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ABSTRACT

We present an analysis of Hy Lyman-a emission in deep VLT /MUSE observations of
two highly magnified and extended galaxies at z = 3.5 and 4.03, including a newly
discovered, almost complete Einstein ring. While these Lyman-a haloes are intrinsically
similar to the ones typically seen in other MUSE deep fields, the benefits of gravitational
lensing allows us to construct exceptionally detailed maps of Lyman-a line properties
at sub-kpc scales. By combining all multiple images, we are able to observe complex
structures in the Lyman-a emission and uncover small (~ 120 km s~ in Lyman-a
peak shift), but significant at > 4 o, systematic variations in the shape of the Lyman-a
line profile within each halo. Indeed, we observe a global trend for the line peak shift
to become redder at large radii, together with a strong correlation between the peak
wavelength and line width. This systematic intrahalo variation is markedly similar to
the object-to-object variations obtained from the integrated properties of recent large
samples. Regions of high surface brightness correspond to relatively small line shifts,
which could indicate that Lyman-a emission escapes preferentially from regions where
the line profile has been less severely affected by scattering of Lyman-a photons.
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halo (hereafter LAH, Steidel et al. 2011; Herenz et al. 2015;
Wisotzki et al. 2016; Momose et al. 2016; Leclercq et al. 2017,
hereafter L17). This goes even up to 100s of kpc for studies
surrounding high redshift quasars such as the SLUG nebula

1 INTRODUCTION

arXiv

Galaxies are surrounded by a large amount of neutral hydro-
gen that forms part of the circumgalactic medium (hereafter

CGM), the interface through which a galaxy interacts with
its environment (Tumlinson et al. 2017). The physics of the
CGM is key to explain how galaxies acquire gas and evolve.

The presence of CGM gas around high-redshift galax-
ies has been revealed through Lyman-a absorption seen in
the spectra of background quasars (Adelberger et al. 2005;
Steidel et al. 2010; Rudie et al. 2013; Turner et al. 2014). It
is also detected through Lyman-a emission at several kpc
scales, where photons scatter resonantly and illuminate the
surrounding hydrogen gas, producing an extended Lyman-a
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(Leibler et al. 2018) or the COS haloes (Prochaska et al.
2017).

The Lyman-a signal is complex and several mechanisms
could be responsible for its production: scattering in the neu-
tral gas (Verhamme et al. 2012; Gronke & Dijkstra 2016) cold
streams feeding the CGM (Furlanetto et al. 2005; Dijkstra &
Loeb 2009; Henry et al. 2015), the presence of satellite galax-
ies surrounding the main source of emission, or a combination
thereof. Models of Lyman-a emission in idealised configura-
tions such as expanding shells produce a diversity of spatially
integrated Lyman-« line profiles in general agreement with
the global observed spectra (Verhamme et al. 2008; Gronke
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2017), but which do not reproduce the spatial extension of
LAHs (Patricio et al. 2016, hereafter P16). More detailed
predictions of Lyman-alpha emission from numerical simu-
lations of galaxies exist at very high redshift (e.g. Laursen
et al. 2009; Yajima et al. 2015; Behrens et al. 2019; Smith
et al. 2019). However these generally produce symmetric
broad Lyman-« lines and agree with observations only when
including IGM absorption at z > 5. Currently, the only work
which discusses spectral variations within Lyman-a haloes
(Smith et al. 2019) does not show very clear trends and focus
on large (>5 kpc) scales.

It is therefore important to obtain spatially and spec-
trally resolved observations of the Lyman-e line, in order to
disentangle these mechanisms and thus better understand
the link between the galaxies and their close environment
(as done previously by Swinbank et al. 2015; Prescott et al.
2015, L17, Kusakabe et al. 2019). This is typically performed
at low redshift for example in the LARS sample (Ostlin et al.
2014).

However, at high redshift, the mapping of Lyman-«a
emission around individual galaxies is very difficult due to
the sensitivity and resolution limits of current observational
facilities. It remains a challenge to observe LAHs around high-
redshift individual galaxies with a spatial resolution sufficient
to perform a precise analysis of Lyman-a line variations in
the CGM (a few dozens spatial regions in the halo with sub-
kpc scales). For example, only the most extended objects (>
5kpc) from Leclercq et al. (2017) in the UDF can be resolved
for such a study.

