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1. Introduction

CHAPTER 1
Introduction

This thesis consists of two parts. Part I focusses on large deviations of stochastic
processes with resetting, Part II focusses on the Kuramoto model on networks with
community structure.
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1 Part I

Stochastic resetting is simple enough to be approached analytically, yet modifies
stochastic processes in a non-trivial way. It has recently received renewed atten-
tion in the mathematical physics literature. In part I of the thesis we study the effect
it has on the statistical properties of additive functionals of the Ornstein-Uhlenbeck
process and Brownian motion. In this introduction we define resetting, motivate its
study and summarize some recent results. Resetting occurs in a variety of contexts.
A discussion of these is given in the introduction of Chapter 2. One example is the
famous PageRank algorithm [8]. In this algorithm a random walker moves on a graph
representing the World Wide Web. An initial probability distribution is placed on the
set of nodes and, as the walker makes its way through the graph, the distribution is
updated. The walker restarts from a node drawn uniformly at random at a constant
rate r ∈ (0,∞).

§1.1 Stochastic Resetting

In this section we introduce resetting and collect some basic results following [6].
We consider a homogeneous continuous-time Markov process {Xt : t ∈ [0,∞)} taking
values in a Borel space (E, E), characterized by its initial position x0 and its transition
density P (t, x,dy), with the following properties:

(a) P (t, x, ·) is a probability measure on E.

(b) P (0, x,Γ) = 1{x ∈ Γ} for any Γ ⊂ E.

(c) For each Γ ∈ E and t ∈ [0,∞), P (t, x,Γ) is jointly measurable w.r.t. (t, x) ∈
[0,∞)× E.

(d) P (t, x,dy) satisfies the Chapman-Kolmogorov equation

P (t+ s, x,Γ) =

∫
E

P (s, y,Γ)P (t, x,dy). (1.1.1)

Throughout the sequel, all processes live on the same probability space (Ω,F , P ).
Resetting modifies {Xt : t ∈ [0,∞]} to a new Markov process {Xr(t) : t ∈ [0,∞)}
that restarts from a point in E drawn from a probability distribution γ(Γ) after an
exponentially distributed random time with mean 1/r, i.e., the number of restarts is
represented by a standard Poisson process with rate r > 0, independently of {X(t) :

t ∈ [0,∞)}. In the following theorem (Theorem 1 of [6]) we express the transition
function of the modified process in terms of the transition function of the original
process.

1.1.1 Theorem. The transition function for the modified Markov process
{Xr(t), t ∈ [0,∞)} is given by

P rγ (t, x,Γ) = e−rtP (t, x,Γ) +

∫
E

γ(dy)

∫ t

0

ds λe−rsP (s, y,Γ). (1.1.2)

2
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The proof of this theorem is instructive for understanding the effect of resetting.

Proof. If we define the number of resets up to time t to be N(t) and the times of
the resets to be {τi}N(t)

i=1 , then we can write the time since the last reset as t− τN(t).
The transition function of the modified process can be written as the sum of the
probability of reaching the set Γ without having been reset and the probability of
reaching this set having been reset at least once:

P rγ (t, x,Γ) =P
[
{Xr

t ∈ Γ} ∩ {N(t) = 0}|Xr
0 = 0

]
+ P

[
{Xr

t ∈ Γ} ∩ {N(t) > 0}|Xr
0 = 0

]
. (1.1.3)

The first term is the probability of the unmodified process reaching the set Γ multiplied
by the probability of not resetting up to time t, i.e.,

P
[
{Xr

t ∈ Γ} ∩ {N(t) = 0}|Xr
0 = 0

]
= e−rtP (t, x,Γ). (1.1.4)

For the second term we must integrate the transition function of the unmodified pro-
cess over all the possible starting positions after the last reset (distributed according
to γ) and integrate over all possible lengths of time since the last reset with the
appropriate probability density of this time occurring, i.e.,

P
[
{Xr

t ∈ Γ} ∩ {N(t) > 0}|Xr
0 = 0

]
=

∫
E

dy

∫ t

0

dF (s) P (s, y,Γ), (1.1.5)

where F (s) = P [t − τN(t) ≤ s|N(t) > 0]. Given that N(t) = n > 0, the reset times
{τi}ni=1 are distributed uniformly over the interval (0, t), so that

P [τn ≤ t− s|N(t) = n] =
( t− s

t

)n
, n ∈ N, (1.1.6)

or
P [t− τN(t) ≤ s|N(t) = n] = 1−

( t− s
t

)n
, n ∈ N. (1.1.7)

To calculate F (s) we must sum over n and multiply by the probability of seeing n
resets:

F (s) =

∞∑
n=1

(rt)n

n!
e−rt

[
1−

( t− s
t

)n]
= 1− e−rs. (1.1.8)

To complete the proof, we substitute (1.1.8) into (1.1.5) to obtain

P
[
{Xr

t ∈ Γ} ∩ {N(t) > 0}|Xr
0 = 0

]
=

∫
E

γ(dy)

∫ t

0

ds λ e−rsP (s, y,Γ). (1.1.9)

�

Considering the case where E = R, we can use (1.1.2) to obtain an expression for
the moments, namely,

Ex0
[(Xr

t )k] = e−rtEx0
[Xk

t ] +

∫
E

γ(dy)

∫ t

0

ds r e−rsEy[Xk
s ], (1.1.10)

where Ex0 is expectation w.r.t. the process with initial position x0. Here we assume
that the order of integration is interchangeable, which is the case for example when∫

E

γ(dy)

∫ t

0

ds r e−rsEy[|Xk
s |] <∞. (1.1.11)
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Figure 1.1: Brownian motion with drift µ = 0, noise intensity σ = 1, resetting rate r = 5
and reset position x0 = 0. The reset events are marked by red lines.

§1.2 Example

To illustrate Theorem 1.1.1, we take Brownian motion on R with drift µ and noise
intensity σ on R (see e.g., [113]). We also take the distribution of the reset point to
be a delta-measure concentrated at 0. The stochastic differential equation is

dXt = µdt+ σdWt, X0 = x0 = 0, (1.2.1)

whereWt is standard Brownian motion. Fig. 1.1 shows a simulation of reset Brownian
motion.

The probability density function of the process defined by (1.2.1) is

p(t, 0, z) =
1√

2πσ2t
exp

(
− (z − µt)2

2σ2t

)
, (1.2.2)

which does not converge to a proper probability density as t→∞. By formula (1.1.2),
we have

pr(t, 0, z) = exp(−rt) 1√
2πσ2t

exp

(
− (z − µt)2

2σ2t

)
+ r

∫ t

0

exp(−rs) 1√
2πσ2s

exp

(
− (z − µs)2

2σ2s

)
ds, (1.2.3)

which has limiting probability density function

pr(z) = r
1√

2rσ2 + µ2
exp

[
z
(
µ−

√
2rσ2 + µ2

)
/σ2
]
. (1.2.4)
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Figure 1.2: z 7→ pr(z) for different values of the resetting rate r (with µ = 1, σ = 1).

Plotting this for different values of r, we see that resetting has a confining effect on
the process, as can be seen in Fig. 1.2.

Let us now consider x ∈ R and restarting according to the distribution γ(dy). If
γ has a finite second moment, then we can calculate the first and second moment of
the modified process by using formula (1.1.10) with Ex[X(t)] = x+ µt:

Ex[Xr(t)] = e−rt(x+ µt) +

∫
E

γ(dy)

∫ t

0

ds r e−rs(y + µs)

= e−rt(x+ µt) + [1− e−rt]
∫
E

γ(dy) y + [1− (1 + rt)e−rt]
µ

r
. (1.2.5)

Here

lim
t→∞

Ex[Xr
t ] =

∫
E

γ(dy) y +
µ

r
. (1.2.6)

A similar calculation gives

lim
t→∞

Ex[(Xr
t )2] =

σ2

r
+

2µ2

r2
+

∫
E

γ(dy)
(2µy

r
+ y2

)
, (1.2.7)

so that

lim
t→∞

Varx[(Xr
t )2] =

∫
E

γ(dy) y2 −
(∫

E

γ(dy) y
)2

+
σ2

r
+
µ2

r2
. (1.2.8)

Note that the first two terms in the r.h.s. of (1.2.8) equal the variance of the distribu-
tion γ for the reset point. These results are similar in nature to the results presented
in Chapter 3.
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The recent work on resetting is difficult to summarize, as the perspectives and con-
texts in which it is being carried out are so varied. We will focus on two of these
perspectives here. The first is the use of resetting in order to improve the efficiency of
diffusive searchers and the second is the use of resetting as a mechanism modeling the
accidental or deliberate clearing of queues or catastrophes wiping out a population of
individuals in a birth-death process.

Search efficiency

In [48] the authors consider the hitting time of a target of a diffusive searcher un-
dergoing resets at rate r. They consider three generalizations of the reset mechanism
outlined above. The first is to have a resetting rate dependent on the spatial position
of the searcher. The second is to have the reset position be random by drawing it
from a distribution every time a reset occurs. The third is to have the target drawn
from a distribution. The first result in [48] is the mean first-passage time (at the
origin) of a diffusive searcher being reset to position xr, which is shown to be

T (xr) =
1

r

[
exp

(√
r/σxr

)
− 1
]
, (1.3.1)

where σ is the noise intensity. For a given xr, one can calculate the optimal resetting
rate in order to minimize the mean first-passage time. Having a space-dependent
resetting rate makes it difficult to solve the problem of the mean first-passage time
in general. A solvable example is when the resetting rate is set to zero in a window
of width a around the reset position xr and set to a constant outside this window.
This leads to an expression for T (xr) from which one can obtain the optimal resetting
rate. In this case it is advantageous to have the window around the reset point only
when the target is sufficiently far away from the reset position.

The last generalization is to both have the process reset to a position drawn from
a distribution P(xr) and to draw the target site xT from the distribution PT (xT ).
It is convenient to draw the initial position from the same distribution as the reset
position. The stationary distribution is

p∗(x) =
α0

2

∫
R

dz P(z) exp(−α0|x− z|), (1.3.2)

where α0 =
√
r/σ. The mean first-passage time of a target site xT is

T (xT ) =
1

r

[α0

2

1

p∗(xT )
− 1
]
, (1.3.3)

which, after we average over possible target sites, gives

T =
1

r

[α0

2

∫
R

dxT
PT (xT )

p∗(xT )
− 1
]
. (1.3.4)
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As an example one can take the target to be distributed exponentially

PT (x) =
β

2
e−β|x|, (1.3.5)

where β > 0 is a parameter. If β < 2α0, then the optimal resetting distribution is

P(x) =
β

4
e−β|z|/2

[
1− β2

4α2
0

]
+

β2

4α2
0

δ(z). (1.3.6)

If β > 2α0, then the authors can prove that taking the reset distribution as
P(x) = δ(x) is an optimal solution, at least locally.

Birth-death processes with catastrophes

In contrast to the paper discussed before, where the state space is continuous, the
birth-death process with catastrophes is an example of a discrete process with re-
setting. There have been many recent studies on these types of processes [30] [29],
[127], [23], [43]. An instructive paper is [30], which studies the first occurrence of an
effective catastrophe, i.e., a catastrophe while the process is in a state other than the
zero state. To make this more concrete, consider the process {N(t) : t ∈ [0,∞)} that
takes values in S = {0, 1, 2, . . .}. Births occur with rate an, n = 0, 1, . . . and deaths
with rate bn, n = 1, 2, . . .. Catastrophes occur with rate ξ, and immediately place the
process in the state 0. Define the transition probabilities

pj,n(t) = P[N(t) = n|N(0) = j] (1.3.7)

and denote by p̂j,n(t) the same probability, but for N̂(t), which is the same as N(t)

with ξ = 0, i.e., without catastrophes. Denote the Laplace transform of pj,n(t) and
p̂j,n(t) by πj,n(λ) and π̂j,n(λ), respectively. The process, N(t), allows catastrophes
to occur while in the zero state. Paper [30] considers only effective catastrophes, by
which are meant catastrophic transitions from a positive state. A modified process
{M(t); t ≥ 0} on the state space {−1, 0, 1, . . .}, is introduced that is identical to
N(t), except that catastrophes place the process in the state −1. Denote by hj,n(t)

and ηj,n(λ) the analogue of pj,n(t) and πj,n(λ), respectively. The following theorem
[30, Theorem 3.1] gives a relation between the modified process and the birth-death
process without catastrophes.

1.3.1 Theorem. For all j ∈ S and λ > 0,

ηj,−1(λ) =
ξ

λ+ ξ

[ 1

λ
− π̂j,0(λ+ ξ)

1− ξπ̂0,0(λ+ ξ)

]
, (1.3.8)

ηj,n(λ) = π̂j,n(λ+ ξ) + ξπ̂0,n(λ+ ξ)
π̂j,0(λ+ ξ)

1− ξπ̂0,0(λ+ ξ)
. (1.3.9)

Let Cj,0 denote the time of the first effective catastrophe given that the process started
in state j. The following proposition [30, Proposition 3.2] gives the expected value
and variance of Cj,0.

7
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1.3.2 Proposition. For all j ∈ S,

E[Cj,0] =
1

ξ
+

π̂j,0(ξ)

1− ξπ̂0,0(ξ)
, (1.3.10)

Var[Cj,0] =
1

ξ2

{
1−

ξ2π̂2
j,0(ξ)

(1− ξπ̂0,0(ξ))2
− 2ξ2

1− ξπ̂0,0(ξ)

d

dξ
π̂j,0(ξ)

− 2ξ3π̂j,0(ξ)

(1− ξπ̂0,0(ξ))2

d

dξ
π̂j,0(ξ)

}
. (1.3.11)

Taking the first visit time Tj,0 = inf{t ≥ 0 : N(t) = 0} given that the process started
in state j, in contrast we get

E[Tj,0] =
1

ξ
[1− γ̂j,0(ξ)], (1.3.12)

Var[Tj,0] =
1

ξ2

[
1− γ̂2

j,0(ξ) + 2ξ
d

dξ
γ̂j,0(ξ)

]
, (1.3.13)

where γ̂j,0 denotes the Laplace transform of the probability density function ĝj,0(t) =
d
dtP[T̂j,0 ≤ t] of the first visit time of the process N̂(t), i.e., without catastrophes.
These results are similar in nature to the main result of Chapter 2 and serve to
illustrate how delicate discrete versions of processes with resetting are to even slight
changes in their definition.

§1.4 Main results of Part I

Modification of a diffusion process by resetting has interesting consequences. Most of
the studies so far have investigated the effect on the distribution of the position, or
moments thereof. The focus of part I of the thesis is to derive some general results in
the spirit of (1.1.2) for additive functionals of the process, namely,

FT =

∫ T

0

dt f(Xr
t ), (1.4.1)

with f an R-valued measurable function. From the proof of Theorem 1.1.1 it is clear
that the distribution of the position only depends on when the last reset took place.
The history of the process before the last reset is irrelevant. This is not the case when
we consider the distributions of additive functionals, and this complicates the analysis.

Results of Chapter 2

In Chapter 2, using a renewal argument, we derive a relationship between the Laplace
transformed generating functions for additive observables of processes with and without
resetting. Let FT be as above. Then its generating function is

Gr(k, T ) = Er
[
ekFT

]
, k ∈ R, T ∈ [0,∞), (1.4.2)
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where Er is the expectation with respect to the reset process with reset rate r. The
Laplace transform of this function is defined as

G̃r(k, s) =

∫ ∞
0

dT e−sT Gr(k, T ), k ∈ R, s ∈ [0,∞). (1.4.3)

The main result is

1.4.1 Theorem. If rG̃0(k, s+ r) < 1, then

G̃r(k, s) =
G̃0(k, s+ r)

1− rG̃0(k, s+ r)
. (1.4.4)

This allows us to make statements about the large deviation behaviour of the process
with resetting based on the behaviour of the process without resetting. We illustrate
the usefulness of this theorem by applying it to the average area covered by the
Ornstein-Uhlenbeck process defined as

AT =
1

T

∫ T

0

dtXt (1.4.5)

where the Orsntein-Uhlenbeck process is

dXt = −γXtdt+ σdWt, (1.4.6)

γ is the friction coefficient, σ is the noise intensity and Wt is standard Brownian
motion. The probability of seeing rare events is characterized by the large deviation
rate function Ir(a) through the large deviation principle

P (AT = a) = e−TIr(a)+o(T ). (1.4.7)

We are able to identify the large deviation rate function with resetting for different
reset positions xr, and compare it to the rate function without resetting as seen in
Fig. 1.3.

Chapter 2 is based on [92] and differs in style from the rest of the thesis as it is
written for a physics journal.

Results of Chapter 3

In Chapter 3 we identify the large deviation rate function for additive functionals
of Brownian motion with reset (rBM), χr, in the form of a variational formula in
terms of the rate functions of the three constituent processes underlying FT (where
we replace Xr

t by the standard Brownian motion with reset W r
t ), namely (see [40,

Chapters I-II]):

(1) The rate function for (T−1N(T ))T>0, the number of resets per unit of time:

Ir(n) = n log
(n
r

)
− n+ r, n ∈ [0,∞). (1.4.8)

9



1. Introduction

C
h
a
pt

er
1

-� -� � � �

�

�

�

�

�

��

a

I r
(a
)

Figure 1.3: Black curves: Ir(a) for xr = 0, 1, 2 (from left to right). Dashed black curve:
Non-reset rate function I0(a). Dashed gray curve: Tail approximation of Ir(a). Parameters:
r = 2, γ = 1, σ = 1.

(2) The rate function for (N−1
∑N
i=1 δτi)N∈N, the empirical distribution of the dur-

ation of the reset periods:

Jr(µ) = h(µ | Er), µ ∈ P([0,∞)). (1.4.9)

Here, P([0,∞)) is the set of probability distributions on [0,∞), Er is the ex-
ponential distribution with mean 1/r, and h(· | ·) denotes the relative entropy

h(µ | ν) =

∫ ∞
0

µ(dx) log

[
dµ

dν
(x)

]
, µ, ν ∈ P([0,∞)). (1.4.10)

(3) The rate function for (N−1
∑N
i=1 Fτ,i)N∈N, the empirical average of i.i.d. copies

of the reset-free functional Fτ over a time τ :

Kτ (u) = sup
v∈R
{uv −Mτ (v)}, u ∈ R, τ ∈ [0,∞). (1.4.11)

Here, Mτ (v) = logE0

[
evFτ

]
is the cumulant generating function of Fτ without

reset and we require, for all τ ∈ [0,∞), thatMτ exists in an open neighbourhood
of 0 in R. It is known that Kτ is smooth and strictly convex on the interior of
its domain (see [40, Chapter I]).

1.4.2 Theorem. For every r > 0, the family (Pr(T−1FT ∈ · ))T>0 satisfies the LDP
on R with speed T and with rate function χr given by

χr(φ) = inf
(n,µ,w)∈Φ(φ)

{
Ir(n) + nJr(µ) + n

∫ ∞
0

µ(dt)Kt(w(t))
}
, φ ∈ R, (1.4.12)

10



§1.4. Main results of Part I

C
h
a
pter

1

where

Φ(φ) =

{
(n, µ,w) ∈ [0,∞)× P([0,∞))× B([0,∞);R) : n

∫ ∞
0

µ(dt)w(t) = φ

}
(1.4.13)

with B([0,∞);R) the set of Borel-measurable functions from [0,∞) to R.

A general result deduced from the variational formula shows that the rate func-
tion for functionals of rBM (under the additional assumption that the mean without
resetting diverges) is zero above the mean and quadratic below but close to the mean.
Define

φ∗r = lim
T→∞

Er[T−1FT ], r ≥ 0. (1.4.14)

1.4.3 Theorem. Suppose that f is such that

E[f(Wt)
2] ≤ CE[f(Wt)]

2 ∀t ≥ 0 (1.4.15)

and that φ∗0 =∞. For every r > 0, if φ∗r <∞, then

χr(φ) = 0 ∀φ ≥ φ∗r . (1.4.16)

1.4.4 Theorem. Suppose that φ∗0 =∞. For every r > 0, if φ∗r <∞, then

χr(φ) ∼ Cr(φ∗r − φ)2, φ ↑ φ∗r , (1.4.17)

with Cr ∈ (0,∞) a constant that is given by a variational formula. (The symbol ∼
means that the quotient of the left-hand side and the right-hand side tends to 1.)

For the positive occupation time of rBM defined by

AT =

∫ T

0

1[0,∞)(W
r
t ) dt (1.4.18)

we find an explicit expression of the density.

1.4.5 Theorem. The positive occupation time of rBM has density

pAr (a) =
r

T
e−rT W

(
r
√
a(T − a)

)
, a ∈ (0, T ), (1.4.19)

where

W (x) =
1

x

∞∑
j=0

xj

Γ( j+1
2 )2

= I0(2x) +
1

xπ
1F2

(
{1}, { 1

2 ,
1
2}, x2

)
, x ∈ (0,∞), (1.4.20)

with I0(y) the modified Bessel function of the first kind with index 0 and
1F2({a}, {b, c}, y) the generalized hypergeometric function [2, Section 9.6, Formula
15.6.4].

For the area covered by rBM defined by

BT =

∫ T

0

W r
t dt (1.4.21)

we prove the following central limit theorem.
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1.4.6 Theorem. The area of rBM satisfies the central limit theorem,

lim
T→∞

σ
√
T pBr

(
b

σ
√
T

)
= N(0, 1) (1.4.22)

with N(0, 1) the standard Gaussian distribution and σ = 2/r2.

Here we denote by pBr (b), b ∈ R, the density of the area of rBM with respect to the
Lebesgue measure.

For the absolute area of rBM, defined as

CT =

∫ T

0

|W r
t |dt, (1.4.23)

whose density with respect to the Lebesgue measure is denoted by pCr (c), c ∈ [0,∞),
we calculate the mean and variance.

1.4.7 Theorem. The absolute area of rBM has a mean and a variance given by

Er[CT ] = T 3/2f1(rT ), Varr[CT ] = T 3f2(rT ), r > 0, (1.4.24)

where

f1(ρ) =
1√
2π

[
e−ρ

ρ
+

√
π

2(ρ)3/2
(2ρ− 1) erf[

√
ρ ]

]
(1.4.25)

and

f2(ρ) =
1

8π(ρ)3

[
2π
(
2ρ2 + ρ− 6 + (5ρ+ 6)e−ρ

)
−
(
2
√
ρ e−ρ +

√
π(2ρ− 1) erf[

√
ρ]
)2]

.

(1.4.26)

Furthermore we give an explicit representation of the rate function of (T−1CT )T>0

for values below its mean.

1.4.8 Theorem. Let c∗r = 1/
√

2r, and let s∗k be the largest real root in s of the
equation

r

(−k)2/3
H

(
21/3(s+ r)

(−k)2/3

)
= 1, k < 0. (1.4.27)

Then (T−1CT )T>0 satisfies the LDP on (0, c∗r) with speed T and with rate function
given by the Legendre transform of s∗k.

Here the function H(·) is defined by

H(x) = −21/3 AI(x)

Ai′(x)
, (1.4.28)

where

AI(x) =

∫ ∞
x

Ai(t) dt (1.4.29)
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is the integral Airy function and Ai(x) is the Airy function [2, Section 10.4] defined,
for example, by

Ai(x) =
1

π

∫ ∞
0

cos
(

1
3 t

3 + xt
)

dt. (1.4.30)

Chapter 3 is based on [52].

Open Problems

The most interesting challenge is to extend the above theorems to additive functionals
of random walks on random graphs with reset. This is particularly interesting in
the context of the PageRank algorithm, which computes the stationary distribution
of webpages through a random walk with reset along these webpages. The large
deviation rate function for the local time of this random walk gives information on
the rate of convergence of the random walk.

An open problem stated in Chapter 3 is to prove that the rate function for the
area of Brownian motion is identically zero. This problem seems deceptively simple,
but actually is not.
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The Kuramoto model is a classical model that is used to describe the phenomenon
of synchronization of phase oscillators. It has been studied extensively from differ-
ent perspectives, including mathematics, theoretical physics, computer science and
neuroscience. Recently, much heuristic and numerical work has been done on the
Kuramoto model on complex networks [110]. Due to the non-linearity of the interac-
tion, analytic results have been scarce. Part of the work has focused on identifying the
effect of communities in the underlying network structure of the interactions between
the phase oscillators, which determines their ability to synchronize. In Part II of the
thesis we study the effect of community structure analytically in two simple cases,
namely, a hierarchical network and a two-community network. In this introduction
we define the Kuramoto model, outline some of the recent results in the mathematical
literature, and summarize what has been done in the context of complex networks.

§1.5 The Stochastic Kuramoto model

The Kuramoto model was introduced by Yoshiki Kuramoto in 1975 to model the phe-
nomenon of synchronization. Synchronization had fascinated scientists since Chris-
tiaan Huygens observed ‘an odd kind of sympathy’ between the pendulums of his
clocks designed for time-keeping on ships in the 17th century. The novelty of the Kur-
amoto model was that it captured the essence of synchronization while being simple
enough to be exactly solvable. Examples of synchronization in nature are copious
and consequently the number of models proposed to describe them is overwhelming.
To mention but a few, synchronization is often observed among populations of in-
sects, for example crickets chirping and fireflies flashing. It also controls circadian
rhythms, power-grids and, to end with the most relevant example for this thesis, the
suprachiasmatic nucleus (the body-clock), which is a cluster of neurons in the brain
of mammals.

The stochastic version of the model describes the evolution of oscillators on a
one-dimensional sphere S that interact in a mean-field way. Each oscillator θi has its
own intrinsic frequency ωi, which is drawn from a common distribution µ(ω) on R.
The interaction between two oscillators is given by the sine of their phase difference.
Mathematically this is given by a system of coupled stochastic differential equations:

dθi(t) = ωidt+
K

N

N∑
j=1

sin(θj(t)− θi(t))dt+DdWi(t), i = 1, . . . , N. (1.5.1)

Here,K is the interaction strength,D > 0 is the noise strength, and (Wi(t))t≥0,i=1,...,N

are independent standard Brownian motions. The oscillators are initially identically
distributed according to some law on S.

The elegance of this model comes from the choice of the order parameter:
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1.5.1 Definition (Order parameter).

rN (t)eiψN (t) =
1

N

N∑
j=1

eiθj(t). (1.5.2)

This enables one to write the evolution equations as

dθi(t) = ωidt+KrN (t) sin(ψN (t)− θi(t))dt+DdWi(t), i = 1, . . . , N. (1.5.3)

The order parameter can be understood as measuring the amount of synchronization,
given by r(t) ∈ [0, 1], and the average phase angle, given by ψ(t) ∈ [0, 2π). Equation
(1.5.3) shows that the amount of synchronization modulates the strength at which
oscillators interact with the average phase angle.

In the thesis we deal mainly with the non-disorderd case, which corresponds to
the choice µ(ω) = δ0 i.e., all oscillators have natural frequency 0. In this case the
model is reversible, which is a major simplification. The Gibbs measure under which
it is reversible is given by

1

ZN,K
exp

(
− 2KHN (θ1, . . . , θN )

)
dθ1 . . . dθN , (1.5.4)

where the Hamiltonian is

HN (θ1, . . . , θN ) = − 1

2N

N∑
j=1

N∑
i=1

cos(θj − θi). (1.5.5)

1.5.2 Definition (Empirical measure).

νN,t(dθ) =
1

N

N∑
i=1

δθi(t)(dθ). (1.5.6)

This empirical measure converges weakly to a deterministic process that is absolutely
continuous w.r.t. the Lebesgue measure with a density p(θ) that solves the McKean-
Vlasov equation

∂p(t; θ)

∂t
=
D

2

∂2p(t; θ)

∂θ2
− ∂

∂θ

[
Kr(t) sin(ψ(t)− θ)p(t; θ)

]
, (1.5.7)

where r(t) and ψ(t) are the limits of the order parameter defined in (1.5.2), which
satisfy the self-consistency relation

r(t)eiψ(t) =

∫
S

dθ eiθp(t; θ). (1.5.8)

The stationary solutions of the McKean-Vlasov equation exhibit a phase transition in
the synchronization level. There is a threshold value for the interaction strength Kc,
below which only the stationary solution with zero synchronization is possible and
above which synchronization takes on non-zero values as well. This is formalized in
the following proposition taken from [80, Section 4.2].
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1.5.3 Proposition. The non-disordered Kuramoto model exhibits a phase transition
in the interaction strength parameter K:

(a) K ≤ Kc: There is a unique stationary solution to (1.5.7), called the incoherent
solution

p(θ) =
1

2π
, θ ∈ S. (1.5.9)

(b) K > Kc: A circle of synchronized solutions appears in addition to the incoherent
solution, namely,

{p(·+ θ0) : θ0 ∈ S} (1.5.10)

with
p(θ) =

1

Z
e2Kr cos θ, θ ∈ S, (1.5.11)

where Z =
∫
S dθ e2Kr cos θ.

§1.6 Recent Results

Complex Networks

Studies of the stochastic Kuramoto model on complex networks have appeared only
recently. Most are not mathematically rigorous. There have, however, been more
general (rigorous) works on interacting diffusions on complex networks [16, 28, 38, 82,
100]. In order to study the Kuramoto model on a complex network, the interaction
strength parameter K is replaced by KAi,j with Ai,j , i, j = 1, . . . , N , the adjacency
matrix of the network. To circumvent technical difficulties it is convenient to consider
an annealed version of the model as in [121]. The idea is to approximate the complex
network by a complete graph with edge weights given by Ãi,j , in such a way that
the weights in the complete graph conserve the degrees of the nodes in the original
network, i.e.,

ki =

N∑
j=1

Ãij , (1.6.1)

where ki is the degree of node (oscillator) i in the original network. Typically, ki
are independently and identically distributed according to a probability distribution
γ, and the network is taken to be undirected. If the degrees of the network are
uncorrelated, then this is simply achieved by setting the edge weights equal to the
probability of a node with degree ki being connected to a node with degree kj , i.e.,

Ãij = ki
kj∑N
l=1 kl

. (1.6.2)

Using this approximation in the stochastic Kuramoto model, we get

dθi(t) = ωidt+
K

N

ki∑N
l=1 kl

N∑
j=1

kj sin(θj(t)− θi(t))dt+DdWi(t), i = 1, . . . , N,

(1.6.3)
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for which we can define the alternative order parameter

rN (t)eiψN (t) =

∑N
j=1 kje

iθj(t)∑N
l=1 kl

. (1.6.4)

Again this simplifies the model:

dθi(t) = ωidt+KrN (t)
ki
N

sin(ψN (t)− θi(t))dt+DdWi(t), i = 1, . . . , N. (1.6.5)

Note that how strongly each node is coupled to the mean-field is determined by its
degree. Under the additional assumption that phase correlations can be disregarded,
the large N limit can be analyzed. In this limit, the density p(t; θ|ω, k) of oscillators
for a fixed natural frequency ω and a fixed degree k follows a Fokker-Planck equation:

∂p(t; θ|ω, k)

∂t
=
D

2

∂2p(t; θ|ω, k)

∂θ2
− ∂

∂θ

[
{ω+ K̃r(t)k sin(ψ(t)− θ)}p(t; θ|ω, k)

]
. (1.6.6)

Here, K̃ = K/N and we have the self-consistency equation

r(t)eiψ(t) =
1

〈k〉

∫
S

dθ

∫
R
µ(dω)

∫ ∞
kmin

γ(dk) eiθ k p(t; θ|ω, k) (1.6.7)

with kmin the minimum degree in the network and 〈k〉 =
∫∞

0
kγ(dk) the average

degree.
When the natural frequency distribution µ(ω) is symmetric and has mean zero,

then the critical coupling strength is

Kc = 2N〈k〉
[ ∫

R
µ(dω)

∫ ∞
kmin

γ(dk)
Dk2

D2 + ω2

]−1

, (1.6.8)

which is divergent with N .

Two-community model

The same authors considered the stochastic Kuramoto model without disorder on
a two-community network [120], assigning an in-degree and an out-degree to each
node i (oscillator), Ki and Gi, respectively. Grouping these into two populations, one
with interaction parameters (K1, G1) and one with interaction parameters (K2, G2),
we get a two-community version. In this case we can define an order parameter and
a density for each community. The limiting densities evolve according to

∂p1,2(t; )θ

∂t
= D

∂2p1,2(t; θ)

∂θ2
− ∂

∂θ

[
K1,2R(t) sin(Ψ(t)− θ)p1,2(t; θ)

]
, (1.6.9)

where R(t) and Ψ(t) are defined by

R(t)eiΨ(t) =
1

2

[
r1(t)G1eψ1(t) + r2(t)G2eiψ2(t)

]
. (1.6.10)
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The community synchronization levels r1,2(t) and average phases ψ1,2(t) are defined
analogously as before. The phase difference between the average phases is defined
by δ(t) = ψ1(t) − ψ2(t). Approximating the populations of the oscillators to be dis-
tributed according to a Gaussian distribution (‘Gaussian Approximation’) amounts
to expanding the densities p1,2(t; θ) in a Fourier series, and replacing real and ima-
ginary components by their Gaussian counterparts, where the mean and variance of
the Gaussian are assumed to be time-dependent. Under such an approximation the
dynamics of the system can be described by a set of three equations:

ṙ1 = −r1D +
1− r4

1

4
K1[r1G1 + r2G2 cos δ], (1.6.11)

ṙ2 = −r2D +
1− r4

2

4
K2[r2G2 + r1G1 cos δ], (1.6.12)

δ̇ = − sin δ

4

[
(r−1

1 + r3
1)K1r2G2 + (r−1

2 + r3
2)K2r1G1

]
. (1.6.13)

To find the possible stationary states, this set of equations, must be solved with the
restriction that ṙ1,2 = δ̇ = 0. This leads to the phase diagram given in Fig. 2 of [120],
which shows the existence of traveling waves and of states where there is a constant
phase lag between the two populations. Further numerical analysis shows that the
model is significantly richer when considered on a two-community network.

Superficial hierarchical Kuramoto model

The previous two examples rely on approximations that may well be justified by
simulations, but cannot be considered rigorous. Reference [32] considers N copies of
the stochastic Kuramoto model and introduces a mean-field interaction between their
average phases after they have sufficiently synchronized. This is used as Kuramoto
model on the second level. Taking N copies of the second level Kuramoto model with
a mean-field interaction of the Kuramoto type gives the third level Kuramoto model.
This is repeated. We refer to this as the superficial hierarchical Kuramoto model in
order to distinguish it from what we will consider later. The name refers to the fact
that the interaction is imposed at the level of the average phases, which is more on
the surface than what we will consider. We define the coupling strength at the nth

level to be K(n) and the synchronization at the nth level to be r(n)(t). The result
relevant to our work is one giving a necessary and sufficient condition for r(n) to be
positive in the limit as n→∞ and t→∞ ([32] Theorem 1.4.3).

1.6.1 Theorem.
lim
n→∞

r(n) > 0⇐⇒
∑
m∈N

1

γ(m)
<∞, (1.6.14)

where

γ(n) =
K(n)(r(n−1))2

D2
, n ∈ N. (1.6.15)

This seems a strong result, but since the γ(n) depend sequentially on the previous
levels of synchronization, it is not easy to calculate the sum of their inverses.
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§1.7 Discrepancy

The nonlinearity of the interaction in the Kuramoto model greatly increases the dif-
ficulty in analyzing the model. This can be illustrated by a discrepancy that arises
when considering the Kuramoto model at times of order Nt, i.e., time is scaled by
the number of oscillators. Both [32] and [14] prove that the average phase ψ(t) per-
forms a diffusion on this time scale. It is, however, remarkable that the calculation
of the quadratic variation of the resulting diffusion via standard Itô-calculus gives an
incorrect prediction. Itô’s rule applied to (1.5.2) yields the expression

dψN,t =

N∑
i=1

∂ψN,t
∂θi

dθi(t) +
1

2

N∑
i=1

∂2ψN,t
∂θ2
i

(
dθi(t)

)2 (1.7.1)

with

∂ψN,t
∂θi

=
1

NrN,t
cos
[
ψN,t − θi(t)

]
, (1.7.2)

∂2ψN,t
∂θ2
i

= − 2(
NrN,t)2

sin
[
ψN,t − θi(t)

]
cos
[
ψN,t(t)− θi(t)

]
+

1

NrN,t
sin
[
ψN,t − θi(t)

]
.

