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A B S T R A C T

Understanding the water use of power production is an important step to both a sustainable energy transition
and an improved understanding of water conservation measures. However, there are large differences across the
literature that currently present barriers to decision making. Here, the compiled inventory of the blue water use
of power production from existing studies allowed to uncover the characteristics of water use and to investigate
current uncertainties. The results show that photovoltaics, wind power, and run-of-the-river hydropower con-
sume relatively little water, whereas reservoir hydropower and woody and herbaceous biomass can have an
extremely large water footprint. The water consumption of power production can differ greatly across countries
due to different geographic conditions. Only a few studies provided the values for the influencing factors of
water use, such as the capacity factor. Values that are reported came mainly from assumptions and other lit-
erature rather than direct measurement. Omitting a life cycle stage may lead to significant underestimations.
Water scarcity is attracting more attention, but the few existing results are not useable for a regional comparison
due to data gaps and inconsistent measurements. In the future, a clear and detailed definition of the water
footprint and system boundary of power production is essential to improving comparisons and energy systems
modelling.

1. Introduction

Electric power production is a major driver of water stress world-
wide [1,2]. This situation is likely to be exacerbated due to growing
energy demands and climatic change [3–6]. In recent decades, techni-
cally plausible energy transition pathways have been designed to meet
climate goals, but a concurrent analysis of the implications for water
resources is mostly lacking. In some scenarios, emission mitigation
benefits drive increased pressure on water resources [7,8]. For instance,
many climate stabilization scenarios rely on bioenergy with carbon
capture and storage (BECCS) as a negative-emission technology, but it
is a very water-intensive option [9,10]. Rising water stress is of in-
creasing concern to both renewable [11,12] and non-renewable power
production [13,14]. Further energy system planning would greatly
benefit from the incorporation of water stress perspectives and there are
increasing efforts to include water resources as significant components
in energy transition modeling [15–18]. The existing scientific literature
provides a variety of water use estimates for various energy

technologies and life cycle stages. However, many of these estimates
differ widely or are even conflicting, giving an unclear picture of the
energy-water nexus.

The use of water in the electricity system can be assessed using
multiple metrics. The most common measure is the volumetric water
footprint. It includes direct (i.e. water use for cooling at the point of
generation) and indirect water use (i.e. upstream water use in the
supply chain of fuels or equipment). It is defined by the volume of
freshwater used by a consumer or producer over the entire supply chain
[19,20]. In recent years this concept has been extended to impact-or-
iented water footprints that assess not just the volume of water use but
the potential environmental impacts [21]. The impact-oriented ap-
proach additionally considers regionalized impact indicators as part of
traditional impact assessment frameworks [22]. Although both
methods have been applied to studies on the water use of power pro-
duction, most existing studies consider only the volume of water use of
power production, which is therefore the main focus of our study.

Previous reviews on the water use of power production have
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focused on the United States (U.S.) [23–25]. Global assessments [26,27]
often rely on data from the U.S. and assume that generation in other
countries have similar water use characteristics. A global overview of
the differences in water use of power production is currently lacking.
Water use covering the life cycle of power production have been used
for estimating water use at the global [26–28] and country level
[29–32]. For power production, the life cycle of water use can be split
into fuel cycle, plant operation, and plant infrastructure stages. Ana-
lyses typically focus on the operational stage, distinguishing the water
use by different cooling technologies and energy types. However, there
are other important factors driving water use including fuel type, power
plant type, and environmental conditions.

Although there must be uncertainties in the water use of power
production, these are often not estimated in studies generally. This is
often due to a lack of information on how to assess these uncertainties.
This systematic literature review serves to investigate the above
knowledge gaps by tearing apart the differences between previous
studies, and presenting a picture of the current state of knowledge.

2. Methodology and data

Estimates from the literature were gathered following the PRISMA
guidelines [33]. The meta-analysis focuses on the variations in water
use estimates across technologies and locations, and the completeness
of data reported across papers. In terms of the type of water uses, this
study focuses on blue water (i.e. the use of surface or groundwater, such
as irrigation water for biomass). In the framework of volumetric water
footprints, blue, green (soil moisture), and grey water (hypothetical
volume needed to dilute pollutants) are often added as if they were
equivalent. In contrast in the life cycle assessment (LCA) community,
green water use and water pollution are assessed through separate
impact categories due to their fundamental differences [21], and are
beyond the scope of this study. The gathered data represent two types
of blue water use: withdrawal and consumption, with more emphasis
on the latter. The former reflects the volume of water diverted from a
water source for use, while the latter refers to the volume of withdrawn
water not returned to the source due to evaporation, transpiration or

incorporation into products [23,34–36].
The database search was conducted in April 2019 using Web of