One way to investigate the spatial variations of Lyman-a
profiles is to use strong gravitational lensing. Lensing con-
serves surface brightness (Etherington 1933) (hereafter SB)
but creates multiple, enlarged and distorted images of back-
ground galaxies. By leveraging the power of lensing with the
unique efficiency (end-to-end transmission of the instrument)
of the Multi Unit Spectroscopic Explorer (MUSE) integral
field spectrograph on the Very Large Telescope (VLT) (Ba-
con et al. 2010), we can observe z > 3 Lyman-a emitters
(hereafter LAES) lensed by galaxy clusters, with improved
spatial resolution (Smit et al. 2017; Vanzella et al. 2017).
Among these galaxies, the most extended and magnified are
sufficiently well-resolved to perform a precise analysis of the
Lyman-e line variations in the halo (down to ~ 0.5 kpc scales
in the source plane). Unfortunately, highly magnified sys-
tems at high redshift are extremely rare; only a few lensed
galaxies at z > 3 feature Lyman-a emission subtending > 5"/
on sky at a typical surface brightness limit of few 10719 cgs
(Franx et al. 1997, Smit et al. 2017, Vanzella et al. 2018).
Samples of highly magnified arcs are limited by the number
of galaxies sufficiently extended intrinsically and lensed by
a galaxy cluster. So far, studies characterising the LAHs at
high redshift have only reported minor variations in their
spatial/spectral properties (e.g. Erb et al. 2018).

In this paper we present a detailed analysis of such spa-
tial and spectral variations in two highly magnified LAHs: a
z = 3.5 halo, previously presented by P16, found in galaxy
cluster SMACS J2031.8-2046 (hereafter SMACS2031) and
another newly discovered z = 4.03 halo behind the lensing
cluster MACS J0940.94+-0744 (hereafter MACS0940). All dis-
tances are physical. We adopt a A cold dark matter cosmology
with Qp = 0.7, Q,, = 0.3 and Hy = 70 kms™! Mpc™!.

2 OBSERVATIONS

The two selected Lyman-a emitters were known to be at
z > 3.5, highly magnified by galaxy clusters SMACS2031
(Richard et al. 2015) and MACS0940 (Leethochawalit et al.
2016). Observations for MACS0940 were performed as part
of the MUSE guaranteed time observations between January
2017 and May 2018, with 33x900-1000 seconds dithered
exposures in WFM-NOAO-N (0.8 hrs) and WFM-AO-N
(7.5 hrs) modes, for a total exposure time of 8.3 hrs. We
covered a single 1x1 arcmin? pointing sampled at 0.2” and
centered on the cluster core. Conditions were photometric
and the seeing was 0.60” at 700 nm as measured in the
final datacube, which covers the wavelength range 475-930
nm with a spectral sampling of 1.25 A. Observations of
SMACS2031, obtained during 10hrs of MUSE commissioning,
were previously presented in P16.

Both datasets were (re-)reduced with the latest version
of the MUSE data reduction software (Weilbacher et al. 2016,
v2.4). We followed exactly the steps of the MUSE pipeline
manual to perform basic calibration (such as bias, flat, wave-
length, geometry) as well as science calibrations (flux and
telluric correction, sky subtraction and astrometry). In par-
ticular we included the same self-calibration post-processing
as the MUSE Ultra Deep Field (UDF, Bacon et al. 2017),
with some improvements to make it more robust on crowded
fields like galaxy clusters. The idea of the self-calibration
process is to correct for the IFU-to-IFU and slice-to-slice flux
variations. It uses empty sky regions in the field to estimate
flux correction per slice in several wavelength ranges and
applies those correction factors after rejecting any outliers.
This method can be used for galaxy clusters observations, as
long as one provides a very clean mask of all objects detected
in the field. The final datacube was post-processed with the
software zZAP (Soto et al. 2016) v2 to suppress the sky sub-
traction residuals, we used in this process the same object
mask as for the self-calibration step. These two additional
treatments dramatically improved the commissioning data on
SMACS2031 which were taken without any illumination cali-
bration at the time, reducing the average variance measured
in empty sky regions by 30%.

