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1Chapter 1

General introduction

1.1 Introduction

1.1.1 Background

Dementia is a devastating disease that millions of people suffer from. In 2018,

50 million people were suffering from dementia, and this is estimated to in-

crease to 82 million in 2030, and 152 million in 2050 (World Alzheimer Report,

2018). About two-thirds of people with dementia have Alzheimer’s Disease

(AD), the remainder suffers from vascular dementia, Lewy body dementia,

fronto-temporal dementia (FTD) or other less common types of dementia. All

variants suffer from irreversible brain cell losses (World Alzheimer report, 2018).

Despite many attempts, currently, there is no effective treatment for AD. Two

types of drugs are being prescribed, but they only aim to reduce some of the

symptoms, and they only work for some of the people. Between 2002 and

2012, only one new treatment for AD was approved for clinical use, which cor-

responds to a success rate of only 0.4% (Cummings et al., 2014). Possibly,

the AD patients that participate in treatment trails are already too far in the

disease development for possible treatments to be effective. Reliable early di-

agnosis of dementia is therefore of paramount importance for finding a cure to

prevent or slow down the disease.

It is not yet fully understood what causes AD exactly, but there is substan-

tial evidence that the proteins amyloid β (Aβ) and tau are causally related to

neurodegeneration in AD patients (Scheltens et al., 2016). Aβ is the main com-

ponent of amyloid plaques, that are found in the brains of AD patients (Hardy

and Allsop, 1991; Karran et al., 2011). The other most pronounced hallmark of
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AD are neurofibrillary tangles, which are formations of tau inside neurons that

are thought to cause neural death (Mudher and Lovestone, 2002). The origi-

nal amyloid hypothesis postulates a linear causal relation between extracellular

amyloid β (Aβ) deposits and neural death (Hardy and Allsop, 1991). However,

while a strong relationship with the proposed neurodegenerative pathologies

exists, much of the variance in cognitive decline remains unexplained, which

suggests a multitude of unidentified mechanisms that contribute to dementia

(Boyle et al., 2013). Also, many therapeutics that reduce Aβ aggregation or

production failed as an effective treatment for AD (Karran et al., 2011).

1.1.2 Biomarkers based on group differences

Several biomarkers are being used for diagnosis of AD, mainly focusing on the

detection of Aβ or by measuring neuronal damage, which is closely associated

with tau (Jack et al., 2010). Levels of Aβ and tau can be detected in the

cerebral spinal fluid (CSF). Aβ is a sensitive biomarker for AD, while an AD-like

profile of tau and Aβ was detected in mild cognitive impairment subjects who

later converted to AD (Shaw et al., 2009). Furthermore, neuronal damage can

be inferred from measuring metabolism with fluorodeoxyglucose PET (FDG-

PET). AD is characterized by a specific pattern of reduced metabolism in the

parietotemporal areas, posterior cingulate cortex, and medial temporal lobe

(Mosconi et al., 2010). More recently, PET tracers have been developed for

Aβ , such as the most widely used Pittsburgh Compound-B (PIB), which can

be used to determine the location of Aβ depositions in the brain. This technique

is especially useful for distinguishing AD from other types of dementia (Rowe

et al., 2007; Mosconi et al., 2010).

A non-invasive alternative for PET is magnetic resonance imaging (MRI).

Arterial spin labeling can provide similar information to FDG-PET, but is less

expensive and is easily obtained in the same session as other MRI measures

(Wolk and Detre, 2012). Structural MRI (sMRI) can be used to reliably ob-

tain volumetric measurements, which correlate to neuronal numbers (Bobinski

et al., 2000). The rate of brain atrophy measured longitudinally with sMRI

correlates well to cognitive decline in patients (Fox et al., 1999). It has been

hypothesized that resting-state functional MRI (rs-fMRI) might be suitable to

detect subtle changes in functional connectivity between brain regions in an

earlier, preclinical, phase (Sheline and Raichle, 2013; Jack et al., 2013). Dif-

fusion MRI (dMRI) provides a way to study alterations in the white matter

2
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and has been used to detect alterations in AD and mild cognitive impairment

(Douaud et al., 2011). Additionally, dMRI can be used to study structural

connectivity between brain regions (Behrens et al., 2007).

1.1.3 Machine Learning Classification

The drawback of studies that focus on group differences is that they are of-

ten not suited for individual predictions. If an average group difference for

some measure exists, but there is considerable overlap between groups, then

the measure will not perform well for individual classification. However, if the

sample size is sufficiently large, there may be a highly significant group differ-

ence (Arbabshirani et al., 2017). Contrarily, even when groups do not differ

on average for some measure, a multivariate combination of measures may still

reliably separate groups and make individual predictions. Furthermore, when

applied to a new dataset, predictions about the unseen data can be made, which

opens up major opportunities for accurate, automated, differential diagnosis.

While MRI research on AD and dementia has traditionally focused on group

differences, more recently attention has shifted towards individual classification

(Rathore et al., 2017; Arbabshirani et al., 2017). Specifically, machine learning

techniques have been applied to MRI data that are aimed to detect multivariate

patterns that are specific to a disease.

A large number of studies evaluate classification of Alzheimer’s disease using

public databases such as Alzheimer’s Disease Neuroimaging Initiative (ADNI).

In an extensive study, Samper-González et al. (2018) evaluated different clas-

sification methods based on T1 MRI and PET on a number of open databases

including ADNI. They found that PET outperformed MRI, and that out of

commonly used classification methods, linear support vector machines and reg-

ularized logistic regression performed similarly, and both outperformed random

forest. Furthermore, various choices in preprocessing, such as the use of atlasses

versus voxel-wise, or the size of smoothing kernels, had minimal effect on clas-

sification performance.

In addition to using only structural MRI or PET for AD classification,

multiple modalities can be combined. By using a combination of structural

MRI, PET, levels of Aβ in the cerebral spinal fluid, and genotype, classification

can be improved over using a single modality (Young et al., 2013). Additionally,

by identifying subtypes within the heterogeneous group of AD patients, disease

progression can be predicted more accurately (Lorenzi et al., 2019).

3
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In order to study how well computer aided classification generalizes to un-

seen data the CADDementia challenge was organized. The goal of the challenge

was for independent teams to provide AD and mild cognitive impairment clas-

sification algorithms based on structural MRI, which were subsequently evalu-

ated with data that the organizers held back. The best performing algorithms

used voxel-based morphometry, or a combinations of multiple measures derived

from structural MRI (Bron et al., 2015).

1.2 Aims and outline of this thesis

From previous research we know that combining data sources, and multiple

representations of the data can improve classification performance. In this

thesis we aim to extend upon this knowledge by using various types of MRI

data and combining MRI modalities and representations of these modalities.

In Part I of this thesis we explore different approaches to classify patients

with AD and controls on an individual basis using machine learning with MRI

scans. In chapter 2 we combine measures from multiple MRI modalities. In

chapter 3 we dive deeper into multiple approaches to analyze diffusion MRI data

to explore which diffusion MRI measures are most suitable for AD classification.

Early detection of dementia is an important goal that could help develop

treatments. Therefore we explore how our methods perform in cases of early

pre-symptomatic dementia in Part II. In chapter 4 we explore a sample of symp-

tomatic and pre-symptomatic hereditary cerebral amyloid angiopathy mutation

carriers. These mutation carriers are almost certain to develop a form of de-

mentia similar to cerebral amyloid angiopathy. We compare these mutation

carriers to normal controls in a presymptomatic and symptomatic phase. In

chapter 5 we perform the prediction of cognitive test scores on a dataset of el-

derly who are at risk for future cognitive decline. We use baseline multimodal

MRI to predict cognitive decline after a follow-up period of four years.
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Chapter 2

Combining anatomical, diffusion, and

resting state functional magnetic

resonance imaging for individual

classification of mild and moderate

Alzheimer’s disease

Published in NeuroImage: Clinical, 2016; 11, 46–51.

Tijn M. Schouten, Marisa Koini, Frank de Vos, Stephan Seiler, Jeroen van

der Grond, Anita Lechner, Anne Hafkemeijer, Christiane Möller, Reinhold

Schmidt, Mark de Rooij, & Serge A.R.B. Rombouts
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Abstract

Magnetic resonance imaging (MRI) is sensitive to structural and functional

changes in the brain caused by Alzheimer’s disease (AD), and can therefore be

used to help diagnosing the disease. Improving classification of AD patients

based on MRI scans might help to identify AD earlier in the disease’s progress,

which may be key in developing treatments for AD. In this study we used an

elastic net classifier based on several measures derived from the MRI scans

of mild to moderate AD patients (N = 77) from the prospective registry on

dementia study and controls (N = 173) from the Austrian stroke prevention

family study. We based our classification on measures from anatomical MRI,

diffusion weighted MRI and resting state functional MRI. Our unimodal classi-

fication performance ranged from an area under the curve (AUC) of 0.760 (full

correlations between functional networks) to 0.909 (grey matter density). When

combining measures from multiple modalities in a stepwise manner, the classi-

fication performance improved to an AUC of 0.952. This optimal combination

consisted of grey matter density, white matter density, fractional anisotropy,

mean diffusivity, and sparse partial correlations between functional networks.

Classification performance for mild AD as well as moderate AD also improved

when using this multimodal combination. We conclude that different MRI

modalities provide complementary information for classifying AD. Moreover,

combining multiple modalities can substantially improve classification perfor-

mance over unimodal classification.

Key words: Alzheimer’s disease; classification; multimodal; MRI; fMRI;

DWI
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Multimodal classification of AD

2.1 Introduction

Early diagnosis is key to the development of treatments for Alzheimer’s disease

(AD) (Prince et al., 2011). In this respect it is well recognised that magnetic

resonance imaging (MRI) might be highly useful as an early AD biomarker

(Jack et al., 2010). Several MRI techniques have been applied successfully

to study average group differences between AD patients and controls in voxel

based grey matter (Ferreira et al., 2011), white matter (Li et al., 2012), diffusion

measures (Douaud et al., 2011), and functional connectivity (Gour et al., 2014;

Binnewijzend et al., 2012).

In addition to average group difference in case control studies, similar MRI

measures have also been used to predict or classify the disease class (i.e., patient

or control) of individuals. This classification based on MRI scans could be

helpful in making a reliable diagnosis of AD in the future. Machine learning

classification is a suited candidate to make such individual predictions, because

it is well equipped to handle high-dimensional data such as those from MRI.

Reliable individual classification of AD and controls has already been achieved

with MRI measures of grey matter atrophy (Klöppel et al., 2008; Plant et al.,

2010a; Cuingnet et al., 2011), white matter integrity (Nir et al., 2014), and

brain activity (Lee et al., 2013; Koch et al., 2012).

Some studies suggest that classification of Alzheimer’s disease may further

improve when combining several MRI modalities (Mesrob et al., 2012; Sui et al.,

2013b), while another recent study found better classification by using a single

MRI modality (Dyrba et al., 2015). It is not yet clear which MRI modality

or combination of modalities provide the best classification performance of AD

patients.

The goal of this study is to perform individual classification of mild to

moderate AD from healthy controls, and to combine information from several

modalities to improve this individual classification. We compare classification

performance for typical measures of grey matter atrophy, white matter in-

tegrity, and functional connectivity. Then we investigate whether combining

modalities improves classification performance. We test how this multimodal

classification model is able to separate patients with mild AD and patients with

moderate AD from healthy controls.

11
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2.2 Materials and Methods

2.2.1 Data sample

Participants

Our dataset was collected as a part of the prospective registry on dementia

(PRODEM; see also Seiler et al., 2012). Our sample only contained subjects

scanned at the Medical University of Graz. The inclusion criteria are: demen-

tia diagnosis according to DSM-IV criteria (American Psychiatric Association,

2000), non-institutionalization and no need for 24-hour care, and availability

of a caregiver who agrees to provide information on the patients’ and his or

her own condition. Patients were excluded from the study if they were unable

to sign a written informed consent or if co-morbidities were likely to preclude

termination of the study. We conducted our study with the baseline scans

from the PRODEM study, and included only patients diagnosed with AD in

according the NINCDS-ADRDA Criteria (McKhann et al., 1984), for which

anatomical MRI, diffusion MRI, and resting state functional MRI scans were

present. Amyloid imaging for additional confirmation of the diagnosis was

unavailable in our sample.

The healthy controls were drawn from the Austrian Stroke Prevention Fam-

ily Study, which is a prospective single-centre community-based follow-up study

with the goal of examining the frequency of vascular risk factors and their ef-

fects on cerebral morphology and function in the healthy elderly. On the basis

of structured clinical interview and a physical and a neurological examination,

participants had to be free of overt neurologic or psychiatric findings and had

to have no history of a neuropsychiatric disease, including cerebrovascular at-

tacks and dementia. The study protocol was approved by the ethics committee

of the Medical University of Graz, Austria, and written informed consent was

obtained from all subjects.

This resulted in a dataset of 77 AD patients between ages 47 and 83, of

which 39 had mild AD (MMSE > 20), and 38 had moderate AD (MMSE ≤
20) (Perneczky et al., 2006), and 173 healthy controls between ages 47 and 83

(see Table 2.1).
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Table 2.1: Demographics for the study population

Demographics Controls Mild AD Moderate AD

Age 66.1± 8.71 70.3± 7.85 66.9± 9.06
Gender, ♂/♀ 74 / 99 (57% ♀) 17 / 22 (56% ♀) 14 / 24 (63% ♀)
Education (years) 11.5± 2.76 11.6± 3.45 10.0± 2.79
Disease duration (months) 0.00± 0.00 22.6± 15.5 30.9± 30.7
MMSE 26.7± 5.80 24.2± 2.07 16.6± 2.73
CDR − 0.72± 0.25 0.92± 0.39
GDS 2.11± 2.15 2.54± 2.09 2.74± 3.02

Data is represented as mean±standard deviation. MMSE = mini mental state exam, CDR
= clinical dementia rating, GDS = geriatric depression scale.

MR acquisition

Each participant was scanned on a Siemens Magnetom TrioTim 3T MRI scan-

ner. Anatomical T1-weighted images were acquired with TR = 1900 ms, TE

= 2.19 ms, flip angle = 9°, isotropic voxel size of 1 mm. Diffusion images were

acquired along 12 non-collinear directions, scanning each direction 4 times with

TR = 6700 ms, TE = 95 ms, 50 axial slices, voxel size = 2.0 × 2.0 × 2.5 mm.

Resting-state fMRI series of 150 volumes were obtained with TR = 3000 ms,

TE = 30 ms, flip angle = 90°, 40 axial slices, with an isotropic voxel size of 3

mm. We instructed participants to lie still with their eyes closed, and to stay

awake.

2.2.2 Software

The MRI data were preprocessed using FMRIB Software Library (FSL, version

5.0; Smith et al., 2004; Jenkinson et al., 2012). For all further data analyses

we used MATLAB and Statistics Toolbox Release 2015b.