Science and ScienceDirect without applying a time restriction. Search
terms related to water footprints were used: water footprint, water use,
water consumption, water withdrawal, water demand, water requirement, in
combination with other terms representing both renewable and non-
renewable power production: renewable, non-renewable, fossil fuel, coal,
oil, natural gas, shale gas, nuclear, hydropower, biomass, biofuel, geo-
thermal, wind, solar, photovoltaic and electricity. The full list of terms and
their relevant variations, together with the numbers of results for each
stage of screening, are shown in Appendix B.

This search yielded 910 publications, which were filtered depending
on whether the following inclusion criteria were met: (1) the value of
the water use during the entire life cycle or a specific life cycle stage
was reported; (2) the type of water use (consumption or withdrawal)
could be distinguished; and (3) the information on the energy type was
provided. Snowball sampling was also used. The final sample included
93 publications (see Fig. A1 in Appendix A for the full selection pro-
cesses).

Data were extracted from publications either directly from tables, or
from figures using WebPlotDigitizer, version 4.1. Common categories of
analysis included: the type of energy (e.g. natural gas), energy sub-type
(e.g. shale gas), type of water use (i.e. consumption or withdrawal), and
the life cycle stage (e.g. fuel cycle). Extracted information on other
factors included the country of assessment (e.g. Canada), cooling type
(e.g. dry cooling), generator technology (e.g. combined cycle), con-
version efficiency, capacity factor, lifetime, and environmental condi-
tions (e.g. solar irradiation). The full dataset and influencing variables
are shown in Appendix C and Appendix D, respectively.

Due to data limitation and inconsistency for impact-oriented water
footprints (namely water scarcity footprints), these are discussed se-
parately (Section 4.2). Generally, studies estimated blue water use
based on the values of the influencing factors, such as the conversion
efficiency. However, the effects of such factors on water use lack
quantitative assessment. In this study, correlation analysis and linear
regression are used to investigate the relationships between key factors
and water use of power production. As for linear regression, this study

Fig. 1. Blue water consumption over the life cycle across energy generation types. Water consumption is visualized on a log scale. The annotation mdn gives the
median value of water consumption for each fuel type. Circles represent the outliers, while the dots represent the average for each power type. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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investigates the relations between operational water consumption and
its influencing variables (cooling type and conversion efficiency) for
five power types (coal, natural gas, oil, nuclear and biomass).

3. Results

3.1. Overall results

Blue water consumption and withdrawal for the total life cycle were
reported in 32 studies (34% of sample, see Fig. 1 for consumption and
Fig. A2 Hydrol Earth Syst Sci for withdrawal). As expected, there is a
large range in water uses across energy types. For instance, the median
life cycle water consumption for biomass is 8.5× 104 L/MWh, one to
three orders of magnitude larger than other types. Generally, biomass
can be classified into four groups, including wood and woody biomass,
herbaceous biomass, aquatic biomass, and animal and human waste
biomass [37]. Previous studies on the water use of biomass power fo-
cused on the first two above-mentioned groups, as they are the main
feedstock of biomass power. Hence, the latter two biomass types are not
included in this study. The extreme estimate represented the large re-
quirement for irrigation of herbaceous perennials in the arid South-
western U.S [24]. Although the water consumption for wind power is
widely thought to be negligible [14,28,38–40] and it is characterized by
the lowest median water consumption, it can still reach 700 L/MWh if
direct and indirect material inputs for wind power are included using
hybrid LCA (see detailed discussion in section 4.1) [41]. Similarly for
photovoltaics (PV), the outliers of life cycle water consumption were
caused by using a hybrid method [41,42]. For geothermal energy, the
only outlier resulted from the large belowground water consumption
for an enhanced geothermal system (EGS), in which case 10% below-
ground water loss during operation was assumed [43]. However, as the
belowground water consumption is for maintaining the reservoir, the
water does not need to be of high quality. If the water used for be-
lowground operation was not freshwater, then its life cycle water
consumption would decrease dramatically from 7037 L/MWh to just
185 L/MWh.

