = 2k − 1
the link patterns are in L2k Recall from “Appendix A.2” the definitions for
L∩, L2k ∈ L2k and LP(∗,j)

2k . We show the solution g(2k−1)(z) is determined by
its base component g

(2k−1)
L∩ (z) in three steps.

The first step is identical to the case n = 2k. The link pattern L∩ does
not have a little arch connecting (2k − 1, 2k) and neither do the link patterns
ρj · L∩ for 1 ≤ j ≤ k. So if g

(2k−1)
L∩ (z) ≡ 0, then g

(2k−1)
L2k

(z) ≡ 0.
The second step is similar to “Appendix A.2”; however, there is a new

subtle issue to note; we have one equation less. By the mapping from LP(∗,2k)
2k

to LP2k and the proof on LP2k, we have g
(2k−1)
L (z) ≡ 0 for all L ∈ LP(∗,2k)

2k .
Indeed, Eq. (A.4) with 1 ≤ j < 2k − 1 suffices since a local maximum at step
2k − 1 must have height one, cf. Remark A.1.

For the final step, consider Eq. (A.5) for L ∈ LP(∗,2k−1)
2k . Since L does

not have a little arch connecting points (2k − 1, 2k), there is no pre-image L′

and hence the pre-image sum does not give a contribution. Therefore, we have
g
(2k−1)
L (z) ≡ 0 for all L ∈ LP(∗,2k−1)

2k since ρ · L ∈ LP(∗,2k)
2k . Next, consider the
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equation for L ∈ LP(∗,2k−2)
2k . If L has a little arch connecting points (2k−1, 2k),

then L is also in LP(∗,2k)
2k so g

(2k−1)
L ≡ 0. If L does not have a little arch

connecting points (2k − 1, 2k), then there are no pre-images L′ and the pre-
image sum does not give a contribution, so g

(2k−2)
L (z) ≡ 0 because ρ · L ∈

LP(∗,2k−1)
2k .

Now consider Eq. (A.5) for L ∈ LP(∗,2k)
2k . All the possible pre-images of

L with respect to the action of e2k−1 are in LP(∗,j)
2k for j = 2k − 2, 2k − 1, 2k.

Therefore, the pre-image sum gives no contribution and g
(2k−1)
L (z) ≡ 0 for

L ∈ LP(∗,1)
2k . We now use an induction argument. The hypothesis is

g
(2k−1)
L (z) ≡ 0 ifL ∈ LP(∗,j)

2k forj = 2k − 2, 2k − 1, 2k, 1, . . . , i

for some 1 ≤ i < 2k −2. Consider Eq. (A.5) for L ∈ LP(∗,i)
2k . If L does not have

a little arch connecting points (2k−1, 2k), then we have the same argument as
before: There are no pre-images and the pre-image sum gives no contribution,
and hence g

(2k−1)
ρL ≡ 0 and g

(2k−1)
L′′ (z) ≡ 0 for all L′′ ∈ LP(∗,i+1)

2k . If L does have
a little arch connecting points (2k − 1, 2k), then we examine the pre-images of
L with respect to action of e2k−1. We find that

{L′ ∈ Ln|e2k−1L
′ ∼ L} ⊆ LP(∗,2k−2)

2k ∪ LP(∗,2k−1)
2k ∪ LP(∗,2k)

2k ∪ LP(∗,i)
2k

(see Fig. 4). Therefore, the pre-image sum is equivalently zero and since
g
(2k−1)
L (z) ≡ 0 and ρ · L ∈ LP(∗,i+1)

2k , we have g
(2k−1)
L (z) ≡ 0 for L ∈ LP(∗,i+1)

2k .
This completes the inductive step, and the base case is i = 1 which was dis-
cussed in the beginning of this paragraph.
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