2.2.3 MRI preprocessing

The preprocessing of the anatomical MRI included brain extraction, bias field

correction, and non-linear registration to standard MNI152 (Grabner et al.,

2006). The preprocessing of the diffusion MRI included brain extraction and

correction of eddy currents. For the fMRI data the preprocessing included brain

extraction, motion correction (Jenkinson et al., 2002), a temporal high pass

filter with a cutoff point of 100 seconds, and 3 mm FWHM spatial smoothing.

Additionally, we used the FMRIB’s ICA-based Xnoiseifier (FIX, version 1.06),

13
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with the included standard training data to automatically identify and remove

noise components from the fMRI time course (Salimi-Khorshidi et al., 2014).

2.2.4 Anatomical Atlases

In order to compare properties across subjects we used two anatomical atlases

(Figure 2.1) included in FSL. For grey matter regions we used the Harvard-

Oxford probabilistic anatomical brain atlas (Desikan et al., 2006). Each brain

region in this atlas consist of a probability map, where each voxel is assigned

a probability of being part of each region. We split the 48 cortical regions

of the Harvard-Oxford atlas into left and right hemisphere regions, resulting

in 96 cortical regions. The cortical regions were combined with the 14 brain

regions from the subcortical atlas, excluding the brain stem because it was

not fully scanned for each participant. This resulted in a total of 110 grey

matter anatomical regions. For the white matter regions we defined 20 white

matter regions using the probabilistic JHU white-matter tractography atlas

(Hua et al., 2008). All voxels under 25% probability per region were removed

from each of the 110 grey matter, and each of the 20 white matter regions. For

the analyses we used the voxel-wise probabilities that survived the thresholding

for each region.

2.2.5 Anatomical features

We identified anatomical features by calculating the grey matter density (GMD),

and white matter density (WMD) for each brain voxel (Zhang et al., 2001). For

the GMD, we averaged the voxel-wise values for each of the 110 grey matter

regions weighted by the voxel-wise region probability. This provided a mea-

sure of brain atrophy within grey matter regions. For the WMD, we averaged

the voxel-wise values across each of the 20 white matter regions, weighted by

voxel-wise region probability. This resulted in a feature vector of 110 average

GMDs per subject, and a feature vector of 20 average WMDs per subject.

2.2.6 Diffusion features

We calculated the fractional anisotropy (FA) and mean diffusivity (MD) values

for each voxel with dtifit (Basser et al., 1994b). Then we averaged those values

for each of the 20 white matter regions, weighted by the region probability,

14
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Figure 2.1: Anatomical atlases overlaid on MNI brain template. Left part
shows the Harvard-Oxford cortical and subcortical areas. Right part shows the
JHU white-matter tractography atlas. The images are thresholded at 25%, and
showing the area with the maximum probability for displaying purposes, but
the atlases were treated as probabilistic in our analyses.

and partial volume corrected with the WMD, resulting in feature vectors of 20

mean FA and MD values per subject.

2.2.7 Functional Connectivity features

We performed temporal concatenation independent component analysis (ICA)

(Beckmann and Smith, 2004) with a relatively high dimensionality fixed at 70

components in order to get a more refined division of functionally coherent

areas than with low dimensional ICA (Beckmann, 2012; Smith et al., 2013).

We used an ICA threshold of 0.99, meaning that each voxel included in the

ICA map was 99 times more likely to be part of the component than to be

caused by the Gaussian background noise. Then we calculated the mean time

courses for each component for each subject, weighted by the ICA weight map,

and partial volume corrected with GMD.

For each component we determined the functional connectivity with every

other component. We defined the functional connectivity as the full correla-
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tions (FC) or as a sparse L1-regularised partial correlations (PC) between the

components’ time courses. We calculated the PC using the graphical lasso

algorithm (Friedman et al., 2008), with λ = 100 (Smith et al., 2011). Both

functional connectivity measures resulted in a feature vector of 70×69
2 = 2415

(partial) correlations.

2.2.8 Elastic net classification with nested cross-validation

We used the aforementioned six feature vectors from the three modalities with a

logistic elastic net regression for classification (Zou and Hastie, 2005; Friedman

et al., 2010). We used 10-fold cross-validation to determine the generalisation

performance of an elastic net regression models. For each subject this produced

a predicted value between 0 and 1, where 0 represents a control subject and 1

represents an AD patient.

The elastic net regression procedure estimates a sparse regression model by

imposing a penalty for including features and for the weight of each feature, so

that only a subset of the features are included. To determine the parameters

for the optimal size of this penalty without overestimating the classification

performance we used an additional nested cross-validation loop (Varma and

Simon, 2006; Kriegeskorte et al., 2009). In the outer loop we performed 10-fold

cross-validation, where 9/10th of the total dataset served as training set, and

1/10th as test set. Then we performed a nested, 10-fold cross-validation on

the training set over a grid of parameters to determine the penalty. We used

the penalty parameters that resulted in the lowest binomial deviance in the

nested loop to train the model on the original training set. This model was

used to make predictions for each participant in the test set. This procedure

was repeated 10 times so that each participant was part of the test set once.

By using this approach we did not use the test set to estimate the model, nor

the penalty parameters that we used to train the model. We also included

age and sex to the model without any penalty, so that all estimated regression

coefficients for the feature weights were conditional on the age and sex of the

subject.

To reduce the variability in the classification outcome resulting from the

random partitioning in training and test folds we repeated the entire classi-

fication procedure 50 times. This allowed us to average out this variability,

and report the range of observed outcomes under different train and test set

partitioning.
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2.2.9 Measuring classification performance

To assess the classification performance we performed receiver operating char-

acteristic (ROC) analyses on the estimated outcomes between 0 and 1 from the

elastic net regression. We calculated the ROC curve by shifting the threshold

for classifying an individual as AD from 0 to 1, and plotted the true posi-

tive rate (sensitivity) versus the false positive rate (1 − specificity) for each

intermediate point. The area under this ROC curve (AUC) is a measure of

classification performance that is insensitive to the distribution between con-

trols and AD patients (Fawcett, 2006), so that we can take full advantage of the

larger number of controls than AD patients in our dataset. We also reported

the sensitivity, and specificity values corresponding to the optimal point in the

ROC curve, given an equal penalty for a false positive and a false negative

prediction, and the class distribution equal to that in our sample. Because we

repeated the procedure 50 times, the reported AUCs, sensitivity, and specificity

values are the average over the 50 repetitions of the cross-validation procedure.

Additionally, we investigated how well the predicted outcomes were able

to separate mild AD from controls, and moderate AD from controls. For this

purpose we also assessed the ROC curves for the mild and moderate subgroups

versus controls separately.

2.2.10 Combining modalities

After assessing the performance for each individual modality we combined dif-

ferent modalities in order to study possible improvements in classification per-

formance. We took a forward stepwise approach using feature concatenation

to combine information from different modalities. We started with the best

performing single modality feature. For each step we added each of the re-

maining modalities to the winning combination from the previous step. We

assessed the classification performance for the combined modalities by deter-

mining the AUC. We continued the procedure until each of the modalities that

we considered had been added.

2.3 Results and discussion

The classification results are summarised in tables 2.2 and 2.3 for the unimodal

and stepwise multimodal procedures respectively. The AUC curves for the
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Table 2.2: Alzheimer’s patients versus controls classification. The mean, mini-
mum and maximum area under the ROC curve over 50 repetitions are reported,
as well as the sensitivity, specificity, and classification accuracy for the optimal
point in the ROC. Results are shown for grey matter density (GMD), white
matter density (WMD), fractional anisotropy (FA), mean diffusivity (MD), full
correlations between ICA components (FC), and regularised partial correlations
between ICA components (PC). Multimodal represents the best combination
from step 5 of our stepwise multimodal procedure (GMD, WMD, FA, MD, and
SPC).

Modality AUC min - max Sensitivity Specificity Accuracy

GMD 0.909 (0.901 - 0.915) 0.818 0.899 0.874
WMD 0.850 (0.845 - 0.858) 0.623 0.902 0.816
FA 0.789 (0.784 - 0.796) 0.547 0.885 0.781
MD 0.832 (0.823 - 0.840) 0.537 0.941 0.816
FC 0.760 (0.743 - 0.772) 0.422 0.921 0.767
PC 0.791 (0.778 - 0.803) 0.529 0.859 0.758

Multimodal 0.952 (0.946 - 0.959) 0.826 0.927 0.896
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Figure 2.2: Receiver operating characteristic plot for all Alzheimer’s disease
patients, mild AD, and moderate AD versus control for elastic net classifica-
tion with nested cross-validation, for grey matter density (GMD), white matter
density (WMD), fractional anisotropy (FA), mean diffusivity (MD), full correla-
tion between independent components (FC), and regularised partial correlation
between independent components (PC). Multimodal represents the best com-
bination from step 5 of our stepwise multimodal procedure (GMD, WMD, FA,
MD, and PC). The diagonal line represents random classification performance.

unimodal results and the best performing step of the multimodal procedure is

depicted in figure 2.2.
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2.3.1 Anatomical MRI

The measures derived from the anatomical MRI scan, grey matter density aver-

age of Harvard-Oxford regions, and white matter density of JHU tractography

regions resulted in an excellent AUC of 0.909 and 0.850 respectively (Table

2.2). The good classification performance for GMD was expected, as AD has

traditionally been seen as a grey matter atrophy disease (Frisoni et al., 2010).

The classification performance with GMD that we found compares favourably

to a recent similar study by Dyrba et al. (2015), who found an AUC of 0.86.

While our methods were very similar, we used the Harvard-Oxford atlas to

segment our data, and Dyrba et al. (2015) used the AAL atlas. The differ-

ence in atlases for segmentation, and our larger sample size might explain the

difference in classification performance.

2.3.2 Diffusion weighted MRI

The measures derived from diffusion weighted MRI, fractional anisotropy and

mean diffusivity of JHU tractography regions performed very reasonable with

an AUC of 0.789 and 0.832 respectively (Table 2.2). This performance was

much higher than the AUC between 0.652 and 0.720 that Mesrob et al. (2012)

found with combined FA and MD measures, but lower than the 0.86 that Dyrba

et al. (2015) found. While Mesrob et al. (2012) examined the DTI measures

in grey matter areas, Dyrba et al. (2015) and our study examined the DTI

measures in white matter regions, which possibly explains the differences in

classification performance.

2.3.3 Functional connectivity

The measures derived from resting state functional MRI resulted in an AUC

of 0.760 and 0.791 for full correlations and regularised partial correlations be-

tween ICA components respectively (Table 2.2). The higher performance of

the regularised partial correlations compared to the full correlations is in line

with the simulation study by Smith et al. (2011). Still, this classification per-

formance was relatively poor compared to 0.848 found by Koch et al. (2012),

and 0.80 found by Dyrba et al. (2015). Koch et al. (2012) found their result by

examining the correlation between ICA components that resulted in the highest

discriminative power. Because selecting this best performing correlation was

not part of the cross-validation loop, their finding is likely an overestimation of
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the out-of-sample generalisability. Dyrba et al. (2015) used predefined compo-

nents to study the correlations between functional regions, while we used ICA

on our own dataset to acquire the components, which might partly explain

differences from our findings.

2.3.4 Multimodal

The stepwise procedure that we used to concatenate features from different

modalities resulted in an AUC of up to 0.952 (Table 2.3). This result was

achieved by starting the procedure with the best performing single modality,

GMD. Classification performance improved the most when adding FA (from

0.909 to 0.933 AUC). After that, the best improvement resulted from adding

WMD (0.933 to 0.949 AUC). Then, adding PC further improved classification

performance marginally (0.949 to 0.951 AUC), which was subsequently im-

proved marginally again by adding MD (from 0.951 to 0.952). Adding the FC

to the previous combination decreased the classification performance compared

to the previous step (from 0.952 to 0.930 AUC). The resulting best multimodal

model containing GMD, FA, WMD, PC, and MD performed well above any of

the modalities separately (Figure 2.2).

Our findings are in contrast with the study of Dyrba et al. (2015), who

did not find any improved performance by combining similar measures de-

rived from the same MRI modalities. This difference is possibly explained by

our larger sample size, allowing many more training examples in each cross-

validation fold. Additionally, they used a multi-kernel support vector machine

to combine information from different modalities, while we used feature con-

catenation. Apparently the elastic net classifier that we used in this study

is suited to select relevant predictors, even when the feature space increases

through concatenation. Still, more advanced methods to combine information

from multiple modalities, such as linked ICA (Groves et al., 2011), may benefit

even more from the additional information from multiple modalities.

2.3.5 Mild Alzheimer’s disease and moderate Alzheimer’s

disease classification

To investigate the results of our classification methods further we assessed the

classification performance for mild AD and moderate AD separately. The clas-

sification results for mild AD versus controls and moderate AD versus controls
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Table 2.3: Multimodal classification performance for the stepwise concatena-
tion procedure. Each step combines the best combination from the previous
step with the remaining modalities. The best result occurs with the combina-
tion of GMD, FA, WMD, PC, and MD in step 5.

Step\combined with: GMD FA WMD PC MD FC

1: - 0.909 0.789 0.850 0.791 0.832 0.760
2: GMD - 0.933 0.930 0.926 0.932 0.922
3: GMD+FA - - 0.949 0.927 0.934 0.930
4: GMD+FA+WMD - - - 0.951 0.941 0.938
5: GMD+FA+WMD+PC - - - - 0.952 0.939

6: GMD+FA+WMD+PC+MD - - - - - 0.930

can be found in tables 2.4 and 2.5 respectively.

The single modality classification performance for moderate AD (up to 0.933

for GMD) is substantially higher than it is for mild AD (up to 0.886 for GMD).

The combination of GMD, FA, WMD, PC, and MD improves the classification

performance for both mild AD (from 0.886 for GMD to 0.934 for multimodal)

and moderate AD (from 0.933 for GMD to 0.971 for multimodal). This im-

provement is mainly due to an improved sensitivity, from 0.665 to 0.721 in mild

AD, and from 0.777 to 0.813 in moderate AD. At the same time the specificity

also marginally improves from 0.920 to 0.935 in mild AD, and from 0.941 to

0.956 in moderate AD.

2.3.6 General discussion

In our method we took much care in the generalisability of our findings by

employing a nested cross-validation approach. This approach assured that the

class outcomes of the predicted subject was not required to be known when

training the model, nor to estimate the model’s penalty parameters. Further-

more, none of the feature reduction that we performed relied on observed class

difference in our sample, which would result in overestimation of classifica-

tion performance. Instead we reduced dimensionality by relying on anatomical

atlases for the anatomical and diffusion features, and on data-driven unsuper-

vised learning of independent components for the functional features. Further

feature reduction was conducted in the model training phase by the elastic

net classifier. Again the feature reduction in this phase did not rely on class

differences in the test subjects, but only in the training subjects. Additionally,
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Table 2.4: Mild AD versus controls classification. Multimodal represents the best
combination from step 5 of our stepwise multimodal procedure (GMD, FA, WMD,
PC, and MD).