Inserting (1.5.3) into (1.7.1)–(1.7.3), we get

dψN,t = I(N ; t) dt+ dJ(N ; t) (1.7.3)

with

I(N ; t) =

[
K

N
− 1(

NrN,t
)2
]

N∑
i=1

sin
[
ψN,t − θi(t)

]
cos
[
ψN,t − θi(t)

]
,

dJ(N ; t) =
1

NrN,t

N∑
i=1

cos
[
ψN,t − θi(t)

]
dWi(t),

(1.7.4)

where we use that
∑N
i=1 sin[ψN,t − θi(t)] = 0 by (1.5.2). Since the last term is a sum

of independent Brownian motions, the asymptotic variance should be given by t/N
times

1

r2

∫ 2π

0

dθ p(θ) cos2 θ, (1.7.5)

where

p(θ) =
e2Kr cos θ∫

S dθ′ e2Kr cos θ′
(1.7.6)

is the stationary density of the Kuramoto model so that

lim
t→∞

lim
N→∞

νN,t(dθ) = p(θ)dθ. (1.7.7)
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Another way of calculating this variance is to compute the quadratic variation of the
random variable that arises when projecting the fluctuations of the measure onto the
tangent space of the steady-state manifold. This random variable is defined as

Yt :=
〈〈νN,t − νN,0, p′〉〉

〈〈p′, p′〉〉 , (1.7.8)

where 〈〈·, ·〉〉 is the scalar product in the Hilbert space H−1,1/p, so that

〈〈u, v〉〉 =

∫
S

dθ
U(θ)V(θ)

p(θ)
(1.7.9)

and U is such that u = U ′ with the convention that
∫
S
U(θ)
p(θ) dθ = 0. To calculate

〈〈p′, p′〉〉, we define P so that P ′ = p′. This means that P(θ) = p(θ) + C, where the
constant C has to be determined by the convention, which gives

C = − 2π∫
S dθ 1

p(θ)

. (1.7.10)

Using this formula, we have

〈〈p′, p′〉〉 =

∫
S

dθ
P2(θ)

p(θ)
= 1− (2π)2∫

S dθ 1
p(θ)

. (1.7.11)

To calculate the quadratic variation we follow [14] from equation (2.8) to (2.9). We
apply Itô’s formula to

〈〈νN,t − νN,0, p′〉〉 =

∫
S

dθ
1

p(θ)
P(θ)VN (θ), (1.7.12)

where P and VN are the appropriate primitives. We can write this as

〈〈νN,t − νN,0, p′〉〉 =

∫
S

dθ VN (dθ)∂θK(θ), (1.7.13)

where K is the primitive of 1− c/p(θ), so that

〈〈νN,t − νN,0, p′〉〉 = −
∫
S

dθK(θ)[νN,t(dθ)− p(θ)]. (1.7.14)

Applying Itô’s formula, we get∫
S
K(θ)νN,t(dθ)−

∫
S

dθK(θ)p(θ) = −K
∫ t

0

ds

∫
S2
νN,s(dθ

′)νN,s(dθ
′)K′(θ′) sin(θ − θ′)

(1.7.15)

−
∫ t

0

ds

∫
S
νN,s(dθ)K′′(θ) +

N∑
j=1

1

N

∫ t

0

K′(θj(s))dWj(s),
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which is a sum of a drift term and a martingale. We can compute the quadratic
variation of the martingale as

MN,K(t) =

N∑
j=1

1

N

∫ t

0

K′(θj(s))dWj(s), (1.7.16)

so

〈MN,K〉t =

N∑
j=1

∫ t

0

ds
1

N2
(K′(θj(s)))2 =

1

N

∫ t

0

ds

∫
S
νN,s(dθ)(K′(θ))2. (1.7.17)

The integral over S converges:

lim
N→∞

∫
S
νN,s(dθ)(K′(θ))2 =

∫
S

dθ (K′(θ))2p(θ), (1.7.18)

and since we are starting in the stationary distribution this gives

〈MN,K〉t =
t

N

∫
S

dθ (K′(θ))2p(θ), (1.7.19)

as also stated in [14]. Since K is the primitive, this says that∫
S

dθ
(

1− c

p(θ)

)2

=

∫
S

dθ p(θ)− 2c

∫
S

dθ + c2
∫
S

dθ

p(θ)
(1.7.20)

= 1− 2
(2π)2∫

S dθ/p(θ)
+

(2π)2∫
S dθ/p(θ)

. (1.7.21)

The quadratic variation of Yt is therefore t/N times

1− (2π)2
[ ∫

S
dθ
p(θ)

]−1

〈〈p′, p′〉〉2 =
1

〈〈p′, p′〉〉 =
1

1− (2π)2∫
dθ/p(θ)

=
1

1− I0(2Kr)−2
, (1.7.22)

where I0(·) is the modified Bessel function of the first kind

In(x) =
1

2π

∫ 2π

0

dθ cos(nθ) ex cos θ, n = 0, 1, 2, . . . (1.7.23)

The last equality follows since

(2π)2∫
S

dθ
p(θ)

=
(2π)2∫

S dθe2Kr cos θ
∫
S dθe−2Kr cos θ

=
1

I2
0 (2Kr)

. (1.7.24)

Using the definition of the Bessel function and the expression for q(θ), (1.7.5) we can
rewrite

I0(2Kr) + I2(2Kr)

2r2I0(2Kr)
=

1

2r2
+

I2(2Kr)

2r2I0(2Kr)
. (1.7.25)

But we also know that (by the self-consistency relation)

r =
I1(2Kr)

I0(2Kr)
, (1.7.26)
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and so (1.7.5) becomes

I2
0 (2Kr)

2I2
1 (2Kr)

+
I0(2Kr)I2(2Kr)

2(I1(Kr))2
, (1.7.27)

which is certainly not equal to (1.7.22). Surprisingly, the difference between (1.7.27)
and (1.7.22) is numerically very small, a fact that is crucial in Chapter 4 where we
will use the term calculated via Itô-calculus as an approximation.

§1.8 Main results of Part II

Results of Chapter 4

In Chapter 4 we consider the Kuramoto model on the hierarchical lattice and make a
conjecture on the scaling behaviour of the system at each hierarchical level based on
the folklore of renormalization theory. After that we approximate the renormalization
scheme and argue that the approximation is good based on the observation that
the discrepancy at the first hierarchical level is small. The approximate system can
be analyzed exactly, and so we proceed by proving classification criteria for three
universality classes in the behaviour of the system, in the hierarchical mean-field
limit. The possible universality classes are:

(1) Synchronization is lost at a finite level:
R[k] > 0, 0 ≤ k < k∗, R[k] = 0, k ≥ k∗ for some k∗ ∈ N.

(2) Synchronization is lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] = 0.

(3) Synchronization is not lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] > 0.

Here R[k] gives the synchronization in the k-block around the origin. The first main
result gives the following criteria:

1.8.1 Theorem. (Criteria for the universality classes)

•
∑
k∈NK

−1
k ≥ 4 =⇒ universality class (1),

•
∑
k∈NK

−1
k ≤ 1√

2
=⇒ universality class (3),

where Kk is the interaction strength between oscillators at hierarchical distance k.

This result is reminiscent of that in Theorem 1.6.1 without the complication of the
sequential dependence on lower levels. The second main result gives bounds on the
synchronization levels in different universality classes:

1.8.2 Theorem. (Bounds for the block synchronization levels)

• In universality classes (2) and (3),
1
4σk ≤ R[k] −R[∞] ≤

√
2σk, k ∈ N0, (1.8.1)

with σk =
∑
`>kK

−1
` .
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• In universality class (1), the upper bound in (1.8.1) holds for k ∈ N0, while the
lower bound in (1.8.1) is replaced by

R[k] −R[k∗−1] ≥ 1
4

k∗−1∑
`=k+1

K−1
` , 0 ≤ k ≤ k∗ − 2. (1.8.2)

The latter implies that

k∗ ≤ max

{
k ∈ N :

k−1∑
`=1

K−1
` < 4

}
, (1.8.3)

because R[0] = 1 and R[k∗−1] > 0.

The last part of Chapter 4 gives some numerical calculations demonstrating the res-
ults above. Chapter 4 is based on [52].

Results of Chapter 5

In Chapter 5 we consider the Kuramoto model on a simpler network, consisting of two
communities, and allow the interaction between the communities, L, to be negative.
The negative interaction between the communities enriches the model significantly.
In particular, the synchronization levels in the two communities can be different. We
conjecture that the only possible steady states of the system occur when the phase
difference between the average phases of the communities is 0 or π. The nonsymmetric
solutions bifurcate from the symmetric solution in both cases. Chapter 5 has three
key results. The first is a full classification of the phase diagram of the model, which
is summarized in Fig. 1.4 for the case where the phase difference is 0 .

The second result is a characterization of the bifurcation point.

1.8.3 Theorem (Characterization of the bifurcation line). The existence of
non-symmetric solutions requires L < 0, in which case the bifurcation point
K∗ = K∗(L) is the unique solution to the equation√

1− 2K

K2 − L2
= V

(
(K + L)

√
1− 2K

K2 − L2

)
, (1.8.4)

and the synchronization level at the bifurcation point is given by

r∗(K∗, L) =

√
1− 2K∗

K∗2 − L2
. (1.8.5)

Here, the function V (x) is defined as

V (x) =

∫
S dθ cos θ ex cos θ∫

S dθ ex cos θ
, (1.8.6)

K is the intra-community interaction strength, and r∗ is the synchronization level of
the bifurcation point.
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Figure 1.4: In the light red region there is one solution: unsynchronized. In the light green
region there are two solutions: unsynchronized and symmetric synchronized. In the light blue
region there are three solutions: unsynchronized, symmetric synchronized and non-symmetric
synchronized.

The third result consists of a pair of theorems, the first listing properties of the
line r∗(K) and the second giving the asymptotics of L∗(K), obtained by fixing K,
solving (1.8.4), and letting K →∞ and K ↓ 2.

1.8.4 Theorem (Properties of K 7→ r∗(K)).
(a) limK↓2 r∗(K) = 0.

(b) limK→∞ r∗(K) = 1.

(c) r∗(K) ∼
√

K−2
2 as K ↓ 2.

(d) 1− r∗(K) ∼ 1
2
√
K

as K →∞.

(e) ∂r∗(K)
∂K > 0 for all K > 2.

(f) ∂2r∗(K)
∂K2 < 0 for all K > 2.

1.8.5 Theorem (Asymptotic properties of the bifurcation line).
(a) limK→∞

∂L∗(K)
∂K = −1.

(b) limK↓2
∂L∗(K)
∂K = − 1

2 .

The model we consider is a special case of the more general model discussed in
[120], but we do not rely on a Gaussian approximation. Chapter 5 is based on [93].
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Results of Chapter 6

The final chapter of this thesis is an application of the results in Chapter 5 in the
field of neuroscience. The results hint at the mechanisms that could be driving a
phenomenon observed in some hamsters called phase splitting. In experiments [96],
[56], [55] hamsters are entrained to a light-dark cycle. In this simulation of night
and day, the hamsters are active for a few consecutive hours, once every 24 hours.
The hamsters are then switched to a state of constant light. After some time the
hamsters exhibit a behavior in which they are active for two periods during the day.
How precisely this happens is not know, although many models have been proposed
to explain it [117], [98], [65]. In Chapter 6 we propose that the community network
structure of the suprachiasmatic nucleus (the body clock) plays a significant role in
producing the phase split state. The model in Chapter 5 predicts precisely this phase
split state when the interaction between the two communities is negative.

In experiments the phase split state does not seem to be completely stable, as the
hamsters switch back to a single active period after some time. Delving deeper into
the experiments, we find that the transition to the phase split state can occur in one
of two ways. The transition can be smooth, so that the communities change to the
phase split state while remaining relatively well synchronized within the communities.
The transition can also be quite chaotic, meaning that one or both of the communities
become desynchronized before changing to the phase split state. One explanation of
this observation could be the nonexistence or existence of nonsymmetric synchronized
states found in Chapter 5 that the system might have to pass through before reaching
the phase split state. Chapter 6 does not offer new mathematical results and also does
not present new experimental findings however, it does offer an interpretation of the
mathematical results of Chapter 5 in a specific context and provides data that corrob-
orates this interpretation. The goal of Chapter 6 is to entice experimental researchers
to design experiments in order to prove or disprove the predictions made in Chapter 6.

Open Problems

Open problems are numerous. The most challenging is to write down and analyze the
true renormalization map for the Kuramoto model on the hierarchical lattice. An-
other, slightly more realistic, extension would be to include disorder in the hierarchical
Kuramoto model and finding an appropriate approximation to the renormalization
map with disorder. For the two-community Kuramoto model it would be interesting
to analyze the stability properties of the stationary states and to study the dynamics
of the system as it moves from one state to the other. Another problem would be to
see whether the system bifurcates in the disordered case as well, which we expect to
be the case.
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2. Large deviations for diffusions with resetting

CHAPTER 2
Large deviations for diffusions

with resetting

This chapter is based on:[92].

Abstract

Markov processes restarted or reset at random times to a fixed state or region
in space have been actively studied recently in connection with random searches,
foraging, and population dynamics. Here we study the large deviations of time-
additive functions or observables of Markov processes with resetting. By deriving a
renewal formula linking generating functions with and without resetting, we are able
to obtain the rate function of such observables, characterizing the likelihood of their
fluctuations in the long-time limit. We consider as an illustration the large deviations
of the area of the Ornstein-Uhlenbeck process with resetting. Other applications
involving diffusions, random walks, and jump processes with resetting or catastrophes
are discussed.
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§2.1 Introduction

Stochastic processes with restarting or reset events, corresponding to random trans-
itions in time to a given state or region in space, have been the subject of active
studies in physics and mathematics in recent years. In physics, such processes have
been studied as a mechanism for power-law distributions [89] and, more recently, as
random search models suggested by common experience (e.g., losing one’s keys) in
which periods of diffusive exploration are interspaced with random returns to a start-
ing point [48, 47, 50, 49, 74, 58, 87, 88]. In this context, a reset is also called a restart
[67] or a teleportation [11] and can be considered as part of more general intermittent
search strategies combining different exploration dynamics [97].

In mathematics, processes with reset have been studied mostly in the context
of birth-death processes modelling the evolution of populations in which partial or
complete extinction or emigration events happen at random times [101, 19, 18, 75, 102,
45, 43]. In this context, a reset is more often referred to as a catastrophe, disaster or
decimation and can also be seen as an absorbing or “killing” state that triggers, when
reached, a restart or “resurrection” of the process [102]. Similar jump processes have
been studied for modelling queues where random “failures” clearing the content or
occupation of a queue are followed by “repaired phases” in which the queue functions
normally [31, 29, 71].

The focus of these studies, both on the physical and mathematical sides, is on
determining time-dependent and stationary distributions, as well as survival and first-
passage time statistics using modified Master or Fokker-Planck equations that account
for the effect of resetting. Renewal representations of distributions and first-passage
time statistics have also been obtained for jump processes [75, 102, 45] and diffusion
equations [48, 47, 50]. First-passage times are especially important for search ap-
plications, as they provide a measure of the efficiency of adding resetting to random
walks.

Here, we consider a different problem involving resetting, namely, that of deriving
large deviation functions for additive observables. The study of large deviations for
“normal” Markov processes is an active area of probability theory having many ap-
plications in queueing theory, estimation, and control [20, 119, 39]. Large deviation
functions also play a fundamental role in statistical physics by providing rigorous ver-
sions of the notions of entropy and free energy for equilibrium systems [46], which can
be generalized to nonequilibrium systems driven in steady states [130, 40, 42, 15, 61].
In this context, an additive observable is simply a quantity integrated over time for a
physical system evolving stochastically due to the influence of noise, external forces,
and boundary reservoirs. It can represent, for example, the work done when pulling a
Brownian particle with laser tweezers [132], the stretch of a molecular motor attached
to a protein [91], or the total energy or particle current exchanged between different
reservoirs in a given time interval [42]. In all cases, the fluctuations of the observable
studied are characterized in the long-time limit by the so-called rate function, which
is the central function of large deviation theory [46, 39, 40, 130].

We obtain in the following large deviation functions for processes with resetting by
deriving two representations for the generating function of additive observables: one
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that is essentially a reset generalization of the Feynman-Kac formula and another that
links, via a renewal argument, the generating function of an observable with resetting
to its generating function without resetting. The derivation of rate functions follows
from these results by studying, as is common in large deviation theory, the long-time
asymptotics of generating functions. As an illustration of these results, we consider
in Sec. 2.4 the large deviations of the integral (area) of the reset Ornstein-Uhlenbeck
process, which can be considered as a simple model of molecular motor with resetting
[91]. Other applications related to birth-death processes and queues are mentioned
in the conclusion of the paper.

§2.2 Problem

To simplify the presentation, we consider the case of one-dimensional diffusions.
Higher-dimensional diffusions and jump processes such as birth-death processes can
be treated with minor changes of notation.

We thus consider an ergodic diffusion process Xt ∈ R described by the stochastic
differential equation (SDE)

dXt = F (Xt)dt+ σdWt, (2.2.1)

which is reset to the fixed position xr at random times distributed according to an
exponential distribution with parameter r ≥ 0. Considering the evolution of Xt

over an infinitesimal time dt, this means that Xt is either reset to Xt+dt = xr with
probability rdt or that Xt diffuses with probability 1−rdt according to the SDE 2.2.1,
which involves the drift F (Xt), the noise power σ > 0, and the Brownian motion or
Wiener process Wt.

As shown in [48, 47], the resetting modifies the Fokker-Planck equation governing
the evolution of the probability density p(x, t|x0) of Xt started at X0 = x0 by adding
a uniform sink and a source at xr:

∂

∂t
p(x, t|x0) = − ∂

∂x
F (x)p(x, t|x0) +

σ2

2

∂2

∂x2
p(x, t|x0)

−rp(x, t|x0) + rδ(x− xr). (2.2.2)

Alternatively, p(x, t|x0) can be obtained by noting that Xt can reach x 6= xr by
diffusing either from its last reset position xr, which occurred at the random time
t− τ , or from its initial state x0 without resetting, so that

p(x, t|x0) = e−rtp0(x, t|x0) +

∫ t

0

re−rτ p0(x, τ |xr)dτ, (2.2.3)

where p0(x, t|x0) is the free propagator solving the standard Fokker-Planck equation
(2.2.2) with r = 0 [48, 47]. Similar renewal formulae connecting time-dependent
distributions with and without resetting have been obtained in the context of jump
processes modelling population dynamics [19, 18, 75, 45] and queues [71, 31, 29].
Modified Fokker-Planck equations with resetting have also been obtained by studying
the diffusive or Kramers-Moyal limit of reset jump processes; see [31, 29, 43, 44].
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Here, we study the probability density not of the process itself but of functionals
or observables of Xt having the general time-additive form

AT =
1

T

∫ T

0

f(Xt)dt, (2.2.4)

where f is a real function of Xt. Such observables naturally arise in manmade and
physical systems, as mentioned, and are often characterized by a probability density
having the form

P (AT = a) = e−TI(a)+o(T ) (2.2.5)

in the limit of large integration times T , with o(T ) denoting any correction term that
grows slower than T . This scaling of probabilities is known in large deviation theory
as the large deviation principle (LDP) [46, 39, 40, 130] and implies that fluctuations
of AT are exponentially unlikely to be observed in the long-time limit. This applies
for all values AT = a such that the rate of decay or rate function I(a) is positive. In
general, I(a) also has (at least) one zero a∗ determining the typical value of AT around
which P (AT = a) concentrates exponentially as T → ∞. The rate function is thus
important as it characterizes in the long-time limit the typical value of AT , which
corresponds to its ergodic or stationary value, as well as the atypical fluctuations
around this ergodic value.

For processes with no resetting, the rate function is generally obtained by calcu-
lating the scaled cumulant generating function (SCGF) of AT defined by the limit

λ0(k) = lim
T→∞

1

T
lnE0

x

[
eTkAT

]
, (2.2.6)

where k ∈ R and E0
x[·] denotes the expectation with respect to the non-reset process

Xt started at X0 = x. For Markov processes, it is known that this function coincides
under general conditions with the dominant eigenvalue of the so-called tilted generator
[46, 39, 40, 130], which for the SDE (2.2.1) has the form

Lk = L+ kf, (2.2.7)

where

L = F
∂

∂x
+
σ2

2

∂2

∂x2
(2.2.8)

is the generator of the diffusion Xt without resetting. In this case, the calculation
of large deviations is therefore essentially a spectral problem. Assuming that λ0(k)

can be obtained and is differentiable, we then have from an important result of large
deviation theory, known as the Gärtner-Ellis Theorem [46, 39, 40, 130], that AT
satisfies an LDP with rate function I0(a) given by the Legendre-Fenchel transform of
the SCGF:

I0(a) = sup
k

{
ka− λ0(k)

}
. (2.2.9)

This method can be applied in principle to processes with resetting, but the gen-
erator of Xt in this case is not a pure differential operator: it is a mixed operator
involving the pure part (2.2.8) and a singular integral kernel accounting for the delta

32



§2.3. Results

C
h
a
pter

2

source in the Fokker-Planck equation. Finding the SCGF by spectral method then be-
comes a complicated and singular problem, so that other methods must be used. We
propose one in the next section based on the renewal representation of reset processes.

§2.3 Results

We obtain the large deviations of AT for the process Xt with resetting by studying,
following the limit (2.2.6), the time evolution of the generating function:

Gr(x, k, t) = Ex
[
etkAt

]
= Ex

[
ek
∫ t
0
f(Xs)ds

]
, (2.3.1)

where Ex[·] denotes the expectation with respect to the process Xt with resetting
started at X0 = x. Without resetting (r = 0), this function is known to evolve
according to the Feynman-Kac (FK) formula

∂

∂t
G0 = LkG0, (2.3.2)

which is a parabolic linear partial differential equation for G0 = Gr=0 with initial
condition G0(x, k, 0) = 1 [84].

A modified FK formula that includes resetting can be derived similarly to the
reset-free case by considering an additional time step dt in the generating function,
so as to write

Gr(x, k, t+ dt) = Ex
[
e
∫ dt
0
f(Xs)dse

∫ t+dt
dt

f(Xs)ds
]

= ef(x)dtEx
[
e
∫ t+dt
dt

f(Xs)ds
]
, (2.3.3)

using X0 = x. From this initial state, the process can either reset to Xdt = xr with
probability rdt or diffuse to Xdt according to the SDE (2.2.1) with the complementary
probability 1− rdt, so that

Gr(x, k, t+ dt) = ef(x)dt

{
rdtGr(xr, k, t)

+ (1− rdt)
∫ ∞
−∞

dξ K(ξ)Gr(x+ ξ, k, t)

}
, (2.3.4)

whereK(ξ) is the probability distribution of the incrementXdt−X0 = ξ as determined
from (2.2.1). In this way, we separate the resetting from the pure diffusion (2.2.1).
Expanding Gr(x + ξ, k, t) up to second order in ξ and performing the integral then
yields

∂

∂t
Gr = (Lk − r)Gr + rGr(xr, k, t) (2.3.5)

with the initial condition Gr(x, k, 0) = 1.
This modified FK formula with uniform sink and source at xr is similar to equa-

tions obtained for the first-passage problem with resetting [48, 47, 50] and must be
solved, as for this problem, by considering the source term Gr(xr, k, t) as a constant
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and by matching the solution Gr(x, k, t) self-consistently for x = xr. This is a difficult
task in general, which does not suggest in our experience an efficient way to obtain
large deviations, especially since we need the generating function for large times in
order to obtain the limit

λr(k) = lim
T→∞

1

T
lnGr(x, k, T ), (2.3.6)

which is the reset version of (2.2.6).
For the purpose of calculating this limit, a more useful renewal representation of

Gr(x, k, t) similar to (2.2.3) can be derived. To this end, assume that the time interval
[0, T ] witnesses n resettings with periods τ1, τ2, . . . , τn such that

T =

n+1∑
i=1

τi (2.3.7)

and

TAT =

n+1∑
i=1

∫ τi

∑i
j=1 τj−1

f(Xs)ds, (2.3.8)

where τn+1 is the last period without resetting leading to T . Because of the additive
form of AT , it is clear that Gr can be decomposed, when conditioned on these n
resettings, into a product of generating functions G0 involving only pure diffusion
between resettings. To write the full Gr, we then have to sum over all possible reset
number and reset times. Since the probability of having a reset at time τ is re−rτ

and the probability of no reset until the time τ is e−rτ , we thus obtain

Gr(x, k, T ) =

∞∑
n=0

∫ T

0

dτ1 re
−rτ1G0(x, k, τ1)

∫ T

0

dτ2 re
−rτ2G0(xr, k, τ2) · · ·

×
∫ T

0

dτn+1 e
−rτn+1G0(xr, k, τn+1) δ

(
T −

n+1∑
i=1

τi

)
. (2.3.9)

Notice that the first G0 term starts at the initial condition X0 = x, while the
others start after resetting at xr. The probability of the last period τn+1 is also
different from the other periods, since it is determined by the prior n reset periods
and the constraint (2.3.7), included in (2.3.9) with the delta function.

To deal with this constraint, it is natural to consider the Laplace transform in
time of the generating function

G̃r(x, k, s) =

∫ ∞
0

Gr(x, k, T )e−sT dT, (2.3.10)

which yields, after integration over the τi’s,

G̃r(x, k, s) = G̃0(x, k, s+ r)

∞∑
n=0

rnG̃0(xr, k, s+ r)n, (2.3.11)
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where G̃0 denotes the Laplace transform of G0. Assuming that

rG̃0(xr, k, s+ r) < 1, (2.3.12)

we therefore obtain

G̃r(x, k, s) =
G̃0(x, k, s+ r)

1− rG̃0(xr, k, s+ r)
. (2.3.13)

This is our main result connecting the generating function of AT with resetting
to its generating function without resetting. It can be verified that this formula
is equivalent (by Laplace transform) to the modified FK equation (2.3.5), though
(2.3.13) is simpler, as it expresses Gr explicitly in terms of the free generating function
G0.

This is more convenient for obtaining large deviations. Assuming that the limit
(2.3.6) defining the SCGF λr(k) of AT exists implies the following scaling of the
generating function:

Gr(x, k, T ) ∼ eλr(k)T (2.3.14)

as T →∞, which translates in Laplace space into

G̃r(x, k, s) ∼
1

s− λr(k)
. (2.3.15)

As a result, we see that the SCGF of AT for the resetting process can be determined by
locating the largest (simple and real) pole of the right-hand side of (2.3.13), which is
also a zero (in s) of the denominator 1−rG̃0 when G̃0 is finite. If λr(k) is differentiable
as a function of k, we then obtain the rate function Ir(a) of AT similarly to (2.2.9)
by taking the Legendre-Fenchel transform of λr(k).

These calculations are based only on the knowledge of the generating function G0

of AT without resetting. In some cases, the large-time asymptotics of that generating
function proves to be sufficient to obtain the desired pole λr(k), which means that the
large deviations of AT for the process with resetting can be obtained directly from the
large deviations of AT without resetting. This important result is illustrated next.

§2.4 Example

We consider in this section the reset Langevin equation (or reset Ornstein-Uhlenbeck
process) obtained by adding resettings at xr with rate r to the diffusion

dXt = −γXtdt+ σdWt, (2.4.1)

where γ is the friction coefficient, σ is the noise strength, and Wt is the Wiener
process. The stationary distribution of this model was studied recently in [103]. The
observable that we consider is the integral of the state,

AT =
1

T

∫ T

0

Xtdt. (2.4.2)
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This reset process can be considered physically as a simple model of filament
dynamics in motility assays [116, 115, 126], wherein filaments are pulled by spring-
like motor proteins attached to a substrate at one end and moving on filaments at
the other [9]. In this context, AT represents the mean force exerted on one filament
over a time T , which is proportional to the stretch Xt of the motor protein attached
to it, while resetting happens when the motor randomly detaches from the filament
and a new motor attaches itself with zero stretch [91].

The generating function G0 of AT for the reset-free Langevin equation is known
in closed form, but its Laplace transform is relatively complicated to work with. For
our purpose, it is more convenient to expand G0, following the FK formula (2.3.2), in
spectral form as

G0(x, k, T ) =

∞∑
i=0

ψk,i(x)eλ0,i(k)T , (2.4.3)

where λ0,i(k) are the eigenvalues of the tilted generator Lk without resetting and ψk,i
are the corresponding eigenfunctions. Such a spectral decomposition can be obtained
in principle for any Markov process. By symmetrization to the quantum oscillator
(see the Appendix), we explicitly find here

λ0,i(k) =
k2σ2

2γ2
− iγ, i = 0, 1, . . . (2.4.4)

and

ψk,i(x) =
(−1)iγ−3i/2kiσie

kx
γ − 3k2σ2

4γ3 Hi

(√
γx

σ − kσ
γ3/2

)
√

2ii!
√

(2i)!!
(2.4.5)

where Hi is ith Hermite polynomial. The SCGF λ0(k) of AT corresponds to the
largest eigenvalue:

λ0(k) = max
i
λ0,i(k) =

σ2k2

2γ2
. (2.4.6)

From the Legendre-Fenchel transform (2.2.9), we thus find the rate function of AT
without resetting to be

I0(a) =
γ2a2

2σ2
, (2.4.7)

which implies that the fluctuations of AT are Gaussian-distributed around AT = 0 1.
To determine the effect of resetting on these fluctuations, we insert the Laplace

transform of the spectral representation (2.4.3),

G̃0(x, k, s) =

∞∑
i=0

ψk,i(x)

s− λ0,i(k)
, (2.4.8)

into the Laplace formula (2.3.13) and locate the largest pole of the resulting expression
for a given truncation 0 ≤ i ≤ m. The result is shown for xr = 1, r = 2, and various
truncation orders m in Fig. 2.1 and compared with the reset-free SCGF λ0(k). As

1This is also evident from the fact that AT is a linear integral of a linear Gaussian process.
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Figure 2.1: (Color online) Dominant pole of G̃r(x, k, s) for increasing truncation orders:
m = 0 (blue), m = 2 (purple), m = 4 (green). Black curve: Convex λr(k) obtained for
m ≥ 6. Dashed black curve: Non-reset λ0(k). Dashed gray curve: Tail approximation of
λr(k) shown in (2.4.11). Parameters: xr = 1, r = 2, γ = 1, σ = 1.

can be seen, the dominant pole is nonconvex in k for low truncation orders, which
means that it does not represent a valid SCGF, since SCGFs are always convex by
definition [46, 39, 40, 130]. By increasing however the truncation order, the pole does
converge to a convex function, identified from (2.3.15) as λr(k). For the parameter
values used in Fig. 2.1, convergence is attained essentially for m & 6; for larger values
of |xr| or r, more modes are generally required.

This applies to the part of λr(k) close to k = 0, which describes the small fluctu-
ations of AT . For the large fluctuations associated with the tails of λr(k), convergence
appears immediately for one mode, as can be seen in Fig. 2.1, which implies the fol-
lowing approximation:

λr(k) ≈ λ0(k)− r + rψk,0(xr). (2.4.9)

Here, we have explicitly

ψk,0(x) = ekx/γ−3k2σ2/(4γ3), (2.4.10)

so that (2.4.9) can be simplified in fact to

λr(k) ≈ λ0(k)− r (2.4.11)

for |k| → ∞.
This simple tail behavior of λr(k) can be understood by noting that very large

fluctuations of AT are brought about, for relatively small reset positions xr, by long
excursions of the process far away from xr having very few or no reset events. As a
result, the renewal representation (2.3.9) is dominated by purely diffusive trajectories
whose large deviations are determined by the dominant mode of G0 as T →∞. The r
factor in (2.4.11) only accounts for the probability of seeing such trajectories without
resetting. Conversely, more modes of G0 are needed to describe the small fluctuations

37



2. Large deviations for diffusions with resetting

C
h
a
pt

er
2

-� -� � � �

�

�

�

�

�

��

a

I r
(a
)

Figure 2.2: Black curves: Ir(a) for xr = 0, 1, 2 (from left to right). The first two curves
were obtained for m = 10, while the last for xr = 2 was obtained for m = 20. Dashed black
curve: Non-reset rate function I0(a). Dashed gray curve: Tail approximation of Ir(a) shown
in (2.4.12). Parameters: r = 2, γ = 1, σ = 1.

of AT close to xr because such fluctuations are brought about by trajectories that
have many resettings and, therefore, many short diffusive trajectories for which the
large deviation limit is not effective. The number of modes m that must be used to
recover the correct λr(k) depends on the parameters used: generally, the larger r or
|xr| is, the higher m should be since resetting takes place more often.

Once that number is set, the rate function Ir(a) can be computed as the Legendre-
Fenchel transform of λr(k). The result is shown in Fig. 2.2 for r = 2 and different
resetting positions xr. As expected, the rate function Ir is narrower than I0 and shifts
towards the resetting position xr, since Xt is more likely with resetting to stay near
xr. Note, however, that the minimum a∗ of the rate function, corresponding to the
most probable value of AT in the ergodic limit T →∞, is not exactly xr because the
friction in the Langevin equation brings Xt near x = 0. It is difficult to study this
competing effect analytically, since it is strongly linked to resetting, and so cannot be
treated perturbatively using a mode expansion of G0. Numerically, we find that a∗

varies linearly with xr with a slope c(r) shown in Fig. 2.3. As r →∞, c(r)→ 1, and
thus a∗ → xr, as expected.

Looking back at Fig. 2.2, we can also see that the tails of Ir(a) are mostly un-
affected by resetting, except for a constant shift. This comes again from the large
fluctuations of AT being the result of large diffusive excursions that have very few or
no resetting events, so that (2.4.11) holds. Inserting this tail approximation into the
Legendre-Fenchel transform leads to the dual approximation

Ir(a) ≈ I0(a) + r (2.4.12)

as |a| → ∞. This gives a good approximation of the rate function, as can be seen in
Fig. 2.2.

This tail result implies with (2.4.7) that AT has large Gaussian fluctuations, re-
flecting with a shift its Gaussian fluctuations (2.4.7) seen without resetting. The small
fluctuations of AT around its typical value and mean a∗ are also Gaussian, as can

38



§2.5. Conclusion

C
h
a
pter

2

� � � � � �

���

���

���

���

��	

r

c(
r)

Figure 2.3: Proportionality coefficient c(r) between the minimum a∗ of Ir(a) and the resetting
position xr. Parameters: γ = 1, σ = 1.

be seen by expanding Ir(a) around its minimum a∗, but with a reset-modified vari-
ance determined by λ′′r (0) or I ′′r (a∗)−1 [130]. Finally, in the intermediate region away
from a∗, where (2.4.12) is not an accurate approximation of Ir(a), the competition
between resetting and diffusion leads to non-Gaussian fluctuations, characterized by
the non-parabolic rate function seen in Fig. 2.2.

§2.5 Conclusion

We have derived in this paper a general renewal formula (2.3.13) that can be used to
obtain the large deviation functions of additive observables of Markov processes with
resetting, and have illustrated this result for the Langevin equation with resetting.
Other applications should follow this example either via the exact calculation of the
generating function or via the general spectral expansion (2.4.3), keeping in mind for
this expansion to include enough modes, as demonstrated, to obtain properly scaled
convex cumulant generating functions in the long-time limit.

Although we have considered reset diffusions, it is clear that our main results ex-
pressed in terms of generating functions also hold for birth-death and jump processes
in general, in addition to Markov chains with resetting or catastrophes, thus open-
ing the way for many other applications. In birth-death processes, for example, one
could consider as an observable the total number of births over a given time period
or any birth-related cost (e.g., insurances) accumulated in that period. Similarly, for
queueing models with resetting, the observable may represent the number of clients
entering a queue or any cost associated with clients which is additive in time.

For these examples, we expect the main results that we have obtained for the reset
Langevin equation to hold. In particular, it is clear that as long as large fluctuations
of AT are the results of long trajectories involving few resetting, as is the case for
the Langevin equation, then the large deviations functions obtained with reset are
a shift of the large deviations obtained without reset, following the approximations
(2.4.11) and (2.4.12) that we have derived, with the shift coming from the probability
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of having few or no resettings over the time T .
For future work, it would be interesting to study whether observables that do

not have a large deviation principle without resetting acquire that principle when
resetting is introduced. It is known that resetting adds an effective confinement that
can transform a non-stationary process (e.g., Brownian motion [48]) into a stationary
one, but this might not be enough on its own to force a large deviation principle.
Another interesting problem is to generalize our results to observables involving an
integral of the increments of the process considered (in the case of pure diffusions)
or a sum over its jumps (in the case of pure jump processes); see [25] for more
detail. These observables represent physically quantities, such as particle currents and
entropy production, playing an important role in nonequilibrium statistical physics.

Appendix

§2.A Spectral decomposition of the generating func-
tion

The generating function G0(x, k, T ) evolves without resetting according to the lin-
ear partial differential (2.3.2) and can therefore be decomposed in the eigenbasis of
the tilted generator Lk, shown in (2.2.7). For the Ornstein-Uhlenbeck process, Lk
is not hermitian, but can be mapped via a unitary transformation to a hermitian,
Schrödinger-type operator, so its spectrum is real. This transformation or symmet-
rization is the same as the one used for the Fokker-Planck equation; see, e.g., Sec. 5.4
of [109].

Denote by ρ(x) = e−U(x) the stationary distribution of Xt satisfying L†ρ = 0.
The symmetrization of Lk is given by

Hk = ρ1/2Lkρ−1/2 = e−U/2LkeU/2. (2.A.1)

For the Ornstein-Uhlenbeck process, we have U(x) = γx2/σ2 up to a constant, which
leads to

Hk =
σ2

2

d2

dx2
− γ2x2

2σ2
+
γ

2
+ kx. (2.A.2)

This is the Schrödinger operator of a shifted and inverted quantum harmonic oscillator
with massm = 1 and ~ = σ [85]. From the known spectrum of the harmonic oscillator,
we therefore arrive at the eigenvalues (2.4.4). As for the eigenfunctions ψk,i, they are
obtained by

ψk,i(x) = ρ(x)−1/2Ψk,i(x) = eU(x)/2Ψk,i(x), (2.A.3)

where Ψk,i are the eigenfunctions of Hk, normalized in the usual quantum way.
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3. Properties of additive functionals of Brownian motion with resetting

CHAPTER 3
Properties of additive functionals of

Brownian motion with resetting

This chapter is based on:[41].

Abstract

We study the distribution of additive functionals of reset Brownian motion, a vari-
ation of normal Brownian motion in which the path is interrupted at a given rate and
placed back to a given reset position. Our goal is two-fold: (1) For general functionals,
we derive a large deviation principle in the presence of resetting and identify the large
deviation rate function in terms of a variational formula involving large deviation rate
functions without resetting. (2) For three examples of functionals (positive occupa-
tion time, area and absolute area), we investigate the effect of resetting by computing
distributions and moments, using a formula that links the generating function with
resetting to the generating function without resetting.