Since the formal variances do not incorporate any co-
variance between adjacent pixels, these predicted variances
are systematically too low, in consequence we rescale the
variance cube. We followed the same method as Bacon et al.
(2015): we selected a sample of random blank sky regions in
the MUSE white image, where we measured the standard
deviation within each region and between all these regions.
We increased the MUSE variance by the square of the factor
of these two measurements, scaled by the area in pixels of
the empty regions considered. The effective variance is higher
y a factor of 2.6 and 2.25 for SMACS2031 and MACS0940
respectively.

3 LENS MODEL

We used the LENSTOOL software (Jullo et al. 2007)! to per-
form a parametric model of the mass distribution in both

I publicly available at https://projets.lam.fr/projects/

lenstool/wiki
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cluster fields, where locations of strongly-lensed multiple im-
ages are used as constraints. The total mass distribution is
parametrized as a combination of pseudo-isothermal mass
profiles at cluster and galaxy scales (e.g. Richard et al. 2010a).
The model of SMACS2031 is based on Richard et al. (2015),
with some improvements to the optimisation available in
the latest version of LENSTOOL. The model of MACS0940
is constrained by two spectroscopically-confirmed multiple
systems at z = 4.0 and z = 5.7 identified in the MUSE data
and producing four images each. We describe each lens model
with more details in Appendix A. For the rest of this study we
use the best model which minimizes the distance between the
observed and predicted locations of multiple images (model
rms of 0.33”” and 0.23” for SMACS2031 and MACS0940
respectively). The lens model allows us to precisely raytrace
spatial locations between the source plane and the image
plane, and estimate the total magnifications and relative
errors (Table 1).

4 SPATIAL/SPECTRAL ANALYSIS

We applied an identical procedure to analyse the MUSE
datasets for both sources. We produced pseudo-narrow band
(hereafter NB) images of the Lyman-a emission (Fig. 1) by
summing the continuum-subtracted datacube over ~ 15 A
centred on the line. We extracted a spectrum optimising the
MUSE continuum redwards of Lyman-a (~1350-1650 A rest-
frame) and measured the systemic redshift based on nebular
emission lines (He1r 11640, O 111] 111661, 66, C1v 111548, 51
and C111] 141907, 09). Global properties of both galaxies are
presented in Table 1. We estimate the exponential scale ra-
dius ry, of the LAH following L17 to perform a morphological
fit. The fit is done in two steps: first the UV continuum is fit
by a 2D elliptical exponential profile (based on the MUSE
continuum image). Then the Lyman-a halo is fit by two ellip-
tical exponential profiles, fixed at the same spatial position.
The scale radius of one of them is fixed to the continuum
one. The optimised parameters are both amplitudes, as well
as the scale radius of the second component. We took into
account the lensing effect and the MUSE PSF in this fit (see
appendix A). This 2D fit of the halo is idealised because it
makes the assumption that each object is only composed of
one exponential component for the continuum and one for the
Lyman-a emission. But this type of fit allows us to compare
our results with the LAEs found in the UDF (Leclercq et al.
2017) and gives us a good estimation of the mean size of the
Lyman-a halo and the continuum in the source plane.

Thanks to their high magnification (¢ ~ 19 —33), the
total observed Lyman-a fluxes reach ~ 10715 ergs™! em™2,
more than ten times brighter than any halo identified in the
MUSE UDF (L17).

The SMACS2031 galaxy produces five multiple images
(labeled 1.1 to 1.5, Richard et al. 2015). Image 1.1 is close to
the cluster centre and highly contaminated by stellar light,
we exclude it for the rest of this study. The MACS0940
galaxy produces four multiple images (labeled 1.1 to 1.4,
Fig.1) forming a spectacular, almost-complete, Einstein ring
of 10” radius in Lyman-a (Fig.1), covering ~ 80 arcsec? in
the image plane.

We then study Lyman-a line variations in the halo. To
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model the Lyman-« line, we use the fitting formula:

(A= 0) )
2(aasym (4= 29) + d)z

introduced by Shibuya et al. (2014) to adequately model
the asymmetric spectral profiles for LAEs. Using a simple
gaussian symmetric fit instead would typically increase the
final y2 by ~ 5 in average. The free parameters of the fit are:
the line amplitude A, the asymmetry parameter dasym, the
typical width d, and the peak wavelength of the line A.