Modality AUC min - max Sensitivity Specificity Accuracy

GMD 0.886 (0.878 - 0.897) 0.665 0.920 0.873
WMD 0.841 (0.829 - 0.851) 0.564 0.926 0.859
FA 0.783 (0.779 - 0.790) 0.287 0.974 0.848
MD 0.838 (0.832 - 0.844) 0.369 0.993 0.878
COR 0.728 (0.706 - 0.751) 0.183 0.966 0.822
SPC 0.770 (0.737 - 0.796) 0.176 0.969 0.823

Multimodal 0.934 (0.927 - 0.944) 0.721 0.935 0.896

Table 2.5: Moderate AD versus controls classification. Multimodal represents the
best combination from step 5 of our stepwise multimodal procedure (GMD, FA,
WMD, PC, and MD).

Modality AUC min - max Sensitivity Specificity Accuracy

GMD 0.933 (0.924 - 0.942) 0.777 0.941 0.912
WMD 0.860 (0.853 - 0.866) 0.515 0.936 0.860
FA 0.794 (0.787 - 0.804) 0.361 0.978 0.867
MD 0.826 (0.811 - 0.839) 0.447 0.974 0.879
COR 0.793 (0.769 - 0.823) 0.465 0.944 0.858
SPC 0.812 (0.795 - 0.829) 0.349 0.956 0.847

Multimodal 0.971 (0.964 - 0.975) 0.813 0.956 0.930

because of the relatively large sample size that we used the results were very

reliable over different iterations of the cross-validation procedure, increasing

our confidence that the results of the procedure generalise well.

Interestingly, the multimodal procedure resulted in the best classification

performance when all modalities were combined, except for the full correlation

between ICA components. The partial correlations, which were based off of the

same components’ time-courses, were part of the best multimodal combination.

Apparently, the full correlations did not add information to the classification

model over what the partial correlations did.

The improvement in classification performance in the multimodal case over

the best single modality measure was substantial, especially given the relatively

good performance for grey matter density. We found this multimodal improve-

ment in both the mild AD as well as the moderate AD group. Therefore we

are optimistic that these findings will apply to even earlier stages of dementia
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as well.

2.3.7 Limitations

While we expect that our cross-validation procedure ensured good generalis-

ability of the classification performance, the models that were trained to predict

each subject rely heavily on both random and non-random class differences in

the training sample. Therefore we cannot reliably differentiate between real

and random class differences in the trained models, which is the reason that

we have refrained from biological interpretation of model parameters.

Furthermore, even though the general trend in our multimodal procedure

suggests that there is added information gained from combining multiple modal-

ities, it is sometimes difficult to draw hard conclusions about which modal-

ity improves the classification the most. For example, the improvement from

adding FA to GMD resulted in an AUC of 0.933, but adding MD instead re-

sulted in an AUC of 0.932. It would be naive to conclude that the combination

of GMD and FA performs better than the combination of GMD and MD. Still,

the general finding is that combining modalities with decent individual clas-

sification performance improves the classification. More findings from similar

research should shed light on what measures result in the most powerful com-

bination to classify AD. Overall the elastic net classification model is very well

suitable to build a good model when many features from different modalities

are added, which is why the combination of all features, except full correlations,

resulted in optimal classification.

In our procedure we have made some choices that could effect the results.

We chose the Harvard Oxford atlas to parcellate GMD, and the JHU tracts

to parcellate WMD and diffusion measures. Different atlases for parcellation

might have produced slightly different results. The 70-dimensionality ICA from

which we derived areas for functional connectivity was chosen because they pro-

duce a more fine grained representation of functional areas than lower dimen-

sionality ICA. However, the dimensionality of the ICA is a trade-off between

detail in the functional areas and the number of correlations, and it is not

known what dimensionality is optimal in this trade-off.

The question remains how well our results generalise to cases where the

patients’ symptoms are less severe, such as in mild cognitive impairment, as

well as to early AD diagnosis. The procedures used in this research could serve

as a starting point to answer these questions.
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2.4 Conclusion

In our study we found that combining information from anatomical MRI, diffu-

sion weighted MRI, and resting state functional MRI can improve AD classifi-

cation performance for both mild AD and moderate AD. The best combination

in our study consisted of the average grey matter density over anatomical re-

gions, fractional anisotropy, mean diffusivity, and white matter density over

white matter tracts, and regularised partial correlations between ICA com-

ponents. When only a single modality can be considered for classification,

grey matter density consistently results in the best classification performance.

However, when available there is a clear benefit from incorporating anatomical

MRI, diffusion weighted MRI, and resting state functional MRI for diagnos-

tic purposes. Therefore, we recommend that MRI scanning protocols designed

for diagnosis of Alzheimer’s disease collect structural, diffusion, and functional

MRI. Furthermore, we found that an elastic net classifier is well suited to esti-

mate a predictive model when features from different modalities are combined

by simple concatenation.
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Abstract

Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method

to study white matter integrity, and is sensitive to detect differences in Alzheimer’s

disease (AD) patients. Diffusion MRI may be able to contribute towards reli-

able diagnosis of AD. We used diffusion MRI to classify AD patients (N = 77),

and controls (N = 173). We use different methods to extract information from

the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures

that have been skeletonised using tract based spatial statistics. Second, we

clustered the voxel-wise diffusion measures with independent component anal-

ysis (ICA), and extracted the mixing weights. Third, we determined structural

connectivity between Harvard Oxford atlas regions with probabilistic tracto-

graphy, as well as graph measures based on these structural connectivity graphs.

Classification performance for voxel-wise measures ranged between an AUC of

0.888, and 0.902. The ICA-clustered measures ranged between an AUC of

0.893, and 0.920. The AUC for the structural connectivity graph was 0.900,

while graph measures based upon this graph ranged between an AUC of 0.531,

and 0.840. All measures combined with a sparse group lasso resulted in an AUC

of 0.896. Overall, fractional anisotropy clustered into ICA components was the

best performing measure. These findings may be useful for future incorpora-

tion of diffusion MRI into protocols for AD classification, or as a starting point

for early detection of AD using diffusion MRI.

Key words: Alzheimer’s disease; classification; MRI; diffusion; DTI
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3.1 Introduction

Reliable and early diagnosis of Alzheimer’s disease (AD) is key to developing a

cure for this disease (Prince et al., 2011). Magnetic resonance imaging (MRI)

is highly useful as a biomarker for AD, and may be suitable for early detection

of AD as well (Jack et al., 2010). Machine learning classification provides a

powerful method to make predictions about the disease state of an individual

based on MRI scans. So far individual classification studies in AD have mainly

focused on anatomical MRI scans (Klöppel et al., 2008; Plant et al., 2010a;

Cuingnet et al., 2011; de Vos et al., 2016). Other MRI modalities are increas-

ingly being used for AD classification as well, such as white matter integrity

measures (Nir et al., 2014), and functional MRI (Lee et al., 2013; Koch et al.,

2012). White matter integrity measures are promising for predicting AD us-

ing machine learning classification (Dyrba et al., 2013; O’Dwyer et al., 2012).

White matter networks have also been used for classification of mild cognitive

impairment, which is often a prodromal state of AD (Wee et al., 2011, 2012).

However, multiple measures can be derived from diffusion MRI scans. Tradi-

tionally, the diffusion tensor imaging model (Basser et al., 1994a) is applied to

the diffusion data to derive voxel-wise measures, such as voxel-wise fractional

anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial dif-

fusivity (DR). Additionally, these voxel-wise measures can be clustered into

independent components, so that the individuals’ weights for each component

can be used to predict AD (Ouyang et al., 2016). Furthermore, structural con-

nectivity networks can be estimated with tractography (Behrens et al., 2007).

Graph measures can then be determined based on these structural connectivity

networks, such as node strength, degree, clustering, and centrality, as well as

average shortest path length, or transitivity of a network (Rubinov and Sporns,

2010). It is not yet known which diffusion MRI measure is most accurate and

useful for predicting AD. Moreover, combining multiple MRI-based measures

may improve prediction accuracy (Schouten et al., 2016; de Vos et al., 2016;

Sui et al., 2013a; Dai et al., 2012).

Here we study AD classification using diffusion MRI measures separately

and combined in a comprehensive way. First we explore the predictive perfor-

mance of voxel-wise diffusion tensor imaging measures using tract based spatial

statistics (TBSS) of FA, MD, DA, and DR (Smith et al., 2006). Then we clus-

ter these voxel-wise TBSS measures using independent components analysis

(Beckmann, 2012), and use the mixing weights on the components for classifi-

29



Chapter 3

cation (Ouyang et al., 2015). Finally, we study the predictive performance of

structural connectivity of probabilistic tractography networks (Behrens et al.,

2007), and of graph measures that are based on these structural connectivity

networks. Additionally, we explore the combination of all measures using a

sparse group lasso.

3.2 Materials and Methods

3.2.1 Data sample

Participants

Our dataset was collected as a part of the prospective registry on dementia

(PRODEM; Seiler et al., 2012). Our sample only contained subjects scanned at

the Medical University of Graz. The inclusion criteria are: dementia diagnosis

according to DSM-IV criteria (American Psychiatric Association, 2000), non-

institutionalization and no need for 24-hour care, and availability of a caregiver

who agrees to provide information on the patients’ and his or her own condition.

Patients were excluded from the study if they were unable to sign a written

informed consent or if co-morbidities were likely to preclude termination of the

study. We conducted our study with the baseline scans from the PRODEM

study, and included only patients diagnosed with AD in accordance to the

NINCDS-ADRDA Criteria (McKhann et al., 1984), for whom diffusion MRI

scans were present.

The controls were drawn from the Austrian Stroke Prevention Family Study,

which is a prospective single-center community-based follow-up study with the

goal of examining the frequency of vascular risk factors and their effects on

cerebral morphology and function in the controls. On the basis of structured

clinical interview and a physical and a neurological examination, participants

had to be free of overt neurologic or psychiatric findings and had to have no

history of a neuropsychiatric disease, including cerebrovascular attacks and de-

mentia. The study protocols were approved by the ethics committee of the

Medical University of Graz, Austria, and written informed consent was ob-

tained from all subjects.

This resulted in a dataset of 77 AD patients between ages 47 and 83, and

173 controls between ages 47 and 83 (see Table 3.1).
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Table 3.1: Demographics for the study population

Demographics Control (N = 173) AD (N = 77)

Age 66.1± 8.71 68.6± 8.58
Gender, ♂/♀ 74/99 (57.2%♀) 31/46 (59.7%♀)
Education (years) 11.5± 2.76 10.8± 3.22
Disease duration (months) 0.00± 0.00 26.7± 24.5
MMSE 27.5± 1.83 20.4± 4.51
CDR − 0.82± 0.34
GDS 2.11± 2.15 2.64± 2.57

Data is represented as mean±standard deviation. MMSE = mini mental
state exam, CDR = clinical dementia rating, GDS = geriatric depression
scale.

MRI acquisition

Each participant was scanned on the same Siemens Magnetom TrioTim 3T

MRI scanner. Anatomical T1-weighted images were acquired with TR = 1900

ms, TE = 2.19 ms, flip angle = 9°, isotropic voxel size of 1 mm. Diffusion

images were acquired along 12 non-collinear directions with a b-value of 1000
s

mm2 . Each direction and a b = 0 image was scanned 4 times with TR = 6700

ms, TE = 95 ms, 50 axial slices, voxel size = 2.0× 2.0× 2.5 mm.

3.2.2 MRI preprocessing

The MRI data were processed using FMRIB Software Library (FSL, version

5.0; Smith et al., 2004; Jenkinson et al., 2012) unless otherwise specified. For

the anatomical MRI this included brain extraction, bias field correction, and

non-linear registration to standard MNI152 (Grabner et al., 2006). For the

diffusion MRI this included brain extraction and eddy current correction.

3.2.3 Elastic net classification with nested cross-validation

We used the feature vectors derived from the different aforementioned tech-

niques in a logistic elastic net regression model for classification (Zou and

Hastie, 2005; Friedman et al., 2010). We used 10-fold cross-validation to deter-

mine the generalisation performance of the elastic net regression models. For

each subject this produced a probability between 0 and 1 of being classified as

an AD patient.
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The elastic net imposes a penalty on the regression parameters to ensure

that the regression model remains stable even when the number of predictors

is larger than the number of observations. Specifically, it uses a combination of

a least absolute shrinkage and selection operator (LASSO; Tibshirani, 1996),

and Ridge penalty (Hoerl and Kennard, 1970). The LASSO penalty enforces

sparse solutions, by shrinking many regression parameters to 0. The Ridge

penalty smoothly shrinks the size of the regression parameters. The ratio be-

tween the two penalties is determined by a hyperparameter α, and the strength

of the penalty is determined by a hyperparameter λ. When the values of these

hyperparameter are estimated based on the cross-validated classification per-

formance, the out-of-sample classification performance may be overestimated,

because a combination of hyperparameters may work particularly well for one

specific sample, and may not fully generalise to a different sample (Kriegeskorte

et al., 2009). Therefore, we take a nested-cross-validation approach to estimate

the hyperparameters (Varma and Simon, 2006), i.e., we perform an additional

cross-validation within the training set to estimate the hyperparameters, and

then use those settings to train a model on the entire training set in order to

predict the test set. The focus of our method is on optimisation of predictive

performance and not on model stability. The trade-off of this choice is that

the models from the cross-validation folds may differ in sparseness and regu-

larisation, and are therefore not suitable for interpretation (Varoquaux et al.,

2016).

To reduce the variability in the classification outcome resulting from the

random partitioning in training and test folds we repeated the entire classifi-

cation procedure 10 times. The reported results are the average over these 10

repetitions.

3.2.4 Combining measures using the Sparse Group Lasso

To explore whether the combination of multiple sets of features improves clas-

sification we used the Sparse Group Lasso (SGL; Simon et al., 2013). Sets

of features can be grouped together, and the SGL imposes a LASSO penalty

between groups, and an elastic net penalty within groups. The resulting mod-

els then show sparseness between groups (i.e., the weights of some groups of

features are set to zero), while also imposing some sparseness within selected

groups (i.e., the weights of some features within a group is set to zero). Like

the elastic net, the SGL uses the hyperparameters α to determine the mix be-
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tween LASSO and Ridge within the groups, and λ to determine the strength

of the penalty. We used the same nested cross-validation approach as in the

elastic net procedure to choose λ, but fixed α at 0.05, resulting in a sparse

between group and fairly dense within group model. We did not choose α

within the nested cross-validation procedure because this was computationally

impractical (10-fold, 10-repeats took about 3 weeks to calculate in parallel on a

high performance computing cluster using 100 cores for a single α value), and

because this procedure does a poor job at model selection (Simon et al., 2013).