43



3. Properties of additive functionals of Brownian motion with resetting

C
h
a
pt

er
3

§3.1 Introduction

In this paper we study a variation of Brownian motion (BM) that includes resetting
events at random times. Let (Wt)t≥0 be a BM on R and consider a Poisson process on
[0,∞) with intensity r ∈ (0,∞) and law P, producing N(T ) random points {σi}N(T )

i=1

in the time interval [0, T ], satisfying E[N(T )] = rT . From these two processes, we
construct the reset Brownian motion (rBM), (W r

t )t≥0, by ‘pasting together’ N(T )

independent trajectories of the BM, all starting from a reset position x∗ ∈ R and
evolving freely over the successive time lapses of length τi with

τi = σi+1 − σi, i = 0, . . . , N(T )− 1, (3.1.1)

with σ0 = 0. More precisely, W r
t = x∗ + W i

t for t ∈ [σi, σi+1) with (W i
t )t≥0, i =

0, . . . , N(T )−1, independent BMs starting at 0. Without loss of generality, we assume
that x∗ = 0. We denote by Pr the probability with respect to rBM with reset rate r.

The properties of rBM, and reset processes in general [95], have been the subject of
several recent studies, related to random searches and randomized algorithms [48, 50,
74, 79, 6, 7, 24, 10, 17] (which can be made more efficient by the addition of resetting
[47]), queueing theory (where resetting accounts for the accidental clearing of queues
or buffers), as well as birth-death processes [101, 18, 75, 102, 89, 43] (in which a
population is drastically reduced as a result of natural disasters or catastrophes). In
biology, the attachment, targeting and transcription dynamics of enzymes, proteins
and other bio-molecules can also be modelled with reset processes [11, 62, 133, 91,
108, 112, 104].

Resetting has the effect of creating a ‘confinement’ around the reset position, which
can bring the process from being non-stationary to being stationary. The simplest
example is rBM, which has a stationary density ρ given by [48]

ρ(x) =

√
r

2
e−
√

2r|x|, x ∈ R. (3.1.2)

The motivation for the present paper is to study the effect of the confinement on the
distribution of additive functionals of rBM of the general form

FT =

∫ T

0

f(W r
t ) dt, (3.1.3)

where f is a given R-valued measurable function. We are especially interested in
studying the effect of resetting on the large deviation properties of these functionals,
and to determine whether resetting is ‘strong enough’ to bring about a large deviation
principle (LDP) for the sequence of random variables (T−1FT )T>0 when it does not
satisfy the LDP without resetting.

For this purpose, we use a recent result [91, 92] based on the renewal structure
of reset processes that links the Laplace transform of the Feynman-Kac generating
function of FT with resetting to the same generating function without resetting. Ad-
ditionally, we derive a variational formula for the large deviation rate function of
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(T−1FT )T>0, obtained by combining the LDPs for the frequency of resets, the dur-
ation of the reset periods, and the value of FT in between resets. This variational
formula complements the result based on generating functions by providing insight
into how a large deviation event is created in terms of the constituent processes. These
two results are stated in Secs. 3.2–3.3 and, in principle, apply to any functional FT
of the type defined in (3.1.3). We illustrate them for three particular functionals:

AT =

∫ T

0

1[0,∞)(W
r
t ) dt, BT =

∫ T

0

W r
t dt, CT =

∫ T

0

|W r
t |dt, (3.1.4)

i.e., the positive occupation time, the area and the absolute area (the latter can also
be interpreted as the area of rBM reflected at the origin). These functionals are
discussed in Secs. 3.4, 3.5 and 3.6, respectively.

It seems possible to extend part of our results to general diffusion processes with
resetting, although we will not attempt to do so in this paper. The advantage of
focusing on rBM is that we can obtain exact results.

§3.2 Two theorems

In this section we present two theorems that will be used to study distributions (The-
orem 3.2.1) and large deviations (Theorem 3.2.2) associated with additive functionals
of rBM.

The first result is based on the generating function of FT :

Gr(k, T ) = Er
[
ekFT

]
, k ∈ R, T ∈ [0,∞), (3.2.1)

where Er denotes the expectation with respect to rBM with rate r. The Laplace
transform [135] of this function is defined as

G̃r(k, s) =

∫ ∞
0

dT e−sT Gr(k, T ), k ∈ R, s ∈ [0,∞). (3.2.2)

Both may be infinite for certain ranges of the variables. The same quantities are
defined analogously for the reset-free process and are given the subscript 0. The
following theorem expresses the reset Laplace transform in terms of the reset-free
Laplace transform.

3.2.1 Theorem. If k ∈ R and s ∈ [0,∞) are such that rG̃0(k, r + s) < 1, then

G̃r(k, s) =
G̃0(k, r + s)

1− rG̃0(k, r + s)
. (3.2.3)

Proof. Theorem 3.2.1 was proved in [91] with the help of a renewal argument relating
the process with resetting to the one without resetting. For completeness we write
out the proof. For fixed T , split according to whether the first reset takes place at
0 < t ≤ T or t > T :

Er[ekFT
]

=

∫ T

0

dt re−rt E0

[
ekFt

]
Er
[
ekFT−t

]
+

∫ ∞
T

dt re−rt E0

[
ekFT

]
. (3.2.4)
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Substitute this relation into (3.2.1) and afterwards into (3.2.2), and interchange the
integration over T and t, to get

G̃r(k, s) =

∫ ∞
0

dt re−rt E0

[
ekFt

]
e−st

∫ ∞
t

dT e−s(T−t) Er
[
ekFT−t

]
+

∫ ∞
0

dT e−rT e−sT E0

[
ekFT

]
= r

(∫ ∞
0

dt e−(r+s)t E0

[
ekFt

])(∫ ∞
0

dT ′ e−sT
′
Er
[
ekFT ′

])
+

∫ ∞
0

dT e−(r+s)T E0

[
ekFT

]
= rG̃0(k, r + s)G̃r(k, s) + G̃0(k, r + s).

Solving for G̃r(k, s), we get (3.2.3). �

As shown in [91], Theorem 3.2.1 can be used to study the effect of resetting on
the distribution of FT . In particular, if the dominant singularity of G̃r(k, s) is a
single pole, then Theorem 3.2.1 can be used to get the LDP with resetting, under the
assumption that

∀T > 0: G0(k, T ) exists for k in an open neighbourhood of 0 in R. (3.2.5)

In Theorem 3.2.2 below we show that, for every r > 0, (T−1FT )T>0 satisfies the LDP
on R with speed T . Informally, this means that

∀φ ∈ R :
Pr(T−1FT ∈ dφ)

dφ
= e−Tχr(φ)+o(T ), T →∞, (3.2.6)

where χr : R→ [0,∞) is the rate function. See Appendix 3.A for the formal definition
of the LDP.

Theorem 3.2.2 below provides a variational formula for χr in terms of the rate
functions of the three constituent processes underlying FT , namely (see [40, Chapters
I-II]):

(1) The rate function for (T−1N(T ))T>0, the number of resets per unit of time:

Ir(n) = n log
(n
r

)
− n+ r, n ∈ [0,∞). (3.2.7)

(2) The rate function for (N−1
∑N
i=1 δτi)N∈N, the empirical distribution of the dur-

ation of the reset periods:

Jr(µ) = h(µ | Er), µ ∈ P([0,∞)). (3.2.8)

Here, P([0,∞)) is the set of probability distributions on [0,∞), Er is the ex-
ponential distribution with mean 1/r, and h(· | ·) denotes the relative entropy

h(µ | ν) =

∫ ∞
0

µ(dx) log

[
dµ

dν
(x)

]
, µ, ν ∈ P([0,∞)). (3.2.9)
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(3) The rate function for (N−1
∑N
i=1 Fτ,i)N∈N, the empirical average of i.i.d. copies

of the reset-free functional Fτ over a time τ :

Kτ (u) = sup
v∈R
{uv −Mτ (v)}, u ∈ R, τ ∈ [0,∞). (3.2.10)

Here, Mτ (v) = logE0

[
evFτ

]
is the cumulant generating function of Fτ without

reset and we require, for all τ ∈ [0,∞), thatMτ exists in an open neighbourhood
of 0 in R (which is equivalent to (3.2.5)). It is known that Kτ is smooth and
strictly convex on the interior of its domain (see [40, Chapter I]).

3.2.2 Theorem. For every r > 0, the family (Pr(T−1FT ∈ · ))T>0 satisfies the LDP
on R with speed T and with rate function χr given by

χr(φ) = inf
(n,µ,w)∈Φ(φ)

{
Ir(n) + nJr(µ) + n

∫ ∞
0

µ(dt)Kt(w(t))
}
, φ ∈ R, (3.2.11)

where

Φ(φ) =

{
(n, µ,w) ∈ [0,∞)× P([0,∞))× B([0,∞);R) : n

∫ ∞
0

µ(dt)w(t) = φ

}
(3.2.12)

with B([0,∞);R) the set of Borel-measurable functions from [0,∞) to R.

Proof. The LDP for (T−1FT )T>0 follows by combining the LDPs for the constituent
processes and using the contraction principle [40, Chapter III]. The argument that
follows is informal. However, the technical details are standard and are easy to fill in.

First, recall that N(T ) is the number of reset events in the time interval [0, T ]. By
Cramér’s Theorem [40, Chapter I], (T−1N(T ))T>0 satisfies the LDP on [0,∞) with
speed T and with rate function Ir in (3.2.7), because resetting occurs according to a
Poisson process with intensity r. This rate function has a unique zero at n = r and
takes the value r at n = 0.

Next, consider the empirical distribution of the reset periods,

Lm =
1

m

m∑
i=1

δτi . (3.2.13)

By Sanov’s Theorem [40, Chapter II], (Lm)m∈N satisfies the LDP on P([0,∞)), the
space of probability distributions on [0,∞), with speed m and with rate function Jr
in (3.2.8). This rate function has a unique zero at µ = Er.

Finally, consider the empirical average of N independent trials {Fτ,i}Ni=1 of the
reset-free process of length τ ,

mN =
1

N

N∑
i=1

Fτ,i. (3.2.14)

By Cramér’s Theorem, (mN )N∈N satisfies the LDP on [0,∞) with speed N and with
rate function Kτ in (3.2.10). This rate function has a unique zero at u = E0(Fτ ).
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Now, the probability that nt µ(dτ) excursion times of length τ contribute an
amount unt µ(dτ) to the integral equals

e−nt µ(dτ)Kτ (u)+o(nt) (3.2.15)

for any u ∈ R. If we condition on N(T ) = nT and LN(T ) = µ, and pick w ∈
B([0,∞);R), then the probability that nT duration times contribute an amount φnT
to the integral, with

φ = n

∫ ∞
0

µ(dt)w(t), (3.2.16)

equals

e−nT
∫∞
0
µ(dt)Kt(w(t))+o(nT ). (3.2.17)

Therefore, by the contraction principle [40, Chapter III],

Pr(T−1FT ∈ dφ)

dφ
= e−Tχr(φ)+o(T ), (3.2.18)

where χr(φ) is given the variational formula in (3.2.11). �

3.2.3 Remark. A priori, Theorem 3.2.2 is to be read as a weak LDP: the level
sets of χr need not be compact, e.g. it is possible that χr ≡ 0. Under additional
assumptions, χr has compact level sets, in which case Theorem 3.2.2 can be read as
a strong LDP. See Appendix 3.A for more details.

We will see that the three functionals in (3.1.4) have rate functions of different
type, namely, χr is:

AT : zero at 1
2 , strictly positive and finite on [0, 1] \ { 1

2}, infinite on R \ [0, 1] (strong
LDP).

BT : zero on R (weak LDP).

CT : zero on [1/
√

2r,∞), strictly positive and finite on (0, 1/
√

2r), infinite on (−∞, 0]

(strong LDP).

§3.3 Two properties of the rate function

The variational formula in (3.2.11) can be used to derive some general properties of
the rate function with resetting. In this section, we show that the rate function is flat
beyond the mean with resetting provided the mean without resetting diverges, and is
quadratic below and near the mean with resetting. Both properties will be illustrated
in Sec. 3.6 for the absolute area of rBM.
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§3.3.1 Zero rate function above the mean
For the following theorem, we define

φ∗r = lim
T→∞

Er[T−1FT ], r ≥ 0. (3.3.1)

Moreover, we must assume that f ≥ 0 in (3.1.3), and that there exists a C ∈ (0,∞)

such that
E[f(Wt)

2] ≤ C E[f(Wt)]
2 ∀t ≥ 0. (3.3.2)

3.3.1 Remark. Assumption (3.3.2) holds for f(x) = |x|γ , x ∈ R, and any γ ∈
[0,∞), and for f(x) = 1[0,∞)(x), x ∈ R.

3.3.2 Theorem. Suppose that f satisfies (3.3.2) and that φ∗0 =∞. For every r > 0,
if φ∗r <∞, then

χr(φ) = 0 ∀φ ≥ φ∗r . (3.3.3)

In order to prove the theorem we need the following.

3.3.3 Lemma. If (3.3.2) holds, then the following zero-one law applies:

P
(

lim
T→∞

T−1FT =∞
)

= 1 ⇐⇒ φ∗0 =∞. (3.3.4)

Proof. Because (Wt)t≥0 has a trivial tail sigma-field, we have

P
(

lim
T→∞

T−1FT =∞
)
∈ {0, 1}. (3.3.5)

It suffices to exclude that the probability is 0. First note that (3.3.2) implies

E[(T−1FT )2] ≤ C E[T−1FT ]2 ∀T > 0. (3.3.6)

Indeed,

T 2E[(T−1FT )2] =

∫ T

0

ds

∫ T

0

dt E[f(Ws)f(Wt)]

≤
∫ T

0

ds

∫ T

0

dt
√
E[f(Ws)2]E[f(Wt)2]

≤ C
∫ T

0

ds

∫ T

0

dt E[f(Ws)]E[f(Wt)]

= C T 2 E[T−1FT ]2, (3.3.7)

where the first inequality uses Cauchy–Schwarz and the second inequality uses (3.3.2).
Armed with (3.3.6), we can use the Paley–Zygmund inequality

P(T−1FT ≥ δE[T−1FT ]) ≥ (1− δ)2 E[T−1FT ]2

E[(T−1FT )2]
∀ δ ∈ (0, 1)∀T > 0, (3.3.8)

to obtain

P
( T−1FT
E[T−1FT ]

≥ δ
)
≥ (1− δ)2 1

C
∀ δ ∈ (0, 1)∀T > 0. (3.3.9)
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Hence if limT→∞ E[T−1FT ] =∞, then

P
(

lim
T→∞

T−1FT =∞
)
≥ (1− δ)2 1

C
> 0 ∀ δ ∈ (0, 1), (3.3.10)

which completes the proof. �

We now turn to proving Theorem 3.3.2. Again, the argument that follows is
informal, but the technical details are standard.

Proof of Theorem 3.3.2. The variational formula for the rate function in (3.2.11) is a
constrained functional optimization problem that can be solved using the method of
Lagrange multipliers. For fixed n and µ, the Lagrangian reads

L(w(·)) = Ir(n) + nJr(µ) + n

∫ ∞
0

µ(dt)Kt(w(t))− λn
∫ ∞

0

µ(dt)w(t), (3.3.11)

where λ is the Lagrange multiplier that enforces the constraint

n

∫ ∞
0

µ(dt)w(t) = φ. (3.3.12)

We look for solutions wλ(·) of the equation ∂L
∂w(t) (·) = 0 for all t ≥ 0, i.e.,

K ′t(wλ(t)) = λ, t ≥ 0, (3.3.13)

where wλ(·) must satisfy the constraint n
∫∞

0
µ(dt)wλ(t) = φ. To that end, let Lt(·)

be the inverse of K ′t(·), i.e.,

K ′t(Lt(λ)) = λ, λ ∈ R, t > 0. (3.3.14)

Then (3.3.13) becomes
wλ(t) = Lt(λ), t ≥ 0, (3.3.15)

and so

χr(φ) = inf
n∈[0,∞), µ∈P([0,∞))

{
Ir(n) + nJr(µ) + n

∫ ∞
0

µ(dt)Kt(Lt(λ))
}
, (3.3.16)

where λ = λ(n, µ) must be chosen such that

n

∫ ∞
0

µ(dt)Lt(λ) = φ. (3.3.17)

Our task is to show that χr is zero on [φ∗r ,∞) when φ∗0 =∞. To do so, we perturb
χr(φ) around φ∗r . To see how, we first rescale time. The proper rescaling depends on
how FT scales with T without resetting. For the sake of exposition, we first consider
the case where there exists an α ∈ (1,∞) such that

T−αFT
d
= F1 ∀T > 0, (3.3.18)
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where d
= means equality in distribution. For example, for the area and the absolute

area we have α = 3
2 , while for the positive occupation time we have α = 1. (Note,

however, that neither the area nor the positive occupation time qualify for the theorem
because φ∗0 = 0, respectively, φ∗0 = 1

2 .) Afterwards we will explain how to deal with
the general case.

By (3.2.10), (3.3.14) and (3.3.18), we have

Kt(u) = K1(ut−α), u ∈ R, t > 0, Lt(λ) = L1(λtα) tα, λ ∈ R, t > 0. (3.3.19)

The rescaling in (3.3.19) changes the integral in (3.3.16) to

n

∫ ∞
0

µ(dt)K1(L1(λtα)) (3.3.20)

and the constraint in (3.3.17) to

n

∫ ∞
0

µ(dt)L1(λtα) tα = φ. (3.3.21)

We claim that, for every n ∈ (0,∞), we can find a minimising sequence of prob-
ability distributions (µm)m∈N (depending on n) such that λ = λ(n, µm) = 0 for all
m ∈ N and such that µm converges as m → ∞ to Er pointwise and in the L1-norm,
but not in the Lα-norm. We will show that this implies that χr(φ) = 0 for φ > φ∗r .
We will construct the sequence (µm)m∈N by perturbing Er slightly, adding a small
probability mass near some large time and taking the same probability mass away
near time 0.

u∗r
u

K1(u)

r
u∗r

u

K ′1(u)

λ

L1(λ)
r

r

Figure 3.1: Qualitative plot of u 7→ K1(u) and u 7→ K′1(u) on R. The domain of K1 is a
subset of R. In the interior of this domain, K1 is smooth and strictly convex.

Let u∗r be such that K1(u∗r) = 0, i.e.,

r

∫ ∞
0

Er(dt)u∗r tα = φ∗r (3.3.22)
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(see Fig. 3.1; recall that Er(dt) = re−rt dt). Since u∗r = L1(0), if we require the
probability distribution µ over which we minimise to satisfy

n

∫ ∞
0

µ(dt)u∗r t
α = φ, (3.3.23)

then the scaled version of the optimisation problem in (3.3.16) reduces to

inf
n∈[0,∞)

{
Ir(n) + n inf

µ∈P([0,∞))
Jr(µ)

}
. (3.3.24)

Our goal is to prove that this infimum is zero for all φ > φ∗r when φ∗0 =∞.
We get an upper bound by picking n = r and

µm(dt) = Er(dt) + νm(dt) (3.3.25)

with
νm(dt) = −εmδ0(dt) + εmδθm(dt), (3.3.26)

where εm, θm will be chosen later such that limm→∞ εm = 0 and limm→∞ θm = ∞.
Substituting this perturbation into (3.3.23) and using (3.3.22), we get

ru∗r εm(θm)α = φ− φ∗r , (3.3.27)

which places a constraint on our choice of εm, θm. On the other hand, substituting
the perturbation into the expression for Jr(µ), we obtain

Jr(µm) =

∫ ∞
0

(Er − εmδ0 + εmδθ)(dt) log
(Er − εmδ0 + εmδθ

Er

)
(t)

=

∫ ∞
0

Er(dt) log
(

1 +
−εmδ0 + εmδθ

Er

)
(t)

− εm
∫ ∞

0

δ0(dt) log
(

1 +
−εmδ0 + εmδθ

Er

)
(t)

+ εm

∫ ∞
0

δθm(dt) log
(

1 +
−εmδ0 + εmδθ

Er

)
(t).

(3.3.28)

For a proper computation, δ0 and δθ must be approximated by η−1 1[0,η] and
η−1 1[θ,θ+η], followed by η ↓ 0. Doing so, after we perform the integrals, we see
that the three terms in the right-hand side of (3.3.28) become

rη log
(1− εm/η

r

)
+ re−rθmη log

(
1 +

εm/η

re−rθm

)
,

− εm log
(

1− εm/η

r

)
,

+ εm log
(

1 +
εm/η

re−rθm

)
.

(3.3.29)

For all of these terms to vanish as m→∞ followed by η ↓ 0, it suffices to pick εm and
θm such that limm→∞ εm = 0, limm→∞ θm = ∞ and limm→∞ θmεm = 0. Clearly,
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this can be done while matching the constraint in (3.3.27) for any φ > φ∗r , because
α ∈ (1,∞), and so we conclude that indeed the infimum in (3.3.24) is zero.

It is easy to check that the same argument works when, instead of (3.3.18), there
exists a T 7→ L(T ) with limT→∞ L(T ) =∞ such that

(TL(T ))−1FT
d
= F1 ∀T > 0. (3.3.30)

Indeed, then the constraint in (3.3.22) becomes ru∗r εmθmL(θm) = φ− φ∗r , which can
be matched too. It is also not necessary that the scaling in (3.3.18) and (3.3.30) hold
for all T > 0. It clearly suffices that they hold asymptotically as T → ∞. Hence,
all that is needed is that T−1FT without resetting diverges as T → ∞, which is
guaranteed by Lemma 3.3.3. �

The interpretation of the above approximation is as follows. The shift of a tiny
amount of probability mass into the tail of the probability distribution µ has a neg-
ligible cost on the exponential scale. The shift produces a small fraction of reset
periods that are longer than typical. In these reset periods large contributions occur
at a negligible cost, since the growth without reset is faster than linear. In this way
we can produce any φ that is larger than φ∗r at zero cost on the scale T of the LDP.

3.3.4 Remark. Theorem 3.3.2 captures a potential property of the rate function
to the right of the mean. A similar property holds to the left of the mean, when
φ∗0 = −∞ and φ∗r > −∞ for r > 0.

§3.3.2 Quadratic rate function below the mean
3.3.5 Theorem. Suppose that φ∗0 =∞. For every r > 0, if φ∗r <∞, then

χr(φ) ∼ Cr(φ∗r − φ)2, φ ↑ φ∗r , (3.3.31)

with Cr ∈ (0,∞) a constant that is given by the variational formula in (3.3.39)–
(3.3.40) below. (The symbol ∼ means that the quotient of the left-hand side and the
right-hand side tends to 1.)

Proof. We perturb (3.2.11) around its zero by taking

n = r +mε, µ(dt) = Er(dt) [1 + ν(t)ε], w(t) = u∗r + v(t)ε, (3.3.32)

subject to the constraint
∫∞

0
Er(dt) ν(t) = 0, with ν(·), v(·) Borel measurable, to

ensure that µ ∈ P([0,∞)). This gives

Ir(r +mε) = F ∗r (m)ε2 +O(ε3), F ∗r (m) =
m2

2r
. (3.3.33)

Next, we have

Jr(µ) =

∫ ∞
0

Er(dt) [1 + ν(t)ε] log[1 + ν(t)ε]. (3.3.34)
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Expanding the logarithm in powers of ε and using the normalisation condition, we
obtain

Jr(µ) = G∗r(ν)ε2 +O(ε3), G∗r(ν) =
1

2

∫ ∞
0

Er(dt) ν2(t). (3.3.35)

Lastly, we know that (see Fig. 3.1)

K1(u∗r + v(t)ε) ∼ 1
2 v(t)2K ′′1 (u∗r)ε

2. (3.3.36)

(As observed below (3.2.10), K1 is strictly convex and smooth on the interior of its
domain.) Hence the last term in the variational formula becomes

(r +mε)

∫ ∞
0

Er(dt) [1 + ν(t)ε]K1(u∗r + v(t)ε) = H∗r (v)ε2 +O(ε3),

H∗r (v) =
r

2
K ′′1 (u∗r)

∫ ∞
0

Er(dt) v(t)2.

(3.3.37)

It follows that
χ(φ∗r + ε) = Crε

2 +O(ε3) (3.3.38)

with
Cr = inf

(m,ν,v)∈Φ

{
F ∗r (m) +G∗r(ν) +H∗r (v)

}
, (3.3.39)

where

Φ =

{
(m, ν, v) :

∫ ∞
0

Er(dt) ν(t) = 0, r

∫ ∞
0

Er(dt)
[m
r

+ ν(t) + v(t)
]
tα = 1

}
.

(3.3.40)
The last constraint guarantees that n

∫∞
0
µ(dt)w(t) = φ∗r + ε+O(ε2), and arises from

(3.3.22)–(3.3.23) after inserting (3.3.32) and letting ε ↓ 0, all for the special case in
(3.3.18). Finally, it is easy to check that the same argument works when (3.3.18) is
replaced by (3.3.30). In that case, tα in (3.3.40) becomes tL(t).

Note that F ∗r , G∗r and H∗r need not be finite everywhere. However, for the vari-
ational formula in (3.3.39) clearly only their finite values matter. Also note that the
perturbation is possible only for ε < 0 (φ < φ∗r), since there is no minimiser to expand
around for ε > 0 (φ > φ∗r), as is seen from Theorem 3.3.2.

We have Cr > 0, because the choice m = 0, ν(·) ≡ 0, v(·) ≡ 0 does not match
the last constraint. We also have Cr <∞, because we can choose m = rα/Γ(1 + α),
ν(·) ≡ 0, v(·) ≡ 0, which gives F ∗r (m) = r2α−1/2(Γ(1 + α))2, G∗r(ν) = 0, H∗r (v) = 0.
�

§3.4 Positive occupation time

We now apply the results of Sec. 3.3 to the three functionals of rBM defined in (3.1.4).
We start with the positive occupation time, defined as

AT =

∫ T

0

1[0,∞)(W
r
t ) dt. (3.4.1)
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This random variable has a density with respect to the Lebesgue measure, which we
denote by pAr (a), i.e.,

pAr (a) =
Pr(AT ∈ da)

da
, a ∈ (0, T ). (3.4.2)

Without resetting, this density is

pA0 (a) =
1

π
√
a(T − a)

, a ∈ (0, T ), (3.4.3)

which is the derivative of the famous arcsine law found by Lévy [78]. The next theorem
shows how this result is modified under resetting.

3.4.1 Theorem. The positive occupation time of rBM has density

pAr (a) =
r

T
e−rT W

(
r
√
a(T − a)

)
, a ∈ (0, T ), (3.4.4)

where

W (x) =
1

x

∞∑
j=0

xj

Γ( j+1
2 )2

= I0(2x) +
1

xπ
1F2

(
{1}, { 1

2 ,
1
2}, x2

)
, x ∈ (0,∞), (3.4.5)

with I0(y) the modified Bessel function of the first kind with index 0 and
1F2({a}, {b, c}, y) the generalized hypergeometric function [2, Section 9.6, Formula
15.6.4].

Proof. In what follows, the regions of convergence of the generating functions will be
obvious, so we do not specify them.

The non-reset generating function in (3.2.1) for the occupation time started at
X0 = 0 is known to be [84]

G̃0(k, s) =
1√

s(s− k)
. (3.4.6)

This can be explicitly inverted to obtain the density in (3.4.3).
To find the Laplace transform of the reset generating function, we use The-

orem 3.2.1. Inserting (3.4.6) into (3.2.3), we find

G̃r(k, s) =
1√

(s+ r)(s+ r − k)− r
. (3.4.7)

This can be explicitly inverted to obtain the density in (3.4.4), as follows. Write

pAr (a) = e−rTH(aT, (1− a)T ), (3.4.8)

where H is to be determined. Substituting this form into (3.2.2), we get

G̃r(k, s) =

∫ ∞
0

dT

∫ 1

0

da ekTa e−(s+r)T H(aT, (1− a)T ). (3.4.9)
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Performing the change of variable t1 = aT and t2 = (1− a)T , we get

G̃r(k, s) =

∫ ∞
0

dt1

∫ ∞
0

dt2 e−(r+s−k)t1e−(r+s)t2H(t1, t2). (3.4.10)

Let λ1 = r + s − k and λ2 = r + s. Then (3.4.10), along with the right-hand side of
(3.4.7), gives ∫ ∞

0

dt1

∫ ∞
0

dt2 e−λ1t1−λ2t2H(t1, t2) =
1√

λ1λ2 − r
. (3.4.11)

To invert the Laplace transform in (3.4.11), we expand the right-hand side in r,∫ ∞
0

dt1

∫ ∞
0

dt2 e−λ1t1−λ2t2H(t1, t2) =

∞∑
j=0

rj

(λ1λ2)(j+1)/2
, (3.4.12)

and invert term by term using the identity

1

Γ(α)

∫ ∞
0

dt tα−1e−λt =
1

λα
, α > 0. (3.4.13)

This leads us to the expression

H(t1, t2) =

∞∑
j=0

rj

Γ( j+1
2 )2

(t1t2)(j−1)/2 = r

∞∑
j=0

(r
√
t1t2)j−1

Γ( j+1
2 )2

. (3.4.14)

Substituting this expression into (3.4.8), we find the result in (3.4.4)–(3.4.5). �

The arcsine density in (3.4.3) is recovered in the limit r ↓ 0 by noting thatW (x) ∼
(πx)−1 as x ↓ 0. On the other hand, we have

W (x) ∼ 1

2
√
πx

e2x, x→∞ (3.4.15)

Consequently,

T pAr (aT ) ∼
√
r

2
√
π T (a(1− a))

1/4
e
−r T

(
1−2
√
a(1−a)

)
, a ∈ (0, 1), T →∞.

(3.4.16)
Keeping only the exponential term, we thus find that (T−1AT )T>0 satisfies the LDP
with speed T and with rate function χAr given by

χAr (a) = r
(

1− 2
√
a(1− a)

)
, a ∈ [0, 1]. (3.4.17)

The rate function χAr is plotted in Fig. 3.1. As argued in [91], (3.4.17) can also be
obtained by noting that the largest real pole of G̃(k, s) in the s-complex plane is

λr(k) =
1

2

(
k − 2r +

√
k2 + 4r2

)
, k ∈ R, (3.4.18)
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Figure 3.1: Rate function a 7→ χAr (a) for the positive occupation time of rBM.

which defines the scaled cumulant generating function of AT as T →∞ (see (3.6.24)
below). Since this function is differentiable for all k ∈ R, we can use the Gärtner–Ellis
Theorem [40, Chapter V] to identify χAr as the Legendre transform of λr.

Note that the positive occupation time does not satisfy the LDP when r = 0,
since pA0 (a) is not exponential in T and does not concentrate as T →∞. Thus, here
resetting is ‘strong enough’ to force concentration of T−1AT on the value 1

2 , with
fluctuations around this value that are determined by the LDP and the rate function
χAr in (3.4.17). In particular, since χAr (0) = χAr (1) = r, the probability that rBM
always stays positive or always stays negative is determined on the large deviation
scale by the probability e−rT of having no reset up to time T .

Note that φ∗r = 1
2 for r ≥ 0. Hence the positive occupation time does not satisfy

the condition in Theorem 3.3.2.

§3.5 Area

We next consider the area of rBM, defined as

BT =

∫ T

0

W r
t dt. (3.5.1)

Its density with respect to the Lebesgue measure is denoted by pBr (b), b ∈ R. The full
distribution for T fixed is not available, and therefore we start by computing a few
moments.

3.5.1 Theorem. For every T ∈ (0,∞), the area of rBM for r > 0 has vanishing
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odd moments and non-vanishing even moments. The first two even moments are

Er[B2
T ] = 2

r3

(
rT − 2 + e−rT (2 + rT )

)
, (3.5.2)

Er[B4
T ] = 1

r6

(
12(rT )2 + 120rT − 840 + e−rT [9(rT )4

+68(rT )3 + 288(rT )2 + 720 rT + 840]
)
. (3.5.3)

Proof. The result follows directly from the renewal formula (3.2.3) and the Laplace
transform of the generating function of BT without resetting,

Q̃0(k, s) =

∫ ∞
0

dT e−sTE0[ekBT ] =

∫ ∞
0

dT e
1
6k

2T 3−sT , (3.5.4)

because BT is a Gaussian random variable with mean 0 and variance 1
3T

3. Expanding
the exponential in k and using (3.2.3), we obtain the following expansion for the
Laplace transform of the characteristic function with resetting:

Q̃r(k, s) =
1

s
+

1

s2(r + s)2
k2 +

(r + 10s)

s3(r + s)5
k4 +O(k6). (3.5.5)

Taking the inverse Laplace transform, we find that the odd moments are all zero,
because there are no odd powers of k, and that the even moments are given by the
inverse Laplace transforms L−1 of the corresponding even powers of k. Thus,

Er[B2
T ] = L−1

[ 2!

s2(r + s)2

]
,

Er[B4
T ] = L−1

[4!(r + 10s)

s3(r + s)5

]
, (3.5.6)

which yields the results shown in (3.5.2). �

The second moment, which gives the variance, shows that there is a crossover in
time from a reset-free regime characterized by

Er[B2
T ] ∼ 1

3T
3, T ↓ 0, (3.5.7)

which is the variance obtained for r = 0, to a reset regime characterized by

Er[B2
T ] ∼ 2T

r2
, T →∞. (3.5.8)

The crossover where the two regimes meet is given by T =
√

6/r, which is proportional
to the mean reset time. This gives, as illustrated in Fig. 3.1, a rough estimate of the
time needed for the variance to become linear in T because of resetting.

The small fluctuations ofBT of order
√
T around the origin are Gaussian-distributed.

This is confirmed by noting that the even moments of BT scale like

Er[BnT ] ∼ (2n)!

n!

(√
T

r

)n
, T →∞, (3.5.9)
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Figure 3.1: Log-log plot of the variance of the area BT of rBM, showing the crossover from
the T 3-scaling (black line) to the T -scaling (dashed lines) for various values of r. The filled
circles show the location of the crossover time T =

√
6/r.

so that

Er
[(

BT√
T

)n]
∼ (2n)!

n!rn
, T →∞, (3.5.10)

for n even. This implies that the cumulants all asymptotically vanish, except for the
variance. Indeed, it can be verified that

κ2 = lim
T→∞

Er[T−1B2
T ] =

2

r2
, (3.5.11)

while

κ4 = lim
T→∞

Er[T−2B4
T ]− 3Er[T−1B2

T ]2 =
12

r4
− 3

(
2

r2

)2

= 0. (3.5.12)

and similarly for all higher even cumulants. This suggests the following central limit
theorem.

3.5.2 Theorem. The area of rBM satisfies the central limit theorem,

lim
T→∞

σ
√
T pBr

(
b

σ
√
T

)
= N(0, 1) (3.5.13)

with N(0, 1) the standard Gaussian distribution and σ = 2/r2.

Proof. We start from the Laplace inversion formula of the renewal formula,

pBr (b) = e−rT
∫
R

dk

2π
e−ikb

∫ c+i∞

c−i∞

ds

2πi
esT

Q̃0(k, s)

1− rQ̃0(k, s)
, (3.5.14)
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where c is any value in the region of convergence of Q̃0(k, s) in the s-complex plane.
Rescaling b by b = b̄

√
T , as is standard in proofs of the central limit theorem, we

obtain

pBr (b̄
√
T ) =

e−rT√
T

∫
R

dl

2π
e−ilb̄

∫ c+i∞

c−i∞

ds

2πi
esT

Q̃0(l/
√
T , s)

1− rQ̃0(l/
√
T , s)

, (3.5.15)

where l = k/
√
T . Given a fixed l and letting T → ∞, we use the known expression

of E0[eikBT ] in (3.5.4) to Taylor-expand Q̃0(k, s) around k = 0,

Q̃0(k, s) =
1

s
− k2

s4
+O(k4), (3.5.16)

to obtain
Q̃0(l/

√
T , s)

1− rQ̃0(l/
√
T , s)

=
1 +O(l2/T )

s− r + rl2

s3T +O(l4/T 2)
. (3.5.17)

This expression has a simple pole at

s∗ = r − l2

r2T
+O(l4/T 2), (3.5.18)

so that, deforming the Bromwich contour through that pole, we get

√
T pBr (b̄

√
T ) = e−rT

∫
R

dl

2π
e−ilb̄es

∗T =

∫
R

dl

2π
e−ilb̄e−l

2/r2+O(l4/T ). (3.5.19)

As T → ∞, only the quadratic term remains in the exponential, which yields a
Gaussian distribution with variance 2/r2. �

The convergence to the Gaussian distribution can be much slower than the mean
reset time, as can be seen in Fig. 3.1, especially for small reset rates. From simulations,
we have found that the distribution of T−1/2BT is well approximated by a Gaussian
distribution near the origin. However, the tails are strongly non-Gaussian, even for
large T , indicating that there are important finite-time corrections to the central limit
theorem, related to rare events involving few resets and, therefore, to large Gaussian
excursions characterised by the T 3-variance.

These corrections can be analysed, in principle, by going beyond the dominant
scaling in time of the moments shown in (3.5.9), so as to obtain corrections to the
cumulants, which do not vanish for finite T . It also seems possible to obtain inform-
ation about the tails by performing a saddle-point approximation of the combined
Laplace–Fourier inversion formula for values of BT scaling with T 3/2. We have at-
tempted such an approximation, but have found no results supported by numerical
simulations performed to estimate pBr (b). More work is therefore needed to find the
tail behavior of this density in the intermediate regime where T 1/2 . b . T 3/2.

At this point, we can only establish that (T−1BT )T>0 follows a weak LDP with
χBr ≡ 0, implying that pBr (b) decays slower than exponentially on the scale T . This
follows from the general upper bound

χr(φ) ≤ χ0(φ) + r ∀φ ∈ R, r > 0 (3.5.20)
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found in [92]. We know that χB0 ≡ 0, since for every M ∈ (0,∞) the probability that
the Brownian motion stays above M after a time of order M2 decays like 1/

√
T as

T →∞. Hence it follows that χBr ≤ r. Since rate functions are typically convex, the
latter can only mean that χBr ≡ 0.

Note, incidentally, that (3.5.20) is satisfied by the rate function χAr of the positive
occupation time (see (3.4.17) and Fig. 3.1).