Another point to note is the generally high variability in water
consumption across power plants of the same type. Coal power plants
has relatively low variabilities in life cycle water consumption, whereas
hydropower has a marked variability, with a coefficient of variation of
634% (Table A2). Local estimates are especially important for biomass,
oil power and hydropower. For water withdrawal, the ranking of en-
ergy technologies based on the median or average values remains the
same, except for natural gas which ranks higher than geothermal en-
ergy in terms of water withdrawal (Fig. A2). The range of water with-
drawal is generally much wider than of consumption due to large
withdrawal differences between once-through cooling and other
cooling types. Water consumed during once-through cooling is gen-
erally negligible (around 1%).

3.1.1. Water use of fuel supply
The water uses of fuel supply reported in this section only apply to

fuels for electricity generation, that is: coal, natural gas, oil, nuclear,
and biomass, as shown in Fig. A3. The water uses here refer to the blue
water used for fuel supply, i.e. extraction (for biomass, it refers to crop
cultivation), processing and transport. For biomass power, the key stage
of life cycle water consumption is the fuel cycle due to the considerable
water input in crop cultivation [44,45]. Herbaceous and woody bio-
masses are separately examined in terms of the fuel cycle, as they have
different water demands for growth. The median water consumption for
herbaceous biomass (7.6× 104 L/MWh) is much larger than that of
other fuel types by more than two orders of magnitude, but still much
smaller than that of woody biomass (8.3× 105 L/MWh). Within bio-
mass, water consumption varies greatly, from 7200 L/MWh [46] to
2.8×107 L/MWh [45]. An exception excluded in this figure is Mann
and Spath [47] where hybrid poplar was assumed to be rain-fed (i.e., no

irrigation water is used). In terms of fuel cycle, natural gas has the
lowest median water consumption (128 L/MWh), lower than that of
nuclear (156 L/MWh) and coal (231 L/MWh). Within natural gas, there
are three fuel sub-types: conventional gas, coal-bed methane and shale
gas, with median consumptions of 60 L/MWh, 70 L/MWh, and 222 L/
MWh respectively. Water use in fracturing rock for shale gas explains
the large volume (65% of the median variation), with the remaining
from indirect water use in the supply chain (33% of the median var-
iation) [25,48]. Oil is a large water consumer at the fuel cycle, with
median water consumption of 891 L/MWh for conventional and
1658 L/MWh for unconventional oil (oil sand and oil shale) [26,35].
Studies generally assume that water withdrawal in the fuel cycle is
equal to water consumption in the fuel cycle [25,35,49–52].

3.1.2. Operational water use
The water uses here refer to the blue water used in the operational

process of power plants. Studies typically focus on cooling systems, as it
accounts for most of the operational water use. Hereinafter, cooling
water consumption refers to the blue water evaporated during opera-
tion for cooling purposes. Water consumption is reported first.
Hydropower is the largest water consumer during the operational phase
(median= 5.1× 104 L/MWh), one to three orders of magnitude larger
than that of other types (Fig. A4). Large differences exist within hy-
dropower, ranging from 0 [53,54] to 1.2× 108 L/MWh [12]. Most
studies estimated water consumption based on the gross water eva-
poration from reservoirs, which changes as a function of the reservoir
surface area. According to Demeke et al. [53] and Liu et al. [54], the
gross water consumption was regarded as zero for those hydropower
stations running without reservoirs (i.e. run-of-river plants). Similarly,
for plants running with reservoirs, evapotranspiration was assumed to
occur from the same area prior to the establishment of the reservoir
[55]. Taking this into account, some studies calculated the net water
consumption by subtracting the evapotranspiration before the dam
construction from the gross water evapotranspiration [12,35,56–58].
These studies show that net water consumption is on average 54% of
the gross water consumption. However, because reservoirs offer mul-
tiple purposes, such as water supply, flood control, and navigation,
some studies suggest that for a fair comparison with other energy types
the impacts of the reservoir should be allocated among its multiple
purposes [12].

A once-through cooling system is a technically simple system, which
requires large amounts of water withdrawal and directly returns most
of that water to its source. In closed-loop (wet tower) cooling system,
water goes through a cooling tower where some of the water is con-
sumed through evaporation. Closed-loop cooling generally withdraw
less but consume more water than once-through cooling. An air cooling
system (dry cooling), uses air-cooled condensers for steam cooling and
can avoid evaporative water losses [59]. For coal, extremely large op-
erational water consumption was generally caused by closed-loop
plants with low conversion efficiency or with carbon capture equipment
[24,25,60,61]. Once-through cooled units may also have high water
consumption rates, driven by low electricity output and large incoming
flows of cooling water in unique locations [60,62].