3.2.5 Measuring classification performance

To assess the classification performance, we performed receiver operating char-

acteristic (ROC) analyses on the predicted outcomes between 0 and 1 from

the elastic net and sparse group lasso regression. We calculated the ROC

curve by shifting the threshold for classifying an individual as AD from 0 to 1,

and plotted the true positive rate (sensitivity) versus the false positive rate (1 -

specificity) for each intermediate point. The area under this ROC curve (AUC)

is a measure of classification performance that is insensitive to the distribution

between controls and AD patients (Fawcett, 2006), so that we can take full ad-

vantage of the larger number of controls than AD patients in our dataset. We

performed bootstrapping with 5000 samples to determine the standard error

of the AUC. The ROC analyses were performed with the perfcurve function in

MATLAB R2016b.

3.3 Classification features

3.3.1 Tract-based diffusion tensor features

In order to extract voxel-wise measures from the diffusion images we used tract

based spatial statistics (TBSS; Smith et al., 2006). TBSS projects the subjects’

diffusion measures onto a mean white matter tract, which can then be used for

voxel-wise cross-subjects analyses. Because the values are comparable across

subjects we can use these features for individual classification as well. Using

TBSS we projected the subjects’ fractional anisotropy (FA), mean diffusivity

(MD), axial diffusivity (DA), and radial diffusivity (DR) onto a mean white

matter skeleton that represents the center of the white matter tracts. This

resulted in a feature vector with a length of 113282 values per measure for each
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individual.

3.3.2 Independent Components Analyses clustered diffu-

sion tensor features

The second method that we employ for classification is independent components

analysis (ICA) based classification. We use the same voxel-wise, skeletonized

measures from TBSS, but we decompose these voxel maps into a number of

independent components using MELODIC (Beckmann, 2012). This resulted in

a mixing matrix of one value per component per subject, and their correspond-

ing component weight maps. We use the values from the mixing matrix in

the same classification procedure as described previously. The ICA procedure

is an unsupervised learning method, that does not require information about

the class labels of the individuals. Therefore it was admissible to use ICA as

a preprocessing step prior to the cross-validation procedure. We perform this

ICA analysis separately for the FA, MD, DA, and DR maps. We call these

measures FA-ICA, MD-ICA, DA-ICA, and DR-ICA to distinguish them from

the voxel-wise measures.

Independent components analysis does not provide a standardised method

to determine the optimal number of components for classification. The prefer-

able method to choose a suitable number of components is to consider number

of components as an additional model hyperparameter. This number can then

be tuned in the nested cross-validation loop. Unfortunately this was computa-

tionally infeasible in our case. Instead we set the number of components to 28,

following Ouyang et al. (2015).

3.3.3 Probabilistic tractography based structural connec-

tivity and graph features

In order to perform tractography between comparable regions within each sub-

ject we used the Harvard-Oxford anatomical brain atlas (Desikan et al., 2006;

Zhan et al., 2015). We split the 48 cortical regions of the Harvard-Oxford atlas

into left and right hemisphere regions, resulting in 96 cortical regions. The

cortical regions were combined with the 14 brain regions from the subcortical

atlas, excluding the brain stem because it was not fully scanned for each par-

ticipant. This resulted in a total of 110 grey matter anatomical regions. We

removed all voxels under 25% probability of being part of any region, and then
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Figure 3.1: Harvard-Oxford cortical and subcortical regions that we used as tar-
get and seed nodes for probabilistic tractography. Areas represent the probabilistic
regions above the 25% threshold, and then assigned to the highest probability region.

assigned each voxel to the region for which its probability was the highest (see

Fig. 3.1).

We constructed a structural connectivity network for each individual in

order to perform graph analysis. We performed probabilistic tractography be-

tween 110 Harvard Oxford Atlas regions using probtrackx from FSL (Behrens

et al., 2007; Zhan et al., 2015). The settings that we used were the FSL de-

fault settings (curvature threshold = 0.2, maximum number of steps = 2000,

step length = 0.5mm). From each voxel within any of the atlas seed regions

100 streamlines were drawn, resulting in a 110 by 110 structural connectivity

graph. The graph was made undirected by summing the upper and lower tri-

angles of the connectivity graph, such that the connectivity between regions A

and B is the sum of the connections from A to B, and from B to A. Then, in

order to normalise the number of streamline counts between two regions, we

divided each connection between two regions by the sum of the total number of

successfully drawn streamlines from both regions. For each region, this num-

ber ranged between 3450 and 241977 streamlines depending on the size of the

region and the success rate of drawing a streamline from that region. We used

all the elements of the upper triangle of this connectivity graph as features for

classification ( 110∗109
2 = 5995 features).

After constructing the structural connectivity graphs we used the MAT-

LAB implementation of the Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net; Rubinov and Sporns, 2010) to calculate the strength,

degree, clustering, and betweenness centrality for each node in each graph, and

the transitivity, and characteristic path length of each graph. This resulted in

110 features per measure for strength, degree, clustering, and betweenness cen-

trality, and a single feature for transitivity, and for path length per individual.
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Figure 3.2: Overview of classification results. Bars indicate mean area under the
receiver operating characteristics curves over 10 repetitions. The error bars represent
standard errors based on 5000 bootstraps.

3.4 Results and Discussion

Detailed results for the classification procedure are summarised in Table 3.2,

while an overview of the mean AUCs for each measure is depicted in Figure

3.2.

3.4.1 Classification results of tract-based diffusion tensor

features

When using the voxel-wise TBSS measures for classification we found an AUC

between 0.888 and 0.902 (Table 3.2). The best single measure performance

was achieved with radial diffusivity (DR), closely followed by the other DTI

measures.

This method is already commonly used in case control studies with AD

or other patient groups, and we show that it is also suitable for individual

classification. While DR slightly outperforms the other TBSS measures, the

differences are small. It is likely that the differences in performance between

the TBSS measures do not generalise to other datasets. Still, TBSS in general
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Table 3.2: Alzheimer’s patients versus controls classification using tract-based
spatial statistics, ICA-clustered TBSS measures 20 components, graph mea-
sures, and all features combined with a sparse group lasso. The mean and
the bootstrapped standard error of the areas under the ROC curve over 10
repetitions are reported, as well as the sensitivity, specificity, and classification
accuracy for the optimal point in the ROC.

Measure AUC±SE Sensitivity Specificity Accuracy

FA-TBSS 0.892±0.023 0.838 0.821 0.826
MD-TBSS 0.888±0.023 0.844 0.792 0.808
DA-TBSS 0.891±0.021 0.849 0.804 0.818
DR-TBSS 0.902±0.021 0.791 0.873 0.848

FA-ICA 0.920±0.018 0.868 0.844 0.851
MD-ICA 0.898±0.022 0.842 0.843 0.843
DA-ICA 0.893±0.022 0.897 0.806 0.834
DR-ICA 0.899±0.022 0.832 0.844 0.840

Connectivity graph 0.900±0.023 0.803 0.871 0.850
Degree 0.817±0.029 0.799 0.740 0.758
Strength 0.840±0.029 0.766 0.809 0.796
Clustering 0.784±0.032 0.669 0.795 0.756
Betweenness Centrality 0.647±0.038 0.595 0.668 0.646
Path Length 0.720±0.035 0.625 0.727 0.696
Transitivity 0.531±0.041 0.373 0.772 0.649

Sparse Group Lasso 0.896±0.025 0.885 0.774 0.808

appears to be a suitable method for individual classification of Alzheimer’s

disease.

3.4.2 Classification results of ICA clustered diffusion ten-

sor features

The classification performance of ICA-clustered TBSS measures ranged be-

tween 0.893 for DA-ICA, and 0.920 for FA-ICA. The classification performance

of MD-ICA (0.896), and DR-ICA (0.899) are very similar to DA-ICA.

The approach of using ICA to cluster diffusion tensor images is not com-

monly used, but at least one study already showed that the mixing weights of

several diffusion components were useful in separating AD from normal controls

(Ouyang et al., 2015).

The mixing weights of 28 components resulted in very good classification

performance, up to 0.920 for FA-ICA. However, compared to voxel-wise dif-

fusion tensor measures only FA seemed to benefit from ICA clustering. For

MD, DA, and DR the classification performance remained virtually unchanged.
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Even then, the ICA clustering allows an enormous reduction in the number of

features required to describe an individual, from 113282 voxel-wise features to

only 28 mixing weights.

One caveat with this method is that it is more difficult to extract these

28 features from an unseen individual, because the entire dataset was used to

derive the mixing weights and corresponding component weight maps. One

possible method is to spatially regress the feature maps (e.g., FA) of a new

individual on the 28 components’ weight maps, to find the individuals’ mixing

weights.

3.4.3 Classification results of Probabilistic tractography

based structural connectivity and graph features

For the structural connectivity measures the classification performance ranged

between an AUC of 0.531 for transitivity, and 0.840 for strength. Interestingly,

the connectivity graph, upon which the graph measures are based, reached an

AUC of 0.900, outperforming each graph measure (Table 3.2). Graph measures

have been very successful in finding group differences, by summarising graphs

into much fewer features than the connectivity matrix. However, in the classifi-

cation context, where we can use information from the entire graph, the graph

measures that we explored do not seem to be beneficial.

3.4.4 Classification results of multiple features combined

with the sparse group lasso

The sparse group lasso resulted in good classification performance with an

AUC of 0.896. However, this did not outperform the best measure, which

was FA-ICA. Nevertheless, the properties of the sparse group lasso allow us

to gain valuable insight into which measures are selected for classification, and

which measures are left out of the model completely. We explored the sum

of the absolute β values for each group of predictors, over the 100 different

classification models resulting from 10-fold cross-validation with 10 repetitions

(see Fig. 3.3). Here we see that some groups of predictors are always included

in the SGL models: MD-TBSS, FA-ICA, MD-ICA, DA-ICA, DR-ICA, and

Strength. Other groups of predictors are never included in the SGL models:

FA-TBSS, Degree, Clustering, and Transitivity. The rest of the groups are
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Figure 3.3: Boxplot of the sparse group lasso classification models from 10-fold times
10 repeated cross validation. The bars indicate the spread of the sum of the absolute
beta values. The boxplot for DR-TBSS could not be visualised, because the lower
84% of the values was zero. The non-zero values are plotted as + signs.

sometimes included in the models and sometimes set to zero: DA-TBSS, DR-

TBSS, Connectivity graph, Betweenness Centrality, and Path Length.

We observe some correspondence with the single measure classification

scores (see Fig 3.2). The strongest contribution to the SGL models come from

the TBSS and ICA measures, while the Connectivity graph and the Strength

are also consistently selected by the SGL. This suggests that there is com-

plementary information in the DTI measures, and the graph measures. At the

same time we observe that the very good performing FA-ICA is always selected,

but the almost equally well performing FA-TBSS is never selected. The same

pattern, albeit it less pronounced, can be seen with MD, DA, and DR. This be-

haviour of the SGL is expected, as the ICA measures are based upon the TBSS

measures, and do not contain complementary information. Unfortunately these

mixed results for FA, MD, DA, and DR do not provide a clear winner between

the TBSS and ICA approaches in terms of classification performance, but the

ICA approach does have the advantage of strong feature reduction.
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3.5 Conclusion

Overall, diffusion MRI is a suitable technique for classification of Alzheimer’s

disease (AD). Fractional anisotropy (FA) is a useful measure to detect AD,

and clustering fractional anisotropy into independent components is an espe-

cially promising method that had not been fully explored previously. Using

probabilistic tractography to determine structural connectivity networks can

also result into decent classification performance, especially when the connec-

tivity graph itself is considered instead of the derived graph measures. In this

study we explored the possibility of using a sparse group lasso to combine

multiple diffusion measures. Although this did not increase classification per-

formance in our sample, it did suggest that FA, MD, DA, and DR could be

complemented by Connectivity graphs, and Degree. The sparse group lasso

could not unambiguously answer the question of the effectiveness of using ICA

with TBSS measures for classification. Specifically, ICA seemed very effective

for FA, while the results for MD, DA and DR were mixed. The single best

performing measure was FA clustered into independent components. These

findings can serve as a starting point to include diffusion MRI in procedures

for early AD detection.
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Abstract

Background

Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemor-

rhage in the elderly. However, presymptomatic diagnosis of CAA is difficult. Hered-

itary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) is a rare au-

tosomal dominant disease that leads to pathology similar to sporadic CAA. Pre-

symptomatic HCHWA-D mutation carriers provide a unique opportunity to study

CAA related changes before any symptoms have occurred. In this study we investi-

gate early CAA related alterations in the white matter.

Methods and Results

We investigated diffusion MRI (dMRI) data for 15 symptomatic, and 11 presymp-

tomatic HCHWA-D mutation carriers, and 30 noncarrier control subjects using four

different approaches. We looked at 1) the relation between age and global dMRI

measures for mutation carriers versus controls, 2) voxel-wise diffusion MRI, 3) in-

dependent component clustered dMRI measures, and 4) structural connectomics be-

tween (pre-)symptomatic carriers and controls. Fractional anisotropy decreased, and

mean diffusivity and peak width of the skeletonised mean diffusivity increased signif-

icantly stronger over age for mutation carriers compared to controls. Additionally,

voxel-wise and independent component-wise fractional anisotropy, and mean diffu-

sivity, and structural connectomics was significantly different between HCHWA-D

patients and control subjects, mainly located in the periventricular frontal and oc-

cipital regions, and in the occipital lobe. We found no significant differences between

presymptomatic carriers and control subjects.

Conclusions

Diffusion MRI is a sensitive technique to detect alterations in symptomatic HCHWA-

d carriers, but did not show alterations in presymptomatic carriers. This indicates

that diffusion MRI may be less suitable to identify early white matter changes in

CAA.

Key words: cerebral amyloid angiopathy; hereditary cerebral amyloid angiopathy;

hemorrhage; diffusion mri; magnetic resonance imaging.
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4.1 Introduction

Sporadic cerebral amyloid angiopathy (CAA) is a highly prevalent disease in

elderly adults that is characterized by deposition of amyloid-β peptides in the

media and adventitia of small leptomeningeal and cortical vessels causing hem-

orrhagic lesions (Vinters, 1987). Although CAA is a major cause of lobar

intracerebral hemorrhage (ICH Greenberg, 1998; Charidimou et al., 2012), re-

liable in vivo diagnosis of sporadic CAA is difficult, especially in the early

stage of the disease. Still, from a therapeutic point of view, especially the

early–presymptomatic–phase of the disease is of interest. In contrast with the

symptomatic phase of the disease which, is characterized by the occurrence

of hemorrhagic lesions, no reliable biomarkers for disease severity or progres-

sion have been established for the presymptomatic phase. Because accumula-

tion of amyloid-β in the vessel walls and loss of vascular smooth muscle cells

are present before symptoms, it has been suggested that in sporadic CAA,

ischemia- (Alonzo et al., 1998; Greenberg, 2002; Biffi and Greenberg, 2011;

Reijmer et al., 2016b) or hemorrhage (Reijmer et al., 2016b; Wardlaw et al.,

2017; Hartz et al., 2012) related alterations in the white matter may already

be present in the early, presymptomatic, stage of the disease. Diffusion ten-

sor imaging (DTI) is able to detect altered white matter in probable CAA

(Charidimou et al., 2013, 2014; Martinez-Ramirez et al., 2013; Reijmer et al.,

2016a, 2017; Salat et al., 2006).

Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D)

is an autosomal dominant disease and predominantly occurs in the Netherlands

(Levy et al., 1990). The mutation leads to extensive amyloid-β deposition in

the meningocortical arterioles. The underlying pathology of these amyloid de-

posits is similar to that in sporadic CAA with minimal or no neurofibrillary

pathology (Bornebroek et al., 1996; Maat-Schieman et al., 1996; Zhang-nunes

et al., 2006). Therefore, HCHWA-D may serve as a hereditary CAA model

for studying early, presymptomatic, cerebral changes. In the present study we

aimed to investigate the potential of diffusion tensor MRI to determine alter-

ations in the white matter of presymptomatic HCHWA-D mutation carriers

and symptomatic HCHWA-D patients compared with control participants.
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4.2 Methods

The data that support the findings of this study are available from the corre-

sponding author on reasonable request.

To analyze the diffusion MRI (dMRI) data, we applied 4 approaches. First,

we explored the differences in the aging effect of DTI parameters between

mutation carriers and controls (Grieve et al., 2007). Second, to get a more fine-

grained image of differences between presymptomatic carriers and controls and

symptomatic carriers and controls, we investigated voxel-wise DTI measures.

Third, to increase power, we clustered the voxel-wise diffusion tensor measures

into independent components (ICs). Finally, we investigated the structural

connectivity between cortical brain areas using structural connectomics.

4.2.1 Participants

Participants were selected via the HCHWA-D patient association in Katwijk

(the Netherlands) and the outpatient clinic of the Department of Neurology

of the Leiden University Medical Center based on DNA analysis for confir-

mation of a point mutation in the APP gene (amyloid precursor protein;

p.Glu693Gln mutation). Twenty-six DNA-proven HCHWA-D mutation car-

riers were included in the present study, of which 15 were symptomatic and

11 were presymptomatic. Participants were considered symptomatic if they

had reported symptoms associated with HCHWA-D to a general practitioner.

Thirty control participants were recruited from individuals at risk for HCHWA-

D, for whom one parent had HCHWA-D, and from participant spouses, family

members, or friends. All controls were stroke-free and tested genetically neg-

ative for HCHWA-D. Investigators remained completely blinded con- cerning

the genetic status of participants during recruitment, MRI, and neurological

and psychological exams. At the time of the study, a third of the potential

mutation carriers were not aware of their genetic status. Table 4.1 shows the

demographic overview of the study sample. The ethics committee of our insti-

tution approved the study, and written informed consent was obtained from all

participants.

MRI Acquisition and Image Processing

Each participant was scanned at the Leiden University Medical Center on a

Philips Achieva 3T MRI scanner (Philips Medical Systems) using an 8-channel
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Table 4.1: Baseline characteristics of presymptomatic and symptomatic muta-
tion carriers versus controls.

Controls (n=30) Pre-symptomatic carriers (n=11) Symptomatic carriers (n=15)

Age, y 44.7 (13.7; 34–56) 33.2 (11.9; 22–46)* 55.1 (5.2; 51–60)*
Sex (male/female), n 11/9 3/8 7/8
Systolic blood pressure 129.9 (27.2; 106 – 142) 124.6 (14.9; 110 – 133) 144.2 (19.8; 129 – 168)
Diastolic blood pressure 81.9 (12.5; 72 – 87) 79.8 (9.6; 73 – 87) 89.1 (10.4; 78 – 96)
Mean arterial pressure 97.9 (16.5; 84 – 108) 94.7 (9.6; 88 – 102) 107.5 (12.4; 95 – 117)
Pulse pressure 48.0 (18.9; 34 – 58) 44.7 (13.9; 33 – 50) 55.1 (14.7; 43 – 69)
Hypertension, (%) 20 0 40
Hyperlipidemia, (%) 7 0 33*

Diabetes Mellitus, (%) 0 9 7
Cardiovascular disease, (%) 0 0 7

Data are shown as mean (SD; interquartile range), except as noted.
* indicates significant difference with controls.

head coil. Anatomical 3-dimensional T1-weighted images were acquired with

repetition time of 9 ms, echo time of 4.6 ms, flip angle of 8°, and field of view

of 224× 177× 168 mm3. Diffusion images were acquired along 32 noncollinear

directions with a b-value of 1000 s/mm2, along with a b=0 image with repeti-

tion time of 9033 ms, echo time of 56 ms, flip angle of 90°, 64 axial slices, voxel

size of 1.96× 2.00× 2.00 mm3, matrix size of 112× 110× 64, and field of view

of 220× 220× 128 mm3.

The dMRI data were preprocessed using the FMRIB software library (FSL;

version 5.0.8; Smith et al., 2004; Jenkinson et al., 2012) and MATLAB (R2016b).

This consisted of brain extraction, motion correction, and eddy current correc-

tion. The FMRIB software library program dtifit was used to calculate indi-

vidual fractional anisotropy (FA) and mean diffusivity (MD). FA images were

subsequently nonlinearly registered to the FMRIB58 FA template for individual

registration to Montreal Neurological Institute (MNI) space.

Group differences in voxel-wise DTI measures were investigated with tract-

based spatial statistics (TBSS) using default settings (Smith et al., 2006). This

procedure projects the center of each subject’s white matter tracts onto a mean

white matter tract. This allows for voxel-wise statistical analyses of FA and

MD. The global FA or MD was the average FA or MD value of all voxels that

were projected onto the TBSS skeleton. As an additional global measure we

investigated the peak width of the skeletonized MD (PSMD) (Baykara et al.,

2016), which has been specifically validated as a marker for small vessel disease.

To reduce the dimensionality of the data, we clustered the voxel-wise mea-

sures with IC analysis. This procedure identifies clusters of voxels that show

similar patterns across participants and characterizes each person with a weight
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for each component. Specifically, we used Multivariate Exploratory Linear Op-

timized Decomposition into Independent Components (MELODIC; Beckmann,

2012) to decompose each of the skeletonized FA and MD maps into 10 ICs (ie,

the IC number). This resulted in 10 spatial IC weight maps and, for each partic-

ipant, a mixing weight per component. The differences in mixing weights could

then be compared across groups. This procedure increases power by reducing

the dimensionality from >100 000 voxel values to just 10 mixing weights.

The structural connectomics were constructed with probabilistic tracto-

graphy between Harvard–Oxford cortical and subcortical atlas regions (De-

sikan et al., 2006; Zhan et al., 2015). For this purpose, the 48 cortical regions

of the Harvard–Oxford cortical atlas were split into left and right hemisphere

regions, resulting in 96 cortical regions. These were combined with 14 of the 15

regions from the Harvard–Oxford subcortical atlas, excluding the brain stem.

These 110 probabilistic gray matter (GM) regions were given thresholds of 25%

probability and voxel-wise assigned to the region with the highest probability.

Probabilistic tractography was conducted using anatomically constrained

tractography (Smith et al., 2012) with spherical-deconvolution informed fil-

tering of tractograms, or SIFT (Smith et al., 2013; Yeh et al., 2016), as im-

plemented in mrtrix (v3.0 RC3-1; Tournier et al., 2012). For anatomically

constrained tractography, the T1-weighted image was aligned to the b=0 im-

age using rigid-body registration. Partial volume estimates of white matter,

cerebrospinal fluid (CSF), and cortical GM were calculated using the FMRIB

automated segmentation tool (FAST; Zhang et al., 2001), and subcortical cor-

tical GM estimates— excluding the brain stem—were calculated with the FM-

RIB integrated registration and segmentation tool (Patenaude et al., 2011).

Fiber orientation distributions were estimated using constrained spherical de-

convolution with recursive calibration for fiber response function estimation

(Tax et al., 2014) and maximum spherical harmonic order of 6. The second-

order integration over fiber orientation distributions algorithm (Tournier et al.,

2010) was used to generate 5 million streamlines (seeding: GM–white matter

interface; step size=1.0 mm; maximum curvature=45°per step; length: 2–200

mm; and fiber orientation distribution threshold=0.0625), which were reduced

to 50 000 streamlines using SIFT. Structural connectivity graphs were con-

structed by summing the regional streamlines that were assigned to the closest

Harvard–Oxford GM region within a 2-mm radius of each streamline end point

(Smith et al., 2015). This resulted in a 110×110 matrix of SIFT-filtered stream-
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line counts between the regions. Subsequently, we used the MATLAB imple-

mentation of the brain connectivity toolbox (http://www.brain-connectivity-

toolbox.net) to calculate the strength, degree, clustering, and betweenness cen-

trality (Rubinov and Sporns, 2010) of each node in the connectivity graph, re-

sulting in 1 value per person per region and 110 values in total per person. In

addition, we characterized each participant’s graph with transitivity and global

efficiency (Reijmer et al., 2016a), resulting in a single value per participant.

To correct the data for CSF partial-volume effects, we calculated the pro-

portion of CSF of the total intracranial volume using the segmentations from

FAST.

4.2.2 Statistical Analysis

For demographics, the Mann–Whitney U test was used to assess differences

in age between groups; univariate general linear modeling analysis was used to

assess differences in blood pressure measurements between groups, adjusted for

age and sex; and χ2 tests were used to assess differences in sex and percentage

cardiovascular risk factors between groups.

To analyze the DTI data, we first explored the effect of gene presence on

the decline in global, whole-brain FA, MD, and PSMD over age, namely, the

interaction between age and gene presence. In addition, we explored the pres-

ence of a quadratic effect of age on the diffusion measures. To do this, we fitted

3 regression models for each of the 3 DTI measures. As covariates, we included

sex and proportional CSF. The reduced model included age and gene presence.

The linear age×gene interaction model also included age×gene inter- action.

The quadratic age×gene interaction model also included age2 and age2×gene.

We used partial F tests for testing the increase in explained variance of the

linear age×gene interaction model compared with the reduced model and for

the quadratic age×gene interaction model compared with the linear age×gene

interaction model. To determine significance and to correct for multiple com-

parisons across all 6 tests (3 measures and 2 comparisons), we used permutation

testing with 5000 permutations.

Second, we used a general linear model with age, proportional CSF, and sex

as covariates to test the differences between controls and presymptomatic carri-

ers and between controls and symptomatic patients. For the voxel-wise analy-

ses, threshold free cluster enhancement was performed to use spatial neighbor-

hood information (Smith and Nichols, 2009). The same general linear model
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was used for the IC analysis clustered mixing matrices and for the graph mea-

sures.

To correct for multiple comparisons, we used the permutation analysis of

linear models tool (Winkler et al., 2014) with 500 permutations and tail ap-

proximation for accelerated permutation inference (Winkler et al., 2016) for

the voxel-wise TBSS and 5000 permutations without tail approximation for

the other approaches. For each of the latter 3 approaches, the reported P val-

ues were familywise error corrected across all tests, contrasts, and modalities

within each of 3 approaches: (1) voxel-wise TBSS, (2) IC analysis×clustered

TBSS measures, and (3) probabilistic tractography–based graph measures.

4.3 Results

4.3.1 Global Diffusion Measures Over Age

The age×gene interaction model explained significantly more variance than the

reduced model without gene interaction for FA, MD, and PSMD at F(1, 50)

= 23.51, 14.73, and 9.68, respectively, with corresponding permutation family-

wise error-corrected P values: P<0.001, P=0.001, P=0.011 (see Figure 4.1).

Adding quadratic terms did not improve the models for any of the measures,

F (2, 48) = 0.13, 0.19, 0.27 respectively; all familywise error-corrected P values

were not significant.
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Figure 4.1: Scatterplot of the relation between age and fractional anisotropy
(left), mean diffusivity (middle), and peak width of skeletonized mean diffu-
sivity (right) for presymptomatic HCHWA-D mutation carriers, symptomatic
HCHWA-D patients and control subjects. The measures are adjusted for gen-
der and proportion CSF. The blue line indicates the trend for mutation carriers
(symptomatic and presymptomatic combined), and the red line indicates the
trend for controls.
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4.3.2 TBSS Analysis

The tract-based spatial statistics results for FA and MD comparing HCHWA-D

patients with control participants are shown in Figure 4.2. We found lower FA

values in symptomatic HCHWA-D patients compared with control participants,

especially in the parietal and occipital lobes. In symptomatic HCHWA-D pa-

tients, MD was increased in the white matter, especially in the periventricular

frontal and occipital regions and in the centrum semiovale. No differences be-

tween presymptomatic HCHWA-D mutation carriers and control participants

were found.

Figure 4.2: Control versus symptomatic carriers’ t statistics, P<0.05 family-
wise error corrected over modalities, contrasts and voxels. Tract-based spa-
tial statistics skeleton background is plotted in green. The tract-based spatial
statistics skeleton was dilated with 1 voxel for visualization purposes.

4.3.3 IC Analysis

Symptomatic carriers and controls differed significantly on 4 IC mixing weights

for FA (see Figure 4.3, left). The bars represent the average mixing weight of

each component for each individual group, corrected for age, sex, and propor-

tional CSF. This analysis shows that, for both FA values, the components that

differed significantly had high component importance mainly in the occipital

and parietal lobes. For MD, 3 ICs were identified that differed significantly

between symptomatic carriers and controls (Figure 4.3, right). Overall, high

component importance was located mainly in periventricular frontal and occip-

ital regions and the occipital lobe. No significant differences between presymp-

tomatic mutation carriers and control participants were found.
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Figure 4.3: Independent component mixing weights for fractional anisotropy
and mean diffusivity z-scored for displaying purposes. Means adjusted for age,
gender and proportion CSF. The TBSS skeleton was dilated with 1 voxel for
visualization purposes. Red-yellow indicates positive values of the weight maps
(yellow is higher), while blue-cyan indicates negative values of the weight maps
(cyan is more negative). *P<0.05, **P<0.01, ***P<0.001. (Familywise error
corrected for components, measures, and contrasts). ICA indicates independent
component analysis.

