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IL-13 and IL-4, but not IL-5 nor IL-17A, induce
hyperresponsiveness in isolated human small
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Background: Specific inflammatory pathways are indicated to
contribute to severe asthma, but their individual involvement in the
development of airway hyperresponsiveness remains unexplored.
Objective: This experimental study in human small bronchi
aimed to provide insight into which of the type 2 and type 17
cytokines cause hyperresponsiveness of airway smooth muscle.
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Methods: Explanted small bronchi isolated from human
lung tissue and human airway smooth muscle cells were
treated for 2 and 1 day(s), respectively, with 100 ng/mL of IL-4,
IL-5, IL-13, or IL-17A, and contractile responses,
Ca21 mobilization, and receptor expression were
assessed.
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Abbreviations used

AHR: Airway hyperresponsiveness

CYSLTR1: Cysteinyl leukotriene receptor 1

HASMC: Human airway smooth muscle cell

HRH1: Histamine receptor H1

LTD4: Leukotriene D4

STAT6: Signal transducer and activator of transcription 6
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Results: Treatment with IL-13 increased the potency of
histamine, carbachol, and leukotriene D4 as contractile agonists.
IL-4, but not IL-5 or IL-17A, also increased the potency of
histamine. In human airway smooth muscle cells, IL-13 and
IL-4, but not IL-5 and IL-17A, enhanced the histamine-induced
Ca21 mobilization that was accompanied with increased mRNA
expression of histamine H1 and cysteinyl leukotriene CysLT1

receptors. RNA sequencing of isolated bronchi confirmed the
IL-13–mediated upregulation of H1 and CysLT1 receptors,
without showing an alteration of muscarinic M3 receptors.
Dexamethasone had no effects on IL-13–induced
hyperresponsiveness in human bronchi, the increased Ca21

mobilization, or the enhanced receptor expression. In contrast,
antagonism of the common receptor for IL-13 and IL-4 by the
biologic dupilumab prevented the effects of both IL-13 and IL-4
in human bronchi and human airway smooth muscle cells.
Conclusions: The glucocorticoid-insensitive
hyperrresponsiveness in isolated human airways induced by IL-
13 and IL-4 provides further evidence that the IL-4Ra pathway
should be targeted as a new strategy for the treatment of airway
hyperresponsiveness in asthma. (J Allergy Clin Immunol
2020;145:808-17.)

Key words: Airway smooth muscle, airway hyperresponsiveness,
bronchoconstriction explanted human tissue model, calcium
signaling, bronchoconstrictor agents, IL-4Ra, dupilumab, glucocor-
ticoid, STAT6

Airway hyperresponsiveness (AHR) is a hallmark of asthma
that is defined as the increased sensitivity and enhanced narrow-
ing of the airways in response to a broad range of physical or
chemical stimuli.1 Although glucocorticoids, the cornerstone
therapy in asthma, reduce inflammation and cause some reduction
of AHR, individuals with asthma remain hyperresponsive
compared with healthy subjects.2,3 As a result of our increased
understanding of the heterogeneity in asthma and its molecular
phenotypes,4 novel therapies are being developed that specifically
block the actions of particular cytokines considered to be central
to the pathogenesis of asthma.5-7 Clinical studies have shown that
targeting IL-5 and the common receptor for IL-4 and IL-13,
IL-4Ra, reduces asthma exacerbations in subsets of patients
with asthma displaying the most prominent signs of type 2
inflammation.5,6 However, it is not known whether these new
biologicals also improve AHR.

This experimental study aimed to provide a rationale for which
biologics may be considered to target AHR in future clinical
investigations. The study was conducted using freshly isolated
human airways and builds on the hypothesis that inflammatory
mediators may directly alter the responsiveness of airway smooth
muscle.1,8 The type 2 cytokine IL-13 has mostly been linked to
this form of hyperresponsiveness, because studies in mice9-11

and rabbits12 have shown that IL-13 can enhance contractions
of rodent airways. Similar effects have been observed for IL-
5,13 IL-17A,14 and IL-415 in animalmodels. Importantly however,
very few studies have translated these animal data into human air-
ways.16-19 The few reports using human tissues create a scattered
picture because of the different experimental models used (iso-
lated bronchi vs precision cut lung slices) or varying protocols
(eg, duration of exposure). The 4 key cytokines addressed in the
current investigation, IL-4, IL-5, IL-13, and IL-17A, have not
previously been compared in the same study in human airways.
The aim of this study was therefore to investigate the effects of
the presumed inducer of hyperresponsiveness, IL-13, on smooth
muscle function in human small airways and to compare this with
the effects of IL-4, IL-5, and IL-17A under the same conditions.
The contractile responses of isolated human bronchi were thus
examined using an established organ culture method in which
isolated human airways are subjected to controlled exposures of
inflammatory mediators.20 Additional studies were performed
using human airway smooth muscle cells (HASMCs) to further
define the mechanisms implicated by the observations in isolated
human bronchi.