In terms of water withdrawal, nuclear is a large water withdrawer,
with a median value of 2.67×104 L/MWh (see Fig. A5). Compared to
other thermal power plants, nuclear plants generate steam at lower
temperatures and pressure for operational safety, and consequently, are
less thermally efficient and withdraw more cooling water per unit of
electricity [63]. The median value for oil is much larger than for coal
and gas because studies on oil mainly focused on wet cooling tech-
nology, especially once-through cooling [9,64]. PV plants may with-
draw a considerable amount of water for mirror washing, but in prac-
tice, PV panels are seldom washed by operators [25].

Fig. 2 and Fig. A6 present detailed values for water consumption
and water withdrawal for different cooling technologies, indicating that
water uses of operation show greater agreement when grouped
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according to cooling types as opposed to power types. For coal, natural
gas, oil, nuclear and biomass, power plants with closed-loop cooling
technology are the largest water consumers, while plants with once-
through cooling technology are leading water withdrawers. For con-
centrating solar power (CSP) and geothermal, water withdrawal was
widely assumed to be equal to water consumption at the operational
stage [9,24,25,34,65–67].

3.1.3. Water use of plant infrastructure
The water uses of plant infrastructure refer to the blue water used to

manufacture each material input of power plants, with the indirect blue
water embodied in material inputs also included. The water use of plant
infrastructure was often neglected due to its small proportion in the
total life cycle for most power types. However, this does not apply to all
types. As shown in Fig. A7 and Fig. A8, large amounts of water con-
sumption and withdrawal are required for the plant infrastructure of
CSP. PV can consume more water than CSP, reaching up to 794 L/MWh
if the PV material is crystalline silicon [25]. Wu et al. [68] indicated
that coal thermal power plant requires significantly more water for
infrastructure than natural gas combined cycle plant. According to our
study, coal thermal plant's infrastructure is the largest water user
among all fuel-powered thermal plants. Nuclear power has the lowest
water consumption per unit of power production due to the high
electricity output over generally longer lifetimes.

3.1.4. Water use of carbon capture and storage
Carbon capture and storage (CCS) heavily influences the water use

of thermal power plants [69–73]. The water uses of CCS refer to the
additional blue water used due to the addition of the CCS system. All
estimates related to CCS adopted by natural gas and biomass power
were available for combined cycle cooling only. Due to the additional
water requirement for CCS equipment and the loss in operation effi-
ciency [25], plants using CCS generally consume more water than the
counterparts without CCS (Fig. 3). Biomass also faces the challenge of
large water uses for the feedstock, while for BECCS, water use is in-
creased further by the CCS additions. Direct air capture (DAC) is an
emerging technique that capture the carbon dioxide from the ambient
air, and may potentially provide negative emissions. Yet, it may have

large water requirements due to the evaporative loss of the DAC unit
based on amine technology [10,74]. DAC water requirements may
change as the technology scales but further research is necessary.

3.2. Country-specific water use of power production

The number of studies per region and per power type are shown in
Fig. 4. Hydropower and coal are widely studied across many regions,
whereas geothermal lacks research in all regions except the U.S. The
water consumption and withdrawal of each life cycle stage for the
different countries studied previously are shown in Tables A4-A8. China
and the U.S. are the predominant focus, and their specific water uses of
power production are presented in Tables A9-A14 with the considera-
tion of both cooling type and generating technology (e.g. combined
cycle or steam turbine).

Studies on shale gas in China focused on the shale-rich Sichuan
basin [75,76], whereas U.S. shale plays are distributed more widely
[77,78]. The more complicated shale formations and water-intensive
fracturing techniques in China led to higher water consumption for
shale gas extraction and power production as compared to the U.S [79].
For nuclear power, the water use of the fuel cycle depends on the type
of mining activities and enrichment [25,52]. There are three types of
mining activities: in-situ leaching (ISL), surface mines, and under-
ground mines. There are also two types of enrichment: diffusion and
centrifugal enrichment. In France, Uranium used was mainly from un-
derground mines, and processed through the diffusion enrichment, both
activities generally consume less water than counterparts in the U.S.
Poinssot et al. (2014) indicated that the use of ISL techniques in France
could consume a larger amount of water than underground mines [52].
However, the water consumption of underground mines varies greatly.
For countries where underground mines consume more than 87 L/
MWh, the maximum of ISL techniques, the application of ISL instead
becomes a way to save water [25].