To account for the underlying continuum, we measure
the mean flux level bluewards and redwards of the spectral
line. We include their contributions as a ramp function be-
tween the two continuum levels covering 6 A around the
central wavelength of the line. We also tested an Heaviside
function but found that the ramp function provided a more
robust continuum estimate. We checked that the parameters
chosen for this ramp function does not affect the final result.
To obtain a robust fit of a given spectrum and its associated
variance we used EMCEE (Foreman-Mackey et al. 2013) which
utilises a Markov chain Monte Carlo sampler to maximise
the Gaussian likelihood of the modeled spectrum from the
set of parameters and eq. 1. We fit the individual MUSE spa-
tial pixels (hereafter spaxels) in turn, using a semi-empirical
Bayesian approach. We place broad Gaussian priors on each
of the four parameters, where the mean of the prior is that
derived from a fit to the total Lyman-a spectrum (integrated
over the entire halo). We chose a gaussian dispersion of 250
and 400 km s~! as prior respectively for 1 (peak shift) and
d (width) parameters and of 10% and 50% for A (amplitude)
and dasym (asymmetry) parameters.

In Fig. 1 we show the results of the fitting for SMACS2031
(image 1.3) and MACS0940 (images 1.3 & 1.4). However,
while some coherent structure is observed, the maps become
noisy in the outskirts of the halo.

To increase the signal-to-noise, we spatially bin and com-
bine matched regions in the multiple images together. To
achieve this, we first use LENSTOOL to obtain a parametric
model of the source flux distribution that simultaneously
accounts for all multiple images and the effect of the MUSE
Point Spread Function (PSF). We used the Cappellari &
Copin (2003) tessellation to obtain source plane regions of
minimum total flux in the source plane. This method op-
timally preserves the maximum spatial resolution of two-
dimensional data given a constraint on the minimum flux
in each bin. The Lyman-a spectrum in each region is then
constructed by coadding the MUSE spaxels which have more
than 20 per cent overlap with the raytraced region, this value
of 20 percent is optimised to ensure that there is no gap
between two adjacent spatial regions in the image plane.
In doing so the central, and smaller regions only receive
contribution from the most amplified multiple images. We
check and manually join adjacent spatial regions to ensure a
minimum signal-to-noise ratio > 5 in each defined bin. We
verify that variations in signal-to-noise ratio do not introduce
systematics in the measured parameters. We also ensure that
all bins in the image plane are spatially more extended than
the PSF FWHM along at least one direction. We end up
with 130 and 123 source plane bins for SMACS2031 and
MACS0940 respectively.

To check that the results are not sensitive to the accu-
racy of the lens model, we apply this method on individual

FQ) = Aexp( - (1)
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Figure 1. Narrow-band Lyman-a image and pixel-by-pixel Lyman-a analysis in the image plane for SMACS2031 (left panel) and
MACS0940 (right panel). For each panel: (a) Narrow-band Lyman-e image of the entire arc (MACS0940, labels mark the multiple systems
presented in the Table. A2

) and only one image of SMACS2031 (image 1.3 according to the notation used in Richard et al. 2015), results of the individual spaxel fits
(Lyman-a SB level (b) and peak shift (c)) for the most magnified images. The red circles show the MUSE PSF, and we overplot SB
isocontours to highlight the flux peaks. The dashed grey box in panel (a) for MACS0940 represents the field of view of the two maps for
this object.

Name Zsys Hiotal h Lya total flux Peak shift FWHM Qasym a b
[kpc] [10715 ergs™! em™2] [kms™!] [kms™'] [kms™!]
SMACS2031  3.50618 £0.00019 32.7+2.8 1.5+0.3 1.31 £0.45 2157 274+6  0.17+0.01 0.61+0.10 52.0+28.1
MACS0940  4.03380+0.00056 18.5+4.2 4.3 +0.2 1.16 £ 0.54 240 £ 7 441+8 0.20+0.02 0.80+0.06 —108.8+28.6