METHODS

Human tissue preparation
With permission of the Regional Ethical Review Board in Stockholm

(reference no. 2010/181-31/2), macroscopically healthy human lung tissue was

collected after consent frompatients undergoing lobectomy for neoplasms (94%)

or other reasons (hamartoma) (n 5 33, 24 women and 9 men; median age, 69

years, range, 44-82; Table I). From each lung, 1 to 3 bronchi were dissected out,

cut into segments, and used for paired analyses. In several of the experiments,

different bronchi from the same patient were used to control for the intraindivi-

dual variability regarding the responsiveness of human airway preparations.21

Organ culture
Human bronchi (0.5-2 mm) were dissected and segments were cultured in

Dulbecco modified Eagle medium supplemented with 1% penicillin/

streptomycin (Life Technologies, Carlsbad, Calif) and placed in a humidified

incubator at 378C at 95%O2 and 5% CO2 for 2 days in the presence of 100 ng/

mL IL-13, IL-4, IL-5, or IL-17A and transferred to fresh medium and treat-

ments every day.20 For reculture experiments, first baseline contractility was

evaluated (day 0), and subsequently the bronchial rings were placed back

into culture for 2 days in the presence of 100 ng/mL IL-13 or vehicle (day

2). Chosen concentrations were based on previous in vitro investigations of

these cytokines.9,15,18

In vitro pharmacology
Human bronchial segments were mounted in myographs for isometric

tension measurements. The bronchi were stretched to 1.5 mN, during a

90-minute equilibration period, and viability was tested by administrations of

60 mM KCl.22 Contractile responses to histamine (0.1 nM to 100 mM), leuko-

triene D4 (LTD4) (0.01 nM to 100 nM), and carbachol (10 nM to 100mM) were

studied by cumulative administrations of the agonists. The next concentration of

agonist was administrated once the plateau of the contraction was reached, or in

case no contractile response was initiated, following 10 minutes after the

administration of the previous agonist. To obtainmaximal contractile responses,

each segment was exposed to 100 mM histamine, which was used as the

reference for the contractile response of that particular bronchial segment.23

Culture of HASMCs
Human primary bronchial smooth muscle cells (passage 4-6; Promocell

[Heidelberg, Germany]/Lonza [Basel, Switzerland]) were grown in Dulbecco

modified Eagle medium supplemented with 10% FBS and penicillin/

streptomycin. Confluent cells were serum-deprived (0.3% FBS) for 1 day

before 1-day stimulations with 100 ng/mL IL-4, IL-5, IL-13, or IL-17A.



TABLE I. Patient characteristics of the 33 patients studied in

this study

Characteristic Value

Sex: female, % 73

Age (y) 69 (44-82)

Body mass index (kg/m2) 25.5 (18.4-38.9)

C-reactive protein (mg/L) 2 (1-71)

Hemoglobin (g/L) 133 (109-177)

Leukocyte particle concentration ( 3 109/L) 6.9 (4.9-17.4)

Current smoker 12

Ex-smoker 17

Chronic obstructive pulmonary disorder 5

Asthma 2

Allergy 7

Ex-smoker is defined as a person who has not smoked for the last 12 mo. The numbers

represent absolute values or median and range.
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Intracellular Ca21 measurements
Intracellular Ca21 fluxes were measured in HASMCs according to previ-

ously described protocols.24 In brief, detached cells were incubated in PBS

containing 3 mM Fluo-4, 0.02% pluronic F-127, and 2.5 mM probenecid, or

Fluo-4 Direct Calcium Assay Kit (ThermoFisher, Waltham, Mass) according

to the manufacturer’s recommendations. Ca21 fluxes were analyzed by flow

cytometry (LSR Fortessa; BD Biosciences, Franklin Lakes, NJ) or using a

SpectraMax iD3 (Molecular Devices, San Jose, Calif).

Western blotting
Standard methodology was used to detect phosphoSTAT-6 (phosphoY641;

Abcam, Cambridge, United Kingdom) in relation to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (14C10, Cell Signaling Technology,

Danvers, Mass).

Polymerase chain reaction
RT-PCR was conducted using Taqman Gene Expression Master Mix and

primers of Applied Biosystems (Waltham,Mass). Changes in gene expression

were determined using the DDCt method after normalization for endogenous

controls b-actin and GAPDH.