4.3.4 Structural Connectomics Analyses

Figure 4.4 shows the results of the structural connectomics analyses between

brain areas. This analysis reveals structural connectivity of cortical GM struc-

tures rather than intrinsic white matter tract information. Our analyses showed

that the degree of structural connectivity is lower in 7 cortical regions for symp-

tomatic carriers compared with controls (see Figure 4.4, left). In addition, in

1 of these regions, the left cuneal cortex, the clustering was higher for symp-

tomatic carriers compared with controls (see Figure 4.4, middle). Furthermore,

the betweenness centrality was higher for symptomatic carriers compared with

controls in 2 regions (see Figure 4.4, right). We found no differences in strength,

transitivity, or global efficiency. None of the measures showed significant dif-

ferences between presymptomatic carriers and controls.
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Figure 4.4: Significant structural connectomics measures averaged per group
and z scores for visualization. Means adjusted for age, sex, and proportional
cerebral spinal fluid. *P<0.05 (familywise error corrected for regions, graph
measures, and contrasts).

4.4 Discussion

Our data show that differences in DTI and DTI-related connectivity parameters

between HCHWA-D patients and control participants are mainly located in the

periventricular frontal and occipital regions and in the occipital lobe. We found

no significant differences in any of these parameters between presymptomatic

HCHWA-D mutation carriers and control participants.

In our first analysis, we found a greater decrease in global FA and a greater

increase in global MD and PSMD over age for mutation carriers than for con-

trols. White matter integrity appears largely unaffected in the presymptomatic

phase and then deteriorates in a later stage, when mutation carriers become

symptomatic. PSMD has been validated as a marker for small vessel disease

(Baykara et al., 2016), but it was remarkably similar to global MD in our

findings.

All our dMRI analyses were sensitive to differences between controls and

symptomatic carriers, whereas no significant differences were found between

presymptomatic mutation carriers and control participants. The symptomatic

carriers had reduced FA and increased MD in widespread areas of the brain,

covering almost the entire white matter skeleton. Reduced FA and increased
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MD is associated with altered white matter. The effects were most pronounced

in the periventricular frontal and occipital regions and in the occipital lobe

of the brain. The same trend arose from IC analysis–clustered diffusion ten-

sor measures. ICs that contributed strongly toward the posterior regions of

white matter showed a significant difference between symptomatic carriers and

controls. This finding is also indicative of altered white matter, specifically

in the posterior regions of the brain. The finding that the occipital region

is most severely affected is in line with previous findings that the occipital

lobe is a predilection site of CAA (Duan et al., 2006; Zhu et al., 2012). Struc-

tural connectomics revealed a lower connection degree for symptomatic carriers

compared with controls in several cortical, mainly posterior, regions, indicating

fewer connections between these regions and the rest of the brain. Furthermore,

clustering was higher in one of these regions. This finding is to be expected

because this region has fewer neighbors, so it is more likely that these neigh-

bors would be connected to each other. Furthermore, a decrease in degree and

an increase in clustering is typical for a hierarchical network, and the struc-

tural connectivity graph has been found to show these characteristics (Bassett

et al., 2008). Furthermore, betweenness centrality was higher in 2 regions for

symptomatic carriers compared with controls. It is likely that because of the

decrease in connections in the symptomatic patients, many of the shortest

paths between nodes must pass through relatively unaffected regions, resulting

in higher betweenness centrality in these regions. These findings are in line with

previous research that found that structural networks are altered in patients

with CAA (Reijmer et al., 2015).

Importantly, these changes in DTI measures were not yet visible in the

presymptomatic phase of the diseases. Interestingly, a previous study has

shown that in presymptomatic mutation carriers, the volume of white mat-

ter hyperintensities on fluid-attenuated inversion recovery imaging is slightly

higher than in control participants (Van Rooden et al., 2016). This discrepancy

likely is not caused by lower sensitivity of dMRI compared with white matter

hyperintensity volume but rather by differences in approach. Because we used

multiple approaches to analyzing the dMRI data, the statistical power was

reduced by multiple comparison corrections. Still, the absence of significant

differences between controls and presymptomatic carriers may be explained by

the finding that white matter is still largely unaffected until a later stage of the

disease. In patients with CAA, brain network connectivity in patients wors-
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ened measurably over 1.3-year follow-up (Reijmer et al., 2016a). This result is

in line with our finding that the decline in global diffusion measures manifests

mostly at a later age. This may suggest that the high sensitivity of dMRI in

symptomatic carriers may not extrapolate to earlier, presymptomatic carriers

or early cases of CAA.

An important limitation of the present study is sample size. It is possible

that the small sample size did not provide enough power to detect significant

differences between presymptomatic carriers and controls. The rareness of the

point mutation in the APP gene causing HCHWA-D makes it challenging to col-

lect larger samples. Still, follow-up studies in a larger cohort of presymptomatic

mutation carriers are needed to confirm that differences in dMRI-related con-

nectivity are late markers for CAA. Another limitation is the limited number

of diffusion directions and the relatively low b-value of 1000 s/mm2 in the

DWI protocol. A higher number of diffusion directions and a b-value of ≈3000

s/mm2 would result in more accurate estimation of the fiber orientation distri-

bution and more accurate construction of the structural connectomics, which

may provide more power to detect group differences.
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Abstract

Finding biomarkers for early prediction of cognitive decline is the key to devel-

oping treatments for dementia. Magnetic resonance imaging has shown promis-

ing results for detection of Alzheimer’s disease, conversion from mild cognitive

impairment to Alzheimer’s disease, and cognitive decline. In this study we

use machine learning on multimodal MRI data to predict cognitive decline af-

ter four years. We used MRI measures that have been shown to successfully

predict Alzheimer’s disease and other types of dementia. Specifically, we used

grey matter density averaged over pre-defined structural regions, and subcorti-

cal volumes from anatomical MRI, fractional anisotropy and mean diffusivity

with tract-based spatial statistics from diffusion MRI, functional connectivity

between independent components from resting state functional MRI, and small

vessel disease markers. We combined these features in a group lasso regression

model to predict decline in overall cognition, executive functioning, and mem-

ory. The combined MRI model did not contain predictive value for baseline or

future cognitive functioning for any of the outcome measures. This suggests

that MRI, while successful at disease diagnosis, may not be suitable to predict

future cognitive decline.

Key words: cognitive decline; machine learning; MRI; prediction; regression
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5.1 Introduction

Finding an early biomarker for dementia or cognition related disorders is the

holy grail for developing treatments for Alzheimer’s disease and cognitive de-

cline in elderly. Magnetic resonance imaging (MRI) has been studied exten-

sively to find biomarkers associated with dementia. Brain atrophy as mea-

sured with structural MRI has been found to be a useful clinical biomarker

for Alzheimer’s disease (AD) at the mild cognitive impairment (MCI) phase

(Frisoni et al., 2010). Resting state functional MRI (rsfMRI) studies also found

alterations in functional connectivity associated with dementia (Binnewijzend

et al., 2012; Agosta et al., 2012; Greicius et al., 2004). Diffusion MRI revealed

alterations in white matter structures for subjective cognitive decline (Li et al.,

2016), AD (Medina et al., 2006), MCI (Rose et al., 2006), and fronto-temporal

dementia (Zhang et al., 2009).

The most relevant for development of potential early treatments is pre-

symptomatic prediction of diagnoses or future cognitive decline. Some studies

show promising potential of MRI for prediction of MCI conversion to Alzheimer’s

disease (e.g., Cui et al., 2011; Plant et al., 2010b; Adaszewski et al., 2013;

Rathore et al., 2017). Some MRI biomarkers, such as cortical thickness and

cerebral perfusion measured with arterial spin labelling, have been found to

contain some predictive value for future cognitive decline (Dickerson and Wolk,

2012; Chao et al., 2010; Benedictus et al., 2017).

However, prediction of future cognitive decline is challenging. Subjects

require long well documented follow-up. Also, the rate of cognitive decline or

conversion to a disease diagnosis in a healthy population is low, so that very

large samples at baseline are required. Still, selection for potential clinical trials

requires that individual predictions can be made with reasonable accuracy. In

general, we expect that combining multiple MRI modalities, rather than a

single measure, is the most promising approach to make accurate predictions

(e.g., Mesrob et al., 2012; Schouten et al., 2016).

In this study we investigate the predictive value of MRI for cognitive decline

in elderly individuals with mild cognitive deficits four years after baseline. We

will use multimodal machine learning on data from structural, diffusion, and

functional MRI in combination with small vessel disease markers. Our sam-

ple consisted of elderly individuals that were selected to be at risk of future

cognitive decline.
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5.2 Materials and methods

5.2.1 Data sample

The data in this study was collected as part of the Discontinuation of Antihy-

pertensive Treatment in Elderly People (DANTE) study; which was an inter-

vention study that investigated the effect of discontinuation of antihypertensive

treatment on cognitive functioning (Moonen et al., 2015). Individuals were eli-

gible for inclusion in this study if their mini-mental state examination (MMSE)

score was between 21 and 27, and if they were 75 years or older, had a systolic

blood pressure of 160 mm Hg or lower, and used antihypertensive treatment.

The original study found no effects of discontinuation of antihypertensive treat-

ment on cognitive functioning. Participants had follow-up cognitive assessment

after four years. We use the baseline small vascular disease markers and other

MRI measurements to predict the cognitive performance differences between

baseline and follow-up.

Out of the 356 participants from the original study, 205 had MRI data. Out

of these, 102 had follow-up cognitive performance assessment. We excluded 16

participants because of bad quality MRI scans, due to excessive movement, or

artefacts. The final sample consisted of 86 participants for whom good quality

anatomical MRI, diffusion MRI, and resting state fMRI data were available.

Out of these, four participants had incomplete executive function data, and

were excluded from the executive function and compound overall analysis. See

table 5.1 for an overview of the sample.

Table 5.1: Baseline demographics for the study population

Characteristic Baseline sample (N=86)

Age 79.65 (3.30)
Gender, ♂/♀ 33 / 53 (62% ♀)
Years of education 9.30 (3.22)
Systolic blood pressure 144.2 (19.17)
Diastolic blood pressure 81.83 (9.807)
Randomisation (yes/no)a 42/44 (49%)

Data is represented as mean (standard deviation), or as
numbers (percentage)
a Randomisation factor in the original DANTE study.
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MRI acquisition

The MRI data was acquired at Leiden University Medical Center with a 3T

Philips Achieva MR system with a 32-channel head coil. Anatomical T1-

weighted images were acquired with TR = 9.7 ms, TE = 4.6 ms, flip angle

= 8°, voxel size = 1.17 × 1.17 × 1.40 mm3. Diffusion images were acquired

along 32 measurement directions with TR = 9592, TE = 56 ms, flip angle =

90°, FOV = 220 × 220 × 128 mm, matrix size = 112 × 112, 64 slices, voxel

size = 1.96 × 1.96 × 2 mm3, b = 1000 mm/s2. Additionally, a single b = 0

image was acquired. Resting state fMRI series of 200 volumes were obtained

with TR = 2.2 ms, TE = 30 ms, flip angle = 80°, 38 axial slices, with a voxel

size of 2.75× 2.75× 2.2 mm3. We instructed participants to lie still with their

eyes closed, and to stay awake. Fluid attenuated inversion recovery (FLAIR)

images were acquired with TR = 11,000 ms, TE = 125 ms, flip angle = 90°,
FOV = 220× 176× 137 mm3, matrix size = 320× 240, 25 transverse slices, 5

mm slice thickness.

5.2.2 Software

The MRI data were preprocessed using FMRIB Software Library (FSL, version

5.0.8) (Smith et al., 2004; Jenkinson et al., 2012). Python 3.4 was used for

whitening the fMRI time courses and calculating sparse partial correlations.

R (version 3.2.3) with the gglasso package (Yang and Zou, 2015) was used for

fitting the group lasso model.

5.2.3 Preprocessing

The anatomical MRI data preprocessing consisted of brain extraction, bias field

correction, and non-linear registration to standard MNI152 (Grabner et al.,

2006). The diffusion MRI was brain extracted, motion corrected, and eddy-

current corrected using FSL, and denoised using the MRtrix program dwide-

noise (Veraart et al., 2016). The resting state fMRI data was motion corrected,

intensity normalized, denoised by using Automatic Removal of Motion Arti-

facts (AROMA), which is an independent component analysis based strategy

for automatic removal of movement components from the fMRI time courses

(Pruim et al., 2015), temporal high-pass filtered with a cut off point of 100s,

and smoothed with a 3 mm FWHM gaussian kernel.

63



Chapter 5

5.2.4 Anatomical MRI features

The anatomical MRI features consisted of subcortical volumes, and cortical

grey matter density. The subcortical volumes were calculated with the FM-

RIB’s integrated registration and segmentation tool (FIRST) in FSL (Pate-

naude et al., 2011). The subcortical volumes were corrected for intracranial

brain volume, which we determined by the sum of grey matter and white mat-

ter segmentation by FMRIB’s automated segmentation tool (FAST; Zhang

et al., 2001). This resulted in 14 subcortical volumes per subject (thalamus,

caudate, putamen, pallidum, hippocampus, amygdala, and accumbens for left

and right hemispheres). The cortical grey matter density was determined over

the 48 Harvard-Oxford cortical atlas regions that were split into left and right,

resulting into 96 regions. The cortical grey matter density was determined

by running FSL’s voxel based morphometry (VBM) on the preprocessed T1-

weighted images, and then calculating the mean grey matter density over the

96 regions, resulting into 96 grey matter density values per person.

5.2.5 Diffusion MRI features

To calculate the diffusion MRI measures we used dtifit to determine the frac-

tional anisotropy (FA) and mean diffusivity (MD) per voxel, which we then

registered to a white matter skeleton using tract-based spatial statistics. These

skeletonised FA and MD were subsequently averaged over 48 regions from the

ICBM-DTI-81 white-matter labels atlas (Mori et al., 2005) provided with FSL,

resulting in 48 FA and 48 MD values per person.

5.2.6 Resting state functional MRI features

The functional connectivity was determined by first performing independent

component analysis with 70 components on the preprocessed data (Dipasquale

et al., 2015; de Vos et al., 2018). Subsequently, the 70 resulting components

were used as spatial regressors into the resting state fMRI volumes for each

subject resulting in a time course per component for each subject. These

time courses were pre-whitened using a lag 5 autoregressive model. Then we

calculated the sparse partial correlations between each pair of the 70 compo-

nents’ time course for each subject using the GraphLassoCV function from the

Python toolkit scikit-learn (http://scikit-learn.org/). This resulted into a total

of 70×(70−1)
2 = 2415 partial correlation values per person.
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5.2.7 Small vessel disease markers

White matter hyperintensity volume was derived from FLAIR. Cerebral micro

bleeds and lacunar infarcts were assessed by visually inspecting FLAIR, T2-

weighted, and T1-weighted images (see also Moonen et al., 2015). The features

that we used for the subsequent analyses were the log-transformed white matter

hyperintensity volume, and two dichotomous variables indicating absence or

presence of cerebral micro bleeds and lacunar infarcts.