Table 1. General properties of the LAHs (on the total integrated spectrum). From left to right: redshift of the galaxy, total magnification
(the magnification measurement is detailed in Appendix A), halo scale radius (see text for details), total observed Lyman-a flux (not
corrected for magnification), best-fit parameters of the Lyman-« line (eq. 1) converted into km s~! | slope and origin of the best fit by the

Verhamme et al. (2018) relation (Peakshift = aFWHM + b) presented in Fig. 3 (see section 4 for details)

multiple images, with exactly the same tessellation in the
source plane, and we recover the same trends for Lyman-a
line variations (the same min and max values happen at the
same locations and the overall variations are similar within
20 km s_l). Our results are also robust against choosing adif-
ferent prior distribution (uniform or Gaussian), or changing
the tessellation to use larger spatial bins. Finally, we visually
inspect each spectrum and fit results to check the fit. We
ensure that the reduced y2 of the fit (measured over the
spectral line) is < 1 in the very 1 arge majority (i.e. 123/130
regions in SMACS2031 and 117/123 regions in MACS0940
have a x2 < 1 and only 2 regions in SMACS2031 have a
x2 > 2) of the spectra. This shows that the Lyman-a well
reproduced everywhere in the halo with a simple asymmetric
profile (eq.1) with no secondary line peak at bluer wave-
lengths. Figure 2 presents the resulting maps of Lyman-a
peak shift and velocity dispersion in the source plane for both
galaxies, where we convert Ay and d from eq. 1 into a velocity
relative to the systemic redshift and FWHM respectively,
with the following analytic expression for FWHM:

2vV2 In2d

FWHM =
1-2 In2 afy

()

We also highlight the extracted spectra from specific
regions to better illustrate the variations seen in the maps.

5 RESULTS

We have characterised the Lyman-a line properties in the
haloes out to 10 kiloparsec (kpc) (~2.1r;,) in SMACS2031 and
10kpe (~2.5r,) in MACS0940. SMACS2031 presents only
mild variations of +20kms™! in peak shift and +20kms™!
in the FWHM across the halo. MACS0940 presents stronger
variations, with 60 kms~! in peak shift and +60kms~! in
FWHM. In these two objects we observe small, but nonethe-
less significant, variations in the Lyman-a line parameters
at sub-kpc scales. These variations are observed for the peak
position (1g) and velocity dispersion d. Indeed, on average,
we can see that both 1y and d increase towards large radii (i.e.
the line gets redder and broader). However, in both haloes,
there are a few outer, low-SB regions that have relatively
small peak shift (~ 200 kms~!) comparable to the smallest
value of the map.

In SMACS2031, we identify two such regions, one of
which (region 5 in Fig.2) has a distinct SB peak and as

MNRAS 000, 1-8 (2019)
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Figure 2. Lyman-a spectral line analysis for SMACS2031 (upper panel) and MACS0940 (lower panel) in the source plane. For each
object, top: spectra of specific regions of the halo (indicated by black ellipses on maps). The vertical lines represent the position of
the peak wavelength produced by the asymmetric fit. Horizontal segments represent the FWHM of each line. Bottom left: maps of the
Lyman-a SB profile in the halo. Middle: map of the shift of the Lyman-a peak relative to the systemic redshift. Bottom right: map of
the FWHM in the halo. In all bottom panels: dashed lines represent SB isocontours at 1, 2 and 3 x10717 erg s™! em™
contour corresponds to the SB threshold used in Fig. 4, i.e. 2 x1077 erg s7! em™

the stellar UV continuum.
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originally suggested by P16, is probably a satellite galaxy. In
MACS0940 we observe a large region (no. 4) with a smaller
velocity offset. This could also potentially be a similar case
of a companion, however, it does not show a local peak either
in SB or in continuum. When comparing both maps in Fig. 2
side by side, we can notice a strong link between Lyman-a
peak shift and velocity dispersion. This correlation is evident
when plotting one parameter against the other (Fig. 3). We
also notice that high-SB regions have the smallest velocity
offsets, while the opposite is not true (Fig.4).