§3.6 Absolute area

We finally consider the absolute area of rBM, defined as

CT =

∫ T

0

|W r
t |dt, (3.6.1)

which can also be seen as the area of an rBM reflected at the origin. Its density with
respect to the Lebesgue measure is denoted by pCr (c), c ∈ [0,∞). This density was
studied for pure BM (r = 0) by Kac [68] and Takács [128] (see also [129]). It satisfies
the LDP with speed T , when CT is rescaled by T , but with a divergent mean, which
translates into the rate function tending to zero at infinity (see Fig. 3.1). The effect
of resetting is to bring the mean of T−1CT to a finite value. Below the mean, we
find that the LDP holds with speed T and a non-trivial rate function derived from
Theorem 3.2.1, whereas above the mean we find that the rate function vanishes, in
agreement with Theorem 3.3.2. This indicates that the upper tail of T−1CT decays
slower than exponentially in T .

As a prelude, we show how the mean and variance of CT are affected by resetting.
We do not know the full distribution, and also the scaling remains elusive.

3.6.1 Theorem. The absolute area of rBM has a mean and a variance given by

Er[CT ] = T 3/2f1(rT ), Varr[CT ] = T 3f2(rT ), r > 0, (3.6.2)

where

f1(ρ) =
1√
2π

[
e−ρ

ρ
+

√
π

2(ρ)3/2
(2ρ− 1) erf[

√
ρ ]

]
(3.6.3)

and

f2(ρ) =
1

8π(ρ)3

[
2π
(
2ρ2 + ρ− 6 + (5ρ+ 6)e−ρ

)
−
(
2
√
ρ e−ρ +

√
π(2ρ− 1) erf[

√
ρ]
)2
Big]. (3.6.4)

Proof. The absolute area of pure BM (r = 0) is known to scale as T 3/2, so it is
convenient to rescale CT as

CT = T 3/2

∫ 1

0

dt |W r
t | = T 3/2D, (3.6.5)
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which defines a new random variable D. Expanding (3.2.2) in terms of k, we get

G̃0(k, s) =

∫ ∞
0

dT e−sT
[
1 + kT 3/2 E0[D] + 1

2k
2T 3 E0[D2] +O(k3)

]
=

1

s
+

E0[D] Γ( 5
2 ) k

s5/2
+

3E0[D2] k2

s4
+O(k3). (3.6.6)

Abbreviate a = E0[D] Γ( 5
2 ) and b = E0[D2] [66]. Inserting (3.6.6) into (3.2.3), we find

G̃r(k, s) =

1
s+r + ak

(s+r)5/2
+ 3bk2

(s+r)4 +O(k3)

1− r
[

1
s+r + ak

(s+r)5/2
+ 3bk2

(s+r)4 +O(k3)
]

=

1
s

[
1 + ak

(s+r)3/2
+ 3bk2

(s+r)3 +O(k3)
]

1− rak
s(s+r)3/2

− 3rbk2

s(s+r)3 +O(k3)
. (3.6.7)

Inserting (1 + ck + dk2)−1 = 1− ck + (c2 − d)k2 +O(k3), we obtain

G̃r(k, s) =
1

s
+

a

s2(s+ r)1/2
k +

(
b

s2(s+ r)2
+

ra2

s3(s+ r)2

)
k2 +O(k3). (3.6.8)

We can also expand G̃r(k, s) directly from its definition:

G̃r(k, s) =
1

s
+ k

∫ ∞
0

dT e−sT Er[CT ] +
k2

2

∫ ∞
0

dT e−sT Er[C2
T ] +O(k3). (3.6.9)

Comparing (3.6.7) and (3.6.9), we find∫ ∞
0

dT e−sT Er[CT ] =
a

s2(s+ r)1/2
,

1

2

∫ ∞
0

dT e−sT Er[C2
T ] =

b

s2(s+ r)2
+

ra2

s3(s+ r)2
. (3.6.10)

To calculate the first and the second moment, we simply need to invert the Laplace
transforms. For the mean we find

Er[CT ] = T 3/2f1(rT ), (3.6.11)

where we use that E0[D] = 4
3
√

2π
by [128, Table 3]. For the second moment we use

E0[D2] = b = 3
8 from the same reference to find

Er[C2
T ] = T 3f3(rT ) (3.6.12)

with
f3(rT ) =

1

4(rT )3

[
2(rT )2 + rT − 6 + (5rT + 6)e−rT

]
. (3.6.13)

The variance is therefore found to be

Varr[CT ] = T 3f3(rT )− T 3f2
1 (rT ) = T 3f2(rT ). (3.6.14)

�
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The result for the mean converges to E0[D] when rT ↓ 0 and scales like
3
4E0[D]

√
π
rT when rT →∞. Therefore

lim
T→∞

Er[T−1CT ] = c∗r =
1√
2r
. (3.6.15)

The same analysis for the variance yields

lim
T→∞

T−1 Varr[CT ] = lim
T→∞

T Varr[T
−1CT ] =

3

4r2
. (3.6.16)

These two results suggest that (T−1CT )T>0 satisfies the LDP. To compute the cor-
responding rate function, we define the function

H(x) = −21/3 AI(x)

Ai′(x)
, (3.6.17)

where
AI(x) =

∫ ∞
x

Ai(t) dt (3.6.18)

is the integral Airy function and Ai(x) is the Airy function [2, Section 10.4] defined,
for example, by

Ai(x) =
1

π

∫ ∞
0

cos
(

1
3 t

3 + xt
)

dt. (3.6.19)

The next theorem gives an explicit representation of the rate function of (T−1CT )T>0

for values below its mean.

3.6.2 Theorem. Let c∗r = 1/
√

2r, and let s∗k be the largest real root in s of the
equation

r

(−k)2/3
H

(
21/3(s+ r)

(−k)2/3

)
= 1, k < 0. (3.6.20)

Then (T−1CT )T>0 satisfies the LDP on (0, c∗r) with speed T and with rate function
given by the Legendre transform of s∗k.

Proof. With the same rescaling as in (3.6.5), the generating function for CT can be
written as

G0(k, T ) = E0[ekT
3/2D]. (3.6.21)

Using [66, Eq. (173)], we have∫ ∞
0

e−sTE0[e−
√

2T 3/2ξCT ]dT = − AI[ξ−2/3s]

ξ2/3Ai′[ξ−2/3s]
, ξ > 0, (3.6.22)

so that the Laplace transform of G0(k, T ) has the explicit expression

G̃0(k, s) =
1

(−k)2/3
H

(
21/3s

(−k)2/3

)
, k < 0, (3.6.23)

where H(x) is the function defined in (3.6.17).
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Figure 3.1: Left: SCGF of the absolute area of rBM as a function of k for r = 1 (full line)
and r = 0 (dashed line). Right: Corresponding rate function obtained by Legendre transform
for r = 1 (full line) and r = 0 (dashed line). Above the mean c∗r = 1/

√
2r, χCr (c) is flat.

With this result, we follow the method detailed in [91]: we insert the expression
for G̃0(k, s) into (3.2.3) to find the expression for G̃r(k, s) and locate the largest real
pole of that function, which is known to determine the scaled cumulant generating
function (SCGF) of CT , defined as

λr(k) = lim
T→∞

1

T
logGr(k, T ). (3.6.24)

Due to the form of G̃r(k, s) in (3.2.3), this pole must be given by the largest real root
of the equation rG̃0(k, s+ r) = 1, which yields the equation shown in (3.6.20). From
there we apply the Gärtner–Ellis Theorem [40] by noting that λr(k) = s∗k is finite and
differentiable for all k < 0. Consequently, the rate function is given by the Legendre
transform

χCr (ck) = kck − λr(k), (3.6.25)

where ck = λ′r(k) for all k < 0. It can be verified that λ′r(k) → 0 as k → −∞ and
λ′r(k)→ c∗r as k ↑ 0. Thus, the rate function is identified on (0, c∗r). �

The plot on the left in Fig. 3.1 shows the SCGF λr(k), while the plot on the
right shows the rate function χCr (c) obtained by solving (3.6.20) numerically and by
computing the Legendre transform in (3.6.25). The rate function is compared with
the rate function without resetting, which is given by

χC0 (c) =
2|ζ ′0|3
27 c2

, (3.6.26)

where ζ ′0 is the first zero of the derivative of the Airy function. The derivation of χC0
also follows from the Gärtner–Ellis Theorem and is given in Appendix 3.B.

Comparing the two rate functions, we see that T−1CT has a finite mean c∗r with
resetting. Above this value, it is not possible to obtain χCr (c) from Gr(k, T ), since
the latter function is not defined for k > 0, which indicates that χCr (c) is either non-
convex or has a zero branch for c > c∗r (see [130, Sec. 4.4]). Since this is a special case
of Theorem 3.3.2, the second alternative applies, i.e., χCr (c) = 0 for all c > c∗r , which
implies that the right tail of T−1CT decays slower than e−T .
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Similar rate functions with zero branches also arise in stochastic collision models
[107, 57], as well as in non-Markovian random walks [60], and are related to a speed
in the LDP that grows slower than T . For the absolute area of rBM, we do not know
what the exact decay of the density of T−1CT is above the mean or whether, in fact,
this density satisfies the LDP. This is an open problem.

§3.7 Conclusion

In this paper, we have studied the statistical properties of additive functionals of a
variant of Brownian motion that is reset at the origin at random intervals, and have
provided explicit results for three specific functionals, namely, the occupation time,
the area, and the absolute area. Functionals of standard Brownian motion have been
studied extensively in the past, and come with numerous applications in physics and
computer science [84, 86]. In view of these applications, we expect our results for
reset Brownian motion to be relevant in a variety of different contexts, in particular,
in search-related problems, queuing theory, and population dynamics, which have all
been analysed in the last few years in connection with resetting.

Appendix

§3.A Large deviation principle

Let S be a Polish (i.e., complete separable metric) space. A family (PT )T>0 of prob-
ability distributions on S is said to satisfy the strong large deviation principle (LDP)
with speed T and with rate function I when the following three properties hold:

(1) I 6≡ ∞. The level sets of I, defined by {s ∈ S : I(s) ≤ c}, c ∈ [0,∞), are
compact.

(2) lim supT→∞ T−1 logPT (C) ≤ −I(C) for all C ⊂ S Borel and closed.

(3) lim infT→∞ T−1 logPT (O) ≥ −I(O) for all O ⊂ S Borel and open.

Here
I(S) = inf

s∈S
I(s), S ⊂ S. (3.A.1)

The family (PT )T>0 is said to satisfy the weak LDP when in (1) we only require
the level sets to be closed and in (2) we only require the upper bound to hold for
compact sets. The weak LDP together with exponential tightness, i.e.,

lim
K↑S

K compact

lim sup
T→∞

T−1 logPT (S \K) = −∞, (3.A.2)

implies the strong LDP. For further background on large deviation theory, the reader
is referred to [40, Chapter III] and [40, 130].
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§3.B Rate function of the absolute area for BM

The SCGF, defined in (3.6.24), is known to be given for BM without resetting by the
principal eigenvalue of the following differential operator:

Lk =
σ2

2

d2

dx2
+ k|x|, x ∈ R, (3.B.1)

called the tilted generator, so that

(Lkψk)(x) = λ(k)ψk(x), (3.B.2)

where ψk(x) is the associated eigenfunction satisfying the natural (Dirichlet) boundary
conditions ψ(x) → 0 as x → ±∞ [131]. Since |Wt| has the same distribution as BM
reflected at zero, we can also obtain λ(k) as the principal eigenvalue of

Lk =
σ2

2

d2

dx2
+ kx, x ≥ 0, (3.B.3)

with the Neumann boundary condition ψ′k(0) = 0, which accounts for the fact that
there is no current at the reflecting barrier, in accordance with the Dirichlet boundary
condition ψk(∞) = 0.

The solution ψk(x) of both eigenvalue problems is given in terms of the Airy
function, Ai(ζ), with

ζ =
(−2k

σ2

)1/3(
x− λ(k)

k

)
. (3.B.4)

Imposing the boundary conditions, we get a discrete eigenvalue spectrum, given by

λ(i)(k) =
(σ2

2

)1/3

(−k)2/3ζ ′i, (3.B.5)

where ζ ′i is the ith zero of Ai′(x).
The largest eigenvalue λ(0)(k) corresponds to the SCGF λ0(k) without resetting

(see Fig. 3.1), which yields the rate function χC0 shown in (3.6.26), after applying the
Legendre transform shown in (3.6.25). The function λ0(k) is defined only for k ≤ 0,
but since it is steep at k = 0, the Gärtner–Ellis Theorem can be applied in this case.

Note that the spectral method can also be used to find the rate function χCr of the
absolute area of rBM, following the method explained in [91]. However, the expression
for the generating function G̃0(k, s) in this case is explicit, so it is more convenient
to use this expression, as is done in the proof of Theorem 3.6.1, in combination with
the renewal formula of Theorem 3.2.1.
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CHAPTER 4
Synchronization of phase oscillators

on the hierarchical lattice

This chapter is based on: [52]

Abstract

Synchronization of neurons forming a network with a hierarchical structure is
essential for the brain to be able to function optimally. In this paper we study syn-
chronization of phase oscillators on the most basic example of such a network, namely,
the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to
noise. Pairs of oscillators interact with each other at a strength that depends on their
hierarchical distance, modulated by a sequence of interaction parameters. We look at
block averages of the oscillators on successive hierarchical scales, which we think of
as block communities. In the limit as the number of oscillators per community tends
to infinity, referred to as the hierarchical mean-field limit, we find a separation of
time scales, i.e., each block community behaves like a single oscillator evolving on its
own time scale. We argue that the evolution of the block communities is given by a
renormalized mean-field noisy Kuramoto equation, with a synchronization level that
depends on the hierarchical scale of the block community. We find three universality
classes for the synchronization levels on successive hierarchical scales, characterized
in terms of the sequence of interaction parameters.

What makes our model specifically challenging is the non-linearity of the interac-
tion between the oscillators. The main results of our paper therefore come in three
parts: (I) a conjecture about the nature of the renormalisation transformation con-
necting successive hierarchical scales; (II) a truncation approximation that leads to a
simplified renormalization transformation; (III) a rigorous analysis of the simplified
renormalization transformation. We provide compelling arguments in support of (I)
and (II), but a full verification remains an open problem.
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§4.1 Introduction

The concept of spontaneous synchronization is ubiquitous in nature. Single oscillators
(like flashing fireflies, chirping crickets or spiking brain cells) may rotate incoherently,
at their own natural frequency, when they are isolated from the population, but
within the population they adapt their rhythm to that of the other oscillators, acting
as a system of coupled oscillators. There is no central driving mechanism, yet the
population reaches a globally synchronized state via mutual local interactions.

The omnipresence of spontaneous synchronization triggered scientists to search for
a mathematical approach in order to understand the underlying principles. The first
steps were taken by Winfree [136], [137], who recognized that spontaneous synchron-
ization should be understood as a threshold phenomenon: if the coupling between
the oscillators is sufficiently strong, then a macroscopic part of the population freezes
into synchrony. Although the model proposed by Winfree was too difficult to solve
analytically, it inspired Kuramoto [72], [73] to suggest a more mathematically tract-
able model that captures the same phenomenon. The Kuramoto model has since been
used successfully to study synchronization in a variety of different contexts. By now
there is an extended literature, covering aspects like phase transition, stability, and
effect of disorder (for a review, see Acébron et al. [3]).

Mathematically, the Kuramoto model still poses many challenges. As long as
the interaction is mean-field (meaning that every oscillator interacts equally strongly
with every other oscillator), a fairly complete theory has been developed. However, as
soon as the interaction has a non-trivial geometry, computations become cumbersome.
There is a large literature for the Kuramoto model on complex networks, where the
population is viewed as a random graph whose vertices carry the oscillators and whose
edges represent the interaction. Numerical and heuristic results have been obtained
for networks with a small-world, scale-free and/or community structure, showing a
range of interesting phenomena (for a review, see Arenas et al. [5]). Rigorous results
are rare. In the present paper we focus on one particular network with a community
structure, namely, the hierarchical lattice.

The remainder of this paper is organised as follows. Sections 4.1.1–4.1.3 are de-
voted to the mean-field noisy Kuramoto model. In Section 4.1.1 we recall definitions
and basic properties. In Section 4.1.2 we recall the McKean-Vlasov equation, which
describes the evolution of the probability density for the phase oscillators in the mean-
field limit. In Section 4.1.3 we take a closer look at the scaling properties of the order
parameters towards the mean-field limit. In Section 4.1.4 we define the hierarchical
lattice and in Section 4.1.5 introduce the noisy Kuramoto model on the hierarchical
lattice, which involves a sequence of interaction strengths (Kk)k∈N acting on success-
ive hierarchical levels. Section 4.2 contains our main results, presented in the form of
a conjecture, a truncation approximation, and rigrorous theorems. These concern the
hierarchical mean-field limit and show that, for each k ∈ N, the block communities at
hierarchical level k behave like the mean-field noisy Kuramoto model, with an inter-
action strength and a noise that depend on k and are obtained via a renormalization
transformation connecting successive hierarchical levels. There are three universal-
ity classes for (Kk)k∈N, corresponding to sudden loss of synchronization at a finite
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hierarchical level, gradual loss of synchronization as the hierarchical level tends to
infinity, and no loss of synchronization. The renormalization transformation allows
us to describe these classes in some detail. In Section 4.3 we analyse the renormaliza-
tion scheme, in Section 4.4 we find criteria for the universality classes. Appendix 4.A
provides numerical examples and computations.

§4.1.1 Mean-field Kuramoto model
We begin by reviewing the mean-field Kuramoto model. Consider a population of
N ∈ N oscillators, and suppose that the ith oscillator has a natural frequency ωi, such
that

I ωi, i = 1, . . . , N, are i.i.d. and are drawn from
a common probability distribution µ on R. (4.1.1)

Let the phase of the ith oscillator at time t be θi(t) ∈ R. If the oscillators were not
interacting, then we would have the system of uncoupled differential equations

dθi(t)

dt
= ωi, i = 1, . . . , N. (4.1.2)

Kuramoto [72], [73] realized that the easiest way to allow for synchronization was to
let every oscillator interact with every other oscillator according to the sine of their
phase difference, i.e., to replace (4.1.2) by:

dθi(t)

dt
= ωi +

K

N

N∑
j=1

sin
[
θj(t)− θi(t)

]
, i = 1, . . . , N. (4.1.3)

Here, K ∈ (0,∞) is the interaction strength, and the factor 1
N is included to make

sure that the total interaction per oscillator stays finite in the thermodynamic limit
N →∞. The coupled evolution equations in (4.1.3) are referred to as the mean-field
Kuramoto model. An illustration of the interaction in this model is given in Fig. 4.1.
If noise is added, then (4.1.3) turns into the mean-field noisy Kuramoto model, given
by

dθi(t) = ωi dt+
K

N

N∑
j=1

sin
[
θj(t)− θi(t)

]
dt+D dWi(t), i = 1, . . . , N. (4.1.4)

Here, D ∈ (0,∞) is the noise strength, and (Wi(t))t≥0, i = 1, . . . , N , are independent
standard Brownian motions on R. The coupled evolution equations in (4.1.4) are
stochastic differential equations in the sense of Itô (see e.g. Karatzas and Shreve [69]).
As initial condition we take

I θi(0), i = 1, . . . , N, are i.i.d. and are drawn from
a common probability distribution ρ on [0, 2π).

(4.1.5)

In order to exploit the mean-field nature of (4.1.4), the complex-valued order
parameter (with i the imaginary unit)

rN (t) eiψN (t) =
1

N

N∑
j=1

eiθj(t) (4.1.6)
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𝜔1 𝜔2 

𝜔3 

𝜔5 

𝜔6 

𝜃6 

𝜃5 

𝜔4 𝜃4 

𝜃3 

𝜃2 
𝜃1 

Figure 4.1: Mean-field interaction of N = 6 oscillators with natural frequencies ωi and phases
θi, i = 1, . . . , 6, evolving according to (4.1.3).

is introduced. In (4.1.6), rN (t) is the synchronization level at time t and takes val-
ues in [0, 1], while ψN (t) is the average phase at time t and takes values in [0, 2π).
(Note that ψN (t) is properly defined only when rN (t) > 0.) The order parameter
(r, ψ) is illustrated in Fig. 4.2 (r = 0 corresponds to the oscillators being completely
unsynchronized, r = 1 to the oscillators being completely synchronized).

Figure 4.2: Phase distribution of oscillators for two different values of r. The arrow repres-
ents the complex number reiψ.

By rewriting (4.1.4) in terms of (4.1.6) as

dθi(t) = ωi dt+KrN (t) sin
[
ψN (t)− θi(t)

]
dt+D dWi(t), i = 1, . . . , N, (4.1.7)

we see that the oscillators are coupled via the order parameter, i.e., the phases θi are
pulled towards ψN with a strength proportional to rN . Note that rN (t) and ψN (t)

are random variables that depend on µ, D and ρ.
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In the mean-field limit N → ∞, the system in (4.1.7) exhibits what is called
“propagation of chaos”, i.e., the evolution of single oscillators becomes autonomous.
Indeed, let the order parameter associated with ρ in (4.1.5) be the pair (R,Φ) ∈
[0, 1]× [0, 2π) defined by

R eiΦ =

∫ 2π

0

ρ(dθ) eiθ. (4.1.8)

Suppose that R > 0, so that Φ is properly defined. Suppose further that

I the disorder distribution µ in (4.1.1) is symmetric. (4.1.9)

Then, as we will see in Sections 4.1.2–4.1.3, the limit as N → ∞ of the evolution of
a single oscillator, say θ1, is given by

dθ1(t) = ω1 dt+Kr(t) sin
[
Φ− θ1(t)

]
dt+D dW1(t), (4.1.10)

where (W1(t))t≥0 is a standard Brownian motion, and r(t) is driven by a deterministic
relaxation equation such that

r(0) = R, lim
t→∞

r(t) = r for some r ∈ [0, 1). (4.1.11)

The parameter r = r(µ,D,K) will be identified in (4.1.21) below (and the convergence
holds at least when R is close to r; see Remark 4.1.1 below). The evolution in (4.1.10)
is not closed because of the presence of r(t), but after a transient period it converges
to the autonomous evolution equation

dθ1(t) = ω1 dt+Kr sin
[
Φ− θ1(t)

]
dt+D dW1(t). (4.1.12)

Without loss of generality, we may calibrate Φ = 0 by rotating the circle [0, 2π) over
−Φ. After that the parameters R,Φ associated the initial distribution ρ are gone,
and only r remains as the relevant parameter. It is known (see e.g. (4.1.23) below)
that there exists a critical threshold Kc = K(µ,D) ∈ (0,∞) separating two regimes:

• For K ∈ (0,Kc] the system relaxes to an unsynchronized state (r = 0).

• ForK ∈ (Kc,∞) the system relaxes to a partially synchronized state (r ∈ (0, 1)),
at least when ρ in (4.1.5) is chosen such that R is close to r (see Remark 4.1.1
below).

See Strogatz [125] and Luçon [81] for overviews.

§4.1.2 McKean-Vlasov equation
For the system in (4.1.4), Sakaguchi [114] showed that in the limit as N → ∞, the
probability density for the phase oscillators and their natural frequencies (with respect
to λ × µ, with λ the Lebesgue measure on [0, 2π] and µ the disorder measure on R)
evolves according to the McKean-Vlasov equation

∂

∂t
p(t; θ, ω) = − ∂

∂θ

[
p(t; θ, ω)

{
ω+Kr(t) sin

[
ψ(t)−θ

]}]
+
D

2

∂2

∂θ2
p(t; θ, ω), (4.1.13)
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where

r(t) eiψ(t) =

∫
R
µ(dω)

∫ 2π

0

dθ eiθ p(t; θ, ω), (4.1.14)

is the continuous counterpart of (4.1.6). If ρ has a density, say ρ(θ), then p(0; θ, ω) =

ρ(θ) for all ω ∈ R.
By (4.1.9), we can again calibrate the average phase to be zero, i.e., ψ(t) = ψ(0) =

Φ = 0, t ≥ 0, in which case the stationary solutions of (4.1.13) satisfy

0 = − ∂

∂θ

[
p(θ, ω) (ω −Kr sin θ)

]
+
D

2

∂2

∂θ2
p(θ, ω). (4.1.15)

The solutions of (4.1.15) are of the form

pλ(θ, ω) =
Aλ(θ, ω)∫ 2π

0
dφAλ(φ, ω)

, λ = 2Kr/D, (4.1.16)

with

Aλ(θ, ω) = Bλ(θ, ω)

(
e4πω

∫ 2π

0

dφ

Bλ(φ, ω)
+ (1− e4πω)

∫ θ

0

dφ

Bλ(φ, ω)

)
,

Bλ(θ, ω) = eλ cos θ+2θω.

(4.1.17)

After rewriting

Aλ(θ, ω) = Bλ(θ, ω)

(∫ 0

θ−2π

dφ

Bλ(−φ,−ω)
+

∫ θ

0

dφ

Bλ(φ, ω)

)
(4.1.18)

and noting that Bλ(φ, ω) = Bλ(−φ,−ω), we easily check that

pλ(θ, ω) = pλ(−θ,−ω), (4.1.19)

a property we will need later. In particular, in view of (4.1.9), we have∫
R
µ(dω)

∫ 2π

0

dθ pλ(θ, ω) sin θ = 0. (4.1.20)

Since ψ(t) = ψ(0) = Φ = 0, we see from (4.1.14) that pλ(θ, ω) in (4.1.16) is a
solution if and only if r satisfies∫

R
µ(dω)

∫ 2π

0

dθ pλ(θ, ω) cos θ = r, λ = 2Kr/D. (4.1.21)

This gives us a self-consistency relation for

r = r(D,K) (4.1.22)

a situation that is typical for mean-field systems, which can in principle be solved (and
possibly has more than one solution). The equation in (4.1.21) always has a solution
with r = 0: the unsynchronized state corresponding to p0(θ, ω) = 1

2π for all θ, ω. A
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(not necessarily unique) solution with r ∈ (0, 1) exists when the coupling strength
K exceeds a critical threshold Kc = Kc(µ,D). When this occurs, we say that the
oscillators are in a partially synchronized state. As K increases also r increases (see
Fig. 4.3). Moreover, r ↑ 1 as K → ∞ and we say that the oscillators converge to
a fully synchronized state. When K crosses Kc, the system exhibits a second-order
phase transition, i.e., K 7→ r(K) is continuous at K = Kc.

K

r(K)

Kc

1

Figure 4.3: Picture of K 7→ r(K) for fixed µ and D.

For the case where the frequency distribution µ is symmetric and unimodal, an
explicit expression is known for Kc:

1

Kc
=

∫
R
µ(dω)

D

D2 + 4ω2
. (4.1.23)

Thus, when the spread of µ is large compared to K, the oscillators are not able to
synchronize and they rotate near their own frequencies. As K increases, this remains
the case until K reaches Kc. After that a small fraction of synchronized oscillators
starts to emerge, which becomes of macroscopic size when K moves beyond Kc.
For µ symmetric and unimodal it is conjectured that for K > Kc there is a unique
synchronized solution pλ(·, ·) with r ∈ (0, 1) solving (4.1.21) (Luçon [81, Conjecture
3.12]). This conjecture has been proved when µ is narrow, i.e., the disorder is small
(Luçon [81, Proposition 3.13]).

4.1.1 Remark. Stability of stationary solutions has been studied by Strogatz and
Mirollo [123], Strogatz, Mirollo and Matthews [124], Luçon [81, Section 3.4]. For
symmetric unimodal disorder, the unsynchronized state is linearly stable for K < Kc

and linearly unstable for K > Kc, while the synchronized state for K > Kc is linearly
stable at least for small disorder. Not much is known about stability for general
disorder.

There is no closed form expression for Kc beyond symmetric unimodal disorder,
except for special cases, e.g. symmetric binary disorder. We refer to Luçon [81] for an
overview. A large deviation analysis of the empirical process of oscillators has been
carried out in Dai Pra and den Hollander [33].
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§4.1.3 Diffusive scaling of the average phase
Bertini, Giacomin and Poquet [14] showed that for the mean-field noisy Kuramoto
model without disorder, in the limit as N → ∞ the synchronization level evolves on
time scale t and converges to a deterministic limit, while the average phase evolves
on time scale Nt and converges to a Brownian motion with a renormalized noise
strength.1

4.1.2 Theorem (Bertini, Giacomin and Poquet [14]). Suppose that µ = δ0
and r > 0. Then, in distribution,

lim
N→∞

ψN (Nt) = ψ∗(t),

lim
N→∞

rN (t) = r(t),
(4.1.24)

with
dψ∗(t) = D∗ dW∗(t), ψ∗(0) = Φ,
limt→∞ r(t) = r, r(0) = R,

(4.1.25)

where (W∗(t))t≥0 is a standard Brownian motion and

D∗ = D∗(D,K, r) =
1√

1− [I0(2Kr/D)]−2
, r = r(D,K), (4.1.26)

with I0 the modified Bessel function of order zero given by

I0(λ) =
1

2π

∫ 2π

0

dθ eλ cos θ, λ ∈ [0,∞). (4.1.27)

The work in [14] also shows that

lim
N→∞

rN (Nt) = r ∀ t > 0, (4.1.28)

i.e., the synchronization level not only tends to r over time, it also stays close to r
on a time scale of order N . Thus, the synchronization level is much less volatile than
the average phase.

In Section 4.3.1 we explain the heuristics behind Theorem 4.1.2. This heuristics
will play a key role in our analysis of the Kuramoto model on the hierarchical lattice
in the hierarchical mean-field limit. In fact, Conjecture 4.2.1 below will extend The-
orem 4.1.2 to the hierarchical lattice. It is important to note that the diffusive scaling
only occurs in the model without disorder. Indeed, for the model with disorder it was
shown in Luçon and Poquet [83] that the fluctuations of the disorder prevail over the
fluctuations of the noise, resulting in ‘travelling waves’ for the empirical distribution
of the oscillators. Therefore, also on the hierarchical lattice we only consider the
model without disorder.

1The fact that the average phase evolves slowly was already noted by Ha and Slemrod [59] for the
Kuramoto model with disorder and without noise, while an approximate solution was obtained by
Sonnenschein and Schimansky-Geier [122] for the Kuramoto model without disorder and with noise.
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§4.1.4 Hierarchical lattice
The hierarchical lattice of order N consist of countable many vertices that form com-
munities of sizes N , N2, etc. For example, the hierarchical lattice of order N = 3

consists of vertices that are grouped into 1-block communities of 3 vertices, which in
turn are grouped into 2-block communities of 9 vertices, and so on. Each vertex is
assigned a label that defines its location at each block level (see Fig. 4.4).

Figure 4.4: The hierarchical lattice of order N = 3. The vertices live at the lowest level.
The tree visualizes their distance: the distance between two vertices η, ζ is the height of their
lowest common branching point in the tree: d(η, ζ) = 2 in the picture.

Formally, the hierarchical group ΩN of order N ∈ N\{1} is the set

ΩN =

{
η = (η`)`∈N0

∈ {0, 1, . . . , N − 1}N0 :
∑
`∈N0

η` <∞
}

(4.1.29)

with addition modulo N , i.e., (η + ζ)` = η` + ζ` (modN), ` ∈ N0. The distance on
ΩN is defined as

d : ΩN × ΩN → N0, (η, ζ) 7→ min
{
k ∈ N0 : η` = ζ` ∀ ` ≥ k

}
, (4.1.30)

i.e., the distance between two vertices is the smallest index from which onwards the
sequences of hierarchical labels of the two vertices agree. This distance is ultrametric:

d(η, ζ) ≤ min{d(η, ξ), d(ζ, ξ)} ∀ η, ζ, ξ ∈ ΩN . (4.1.31)

For η ∈ ΩN and k ∈ N0, the k-block around η is defined as

Bk(η) = {ζ ∈ ΩN : d(η, ζ) ≤ k}. (4.1.32)

§4.1.5 Hierarchical Kuramoto model
We are now ready to define the model that will be our object of study. Each vertex η ∈
ΩN carries a phase oscillator, whose phase at time t is denoted by θη(t). Oscillators
interact in pairs, but at a strength that depends on their hierarchical distance. To
modulate this interaction, we introduce a sequence of interaction strengths

(Kk)k∈N ∈ (0,∞)N, (4.1.33)
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and we let each pair of oscillators η, ζ ∈ ΩN at distance d(η, ζ) = d interact as in
the mean-field Kuramoto model with K/N replaced by Kd/N

2d−1, where the scaling
factor is chosen to ensure that the model remains well behaved in the limit as N →∞.
Thus, our coupled evolution equations read

dθη(t) =
∑
ζ∈ΩN

Kd(η,ζ)

N2d(η,ζ)−1
sin
[
θζ(t)− θη(t)

]
dt+D dWη(t), η ∈ ΩN , t ≥ 0,

(4.1.34)
where (Wη(t))t≥0, η ∈ ΩN , are i.i.d. standard Brownian motions. As initial condition
we take, as in (4.1.5),

I θη(0), η ∈ ΩN , are i.i.d. and are drawn from
a common probability distribution ρ(dθ) on [0, 2π).

(4.1.35)

We will be interested in understanding the evolution of average phase in the definition
of the order parameter associated with the Nk oscillators in the k-block around η at
time Nkt, defined by

R
[k]
η,N (Nt) eiΦ

[k]
η,N (t) =

1

Nk

∑
ζ∈Bk(η)

eiθζ(Nkt), η ∈ ΩN , t ≥ 0, (4.1.36)

where R[k]
η,N (Nt) is the synchronization level at time Nkt and Φ

[k]
η,N (t) is the average

phase at time Nkt. The new time scales Nt and t will turn out to be natural in
view of the scaling in Theorem 4.1.2. The synchronization level R[k]

η,N captures the
synchronization of the (k − 1)-blocks, of which there are N in total constituting the
k-block around η. These blocks must synchronize before their average phase Φ

[k]
η,N can

begin to move, which is why R[k]
η,N moves on a different time scale compared to Φ

[k]
η,N .

Our goal will be to pass to the limit N → ∞, look at the limiting synchronization
levels around a given vertex, say η = 0N, and classify the scaling behavior of these
synchronization levels as k → ∞ into universality classes according to the choice of
(Kk)k∈N in (4.1.33).

Note that, for every η ∈ ΩN , we can telescope to write∑
ζ∈ΩN

Kd(ζ,η)

N2d(η,ζ)−1
sin
[
θζ(t)− θη(t)

]
=
∑
k∈N

Kk

N2k−1

∑
ζ∈Bk(η)/Bk−1(η)

sin
[
θζ(t)− θη(t)

]
(4.1.37)

=
∑
k∈N

( Kk

N2k−1
− Kk+1

N2(k+1)−1

) ∑
ζ∈Bk(η)

sin
[
θζ(t)− θη(t)

]
.

Inserting (4.1.37) into (4.1.34) and using (4.1.36), we get

dθη(t) =
∑
k∈N

1

Nk−1

(
Kk −

Kk+1

N2

)
R

[k]
η,N (N1−kt)

× sin
[
Φ

[k]
η,N (N−kt)− θη(t)

]
dt+D dWη(t). (4.1.38)
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This shows that, like in (4.1.7), the oscillators are coupled via the order parameters
associated with the k-blocks for all k ∈ N, suitably weighted. As for the mean-
field Kuramoto model, for every η ∈ ΩN , R[k]

η,N (N1−kt) and Φ
[k]
η,N (N−kt) are random

variables that depend on (Kk)k∈N and D.
When we pass to the limit N → ∞ in (4.1.38), in the right-hand side of (4.1.38)

only the term with k = 1 survives, so that we end up with an autonomous evolution
equation similar to (4.1.10). The goal of the present paper is to show that a similar
decoupling occurs at all block levels. Indeed, we expect the successive time scales at
which synchronization occurs to separate. If there is synchronization at scale k, then
we expect the average of the k-blocks around the origin forming the (k+1)-blocks (of
which there are N in total) to behave as if they were single oscillators at scale k+ 1.

Dahms [32] considers a multi-layer model with a different type of interaction: single
layers labelled by N, each consisting of N oscillators, are stacked on top of each other,
and each oscillator in each layer is interacting with the average phases of the oscillators
in all the other layers, with interaction strengths (K̃k)k∈N (see [32, Section 1.3]). For
this model a necessary and sufficient criterion is derived for synchronization to be
present at all levels in the limit as N →∞, namely,

∑
n∈N K̃

−1
k <∞ (see [32, Section

1.4]). We will see that in our hierarchical model something similar is happening, but
the criterion is rather more delicate.

§4.2 Main results

In Section 4.2.1 we state a conjecture about the multi-scaling of the system (Con-
jecture 4.2.1 below), which involves a renormalization transformation describing the
synchronization level and the average phase on successive hierarchical levels. In Sec-
tion 4.2.2 we propose a truncation approximation that simplifies the renormalization
transformation, and argue why this approximation should be fairly accurate. In Sec-
tion 4.2.3 we analyse the simplified renormalization transformation and identify three
universality classes for the behavior of the synchronization level as we move upwards
in the hierarchy, give sufficient conditions on (Kk)k∈N for each universality class (The-
orem 4.2.5 below), and provide bounds on the synchronization level (Theorem 4.2.6
below). The details are given in Sections 4.3–4.4. Without loss of generality we set
D = 1 in (4.1.34).

§4.2.1 Multi-scaling
Our first result is a conjecture stating that the average phase of the k-blocks behaves
like that of the noisy mean-field Kuramato model described in Theorem 4.1.2. Recall
the choice of time scales in (4.1.36).