5.2.8 Cognitive performance measures

We measured cognitive performance at baseline and follow-up using a battery of

tests (see table 5.2). Executive functioning was measured with the interference

score of the abbreviated Stroop Colour Word Test (Houx et al., 1993), and the

difference between the time to complete the Trial Making Test part A and B

(TMT delta; Arbuthnott and Frank, 2000). Memory was measured with the

immediate and delayed recall of the 15-Word Verbal Learning Test, and the

Visual Association Test (Lindeboom et al., 2002).

Table 5.2: Overview of test scores at baseline and after four year follow up

Characteristic Baseline Follow up (4-year)

Executive Functioning
Stroopa 28 (18.25 – 42) 37.5 (22.75 – 63.75)

TMT deltab 100 (70 – 183) 133 (71 – 182)
Memory

WVLT Immediate recallc 17 (14 – 21) 15 (12 – 18)
WVLT Delayed recallc 4 (3 – 6.75) 3.5 (2 – 5)
Visual association test 12 (11 – 12) 11 (9 – 12)

MMSEd 27 (26 – 27) 28 (25.25 – 29)

Data is represented as median (Q1 – Q3).
a Interference time to complete (seconds).
b Time difference between Trial Making Test part A and B
c 15-Word Verbal Learning Test
d Mini mental state examination.

Because the scale for each test was different, the scores were first z-scored

and averaged into a compound executive, and compound memory scores, and

subsequently combined into a compound overall score. Follow-up scores were

z-scored using the mean and standard deviation of the sub-scores at baseline,

and then averaged into compound executive and memory scores, which were

subsequently combined into compound overall scores. Delta cognition scores
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were defined as the difference between baseline compound scores and follow

up scores. Additionally, global cognitive functioning was assessed using the

MMSE, and the difference between baseline and follow-up was used as an ad-

ditional measure of cognitive decline. This resulted in a total of four cognitive

measures, 1) compound overall, 2) compound executive functioning, 3) com-

pound memory, 4) MMSE, for which we study the predictive value of baseline

MRI data on cognitive measures at baseline and on the decline after follow-up.

5.2.9 Group lasso prediction

To make predictions about baseline scores and future cognitive decline we used

a group lasso model. The group lasso fits a regression model with an L1 penalty

between groups of predictors and an L2 penalty within groups. This results

in a regression model that is sparse between groups of predictors, i.e., some

groups are left out of the model, and dense within groups, i.e., if a group is

included all predictors have a non-zero β-value. The out of sample predictive

performance was determined with 5-fold cross-validation, that we repeated 10

times in order to reduce variance. The amount of shrinkage, determined by

the penalty parameter λ, was chosen with 5-fold nested cross-validation within

each training set. Age, gender, and randomisation factor from the original

DANTE study were regressed out of the predictors for each training set, and

applied to each test set.

5.2.10 Measuring predictive performance

As a measure of model fit we used cross validated R2 (R2
cv):

R2
cv = 1− PRESS

TSS = 1−
∑n

i=1(yi−ŷi)2∑n
i=1(yi−ȳ)2

Where PRESS is the predicted error sum of squares, and TSS is the to-

tal sum of squares. A R2
cv of 1 represents perfect out-of-sample predictions,

whereas a R2
cv of 0 represents random predictions. R2

cv is negative when PRESS

is larger than TSS, and thus predictions have larger error than the intercept-

only model.

The reported R2
cv was the mean over the 10 cross-validation repetitions.

For visualization purposes we selected the repetitions for which the R2
cv were

closest to the mean over the 10 repetitions.

To determine the significance of the results we used permutation testing.

We permuted the predicted outcomes to calculate the null distribution of R2
cv
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for each of the four cognitive decline measures, with 5000 random permutations,

including the original data order (Smyth and Phipson, 2010). For each random

permutation we determined the maximum over the four cognitive measures,

for baseline and follow up predictions, and compared our observed R2
cv values

to this distribution. This resulted in a p-value that is corrected for the eight

multiple comparisons.

Figure 5.1: Scatterplots for predicted scores versus observed scores. Observed
scores are z-scored compound scores at baseline (top), and at four year follow up
(bottom). Predicted values are multimodal MRI predictions with a group lasso
after cross-validation. MMSE = mini mental state examination. p-values are
family-wise error corrected over the eight tests. R2

cv = 0 represents intercept-
only level performance.

5.3 Results and Discussion

See figure 5.1 for the results. We did not find any predicted cognitive decline

score for baseline or follow up that was significantly above chance level. Predic-

tions were relatively closely centered around the mean, and were not predictive

for the actual scores.

In all cases, the predicted scores were slightly negatively correlated with the

actual scores, resulting in a negative R2
cv value. This counter-intuitive finding is

the result of using cross-validation. When a test set is removed from the entire

dataset the remaining training set is slightly biased in the opposite direction

of the test set. This effect is negligible in the case where good predictions can
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be made, but when poor predictions are made the effect becomes noticeable.

The inability to make above chance predictions is surprising, because similar

methods applied to Alzheimer’s disease (Schouten et al., 2016, 2017; de Vos

et al., 2018), fronto-temporal dementia (Bouts et al., 2018), and mild cognitive

impairment (Apostolova et al., 2014) resulted in accurate classification.

There are some limitations that could partly explain these findings. The

data sample had a restricted range of cognitive scores at baseline; only partic-

ipants with an MMSE between 21 and 27 were admitted to the study. These

criteria were chosen so that participants were at risk for cognitive decline in

the near future. However, this selection criteria may have limited the variance

at baseline, which made it more difficult to construct a model that is sensitive

to the range of cognitive scores.

Another limitation is the relatively long follow up period of four years. A

previous study could make predictions about cognitive decline after 18 months

(Woodard et al., 2010), but a four year follow up may be too far in the future

to make accurate predictions. Furthermore, the long follow up time made

the dropout rate relatively high; only 102 out of 205 participants had four

year follow up. Additionally, it is likely that people who had serious cognitive

decline during the follow up time were more likely to drop out than people

who remained stable, which may have reduced the variance of cognitive decline

scores.

5.4 Conclusion

In this study we used a variety of MRI measures, that have proven to suc-

cessfully classify dementia, to predict future cognitive decline after a four

year follow-up. We derived grey matter density and subcortical volumes from

anatomical MRI, fractional anisotropy and mean diffusivity from diffusion MRI,

functional connectivity from resting state functional MRI, and small vessel dis-

ease markers. These measures were combined with a group lasso regression in

a machine learning approach to predict decline in overall cognition, executive

functioning, and memory. We found no predictive value for the combination of

MRI measures for any future cognitive decline measure. Also, cognitive scores

at baseline could not be predicted from the MRI data. Overall, these results

suggest that MRI measures that can successfully distinguish patients from con-

trols, are not necessarily predictive for cognitive scores in a mildly cognitively
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impaired population, or for cognitive decline after a four year follow-up.
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6.1 Alzheimer’s Disease Classification

In part I of this thesis we have explored various approaches to MRI based

classification of AD. In chapter 2 we used features from structural MRI, dif-

fusion MRI, and resting-state functional MRI to classify AD. We found that

using gray matter density from structural MRI alone resulted in good classifi-

cation performance. When we combined measures from other modalities, the

classification performance increased further, with measures from each modality

included in the best performing combination.

In chapter 3 we used the same dataset to explore diffusion MRI in more

detail. Instead of region-wise, we used voxel-wise diffusion MRI measures, that

were registered with tract-based spatial statistics. This resulted in classification

performance that was similar to the performance of structural MRI. Further-

more, using independent component analysis to cluster the diffusion measures

to only 28 components resulted in similar or even slightly improved perfor-

mance. In this case however, combining multiple measures from diffusion MRI

did not improve performance further.

6.2 Early detection of cognitive impairment

While automatic classification of AD can be useful in a diagnosis setting, early

prediction is arguably more important for development of treatments. In part

II of this thesis we explored if MRI can also predict symptoms before they have

occurred.

In chapter 4 we had a sample of HCHWA-D pre-symptomatic and symp-

tomatic mutation carriers. This study aimed to explore if we can detect dif-

ferences between these groups and controls using a variety of diffusion MRI

measures. For the symptomatic patients, we found that each diffusion mea-

sure was able to detect extensive differences compared to controls. For the

pre-symptomatic group, none of the measures showed a significant difference.

The global diffusion measures showed a significantly different slope over age

for mutation carriers compared to controls, indicating a different course of the

diffusion measures as subjects grow older. Notably, the pre-symptomatic car-

riers resemble the controls on global diffusion measures, while the measures

deteriorate after subjects become symptomatic.

In chapter 5 we used successful techniques from part I of this thesis in an
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attempt to predict cognitive decline after a four year follow up in subjects at

risk for future cognitive decline. Successfully predicting which subjects are

most likely to decline in the future could help to determine whom to target

for possible treatments. In addition to structural, diffusion, and resting-state

functional MRI, we also used small vessel disease markers. However, our model

was not able to make predictions about future cognitive decline. While MRI

has proven to be very powerful in delineating groups that differ substantially

in cognitive ability, such as AD from controls, it may not be sensitive enough

to detect subtle differences that precede cognitive decline.

MRI is a powerful tool to reliably classify subjects with AD, but with the

same techniques, it is not possible to detect future cognitive decline in our

samples.

6.3 Cross-validation estimates of classification

performance

In chapters 2,3, and 5 we have used cross-validation. In this section I will

explain why cross-validation is used, and what some of its caveats are.

There is an important distinction between (1) model assessment, and (2)

model selection (Stone, 1974), and for both of these cross-validation can be

used.

Traditionally, model fitting uses the same observations to estimate the

model and to assess the model fit. When the number of predictors (p) is larger

than the number of observations, or the model allows for complex, non-linear

relations, there could be an infinite number of possible models that fit the data

perfectly. However, when the model becomes more complex than the true (un-

known) function underlying the data then the model will increasingly fit noise.

This is called overfitting. A model that is overfitted does not generalize well

to new observations, because it is fitted in a large part to noise. On the other

hand, when the model is too simple it won’t be able to fit the data well, this

is called underfitting. For (1) model assessment, we use generalization perfor-

mance measured with cross-validation; part of the data is left out, the test set,

and the remaining data is used for model fitting, the training set. Then, we

apply the fitted model to the test set to get an estimate of how well the model

works when applied to different data then it was trained on. To maximally use

the data we rotate the test set, such that all data has been part of the test set
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once.

However, when the number of predictors is large, or the model is flexible,

the training data can easily overfit on the training set, which results in poor

performance on the test set. Therefore we also want to do (2) model selection

of a model with an appropriate complexity within our training set. For this, we

can also use cross-validation. Within the training set, we perform an additional,

nested, cross-validation for many different model complexity levels, and select a

model complexity that performs well within the training set. Using that model

complexity level we can use the entire training set to fit a model, which can then

be applied to the test set. Because many model complexity levels may be tested

within the training set it is likely that the best-performing complexity level in

the training set depends in part on chance and does not generalize to the test

set. To mitigate this, Breiman et al. (1984) suggests choosing the least complex

model that performs within 1 standard error of the best performing model (1-

SE rule). This parsimonious approach favors simpler models over complex

models to avoid overfitting. However, this approach is arbitrary because there

is no guarantee that the model complexity does not become too low. Also, the

standard error within the training set cannot be estimated reliably. Therefore,

we have instead opted to use the best performing model complexity in the

training set to apply to the test set in chapters 2,3 and 5.

Cross-validation yields an estimate of the generalization performance that

is almost unbiased. The only bias that occurs is due to the training set being

smaller than the entire dataset. However, the estimated generalization perfor-

mance does have variance resulting from several sources (Dietterich, 1998):

• Random sample from a population

• Random errors in class labels (such as misdiagnosis)

• Random selection of the training data

• Randomness in the learning algorithm (such as starting seed)

By repeating the cross-validation procedure multiple times, using a different

train/test set partitioning, and a random seed every time we can average out

the latter two sources of variance. This is repeated cross-validation. The first

two sources of variance remain. Unfortunately, there are currently no methods

that allow accurate estimation of this variance, which makes it difficult to per-

form statistical tests between two cross-validated generalization performance
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estimates. For example, in chapter 2 we found improved performance for the

multimodal model compared to the gray matter density, but we are not able

to estimate the likelihood that this difference results from variance caused by

random sampling, and random errors in class labels, or if it is a true difference.

We did perform repeated cross-validation to average out the variance from a

random selection of the training data, and randomness in the learning algo-

rithm, and included the minimum and maximum classification performance

across these repetitions in chapter 2 (see Table 2.2). In chapter 3 we used

bootstrapping to estimate confidence intervals for classification performance

(see Table 3.2). However, the predicted outcomes that were bootstrapped all

depend on models fitted to largely overlapping training data. Therefore these

confidence intervals do not take variance from random samples from a popula-

tion and random errors in class labels into account and are therefore also not

suitable for making a statistical comparison between classification performance

of different measures. In chapter 5 we tested if the relation between predicted

cognitive decline and observed cognitive decline is stronger than chance lev-

els. For this purpose, it was not required to estimate the standard error of

the generalization performance, but instead, we could perform a permutation

test to compare the observed relation to the relation under the null hypothesis.

In chapters 2 and 3 a permutation test could have been performed, but this

would test the classification performance against chance levels instead of mak-

ing a comparison between competing modalities, while the purpose of these

studies was to explore the latter.

A recent study estimates the size of the error bars of cross-validated ac-

curacy (Varoquaux, 2018). In a simulation experiment Varoquaux shows that

with a true generalization accuracy of 75%, the 90% confidence intervals (CI)

are as large as 75% +/- 10% with a sample size of 100. With a sample size of

200 to 300, these CIs are about 75% +/- 5-6%. To explore how these results

generalize to the findings in this thesis I replicated Varoquaux’s simulations ad-

justed to resemble the conditions of this thesis. Specifically, instead of accuracy,

I used AUC. I tuned the distances between the simulated class distributions

in such a way that the classifier reached an AUC of approximately 90% for a

sample size of 250. Instead of balanced classes, I simulated the same 77/173

ratio as we have in chapters 2 and 3, and I used 10 repeated 10 fold cross-

validation. The resulting 90% CI is 5.0% below and 4.3% above 90%, similar

to the findings of Varoquaux (2018) (see Appendix A for details).
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The implications of this for our research is that we should interpret the

differences between measures with similar classification performance with care.

In chapter 2 we have found several multimodal combinations with substantial

performance improvement over gray matter density alone. We can be reason-

ably confident that there is a performance improvement from using multiple

modalities. However, because several multimodal combinations perform very

similarly, the differences between them are likely due to chance. In chapter 3 we

also see very similar performance between all TBSS measures, ICA clustered

measures, connectivity graph, and all measures combined. The differences be-

tween these are likely within the margin of error, which makes it difficult to

differentiate between these methods based on classification performance. No-

tably, class imbalance in our simulated dataset results in very similar confidence

intervals compared to using balanced data, suggesting that performance is ro-

bust to imbalanced data with a ratio of over 2 to 1. This finding is confirmed

by Samper-González et al. (2018), who find that moderately imbalanced classes

(2 to 1) does not impair performance, but very strong class imbalance (6 to 1)

impairs performance.