For both CSP and nuclear, China consumes more water than the U.S.
(Fig. 5). Direct normal irradiation (DNI) determines CSP operating ef-
ficiency [80]. As such 99% of U.S. CSP capacity is in three states: Ca-
lifornia, Arizona, and Nevada [81]. According to Refs. [24,25,65], DNI
of these U.S. regions ranges from 2400 to 2940 kWh/m2/year. In China,

Fig. 2. Blue water consumption of operation distinguished by power type and cooling type. The dots represent the average water consumption, while the line
segments represent the standard error of the average. The annotation mdn gives the median value. Hydropower, wind, and PV do not have cooling needs and are not
included. The two-letter codes are as follows: WC wet cooling, CL closed-loop cooling, HC hybrid cooling (combining wet and dry cooling), OT once-through cooling,
and DC dry cooling. Colours map to fuel type for the estimate. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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CSP plants are mainly in northwest and Wu et al. [82] indicated high
operational water consumption of a CSP plant in Gansu province. Ac-
cording to the World Solar Atlas [83], this area receives less DNI (a
maximum: 2193 kWh/m2/year) than in the U.S., contributing to a
lower operating efficiency and a higher water use. Geographic condi-
tions also influence the water uses of nuclear power [84]. In the U.S.,
operational water consumption for nuclear power plants with closed-
loop cooling could be more than 3000 L/MWh [23–25,60,66,85], with a
minimum of 1408 L/MWh. Even within China, differences in the nu-
clear power water requirement could reach 24% due to climate dif-
ferences between northern and southern regions [86]. Coal power
plants with closed-loop cooling consume more water in India and China
than in Canada and the U.S. Conversely once-through cooling consumes
less water in India and China than in Canada and the U.S.

3.3. Key factors influencing the water use of power production

Studies generally presented estimates of water uses without si-
multaneously presenting their influencing factors. Compiling the key
factors from the literature and analyzing their effects on water uses
allows for a better understanding of the drivers behind different water
uses.

Beyond cooling and power type there are other important factors
driving footprints. These can include the resource quality (e.g. heat

content of fuel), power plant specifications (e.g. conversion efficiency,
capacity factor, lifetime) [23,25] and environmental conditions (e.g.
ambient temperature [88], direct normal irradiation [65], wind velo-
city [89], geofluid temperature [67], reservoir area [90], evaporation
rate [56]). Influencing factors were collected from the literature for
each life cycle stage of power production. As shown in Fig. 6, there are
many data gaps across studies. Further, most values came from as-
sumptions and other literature rather than direct measurements. There
is no evidence of increased reporting of these factors over time. Water
scarcity is an exception, having received more attention recently, even
though the numbers of studies are still limited. Ambient temperature is
typically a determinant of the operational water use due to its influence
on production efficiency, cooling efficiency, evaporation rate, etc.
However, it is not generally reported. The reported conversion effi-
ciency, capacity factor, plant lifetime, and heat content of fuel are
shown in Tables A15-A18.

Of the common factors, conversion efficiency is most frequently
cited in the literature (31% of studies). It has been identified as a key
driver of operational water consumption for most power types, espe-
cially those with cooling water demands [91]. Here a regression model
is used to calculate the impact of each factor on water consumption
with cooling type and conversion efficiency included. Since the op-
erational water consumption of five power types (coal, natural gas, oil,
nuclear, and biomass power) closely agree when grouped by cooling

Fig. 3. Additional blue water consumption due to the addition of CCS for different fuels and cooling types. The numbers on the right of each bar indicate the
percentages for CCS compared to operational water consumption (OWC) without CCS. Only the literature which reports both the OWC with and without CCS are
included. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Number of studies per energy source per region. Many studies investigated more than one energy source and region, and can therefore occur multiple times.

Y. Jin, et al. Renewable and Sustainable Energy Reviews 115 (2019) 109391

5



type (Fig. 2), these five power types are considered in the model
without distinctions. The model established is shown in Appendix A,
and the results are presented in Table A20. The impact of conversion
efficiency on operational water consumption varies across cooling

types. On average, −36.8, −16.2, and −10.3 L/MWh of operational
water can be saved with every 1% increase in conversion efficiency for
closed-loop cooling, once-through cooling, and dry cooling, respec-
tively. Compared to improving conversion efficiency, adopting dry