4.2.1 Conjecture. (Multi-scaling for the block average phases) Fix k ∈ N
and assume that R[k] > 0. Then, in distribution,

lim
N→∞

Φ
[k]
0,N (t) = Φ

[k]
0 (t), (4.2.1)
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where (Φ
[k]
0 (t))t≥0 evolves according to the SDE

dΦ
[k]
0 (t) = Kk+1 E [k]R

[k+1]
0 (t) sin

[
Φ− Φ

[k]
0 (t)

]
dt+D[k] dW

[k]
0 (t), t ≥ 0, (4.2.2)

(W
[k]
0 (t))t≥0 is a standard Brownian motion, Φ = 0 by calibration, and

(E [k],D[k]) = T(K`)1≤`≤k(E [0],D[0]), k ∈ N, (4.2.3)

with (E [0],D[0]) = (1, 1) and T(K`)1≤`≤k a renormalization transformation.

The evolution in (4.2.2) is that of a mean-field noisy Kuramoto model with renormal-
ized coefficients, namely, an effective interaction strength Kk+1 E [k] and an effective
noise strength D[k] (compare with (4.1.7)). These coefficients are to be viewed as
the result of a renormalization transformation acting on block communities at levels
k ∈ N successively, starting from the initial value (E [0],D[0]) = (1, 1). This ini-
tial value comes from the fact that single oscillators are completely synchronized by
definition. The renormalization transformation at level k depends on the values of
K` with 1 ≤ ` ≤ k. It also depends on the synchronization levels R[`] with 1 ≤ ` ≤ k,
as well as on other order parameters associated with the phase distributions of the
`-blocks with 1 ≤ ` ≤ k. In Section 4.2.2 we will analyse an approximation for which
this dependence simplifies, in the sense that only one set of extra order parameter
comes into play, namely, Q[`] with 1 ≤ ` ≤ k, where Q[`] is the average of the cosine
squared of the phase distribution of the `-block.

The evolution in (4.2.2) is not closed because of the presence of the term R
[k+1]
0 (t),

which comes from the (k + 1)-st block community one hierarchical level up from k.
Similarly as in (4.1.11), R[k+1]

0 (t) is driven by a deterministic relaxation equation such
that

R
[k+1]
0 (0) = R, lim

t→∞
R

[k+1]
0 (t) = R[k+1]. (4.2.4)

This relaxation equation will be of no concern to us here (and is no doubt quite
involved). Convergence holds at least for R close to R[k+1] (recall Remark 4.1.1).
Thus, after a transient period, (4.2.2) converges to the closed evolution equation

dΦ
[k]
0 (t) = Kk+1 E [k]R[k+1] sin

[
Φ− Φ

[k]
0 (t)

]
dt+D[k] dW

[k]
0 (t), t ≥ 0. (4.2.5)

The initial values (R,Φ) in (4.2.4) and (4.2.5) come from (4.1.8) and (4.1.35).
Conjecture 4.2.1 perfectly fits the folklore of renormalization theory for interacting

particle systems. The idea of that theory is that along an increasing sequence of
mesoscopic space-time scales the evolution is the same as on the microscopic space-
time scale, but with renormalised coefficients that arise from an ‘averaging out’ on
successive scales. It is generally hard to carry through a renormalization analysis in
full detail, and there are only a handful of interacting particle systems for which this
has been done with mathematical rigour. Moreover, there are delicate issues with
the renormalization transformation being properly defined. However, in our model
these issues should not arise because of the ‘layered structure’ of the hierarchical
lattice and the hierarchical interaction. Since the interaction between the oscillators
is non-linear, we currently have little hope to be able to turn Conjecture 4.2.1 into a
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theorem and identify the precise form of T(K`)1≤`≤k . In Section 4.3.2 we will see that
the non-linearity of the interaction causes a delicate interplay between the different
hierarchical levels.

In what follows we propose a simplified renormalization transformation T̄(K`)1≤`≤k ,
based on a truncation approximation in which we keep only the interaction between
successive hierarchical levels. The latter can be analysed in detail and replaces the
renormalization transformation T(K`)1≤`≤k in Conjecture 4.2.1, of which we do not
know the details. We also argue why the truncation approximation is reasonable.

§4.2.2 Truncation approximation
The truncation approximation consists of replacing T(K`)1≤`≤k by a k-fold iteration of
a renormalization map:

T̄(K`)1≤`≤k = TKk ◦ · · · ◦ TK1
. (4.2.6)

In other words, we presume that what happens at hierarchical scale k + 1 is dictated
only by what happens at hierarchical scale k, and not by any of the lower scales.
These scales do manifest themselves via the successive interaction strengths, but not
via a direct interaction.

Define

I0(λ) =
1

2π

∫ 2π

0

dφ eλ cosφ, λ > 0, (4.2.7)

which is the modified Bessel function of the first kind. After normalization, the
integrand becomes what is called the von Mises probability density function on the
unit circle with parameter λ, which is φ 7→ pλ(φ, 0) in (4.1.16)–(4.1.17). We write
I ′0(λ) = I1(λ) and I ′′0 (λ) = I2(λ).

4.2.2 Definition. (Renormalization map) For K ∈ (0,∞), let TK : [0, 1]× [ 1
2 , 1]→

[0, 1]× [ 1
2 , 1] be the map

(R′, Q′) = TK(R,Q) (4.2.8)

defined by

R′ = R
I1(2KR′

√
Q)

I0(2KR′
√
Q)
,

Q′ − 1
2 = (Q− 1

2 )

[
2
I2(2KR′

√
Q)

I0(2KR′
√
Q)
− 1

]
.

(4.2.9)

The first equation is a consistency relation, the second equation is a recursion relation.
They must be used in that order to find the image point (R′, Q′) of the original point
(R,Q) under the map TK .

With this renormalization mapping we can approximate the true renormalized
system.

4.2.3 Approximation. After truncation, (4.2.2) can be approximated by

dΦ
[k]
0 (t) = Kk+1 Ē [k]R

[k+1]
0 (t) sin

[
Φ− Φ

[k]
0 (t)

]
dt+ D̄[k] dW

[k]
0 (t), t ≥ 0, (4.2.10)
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with

Ē [k] =
Q[k]

R[k]
, D̄[k] =

√
Q[k]

R[k]
, (4.2.11)

where

(R[k], Q[k]) = T̄(K`)1≤`≤k(R[0], Q[0]), (R[0], Q[0]) = (1, 1). (4.2.12)

We will see in Section 4.3.2 that R[k] plays the role of the synchronization level of the
k-blocks, while Q[k] plays the role of the average of the cosine squared of the phase
distribution of the k-blocks (see (4.3.33) below).

In the remainder of this section we analyse the orbit k 7→ (R[k], Q[k]) in detail. We
will see that, under the simplified renormalization transformation, k 7→ (R[k], Q[k])

is non-increasing in both components. In particular, synchronization cannot increase
when the hierarchical level goes up.

4.2.4 Remark. In Section 4.3.2 we will argue that a better approximation can be
obtained by keeping one more term in the truncation approximation, but that the
improvement is minor.

§4.2.3 Universality classes
There are three universality classes depending on the choice of (Kk)k∈N in (4.1.33),
illustrated in Fig. 4.1:

Q

R
0

1

1

(1)
(3)

(2)

1
2

1
2

Figure 4.1: The dots represent the map k 7→ (R[k], Q[k]) for the three universality classes,
starting from (R[0], Q[0]) = (1, 1). The dots move left and down as k increases.

(1) Synchronization is lost at a finite level:
R[k] > 0, 0 ≤ k < k∗, R[k] = 0, k ≥ k∗ for some k∗ ∈ N.

(2) Synchronization is lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] = 0.

(3) Synchronization is not lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] > 0.
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Our second result provides sufficient conditions for universality classes (1) and (3) in
terms of the sum

∑
k∈NK

−1
k .

4.2.5 Theorem. (Criteria for the universality classes)

•
∑
k∈NK

−1
k ≥ 4 =⇒ universality class (1).

•
∑
k∈NK

−1
k ≤ 1√

2
=⇒ universality class (3). �

Two examples are: (1) Kk = 3
2 log 2 log(k + 1); (3) Kk = 4ek. The scaling behaviour

for these examples is illustrated via the numerical analysis in Appendix 4.A (see, in
particular, Fig. 4.A.1 and Fig. 4.A.2 below).

The criteria in Theorem 4.2.5 are not sharp. Universality class (2) corresponds
to a critical surface in the space of parameters (Kk)k∈N that appears to be rather
complicated and certainly is not (!) of the type

∑
k∈NK

−1
k = c for some 1√

2
< c < 4

(see Fig. 4.2). Note that the full sequence (Kk)k∈N determines in which universality
class the system is.

(1)

(3)

(2)

Figure 4.2: Caricature showing the critical surface in the parameter space and the bounds
provided by Theorem 4.2.5.

The behaviour of Kk as k → ∞ determines the speed at which R[k] → R[∞] in
universality classes (2) and (3). Our third theorem provides upper and lower bounds.

4.2.6 Theorem. (Bounds for the block synchronization levels)

• In universality classes (2) and (3),

1
4σk ≤ R[k] −R[∞] ≤

√
2σk, k ∈ N0, (4.2.13)

with σk =
∑
`>kK

−1
` .

• In universality class (1), the upper bound in (4.2.13) holds for k ∈ N0, while the
lower bound in (4.2.13) is replaced by

R[k] −R[k∗−1] ≥ 1
4

k∗−1∑
`=k+1

K−1
` , 0 ≤ k ≤ k∗ − 2. (4.2.14)

83



4. Synchronization of phase oscillators on the hierarchical lattice

C
h
a
pt

er
4

The latter implies that

k∗ ≤ max

{
k ∈ N :

k−1∑
`=1

K−1
` < 4

}
(4.2.15)

because R[0] = 1 and R[k∗−1] > 0.

In universality classes (2) and (3) we have limk→∞ σk = 0. Depending on how fast
k 7→ Kk grows, various speeds of convergence are possible: logarithmic, polynomial,
exponential, superexponential.

§4.3 Multi-scaling for the block average phases

In Section 4.3.1 we explain the heuristics behind Theorem 4.1.2. The diffusive scaling
of the average phase in the mean-field noisy Kuramato model, as shown in the first
line of (4.1.24), is a key tool in our analysis of the multi-scaling of the block average
phases in the hierarchical noisy Kuramoto model, stated in Conjecture 4.2.1. The
justification for the latter is given in Section 4.3.2.

§4.3.1 Diffusive scaling of the average phase for mean-
field Kuramato

Proof. For the heuristic derivation of the second line of (4.1.24) we combine (4.1.13)–
(4.1.14), to obtain

d

dt
r(t) =

∫ 2π

0

dθ cos θ

×
{
− ∂

∂θ

[
pλ(t; θ)

{
Kr(t) sin[ψ(t)− θ]

}]
+

1

2

∂2

∂θ2
pλ(t; θ)

} (4.3.1)

with λ = 2Kr and pλ(t; θ) = pλ(t; θ, 0) (recall that ω ≡ 0). After partial integration
with respect to θ this becomes (use that θ 7→ pλ(t; θ) is periodic)

d

dt
r(t) =

∫ 2π

0

dθ pλ(t; θ)

{
(− sin θ)Kr(t) sin(−θ) + (− cos θ)

1

2

}
, (4.3.2)

where we use that ψ(t) = ψ(0) = 0. Define

q(t) =

∫ 2π

0

dθ pλ(t; θ) cos2 θ. (4.3.3)

Then (4.3.2) reads
d

dt
r(t) =

[
K(1− q(t))− 1

2

]
r(t). (4.3.4)

We know that

lim
t→∞

q(t) = q =

∫ 2π

0

dθ pλ(θ) cos2 θ (4.3.5)
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with (put ω ≡ 0 in (4.1.16))

pλ(θ) =
eλ cos θ∫ 2π

0
dφ eλ cosφ

. (4.3.6)

Note that K(1− q)− 1
2 = 0 because λ = 2Kr and∫ 2π

0

dθ pλ(θ) sin2 θ = (1/λ)

∫ 2π

0

dθ pλ(θ) cos θ = r/λ (4.3.7)

by partial integration. Hence limt→∞ r(t) = r. (The fine details of the relaxation are
delicate, depend on the full solution of the McKean-Vlasov equation in (4.1.13), but
are of no concern to us here.)

For the derivation of the first line of (4.1.24) we use the symmetry of the equilib-
rium distribution (recall (4.1.16)–(4.1.17)), i.e.,

pλ(θ) = pλ(−θ), (4.3.8)

together with the fact that x 7→ cosx is a symmetric function and x 7→ sinx is an
asymmetric function.

Write the definition of the order parameter as

rN =
1

N

N∑
j=1

ei(θj−ψN ) (4.3.9)

and compute
∂rN
∂θi

=
i

N
ei(θi−ψN ) − i

∂ψN
∂θk

rN . (4.3.10)

Collecting the real and the imaginary part, we get

∂ψN
∂θi

=
1

NrN
cos(ψN − θi),

∂rN
∂θi

=
1

N
sin(ψN − θi). (4.3.11)

One further differentiation gives

∂2ψN
∂θ2
i

= − 1

Nr2
N

∂rN
∂θi

cos(ψN − θi)−
1

NrN

[
∂ψN
∂θi

− 1

]
cos(ψN − θi)

= − 2

(NrN )2
sin(ψN − θi) cos(ψN − θi) +

1

NrN
sin(ψN − θi),

(4.3.12)

plus a similar formula for ∂2rN
∂θ2i

(which we will not need). Thus, Itô’s rule applied to
(4.1.6) yields the expression

dψN (t) =

N∑
i=1

∂ψN
∂θi

(t) dθi(t) +
1

2

N∑
i=1

∂2ψN
∂θ2
i

(t)
(
dθi(t)

)2 (4.3.13)
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with
∂ψN
∂θi

(t) =
1

NrN (t)
cos
[
ψN (t)− θi(t)

]
, (4.3.14)

∂2ψN
∂θ2
i

(t) = − 2(
NrN (t))2

sin
[
ψN (t)− θi(t)

]
cos
[
ψN (t)− θi(t)

]
+

1

NrN (t)
sin
[
ψN (t)− θi(t)

]
.

Inserting (4.1.7) into (4.3.13)–(4.3.15), we get

dψN (t) = I(N ; t) dt+ dJ(N ; t) (4.3.15)

with

I(N ; t) =

[
K

N
− 1(

NrN (t)
)2
]

N∑
i=1

sin
[
ψN (t)− θi(t)

]
cos
[
ψN (t)− θi(t)

]
,

dJ(N ; t) =
1

NrN (t)

N∑
i=1

cos
[
ψN (t)− θi(t)

]
dWi(t),

(4.3.16)

where we use that
∑N
i=1 sin[ψN (t)− θi(t)] = 0 by (4.1.6). Multiply time by N , to get

dψN (Nt) = NI(N ;Nt) dt+ dJ(N ;Nt) (4.3.17)

with

NI(N ;Nt) =

[
K − 1

N
(
rN (Nt)

)2
]

N∑
i=1

sin
[
ψN (Nt)− θi(Nt)

]
cos
[
ψN (Nt)− θi(Nt)

]
,

dJ(N ;Nt) =
1

NrN (Nt)

N∑
i=1

cos
[
ψN (Nt)− θi(t)

]
dWi(Nt).

(4.3.18)
Suppose that the system converges to a partially synchronized state, i.e., in dis-

tribution
lim
N→∞

rN (Nt) = r > 0 ∀ t > 0 (4.3.19)

(recall (4.1.28)). Then limN→∞ 1/N(rN (Nt))2 = 0, and so the first line in (4.3.18)
scales like

K

N∑
i=1

sin
[
ψN (Nt)− θi(Nt)

]
cos
[
ψN (Nt)− θi(Nt)

]
, N →∞. (4.3.20)

This expression is a large sum of terms whose average with respect to the noise is
close to zero because of (4.3.8). Consequently, this sum behaves diffusively. Also the
second line in (4.3.18) behaves diffusively, because it is equal in distribution to

1

rN (Nt)

√√√√ 1

N

N∑
i=1

cos2
[
ψN (Nt)− θi(Nt)

]
dW∗(t). (4.3.21)
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It is shown in [14] that the two terms together lead to the first line of (4.1.24), i.e.,
in distribution

lim
N→∞

ψN (Nt) = ψ∗(t) (4.3.22)

with
ψ∗(t) = D∗W∗(t), ψ∗(0) = Φ = 0, (4.3.23)

where D∗ = D∗(K) is the renormalized noise strength given by (4.1.26) with D = 1.2

Note that the term under the square root in (4.3.21) converges to q defined in
(4.3.3). The latter holds because θi(Nt), i = 1, . . . , N , are asymptotically independent
and θi(Nt) converges in distribution to θ 7→ pλ(θ) relative to the value of ψN (Nt),
which itself evolves only slowly (on time scale Nt rather than t). �

0 2 4 6 8 10 12 14

1.00
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1.03

1.04

2Kr

D
*

H2K
rL�D

*
H2K

rL

Figure 4.1: Plot of D̄∗/D∗ as a function of 2Kr.

The second line of (4.3.18) scales in distribution to the diffusion equation

lim
N→∞

dJ(N ;Nt) = D̄∗dW∗(t), D̄∗ = D∗(K) =

√
q

r
, r = r(K). (4.3.24)

Inserting (4.3.6) and recalling (4.2.7) and (4.3.3), we have

D̄∗ = D̄∗(K) =
1

r

√
I2(2Kr)

I0(2Kr)
. (4.3.25)

Clearly, D∗ 6= D̄∗. Interestingly, however,

1 ≤ D̄∗
D∗
≤ C uniformly in K with C = 1.0392 . . . (4.3.26)

2The proof is based on Hilbert-space techniques and is delicate. As pointed out below [14, Corol-
lary 1.3]: the proof requires control of the evolution of the empirical distribution of the oscillators,
and so (4.3.15)–(4.3.16) alone cannot provide an alternative route to the estimates that are needed
to prove the convergence and the persistence of proximity in (4.3.19) and (4.3.22).
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(G. Giacomin, private communication). Hence, not only does the first line of (4.3.18)
lower the diffusion constant, the amount by which it does so is less than 4 percent
(see Fig. 4.1). Further thoughts on the reason behind the discrepancy between D∗
and D̄∗ can be found in Dahms [32, Section 3.5].

§4.3.2 Multi-scaling of the block average phases for
hierarchical Kuramoto

We give the main idea behind Conjecture 4.2.1. The argument runs along the same
line as in Section 4.3.1, but is more involved because of the hierarchical interaction.

What is crucial for the argument is the separation of space-time scales:

• Each k-block consists of N disjoint (k − 1)-blocks, and evolves on a time scale
that isN times larger than the time scale on which the constituent blocks evolve.

• In the limit as N → ∞, the constituent (k − 1)-blocks in each k-block rapidly
achieve equilibrium subject to the current value of the k-block, which allows us
to treat the k-blocks as a noisy mean-field Kuramoto model with coefficients that
depend on their internal synchronization level, with an effective interaction that
depends on the current value of the synchronization level of the (k + 1)-block.

• The k-block itself interacts with the other k-block’s, with interaction strength
Kk+1, while the interaction with the even larger blocks it is part of is negligible
as N → ∞. This interaction occurs through an effective interaction with the
average value of the k-blocks which is exactly the value of the (k + 1)-block.

If we want to observe the evolution of the k-blocks labeled 1 ≤ i ≤ N that make
up the (k + 1)-block (i.e., the Φ

[k]
i (t)’s) on time scale t), then we must scale the

actual oscillator time by Nk. The synchronization levels within the Φ
[k]
i (t)’s, given

by R[k]
i (Nt), are then moving over time Nt, since they must be synchronized before

the Φ
[k]
i (t)’s start to diffuse. This is taken care of by our choice of time scales in the

hierarchical order parameter (4.1.36).
Itô’s rule applied to (4.1.36) with η = 0N gives

dΦ
[k]
0 (t) =

∑
ζ∈Bk(0)

∂Φ
[k]
0

∂θζ
(t) dθζ(N

kt) +
1

2

∑
ζ∈Bk(0)

∂2Φ
[k]
0

∂θ2
ζ

(t)
(
dθζ(N

kt)
)2 (4.3.27)

where we have suppressed the N -dependence in order to lighten the notation, writing
Φ

[k]
0 = Φ

[k]
0,N and R[k]

0 = R
[k]
0,N . The derivatives are (compare with (4.3.14))

∂Φ
[k]
0

∂θζ
(t) =

1

NkR
[k]
0 (Nt)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
, (4.3.28)

∂2Φ
[k]
0

∂θ2
ζ

(t) = − 2[
N2kR

[k]
0 (Nt)

]2 sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
+

1

NkR
[k]
0 (Nt)

sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
. (4.3.29)
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Inserting (4.1.38), we find

dΦ
[k]
0 (t) =

[
I1(k,N ; t) + I2(k,N ; t)

]
dt+ dJ(k,N ; t) (4.3.30)

with

I1(k,N ; t) =
1

R
[k]
0 (Nt)

∑
`∈N

1

N `−1

(
K` −

K`+1

N2

)
×

∑
ζ∈Bk(0)

R
[`]
ζ (N1+k−`t) sin

[
Φ

[`]
ζ (Nk−`t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

I2(k,N ; t) = − 1

Nk
[
R

[k]
0 (Nt)

]2 ∑
ζ∈Bk(0)

sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

dJ(k,N ; t) =
1

Nk/2R
[k]
0 (Nt)

∑
ζ∈Bk(0)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
dWζ(t).

(4.3.31)
Our goal is to analyse the expressions in (4.3.31) in the limit as N → ∞, and

show that (4.3.30) converges to the SDE in (4.2.2) subject to the assumption that the
k-block converges to a partially synchronized state, i.e.,

lim
N→∞

R
[k]
0 (Nt) = R[k] > 0 ∀ t > 0. (4.3.32)

The key idea is that, in the limit as N → ∞, the average phases of the k-blocks
around ζ decouple and converge in distribution to θ 7→ p[k](θ) for all k ∈ N0, just
as for the noisy mean-field Kuramoto model discussed in Section 4.3.1, with p[k](θ)

of the same form as pλ(θ) in (4.3.6) for a suitable λ depending on k. This is the
reason why a recursive structure is in place, captured by the renormalization maps
TKk , k ∈ N.

Along the way we need the quantities

R
[k]
0 (Nt) =

1

Nk

∑
ζ∈Bk(0)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

Q
[k]
0 (Nt) =

1

Nk

∑
ζ∈Bk(0)

cos2
[
Φ

[k]
0 (t)− θζ(Nkt)

]
.

(4.3.33)

We also use that for all k ∈ N0,

p[k](θ) = p[k](−θ), (4.3.34)

as well as the fact that for all k ∈ N and ` ≥ k,

R
[`]
ζ (Nt) = R

[`]
0 (Nt),

Φ
[`]
ζ (Nt) = Φ

[`]
0 (Nt),

∀ ζ ∈ Bk(0). (4.3.35)

In addition, we use the trigonometric identities

sin(a+ b) = sin a cos b+ cos a sin b,
cos(a+ b) = cos a cos b− sin a sin b,

a, b ∈ R, (4.3.36)
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to simplify terms via a telescoping argument.

Before we embark on our multi-scale analysis, we note that the expressions in
(4.3.30)–(4.3.31) simplify somewhat as we take the limit N →∞. First, in I1(k,N ; t)

the term K`+1/N
2 is asymptotically negligible compared to K`, while the sum over `

can be restricted to 1 ≤ ` ≤ k+1 because |Bk(0)| = Nk. Second, I2(k,N ; t) is asymp-
totically negligible because of (4.3.34) and the fact that sin θ cos θ = − sin(−θ) cos(−θ).
Thus, we have, in distribution,

dΦ
[k]
0 (t) =

{
[1 + o(1)] I

[k]
N (t) + o(1)

}
dt+ dJ

[k]
N (t), N →∞, (4.3.37)

with

I
[k]
N (t) =

1

R
[k]
0 (Nt)

k+1∑
`=1

K`

N `−1

×
∑

ζ∈Bk(0)

R
[`]
ζ (N1+k−`t) sin

[
Φ

[`]
ζ (Nk−`t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

dJ
[k]
N (t) =

1

R
[k]
0 (Nt)

√
Q

[k]
0 (Nt) dW [k](t).

(4.3.38)
In the last line we use that (Wζ(t))t≥0, ζ ∈ Bk(0), are i.i.d. and write (W [k](t))t≥0 to
denote an auxiliary Brownian motion associated with level k.

The truncation approximation consists of throwing away the terms with 1 ≤ ` ≤ k
and keeping only the terms with ` = k + 1.

• Level k = 1

For k = 1, by (4.3.35) the first line of (4.3.38) reads

I
[1]
N (t) = K1

∑
ζ∈B1(0)

sin
[
Φ

[1]
0 (t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
(4.3.39)

+K2
R

[2]
0 (t)

R
[1]
0 (Nt)

1

N

∑
ζ∈B1(0)

sin
[
Φ

[2]
0 (N−1t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
.
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We telescope the sine. Using (4.3.36) with a = Φ
[2]
0 (N−1t)−Φ

[1]
0 (t) and b = Φ

[1]
0 (t)−

θζ(Nt), we obtain

I
[1]
N (t) = K1

∑
ζ∈B1(0)

sin
[
Φ

[1]
0 (t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
(4.3.40)

+K2
R

[2]
0 (t)

R
[1]
0 (Nt)

sin
[
Φ

[2]
0 (N−1t)− Φ

[1]
0 (t)

]
× 1

N

∑
ζ∈B1(0)

cos2
[
Φ

[1]
0 (t)− θζ(Nt)

]
+K2

R
[2]
0 (t)

R
[1]
0 (Nt)

cos
[
Φ

[2]
0 (N−1t)− Φ

[1]
0 (t)

]
× 1

N

∑
ζ∈B1(0)

sin
[
Φ

[1]
0 (t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
.

On time scale Nt, the oscillators in the 1-block have synchronized, and hence the last
sum vanishes in the limit N → ∞ by the symmetry property in (4.3.34) for k = 1.
Therefore we have

I
[1]
N (t) = K1

∑
ζ∈B1(0)

sin
[
Φ

[1]
0 (t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
(4.3.41)

+K2
R

[2]
0 (t)Q

[1]
0 (Nt)

R
[1]
0 (Nt)

sin
[
Φ

[2]
0 (N−1t)− Φ

[1]
0 (t)

]
+ o(1).

Recalling (4.3.38) we further have

dJ
[1]
N (t) =

1

R
[1]
0 (Nt)

√
Q

[1]
0 (Nt) dW [1](t) (4.3.42)

with
Q

[1]
0 (Nt) =

1

N

∑
ζ∈B1(0)

cos2
[
Φ

[1]
0 (t)− θζ(Nt)

]
. (4.3.43)

The first term in the right-hand side of (4.3.41) is the same as that in (4.3.20) with
K = K1 and ψN (Nt) = Φ

[1]
0 (t). The term in the right-hand side of (4.3.42) is the

same as that of (4.3.21) with rN (Nt) = R
[1]
0 (Nt) andW∗(t) = W [1](t). Together they

produce, in the limit as N → ∞, the same noise term as in the mean-field model,
namely,

D[1] dW [1](t) (4.3.44)

with a renormalized noise strength

D[1] = D∗(K1) (4.3.45)

given by (4.1.26) with D = 1, where we use that

lim
N→∞

R
[1]
0 (Nt) = R[1] = R[1](K1), lim

N→∞
Q

[1]
0 (Nt) = Q[1] = Q[1](K1) ∀ t > 0.

(4.3.46)

91



4. Synchronization of phase oscillators on the hierarchical lattice

C
h
a
pt

er
4

The second term in the right-hand side of (4.3.41) is precisely the Kuramoto-type
interaction term of Φ

[1]
0 (t) with the average phase of the oscillators in the 2-block at

time Nt. Therefore, in the limit as N →∞, we end up with the limiting SDE

dΦ
[1]
0 (t) = K2 E [1]R

[2]
0 (t) sin

[
Φ− Φ

[1]
0 (t)

]
+D[1] dW [1](t) (4.3.47)

with

E [1] =
Q[1]

R[1]
. (4.3.48)

If we leave out the first term in the right-hand side of (4.3.41) (which as shown in
(4.3.26) may be done at the cost of an error of less than 4 percent), then we end up
with the limiting SDE

dΦ
[1]
0 (t) = K2 Ē [1]R

[2]
0 (t) sin

[
Φ− Φ

[1]
0 (t)

]
+ D̄[1] dW [1](t) (4.3.49)

with Ē [1] = E [1] and

D̄[1] = D̄∗(K1) =

√
Q[1]

R[1]
(4.3.50)

given by (4.3.25) with D = 1. Thus we have justified the SDE in (4.2.10) for k = 1.
After a transient period we have limt→∞R

[2]
0 (t) = R

[2]
0 .

Note that, in the approximation where we leave out the first term in the right-
hand side of (4.3.41), the pair (R[1], Q[1]) takes over the role of the pair (r, q) in the
mean-field model. The latter are the unique solution of the consistency relation and
recursion relation (recall (4.2.7), (4.3.6), (4.3.7) and (4.3.24))

r =
I1(2Kr)

I0(2Kr)
, q =

I2(2Kr)

I0(2Kr)
. (4.3.51)

These can be summarised as saying that (r, q) = TK(1, 1), with TK the renormalization
map introduced in Definition 4.2.2. Thus we see that

(R[1], Q[1]) = TK1
(1, 1), (4.3.52)

which explains why TK1
comes on stage.

• Levels k ≥ 2

For k ≥ 2, by (4.3.35) the term with ` = k + 1 in I [k]
N (t) in the first line of (4.3.38)

equals

I
[k]
N (t)|`=k+1

= Kk+1
R

[k+1]
0 (t)

R
[k]
0 (Nt)

1

Nk

∑
ζ∈Bk(0)

sin
[
Φ

[k+1]
0 (N−1t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
.

(4.3.53)
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We again telescope the sine. Using (4.3.36), this time with a = Φ
[k+1]
0 (N−1t)−Φ

[k]
0 (t)

and b = Φ
[k]
0 (t)− θζ(Nkt), we can write

I
[k]
N (t)|`=k+1 = Kk+1

R
[k+1]
0 (t)

R
[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t)− Φ

[k]
0 (t)

]
× 1

Nk

∑
ζ∈Bk(0)

cos2
[
Φ

[k]
0 (t)− θζ(Nkt)

]
+Kk+1

R
[k+1]
0 (t)

R
[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t)− Φ

[k]
0 (t)

]
× 1

Nk

∑
ζ∈Bk(0)

sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
.

(4.3.54)
By the symmetry property in (4.3.34), the last term vanishes as N → ∞, and so we
have

I
[k]
N (t)|`=k+1 = Kk+1

R
[k+1]
0 (t)Q

[k]
0 (Nt)

R
[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t)−Φ

[k]
0 (t)

]
+ o(1). (4.3.55)

Using that

lim
N→∞

R
[k]
0 (Nt) = R[k], lim

N→∞
Q

[k]
0 (Nt) = Q[k] ∀ t > 0, (4.3.56)

we obtain

I
[k]
N (t)|`=k+1 = Kk+1

Q[k]

R[k]
R

[k+1]
0 (t) sin

[
Φ− Φ

[k]
0 (t)

]
+ o(1), (4.3.57)

which is the Kuramoto-type interaction term of Φ
[k]
0 (t) with the average phase of the

oscillators in the (k + 1)-block at time Nkt. The noise term in (4.3.38) scales like

dJ
[k]
N (t) =

1

R[k]

√
Q[k] dW [k](t) + o(1). (4.3.58)

Hence we end up with

I
[k]
N (t)|`=k+1dt+dJ

[k]
N (t) = Kk+1

Q[k]

R[k]
R

[k+1]
0 (t) sin

[
Φ−Φ

[k]
0 (t)

]
+

√
Q[k]

R[k]
dW [k](t)+o(1).

(4.3.59)
Thus we have justified the SDE in (4.2.10) for k ≥ 2, with Ē [k] and D̄[k] given by
(4.2.11). Note that

(R[k], Q[k]) = TKk(R[k−1], Q[k−1]), (4.3.60)

in full analogy with (4.3.52).
For k ≥ 2 the term with ` = k equals

I
[k]
N (t)|`=k = Kk

N∑
i=1

1

Nk−1

∑
ζ∈Bk−1(i)

(4.3.61)

sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
, (4.3.62)
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where Bk−1(i), 1 ≤ i ≤ N , are the (k − 1)-blocks making up the k-block Bk(0), and
we use that (R

[k]
ζ (t),Φ

[k]
ζ (t)) = (R

[k]
0 (t),Φ

[k]
0 (t)) for all ζ ∈ Bk−1(i) and all 1 ≤ i ≤ N .

The sum in (4.3.61) has a similar form as the first term in the right-hand side of
(4.3.41), but now with the 1-block replaced by N copies of (k− 1)-blocks. This opens
up the possibility of a finer approximation analogous to the one obtained by using
(4.3.45) instead of (4.3.50). As we argued in Section 4.3.1, the improvement should
be minor (recall (4.3.26)).

§4.4 Universality classes and synchronization levels

In Section 4.4.1 we derive some basic properties of the renormalization map (Lem-
mas 4.4.1–4.4.3 below). In Section 4.4.2 we prove Theorem 4.2.5. The proof relies on
convexity and sandwich estimates (Lemmas 4.4.4–4.4.6 below).

§4.4.1 Properties of the renormalization map
For λ ∈ [0,∞), define

V (λ) =

∫ 2π

0

dθ cos θ pλ(θ) =
I1(λ)

I0(λ)
, (4.4.1)

W (λ) =

∫ 2π

0

dθ cos2 θ pλ(θ) =
I2(λ)

I0(λ)
, (4.4.2)

where the probability distribution pλ(θ) is given by (4.1.16) with ω ≡ 0 and D = 1.
The renormalization map TK in (4.2.8) can be written as (R̄, Q̄) = TK(R,Q) with

R̄ = RV (λ),

Q̄− 1
2 = (Q− 1

2 )
[
2W (λ)− 1

]
, (4.4.3)

and λ = 2KR̄
√
Q. It is known that λ 7→ V (λ) is strictly increasing and strictly

convex, with V (0) = 0 and limλ→∞ V (λ) = 1.

4.4.1 Lemma. The map K 7→ R̄(R,K) is strictly increasing.

Proof. The derivative of R̄ w.r.t. K exists by the implicit function theorem, so that

dR̄

dK
= 2RV ′(2KR̄)

[
R̄+K

dR̄

dK

]
,

dR̄

dK

[
1− 2KRV ′(2KR̄)

]
= 2RR̄V ′(2KR̄). (4.4.4)

Note that R̄ is the solution to R̄ = RV (2KR̄), which is non-trivial only when 1 <

2RKV ′(2KR̄) due to the concavity of the map R 7→ RV (2KR̄). This implies that
2KRV ′(2KR̄) < 1 at the solution, which makes the term in (4.4.4) between square
brackets positive. The claim follows since we proved previously that R, R̄ ∈ [0, 1) and
V ′(2KR̄) > 0. �
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4.4.2 Lemma. The map K 7→ Q̄(R̄,K,Q) is strictly increasing.

Proof. The derivative of Q̄ w.r.t. K exists by the implicit function theorem, so that

dQ̄

dK
= (Q− 1

2 ) 4
√
QW ′

(
2
√
QKR̄

) [
R̄+K

dR̄

dK

]
. (4.4.5)

We have that (Q− 1
2 )
√
Q ≥ 0 because Q ∈ [ 1

2 , 1), W ′(2
√
QKR̄) > 0 as proven before,

and [R̄+K dR̄
dK ] > 0 as in the proof of Lemma 4.4.1. The claim therefore follows. �

4.4.3 Lemma. The map (R,Q) 7→ (R̄, Q̄) is non-increasing in both components,
i.e.,

(i) R 7→ R̄(K,R) is non-increasing.

(ii) Q 7→ Q̄(K, R̄,Q) is non-increasing.

Proof. (i) We have
R̄ = RV

(
2
√
QKR̄

)
. (4.4.6)

But V (
√
QKR̄) ∈ [0, 1), and so R̄ ≤ R.

(ii) We have
Q̄− 1

2 = (Q− 1
2 )
[
2W
(
2
√
QKR̄

)
− 1
]
. (4.4.7)

But W (2
√
QKR̄) ∈ [ 1

2 , 1), and so Q̄ ≤ Q. In fact, since both V (2
√
QKR̄) and

W (2
√
QKR̄) are < 1, both maps are strictly decreasing until R = 0 and Q = 1

2 are
hit, respectively. �

§4.4.2 Renormalization
Recall (4.2.7). To prove Theorems 4.2.5 we need the following lemma.

4.4.4 Lemma. The map λ 7→ log I0(λ) is analytic, strictly increasing and strictly
convex on (0,∞), with

I0(λ) = 1 + 1
4λ

2 [1 +O(λ2)], λ ↓ 0, I0(λ) =
eλ√
2πλ

[1 +O(λ−1)], λ→∞.
(4.4.8)

Proof. Analyticity is immediate from (4.2.7). Strict convexity follows because the
numerator of [log I0(λ)]′′ equals

I2(λ)I0(λ)− I1(λ)I1(λ) =
1

2π

∫ 2π

0

dφ

∫ 2π

0

dψ [cos2 φ− cosφ cosψ] eλ(cosφ+cosψ)

=
1

2π

∫ 2π

0

dφ

∫ 2π

0

dψ [cosφ− cosψ]2 eλ(cosφ+cosψ) > 0,

(4.4.9)
where we symmetrize the integrand. Since log I0(0) = 0, log I0(λ) > 0 for λ > 0 and
limλ→∞ log I0(λ) =∞, the strict monotonicity follows. The asymptotics in (4.4.8) is
easily deduced from (4.2.7) via a saddle point computation. �
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Since V = I1/I0 = [log I0]′, we obtain from (4.4.8) and convexity that

V (λ) ∼ 1
2λ, λ ↓ 0, (4.4.10)

1− V (λ) ∼ 1

2λ
, λ→∞. (4.4.11)

This limiting behaviour of V (λ) inspires the choice of bounding functions in the next
lemma.

