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In this prospective study, we examined the pharmacokinetics of 1 
and 2 mg/kg liposomal amphotericin B in 16 morbidly obese in-
dividuals (104–177 kg). Body size had no effect on clearance. We 
recommend a fixed dose in patients ≥100 kg (ie, 300 or 500 mg 
rather than the current dose of 3 and 5 mg/kg, respectively).
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Liposomal amphotericin B (L-AmB, AmBisome) is a broad-spec-
trum antifungal agent widely used for the treatment of invasive 
fungal disease. The typical dose for invasive aspergillosis is 3 mg/
kg. Although L-AmB has been on the market for several decades, 
little is known about its pharmacokinetics in obese patients [1, 2]. 
This is highly relevant since the prevalence of obesity is increasing 
yearly and obesity is a risk factor for development of infections 
[3, 4]. We performed a pharmacokinetic study in morbidly obese 
individuals to quantify the impact of obesity on the clearance of 
L-AmB in order to guide dosing.

METHODS

Study Population and Procedures

We performed a pharmacokinetic study in 16 morbidly obese 
but otherwise healthy adults with a body mass index (BMI) 

>40  kg/m2 the day before they underwent bariatric surgery. 
The study was approved by the Central Committee on Research 
Involving Human Subjects and conducted in accordance with the 
Declaration of Helsinki and good clinical practice regulations. 
Patients were randomly assigned to receive a single L-AmB in-
travenous infusion of 1 mg/kg in 0.75 hours or 2 mg/kg in 1.5 
hours. Blood samples were collected 15 minutes after the end of 
infusion and at t = 2, 4, 6, 8, 10, 12, 24, 36, and 48 hours. Samples 
were centrifuged at 1900 g for 5 minutes and immediately stored 
at −80°C. Total AmB concentrations were measured using 
ultraperformance liquid chromatography with photodiode array 
detection, validated according to European Medicines Agency 
guidelines. Lower and higher limits of quantification ranged from 
0.50 to 50 mg/L, and the accuracy ranged from 97.6 to 112%.

Pharmacokinetic Analysis

Concentration–time data were analyzed using nonlinear 
mixed effects modeling (NONMEM; v7.3.0) with Perl-speaks-
NONMEM (PsN; v4.7) [5]. We explored 1-, 2-, and 3-compart-
ment models and used the first-order conditional estimation 
method with interaction for all model runs. Interindividual 
variability (IIV) was assumed to be log-normally distributed. 
Additive, proportional, and combined residual error models 
were evaluated. We investigated first-order and Michaelis-
Menten elimination, and a previously reported time-dependent 
volume of distribution of the central compartment (Vc) was ex-
plored using an exponential-decay function. For the covariate 
analysis, the relationships between empirical Bayes estimates 
and the covariates total body weight (TBW), lean body weight 
[6], BMI, ideal body weight [7], body surface area [8], age, and 
sex were investigated in scatter plots. The performance of the 
final model was assessed using a prediction-corrected visual 
predictive check based on 1000 Monte Carlo simulations. 
Parameter precision and model robustness of the structural and 
covariate models were measured using the sampling impor-
tance resampling (SIR) procedure.

Simulations

The final model was used to simulate the area under the curve 
(AUC0-24h) and maximum concentration (Cmax) in steady-state 
conditions in 10.000 patients, with body weights uniformly dis-
tributed between 60 and 180 kg. Although normal-weight pa-
tients were not studied, we added them to the simulations to 
act as the comparison group with an established dose; this is 
justified since our model is in line with previous reports [9]. 
Each virtual patient received daily 3 mg/kg L-AmB infused in 1 
hour; patients who weighed ≥100 kg received either 3 mg/kg or 
a fixed 300-mg dose. Simulating a 3-mg/kg dose is justified due 
to reported linear pharmacokinetics in the lower dose range 
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[1]. Simulations were performed with parameter uncertainty 
through the stochastic simulation and estimation functionality 
in PsN using the SIR results as model input (n = 500 models).

RESULTS

We included 16 morbidly obese patients with median (range) 
BMI of 45.9 (40.2–52.1) kg/m2 and TBW of 137 (104–177) kg. 
Other patient characteristics are summarized in Supplementary 
Table S1. Supplementary Figure S1 shows the observed mean 
plasma concentrations for each dose group.

A 2-compartment model in which no relationship could be iden-
tified between TBW and clearance was identified (Supplementary 
Figure S2A). A  linear relationship was found between TBW and 
the central volume of distribution (Vc; P < .01 and there was a de-
crease in IIV on Vc from 17.6% to 13.8%; Supplementary Figure 
S2B. None of the remaining covariates further improved the model. 
In the final model, we found the following parameter (% IIV) es-
timates: clearance, 0.84  L/h (37.7%); inter-compartmental clear-
ance, 0.61  L/h (115%); volume of distribution of the peripheral 
compartment, 7.3 L · TBW�130 (13.8%); and Vp, 12  L  (22.1%); 
Supplementary Tables S2. Supplementary Figure S3 and S4 show 
that the model describes the observed data correctly and has good 
predictive performance. Figure 1 shows how the AUC0-24h and Cmax 
change with body weight (Monte Carlo simulations) when patients 
receive a daily 3-mg/kg L-AmB dose infused in 1 hour with and 
without a dose cap at 100 kg.