6.4 Strengths and limitations

A major strength of our research is that we took much care to ensure the

generalizability of our results by employing a repeated nested cross-validation

approach. An important pitfall in neuroimaging research is using the same data

to both construct a hypothesis, and to test the hypothesis, which is referred to

as circular analysis or double dipping (Kriegeskorte et al., 2009). In machine

learning research this is often expressed as a spill-over from the test data to the

training procedure, for example, by performing feature selection that is based

on class labels before cross-validation. A slightly more innocent example is to

use performance on the test set to estimate the model complexity. We have

however used a nested cross-validation approach, where we estimate the model

complexity within the training set.

Despite our precautions, one limitation of our research involves this pit-

fall of spill-over from information between training and test sets. In chapter

2 we used a step-wise procedure to combine features, based on the classifi-

cation performance in the previous step. However, in order to perform each

next step it was first required to assess the performance of the previous step,
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which required the class labels. The classification performance of the ultimate

combination is therefore almost certainly an overestimation. We do however

see that the combination of the best single measure, gray matter density, with

each of the remaining measures, improves classification performance by roughly

the same amount. Therefore we still support the overall conclusion that multi-

modal MRI likely has performance benefits over single modality MRI, but we

recommend against using a step-wise procedure. Since this research we have

instead opted for using a (sparse) group lasso in chapters 3 and 5 to com-

bine features. The (sparse) group lasso selects groups of features automatically

within a single model fitting procedure and therefore eliminates the need to

explore all combinations of features based on their performance.

Another strength of our research is the data samples that we had access to.

A recent review on neuroimaging based classification of AD (Rathore et al.,

2017), where our research from chapter 2 was featured, illustrated that the

majority of AD classification research uses the Alzheimer’s disease neuroimag-

ing initiative (ADNI; Weiner et al., 2015) dataset. ADNI is a valuable, rich,

multi-center dataset, but it is essential that methods are validated on different

datasets as well. In this review, our dataset from Graz University was the

largest multimodal MRI AD/control dataset that did not come from ADNI.

In chapter 4 we studied a dataset of rare HCHWA-D mutation carriers.

Because these mutation carriers are almost certain to develop symptoms sim-

ilar to cerebral amyloid angiopathy (CAA), this allowed us to look into the

future of the pre-symptomatic carriers. Furthermore, the symptomatic carriers

are younger than typical CAA patients, which allowed us to study CAA like

symptoms without the confounding effect of age. The rareness of the muta-

tion imposed the greatest limitation for this research. While our sample is the

largest HCHWA-D sample on which diffusion MRI has been extensively studied

to date, the power was still limited.

We studied another interesting dataset in chapter 5. Here we aimed to

predict cognitive decline after a four-year follow-up. This was a challenging

research question because this requires a model that is very sensitive to subtle

differences that indicate a future cognitive decline. Using proven MRI tech-

niques, with relatively limited sample size, this was not feasible. A limitation

of this sample was the restricted range of cognitive ability at baseline. This

choice was made because these people were expected to be at risk for future

cognitive decline. However, this may have limited the variance at baseline re-
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quired to differentiate between people with a greater or smaller risk of future

cognitive decline.

6.5 Future research

In our research, we show that accurate AD classification with MRI is possible

in a sample of AD patients and controls. To be useful in a diagnostic setting

it is important that the models are not only sensitive but also specific to AD.

Future research could explore how the models respond to the MRI scans of

people with different types of dementia, or who are in an earlier stage of AD

and extend the models to perform multi-class differential diagnosis.

There is limited information to be gained by continuing the path of AD

classification with slightly different MRI features or classification models, espe-

cially when applied to thoroughly explored datasets such as ADNI. The rela-

tively large, but difficult to estimate, errors for samples smaller than thousands

make it nearly impossible to differentiate between the majority of similarly per-

forming measures. Instead, the focus should be on the more difficult task of

early prediction. In our research, we have experienced that this is going to

require more than was needed for AD classification. To have a fighting chance

at accurate early prediction models with clinical applications, we require large

diverse multi-center datasets. An extremely promising initiative that is going

to enable this is the UK Biobank (Miller et al., 2016), who aim to acquire high-

quality multimodal imaging data from 100.000 participants and track their

health records.

Another promising development in the research field is deep learning. Deep

learning has been extremely successful in many fields of machine learning, in-

cluding computer vision and image processing (Lecun et al., 2015). In addition

to potential performance improvements over traditional machine learning tech-

niques (Vieira et al., 2017), deep learning models can be trained to require

little or no preprocessing of MRI data, which makes them very suitable for fast

application to new data. Deep learning models are generally complex and have

many tunable parameters. It is therefore especially important that datasets

large enough to train these models become available.

Another important future research field is clustering. In supervised learning,

we are always limited by the accuracy of labels. While great effort is put into

the construction of reliable criteria for diagnosis, e.g. by the National Institute
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of Aging and Alzheimer’s Association (NIA–AA; McKhann et al., 2011), there

always remains some uncertainty in the labels. Also, there could be subtypes

within existing diagnoses. While the interpretation of clustering is particularly

challenging, it has great potential to unravel these unidentified classes.

79





Appendix A

Cross-validation confidence intervals

In section 6.3 I discussed the unknown confidence intervals of cross-validation

estimates of generalization performance. Here I have replicated the simulation

by Varoquaux (2018). The goal of this study was to estimate the confidence

intervals of a typical neuroimaging study that uses machine learning predic-

tions. In order to see how these findings apply to our research I have adjusted

the simulation to resemble the situation in this thesis more closely. Specifically,

instead of using accuracy, I use AUC. To allow this, I used the distances to the

decision boundary for the support vector classifier instead of predicted class.

The separation between classes have been tuned to approximate 90% AUC,

whereas the original study used 75% accuracy. Furthermore, as we used re-

peated cross-validation in our studies, I used repeated 10 fold cross-validation

with 10 repeats instead of leave-one-out. This allows an additional comparison

between repeated cross-validation that we used, and repeated hold-out testing

that was used in the original simulation.

The resulting 90% confidence intervals are similar in size, but slightly skewed

to the left due to a ceiling effect of the AUC compared to the results in Varo-

quaux (2018). The differences between repeated 10-fold cross-validation and

repeated hold-out testing are small (see Figure A.1a).

To explore how these findings generalize to unbalanced data, I have repeated

the simulation with a 77/173 ratio between classes, the same as the ratio in

chapters 2 and 3. The resulting confidence intervals are slightly wider. In

the case of 250 samples they increase from [−4.7%, 4.1%] to [−5.0%, 4.3%] (see

Figure A.1b).
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Figure A.1: Differences between validation performance on a sample of 10000
and estimated generalization performance by 10 repeats 10 fold cross-validation
or 50 repeats 80/20 split hold-out validation. The decision function of a support
vector classifier was used without tuning hyperparameters. Whiskers represent
5th and 95th percentile values, and the black vertical stripe indicates the me-
dian. The simulation was repeated 1000 times for sample size of 1000, and
10000 times for smaller sample sizes.
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Samenvatting

Dementie is een verwoestende ziekte waar wereldwijd miljoenen mensen aan lei-

den. De meest voorkomende oorzaak van dementie is de ziekte van Alzheimer.

Vele pogingen om een behandeling tegen alzheimer te ontwikkelen zijn tot op

heden niet succesvol gebleken. De medicatie die goedgekeurd is voor de be-

handeling van alzheimer bestrijdt slechts symptomen. Het is mogelijk dat het

onderzoek naar effectieve behandelmethoden wordt bemoeilijkt doordat deel-

nemers aan onderzoek reeds in een stadium van de ziekte verkeren waarin de

hersenschade onomkeerbaar is. Om een kans te hebben om effectieve behan-

delingen te ontwikkelen is het belangrijk om dementie in een vroeg stadium te

detecteren.

Hoe de ziekte van Alzheimer precies ontstaat is niet bekend, maar er zijn

sterke vermoedens dat de eiwitten amyloid β (Aβ) en tau een direct verband

hebben met de neurodegeneratie in alzheimerpatiënten. De hoeveelheid van

deze eiwitten verklaart echter slechts een beperkt deel van de variantie in cog-

nitieve achteruitgang. Bovendien zijn therapieën gericht op het afbreken van

Aβ niet effectief gebleken als behandelmethode tegen de ziekte van Alzheimer.

Om alzheimer betrouwbaar te diagnosticeren zijn er verschillende biomark-

ers in gebruik. Deze biomakers zijn ruwweg in te delen in twee groepen: 1)

biomarkers die gericht zijn op het meten van Aβ en 2) biomarkers die gericht

zijn op het meten van neuronale schade, welke sterk samenhangt met tau. Neu-

ronale schade kan worden afgeleid van het metabolisme van het brein, welke kan

worden gemeten met fluorodeoxyglucose positron emission tomography (FDG-

PET). Recent kan ook de hoeveelheid Aβ gemeten en gelokaliseerd worden

door middel van positron emission tomography (PET) met de tracer Pitts-

burgh Compound-B.

Nadelen van PET zijn de hoge kosten en de noodzaak om een radioactieve

tracer toe te dienen. Een goedkoper en minder invasief alternatief is mag-
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netic resonance imaging (MRI). Structurele MRI (sMRI) kan worden toegepast

om hersenvolume te meten, wat een maat geeft van neuronale schade. Met

functionele MRI in rusttoestand (rs-fMRI) kunnen de functionele verbindingen

tussen hersengebieden bestudeerd worden. Met diffusie MRI kunnen afwijkin-

gen in de witte stof en de structurele verbindingen tussen hersengebieden in

kaart worden gebracht.

Traditioneel alzheimeronderzoek is voornamelijk gericht op het vinden van

groepsverschillen tussen patiënten en controles. Deze vorm van onderzoek is

waardevol voor het verkrijgen van inzicht in hoe de ziekte zich in de hersenen

ontwikkelt. Hierdoor is bekend dat bijvoorbeeld de hippocampus in het bijzon-

der aangedaan is bij patiënten met de ziekte van Alzheimer. Recent onderzoek

is deels verschoven naar individuele classificatie. Hierbij wordt er gebruikge-

maakt van machine learning om patronen in de MRI data te zoeken die specifiek

zijn voor een ziektebeeld. Het verschil met traditioneel onderzoek is dat er hi-

ermee uitspraken gedaan kunnen worden over een individu, bijvoorbeeld voor

automatische diagnose, of voor voorspellingen over toekomstige ontwikkelingen.

In deel I van dit proefschrift hebben we verschillende MRI modaliteiten

gebruikt voor individuele classificatie van alzheimerpatiënten. In hoofdstuk 2

gebruikten we sMRI, diffussie MRI, en rs-fMRI om alzheimerpatiënten te classi-

ficeren. Door gebruik te maken van grijze stof dichtheid konden we de patiënten

betrouwbaar onderscheiden van controles. Wanneer we deze maat combineer-

den met maten van andere MRI scans namen de classificatieprestaties toe. De

combinatie die het beste presteerde maakte gebruik van maten die afkomstig

waren van alle drie de gebruikte MRI scans. In hoofdstuk 3 gebruikten we

dezelfde dataset om diffusie MRI in meer detail te bestuderen. In plaats van

gebieden op te delen in anatomische regio’s hebben we de scans op voxelniveau

geanalyseerd. De behaalde classificatieaccuratesse was hiermee vergelijkbaar

met sMRI. Door gebruik te maken van independent component analysis kon de

data gereduceerd worden tot 28 componenten, zonder op classificatieprestaties

in te boeten. Het combineren van verschillende diffusie MRI maten zorgde er

niet voor dat de prestaties toenamen.

In deel II hebben we ons gericht op vroegere vormen van cognitieve achteruit-

gang. In hoofdstuk 4 onderzochten we een steekproef van pre-symptomatische

en symptomatische dragers van een gen dat de Katwijkse ziekte (hereditary

cerebral hemorrhage with amyloidosis, Dutch type [HCHWA-D]) veroorzaakt.

Dragers van dit gen zullen vrijwel zeker een vorm van amylöıdangiopathie on-
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twikkelen. We vergeleken deze gendragers met controles. We vonden hier

sterke globale verschillen in diffusie MRI tussen symptomatisch patiënten en

controles. Tussen pre-symptomatische patiënten en controles vonden we geen

significante verschillen. Bovendien vonden we een verschil tussen patiënten

en controles in het verloop van diffusiematen wanneer de proefpersonen ouder

worden. Terwijl jonge gendragers nauwelijks verschilden van jonge controles,

bestonden deze verschillen in toenemende mate bij oudere proefpersonen.

In hoofdstuk 5 onderzochten we een steekproef van ouderen met een ver-

hoogd risico op cognitieve achteruitgang. We gebruikten de MRI data van deze

proefpersonen om een voorspelling te doen van hun cognitieve achteruitgang

vier jaar na afname van de scan. Het voorspellen van toekomstige cognitieve

achteruitgang is belangrijk voor de selectie van proefpersonen om mogelijke

nieuwe behandelingen te testen. Om de voorspelling te maken gebruikten we

de maten die effectief waren in het classificeren van alzheimer in deel I. Naast

structurele, diffusie, en resting state functionele MRI gebruikten we tevens

markers voor afwijkingen in de kleine bloedvaten. Ondanks de goede prestaties

van deze methoden bij het classificeren van alzheimer waren deze niet in staat

om toekomstige cognitieve achteruitgang te voorspellen. Mogelijk is de gevoe-

ligheid van MRI onvoldoende om de subtiele verschillen te detecteren die duiden

op toekomstige achteruitgang.

De studies tezamen laten zien dat MRI een krachtige en veelzijdige meth-

ode is waarmee betrouwbare individuele uitspraken gedaan kan worden over

patiënten in relatief vergevorderde stadia van dementie. We laten zien dat met

name maten van structurele en diffusie MRI goed in staat zijn om patiënten

van controles te onderscheiden, en dat het combineren van verschillende MRI

modaliteiten de prestaties kunnen verbeteren. Verder laten we zien dat dif-

fusie MRI een geschikte methode is voor zowel individuele classificatie van

alzheimerpatiënten, alsmede voor het detecteren van groepsverschillen tussen

symptomatische HCHWA-D patiënten en controles. Dezelfde methodologie is

echter niet in staat om ook verschillen te bespeuren bij pre-symptomatische

patiënten. Daarnaast is het voorspellen van toekomstige cognitieve achteruit-

gang een meer uitdagend probleem, waar de huidige methoden niet gevoelig

genoeg voor zijn.
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