RNA sequencing
Paired bronchial segments were cultured and exposed for 24 hours to IL-13

(100 ng/mL) or vehicle. Total RNA was extracted using Trizol and further

purified using the RNAeasy protocol. The yield and quality were analyzed

using Qubit and Agilent Tapestation. Indexed cDNA libraries were

normalized and sequenced on the Illumina HiSeq 2000. Raw intensity values

were background corrected, log2 transformed, and then quantile normalized

by the Expression Console software from Affymetrix (Santa Clara, Calif).

Drugs and materials
Recombinant human IL-13, IL-4, IL-5, and IL-17Awere obtained fromR&D

Systems (Minneapolis, Minn). Carbachol, dexamethasone, and histamine

dihydrochloride were purchased from Sigma-Aldrich (St Louis, Mo).

AS1517499 was purchased from Axon Medchem LLC (Groningen, The

Netherlands). LTD4 was obtained from Cayman Chemical (Ann Arbor, Mich).

Dupilumabwas obtained fromApoteket Produktion&Laboratorier AB (Stock-

holm, Sweden). Interventionswith dexamethasone,AS1517499, and dupilumab

were administrated 60 minutes before the initial addition of cytokines.

Calculations and statistics
All data are presented asmeans6 SEM. Information on sample size (n) and

the number of individual patients (N) studied for each individual experiment is

provided in the figure legends. For the statistical analysis of responses in

human bronchi, paired segments of bronchi were used, with 1 segment from an

individual bronchi always used as the control (nontreated).
The concentration-response curve values for pEC50 were calculated using

nonlinear regression analysis. Fold-changes were calculated from these acquired

pEC50 values using the following formula:

fold change 5
102pEC50ðcontrolÞ

102pEC50ðcytokineÞ

Paired t tests were used for comparisons between 2 groups and 1- or 2-way

ANOVA with the Bonferroni posttest for comparisons between multiple

groups. Graph Pad Prism 5.01 (San Diego, Calif) was used for statistical an-

alyses. For the RNA sequencing, sample group comparisons were performed

using the R package DESeq2 withWald test, where the P values were adjusted

for multiple testing using the Benjamini and Hochberg method.

Additional information on the applied methodologies can be found in this

article’s Online Repository at www.jacionline.org.

RESULTS

The effect of IL-13 on contraction of human small

bronchi
In the first set of experiments, culturewith IL-13 (day 2) caused

a 2.4-fold increase in the potency of histamine compared with
segments cultured with vehicle (pEC50: 6.8 6 0.1 vs 6.4 6 0.1;
P < .01). There was however no change in the near-maximal
contractions (113% 6 9% vs 114% 6 11%) induced in the
same segments before the 2 days of exposure (day 0) (Fig 1, A).
Likewise, the amplitude of the maximal contractions induced
by histamine (Fig 1, B), or 60 mMKCl, a non–receptor-mediated
contractile agent (Fig 1,C), was the same on day 0 compared with
that on day 2, for both vehicle (P5 .99 and .27) and IL-13–treated
segments (P 5 .99 and .47).

In the next set of experiments, using paired segments from
same bronchial branch, IL-13 caused a 3.2-fold increase in the
contractile potency of histamine (pEC50: 7.06 0.1 vs 6.56 0.1;
P < .001), a 3.2-fold increase in the potency of LTD4 (pEC50:
9.0 6 0.1 vs 8.5 60.1; P < .01), and a 2.5-fold increase in the
potency of carbachol (pEC50: 6.3 6 0.1 vs 5.9 6 0.1; P < .01)
(Fig 1, D-F). IL-13 also enhanced the maximal contractile
response toward LTD4 (Emax: 92.4% 6 3.8% vs 76.2% 6 5.2%;
P < .05; Fig 1, E), whereas the maximal contractile responses
toward carbachol were unchanged (Fig 1, F).

The contractile response to histamine was used as a reference
for the maximal contraction of the human bronchi and therefore
routinely examined in all studied preparations. We therefore have
the largest data set for the response to histamine (Fig 1,D), which
also enabled us to evaluate the effect of IL-13 (pEC50: 6.96 0.1)
and vehicle (pEC50 6.46 0.1) between patients (see Fig E1 in this
article’s Online Repository at www.jacionline.org).

Effect of IL-13 on intracellular Ca21 mobilization
To investigate the possible mechanisms involved, the effect of

IL-13 on histamine-induced intracellular Ca21 mobilization was
examined in cultured HASMCs. Treatment with IL-13 for 24
hours enhanced the concentration-dependent mobilization of
intracellular Ca21 by histamine (Fig 2, A-D), increasing
both amplitude (Fig 2, C) and potency compared with vehicle
(Fig 2, D; pEC50: 5.7 6 0.1 vs 5.4 6 0.1; P < .01).
Effects of IL-4, IL-5, and IL-17A on airway

contraction and intracellular Ca21 mobilization
Similar to IL-13, IL-4 caused a 5.1-fold increase in

the potency of the histamine-induced contraction (pEC50: 6.8 6

http://www.jacionline.org
http://www.jacionline.org


FIG 1. Effects of IL-13 on the potency and amplitude of contractile responses in human small bronchi.

