
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University 
dissertation. 
 
Author: Azadbakht, K. 
Title: Asynchronous Programming in the Abstract Behavioural Specification Language 
Issue Date: 2019-12-11 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388636161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�


Asynchronous Programming in

the Abstract Behavioural

Specification Language

Keyvan Azadbakht





Asynchronous Programming in

the Abstract Behavioural

Specification Language

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden

op gezag van de Rector Magnificus prof. mr. C.J.J.M. Stolker

volgens besluit van het College voor Promoties

te verdedigen op woensdag 11 december 2019

klokke 11:15 uur

door

Keyvan Azadbakht

geboren te Kohdasht, Iran
in 1987



PhD Committee

Promotor:

Prof. dr. F.S. de Boer

Co-promotor:

Dr. E.P. de Vink Eindhoven University of Technology

other members:

Prof. dr. ir. F. Arbab

Dr. M.M. Bonsangue

Dr. L. Henrio CNRS, Paris

Prof. dr. A. Plaat

Prof. dr. M. Sirjani Malardalen University, Sweden

The work in this thesis has been carried out at the Center for Mathematics and

Computer Science (CWI) in Amsterdam and Leiden Institute of Advanced Com-

puter Science (LIACS) at Leiden University. This research was supported by the

European project FP7-612985 UpScale (From Inherent Concurrency to Massive

Parallelism through Type-based Optimizations).

Cover design: Mostafa Dehghani



Contents

Prologue 1

I Background:
Abstract Behavioural Specification 3

1 The ABS Language 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 ABS and Other Languages . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Model of Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Language Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Distributed ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II Case Study:
Preferential Attachment in ABS 13

2 Preferential Attachment on Multicore Systems 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Parallel Model of the PA . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 23

3 Preferential Attachment on Distributed Systems 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Distributed PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 32

III Enhancing Parallelism 35

4 Futures for Streaming Data 37

iii



iv CONTENTS

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Future-Based Data Streams . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Subject Reduction for the Extended ABS . . . . . . . . . . . . . . . . 58

4.4 Data Streams in Distributed Systems . . . . . . . . . . . . . . . . . . 60

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Multi-Threaded Actors 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Syntax of MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Experimental Methodology and Implementation . . . . . . . . . . . . 82

5.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 87

IV Deadlock Analysis 91

6 Deadlock Detection for Actor-Based Coroutines 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 The Programming Language . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 The Concrete System . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 The Abstract System . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Correctness of Predicate Abstraction . . . . . . . . . . . . . . . . . . 103

6.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Decidability of Deadlock Detection . . . . . . . . . . . . . . . . . . . 105

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Epilogue 111

Acknowledgements 113

Summary 115

Samenvatting 117



Prologue

This manuscript studies the Abstract Behavioural Specification (ABS), a formal

language for designing executable models of parallel and distributed object-oriented

systems [48]. ABS is defined in terms of a formal operational semantics which

enables a variety of static and dynamic analysis techniques for ABS models, e.g.,

deadlock detection [14,39], verification [30] and resource analysis [5].

The overall goal of this thesis is to extend the asynchronous programming model

and the corresponding analysis techniques in ABS. Based on the different results, the

thesis is structured as follows: Part I gives a preliminary overview of the ABS. In part

II, we apply an extension of ABS with a notion of shared memory which preserves

encapsulation to a case study, where we provide a parallel and distributed model of

preferential attachment which is used to simulate large-scale social networks with

certain mathematical properties. Encapsulation is preserved by a single-write policy.

In Part III, we formally extend ABS to enhance both asynchronous programming

by data streaming between processes, and parallelism by multi-threading within

an actor. Finally in part IV, a new technique based on predicate abstraction is

introduced to analyze the ABS models for the absence of deadlock within an actor.

Validation. This work has been carried out in the context of the UpScale Project,

an EU-funded project where the vision was:

to provide programming language support to efficiently develop applica-

tions that seamlessly scale to the available parallelism of manycore chips

without abandoning the object-oriented paradigm and the associated

software engineering methodologies.

In particular, the above extension of ABS concerning streaming of data has been

validated by the case study on preferential attachment for the efficient multicore

and distributed simulation of large-scale social networks. The results of this thesis

have been separately validated by the peer-reviewed scientific publications listed in

Table 1.
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Part I

Background:

Abstract Behavioural Specification

This part consists of the following chapter:

Chapter 1 Abstract Behavioural Specification (ABS) is a language for designing

executable models of parallel and distributed object-oriented systems [48], and is

defined in terms of a formal operational semantics which enables a variety of static

and dynamic analysis techniques for the ABS models. In this chapter, we give a

brief overview of ABS with the main focus on syntax, semantics, and the model of

concurrency. Finally, a simple example that represents a model of thread pool in

ABS is given.
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Chapter 1

The ABS Language

1.1 Introduction

Over decades, execution of software has shifted from local computer programs with

low processing power to execution of many computationally-intensive programs with

massive data processing and transferring, which are physically distributed and inter-

connected. Execution of such programs demands efficient, rigorous software design

and implementation, and powerful underlying computing and communication re-

sources.

According to the Moore’s law for decades, hardware manufacturers could double

the number of transistors on a chip roughly every two years, which has been leading

to proportional speed-up in the processing of a sequence of instructions for a unicore

chip. Also in order to achieve the above speed-up, hardware manufacturers have

been trying for long to reduce the sizes of transistors and the distance between them.