We identified a subgroup of 4 individuals (all received 2 mg/
kg) with a significantly lower clearance and Vc and, as a conse-
quence, a higher Cmax and AUC0-24h. No covariates (eg, size de-
scriptors, liver or renal function tests, complete blood count, 

and electrolytes) could be identified that helped to explain the 
pharmacokinetic differences in this subgroup.

DISCUSSION

To our knowledge, this is the first study that specifically 
focused on the pharmacokinetics of L-AmB in morbidly 
obese patients. Strikingly, we found no evidence of any body 
size descriptor predicting differences in AmB clearance. 
Furthermore, we show that Vc increases linearly with TBW 
but is relatively small in obese patients, confirming earlier 
preclinical observations of a limited disposition in adipose 
tissue [10]. The consequence of these findings is that the 
AUC0-24h will increase when (obese) patients are dosed on a 
per-kilogram basis (Figure 1A). In parallel, Cmax also increases 
with body weight when L-AmB is dosed on a per-kilogram 
basis (Figure 1B). This phenomenon is primarily driven by 
the absolute increase in the dose with a clearance that does 
not change with weight. When using a fixed dose, Cmax de-
creases due to the increase in Vc with weight.

Although AUC0-24h [11] and Cmax [11, 12] have been reported 
to be associated with efficacy, the AUC0-24h has been associated 
with an increased risk of toxicity [13, 14]. To lower the poten-
tial risk of toxicity in obese patients, it seems prudent to use 
a fixed dose. In addition, evidence to suggest that obese pa-
tients would benefit from a higher dose is lacking; therefore, we 
suggest a weight of 100 kg to cap the dose (ie, 300 mg for the 
3-mg/kg dose). Our simulation shows that a dose cap on 100 kg 
would not result in a further increase in the AUC0-24h in obese 
patients who weigh ≥100 kg and would also result in a similar 
Cmax (13% lower) in a patient who weighs 140 kg compared to 
70 kg (Figure 1B).
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Figure 1.  Monte-Carlo simulations based on the final model of the steady-state AUC0-24h and Cmax after a daily 3-mg/kg (solid line) L-AmB dose infused in 1 hour. The dashed 
line represents the situation were the dose is capped on a 100-kg individual (300 mg AmBisome). The shaded areas represent the 90% confidence intervals of the prediction. 

Abbreviations: AUC0-24h, area under the curve; Cmax, maximum concentration.
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In our study, we found an AUC0-24h of 279 mg*h/L after a 
single dose of 2 mg/kg that was much higher than the previously 
reported 171 mg*h/L in normal-weight healthy volunteers (me-
dian weight of 77 kg) who received the same single dose. This 
substantiates our results for increased exposure after weight-
based dosing [15]. The absence of body weight as a covariate on 
clearance is in line with the findings of Würthwein et al (2012) 
who reported no model improvement after inclusion of body 
size on pharmacokinetic parameters in patients with weights 
ranging from 44 to 105 kg [16].

In our analyses we identified a specific subpopulation with 
a relatively lower clearance in half of our patients given 2 mg/
kg. Several other studies also identified a subgroup with altered 
pharmacokinetics within their population. The data from Hope 
et al (2012) illustrate an almost 2-fold difference between 2 sub-
groups of equal size [17]. In the study by Würthwein et al (2012), 
use of a 3  mg/kg-dose showed higher plasma concentrations 
in a third of their population due to decreased clearance [16]. 
A third study used a model with a time-dependent decrease of 
Vc to explain atypical pharmacokinetics in one-third of their 
pediatric population who received 2.5–10 mg/kg. Although we 
cannot explain the difference between these groups, we expect 
it to be unrelated to nonlinearity.

Our study has some limitations. First, we used a single low 
dose (1 and 2 mg/kg) of L-AmB instead of the licensed 3-mg/
kg dose. While there is evidence of nonlinearity with high-dose 
L-AmB, linearity is reported at current dosages (3–5  mg/kg) 
used for treatment of Aspergillus infections [17]. Therefore, our 
results are expected to be applicable for currently used dose re-
gimens but should be used with caution when extrapolating to 
high-dose L-AmB (>5 mg/kg). Second, our study lacked a con-
trol group of normal-weight individuals. Nevertheless, our re-
sults are in line with those from the study by Würthwein et al 
who reported no effect of weight on clearance in patients who 
weighed between 44 and 105 kg, which we extend to 177 kg in 
our study [16]. Furthermore, the parameter estimates (%IIV) 
we found for clearance of 0.84  L/h (37.7%) are similar to the 
0.75 L/h (55%) found in a study in normal-weight healthy volun-
teers. Finally, we found a high IIV on clearance, which is mainly 
caused by the previously mentioned subgroup. We encourage fu-
ture studies to investigate this phenomena.

Based on our results, we show that body weight–derived 
dosing might lead to an increased risk of toxicity in obese 
patients as clearance and therefore exposure to AmB is not 
affected by body weight. In obese patients specifically, we rec-
ommend using the licensed 3 or 5 mg/kg dose and cap the dose 
at a maximum weight of 100 kg, resulting in a 300- or 500-mg 
fixed dose, respectively.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 

materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.
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