Contractile responses in response to histamine and potassium chloride (KCl) were assessed in each

individual human bronchial ring preceding any treatment (day 0). The same bronchial rings were then

placed back into culture and treated for 2 days with 0.1% BSA (B) or 100 ng/mL IL-13 (C), after which

the contractile responses to histamine and KCl were reexamined (day 2). (A) The histamine-induced

contraction on day 2, expressed in relation to the maximal contraction measured on day 0. Maximal

contractions (mN) in response to (B) histamine and (C) KCl of the same individual bronchial rings before

(day 0) and after treatment (day 2) with vehicle (veh) or IL-13. Data are presented as mean 6 SEM (N: 7;

n: 14-15). Statistical analysis was performed by paired t tests comparing the pEC50 values (Fig 1, A) and

absolute contractions (Fig 1, B and C) on day 2 with the outcomes of the same bronchial preparation on

day 0. For subsequent experiments, human bronchial rings were no longer recultured, but instead directly

exposed to vehicle or 100 ng/mL IL-13. Cumulative concentration-response curves to (D) histamine,

(E) LTD4, and (F) carbachol after 2 days of exposure of vehicle or IL-13 are presented. Because histamine

caused the strongest maximal effect, this response was used as a reference for the force generated. Data

are presented as mean 6 SEM (N: 4-9; n: 8-32). Statistical analysis was performed by paired t tests

comparing the pEC50 values and absolute contraction of IL-13–treated bronchial rings with their matched

untreated controls from the same isolated bronchi. n.s., Nonsignificant.
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0.1 vs 6.1 6 0.1; P < .05; Fig 3, A) and an increased
histamine-induced intracellular Ca21 mobilization (Fig 3, D).
In contrast, culture with IL-5 or IL-17A caused no change in
the potency of histamine (pEC50: 6.3 6 0.2 and 6.4 6 0.2,
respectively) compared with vehicle (6.2 6 0.1) (Fig 3, B and
C), and no alteration of the histamine-induced intracellular
Ca21 mobilization (Fig 3, E and F).

Cytokine effects on gene expression
The effects of all tested cytokines (IL-13, IL-4, IL-5, and

IL-17A) on the mRNA expression of histamine receptor H1
(HRH1) and cysteinyl leukotriene receptor 1 (CYSLTR1) were
investigated in HASMCs. IL-13 caused a concentration-
dependent increase in mRNA for both HRH1 (Fig 4, A) and
CYSLTR1 (Fig 4, B). IL-4 induced a similar increase in HRH1
and CYSLTR1, whereas IL-5 and IL-17 had no effect on receptor
expression.

Focusing on the receptors of interest in this study,
RNA-sequencing analysis of human small bronchi showed
expression of histamine H1 (HRH1), CysLT1 (CYSLTR1), and
muscarinic M3 (CHRM3) receptors and cytokine receptors for
IL-4 (IL4R/IL2RG or IL4R/IL13RA1), IL-13 (IL4R/IL13RA1 or
IL13RA2), IL-5 (IL5RA/CSF2RB), and IL-17A (IL17RA/
IL17RC) (Table II). At baseline, highest expression was observed
for the IL4R/IL13RA1 heterodimer and lowest expression for the
G protein–coupled receptors CYSLTR1 and CHRM3. After
culture with IL-13, there was a significant increase in HRH1
and CYSLTR1 together with the presumed decoy receptor
IL13A2,25 which has also been implicated in airway fibrosis,26

whereas neither the expression of CHRM3 nor that of the other
cytokine receptors was affected.
The effect of dexamethasone on IL-13–induced

effects
In the presence of the glucocorticoid dexamethasone and IL-

13, the potency of histamine was 2.6- to 3.3-fold greater than in
preparations treatedwith dexamethasone alone, or vehicle-treated