6 SUMMARY AND DISCUSSION

We used MUSE observations to analyse spectral properties
of the Lyman-a line in two strongly lensed, extended LAEs
at z > 3.5. The emission line is always well-fit by a simple
asymmetric spectral profile, redshifted from systemic. The
observation of a single red asymmetric peak in Lyman-a
is generally assumed to arise from the presence of strong
galactic winds (> 100 km s~! e.g. Verhamme et al. 2006;
Gronke & Dijkstra 2016).

We observe that the Lyman-a line profile is relatively
consistent across the halo, the asymmetric Gaussian profile
from (Shibuya et al. 2014) reproduces very well the shape
of the line with no secondary Lyman-a peak and with an
almost constant asymmetry across the halo (0.15-0.25 in
both cases). However we can observe significant variations of
the other parameters at sub-kpc scales. On average, at larger
radii the peak shifts redwards and the line broadens. Such
spatial variations could be a result of the relative amount
of Hy within the CGM, or its kinematics. We confirm for
SMACS2031 the trends in Lyman-a variations across the
halo already found by P16, but with an improved spatial
resolution when combining all images in the source plane. We
acknowledge that the MUSE PSF introduces some correlation
between adjacent source plane regions (Fig.2), but this is
partially alleviated by combining multiple images at different
shear orientations. Nevertheless, this means that the actual
spatial variations seen in the Lyman-« line profile (in terms
of peak shift and velocity dispersion) could be intrinsically
stronger.

We compare our results against resolved halo studies
from the literature. Swinbank et al. (2007) observed a similar
object (a z =4.88 galaxy lensed by the cluster RCS 0224-
0002) with a single redshifted Lyman-a peak. They studied
the source plane kinematics on 200 pc scales but did not
find significant spatial variations of the Lyman-a peak shift
across the halo. This was largely confirmed by Smit et al.
(2017) with MUSE/VLT observations. However they only
noticed minors variations of the Lyman-a line profile in a
single outer region of the halo.

Erb et al. (2018), on the other hand, measured small
variations of the Lyman-a line shape across the halo in
a lensed galaxy at z = 2.3. However, the double-peaked
profile of its emission makes the comparison with our results
complicated. More generally, object-by-object comparison
is difficult and a larger sample would allow us to get a
comprehensive view of the Lya properties in the CGM.

In Fig.3 we overplot the empirical relation defined in
Verhamme et al. (2018) between Lyman-a peak shift and
FWHM (not corrected for the line spread function) obtained

with large samples on an object-by-object basis. Due to the
uncertainties in the systemic redshift, the values of peak
shift could be biased by +13 kms™' and +33 kms™! for
SMACS2031 and MACS0940, respectively; but this does not
affect our results on variations within the halo and the slope
of the correlation.. We can see that the correlation between
peak shift and FWHM within each object follows the same
empirical relation (in particular the same slope) as the one
established on an object-by-object basis. This becomes even
more visible when excluding the regions from the companion
in SMACS2031. We measure Pearson correlation coefficients
of p = 0.4 for SMACS2031 (excluding the companion) and
a value of p = 0.5 for MACS0940 (p-value < 0.0001 in both
cases). We note that the MACS0940 regions are located
below the empirical relation but very close to the 1o error
so are marginally consistent. We find for both objects a
linear slope (Table 1) close to the Verhamme et al. (2018)
relation (a = 0.9). The linear fit of the two datapoints series
was also performed with the EMCEE package accounting for
measurement errors along both directions. It is worth noting
how similar the slopes are for both sources, which suggests
that the global offset could be due to a process linked with
another galaxy parameter. Lyman-&« FWHM and peak shift
are intrinsically linked due to radiative transfer effects within
the CGM (Verhamme et al. 2006), and here we show for
the first time this effect within internal regions of LAEs as
opposed to only from galaxy to galaxy. Figure 4 shows the
spatially resolved relation between SB and peak shift for
each region. We can clearly see that for brightest regions of
the halo, the peak shift is systematically lower. We show in
Fig. 4 the mean Lyman-a peak shift for high and low SB
regions in both objects. The average variations of the peak
shift across the halo is 5+ 1 kms™!' for SMACS2031 and
32 + 2kms~! for MACS0940, both significant at more than
4 0. Almost no point populate the top right corner of the
plot, showing that Lyman-a photons preferentially escape
from low-peak shift regions. This is explained if Lyman-a
photons escape more favourably from regions where the line
profile is less altered, i.e. at small velocities or encountering a
lower hydrogen column density integrated along the photon
path. On the contrary, photons are much more scattered
when escaping from outskirt regions. A scenario in which
Lyman-a photons are scattered through a wind accelerating
as a function of radius could explain the global redshift and
broadening of the line at low SB. The presence of several
low peak shift regions at high radius / lower SB indicate a
complex structure of the CGM around the galaxy. In one
case we are able to match such a region with a companion
satellite galaxy, which could be offset in velocity.