Fig. 5. Operational blue water consumption for each power type and country. Countries are indicated by ISO3 codes [87]. GLO denotes the global median value and
is represented as a triangle. For clarity, the contents of PV and coal power in the dashed box are enlarged and shown in the inset on the bottom right. The two-letter
codes denote WC wet cooling, HC hybrid cooling (combining wet and dry cooling), CL closed-loop cooling, and OT once-through cooling. “C” in parentheses denotes
combined cycle power plants. “CCS” in parentheses denotes power plants using carbon capture and storage technology. The median operational water consumption
of wind power is zero for all countries herein. The operational water consumption of hydropower is not included in this figure due to its wide range, but is available in
Table A5. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Influencing factors reported across the literature. The x-axis presents each study, numbered from 1 to 93 chronologically from left to right (these studies are
listed in Appendix D). The y-axis (left) presents influencing factors: CE (conversion efficiency), CF (capacity factor), LT (lifetime), AT (ambient temperature), WS
(water scarcity), HC (heat content of fuel), DNI (direct normal irradiation), WV (wind velocity), GT (geofluid temperature), RA (reservoir area), ER (evaporation
rate). The y-axis (right) presents the percentage of reporting in the literature (the ratio of reporting to the total applicable studies). Colours denote the data sources of
factors in the literature. “Measurements” means that values were directly measured, or came from primary data. “Not Applicable” means that the factor is not
relevant to the study, e.g. the reservoir area only applies to studies including hydropower. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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cooling technology is a direct approach for conserving water but gen-
erally increases investment costs [92,93] and lowers plant efficiency
[94,95]. Wet cooling can bring synergistic benefits, e.g. energy con-
servation and emission reduction [96].

There are additional factors for each power type. The heat content
of fuel is important for coal, natural gas, and biomass. Generally, bio-
mass has a lower heat content than natural gas and coal. The opera-
tional water consumption of hydropower varies greatly depending on
two factors: the evaporation rate and the surface area of reservoir
[12,90,97,98]. The evaporation rate in different locations could range
from 486mm yr−1 to 3059mm yr−1 [99]. The reservoir area also
varies over time due to changes in water volume throughout the year
[90,99,100]. However, these are usually only estimated annually due to
data limitations in monitoring area over the year. This may change as
better remote sensing methods become available; already some studies
have estimates at a monthly resolution Lu et al. [101]. An analysis of
variance is conducted to look at the contributions of both evaporation
rate and surface area on the operational water consumption of hydro-
power. Results show that the evaporation rate typically plays a more
important role in determining the operational water consumption
(Table A21). For geothermal energy, the plant type (flash cycle, binary
cycle) typically determines the water requirement. For flash power
plants, a lot of freshwater can be saved, as most cooling water is pro-
vided by the geothermal fluid that flashes to steam and during the
generation process condenses to form high quality water that can be
used for cooling [67].

Finally, the water source (i.e. freshwater water and sea water) for
plant cooling differs across regions. For example, many nuclear power
plants in Spain and the U.S. use water from rivers and lakes for cooling,
whereas China has all presently operable nuclear power plants in
coastal areas with seawater as cooling medium to save freshwater
[102,103]. The deployment of power plants and cooling water sources
make big differences to the blue water use of power production.

4. Discussion

4.1. Uncertainties in water use assessment

Uncertainties derive from the methodological choice, the system
boundary cut-off, and the water source.

Methodological choices: The two main methods are process-based
LCA (PLCA) and hybrid LCA (a method linking PLCA and input-output
analysis (IOA)). PLCA is a bottom-up approach based on production
processes [42,104], whereas IOA is a top-down approach [105,106].
Hybrid LCA was developed based on PLCA and IOA to combine their
strengths and reduce weaknesses from data quality, system boundary,

difficulty of application, etc. [107–109]. In recent decades, hybrid LCAs
have increasingly been employed in energy-related environmental
footprint analyses [105,110–112] and water footprint analyses (as
mentioned above). The application of both methods to carbon foot-
printing for wind power indicated that emissions for hybrid LCA was
more than double that for PLCA [113]. Equivalent differences by
method in water use estimates are shown in Table A22. Hybrid LCA
leads to larger water use estimates for most power types, especially
wind and PV. The additional input from economic sectors not covered
by process analysis was the major contributor to the differences.
Though it remains an open question of which method should be re-
commended for life cycle inventory compilation, since both are in line
with the ISO standard [114], the differences between PLCA and hybrid
need to be appreciated. Firstly, using a pure PLCA approach may lead to
significant underestimation because power production relies indirectly
on large amounts of inputs from various sectors, especially heavy in-
dustries (steel, metal and cement) [41,42,50,115] and agriculture (e.g.
wood used for fuel extraction and construction; agricultural products
used for chemical production) [13,48], which are generally water-in-
tensive [48,116,117]. Second, using IO-based hybrid LCA presents a
challenge in sector disaggregation. Power production is typically a
homogenous sector in IO tables [118,119], even though each power
type has a distinctive water use. Efforts are needed to isolate the tar-
geted power type from the power production sector [118]. Third, IO
tables are normally released later than process-based data [114]. This
may be an issue for emerging power production technologies.