FIG 2. Effect of IL-13 on intracellular Ca21 mobilization in cultured HASMCs. Compiled traces of the relative

histamine-induced increases in intracellular Ca21 in cells treated for 24 hours with (A) 0.1% BSA or (B) 100

ng/mL IL-13. C, Intracellular Ca21 mobilization induced by histamine measured as mean fluorescence

intensity (MFI). D, Changes in intracellular Ca21 expressed as percentages of each treatment’s ownmaximal

change in MFI (indexed at 100%). All data are presented as the mean 6 SEM (N: 3; n: 4-8); significance is

presented by *P < .05, **P < .01, and ***P < .001.
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bronchi (Fig 5, A). Similarly in HASMCs, the IL-13–induced
increase in the potency of histamine-induced intracellular Ca21

mobilization was not inhibited by dexamethasone (Fig 5, B).
The increase in HRH1 mRNA expression caused by IL-13
(2.3-fold change vs vehicle) was also replicated in this set of
experiments (Fig 5, C). IL-13 increased the expression of
HRH1 to a similar degree after treatment with dexamethasone
(2.0-fold vs dexamethasone), although the glucocorticoid reduced
the baseline expression of HRH1.
Effect of signal transducer and activator of

transcription 6 inhibition on IL-13–induced effects
Signal transducer and activator of transcription 6 (STAT6) is a

downstream signaling pathway of IL-13.27 IL-13 induced a
profound phosphorylation of STAT6 in HASMCs (Fig 5, D),
which AS1517499 (100 nM), a selective STAT6 inhibitor,28

inhibited, whereas dexamethasone had no effect (Fig 5, D and
E). However, pretreatment with AS1517499 (100 nM) did not
affect the IL-13–induced hyperresponsiveness of the bronchi
(Fig 5, F).
Effect of IL-4Ra antibody treatment on IL-13– and IL-

4–induced effects in human bronchi and HASMCs
Pretreatment with the IL-4Ra antibody dupilumab (1 mM)

before IL-13 (Fig 6, A) and IL-4 (Fig 6, B) administration atten-
uated the increase in potency for histamine (pEC50: 7.1 6 0.1
vs 6.3 6 0.1 and 6.7 6 0.1 vs 6.1 6 0.2, respectively; P < .05).
Similarly, dupilimab blocked the increase in the maximal effect
of histamine-induced intracellular Ca21 mobilization caused by
IL-13 (Fig 6, C) and IL-4 (Fig 6, D) in HASMCs.
DISCUSSION
This investigation was conducted in the small airway segment

that is increasingly being recognized as a critical determinant of
the severity of AHR.29,30 It was established that IL-13
unambiguously increased the potency of agonists belonging to
fundamental endogenous contractile pathways. Moreover, it
was shown for the first time that IL-4 shares this effect of IL-13
in the human bronchi. The enhancing effects of IL-13 and IL-4
on histamine responses were replicated in HASMCs. In contrast,
IL-5 and IL-17A did not enhance responses to histamine in either
model. Using unbiased RNA-sequencing methodology and
RT-PCR expression analysis, it was also discovered that both
IL-4 and IL-13 induced an upregulation of the receptors for
histamine and LTD4. Furthermore, both dexamethasone and
STAT6 inhibition failed to alter the IL-13–induced responses in
bronchi and HASMCs. In both models, pretreatment with the
IL-4Ra inhibitor dupilumab prominently abolished the responses
to IL-4 and IL-13, confirming that the effects observed were
mediated via activation of their common receptor.

In the first set of experiments, the potency of histamine-induced
contractions was increased in segments cultured with IL-13
without alteration of the amplitude of the contraction. The
unaltered maximal responsiveness was documented using a
reculture protocol that mitigates possible limitations caused by



FIG 3. Effects of IL-4, IL-5, and IL-17A on airway contraction of human bronchi and Ca21 mobilization in

HASMCs. Cumulative concentration-response curves for histamine in human bronchial rings cultured

for 2 days in the presence of (A) IL-4, (B) IL-5, or (C) IL-17A. Data are presented as mean 6 SEM (N: 5;

n: 6-11). Statistical analysis was performed by paired t tests comparing the pEC50 values of

cytokine-treated bronchial rings with their matched untreated controls from the same isolated bronchi.

Effects of 24-hour stimulation with (D) IL-4, (E) IL-5, or (F) IL-17A on the mobilization of intracellular

Ca21 in HASMCs following 100 mM of histamine. Data are presented as mean 6 SEM (N: 3-5; n: 3-5).

FIG 4. Effects of asthma-related interleukins on gene expression of HRH1 and CYSLTR1 in HASMCs.