4.4.5 Lemma. V +(λ) ≥ V (λ) ≥ V −(λ) for all λ ∈ (0,∞) with (see Fig. 4.1)

V +(λ) =
2λ

1 + 2λ
,

V −(λ) =
1
2λ

1 + 1
2λ
.

(4.4.12)

Proof. Segura [118, Theorem 1] shows that

V (λ) < V +
∗ (λ) =

λ

1
2 +

√
( 1

2 )2 + λ2
, λ > 0. (4.4.13)

Since λ <
√

( 1
2 )2 + λ2, it follows that V +

∗ (λ) < V +(λ). Laforgia and Natalini [76,
Theorem 1.1] show that

V (λ) > V −∗ (λ) =
−1 +

√
λ2 + 1

λ
, λ > 0. (4.4.14)

Abbreviate η =
√
λ2 + 1. Then λ =

√
(η − 1)(η + 1), and we can write

V −∗ (λ) =

√
η − 1

η + 1
=

λ

η + 1
=

λ

2 + (η − 1)
. (4.4.15)

Since λ > η − 1, it follows that V −∗ (λ) > V −(λ). �

Note that both V + and V − are strictly increasing and concave on (0,∞), which
guarantees the uniqueness and non-triviality of the solution to the consistency relation
in the first line of (4.4.3) when we replace V (λ) by either V +(λ) or V −(λ).

In the sequel we write V,W,Rk, Qk instead of Vδ0 ,Wδ0 , R
[k], Q[k] to lighten the

notation. We know that (Rk)k∈N0
is the solution of the sequence of consistency

relations
Rk+1 = RkV

(
2
√
QkKk+1Rk+1

)
, k ∈ N0. (4.4.16)

This requires as input the sequence (Qk)k∈N0 , which is obtained from the sequence of
recursion relations

Qk+1 − 1
2 = (Qk − 1

2 )
[
2W
(
2
√
QkKk+1Rk+1

)
− 1
]
. (4.4.17)

By using that Qk ∈ [ 1
2 , 1] for all k ∈ N0, we can remove Qk from (4.4.16) at the cost

of doing estimates. Namely, let (R+
k )k∈N0

and (R−k )k∈N0
denote the solutions of the

sequence of consistency relations

R+
k+1 = RkV

+
(
2Kk+1R

+
k+1

)
, k ∈ N0,

R−k+1 = RkV
−(2√ 1

2Kk+1R
−
k+1

)
, k ∈ N0.

(4.4.18)
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Figure 4.1: Plots of the tighter bounds in the proof of Lemma 4.4.5 and the looser bounds
needed for the proof of Theorem 4.2.5.

4.4.6 Lemma. R+
k ≥ Rk ≥ R−k for all k ∈ N.

Proof. If we replace V (λ) by V +(λ) (or V −(λ)) in the consistency relation for Rk+1

given by (4.4.16), then the new solution R+
k+1 (or R−k+1) is larger (or smaller) than

Rk+1. Indeed, we have

Rk+1 = RkV (2Kk+1Rk+1

√
Qk) ≤ RkV +(2Kk+1Rk+1). (4.4.19)

Because V + is concave, it follows from (4.4.19) and the first line of (4.4.18) that
Rk+1 ≤ R+

k+1. �

We are now ready to prove Theorems 4.2.5–4.2.6.

Proof. From the first lines of (4.4.12) and (4.4.18) we deduce

Rk >
1

4Kk+1
⇐⇒ R+

k+1 > 0 =⇒ Rk −R+
k+1 =

1

4Kk+1
. (4.4.20)

Hence, with the help of Lemma 4.4.6, we get

Rk >
1

4Kk+1
=⇒ Rk −Rk+1 ≥

1

4Kk+1
. (4.4.21)

Iteration gives (recall that R0 = 1)

1−Rk ≥ min

{
1,

k∑
`=1

1

4K`

}
. (4.4.22)

As soon as the sum in the right-hand side is ≥ 1, we know that Rk = 0. This gives
us the criterion for universality class (1) in Theorem 4.2.5. Similarly, from the second
lines of (4.4.12) and (4.4.18) we deduce

Rk >
2
√

2

Kk+1
⇐⇒ R−k+1 > 0 =⇒ Rk −R−k+1 =

√
2

Kk+1
. (4.4.23)
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Hence, with the help of Lemma 4.4.6, we get

Rk >

√
2

Kk+1
=⇒ Rk −Rk+1 ≤

√
2

Kk+1
. (4.4.24)

Iteration gives

1−Rk ≤ max

{
1,

k∑
`=1

√
2

K`

}
. (4.4.25)

As soon as the sum in the right-hand side is < 1, we know that Rk > 0. This gives
us the criterion for universality class (3) in Theorem 4.2.5.

In universality classes (2) and (3) we have R+
k ≥ Rk > 0 for k ∈ N, and hence

Rk −R∞ =
∑
`≥k

(R` −R`+1) ≥
∑
`≥k

(R` −R+
`+1) =

∑
`≥k

1

4K`+1
, k ∈ N0. (4.4.26)

In universality class (1), on the other hand, we have R+
k ≥ Rk > 0 for 1 ≤ k < k∗

and Rk = 0 for k ≥ k∗, and hence

Rk−Rk∗−1 =

k∗−2∑
`=k

(R`−R`+1) ≥
k∗−2∑
`=k

(R`−R+
`+1) =

k∗−2∑
`=k

1

4K`+1
, 0 ≤ k ≤ k∗−2.

(4.4.27)
Finally, with no assumption on (Rk)k∈N, we have

Rk −R∞ =
∑
`≥k

(R` −R`+1) ≤
∑
`≥k

(R` −R−`+1) ≤
∑
`≥k

√
2

K`+1
, (4.4.28)

where the last inequality follows from (4.4.23). The bounds in (4.4.26)–(4.4.28) yields
the sandwich in Theorem 4.2.6. �

4.4.7 Remark. In the proof of Theorem 4.2.5–4.2.6 we exploited the fact that Qk ∈
[ 1
2 , 1] to get estimates that involve a consistency relation in only Rk. In principle we
can improve these estimates by exploring what effect Qk has on Rk. Namely, in
analogy with Lemma 4.4.5, we have W+(λ) ≥W (λ) ≥W−(λ) for all λ ∈ (0,∞) with
(see Fig. 4.2)

W+(λ) =
1 + λ

2 + λ
, W−(λ) =

1− λ+ λ2

2 + λ2
. (4.4.29)

This allows for better control on Qk and hence better control on Rk. However, the
formulas are cumbersome to work with and do not lead to a sharp condition anyway.
�
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Figure 4.2: Bounding functions for W (λ).

Appendix

§4.A Numerical analysis

In this appendix we numerically compute the iterates of the renormalization map in
(4.2.8) for two specific choices of (Kk)k∈N, belonging to universality classes (1) and
(3), respectively.

In Fig. 4.A.1 we show an example in universality class (1): Kk = 3
2 log 2 log(k+ 1).

Synchronization is lost at level k = 4. When we calculate the sum that appears in
our sufficient criterion for universality class (1), stated in Theorem 4.2.5, up to level
k = 4, we find that

4∑
k=1

2 log 2

3 log(k + 1)
= 1.70774. (4.A.1)

This does not exceed 4, which shows that our sufficient criterion is not tight. It only
gives us an upper bound for the level above which synchronization is lost for sure
(recall (4.2.15)), although it may be lost earlier.
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Figure 4.A.1: A plot of the renormalization map (R[k], Q[k]) for k = 0, . . . , 7 (left) and the
corresponding values of R[k] (right) for the choice Kk = 3

2 log 2
log(k + 1).

In Fig. 4.A.2 we show an example of universality class (3), where Kk = 4 ek. There
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is synchronization at all levels. To check our sufficient criterion we calculate the sum∑
k∈N

1

4 ek
≈ 0.145494 <

1√
2
≈ 0.7071. (4.A.2)
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Figure 4.A.2: A plot of the renormalization map (R[k], Q[k]) for k = 0, . . . , 7 (left) and the
corresponding values of R[k] (right) for the choice Kk = 4 ek.

To find a sequence (Kk)k∈N for universality class (2) is difficult because we do
not know the precise criterion for criticality. An artificial way of producing such a
sequence is to calculate the critical interaction strength at each hierarchical level and
taking the next interaction strength to be 1 larger.
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5. Two-community noisy Kuramoto model

CHAPTER 5
Two-community noisy

Kuramoto model

This chapter has been submitted and is based on: [93]

Abstract

We study the noisy Kuramoto model for two interacting communities of oscillators,
where we allow the interaction in and between communities to be positive or negative.
We find that, in the thermodynamic limit where the size of the two communities tends
to infinity, this model exhibits non-symmetric synchronized solutions that bifurcate
from the symmetric synchronized solution corresponding to the one-community noisy
Kuramoto model, even in the case where the phase difference between the communities
is zero and the interaction strengths are symmetric. The solutions are given by fixed
points of a dynamical system. We find a critical condition for existence of a bifurcation
line, as well as a pair of equations determining the bifurcation line as a function of the
interaction strengths. Using the latter we are able to classify the types of solutions that
are possible and thereby identify the phase diagram of the system. We also analyze
properties of the bifurcation line in the phase diagram and its derivatives, calculate
the asymptotics, and analyze the synchronization level on the bifurcation line. Lastly
we present some simulations illustrating the stability of the various solutions.
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§5.1 Background and motivation

The motivation for studying the two-community noisy Kuramoto model is two-fold.
On the one hand, the suprachiasmatic nucleus (SCN) in the brain of mammals is
responsible for biological time-keeping and consists of two communities of cells that
exhibit synchronization [134]. On the other hand, there are recent studies of interact-
ing particle systems with community structure, that reveal vast richness in behavior
[34, 12, 35, 27]. The noisy Kuramoto model consists of a collection of oscillators with
a mean-field interaction that favors alignment subject to external noisy [114].

The SCN is a cluster of neurons responsible for dictating the rhythm of bodily
functions, most significantly the sleep-cycle. Malfunctioning of the SCN leads to a
variety of health problems, ranging from epilepsy to narcolepsy. Remarkably, the
network structure of the cluster is similar in all mammals, with the universal feature
that it is split into two communities. In humans each cluster has a size of about 104

neurons. It seems that this two-community structure is ideal, both for the robustness
of the rhythm of the cluster not to be disturbed by unusual light inputs, as well as
for the cluster to be adaptable enough to re-synchronize when there is a change in
the light-dark cycle it is exposed to. As we will see below, this is reflected by the
mathematical properties of the two-community noisy Kuramoto model, for which the
interplay between positive and negative interactions introduces new features. The
negative interaction, studied before in [63], [64], seems to play a key role in the
appearance of a negative correlation between the neurons in the two communities in
the SCN, resulting in new emergent behavior such as phase splitting [65].

In the mathematics literature there have been recent studies on bipartite mean-
field spin systems [34], as well as on the Ising block model [12] and the asymmetric
Curie-Weiss model [35], [27], where the splitting into two communities introduces in-
teresting features, for example, the appearance of periodic orbits. These are discrete
models which makes them hard to analyze. What makes the Kuramoto model con-
sidered here hard to analyze is that the interaction between phase oscillators in the
Kuramoto model is non-linear.

Also in [120] the authors consider the two-community noisy Kuramoto model.
They find an intricate phase diagram, with the system being able to take on a variety
of different states. This confirms the observation that a simple modification in the
network structure can greatly increase the complexity of the system. The results in
[120], however, depend strongly on a Gaussian approximation for the phase distri-
bution in each community (explained in [122]), which allows for a reduction of the
dynamics to a low-dimensional setting. In this paper we do not rely on any such
approximation.

We have recently studied the noisy Kuramoto model on the hierarchical lattice
[52], finding conditions for synchronization either to propagate to all levels in the
hierarchy or to vanish at a finite level. This analysis came about by writing down
renormalized evolution equations for the average phases in a block-community at a
given hierarchical level in the hierarchical mean-field limit. In the present paper we
allow for negative interactions across the communities, a situation we did not consider
in the hierarchical model.
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In Section 5.2 we introduce the noisy Kuramoto model on the two-community net-
work (see Fig. 5.1) and show that the empirical measures defined for each community
evolve according to a McKean-Vlasov equation in the thermodynamic limit. We
also give the steady-state solutions to these McKean-Vlasov equations and conjecture
which values the phase difference between the average phases of the two communities
can take in the steady state. In Section 5.3 we present results on the critical con-
dition for synchronization in the case of symmetric interaction strengths and equal
community sizes, first without disorder and then with disorder. By disorder we mean
that the natural frequencies of the oscillators are taken from a distribution while
without disorder means that all oscillators are assumed to have a natural frequency
of zero. In Section 5.4 we prove the conjecture from the previous section for a simpli-
fied version of the model where we take the interaction strengths to be symmetric and
prove the existence of non-symmetric solutions in this case. Here symmetric solutions
are solutions in which the synchronization level is the same in both communities while
non-symmetric solutions are solutions where the synchronization level are non-zero
and not the same in both communities. We also characterize the bifurcation line at
which the non-symmetric solutions split off from the symmetric solutions, and ex-
pound a collection of results on the (asymptotic) properties of the bifurcation line
in the phase diagram. Furthermore we analyze the synchronization level along the
bifurcation line. Some of the proofs in Section 5.4 are numerically assisted. Finally,
in Section 5.5 we present some simulations illustrating the stability of the various
solutions as well as the possible transitions between various steady-states.

§5.2 Basic properties

In Section 5.2.1 we define the model, in Section 5.2.2 we take the McKean-Vlasov
limit, and in Section 5.2.3 we identify the stationary solutions.

§5.2.1 Model
We consider two communities of oscillators of size N1 and N2 with internal mean-
field interactions of strength K1

N1
and K2

N2
, respectively. In addition, the oscillators in

community 1 experience a mean-field interaction with the oscillators in community 2
of strength L1

N2
and the oscillators in community 2 experience a mean-field interaction

of strength L2

N1
with the oscillators in community 1. Here we will take K1,K2 ∈ R to

be positive and L1, L2 ∈ R \ {0}.

5.2.1 Definition (Two-community noisy Kuramoto model). The phase angles
of the oscillators in community 1 are denoted by θ1,i, i = 1, · · · , N1, and their evolu-
tion on S = R/2π is governed by the SDE

dθ1,i(t) = ω1,idt+ K1

N1+N2

∑N1

k=1 sin(θ1,k(t)− θ1,i(t))dt

+ L1

N1+N2

∑N2

l=1 sin(θ2,l(t)− θ1,i(t))dt+
√
DdW1,i(t). (5.2.1)
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Figure 5.1: Schematic picture of the two-community network, with community 1 consisting
of N1 yellow nodes and community 2 of N2 red nodes. The interaction between yellow nodes
has strength K1, between red nodes strength K2. Yellow nodes feel red nodes at strength L1

and red nodes feel yellow nodes at strength L2. Not all the interaction links between the
communities are drawn.

The phase angles of the oscillators in community 2 are denoted by θ2,j , j = 1, · · · , N2,
and their evolution on S = R/2π is governed by the SDE

dθ2,j(t) = ω2,jdt+ K2

N1+N2

∑N2

l=1 sin(θ2,l(t)− θ2,j(t))dt

+ L2

N1+N2

∑N1

k=1 sin(θ1,k(t)− θ2,j(t))dt+
√
DdW2,j(t). (5.2.2)

Here, the natural frequencies ω1,i, i = 1, . . . , N1, of the oscillators in community 1
are drawn independently from a probability distribution µ1(dω) on R and the natural
frequencies ω2,i, i = 1, . . . , N2, of the oscillators in community 2 are drawn independ-
ently from a probability distribution µ2(dω) on R, while D > 0 is the noise strength,
and

(
W1,i(t)

)
t≥0

, i = 1, . . . , N1, and
(
W2,j(t)

)
t≥0

, j = 1, . . . , N2, are independent
standard Brownian motions. For simplicity we take µ1, µ2 to be symmetric and have
the same mean which we can assume to be zero without loss of generality.

The model can alternatively be defined in terms of an interaction Hamiltonian
and a weighted adjacency matrix, given by

HN (θ1, . . . , θN ) = − 1

N

N∑
i=1

N∑
j=1

Ai,j cos(θj(t)− θi(t)) +

N∑
i=1

θi(t)ωi (5.2.3)
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with

A := (Ai,j)i,j=1,...,N =



0 K1 . . . K1 L1 L1 . . . L1

K1 0 . . . K1 L1 L1 . . . L1

...
...

. . .
... L1 L1 . . . L1

K1 K1 . . . 0 L1 L1 . . . L1

L2 L2 . . . L2 0 K2 . . . K2

L2 L2 . . . L2 K2 0 . . . K2

L2 L2 . . . L2

...
...

. . .
...

L2 L2 . . . L2 K2 K2 . . . 0


=

[
K11∗ L11
L21 K21∗

]
, (5.2.4)

where 1 = all 1’s and 1∗ = all 1’s, except for 0’s on the diagonal. The model then
reads

dθi(t) = ∂θiHN (θ1, . . . , θN )dt+DdWi(t), i = 1, . . . , N, (5.2.5)

whereN = N1+N2. Here, we identify phase angle θi with the oscillators in community
1 when i ∈ [1, N1] and with the oscillators in community 2 when i ∈ (N1, N1 + N2].
This representation of the model illustrates the network structure of the underlying
interactions and in principle the adjacency matrix can be replaced by a matrix arising
from a random graph model and has recently been addressed by a number of authors
[16, 28, 38, 82, 100]. This however significantly complicates the calculations since the
interactions are no longer expressible in terms of a closed function of the empirical
measure. The representation via the Hamiltonian may also provide a method for
studying the stability properties of the stationary states.

The following order parameters allow us to monitor the dynamics in each com-
munity:

r1,N1(t)eiψ1,N1
(t) = 1

N1

∑N1

k=1 eiθ1,k(t), (5.2.6)

r2,N2
(t)eiψ2,N2

(t) = 1
N2

∑N2

l=1 eiθ2,l(t), (5.2.7)

where r1,N1(t) ∈ [0, 1] and r2,N2(t) ∈ [0, 1] represent the synchronization levels, and
ψ1,N1(t) and ψ2,N2(t) represent the average phases, in community 1 and 2, respectively.
Using these order parameters, we can rewrite the evolution equations in (5.2.1) and
(5.2.2) as

dθ1,i(t) = ω1,idt+ K1N1

N1+N2
r1,N1

(t) sin(ψ1,N1
(t)− θ1,i(t))dt

+ L1N2

N1+N2
r2,N2

(t) sin(ψ2,N2
(t)− θ1,i(t))dt+

√
DdW1,i(t) (5.2.8)

and

dθ2,j(t) = ω2,jdt+ K2N2

N1+N2
r2,N2

(t) sin(ψ2,N2
(t)− θ2,j(t))dt

+ L2N1

N1+N2
r1,N1(t) sin(ψ1,N1(t)− θ2,j(t))dt+

√
DdW2,j(t). (5.2.9)
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§5.2.2 McKean-Vlasov limit
We assume that the sizes of the communities are related to one another by setting
N1 = α1N and N2 = α2N , α1 +α2 = 1. In the limit as N →∞, we expect the angle
density of oscillators in each community to follow a McKean-Vlasov equation. Define
the empirical measure for each community (θ ∈ S, ω ∈ R):

νN1,t(dθ,dω) :=
1

N1

N1∑
i=1

δ(θ1,i(t),ω1,i)(dθ,dω), (5.2.10)

νN2,t(dθ,dω) :=
1

N2

N2∑
j=1

δ(θ2,j(t),ω2,j)(dθ,dω). (5.2.11)

5.2.2 Proposition (McKean-Vlasov limit). In the limit as N → ∞, the em-
pirical measure νN1,t(dθ,dω) converges to ν1,t(dθ,dω) = p1(t; θ, ω) dθ dω, and the
empirical measure νN2,t(dθ,dω) converges to ν2,t(dθ,dω) = p2(t; θ, ω) dθ dω, where
p1(t; , θ, ω) evolves according to

∂p1(t; θ, ω)

∂t
=
D

2

∂2p1(t; θ, ω)

∂θ2
− ∂

∂θ

[
v1(t; θ, ω)p1(t; θ, ω)

]
(5.2.12)

with

v1(t; θ, ω) = ω + α1K1r1(t) sin(ψ1(t)− θ) + α2L1r2(t) sin(ψ2(t)− θ), (5.2.13)

and p2(t; θ, ω) evolves according to

∂p2(t; θ, ω)

∂t
=
D

2

∂2p2(t; θ, ω)

∂θ2
− ∂

∂θ

[
v2(t; θ, ω)p2(t; θ, ω)

]
(5.2.14)

with

v2(t; θ, ω) = ω + α2K2r2(t) sin(ψ2(t)− θ) + α1L2r1(t) sin(ψ1(t)− θ). (5.2.15)

Here, r1(t), r2(t), ψ1(t) and ψ2(t) are defined by

r1(t)eiψ1(t) :=

∫
S×R

ν1,t(dθ,dω) eiθ, (5.2.16)

r2(t)eiψ2(t) :=

∫
S×R

ν2,t(dθ,dω) eiθ. (5.2.17)

The convergence is in C([0, T ],M1(S × R)) and takes place for any T > 0. Here we
consider annealed convergence with respect to the natural frequencies.

Proof. The proof is analogous to that in the case of the one-community noisy Kur-
amoto model in [33] with straightforward modifications. �
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§5.2.3 Stationary solutions
The stationary solutions of the McKean-Vlasov limit in Proposition 5.2.2 give the
possible states the system can assume in the long time limit. These are presented in
the next proposition.

5.2.3 Proposition (Stationary solutions). In the cases r1 = r2 = 0 and r1, r2 >

0, the stationary density p1(θ, ω) solves the equation

0 =
D

2

∂2p1(θ, ω)

∂θ2
− ∂

∂θ

[
v1(θ, ω)p1(θ, ω)

]
, (5.2.18)

which has solution

p1(θ, ω) =
A1(θ, ω)∫

S dφA1(φ, ω)
, (5.2.19)

where

A1(θ, ω) = B1(θ, ω)
(

e
4πω
D

∫
S

dφ

B1(φ, ω)
+ (1− e

4πω
D )

∫ θ

0

dφ

B1(φ, ω)

)
(5.2.20)

with

B1(θ, ω) = exp
[2ωθ

D
+

2α2L1r2 cos(ψ2 − θ)
D

+
2α1K1r1 cos(ψ1 − θ)

D

]
. (5.2.21)

The stationary density p2(θ, ω), solves the equation

0 =
D

2

∂2p2(θ, ω)

∂θ2
− ∂

∂θ

[
v2(θ, ω)p2(θ, ω)

]
, (5.2.22)

which has solution

p2(θ, ω) =
A2(θ, ω)∫

S dφA2(φ, ω)
, (5.2.23)

where

A2(θ, ω) = B2(θ, ω)
(

e
4πω
D

∫
S

dφ

B2(φ, ω)
+ (1− e

4πω
D )

∫ θ

0

dφ

B2(φ, ω)

)
(5.2.24)

with

B2(θ, ω) = exp
[2ωθ

D
+

2α1L2r1 cos(ψ1 − θ)
D

+
2α2K2r2 cos(ψ2 − θ)

D

]
. (5.2.25)

In addition, the following self-consistency equations must be satisfied:

r1 = V µ1

1 (r1, r2) :=

∫
R
µ1(dω)

∫
S

dθ cos(ψ1 − θ) p1(θ, ω), (5.2.26)

r2 = V µ2

2 (r1, r2) :=

∫
R
µ2(dω)

∫
S

dθ cos(ψ2 − θ) p2(θ, ω),

0 = Uµ1

1 (r1, r2) :=

∫
R
µ1(dω)

∫
S

dθ sin(ψ1 − θ) p1(θ, ω),

0 = Uµ2

2 (r1, r2) :=

∫
R
µ2(dω)

∫
S

dθ sin(ψ2 − θ) p2(θ, ω).
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Proof. Note that in the case when r1 = r2 = 0, both stationary densities are uniform
on S, i.e., p1(θ, ω) = p2(θ, ω) = 1

2π , which satisfies (5.2.18) and (5.2.22). The proof
in the case when r1, r2 > 0 is analogous to the calculation given in [40, Solution to
Exercise X.33]. �

5.2.4 Remark. In the simplified version of the model we will consider below, we
are able to prove that solutions of the type r1 = 0 and r2 > 0 (or vice versa) are not
possible, but it is difficult to prove this in the general case considered above.

In order to understand the steady-state phase difference between the communities,
we proceed heuristically as follows. For the stationary solutions we assume that
r1(t), r2(t),

ψ1(t), ψ2(t) reach their steady-state values r1, r2, ψ1, ψ2 as t→∞ and assume that the
parameters of the system are such that r1, r2 > 0. For the synchronization levels the
possible steady-state values are computed by solving the self-consistency equations
in (5.2.26). For the average phases we use standard Itô-calculus to compute their
evolution

dψm(t) =

Nm∑
j=1

∂ψm
∂θm,j

dθm,j +
1

2

Nm∑
j=1

∂2ψm
∂θ2
m,j

(dθm,j)
2, m ∈ {1, 2}. (5.2.27)

From the definition of the order parameters we have

∂ψm
∂θm,j

=
1

Nmrm(t)
cos(ψm(t)− θm,j(t)), m ∈ {1, 2}, (5.2.28)

and

∂2ψm
∂θ2
m,j

=
1

Nmrm(t)
sin(ψm(t)− θm,j(t)) (5.2.29)

− 2

(Nmrm(t))2
sin(ψm(t)− θm,j(t)) cos(ψm(t)− θm,j(t)), m ∈ {1, 2}.

Substituting (5.2.28)–(5.2.29) and (5.2.8)–(5.2.9) into (5.2.27), setting Nm = αmN

and taking the large-N limit, we get the equations

dψ1(t) =

(
K1α1

2

∫
S

dθ

∫
R
µ1(dω) cos(ψ1(t)− θ) sin(ψ1(t)− θ)p1(t; θ, ω) (5.2.30)

+
L1α2r2(t)

2r1(t)

∫
S

dθ

∫
R
µ1(dω) cos(ψ1(t)− θ) sin(ψ2(t)− θ)p1(t; θ, ω)

+
1

r1(t)

∫
S

dθ

∫
R
µ1(dω)ω cos(ψ1(t)− θ)p1(t; θ, ω)

+
D

2

∫
S

dθ

∫
R
µ1(dω) sin(ψ1(t)− θ)p1(t; θ, ω)

)
dt,
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dψ2(t) =

(
K2α2

2

∫
S

dθ

∫
R
µ2(dω) cos(ψ2(t)− θ) sin(ψ2(t)− θ)p2(t; θ, ω) (5.2.31)

+
L2α1r1(t)

2r2(t)

∫
S

dθ

∫
R
µ2(dω) cos(ψ2(t)− θ) sin(ψ1(t)− θ)p2(t; θ, ω)

+
1

r2(t)

∫
S

dθ

∫
R
µ2(dω)ω cos(ψ2(t)− θ)p2(t; θ, ω)

)
dt.

+
D

2

∫
S

dθ

∫
R
µ2(dω) sin(ψ2(t)− θ)p2(t; θ, ω)

)
dt.

Due to the last two self-consistency equations in (5.2.26) the last line of (5.2.30) and
(5.2.31) is zero. For the steady-state average phases in the case when µ1 = µ2 = δ0,
we must therefore simultaneously solve the equations

0 =
K1α1

2

∫
S

cos(ψ1 − θ) sin(ψ1 − θ)p1(θ, 0)dθ (5.2.32)

+
L1α2r2

2r1

∫
S

cos(ψ1 − θ) sin(ψ2 − θ)p1(θ, 0)dθ,

0 =
K2α2

2

∫
S

cos(ψ2 − θ) sin(ψ2 − θ)p2(θ, 0)dθ (5.2.33)

+
L2α1r1

2r2

∫
S

cos(ψ2 − θ) sin(ψ1 − θ)p2(θ, 0)dθ.

Since the system is invariant under rotations, we can set one of the two angles to zero.
If we set ψ1 = 0, then we see that the equation for ψ2 is satisfied by taking ψ2 = 0

or ψ2 = π. The above calculation is not rigorous, but does suggest the following
conjecture.

5.2.5 Conjecture (Steady-state phase difference). In the system without
disorder, the phase difference ψ = ψ2 − ψ1 between the two communities in the two-
community noisy Kuramoto model with K1 = K2 = K and L1 = L2 = L 6= 0 in the
steady state can only be ψ = 0 or ψ = π.

The intuition for this conjecture is that the system will try to maximize the interaction
strength between oscillators in order to achieve the highest synchronization in each
community. This will be achieved at ψ = 0 when L > 0 and at ψ = π when L < 0.
The other combinations (ψ = 0 with L < 0 and ψ = π with L > 0) should also be
possible, but should not be stable. For an illustration of stability properties obtained
via simulations, we refer the reader to Section 5.5.

§5.3 Symmetric interaction with fixed phase differ-
ence

In this section we pick L1 = L2 = L, K1 = K2 = K, α1 = α2, D = 1. In Section
5.3.1 we consider the case where the natural frequency of the oscillators is zero, and
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in Section 5.3.2 the case where the natural frequency of the oscillators is drawn from
a symmetric distribution µ on R.

§5.3.1 Without disorder
Here we take µ1 = µ2 = δ0. This simplifies (5.2.19) and (5.2.23) to

p1(θ) =
exp

[
Lr2 cos(ψ2 − θ) +Kr1 cos(ψ1 − θ)

]
∫
S dφ exp

[
Lr2 cos(ψ2 − φ) +Kr1 cos(ψ1 − φ)

] , (5.3.1)

p2(θ) =
exp

[
Lr1 cos(ψ1 − θ) +Kr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Lr1 cos(ψ1 − φ) +Kr2 cos(ψ2 − φ)

] . (5.3.2)

The self-consistency equations for r1 and r2 in (5.2.26) can be written in the form

r1 =
(a1 cosψ1 + b1 sinψ1)

2
W
(√

a2
1 + b21

)
, (5.3.3)

r2 =
(a2 cosψ2 + b2 sinψ2)

2
W
(√

a2
2 + b22

)
,

where W (x) = 2V (x)
x , x ∈ (0,∞), with

V (x) =

∫
S dθ cos θ ex cos θ∫

S dθ ex cos θ
, x ∈ [0,∞). (5.3.4)

The definitions of a1, a2, b1 and b2 will be given below. The function V (x) is the same
function that appears in the self-consistency equation of the one-community noisy
Kuramoto model [53, Equation 2.2]. To see why the self-consistency equations can
be written as in (5.3.3), note that∫

S
dθ ea cos θ+b sin θ = 2πI0(

√
a2 + b2), (5.3.5)

with Im(x) := 1
2π

∫
S dθ(cos θ)m exp(x cos θ) the modified Bessel functions of the first

kind, so that∫
S

dθ cos θ ea cos θ+b sin θ =
∂

∂a
2πI0(

√
a2 + b2) =

2πaI1(
√
a2 + b2)√

a2 + b2
, (5.3.6)∫

S
dθ sin θ ea cos θ+b sin θ =

∂

∂b
2πI0(

√
a2 + b2) =

2πbI1(
√
a2 + b2)√

a2 + b2
.

Here we have used the identity I0(x) = I1(x) given in [2, 9.6.27]. Using (5.3.6) and
the trigonometric identity cos(a− b) = cos a cos b+ sin a sin b, a, b ∈ R, we can rewrite
the self-consistency equations for r1 and r2 as

r1 =
(a1 cosψ1 + b1 sinψ1)I1(

√
a2

1 + b21)√
a2

1 + b21 I0(
√
a2

1 + b21)
, (5.3.7)

r2 =
(a2 cosψ2 + b2 sinψ2)I1(

√
a2

2 + b22)√
a2

1 + b21 I0(
√
a2

2 + b22)
,
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where

a1 = Kr1 cosψ1 + Lr2 cosψ2, b1 = Kr1 sinψ1 + Lr2 sinψ2, (5.3.8)
a2 = Kr2 cosψ2 + Lr1 cosψ1, b2 = Kr2 sinψ2 + Lr1 sinψ1.

Note that

a2
1 + b21 = K2r2

1 + L2r2
2 + 2KLr1r2 cosψ, (5.3.9)

a2
2 + b22 = K2r2

2 + L2r2
1 + 2KLr1r2 cosψ, (5.3.10)

where we recall ψ = ψ2 − ψ1. The most suggestive form of the self-consistency
equations is in terms of K,L and the phase difference ψ:

r1 =
(Kr1 + Lr2 cosψ)

2
W
(√

K2r2
1 + L2r2

2 + 2KLr1r2 cosψ
)
,

r2 =
(Kr2 + Lr1 cosψ)

2
W
(√

K2r2
2 + L2r2

1 + 2KLr1r2 cosψ
)

(5.3.11)

and is obtained by substituting the expressions for a1, a2, b1 and b2 into (5.3.3).

5.3.1 Proposition (Properties of V ).
(a) V (0) = 0.

(b) V ′(0) = 1
2 .

(c) x 7→ V (x) is strictly increasing on [0,∞).

(d) x 7→ V (x) is strictly concave on [0,∞).

(e) V (x) < x
2 for x ∈ (0,∞).

(f) limx→∞ V (x) = 1.

(g) V (−x) = −V (x) for all x ∈ (0,∞).

Proof. Properties 1, 2, 3 and 6 are easily verified. Property 4 is proven by applying
Lemma 4 in [105] (see Appendix 5.A for a comprehensive proof). Property 5 is a
direct consequence of properties 1, 2 and 4. For Property 7, use − cos(θ) = cos(π−θ)
to write

V (−x) =

∫
S dθ cos θex cos(π−θ)∫

S dθ ex cos(π−θ) . (5.3.12)

By performing the change of variable φ = π − θ, we get V (−x) = −V (x). �

5.3.2 Proposition (Properties of W ).
(a) limx↓0W (x) = 1.

(b) x 7→W (x) is continuous and strictly decreasing on [0,∞).

(c) limx→∞W (x) = 0.
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Proof. Properties 1 and 3 are easily verified. For property 2, note that

W ′(x) = 2
V ′(x)x− V (x)

x2
, (5.3.13)

so we need to verify that V ′(x) < V (x)
x . This is true by properties 1 and 4 in

Proposition 5.3.1. �

In the case without disorder Conjecture 5.2.5 can be proven.

5.3.3 Proposition. Fix ψ1 = 0 and assume that µ1 = µ2 = δ0. Then the order
parameters of the system are either r1, r2 = 0 or r1, r2 > 0 and ψ ∈ {0, π}.

Proof. Here the set of self-consistency equations (5.2.26) simplify to

r1 =

∫
S

dθ cos(ψ1 − θ) p1(θ), (5.3.14)

r2 =

∫
S

dθ cos(ψ2 − θ) p2(θ), (5.3.15)

0 =

∫
S

dθ sin(ψ1 − θ) p1(θ), (5.3.16)

0 =

∫
S

dθ sin(ψ2 − θ) p2(θ). (5.3.17)

Since the system is invariant under rotations we can set one of the average phase angles
to zero. So take ψ1 = 0 such that ψ = ψ2. To determine which phase differences are
possible we are left to solve

0 =

∫
S

dθ sin θ
exp

[
Lr2 cos(ψ2 − θ) +Kr1 cos θ

]
∫
S dφ exp

[
Lr2 cos(ψ2 − θ) +Kr1 cos θ

] (5.3.18)

= Lr2 sinψ W
(√

K2r2
1 + L2r2

2 + 2KLr1r2 cosψ
)
,

0 =

∫
S

dθ sin(ψ2 − θ)
exp

[
Lr1 cos θ +Kr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Lr1 cosφ+Kr2 cos(ψ2 − φ)

] (5.3.19)

= Lr1 sinψ W
(√

K2r2
2 + L2r2

1 + 2KLr1r2 cosψ
)
.

Let us first consider the case when r1 = 0. In this case (5.3.14) becomes

0 =

∫
S

dθ cos θ
exp

[
Lr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Lr2 cos(ψ2 − φ)

] (5.3.20)

and (5.3.15) becomes

r2 =

∫
S

dθ cos(ψ2 − θ)
exp

[
Kr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Kr2 cos(ψ2 − φ)

] = V (Kr2), (5.3.21)
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which is exactly the self-consistency equation for the one-community noisy Kuramoto
model without disorder, and can be divided into two cases: Either K ≤ 2, in which
case r2 = 0, making (r1, r2) = (0, 0) the only stationary solution, or K > 2, in
which case there is a unique r2 > 0 solving (5.3.21). By making the change of
variable ϑ = ψ2 − θ in (5.3.20) and using the trigonometric identity cos(ψ2 − ϑ) =

cosψ2 cosϑ + sinψ2 sinϑ in (5.3.20), we see that (5.3.20), in this case, is only solved
by ψ2 = π

2 or ψ2 = 3π
2 . In order to satisfy the self-consistency equations, these angles

must satisfy (5.3.18) and (5.3.19) with r1 = 0:

0 =

∫
S

dθ sin θ
exp

[
Lr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Lr2 cos(ψ2 − θ)

] , (5.3.22)

0 =

∫
S

dθ sin(ψ2 − θ)
exp

[
Kr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Kr2 cos(ψ2 − φ)

] . (5.3.23)

The second equation is satisfied for all ψ2, but the first equation is incompatible with
ψ2 = π

2 as well as ψ2 = 3π
2 . so that the solution r1 = 0 and r2 > 0 is not possible,

leaving only the solution (r1, r2) = (0, 0). Note that in this case the average angles
are not well defined.