Additional deep MUSE observations of lensing clusters
will allow us to enlarge the current sample of very extended
LAEs for which the same analysis can be performed. Al-
though these results are based on two extremely bright
sources, they are intrinsically typical in terms of size and
brightness of the ones found in the UDF (L17). Observing
spatial variations in such haloes has only been achievable so
far using lensing magnification. The trends could, however,
be tested on the brightest and most extended sources without
lensing (Leclercq et al. in prep.).
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Figure 3. Lyman-a peak shift vs FWHM of the line in individual
bins. Points are colour-coded in intensity according to the line
SB. The green circles are regions from the companion in the
SMACS2031 galaxy. Yellow crosses indicate the values obtained
for the fit to the total Lyman-a spectrum. The black solid line and
shaded region represent the linear relation and errors found by
Verhamme et al. (2018). The best fit parameters of this relation
are presented in Table 1.
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Figure 4. SB level as a function of Lyman-a peak shift for all
regions in SMACS2031 and MACS0940. The green dashed line rep-
resents an arbitrary SB threshold at 2 x 10717 erg s71 cm™2 arcsec™2
between high and low SB regions (same as the blue contour in
Fig. 2). The black dashed line highlights the mean peak shift at
low SB and the dotted black line shows the mean peak shift ve-
locity at high redshift. High SB regions are nearly always located
at velocities smaller than low SB regions, significant at 4 o= (for

SMACS2031) and 16 o (for MACS0940)
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APPENDIX A: LENS MODELS AND
UNCERTAINTIES

We present here in more details the two lens models used in
our analysis. The procedure described uses the Lenstool soft-
ware and is similar to previous cluster mass models from our
team (Richard et al. 2010b; Jauzac et al. 2016; Mahler et al.
2018). We used the sky positions and redshifts of multiple
images to constrain a parametric mass model of each cluster.
We adopt a dual pseudo-isothermal elliptical mass distribu-
tion (dPIE, Eliasdéttir et al. 2007) which is an isothermal
profile to model the different components of the mass model
(dark matter halo and cluster galaxies). These dPIE compo-
nents are parametrized by a position (x,y), an ellipticity e,
a position angle (8), a velocity dispersion (o), a core radius
(rcore) and a cut radius (rcyr). For the large majority of
the cluster galaxies, we fixed the parameters (x,y), € and 0
at the values measured from their light distribution (Kneib
et al. 1996) and assume empirical scaling relations (Faber
& Jackson 1976 and constant mass-to-light ratio) to relate
their velocity dispersion and cut radius to their observed
luminosity (Jauzac et al. 2016). The y? is minimised based
on the rms between the observed and predicted positions of
multiple images by the model.

The model of SMACS2031 is based on the previous one
published in Richard et al. (2015) (including the same set of
12 multiply-imaged systems used as constraints) with the fol-
lowing improvements. We used the latest version of Lenstool
(v7.1) which includes more robust tests on the convergence

of the model to perform the optimisation. We also include an
additional external shear component to account for unknown
environmental effects in the mass distribution surrounding
the region of multiple images. The new parameters for this
model are presented in Table Al.

The lens model for the cluster MACS0940 is totally new
with MUSE. We used 2 lensed galaxies to do the optimisation,
positions and redshifts of the multiple images are presented
in Table A2. The best-fitting parameters of the model are
presented in Table A3.

To reconstruct the light distribution of the 2 lensed
galaxies in the source plane we use the function SHAPEMODEL
in Lenstool. To do that we associated in the source plane an
elliptical Sérsic profile with each Lyman-alpha primary or
secondary peak and fitted the position, ellipticity, position
angle, effective radius and Sérsic index. This parametrisation
takes in account the lensing effect and the MUSE PSF. It is
only used here to delimit regions maps in the source plane
and is not used anywhere else.