HASMCs were incubated for 24 hours with IL-13, IL-4, IL-5, and IL-17A andmRNA expression was examined

for (A) HRH1 and (B) CYSLTR1. Data are presented as mean 6 SEM (N: 3; n: 3). Significance is shown as

*P < .05, **P < .01, and ***P < .001 vs vehicle control.
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variability in size and smooth muscle structure between different
isolated airway segments studied in parallel. The amplitude of 60
mM KCl, which elicits its contractions through membrane
depolarization,31 was not altered after culture with IL-13.
Because the concentration of KCl used in this study was
submaximal,32,33 this observation indicates that IL-13 does not
potentiate this receptor-independent activation. The findings
therefore support that the increased sensitivity to histamine after
exposure to IL-13 occurs via receptor-operated signaling,
upstream of the contractile machinery. The potential impact of
these changes in smooth muscle hyperresponsiveness is more
profound in the in vivo situation because air flow is determined
by airway resistance according to Poiseuille’s law, which is
inversely related to the fourth power of the airway radius.34

In the second experimental design, using paired segments that
enable a higher throughput, the effect of IL-13 on histamine
responsiveness was replicated. Using this procedure, we
discovered that IL-4 also increased responsiveness to histamine



FIG 5. The effect of dexamethasone and STAT6 inhibition on IL-13–induced hyperreactivity. A, Cumulative

contractile responses to histamine in human bronchi cultured for 2 days in the presence of IL-13 and/or

100 nM dexamethasone (Dex). B, Mobilization of intracellular Ca21 induced by histamine (0.1-100 mM).

C, Expression of HRH1 in HASMCs incubated for 24 hours with BSA (0.1%), dexamethasone (100 nM),

IL-13 (100 ng/mL), or IL-13 1 dexamethasone. Changes in intracellular Ca21 expressed as percentages of

each treatment’s own maximal change in MFI (indexed at 100%). All data are presented as mean 6 SEM,

from investigations in human bronchi (N: 4; n: 6) and HASMCs (N: 3; n: 4-9). D, Representative western

blot of STAT6 phosphorylation in HASMCs exposed for 1 hour to IL-13 (100 ng/mL), vehicle (veh) control,

the STAT6 inhibitor AS1517499 (100 nM), or dexamethasone (100 nM). E, Densitometric analysis of

STAT6 phosphorylation, normalized for GAPDH and presented as % increase from vehicle (n: 3). F, Cumu-

lative contractile responses to histamine in human bronchi cultured for 2 days in the presence of IL-13 and

100 nM AS1517499 (N: 3; n: 5). pEC50 values for the different treatments in human bronchi were statistically

compared with each other by a 1-way ANOVA with a Bonferroni posttest. AS1517499 and dexamethasone

were administered 1 hour before treatment with IL-13. MFI, Mean fluorescence intensity.
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in explanted human bronchi, which has not been shown before.
Furthermore, it was demonstrated that IL-13 increased the
responses to another mast cell mediator, LTD4, as well as the
cholinergic agonist carbachol. These findings are in line with
previous observations that IL-13 increased responses to histamine
and the thromboxane A2 receptor agonist U46619 in human
bronchi,17 and to carbachol in human precision cut lung slices.16

These studies primarily observed an increase in the amplitude of
the contractions. In our setting, only the contractile response to
LTD4 was increased in amplitude, most likely because LTD4

did not cause maximal airway contractions in the absence of
cytokine treatment. Taken together, the findings document that
both IL-13 and IL-4 can induce smooth muscle hyperresponsive-
ness for the major contractile pathways in asthma.

By measuring the effect of histamine-induced Ca21 influx,
which precedes airway contraction, this study confirmed previous
findings in HASMCs, showing that IL-13 increases Ca21

mobilization.9,35,36 Moreover, IL-13 caused an increase in the
potency of histamine-mediated effects, strengthening the link to
the effects observed in the bronchi. Previous studies in HASMCs
observed that IL-13 increased the effects of other agonists
activating G protein–coupled receptors, such as bradykinin and
thrombin,35 but not KCl.37 The absence of effect on submaximal
KCl contraction was also shown for the airway segments used in
the present study. Thus, the IL-13–induced increase in Ca21

influx indicates that the alteration in contraction is specific for
the G protein–coupled receptor pathway and regulated at the level
of Ca21 mobilization or above.

Both IL-13 and IL-4 increased in agreement with previous
studies the expression of HRH1 and CYSLTR1 in HASMCs.36,38

Our RNA sequencing confirmed and extended the importance
of this phenomenon, by showing for the first time that IL-13
also increases the expression of these receptors in intact human
airways. An increase in receptor density can cause a combined
increase in the amplitude and potency of the agonist, or only an
increase in potency if the agonist already at the basal state elicits
a maximal tissue effect.39 These processes are exactly what was
observed for the effects of IL-13 on the contractions to LTD4

and histamine, respectively, in human bronchi, indicating that
one component of the cytokine-induced increase in airway
contractility is potentially due to the upregulation of contractile
receptors.

Earlier studies in HASMCs have however shown that
concurrent inhibition of extracellular signal–regulated kinases
and c-Jun N-terminal kinase could prevent the IL-13–driven
enhancement of histamine-induced Ca21 mobilization without



FIG 6. The effect of dupilumab on IL-13– and IL-4–driven hyperreactivity in human bronchi and HASMCs.