Let us next consider the case when r1 > 0 (so that we must also have r2 > 0).
The allowed angles have to satisfy (5.3.18) and (5.3.19) simultaneously. These are
satisfied only when sinψ = 0, so that ψ ∈ {0, π}. �

5.3.4 Theorem (Critical line without disorder). Fix ψ = ψ2 − ψ1 ∈ {0, π}.
Then the parameter space {(K,L) : K,L ∈ R2} splits into two regions:

a) In the region K+L cosψ ≤ 2, there is precisely one solution: the unsynchronized
solution (r1, r2) = (0, 0).

b) In the region K + L cosψ > 2, there are at least two solutions: the unsyn-
chronized solution (r1, r2) = (0, 0) and the symmetric synchronized solution
(r1, r2) = (r, r) for some r ∈ (0, 1).

Proof. For part a), note that (0, 0) always solves the self-consistency equations in
(5.3.11), due to property 1 of Proposition 5.3.2 and the fact that a1, a2, b1, b2 are zero
when (r1, r2) = (0, 0). The calculation given in the proof of Proposition 5.3.3 when
r1 = 0 shows that a solution of the form r1 = 0 and r2 > 0 is not possible, and due
to symmetry the same is true for solutions with r2 = 0 and r1 > 0. To have strictly
positive r1, r2, we use property 5 in Proposition 5.3.1 to get

r1 <
Kr1 + Lr2 cosψ

2
,

r2 <
Kr2 + Lr1 cosψ

2
. (5.3.24)

Adding these equations, we get

K + L cosψ > 2, (5.3.25)
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Figure 5.1: Regions appearing in Theorem 5.3.4 ψ = 0 (left) ψ = π (right). Part a): the red
region (labeled by a U); part b): the green region (labeled by an S).

which is the condition to have positive synchronized solutions and defines the critical
line. Let us next consider the case ψ = 0 and r1, r2 > 0. Then the self-consistency
equations in (5.3.11) reduce to

r1 =
(Kr1 + Lr2)

2
W (Kr1 + Lr2) = V (Kr1 + Lr2),

r2 =
(Kr2 + Lr1)

2
W (Kr2 + Lr1) = V (Kr2 + Lr1). (5.3.26)

If we consider symmetric solutions so that r1 = r2 = r, then these two equations are
identical and correspond to the self-consistency equation for the one-community noisy
Kuramoto model with the replacement 2K → K + L, which has a positive solution
when K+L > 2. The same can be done when ψ = π and yields K−L > 2 as critical
condition. �

It is tempting to conclude that the two-community model is the same as the one-
community model with the replacement 2K → K+L cosψ. This is, however, not the
case as we will see in Section 5.4.

§5.3.2 With disorder

In this section we identify the critical line when we include disorder. We simplify the
system by taking the distributions from which the natural frequencies are drawn in
the two communities to be the same, i.e., µ1 = µ2 = µ. Then the self-consistency
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equations in (5.2.26) read

r1 = V µ1 (r1, r2) =

∫
S

dθ

∫
R
µ(dω) cos(ψ1 − θ) p1(θ, ω),

r2 = V µ2 (r1, r2) =

∫
S

dθ

∫
R
µ(dω) cos(ψ2 − θ) p2(θ, ω), (5.3.27)

0 = Uµ1 (r1, r2) :=

∫
S

dθ

∫
R
µ(dω) sin(ψ1 − θ)p1(θ, ω),

0 = Uµ2 (r1, r2) :=

∫
S

dθ

∫
R
µ(dω) sin(ψ2 − θ)p2(θ, ω).

In light of Conjecture 5.2.5 we will restrict the following theorem to the two cases
ψ = 0 and ψ = π. Define

χ =

∫
R
µ(dω)

1

2(1 + 4ω2)
. (5.3.28)

5.3.5 Conjecture (Critical line with disorder). ψ = ψ2 − ψ1 ∈ {0, π}. If the
disorder in the two communities is drawn from a symmetric unimodal distribution µ,
then the parameter space {(K,L) : K,L ∈ R2} splits into two regions:

a) In the region K + L cosψ ≤ χ−1, there is precisely one solution: the unsyn-
chronized solution (r1, r2) = (0, 0).

b) In the region K + L cosψ > χ−1, there are at least two solutions: the un-
synchronized solution (r1, r2) = (0, 0) and the symmetric synchronized solution
(r1, r2) = (r, r) for some r ∈ (0, 1).

Heuristic Proof. Following the method used in [114] for the one-community model,
we Taylor expand the self-consistency equations for r1 and r2 in the two variables r1

and r2. The equations in (5.3.27) read, to first order,

r1 = V µ1 (0, 0) + ∂r1V
µ
1 (r1, r2)|(r1,r2)=(0,0)r1

+ ∂r2V
µ
1 (r1, r2)|(r1,r2)=(0,0)r2 +O(r2

1 + r2
2), (5.3.29)

r2 = V µ2 (0, 0) + ∂r1V
µ
2 (r1, r2)|(r1,r2)=(0,0)r1

+ ∂r2V
µ
2 (r1, r2)|(r1,r2)=(0,0)r2 +O(r2

1 + r2
2).

We can verify that V µ1 (0, 0) = V µ2 (0, 0) = 0, and calculate the derivatives at zero.
This leads to

r1 = r1Kχ+ r2

∫
R
µ(dω)

L(cos(ψ1 − ψ2) + 2ω sin(ψ1 − ψ2))

2(1 + 4ω2)
+O(r2

1 + r2
2), (5.3.30)

r2 = r2Kχ+ r1

∫
R
µ(dω)

L(cos(ψ2 − ψ1) + 2ω sin(ψ2 − ψ1))

2(1 + 4ω2)
+O(r2

1 + r2
2).

Adding these equations, we get

r1 + r2 = (r1 + r2)(K + L cos(ψ1 − ψ2))χ

+ (r2 − r1)2L sin(ψ1 − ψ2)

∫
R
µ(dω)

ω

2(1 + 4ω2)
+O(r2

1 + r2
2). (5.3.31)
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Since we are considering the case where µ is symmetric, the last term vanishes and
we obtain the critical line in Theorem 5.3.5. This shows that below the critical line
the self-consistency equations are a contraction, making (r1, r2) = (0, 0) a fixed point.
In order to show that solutions of the form r1 = 0 and r2 > 0 are not possible, we
would have to repeat the calculation used in the proof of Proposition 5.3.3 for the
general case. This turns out to be non-trivial, but we expect that it is possible to
prove this for symmetric, unimodal µ by proving that p1(θ+ψ2, ω) = p1(−θ+ψ2,−ω)

(in the case that ψ1 = 0) and using this symmetry to show that the first and third
equation in (5.2.26) cannot be simultaneously satisfied when r1 = 0 and r2 > 0. If µ
is symmetric and unimodal, then it is conjectured that the analog of V µ1 (r1, r2) and
V µ2 (r1, r2) in the one-community noisy Kuramoto model is concave [see Conjecture
[3.12], Chapter 3 in [80]]. We assume that this conjecture also holds in this case for
both V µ1 (r1, r2) and V µ2 (r1, r2), at least for symmetric solutions. In the case ψ = 0 the
symmetric solution r1 = r2 > 0 reduces the system of self-consistency equations in
(5.3.27) to a single equation that is analogous to the one-community noisy Kuramoto
model self-consistency equation [80, Proposition 3.10, Chapter 3] with the replacement
K → K +L. In the case ψ = π we can perform a change of variable in the integral of
the second line (5.3.27), namely, φ = ψ2 − θ, to see that the equations again reduce
to the equation for the one-community case with the replacement K → K−L. Thus,
we see that in both cases we can apply the conjecture in [80, Conjecture 3.12] to
ensure that the line K + L cosψ = χ−1 is the critical condition for symmetrically
synchronized solutions, which settles the conditions in a) and b).

For part b), we must still show that the symmetric solution is possible above
the critical line. Due to the reduction of the system to the one-community noisy
Kuramoto model, both for ψ = 0 and for ψ = π, we see that the symmetric solution
indeed exists above the critical line.

§5.4 Bifurcation of non-symmetric solutions

In this section we consider the system with the same parameter specifications and
simplifications as in Section 5.3, but without disorder and with ψ = 0. The analysis
with ψ = π carries over after the replacement L → −L in the self-consistency equa-
tions in (5.3.26) (the resulting modified phase diagram is shown in the right panel of
Fig. 5.6). The proofs in this section rely on numerics.

The self-consistency equations can be visualized as a vector field, in which the
solutions to the equations appear as fixed points, by plotting

~Vr1,r2 = (V (Kr1 + Lr2)− r1, V (Kr2 + Lr1)− r2). (5.4.1)

For a certain range of parameters non-symmetric solutions appear, as seen in Fig. 5.1.
The non-symmetric solutions appear to be saddle-points, having a stable and an un-
stable manifold under the vector field representing the self-consistency equations.
Note that this vector field does not represent the dynamics of the system, since the
self-consistency equations contain only the stationary densities. By plotting the pos-
sible solutions as functions of K while keeping L fixed, we see that the non-symmetric
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Figure 5.1: Self-consistency vector field (5.4.1) for K = 5 and L = −1.

solutions bifurcate from the symmetric solutions, as is seen in Fig. 5.2 for the case
where L = −2. The symmetric solutions correspond to equal amounts of synchroniz-
ation in the two communities. This is also the only solution possible between K = 4

and K = 4.9953 . . .. At K = 4.9953 . . ., the non-symmetric solutions appear, cor-
responding to one community having a larger synchronization level than the other
community. Due to the symmetry of the system, both communities can have a higher
level of synchronization in the non-symmetric solution.

In Section 5.4.1 we prove a necessary and sufficient condition for the existence of
non-symmetric solutions. In Section 5.4.2 we show that the non-symmetric solutions
are ordered and are such that the symmetric solution is wedged in between the two
non-symmetric solutions. In Section 5.4.3 we analyze the (asymptotic) properties of
the bifurcation line as well as the synchronization level along the bifurcation line.

§5.4.1 Existence and characterization of
non-symmetric solutions

5.4.1 Theorem (Characterization of the bifurcation line). The existence of
non-symmetric solutions requires L < 0, in which case the bifurcation point K∗ =

K∗(L) is the unique solution to the equation√
1− 2K

K2 − L2
= V

(
(K + L)

√
1− 2K

K2 − L2

)
, (5.4.2)
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Figure 5.2: Solutions to the self-consistency equations in (5.3.11) for different values of K
when L = −2. Drawn are the pairs of symmetric solutions (solid), and the pairs of non-
symmetric solution (dashed and dotted).

and the synchronization level at the bifurcation point is given by

r∗(K∗, L) =

√
1− 2K∗

K∗2 − L2
. (5.4.3)

Proof. We assume that a non-zero symmetric solution exists, so that r1 = r2 = r and
r = V ((K + L)r), which is the case when K + L > 2. Let (K∗, r∗) be a bifurcation
point for fixed L. We will show via a perturbation argument that this bifurcation
point exists and is unique. At the bifurcation point the non-symmetric solutions split
off from the symmetric solution since V is continuous. This allows us to perform a
perturbation around r∗, namely,

r∗ + ε = V (K(r∗ + ε) + L(r∗ − δ)), (5.4.4)
r∗ − δ = V (K(r∗ − δ) + L(r∗ + ε)), (5.4.5)

where ε and δ are small, either positive or negative, and are related, as will be shown
shortly. We Taylor expand around the point (K + L)r∗ and use r∗ = V ((K + L)r∗),
to get

ε ∼ (Kε− Lδ)V ′((K + L)r∗), −δ ∼ (Lε−Kδ)V ′((K + L)r∗), ε, δ ↓ 0, (5.4.6)

where by ∼ (here and in the rest of the paper) we mean that the ratio tends to
1 asymptotically. Abbreviate C∗ = V ′((K + L)r∗). Then the equations in (5.4.6)
combine to give

ε ∼
( LC∗

KC∗ − 1

)2

ε, (5.4.7)

which implies

LC∗ = ±(KC∗ − 1), (5.4.8)
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Figure 5.3: Visualization of the procedure to determine the bifurcation point. (Here C is a
constant determined in order to plot the tangent line and is not C∗.)

and ε ∼ ±δ. Using the negative sign would require the following two equations to be
satisfied:

r∗ = V ((K + L)r∗), (5.4.9)
1

K + L
= V ′((K + L)r∗). (5.4.10)

However, these equations cannot be satisfied simultaneously with r∗ > 0. Indeed, the
first finds the intersection point of V with the line of slope 1

K+L passing through zero.
But due to properties 1 and 4 we know that V has slope 1

K+L before this intersection
point. Thus, the two equations that must be satisfied at the bifurcation point are

r∗ = V ((K + L)r∗), (5.4.11)
1

K − L = V ′((K + L)r∗). (5.4.12)

For fixed L, these equations determine both the value r∗ = r∗(L) of the synchroniz-
ation level at the bifurcation point and the internal coupling strength K∗ = K∗(L)

at which the bifurcation occurs. The first equation finds the intersection point of V
and the line with slope 1

K+L passing through zero. The second equation requires the
derivative of V at this point to be 1

K−L . Due to the concavity of V (Property 4 of
Proposition 5.3.1), this gives the relation

1

K + L
>

1

K − L, (5.4.13)

which implies that L < 0, as claimed. To visualize the procedure for determining the
bifurcation point, we plot the appropriate lines in Fig. 5.3. It is clear that the slope
of the thickly dashed line must be less than that of the solid line, which gives L < 0.
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We can find an expression for the derivative of V in (5.3.4) by writing

V ′(x) =

∫
S dθ cos2 θ ex cos θ∫

S dθ ex cos θ
− V 2(x). (5.4.14)

For the first term in the right-hand side we can use the identity from [13, Eq. (2.21)],
so that in our case

V ′((K + L)r∗) = 1− 1

K + L
− (r∗)2, (5.4.15)

where we have used (5.4.11) for the second term. This reduces (5.4.12) to

r∗(K,L) =

√
1− 2K

K2 − L2
. (5.4.16)

To find r∗ = r∗(K∗, L), we must find K∗ = K∗(L) that solves (5.4.11). Substituting
(5.4.16) into (5.4.11), we obtain (5.4.2).

We will first prove that, given r, there is a unique K∗. In order to do this, we
solve the equation

r =

√
1− 2K

K2 − L2
(5.4.17)

for L to find

L = −
√
K2 − 2K

1− r2
, (5.4.18)

where we have taken the negative since we are dealing with the case L < 0. In order
to have a real solution, we require

K >
2

1− r2
. (5.4.19)

The equation for the bifurcation point in (5.4.2) reads

V (fr(K)r) = r, (5.4.20)

where

fr(K) = K −
√
K2 − 2K

1− r2
. (5.4.21)

Clearly, K 7→ fr(K) is strictly decreasing on ( 2
1−r2 ,∞) for r ∈ (0, 1). Since x 7→ V (x)

is strictly increasing, K 7→ V (fr(K)r) is strictly decreasing on ( 2
1−r2 ,∞). However,

in order to satisfy (5.4.20) with r ∈ (0, 1), by property 5 in Proposition 5.3.1, we must
have

fr(K) > 2, (5.4.22)
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i.e.,

K ∈
( 2

1− r2
,

2(1− r2)

1− 2r2

)
, r ∈

(
0,

1√
2

)
, (5.4.23)

K ∈
( 2

1− r2
,∞
)
, r ∈

[ 1√
2
, 1
)
. (5.4.24)

Moreover,

lim
K→∞

fr(K) =
1

1− r2
. (5.4.25)

For fixed r ∈ (0, 1/
√

2), V (fr(K)r) decreases from V ( 2r
1−r2 ) to V (2r) as K increases

from 2
1−r2 to 2(1−r2)

1−2r2 while for r ∈ [1/
√

2, 1), V (fr(K)r) decreases from V ( 2r
1−r2 ) to

V ( r
1−r2 ) as K increases from 2

1−r2 to ∞. In order to prove uniqueness, we need to
show that

V
( 2r

1− r2

)
> r > V (2r), r ∈ (0, 1/

√
2), (5.4.26)

V
( 2r

1− r2

)
> r > V

( r

1− r2

)
, r ∈ [1/

√
2, 1). (5.4.27)

Uniqueness follows because is be a unique K∗ satisfying (5.4.16), due to V decreasing
continuously from the upper to the lower bounds in (5.4.26) and (5.4.27) and the
line r being wedged between the bounds (note that r 7→ V (fr(K)r) intersects r
exactly once). The curves V ( 2r

1−r2 ), r, V ( r
1−r2 ) are plotted numerically in Fig. 5.4,

which shows that the bounds in (5.4.27) and the upper bound in (5.4.26) hold for all
r ∈ (0, 1). The lower bound in (5.4.26) is immediate from property 5 in Proposition
5.3.1. Indeed, we see that the bifurcation point exists and that K∗ is unique given
r. We will show later that r∗ is also unique given K by showing that ∂r∗

∂K > 0 in
Theorem 5.4.4. �
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−
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Figure 5.4: Plot via MATHEMATICA of V ( 2r
1−r2 ) (dashed), r (solid) and V ( r

1−r2 ) (dotted)
as functions of r.
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The uniqueness of the bifurcation point corroborates the picture in Fig. 5.2.

5.4.2 Remark. Note that (5.4.2) can also be solved for L∗ = L∗(K). The way
this should be understood is that, after one of the variables K and L is fixed, the
bifurcation point for the other variable is determined. A plot of the bifurcation point
as a function of K and L is shown in Fig. 5.5.

-4

-2

0
2

4

6

8
0.4

0.6

0.8

L

K

r∗(K,L)

Figure 5.5: Plot of (K,L) 7→ r∗(K,L) along the critical line.

§5.4.2 Ordering of non-symmetric solutions
Due to the symmetry of the system, if (r1, r2) is a solution to (5.3.11) with ψ = 0, then
so is (r2, r1). When non-symmetric solutions exist, we have the following ordering of
the synchronization levels in the two communities.

5.4.3 Theorem (Ordered solutions). Fix L and take K > K∗ where K∗ is the
bifurcation point obtained by solving (5.4.2). Furthermore take only positive solutions
so that r1, r2, r > 0. Without loss of generality, consider a non-symmetric solution
with r1 > r2. Then

r2 < r < r1. (5.4.28)

Proof. The symmetric solution r solves the equation

r = V (r(K + L)). (5.4.29)

To prove that r < r1, we consider the self-consistency equation (5.3.26) for r1,

r1 = V
(
r1

(
K + L

r2

r1

))
, (5.4.30)

and recall that we must have L < 0 for non-symmetric solutions to exist. Since
r2
r1
< 1, we know that K+L r2r1 > K+L and, due to the fact that x 7→ V (x) is strictly

increasing, also r < r1. Note that we are not quantifying the difference r1 − r2. The
strict inequality follows purely from the fact that r2

r1
< 1, making it impossible to

match the solutions for r and r1. Similarly, we can show that r2 < r. �
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Figure 5.6: In the light red region there is one pair of solutions: unsynchronized. In the
light green region there are two pairs of solutions: unsynchronized and symmetric synchron-
ized. In the light blue region there are three pairs of solutions: unsynchronized, symmetric
synchronized and non-symmetric synchronized.

§5.4.3 Properties of the bifurcation line
We cannot solve (5.4.11) analytically for K∗. We can, however, plot (5.4.11) numer-
ically, which refines the phase diagram in Fig. 5.1 for ψ = 0, as shown in Fig. 5.6. In
this section we first list some basic properties of r∗(K) and its derivatives, defined as
the solution of (5.4.11) when we eliminate L with the help of (5.4.18). After that we
state a theorem on the asymptotic properties of the bifurcation line L∗(K) defined
implicitly by (5.4.2).

5.4.4 Theorem (Properties of K 7→ r∗(K)).

(a) limK↓2 r∗(K) = 0.

(b) limK→∞ r∗(K) = 1.

(c) r∗(K) ∼
√

K−2
2 as K ↓ 2.

(d) 1− r∗(K) ∼ 1
2
√
K

as K →∞.

(e) ∂r∗(K)
∂K > 0 for all K > 2.

(f) ∂2r∗(K)
∂K2 < 0 for all K > 2.

Proof. We use (5.4.19) to get

0 ≤ r∗(K) <

√
K − 2

K
, (5.4.31)
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from which property 1 follows by taking the limit K ↓ 2. The inequality in (5.4.19)
also implies

lim
r↑1

K∗(r) =∞. (5.4.32)

If both K 7→ r∗(K) and r 7→ K∗(r) are continuous, then property 2 follows. To
show that K 7→ r∗(K) is continuous, we apply the implicit function theorem (IFT)
to calculate the derivative

h(K, r∗) = V

((
K −

√
K2 − 2K

1− (r∗)2

)
r∗
)
− r∗, (5.4.33)

which we find by rewriting (5.4.20). From the conditions for the IFT [70], we have
that, in order for K 7→ r∗(K) to be continuous, we need that

2K[(r∗)2 − 1 +K(1− (r∗)2)2] 6= 0, (5.4.34)

which we obtain by differentiating h(K, r) with respect to r and setting the derivative
to zero. From this we obtain the following bound on r∗(K):

r∗(K) >

√
1− 1−

√
1 + 4K

2K
= r∗−. (5.4.35)

In order to rigorously show that this bound is satisfied, we can use the sequence of
(iteratively defined) upper bounds xu(k)

1 (x), k ∈ N0, for V (x) given in [118, Theorem
4], which converge to V (x) as k →∞. Here we will use

l(1)
ν =

(
ν − 1

2
+

√(
ν +

1

2

)2

+ x2

)−1

, (5.4.36)

as suggested in[118, Equation (22)]. If substitution of the right-hand side of (5.4.35)
for r into fr(K)ru

(k)
1 (fr(K)r)− r makes it less than 0, then we know that the bound

in (5.4.35) is satisfied. To see why, note that then

fr∗−(K)r∗−u
(k)
1 (fr∗−(K)r∗−)− r∗− > h(K, r∗−). (5.4.37)

Now, if fr∗−(K)r∗−u
(k)
1 (fr∗−(K)r∗−)− r∗− < 0 for all K, then so is h(K, r∗−), so that r∗−

does not satisfy h(K, r∗) = 0 and the solution satisfies r∗ > r∗−. Using xu
(k)
1 (x) with

k = 2,
xu

(2)
1 (x) =

x

2 + x2

3
2 +
√

( 5
2 )2+x2

, (5.4.38)

as an upper bound, we get that the bound in (5.4.35) is at least satisfied for K ∈
(2,Kk=2), where Kk=2 = 15.8684. By increasing k, we see that the upper bound of
this interval increases and we expect that in the limit as k →∞, (5.4.35) is satisfied
on K ∈ (2,∞). Numerically, we indeed see that this bound is satisfied, as shown in
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Fig. 5.7 (this figure shows that K∗(r) < 2−r2
(1−r2) , which is the same as (5.4.35)). For

the continuity of r 7→ K∗(r) we require, again by the condition for the IFT, that

∂K∗h(K∗, r) 6= 0, (5.4.39)

which is satisfied by all K∗ > 0 and r∗ ∈ (0, 1), so that property 2 is proved.
We know that limK↓2 r(K) = 0 (by property 1), so that we can expand V around

0 in the self-consistency equation (5.4.20). This leads to

lim
K↓2

fr∗(K)(K) = 2. (5.4.40)

The corresponding asymptotic equation can be solved for r∗(K) to obtain property
3. Property 4 follows from a similar calculation, by using the expansion of V around
infinity, and gives

1− r∗(K) ∼ 1

2fr∗(K)(K)r∗(K)
. (5.4.41)

This equation gives rise to a cubic polynomial in r∗(K), which can be solved and
gives

1− r∗(K) ∼ 1

3
− (1− i

√
3)K

3B
− (1 + i

√
3)B

12K
, (5.4.42)

where

B =
(

8K3 − 27K2 + 3
√

3
√

27K4 − 16K5
)1/3

. (5.4.43)

The complex parts in the right-hand side of (5.4.42) compensate one another, making
it real. Taking only the leading order terms in K, we obtain the asymptotics in
property 4. We can calculate ∂Kr∗(K) by differentiating (5.4.20), i.e.,

∂r∗(K)

∂K
=

cr∗
(√

K2 − 2K
1−r∗2 −K − 1

(1−r∗2)

)
√
K2 − 2K

1−r∗2 − 2cKr∗2

(1−r∗2)2 + c
√
K2 − 2K

1−r∗2
(√

K2 − 2K
1−r∗2 −K

) ,
(5.4.44)

where in the right-hand side we have abbreviated r∗ = r∗(K), and

c = V ′(fr∗(K)r∗). (5.4.45)

It follows from (5.4.12) that

c =
1

K − L =
1

K +
√
K2 − 2K

1−r∗2
, (5.4.46)

which simplifies (5.4.44) to

∂r∗(K)

∂K
=
r∗(1− r∗2)

{(
K −

√
K2 − 2K

1−r∗2
)

(1− r∗2)− 1
}

2K{2− r∗2 −K(1− r∗2)2} . (5.4.47)
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Due to the inequality in [13, Equation (2.4)], we have that

1

fr∗(r∗(K))
< 1− r∗(K)2 <

2

fr∗(r∗(K))
, (5.4.48)

which makes the numerator positive. The denominator becomes zero when

K =
2− r∗2

(1− r∗2)2
. (5.4.49)

Rewriting the lower bound for r∗ in (5.4.35), we get

K <
2− r∗2

(1− r∗2)2
, (5.4.50)

which ensures that the denominator of (5.4.44) is never zero. For values of K satis-
fying (5.4.50) the derivative is positive. This we find by substituting a pair of values
r∗(K),K, calculated numerically, into (5.4.44), and proves property 5 because the
derivative does not change sign in the range of K. To prove property 6, we take the
derivative with respect to K of (5.4.47) and substitute the expression for the first
derivative. This leads to a lengthy equation with denominator

4K2

√
K2 − 2K

1− r∗2 {2− r
∗2 −K(1− r∗2)2}, (5.4.51)

which is positive by the same argument as for the first derivative. Setting the numer-
ator to zero and solving for K, we find that there are no solutions when r is between
zero and the appropriate root of a 9th order polynomial in r, which numerically is
0.946819. Between this value and 1 there are two solutions, for which the numerator
is zero, given by the solutions to the two roots of a quartic polynomial in K. We can
plot these solutions together with the upper and lower bounds for K∗(r) and com-
pare them with the true K∗(r), calculated numerically, as shown in the right panel
of Fig. 5.7.
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Figure 5.7: Left: Interpolation of the first (solid) and second (dashed) derivatives of r∗(K).
Right: Comparison of the numerical solution for the bifurcation point K∗(r) (red, dotted)
with the upper bound 2−r2

(1−r2)2 (long dashed) and the lower bound 2
1−r2 (solid), and with the

solutions to the numerator of the second derivative being zero (short dashed and dash-dotted).
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The right panel of Fig. 5.7 suggests that the second derivative also does not change
sign. Numerically solving for a pair (K, r∗(K)), and substituting this into the numer-
ator, we see that the second derivative is negative. This is confirmed by the left panel
of Fig. 5.7. �

To confirm the asymptotic solutions for r∗(K) in properties 3 and 4, we plot them
and compare them to the numerical solutions in Fig. 5.8.

The next theorem gives the asymptotics of L∗(K) implicitly defined by (5.4.2) in
the limit as K →∞ and close to (K,L) = (2, 0).
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Figure 5.8: Comparison of the numerical solution for the bifurcation point r∗(K) with the
asymptotic expressions for r∗(K) given in properties 4 and 5 of Theorem 5.4.4, for K close
to 2 on the left and for K large on the right.

5.4.5 Theorem (Asymptotic properties of the bifurcation line). The deriv-
ative of L∗(K), defined implicitly by (5.4.2), has the following properties:

(a) limK→∞
∂L∗(K)
∂K = −1.

(b) limK↓2
∂L∗(K)
∂K = − 1

2 .

Proof. We begin by proving the existence of the limits, for which we need the following
lemma.

5.4.6 Lemma (Derivatives of K 7→ L∗(K)). For all K > 2,

(a) ∂L∗(K)
∂K < 0.

(b) ∂2L∗(K)
∂K2 < 0.

Proof. In order for L∗(K) to be continuous by the IFT (in a similar way as in the
proof of Theorem 5.4.4), we require that

L∗(K) > −
√
K +K2 −

√
K2(1 + 4K). (5.4.52)

We will see, numerically, that this bound is satisfied because it lies below another
lower bound of L∗(K). To rigorously show that this bound is satisfied, we expect
that it is possible to use the same procedure as outlined for the bound on r∗(K) in

129



5. Two-community noisy Kuramoto model

C
h
a
pt

er
5

(5.4.35). Now we start by differentiating (5.4.2) with respect to K and solving for
∂KL

∗(K). This leads to

∂L∗(K)

∂K
= − (K − 2)K3 + 2K2L∗(K)− 2(K − 1)KL∗(K)2 + 2L∗(K)3 + L∗(K)4

(K − 2)K3 − 2(K − 1)KL∗(K)2 + L∗(K)4
.

(5.4.53)

Setting the numerator, which is a quartic polynomial in L∗(K), equal to zero and
solving for L∗(K), we find one solution that lies above the critical condition for L
when fixing K, −K + 2. The expression is too lengthy to present here and does
not lead to any useful insight. Taking the derivative with respect to K of (5.4.53),
substituting the expression for the first derivative (5.4.53) and setting the resulting
numerator to zero, we are left with solving a 7th order polynomial for L∗(K). Again
the expression is lengthy and does not lead to any insight. Only one of the solutions to
the 7th order polynomial lies above the critical line. Comparing these two solutions,
one coming from the quartic polynomial and the other from the 7th order polynomial,
we see numerically that the first is a lower bound for L∗(K) and the second is an upper
bound for L∗(K), as seen in the right panel of Fig. 5.9. This lower bound is an upper
bound for the right-hand side of (5.4.52), so that the conditions for the IFT are
satisfied. The expression determining when the denominator of both the first and the
second derivative is zero, obtained by setting their respective denominators to zero
(which makes the derivatives diverge), is the same, and the only solution falling above
the critical condition is upper bounded by the lower bound for L∗(K) found above
(as the solution to the quartic polynomial), so that the derivatives do not diverge.
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Figure 5.9: Left: Interpolation of the first (solid) and second (dashed) derivatives of L∗(K).
Right: Comparison of the numerical solution for the bifurcation point L∗(K) (red, dot-
ted) with the upper bound/solution to the 7th order polynomial (dashed) and the lower
bound/solution to the quartic polynomial (dot-dashed), as well as the critical condition for L
when fixing K, −K + 2 (solid).

The right panel of Fig. 5.9 suggests that both the first derivative and the second
derivative of L∗(K) do not change sign as a function of K. Substituting a pair of
values K,L∗(K), solved for numerically, we confirm the statements in Lemma 5.4.6.
This is also corroborated by the left panel of Fig. 5.9. �
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5.4.7 Remark. For the mathematical reader the numerical assistance in the argu-
ment above might not be satisfying. We suspect that the proof can be made rigorous
by using the sequences of upper and lower bounds in [118, Theorem 4] on V in (5.4.2),
in order to get upper and lower bounds for L∗(K) that give a tighter wedge than the
one in the right panel of Fig. 5.9.

Due to Lemma 5.4.6 and the fact that L∗(K) is bounded below by −K + 2, we
have that the limits exists.

We now turn to the proof of Theorem 5.4.5. Abbreviate

g(K,L) = r∗(K,L)− V
(
(K + L)r∗(K,L)

)
. (5.4.54)

By the implicit function theorem, we have

∂L∗(K)

∂K
= −∂Kg(K,L)

∂Lg(K,L)
. (5.4.55)

Compute

∂Kg(K,L) =

4K2

(K2−L2)2 − 2
K2−L2

2r∗(K,L)

+
(

(K + L)

4K2

(K2−L2)2 − 2
K2−L2

2r∗(K,L)
+ r∗(K,L)

)
(5.4.56)

×
(
V 2
(

(K + L)r∗(K,L)
)
− 1

2 − 1
2S
(

(K + L)r∗(K,L)
))

and

∂Lg(K,L) =− 2KL

(K2 − L2)2r∗(K,L)

+
(
− (K + L)

2K∗L
(K2 − L2)2r∗(K,L)

+ r∗(K,L)
)

(5.4.57)

×
(
V 2
(

(K + L)r∗(K,L)
)
− 1

2 − 1
2S
(

(K + L)r∗(K,L)
))
,

where S(x) = I2(x)
I0(x) .

For property 1, we make the Ansatz L∗(K) = −aK+c,K →∞ where c = c(K) =

o(K) (which is confirmed in Fig. 5.6). Taking the limit K → ∞, we get zero for the
first terms in the right-hand sides of (5.4.56)–(5.4.57), i.e.,

lim
K→∞

4(K)2

(K2−L2)2 − 2
K2−L2

2
√

1− 2K
K2−L2

= 0, (5.4.58)

lim
K→∞

2KL

(K2 − L2)2
√

1− 2K
K2−L2

= 0, (5.4.59)
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where we have used the expression for r∗(K,L) from (5.4.3). The multiplication
factors in the last line of the right-hand sides of (5.4.56)–(5.4.57) are the same, so we
are left with calculating the limit as K →∞ of the quotient

−

(
(K + (−aK + c))

4K2

(K2−(−aK+c)2)2
− 2
K2−(−aK+c)2

2r∗(K,−aK+c) + r∗(K,−aK + c)

)
(
− (K + (−aK + c)) 2K(−aK+c)

(K2−(−aK+c)2)2r∗(K,−aK+c) + r∗(K,−aK + c)

) , c = o(K).

(5.4.60)

A straightforward but tedious calculation (with the help of MATHEMATICA) shows
that this limit is −1.

For property 2, we must find the limit of −∂Kg(K,L)
∂Lg(K,L) as we approach the point

(K,L) = (2, 0) along the line L∗(K). We make the Ansatz L∗(K) = (K − 2)b+ o(1),
K ↓ 2. Making this replacement in the expression for the derivative and doing a
Taylor expansion around K = 2, we obtain after a tedious calculation (with the help
of MATHEMATICA),

lim
K↓2

∂Kg(K,L)|L=(K−2)b = −
√
K − 2

( 3

8
√

2
+

b

4
√

2

)
(5.4.61)

for the terms in the numerator and

lim
K↓2

∂Lg(K,L)|L=(K−2)b = −
√
K − 2

2
√

2
(5.4.62)

for the terms in the denominator. Combining (5.4.61)–(5.4.62) we obtain

b = −1

4
(3 + 2b), (5.4.63)

so that b = − 1
2 . �

Properties 1 and 2 are confirmed by the left panel of Fig 5.9. It seems thatK 7→ L∗(K)

for large K does not have an asymptote, since when we take the limit after the
replacement L∗(K) = −K+ c we get an equation for the bifurcation point that reads√

1− 1

c
= V

(
c

√
1− 1

c

)
. (5.4.64)

The only solution to this equation is c = 1, which is not possible because it would
place the asymptote below the critical line. This suggests that c = c(K) grows as a
function of K, but that this growth is sublinear.

§5.5 Simulation

Fixing the phase difference is not physical, since the system will relax into a steady
state and will choose the angles that are the least costly energetically. Studying the
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dynamics of the transitions between states or the stability properties of the possible
states are both difficult tasks. However, we expect that the non-symmetric state is
either unstable or metastable and using simulations we can observe what type of trans-
itions one might expect between the possible states. To see this, we take the initial
distribution for both populations to have mean π, but choose the second community
to have a slightly larger variance initially, meaning that the synchronization level
starts lower. The outcome of the simulation can be seen in Fig 5.1. It seems that the
community with less synchronization initially is suppressed by the community with
more synchronization, until the ‘push’ from the latter becomes too strong. This is
reflected in the angles, which stay relatively close together for a while, before moving
apart. This type of transition seems only to occur when the parameters are chosen
such that the non-symmetric solutions discussed above exist.

We expect that the most stable state is the symmetric solution with the largest
synchronization level (i.e., the largest effective interaction strength). For example,
if K = 5 and L = 2, then the symmetric solution with phase difference ψ = π has
r1 = r2 = 0.724 . . ., while the symmetric solution with phase difference ψ = 0 has
r1 = r2 = 0.918 . . .. The first state is unstable/metastable, the second state is stable.
The transition from the one to the other is shown in Fig 5.2.
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Figure 5.1: Simulation of 1000 oscillators per community with K = 7 and L = −2. The time
step is set at dt = 0.01. The left image shows the synchronization levels, the right image the
phase averages.
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Figure 5.2: Simulation of 1000 oscillators per community with K = 5 and L = 2. The time
step is set at dt = 0.01. The left image shows the synchronization levels, the right images
the phase averages.
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To be clear, these simulations are not meant to prove any stability properties
or transitions, but are useful for determining what types of stability properties or
transitions we may expect. They also suggest that much interesting work remains to
be done.

