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Abstract. We present a modular framework, theWorkload Characterisation Frame-
work (WCF), that is developed to reproducibly obtain, store and compare key char-
acteristics of radio astronomy processing software. As a demonstration, we discuss
the experiences using the framework to characterise a LOFARcalibration and imaging
pipeline.

1. Introduction

Modern low-frequency radio interferometers, such as the LOw Frequency ARray (LO-
FAR) (van Haarlem et al. 2013), consist of many antennas and data processing is per-
formed by software; this is reflected by the community termsoftware telescope. Such
software telescopes are modular and under constant development by large interdisci-
plinary research collaborations, working across continents; consequently, obtaining a
holistic view of the entire system becomes a challenging task. It is a considerable chal-
lenge to manage, process and store such large datasets, within budgets and constraints,
while “pushing the envelope” of technology. To achieve suchcost-performance opti-
mum, the first aim is to obtain a quantitative understanding of the compute, energy and
data access behaviours exhibited by various radio astronomy data processing software
pipelines and algorithms. Using low-level Linux kernel andhardware interfaces, the
Workload Characterisation Framework (WCF) can be used to support operations and
software development.

To encourage best practices, the work undertaken requires to be reproducible: the
software should be open and publicly available, and it should allow for others to re-
produce the software environment. In this work, we present the WCF that aims to
provide key metrics to characterise workloads in a standardand reproducible manner.
The WCF is designed to be extensible and we present an exampleof such an extension
that aims to provide further insight when identifying software bottlenecks for research
and development (R&D) purposes.
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2. The Workload Characterisation framework

The WCF is under development as part of the Local Monitoring and Control (LMC)
work package of the SKA Science Data Processor (SDP) consortium. The first purpose
of the WCF is to provide the SDP compute resource scheduler with the essential work-
load characteristics for each pipeline processing component, in order to make optimal
(cost-effective) scheduling decisions. Secondly, the WCF aims to assist telescope de-
velopers and operators to obtain a quantitative understanding of the compute, energy
and data access behaviours exhibited by various pipelines,components and algorithms.
Finally, the WCF aims to enable the micro-benchmarking of different compute plat-
forms, which can be used for optimisation and comparison.

The WCF prototypes have already been used, or tested for SKA precursor and
pathfinders, including LOFAR, MWA, JVLA HDR, ASKAPSoft and the CHILIES
project.

3. The LOFAR use case

The WCF can be used for a variety of tasks; we focus on a bottleneck analysis – with the
aim to support more targeted system development efforts (software and hardware). In
addition to the typical WCF output data to assist this task, we consider non-time-series
data to create the link between system behaviour and the structure of the software.

In this section, as an example use case, we consider a calibration and imaging
processing pipeline, hereafter referred to as Calib, which creates sky images from the
LOFAR telescope.

3.1. The Calib pipeline

The Calib pipeline has been used to image HBA commissioning data of theGalactic
diffuse synchrotron emission (Iacobelli et al. 2013).

For each frequency band, there are two pointings: one towards the target field and
the other towards the calibrator field. As depicted in Fig. 1,the two input measure-
ment sets are fed into the pipeline. After a copy operation, the calibrator is used to
solve for the antenna gain amplitudes, which are then applied to the target. A phase
calibration is then performed on both the calibrator and thetarget data. Finally, sky
images are derived from the calibrated data sets. The entirecalibration is performed
using LOFAR’s DPPP (data preprocessing pipeline); the imaging is performed using
WSClean (Offringa et al. 2014).

Figure 1. Work flow of the Calib pipeline.
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3.2. Goal-oriented system development

With goal-oriented or targeted system development, we promote the following work
flow: (1) for a given micro-benchmark and platform, evaluatethe baseline performance
of both the hardware and software – ideally by replicating the results of measurements
stored in a data base; (2) use the WCF to analyse system behaviour and identify bottle-
necks; (3) concentrating on a specific part and possibly using other performance anal-
ysis tools, optimize the code or change the underlying hardware; (4) rerun the WCF
measurements of the entire pipeline to assess the impact of the changes and store the
results in a database.

With the WCF we assist a goal-oriented development in the following way: (1)
Evaluating a pipeline’s performance over a long time requires a standardised storage
format of the measurements. (2) By standardising the measurement tools, the mea-
surements become comparable over a wide range of use cases: comparing different
algorithms and their implementations, different hardware, and different input data and
data formats. Among other advantages, this allows for meta-analysis of stored mea-
surements for various configurations. (3) Quickly identifycomputational and other
resource bottlenecks. This information could be used to alleviate software bottlenecks
and identify the most salient system features that determine performance. Besides fa-
cilitating such a hardware-software co-design procedure,the insights can be used to
inspire general research.

4. Results
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Figure 2. Time series of system characteristics.

In Fig. 2 we present time series data of a Calib pipeline run. We choose the
metrics CPU and memory usage, memory bandwidth, and disk I/O bandwidth – all
important parameters to identify performance bottlenecks. While a detailed analysis of
the data is beyond the scope of this paper, we demonstrate itsuse for one specific step of
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the pipeline, PhaseSolve. This step requires roughly 55% of the entire execution time
(Fig. 3; left). Further analysis indicates that the step exhibits poor scaling behaviour: the
execution using a 28 core dual-socket Intel Xeon compute node is only 1.23 times faster
than a sequential execution (Fig. 3; right). Using the OeRC SKA testbed, low-level
CPU characteristics were gathered, and showed less than optimal CPU core usage on
average, a high number of CPU migrations (292/sec) and context switches (3,521/sec).
The poor scaling characteristics were verified by configuring OMP affinity settings,
using a Round-robin (RR) real-time CPU scheduler and CPU pinning, only resulted in
a 8.2% increase in runtime using 10 fewer CPU cores than the default. A natural next
step is to improve on the scalability of the PhaseSolve step of the pipeline.
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Figure 3. Breakdown of execution time and speedup due due parallel execution.

5. Conclusion

Using a LOFAR calibration and imaging pipeline, we demonstrated the use of the WCF
for R&D radio telescope software and hardware development.Such structured ap-
proach is especially relevant for the development of new instruments and algorithms
for the SKA.
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