Cumulative concentration-response curves to histaminewere created in human bronchial rings treated for 2

days with (A) IL-13 or (B) IL-4 in the presence or absence of 1 mM dupilumab. Paired t tests were used to sta-

tistically compare the pEC50 values of cytokine plus dupilumab–treated bronchial rings with their matched

IL-14– or IL-13–treated segment isolated from the same bronchi. Maximal induction of intracellular Ca21 by

100 mMhistamine in HASMCs stimulated for 24 hours with (C) IL-13 or (D) IL-4 in the presence or absence of

dupilumab. Data are presented as mean 6 SEM in human bronchi (N: 3; n: 7) and HASMCs (N: 1; n: 3).

TABLE II. RNA-sequencing analysis of human small bronchi*

Receptor BaseMean Fold change P value P adjusted

HRH1 548 6 73 1.73 6.09 3 10207 .000152

CYSLTR1 75 6 10 2.67 2.13 3 10209 9.66 3 10207

CHRM3 33 6 3 0.98 .911604 .999951

IL4R 1989 6 43 1.11 .263766 .999951

IL2RG 983 6 24 0.88 .339479 .999951

IL13RA1 2000 6 109 0.83 .10588 .999951

IL13RA2 704 6 87 2.38 9.62 3 10209 3.45 3 10206

IL5RA 347 6 72 1.11 .604956 .999951

CSF2RB 566 6 17 1.10 .535423 .999951

IL17RA 675 6 28 1.05 .545536 .999951

IL17RC 205 6 26 0.94 .721519 .999951

CHRM3, Cholinergic receptor muscarinic 3; CSF2RB, colony-stimulating factor 2

receptor b (forms heterodimer with IL5RA, with IL-5 as agonist); IL4R, IL-4 receptor;

IL2RG, IL-2 receptor g (forms a heterodimer with IL4R, with IL-4 as agonist);

IL13RA1, IL-13 receptor a1 (forms a heterodimer with IL4R, with IL-4 and IL-13 as

agonists); IL13A2, IL-13 receptor a2 (soluble IL-13 receptor a2); IL5RA, IL-5

receptor subunit a; IL17RA, IL-17 receptor A; IL17RC, IL-17 receptor C (IL17RA and

IL17RC form a heterodimer with IL-17A as agonist).

The data are expressed as baseMean (the mean of optical intensity values corrected for

background), fold change (real number), P value, and P adjusted (adjusted P value for

multiple comparisons). Data are obtained from 4 donors. N 5 4; n 5 4.

*Analysis of RNA expression from segments that were cultured 1 d in absence and

presence with IL-13 focusing on the receptors of interest in this study.
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affecting the upregulation of HRH1mRNA, raising the possibility
of alternative mechanisms other than receptor regulation.36 This
outcome does not however exclude a role for receptor regulation,
because the effects of these interventions were solely examined
on the maximal mobilization of intracellular Ca21 and not on
the potency for which an evaluation of the full concentration-
response would be needed. Nonetheless, the lack of effect of
IL-13 on the expression of the CHRM3 in our study also suggests
that the enhanced response to activation of muscarinic M3

receptors by IL-13 should be attributed to mechanisms other
than receptor upregulation, which may involve different kinase(s)
important in the homeostasis of intracellular Ca21.9,11,35,36 Taken
together, this indicates that at least 2 distinct pathways can explain
the increased sensitivity induced by IL-13 and IL-4 in the bronchi.
Future studies need to further address the signaling downstream
of the IL-4Ra/IL-13Ra1.

Of particular relevance to the clinical perspective, we found
that pretreatment with dexamethasone failed to inhibit the IL-13–
induced increase in sensitivity of the bronchi and Ca21

mobilization in HASMCs. The IL-13–induced increase in
HRH1 expression was also not affected by dexamethasone,
further suggesting that the IL-13–induced hyperresponsiveness
of airway smooth muscle is insensitive to the actions of
glucocorticoids. The positive effects of glucocorticoids probably
relate to their capacity to inhibit the production of inflammatory
mediators,40 whereas as this study shows, once these
cytokines are generated, their actions cannot be overcome by
glucocorticoids.

STAT6 signaling has been targeted for the treatment of
asthma.41 We found that the STAT6 inhibitor AS1517499
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markedly decreased IL-13–induced phosphorylation in
HASMCs, but it did not affect the IL-13–induced contractile
hyperresponsiveness to histamine in the bronchi. In line with
previous data showing no inhibitory effect of STAT6 inhibition
in HASMCs,36 it remains for future studies to define the signaling
mechanisms activated by IL-13 in human airways.