Appendix

§5.A Concavity of ratio of modified Bessel functions
of the first kind

Recall that

V (x) =

∫ 2π

0
ex cos θ cos θ dθ∫ 2π

0
ex cos θ dθ

. (5.A.1)

The first derivative of (5.A.1) is

∂xV (x) =

∫ 2π

0
ex cos θ dθ

∫ 2π

0
ex cos θ cos2 θ dθ −

( ∫ 2π

0
ex cos θ cos θ dθ

)2
(
∫ 2π

0
ex cos θ dθ)2

. (5.A.2)

We can rewrite∫ 2π

0

ex cos θ cos θ dθ =

∫ 2π

0

e
1
2x cos θe

1
2x cos θ cos θ dθ (5.A.3)

≤
(∫ 2π

0

ex cos θ dθ
)1/2(∫ 2π

0

ex cos θ cos2 θ dθ
)1/2

,

where we have used Holder’s inequality in the second line. Taking the square on both
sides, we obtain(∫ 2π

0

ex cos θ cos θ dθ
)2

≤
∫ 2π

0

ex cos θ dθ

∫ 2π

0

ex cos θ cos2 θ dθ, (5.A.4)

which proves that (5.A.2) is non-negative. We evaluate (5.A.2) at x = 0, to get

∂xV (x)|x=0 =
2π × π
(2π)2

=
1

2
. (5.A.5)

For the second derivative we rewrite

∂xV (x) = I− II =

∫
f ′′(x, θ) dθ∫
f(x, θ) dθ

− (
∫
f ′(x, θ) dθ)2

(
∫
f(x, θ) dθ)2

, (5.A.6)

where f(x, θ) = ex cos θ and the prime refers to the derivative with respect to x. The
integrals are always from 0 to 2π. Taking the derivative of the first term, we find

I′ =

∫
f(x, θ) dθ

∫
f ′′′(x, θ) dθ −

∫
f ′′(x, θ) dθ

∫
f ′(x, θ) dθ

(
∫
f(x, θ) dθ)2

, (5.A.7)
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while for the second we find

II′ = 2

∫
f ′(x, θ) dθ∫
f(x, θ) dθ

×
∫
f(x, θ) dθ

∫
f ′′(x, θ) dθ − (

∫
f ′(x, θ) dθ)2

(
∫
f(x, θ) dθ)2

. (5.A.8)

Using a common denominator, we can write the difference as

∂2
xV (x) =

1( ∫
f(x, θ) dθ

)3 [( ∫ f(x, θ) dθ
)2
∫
f ′′′(x, θ) dθ

− 3

∫
f(x, θ) dθ

∫
f ′(x, θ) dθ

∫
f ′′(x, θ) dθ + 2

(∫
f ′(x, θ) dθ

)3]
(5.A.9)

To continue, we first let

2c =

∫
ex cos θdθ

making the desired expression into

V ′′(x) =
[ ∫

f ′′′(x, θ)
dθ

2c
− 3

∫
f ′(x, θ)

dθ

2c

∫
f ′′(x, θ)

dθ

2c
+ 2
(∫

f ′(x, θ)
dθ

2c

)3]
.

(5.A.10)
With the functions

arccos1 : (−1, 1)→ (0, π), arccos2 : (−1, 1)→ (π, 2π),

we can perform the change of variable u = cos θ, i.e., θ = arccosu and

dθ =
−du√
1− u2

. (5.A.11)

Here we get∫ 2π

0

(cos θ)kex cos θ dθ

2c
=

∫ π

0

(cos θ)kex cos θ dθ

2c
+

∫ 2π

π

(cos θ)kex cos θ dθ

2c
(5.A.12)

= −
∫ −1

1

ukexu
du

c
√

1− u2

=

∫ 1

−1

ukexu
du

c
√

1− u2
.

where we have used arccos1 for the first integral and arccos2 for the second. Note
that, when k = 0, ∫ 1

−1

exu
du

c
√

1− u2
= 1. (5.A.13)

With the change of measure

dν(u) =
1

c
√

1− u2
du (5.A.14)

we obtain

V ′′(x) =
[ ∫ 1

−1

u3exu dν(u)−3

∫ 1

−1

uexu dν(u)

∫ 1

−1

u2exu dν(u)+2
(∫ 1

−1

uexu dν(u)
)3]

(5.A.15)
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and defining m = m(x) =
∫ 1

−1
uexu dν(u) we get

V ′′(x) =
[ ∫ 1

−1

u3exu dν(u)− 3m

∫ 1

−1

u2exu dν(u) + 2m3
]
. (5.A.16)

Note that, due to (5.A.13), and since
∫ 1

−1
3m2 u exu dν(u) = 3m3, (5.A.16) equals∫ 1

−1

(u−m)3exu dν(u). (5.A.17)

We can check this by writing∫ 1

−1

(u−m)3exu dν(u) =

∫ 1

−1

(u3 − 3mu2 + 3m2u−m3)exu dν(u) (5.A.18)

=
[ ∫ 1

−1

u3exu dν(u)− 3m

∫ 1

−1

u2exu dν(u) + 2m3
]
. (5.A.19)

To complete the proof we state [105, Lemma 4], suitably adapted.

5.A.1 Lemma. Let ν be an even probability measure with support on [−1, 1], and
suppose that ν is absolutely continuous, i.e., dν(σ) = f(σ)dσ, with f non-decreasing
on [0, 1]. Then ν ∈ P, the class of all probability measures on R with compact support,
is such that ∫ 1

−1

ekσ(m− σ)pdν(σ) ≥ 0, (5.A.20)

where

m = m(k) =

∫
σekσdν(σ)∫
ekσdν(σ)

, (5.A.21)

and k = Jm+h, where J is the mean-field interaction strength and h is the magnetic
field strength of the spin system.

With the identification
σ = u, k = x, p = 3 (5.A.22)

and taking out a negative, we complete the proof. To get the strict inequality we note
that the equality in the lemma does not hold for our choice of ν(u).
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CHAPTER 6
The two-community noisy Kuramoto

model as model for the
Suprachiasmatic nucleus

This chapter has been submitted.

Abstract

Recent mathematical results for the noisy Kuramoto model on a two-community
network may explain some phenomena observed in the functioning of the suprachias-
matic nucleus (SCN). Specifically these findings might explain the types of transitions
to a phase-split state of the SCN. The model requires only the community structure
of the SCN to exhibit the phase-split state. This is in contrast to previous studies
requiring time-delayed coupling or large variation in the coupling strengths and other
variations in the model. Our model shows that a change in E/I balance of the SCN
due to external protocols may result in the SCN entering an unstable state. With this
altered E/I balance, the SCN would try to find a new stable state, which might in
some circumstances be the split state. This shows that the two-community noisy Kur-
amoto model can help understand the mechanisms of the SCN and explain differences
in behavior based on actual E/I balance.
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§6.1 Introduction

All life on earth is adapted to the external 24-h light-dark cycle, where mammals
normally have one bout of activity each cycle, and one bout of sleep. However,
when hamsters are placed in constant light conditions, this regular pattern of sleep
and wakefulness is disturbed and splitting of the activity bout may occur. In this
case, the single period of activity is dissociated into two components that ultimately
settle in anti-phase, effectively producing sleep-wake cycles of approximately 12 h
[106]. It has been shown that this behavioural phase splitting in hamsters and mice
has its origin in the suprachiasmatic nucleus (SCN), which is the location of the
master clock regulating the 24-h rhythms in physiology and behavior [37]. The SCN
is a bilaterally paired nucleus, where splitting of the behavioral rhythm, caused by
exposure to continuous light conditions, induces the left and right nucleus to activate
in antiphase [37, 90].

Between species there are differences in phase splitting behavior. Hamsters show
splitting when put in constant light conditions [106, 37]. In a mutant mouse strain,
called CS mouse, rhythm splitting occurs in constant darkness [1]. Rats and mice can
also show split behaviour when subjected to so called forced desynchrony protocols
[21, 36, 22]. Rats were subjected to a 22-h light-dark cycle and mice to a chronic jet
lag protocol. It was shown that in the forced desynchrony protocol, the dissociation
arises between the ventral and the dorsal part of the SCN. Here, the ventral part
follows the external light-dark cycle and the dorsal part has a period close to the
endogenous free-running period of the animal. It is unknown whether these different
types of splitting, let’s call them left-right splitting and ventral-dorsal splitting, have
different underlying mechanisms, or not.

It is known that the interaction within the ventral part is mainly based on the
neurotransmitter vasoactive intestinal polypeptide (VIP), which is excitatory. In the
dorsal SCN the interaction is mainly done through arganine vasopressin (AVP), which
is also excitatory in nature. The communication between the ventral and dorsal part
of the SCN is done through γ-butyric acid (GABA), which can be inhibitory, but in
the SCN also excitatory [26, 51, 99]. For the left-right distinction, there is less known
about the communication mechanisms, let alone if these are excitatory or inhibitory
[94].

Recently a variety of models have been proposed in order to explain why the
phase-split state of the SCN occurs. These models have typically tried to modify the
standard two-oscillator-models for the SCN by including time-delays in the coupling
[65], assuming large variation in the coupling strengths [117] or taking the intra-
community coupling to be negative [98]. The model proposed by Oda et al [98]
models each community of the SCN as a single oscillator and connects these using
coupled Pittendrigh-Pavlidis equations. They consider coupled identical oscillators as
well as non-identical oscillators, making a distinction between morning and evening
oscillators. Indic and coworkers [65] consider a model most similar to the one we will
consider. They include the possibility of a delay in the interaction between oscillators
and observe that the network structure is essential to realize the phase-split state.
Their work includes analysis of the stability of the phase-split state. The paper by
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Schroder [117] uses a model proposed by Leloup, Gonze and Goldbeter [77, 54] and
applies this to two groups of 100 oscillators. The results are based on numerical
simulations and show that the split state can arise without a change in the structure
or strength of the interactions between oscillators, but by a change in the circadian
properties of individual oscillators. None of the models have addressed the question
of the different transitions observed en-route to the phase-split state.

In this paper we interpret recent findings on the phase diagram of the noisy Kur-
amoto model on a two-community network [93] in the context of the phase-split SCN,
where the left and right SCN, or the ventral and dorsal part of the SCN, dissociate
into two anti-phasic neuronal communities, instead of using a two-oscillator model.
Here the community structure of the network plays the central role in making the
phase split state possible and enriches the model significantly in comparison to the
original one-community version. This is a surprising finding in itself as the modi-
fication to consider the model on a two-community network seems almost trivial a
priori. Not only does this model exhibit the phase-split state, but it also exhibits
a bifurcation point in the phase-diagram which determines the existence of a non-
symmetrically synchronized state which might explain the different transitions to the
phase split state observed in experiments. We investigate stability properties of the
various states by using simulations of the system and find that the system might have
to pass through the non-symmetrically synchronized solution when it is above the
bifurcation point.

§6.2 Model

In order to model the SCN we modify the noisy Kuramoto model by placing it on a
two-community network structure. Each community consists of N oscillators which
correspond to neurons in the SCN. Oscillators in the same community interact with a
strength K and oscillators in different communities interact with strength L. We will
take K to be positive (attractive) and will allow L to be both positive and negative
(attractive or repulsive). We will also simplify the system by taking all oscillators
to have the same natural frequency, namely, zero. This seems unrealistic but since
any constant frequency can be rotated out by changing the frame of reference for the
system, any constant average natural frequency can be chosen.

We will denote the phase of the oscillators (which can be between 0 and 2π) in
the first community by θ1,i with i = 1, . . . , N and the phase of the oscillators in
the second community by θ2,j with j = 1, . . . , N . Note that in the current model
both communities contain the same number of oscillatory neurons N . Each angle
represents a state of the neuron. The equations governing their evolution are then

dθ1,i(t)

dt
=

K

2N

N∑
k=1

sin(θ1,k − θ1,i(t)) +
L

2N

N∑
l=1

sin(θ2,l(t)− θ1,i(t)) + ξ1,i (6.2.1)

and

dθ2,j(t)

dt
=

K

2N

N∑
l=1

sin(θ2,l − θ2,j(t)) +
L

2N

N∑
k=1

sin(θ1,k(t)− θ2,j(t)) + ξ2,j . (6.2.2)
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Here ξ1,i and ξ2,j are white noise terms. These can be understood as the effect
of the thermal environment that the SCN is in (i.e. external noise) or as time-
dependent variations in the natural frequencies of individual oscillators. As in the
standard Kuramoto model we define order parameters to measure the amount of
synchronization and the average phase in each community:

r1,N (t)eiψ1,N (t) =
1

N

N∑
i=1

eiθ1,i (6.2.3)

r2,N (t)eiψ2,N (t) =
1

N

N∑
j=1

eiθ2,j . (6.2.4)

The synchronization levels r1,N (t) and r2,N (t) can take values between 0 and 1 with
0 meaning that the relevant community is completely unsynchronized and 1 being
completely synchronized. The average phases ψ1,N (t) and ψ2,N (t) can take values
between 0 and 2π. When taking the limit of the number of oscillators going to
infinity, we see that the system can be described by a probability distribution in each
community, namely, p1(t; θ) and p2(t; θ) giving the probability of finding an oscillator
with a given phase at a given time in community one and two respectively. These
distributions depend on all of the order parameters.

Note in this respect that in the circadian field, the synchronization term is often
treated differently. Where mathematical phase indicates the state of one oscillator
at a specified timepoint, in the circadian field the time of a certain state is taken for
each oscillator. So, synchronization in the mathematical sense indicates a synchron-
ization in oscillator state, while in the circadian sense it indicates a synchronization
of the oscillators in time. Thus, we define the circadian synchronization here as time-
synchronization.

In the long-time limit the distributions reach a steady-state (a state in which the
order parameters are stationary) which can be described analytically (see [93]). Which
values the order parameters r1, r2, ψ1 and ψ2 can take in the steady-state distributions
is determined by a system of self-consistency equations:

r1 =

∫ 2π

0

cos(ψ1 − θ)p1(θ) dθ, (6.2.5)

r2 =

∫ 2π

0

cos(ψ2 − θ)p2(θ) dθ, (6.2.6)

0 =

∫ 2π

0

sin(ψ1 − θ)p1(θ) dθ, (6.2.7)

0 =

∫ 2π

0

sin(ψ2 − θ)p2(θ) dθ. (6.2.8)

Due to the invariance of the system under rotations, one of the average phases can
be set to zero, i.e., ψ1 = 0. This ensures that (6.2.7) is satisfied. In [93] it is proved
that the only values ψ2, which now also represents the phase difference (ψ = ψ2−ψ1)
between the two communities, can take are 0 and π. Simultaneously solving (6.2.5)
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and (6.2.6) for r1, r2, while fixing ψ1 = ψ2 = 0 or ψ1 = 0 and ψ2 = π, gives a
stationary point for the dynamics of the system. Consider first the case where the
average phases are aligned so that their phase difference is 0, i.e., ψ1 = ψ2 = 0. The
system only assumes synchronized solutions when the critical condition is met, which
is K + L > 2. When this is the case the system can always be in the symmetrically
synchronized state where r1 = r2 = r > 0 (which is stable) or in the unsynchronized
state r1 = r2 = 0. Here r is the synchronization in the mean-field Kuramoto model
with interaction strength K + L. The system however also displays a bifurcation
point. Consider fixing L < 0. Then we can plot the possible solutions for r1 and r2 as
a function of K as in Fig. 6.1. We see that at K = 4 the symmetrically synchronized
state appears. At around K = 5, however, non-symmetric solutions appear, where
r1 6=r2. Since both communities are the same in our analysis, both can be in either
the yellow or the purple solution. The other community is then forced to take on the
opposite solution. (i.e. the system can be in the states r1 = yellow, r2 = purple; r2 =

yellow, r1 = purple or r1 = r2 = blue.)

5 10 15 20

0.0

0.2

0.4

0.6

0.8

K(L = −2)

r(
K
)

Figure 6.1: Solutions of the self-consistency equations (6.2.5) and (6.2.6) for different values
of K while L = −2 and the phase difference is 0. Symmetric solution (blue) non-symmetric
solutions (yellow and purple).

The point at which the non-symmetric solution bifurcate from the symmetric
solutions gives a line in the phase diagram. In Fig. 6.2 we plot the phase diagram
given that the average phases are aligned, i.e., ψ = 0 and given that the phases are
anti-aligned, i.e., ψ = π. In this figure we see the red area in which the oscillators
in both communities are completely unsynchronized. If the circadian system is in
the green area, the system can either be in a state where both communities are
synchronized in the same phase, or both communities are completely unsynchronized.
In the blue area, the same holds true, but there is also another possible state, namely
the non-symmetrically synchronized state, where one community is more synchronized
than the other (r1 6=r2).

Note that, depending on external conditions, the circadian system can move
through this phase diagram since the interaction strength parameters might change
due to extreme external conditions. Due to the conjecture in [93] about the possible
phase differences in the steady-state we assume that these are the only two phase
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Figure 6.2: Phase diagram when the average phases are aligned (left) and when they are
anti-aligned (right). In the light red region we have only unsynchronized solutions. In the
light green region we have two solutions: the unsynchronized solution and the symmetrically
synchronized solution and in the light blue region we have three solutions: the unsynchronized,
the symmetrically synchronized and an non-symmetrically synchronized solution.

diagrams for the steady-state.
The analysis done in [93] and summarized here concerns the stationary points of

the system of equations (6.2.5)–(6.2.8) for the order parameters, where each solution
corresponds to a pair of stationary distribution profiles, p1(θ) and p2(θ). It does not
give information about the stability of these stationary points. Stability is a delicate
issue to treat mathematically and is an open problem. The link between the symmetric
solution and the solution of the mean-field Kuramoto model suggests that this solution
is stable while the unsynchronized solution (r1 = r2 = 0) should be unstable above
the critical condition. In the next section we will present the results of simulations of
the system and interpret them in the context of these stability questions.

§6.3 Simulations

We can simulate the system to investigate the stability properties of the various
solutions. We summarize the observed stability properties in Table 6.1. What is
meant by metastable here is that the system can, if prepared correctly, stay in this
state for a long time but will eventually move to a stable stationary state (it does not
refer to the mathematical definition of metastability). Intuitively this table makes
sense. If the interaction between communities is positive we can, roughly speaking,
say that the two communities attract one another. If the system is in a state where
the average phases are anti-aligned, with both communities sufficiently synchronized,
it can stay there for a while but would ultimately prefer to be in a state with the
phases being aligned. This is because the mean-field Kuramoto model corresponding
to the aligned state has interaction strength parameterK+L which is greater than the
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one corresponding to the anti-aligned state, K −L. (In the mean-field model greater
interaction strength implies a larger synchronization level.) Example are given in
Fig. 6.1.

Table 6.1: Stability of possible solutions when K + L > 2. Here ψ = ψ2 − ψ1.

Sol. unsync sync L < 0 sync L > 0 non sym
ψ = 0 unstable metastable stable unstable
ψ = π unstable stable metastable unstable

The simulations are of 10000 oscillators per community. In the first simulations
(Fig. 6.1A) we initialize the two communities to have approximately the same syn-
chronization level (upper frame) and with the average phases of the two communities
aligned (lower frame). We take L = −2 and K = 5. In this situation we expect
the aligned state to be metastable since oscillators in different communities repel one
another. In the simulation we see that the system indeed stays in the aligned state
for some time before moving to the anti-aligned state. The synchronization level in
each community increases during this transition. In Fig. 6.1B a similar example is
shown for L = 2. Here the metastable state is the anti-aligned state (see table 6.1).

In the second simulation (Fig. 6.1C) we again initialize the average phases to be
aligned but this time one community is more synchronized than the other (upper
frame). We take L = −2 and K = 7. Again the system would like to be in the
phase split state but this time the transition occurs by one community having to
move to a much lower level of synchrony before the average phases can move apart
and assume the higher level of synchrony of the phase-split state. Fig. 6.1D shows a
similar situation for L = 2. Here the metastable state is the anti-aligned state (see
table 6.1).

§6.4 Discussion

The metastable anti-aligned state discussed in the previous section might be the state
observed in hamsters displaying two periods of activity in a single 24-hour cycle [106].

The underlying cause of splitting, both left-right splitting as well as ventral-dorsal
splitting, seems to be that a two-community structure must be present in the SCN.
As these communities interact with each other, in normal circumstances they remain
synchronized. However, in particular conditions, these two communities can arrive
in the metastable anti-aligned state. This state is, as described, metastable, so after
some time it will return to the stable synchronized state. However, it appears that
keeping animals in a forced desynchronization protocol, this metastable state can be
maintained, even though the SCN is inclined to return to the stable synchronized
state.

Apparently, according to Fig. 6.2, the circadian system of animals is normally
either in the green or blue area of the state space, which means that the coupling
strengths within and between the communities added together are always larger than
2. In different conditions, the parameters K and L, which signify the strengths in the
communication within one community and between both communities, can change.
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It has been shown, for example, that in long photoperiods there is more excitatory
GABAergic coupling than there is in short photoperiods [51, 99]. So, the strengths of
these coupling parameters can shift the circadian system through this phase diagram,
enabling other possible states to arise, such as the split state, or even a desynchronized
state.

Studying the dynamics of the system between the various states mathematically
is difficult. Simulations of the system give an impression for what might be typical
behavior and they might be relevant for understanding the unpredictable response of
the SCN to the different transitions to and from the phase-split state when animals are
exposed to constant light or forced desynchronization protocols. Changes in external
conditions may affect the ability to synchronize by changing interaction strength L

for example. If L decreases and the system is usually in the situation where L > 0

and ψ = 0, then after the shift the system could be in the negative L region. If
this is the case it would either be in the blue region where the non-symmetrically
synchronized solutions exist or in the green region where they do not. From the
stability property table 6.1 we see that the symmetrically synchronized state is then
no longer stable. The system would then want to move to a new stable state for the
new balance between K and L. It finds this new stable state in the phase split state,
which corresponds to a point in the phase diagram on the right of Fig. 6.2. If it was
shifted in the first phase diagram to a point in the blue region the system might be
forced through the non-symmetrically synchronized state before being able to move
to the symmetrically synchronized anti-aligned state while it might be able to move
directly to this state when it is shifted into the green region (Fig. 6.1). We assume
here that the parameters K and L are changed by the extreme conditions on a time
scale much shorter than the time scale on which the system responds to this change.

To better study the trajectories that the system may take, jet lag studies may be
employed to collect data on single cells and review the dynamics between the ventral
and dorsal communities. In jet lag experiemnts, a dissociation between the ventral
and dorsal SCN is also observed. When a phase shift is applied to the SCN, Albus
et al [4] have shown that the ventral SCN shifts immediately with the new light-dark
cycle, while the dorsal SCN lags behind. The dissociation observed between both
communities is dissolved after 6 days [111]. Using the jet lag protocol the dynamics
of both communities could be studied in subsequent days.

§6.5 Conclusion

The novelty of this paper is pointing out the existence of the bifurcation point in
the two-community noisy Kuramoto model and noting that this might be the reason
for seeing different transitions to the phase-split state of the SCN. To prove this is
mathematically challenging since that would require studying the dynamics between
different states of the two-community noisy Kuramoto model. There is also no exper-
imental work measuring the activity of individual neurons in the phase-split state or
during the transition into it to which one could compare the simulations done here.
The conclusion of this paper is then that the two-community noisy Kuramoto model
has more to offer in terms of explaining the behavior of the SCN.
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The table predicts that the stable state of the system is the anti-aligned state when
L < 0. This would mean in the case of the ventral-dorsal communities that when
GABA is mainly inhibitory, the system would prefer a split state over the aligned
state. However, experimental research clearly shows that this is not the case: in nor-
mal circumstances the ventral and dorsal communities are aligned. This may be due
to the fact that we used the simplest model possible, where both communities are the
same, having the same number of neurons and where the interaction strengths within
both communities is also the same as well as the interaction parameters between both
communities. A more realistic model would have a different number of neurons for
each community, an N1 and N2 [111]. Also the communication strengths of VIP in
the ventral SCN and AVP in the dorsal SCN would not be the same (K1 and K2) and
the communication between both communities would not be symmetrical (L1 AND
L2) [4]. Finally, the natural variation in the frequencies of the neurons firing could be
included by adding a term ω1,i drawn from a distribution µ1(ω) in equation (6.2.1)
and a term ω2,j drawn from a distribution µ2(ω) in equation (6.2.2). These changes
make the mathematical analysis significantly more difficult. In order to decide which
mathematical generalizations are worthwhile pursuing, more experimental informa-
tion is needed regarding the relative numbers of N1 versus N2, K1 versus K2, and
L1 versus L2 as well as the distribution of natural frequencies in the two communit-
ies. What is clear is that, although the mechanism remains unchallenged, the actual
stability diagrams would change, possibly finding stable solutions for an aligned state
even when the GABAergic communication L is inhibitory.

This does not invalidate the current model though, as the main message we want to
bring forward is that a change in external circumstances brings about a change in the
E/I balance of the system, in that the coupling between and within the communities
may change due to the external conditions. This change in E/I balance may move
the system into an unstable or metastable state, and the system will search through
its state space for a stable state based on the changed E/I balance.

147



6. The two-community noisy Kuramoto model as model for the SCN

L > 0L < 0
A B

C D

r 1
,2
(t
)

t

0

0

0

0

0

00
00

1

1

2

2

4

4

6

6

8

8

.

.

.

.

.

.

ψ
1
,2
(t
)

t

0
00

1

1

2

2

3

4

4

5

6

6 8
10

r 1
,2
(t
)

t

0

0

0

0

0

00
00

1

1

2

2

4

4

6

6

8

8

.

.

.

.

.

.

ψ
1
,2
(t
)

t

0
00

1

1

2

2

3

4

4

5

6

6 8
10

r 1
,2
(t
)

t

0

0

0

0

0

00
00

1

1

2

2

4

4

6

6

8

8

.

.

.

.

.

.

ψ
1
,2
(t
)

t

0
00

1

1

2

2

3

4

4

5

6

6 8
10

r 1
,2
(t
)

t

0

0

0

0

0

00
00

1

1

2

2

4

4

6

6

8

8

.

.

.

.

.

.

ψ
1
,2
(t
)

t

0
00

1

1

2

2

3

4

4

5

6

6 8
10

Figure 6.1: Simulation of 10000 oscillators per community with K = 5 and L = −2 (A
and C) or L = 2 (B and D). The time step is set at dt = 0.01. The top images show the
synchronization levels (r1 and r2), the bottom the average phases (ψ1 and ψ2). (A) and (B)
show the case where r1 and r2 are the same, whereas (C) and (D) show the case where they
differ at first but both approach 1 when the stable state is reached.

148



6. The two-community noisy Kuramoto model as model for the SCN

�5

0

5

10

15

20

�4

�2
0

2
4

6
8

10

K

L

�5

0

5

10

15

20

�10

�8

�6

�4

�2
0

2
4

K

L

* A

*
B

*
B’

Aligned (ψ=0)

Anti-phase (ψ=п)

Figure 6.1: Mechanism of the SCN changing states. A disturbance in the external conditions
changes the E/I balance of the system, causing the system to go from stable state A to a
unstable state B. The system will then be forced to find a new stable state corresponding to
the new E/I balance, which could be found in the stable state B’, which lies in the plane where
both communities are in anti-phase.
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Samenvatting

Samenvatting

In dit proefschrift komen twee onderwerpen aan bod. In deel I beschouwen we de
invloed van stochastische reset op het grote afwijkingengedrag van verschillende typen
integralen van functies van diffusieprocessen. In deel II beschouwen we de invloed van
netwerken op de synchronisatie van oscillatoren, volgens het Kuramoto-model.

Deel I: Stochastische reset

Stochastische reset kan aan een willekeurig stochastisch proces toegevoegd worden en
houdt in dat het proces zich op een toevallig gekozen moment herstart. De tijd tussen
het herstarten is exponentieel verdeeld met parameter r. Dit heeft een beperkend ef-
fect op de positie van het proces, omdat de kans dat het proces zich ver van zijn start-
punt bevindt sterk wordt verminderd. We bestuderen hoofdzakelijk hoe integralen
van functies van de positie van diffusieprocessen door het toevoegen van stochastische
reset worden beïnvloed. We leiden twee algemene relaties af tussen het proces zonder
reset en het proces met reset. Door gebruik te maken van deze relaties kunnen we
analyseren hoe groot de kans is dat er grote afwijkingen van het verwachte gedrag
optreden ten opzichte van het proces zonder stochastische reset.

In hoofdstuk 2 bestuderen we de gemiddelde oppervlakte onder het Ornstein-
Uhlenbeckproces (de integraal van de positie gedeeld door de tijd) met stochastische
reset. We analyseren ook hoe de verwachte waarde van het gemodificeerde proces
verandert als functie van de parameter r. In het bijzonder identificeren we de grote
afwijkingen ratefunctie van de oppervlakte onder het Ornstein-Uhlenbeckproces met
stochastische reset en analyseren we hoe het minimum verandert met r. Dit hoofdstuk
is gebaseerd op een artikel dat voor een natuurkundig tijdschrift is geschreven en heeft
daardoor niet dezelfde stijl als de rest van het proefschrift.

In hoofdstuk 3 bestuderen we de fractie van de tijd die de Brownse beweging
in de positieve half lijn doorbrengt, de gemiddelde oppervlakte onder de Brownse
beweging en de integraal van de absolute waarde van de positie van de Brownse be-
weging gedeeld door de tijd. We bewijzen ook dat de grote afwijkingen ratefunctie
voor alle integralen van functies van de Brownse beweging vanaf een bepaald punt
nul is, indien de verwachte waarde van dezelfde functie van de Brownse beweging
zonder stochastische reset oneindig is. We bewijzen verder dat de grote afwijkingen
ratefunctie direct onder dit punt kwadratisch is. Tevens verwachten we dat het toe-
voegen van stochastische reset aan een grootheid die zonder reset niet aan een grote
afwijkingenbeginsel voldoet niet teweeg kan brengen dat die dit met reset wel doet.
Een voorbeeld hiervan is de gemiddelde oppervlakte onder de Brownse beweging.
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Deel II: Synchronisatie

Het stochastische Kuramoto-model kan gebruikt worden om de synchronisatie van
neuronen in het brein te modelleren. De neuronen zijn aan elkaar gekoppeld en
vormen zo een netwerk. Dit soort netwerken heeft de eigenschap dat neuronen sterk
gekoppeld zijn aan neuronen in hun eigen groep, maar zwak aan neuronen in een
andere groep. In dit deel van het proefschrift bestuderen we hoe deze eigenschap het
vermogen van de neuronen om zich te synchroniseren beïnvloedt.

In hoofdstuk 4 kijken we naar een hiërarchisch netwerk waar we op elk niveau N
groepen hebben. We bestuderen dit systeem in de limit waar N groot wordt en ana-
lyseren het gedrag op verschillende tijdschalen. Het blijkt dat de groepen zich op één
gegeven moment synchroniseren en zich vervolgens gedragen als een enkele oscillator,
die een groep vormt met alle andere groepen op dit niveau. Of deze nieuwe groep zich
synchroniseert wordt bepaald door een kritische conditie die afhangt van de wissel-
werking van de oscillatoren op dit hiërarchisch niveau. Zo verspreidt de synchronisatie
zich dus naar alle niveaus. Door te analyseren hoe dit gebeurt identificeren we drie
universaliteitsklassen: (1) synchronisatie gaat op een bepaald niveau verloren; (2) er
is op alle niveaus synchronisatie, maar die gaat naar nul voor steeds hogere niveaus;
(3) er is op alle niveaus synchronisatie, en die gaat naar een waarde groter dan nul
voor steeds hogere niveaus. Verder bewijzen we een voldoende conditie voor wanneer
het systeem in universaliteitsklasse (1) is en een voldoende conditie voor wanneer het
systeem in universaliteitsklasse (3) is.

In hoofdstuk 5 bestuderen we een eenvoudiger netwerk. In dit geval zijn er slechts
twee groepen, maar nu kan de wisselwerking tussen de groepen ook negatief zijn. Hier-
door wordt het model rijker en ingewikkelder. Er komt namelijk een vertakkingspunt
tevoorschijn. Dit maakt het mogelijk dat er stationaire oplossingen zijn waarvoor
één van de groepen een hogere synchronisatie heeft dan de andere groep, zelfs als
de wisselwerking in beide groepen even sterk is. Zo’n oplossing noemen we een niet-
symmetrische oplossing. We geven een classificatie en bestuderen de eigenschappen
van het vertakkingspunt. Dit resulteert in het fasediagram met een kritische curve.
Aan de ene kant van deze curve zijn alleen symmetrische oplossingen mogelijk, aan de
andere kant zowel symmetrische als niet-symmetrische oplossingen. We bestuderen
de eigenschappen van deze curve en het synchronisatieniveau waarlangs de vertakking
plaatsvindt.

In het laatste hoofdstuk van dit proefschrift passen we de resultaten van hoofdstuk
5 toe op de suprachiasmatic nucleus (SCN). De SCN is beter bekend als de body-clock
en is verantwoordelijk voor het bepalen van alle lichamelijke ritmes. De SCN heeft
dezelfde structuur als het netwerk dat we in hoofdstuk 5 hebben onderzocht. Het
bestaan van niet-symmetrische stationaire oplossingen zou kunnen verklaren waarom
er in experimenten verschillende transities worden waargenomen naar de zogenoemde
‘phase-split state’, waardoor hamsters en ratten twéé keer per 24 uur actief kunnen
zijn in plaats van één keer. In dit hoofdstuk zijn er dus geen nieuwe mathematische
resultaten, maar staat het interpreteren van de resultaten van hoofdstuk 5 centraal.

161



Acknowledgements

Acknowledgements
The last four years have not only been a period in which I learned a significant amount
about mathematics, but they have also been a period of immense personal growth.
Many people have contributed to this in various ways.

First and foremost I would like to thank my supervisors Frank and Diego. They
have guided me through the process of doing research and taught me that stubborn
perseverance is an essential part of it. They have also been brilliant examples, both
in their own way, in how to set up a dynamic and welcoming research group.

I thank all the people in these two research groups as well as the lively group of
PhDs at the Mathematical institute for creating an environment it was easy to integ-
rate into. Special mention must go to Andrea, Hakan, Steven, Marta and Leonardo.

Thanks must also go to Jos for sharing his knowledge regarding neurobiology.
Thank you to the lovely community I was a part of through the NETWORKS pro-

gram. The training weeks were inspirational and did a lot to broaden my perspective.
I especially would like to thank Nicos for his friendship.

Doing a PhD in the Netherlands was only possible due to the networking provided
by Hugo. Not only did he bring me into contact with Frank, but he also continued to
do research with me and offered invaluable advice throughout my PhD.

I thought I read mathematics carefully until I met Conrado, whose method of
reading he was willing to share with me. I am grateful for this as well as the conver-
sations of a more philosophical nature that typically followed such a reading. In the
same vain, thanks to Lennart and Werner for the many discussions that allowed me
to sharpen my critical thinking skills.

In order to remain sane during a PhD, it is necessary to have hobbies outside of
mathematics. One of the hobbies most complimentary to mathematics is music and
through music I met many wonderful people, who were essential for the completion of
my PhD. The most influential was Lenie whose singing lessons were of a therapeutic
nature. I was also privileged enough to make music with some fantastic musicians of
which I would especially like to thank Aafko, the Jazz/Pop band and the Barbershop
quartet. Through Collegium Musicum I was able to integrate into Dutch society.
Specially mention must be made of Simone, Esther, Gerjan, Anne, Anne, Maarten
and all the Ad Libitum guys.

Moving to the other side of the world is made much easier when you have a home
away from home. This was the case in the van ’t Hoffstraat, where I lived with Elena,
Niels and Abram.

In the last two years of my PhD I also had the indispensable support of Pauline,
who I am glad to share this adventure with. Her family has also treated me as one of
their own, for which I am very grateful.

Lastly, my family back in South Africa has been exceptionally supportive in all
my endeavors. The love and acceptance, regardless of performance, I received from
home made it possible for me to freely navigate what it is that I want to do in life
without feeling any pressure. This thesis is for them.

162



Curriculum Vitae

Curriculum Vitae

Janusz Martin Meylahn was born in Cape Town in 1991. After graduating in 2009
from Alexander Road High School in Port Elizabeth, he moved to Stellenbosch to
study theoretical physics at Stellenbosch University. He graduated as a Bachelor of
Science in 2012 (cum laude) and continued with an honours in theoretical physics,
graduating in 2013 (cum laude). For his Masters of Science he wrote a two part thesis
entitled Biofilament interacting with molecular motors, supervised in part by Prof. dr.
K. K. Müller-Nedebock and in part by Prof. dr. H. Touchette, and graduated cum
laude in 2015. In the same year he moved to the Netherlands to pursue a PhD
under the supervision of Prof. dr F. den Hollander and Dr. D. Garlaschelli with
funding from the NETWORKS program. He is currently working as a postdoc at the
University of Amsterdam, together with Dr. Arnoud den Boer.

163


	Introduction
	Stochastic Resetting
	Example
	Recent Results
	Main results of Part I
	The Stochastic Kuramoto model
	Recent Results
	Discrepancy
	Main results of Part II

	I Large deviations of stochastic processes with resetting
	Large deviations for diffusions with resetting
	Introduction
	Problem
	Results
	Example
	Conclusion
	Spectral decomposition of the generating function

	Properties of additive functionals of Brownian motion with resetting
	Introduction
	Two theorems
	Two properties of the rate function
	Zero rate function above the mean
	Quadratic rate function below the mean

	Positive occupation time
	Area
	Absolute area
	Conclusion
	Large deviation principle
	Rate function of the absolute area for BM


	II Synchronization on networks with  community structure
	Synchronization of phase oscillators on the hierarchical lattice
	Introduction
	Mean-field Kuramoto model
	McKean-Vlasov equation
	Diffusive scaling of the average phase
	Hierarchical lattice
	Hierarchical Kuramoto model

	Main results
	Multi-scaling
	Truncation approximation
	Universality classes

	Multi-scaling for the block average phases
	Diffusive scaling of the average phase for mean-field Kuramato
	Multi-scaling of the block average phases for hierarchical Kuramoto

	Universality classes and synchronization levels
	Properties of the renormalization map
	Renormalization

	Numerical analysis

	Two-community noisy Kuramoto model
	Background and motivation
	Basic properties
	Model
	McKean-Vlasov limit
	Stationary solutions

	Symmetric interaction with fixed phase difference
	Without disorder
	With disorder

	Bifurcation of non-symmetric solutions
	Existence and characterization of non-symmetric solutions
	Ordering of non-symmetric solutions
	Properties of the bifurcation line

	Simulation
	Concavity of ratio of modified Bessel functions of the first kind

	The two-community noisy Kuramoto model as model for the Suprachiasmatic nucleus
	Introduction
	Model
	Simulations
	Discussion
	Conclusion

	Bibliography
	Samenvatting
	Acknowledgements
	Curriculum Vitae