For some energy technologies, there are specific methodologies that
influence water use estimates. For hydropower, the main issue is the
lack of methodological consistency in allocating water consumption
among multiple purposes [27,56,120]. Many allocation methods were
used to separate the water consumption of electricity from the total
reservoir evaporation by using an allocation factor. The allocated water
consumption of electricity may be much lower than the reservoir eva-
poration or remain unchanged [12,98,121], depending on the alloca-
tion factors as shown in Table A23. The temporal resolution of models
can also lead to different estimates due to the seasonal fluctuations in
the reservoir water level.

Choices for boundary cut-off: Although some studies cover the entire
life cycle of power production, operational water uses are a focus across
the literature. The water uses of the fuel cycle and plant infrastructure
are often omitted. Omitting the water uses of a certain stage can lead to
a bias that varies across power types (Fig. 7). Over the total life cycle of
water consumption, the share of water consumption from the plant
infrastructure varies greatly, especially for renewable energy with the
exception of bio-power. Likewise, the fuel cycle of coal, natural gas, oil,
and nuclear, ranges from 2 to 79%, largely depending on the cooling

Fig. 7. Proportions of the blue water consumption of fuel cycle and plant infrastructure in the total life cycle. Values are shown in Table A24. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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water consumption of power plants. Within the fuel cycle, the water
consumption of each sub-stage is presented for coal and natural gas
(Fig. A10). For coal, the transport by pipeline, especially the slurry
pipeline, is a highly water-consuming choice. For natural gas, proces-
sing and pipeline transport are large water consumers. The sum of their
median water consumption is approximately half of the median water
consumption of fracturing, thus narrows the gap between conventional
gas and shale gas for total fuel-cycle water consumption.

Water source: For biomass and geothermal, water sources considered
in the assessment make a difference. Irrigation (blue water) and soil
moisture from precipitation (green water) are main sources of water
required for biomass growth. The former accounted for 0–60% of the
total water consumption [11,46,122]. It is essential to identify the
feedstock type, as water demand varies across types [123]. Geothermal
fluid and freshwater are two sources of operational water use of geo-
thermal power production but geothermal fluid is not typically con-
sidered as freshwater consumption because it is not sourced from a
body of freshwater [23,67]. Either or both types of water resources are
used in operation, depending on the practical situation [43,67], which
leads to variations in estimates. Nuclear power plants in coastal areas
typically use seawater for cooling [61], which is irrelevant to blue
water use.

4.2. Water scarcity related to power production

The large amount of water abstracted for power production might
exacerbate local water scarcity [89,124–126]. This depends on two
factors: the life cycle water use of power production, and the water
scarcity in the region [20]. A certain amount of water use in water-poor
regions typically has larger impacts on other local water users than in
water-rich regions. To alleviate the risk of water use in water-scarce
regions, the regional water scarcity needs to be considered in addition
to volumetric water use [21]. However, there is no consistent mea-
surement to reflect the impact of power production on water scarcity.
Two main approaches have been used, which are both related to water
scarcity indices. One measures the energy-related water scarcity index
by dividing the water use of power production either by total water
availability [54,125,127], or by the remaining water availability after
subtracting non-power production uses in a water basin [6]. Another
approach uses the water scarcity footprint, which is calculated by
multiplying the water use of power production with a regional water
scarcity index [12,13,126,128,129]. Thus, the water scarcity footprint
includes the information of both the volumetric water footprint (i.e. the
water use inventory) and regional water scarcity.

Apart from the different approaches to assess water scarcity, the
differences in the scaling of the water scarcity index used across studies
also imply that their water scarcity measurements are not comparable
[129]. Hence, it is suggested to still report water use besides the water
scarcity footprint. According to Hoekstra et al. [130], the value of the
water scarcity indicator exceeds 100% when the blue water use is
higher than 20% of the natural runoff within a region (i.e. the water
availability), whereas in Pfister et al. [131] and Boulay et al. [132,133],
the scaling of 0.01–1 and 0.1 to 100 were used for the values of the
water scarcity indicator, respectively. In addition, it is worth noting
that the terminology “water scarcity footprint” is used by the LCA
community. A similar concept was proposed by the Water Footprint
Network and named water footprint impact index [19]. The impacts of
power production on local water scarcity have raised increasing con-
cerns. However, the existing studies on water scarcity footprinting
seldom provided cross-regional strategies for mitigating water scarcity.
More efforts are needed to figure out synergies between water and
energy management (i.e. water allocation and energy deployment).