In this study, treatment with dupilumab, an antibody against
IL-4Ra, markedly blocked the effects induced by both IL-13 and
IL-4. This suggests that IL-4Ra probably mediates the effects of
IL-13 and IL-4 through dimerization with IL13Ra1.42 This
hypothesis gains circumstantial support from the high basal
expression of both parts of the common receptor (IL4R and
IL13RA1) observed in this study. Indeed, simultaneously
inhibiting the actions of both IL-13 and IL-4 with dupilumab
has shown significantly lower rates of severe asthma
exacerbation, better lung function, asthma control improvements,
and reduced oral glucocorticoid use in patients with uncontrolled
asthma5 and in patients with glucocorticoid-dependent severe
asthma.43 Dupilumab may therefore have effects over and above
those of glucocorticoids, which also fits with our data showing
that dexamethasone did not have any effect on IL-13–induced
hyperresponsiveness. Our study may be one explanation why
the combined blockade of IL-4 and IL-13 activity is more
beneficial in patients with asthma than antagonism of either alone,
which is underpinned by the limited effects of IL-13 monoclonals
in previous clinical studies.44,45

The cytokines IL-5 and IL-17Awere included because they are
also implicated in the pathogenesis of asthma,4 but their effects on
human airways have not been extensively studied. In contrast to
previous reports,13,14,18 neither of these cytokines enhanced the
contractile responses in the small airways, nor did they increase
Ca21 mobilization or receptor expression. The differing results
obtained in previous studies for the effects of IL-513 and
IL-17A on human airways14,18 may relate to our use of small
bronchi ranging from the 8th to the 13th generation,
compared with 1st to 5th generation in previous studies. For
IL-17A, the lack of effect on smooth muscle may be one
reason why the anti–IL-17 receptor mAb brodalumab failed to
show efficacy in patients with asthma.7 Given the success of
anti–IL-5 therapies,6,46 the current findings support that their
effects on exacerbations and other asthma outcomes are a
consequence of their established effects on eosinophils rather
than direct effects on airway smooth muscle. This would also
be in line with the limited effects of anti–IL-5 therapies on lung
function.6,43

Taken together, this is the first study in which the influence of 4
established proinflammatory cytokines, all of which are currently
targeted by new biologic treatments, have been compared under
identical and standardized conditions in human small airways. In
particular, the demonstration that activation of the IL-4/IL-13
pathway can promote profound hyperresponsiveness of the
airway smooth muscle indicates that these 2 cytokines can
directly contribute to the development of AHR at the level of
the smooth muscle. These findings warrant follow-up
bronchoprovocation studies in which the effect of combined
IL-4/IL-13 antagonism on AHR is examined in patients with
asthma. Brittle asthma with pronounced AHR is one example of a
phenotype that is difficult to treat, and might show particular
benefit from such interventions.
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Key messages

d IL-4 and IL-13 induce hyperresponsiveness of the airway
smooth muscle in isolated human small airways.

d This glucocorticoid-insensitive hyperrresponsiveness
could be prevented by the IL-4Ra antagonist dupilumab.

d This study warrants follow-up bronchoprovocation
studies in patients with asthma in which the effect of com-
bined IL-4/IL-13 antagonism on AHR is examined.
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METHODS

Reculture
For reculture experiments, the bronchi were cultured overnight in Dulbecco

modified Eagle medium in the absence of any treatment and after that their

baseline contractility was evaluated (day 0). The same bronchial segments

were placed back into culture, and treated for 48 hours in the presence of

IL-13. Responses after this reculture on day 2 were compared with each

segment’s own individual response on day 1.

Western blotting
Cell lysates were size-fractionated on 4% to 12% gradient NuPage Bis-Tris

acrylamide gels (Invitrogen, Carlsbad, Calif) and transferred to nitrocellulose

membranes. GAPDH (14C10, Cell Signaling Technology) and phosphoSTAT-

6 (phosphoY641, Abcam) were detected using IRDye800CW antirabbit

antibody and read for immunocomplexes using the OdysseyCLx imaging

system (LI-COR Biosciences, Lincoln, Neb).
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FIG E1. The effect of IL-13 on the potency of histamine in human small bronchi presented for individual

patients. To determine the mean effect of 2-day culture with IL-13 for the individual patients, the effects of

IL-13 on the contractile response of different bronchial preparations from the same patient were averaged.

(A) The average cumulative concentration-response curve to histamine for these patients and (B) their

individual corresponding pEC50 after 2-day culture with IL-13 or vehicle are presented. A mixed-effect

model was applied to statistically compare the effect of IL-13 for each individual concentration, whereas

a paired t test was used for the comparison of the pEC50 values. Significance is shown as *P < .05 and

***P < .001. Data are presented as mean 6 SEM (N: 9).
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