Errors on lens and source parameters (Tables A1, A3 and
1) are computed with LENSTOOL with a MCMC sampling
the posterior probability distributions. The main source of
uncertainty in the source reconstruction shown in the maps
Fig.2 is an overall scaling by +5-20% following the error
on ry (Table 1). However errors on the lens model do not
affect the values from spectral fitting and the region to region
variations seen in the maps. Neither do they affect the results
on the peak shift and FWHM (Fig. 3 and 4).

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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SMACS2031 Reference a = 307.971900 § = —40.625225 rms=0.33"

Component Aa AS €/y [ o) Teut Teore
[ [] [deg]  [kms™'] [kpc]  [kpc]
DM1 0.34jg;?§ —o.szf(‘?); é? o.397jg;§f$ 2.4+ 63871 [1000] 34.27]7
DM2 63.6%¢ 248700 0.60°%s 5575 114477 [1000]  149%%
BCG [+0.07] [-0.054] [0.092] [-0.4] 227+ 151*2 [0.28]
External Shear - - 0.098%?1 6.5:‘:% - - -
L* galaxy - - - - 154*1 11+2 [0.15]

Table A1l. Best-fitting model parameters for the SMACS2031 cluster lens model with two dark matter components (DM1 and DM2), 1
optimized cluster galaxies (BCG), 1 external shear (Ext. Shear) and the scaling relation of cluster members (shown for an L* galaxy.).
From left to right: centre location in arcsecond from the reference location provided in each cluster, ellipticity, position angle, central
velocity dispersion, cut and core radii of each dPIE profiles. Values between square brackets have been kept fixed during the optimisation.

1D a o Zspec )i Origin

1.1a  145.22452  7.744060 4.03 3.2+£0.7 HST F606W
1.2a  145.22574  7.738704 4.03 8.4+5.9 HST F606W
1.3a  145.22366  7.737692 4.03 11.7+3.8 HST F606W
1.3b  145.22370 7.737670 4.03 11.1+3.4 MUSE Ly«
1.3c  145.22328  7.737719 4.03 11.3+3.6 MUSE Lya
1.4a  145.22149  7.738897 4.03 9.3+2.7 HST F606W
1.4b  145.22138  7.739108 4.03 10.8 +4.2 MUSE Lya
1.4c  145.22179  7.738490 4.03 52+2.5 MUSE Ly«
2.1 145.22615  7.742765 5.7 10.8 £2.2 MUSE Lya
2.2 145.22446  7.736915 5.7 3.7+0.3 MUSE Ly«
2.3 145.22142  7.741314 5.7 2.8+0.3 MUSE Lya

Table A2. Multiple image systems used in the lens model of MACS0940. From left to right we give their ID, positions, spectroscopic
redshifts, magnification and from which image we measured positions. The arc in MACS0940 at z = 4.03 is composed of 4 multiple images
labelled from 1.1 to 1.4. The two most magnified images 1.3 and 1.4 are divided in 3 components: the continuum measured on HST (a),
and 2 Lyman-a peaks labelled (b) and (c) (illustrated in Fig. 1). The magnifications of each multiple images were computed with Lenstool
and correspond to the magnification at the centre of the image.

MACS0940 Reference a = 145.223740 6 = 7.740363 rms=0.23"

Component Aa AS €e/ly 0 o) Teut Tcore
[l [l [deg] [kms™'] (kpc] [kpc]
0.617 0.420 0.092 4 60.3
DM 0.08870-SIT 1.423%0-70 0.57970-05¢ 2175 507.67503 [1000] [25]
BCG [-0.101] [0.055] 0.153t§3i§§ -2637  500.0*5-¢  [52.1]  [0.077]
Gall [-11.781] [3.075] 0.1177-2% 41+ 108.37177-0 180 0.025
Gal2 [6.026] [-5.792] [0] [0] 122.8*5:6 [50] -
0.0354 95 :
External Shear - - 0.0228 550 6515 - - -
L* galaxy - - - - [158] [45] [0.15]

Table A3. Same as Table Al but for MACS0940.
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