4.3. Water in energy system modelling

Energy systems typically consider three aspects: reliability,

affordability, and sustainability [134]. Integrating water use into en-
ergy system modelling is important from both reliability and sustain-
ability perspectives. The two key factors influencing reliability are ca-
pacity factor and installed capacity, both of which dictate the reliability
of plants when water availability changes. However, relevant in-
formation is seldom provided in studies on water use, making it difficult
to link water and energy system modelling.

For example, natural gas plants are used in many different modes on
different electricity grids. While some studies assume a capacity factor
of natural gas of 80% [51] or 85% [25,50], natural gas plants can often
act as ‘peakers’, that is they only operate during high demand. Ac-
cording to EIA [135], the capacity factor of natural gas thermal power
plants in the U.S. in 2017 was 6.7% and 10.4% for combustion turbines
and steam turbines, respectively; and even for the combined cycle
plants it was only 51.2%. Clearly, this also has a temporal aspect since
plants may be peaking under high cooling loads, which may be at the
same time as low water availability or thermal constraints.

Additionally, installed capacity is often underreported in studies
(except those on hydropower), as is cooling type. Both variables are
needed for a realistic and complete energy system model. For instance,
if the water use of energy systems is optimized without data on the
capacity of each cooling technology, results may suggest that plants
convert to dry cooling (a water-saving technology), despite the fact that
this may not be suitable in regions where air temperature is high and
results in low production efficiencies [136]. Providing the capacity of
each operating technology is essential to give a baseline when looking
for trade-offs between water saving and energy production.

The studies on the water sustainability of energy systems rely on the
information of water availability. Hydrological models are often used to
show water availability at regional or basin level. Although there are
many global hydrological models [137], they are highly uncertain and
need to move to a finer spatial resolution to address more targeted
water scarcity at plant levels. In addition, the upper limit of water use in
regulations is another index that has been used as a reference to water
availability [127]. In practice, the water availability of energy systems
is sometimes more restricted by water use regulations [72,127] other
than the water scarcity limitation shown in hydrological models, to
ensure long-term water security [138–140]. To figure out whether
water will be a barrier for energy systems, a better understanding of
both the natural water scarcity and water use regulations is needed.

Besides water, there is also a need to consider other critical re-
sources that are required as an input into energy systems and influence
its sustainability. To do so, the exergy concept has recently been applied
to evaluate the environmental impacts [141,142] or economic perfor-
mance [143,144] of energy systems. Exergy accounting enables studies
to reveal the resource depletion and measure all impacts in homo-
geneous units [145].

5. Conclusions and future prospects

This study gathered available data of water uses of power produc-
tion at different life cycle stages. Differences and uncertainties in water
use estimates were analyzed for each power type. The following con-
clusions are reached:

Renewable energy may be water saving or water intensive: PV, wind
power, and run-of-river hydropower consume relatively little water;
CSP and geothermal power consume intermediate volumes of water;
whereas woody and herbaceous biomass and reservoir hydropower may
possess an extremely high volumetric water footprint. Non-renewable
energy falls within the two higher water use classes, except for natural
gas between the two lower water use classes of renewable energy. The
deployment location of power production largely affects countries’
water use of energy systems due to different climate conditons and
water resources, as well as the impacts caused by it due to water
scarcity; however, the latter are rarely considered. For thermal power
plants, the operational water consumption increases up to 81% due to
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the addition of CCS.
Inconsistent system boundaries may cause uncertainties in water

use estimates across studies. For example, the fuel cycle of biomass,
nuclear power and natural gas is worth more consideration in the fu-
ture. Besides clarifying the water use type (consumption vs. with-
drawal), clarifying the water sources also helps reduce uncertainties in
water use estimates for biomass (precipitation vs. irrigation), geo-
thermal (geofluid vs. freshwater) and nuclear power (seawater vs.
freshwater). Emphasis for future studies should be to increase trans-
parency and report key influencing factors, such as conversion effi-
ciency, capacity factor, lifetime, ambient temperature, and depending
on applicability also the heat content of the fuel, direct normal irra-
diation, wind velocity, geofluid temperature, evaporation rate, and
reservoir area. Finally, the inclusion of water scarcity in energy system
optimisation models is essential for mapping the energy transition.
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