However, the feasibility of such proportional speed-up has reached to its limit, mainly

because of physical restrictions. In [8], three main obstacles are discussed that

prevent the hardware manufacturers from sustaining the growing speed-up expected

by Moore’s law: first, the linear increase in clock frequency of a unicore chip gives

rise to quadratic energy consumption. Second, such a higher-frequency processor

generates more heat than the current cooling technologies can dissipate. Third,

the fine-granular parallelism gained from instruction-level parallelism (ILP) in the

streams of a single instruction seems to have reached its limit. A more fundamental

obstacle is, however, that the flow of information in a computer system with a

single computational core is ultimately limited to the speed of light. Therefore, the

continuous effort has reached to a threshold that the production of faster unicore

processors is no longer economically-viable.

Because of the above obstacles, the hardware manufacturers started prototyping

and producing multicore (and manycore) processors as a new computer architecture

around 2005 [71]. On these processors, there are multiple computational cores with

dedicated and shared caches that operate on a shared memory and can process

5



6 The ABS Language

multiple program instructions in parallel. However, a sequential program can be

executed on a unicore processor with a specific frequency as fast as on a multicore

processor with the same frequency, disregarding the number of cores.

The underlying idea of using a multicore processor is to improve performance

by harnessing the processing power of its constituent cores. To this aim, by parallel

programming, the workload is divided evenly in form of tasks which are assigned to

the cores. A common parallel program (beside, e.g., data-parallelism and graphics

processing) involves communication among the tasks (e.g., synchronization on a data

provided by another task). With the advent of chips with higher number of cores,

however, the programming means of parallelism and communication also needs to

scale. As an example, the multi-threading in Java can be applied to programs with

a few number of threads executed on the current multicore processors. However,

reasoning about the correctness of multi-threaded programs is notoriously difficult in

general [67], especially in the presence of a shared mutable memory which can result

in software errors due to data race and atomicity violations. The problem escalates

when the future multicore processors come into the picture, and thus the need for a

modeling language that enables scalable parallel and distributed programming still

persists.

Abstract Behavioural Specification (ABS) is a language for designing executable

models of parallel and distributed object-oriented systems [48], and is defined in

terms of a formal operational semantics which enables a variety of static and dynamic

analysis techniques for the ABS models, e.g., deadlock detection [14,39], verification

[30] and resource analysis [5]. Moreover, the ABS language is executable which

means the user can generate executable code and integrate it to production —

currently backends have been written to target Java, Erlang, Haskell [20] languages

and ProActive [46] library.

The ABS language originated from the Creol modeling language which is in-turn

influenced by SIMULA, the first object oriented language. The language is generally

regarded as a modeling language rather than a programming language with the aim

of software production. The main purpose of ABS is thus to construct a (usually

abstract) model of the system-to-be, whose different properties can be reasoned

about based on different techniques on the underlying formalism. Nevertheless, the

before-mentioned ABS backends provide libraries of data structures for the language,

and considering the executable nature of the ABS models (and the similarity to

Java), these models can be re-used as a starting point for the software production.

ABS at the data layer is a purely functional programming language, with support

for pure functions (i.e., functions that disallow side-effects), parametrically poly-

morphic algebraic datatypes (e.g., Maybe<A>) and pattern matching over those

types. At the object layer sits the imperative layer of the language with the Java-

reminiscing class, interface, method and attribute definitions. It also attributes the

notion of concurrent object group (cog), which is essentially a group of objects which

share control.
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Therefore the language is comprised of two layers: 1) the concurrent object layer,

an imperative object oriented language that captures the concurrency model, com-

munication, and synchronization mechanisms of the ABS, and 2) the functional

layer, a functional language which is used for modeling data.

From another perspective, ABS adheres to the Globally Asynchronous Locally

Sequential model of computation. A cog forms a local computational entity, which

is based on synchronous internal method activations. All objects inside a cog, which

share a thread of control, can synchronously call the methods of objects inside the

same group. However communication between the objects of different cogs is, in

principle, asynchronous. The behavior of a cog is thus based on cooperative multi-

tasking of external requests sent to the constituent objects.

1.2 ABS and Other Languages

The actor model has gained attention as a concurrency concept since, in contrast to

thread-based concurrency, it encapsulates control flow and data. Prominent exam-

ples are Erlang [6] based on a functional programming paradigm and Akka actors 1

integrated into a modern object oriented language.

ABS, unlike the general notion of actors as in, e.g., Erlang and Akka Actors,

is statically typed and supports a programming to interface discipline. Therefore a

message, which represents an asynchronous method invocation, is statically checked

if the called method on an object is supported by the interface that is implemented

by the corresponding class, which gives rise to a type safe communication mechanism

that is compatible with standard method calls. This also forces the fields of an object

to be private, thus avoiding the incidents of reference aliasing. Unlike Java, objects

in ABS are typed exclusively by interface with the usual nominal subtyping relations

— ABS does not provide any means for class (code) inheritance.

In contrast to the run-to-completion mode of method execution, e.g., in Re-

beca [69] and Akka Actors, ABS further provides the powerful feature of cooperative

scheduling which allows an object to suspend in a controlled manner the current ex-

ecuting method invocation (also known as process) and schedule another invocation

of one of its methods. This novel mechanism enables combining active and reactive

behaviors within an object, and avoiding a common scenario where waiting for the

resolution of certain messages requires the actor to be completely blocked for other

activities, thus enhancing the potential concurrency and parallelism.

1.3 Model of Concurrency

The model of execution in ABS is based on the actor model [47] which is a model

of concurrency with the following characterization: 1) an actor has an identity

1https://akka.io
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and encapsulates its constituent data and a single thread of control, and 2) the

communication between actors are via asynchronous message passing. The receiving

messages are queued in the mailbox of the actor. The thread activates messages

from the mailbox, i.e., dequeues the message and executes an internal computation

correspondingly.

The identity of an actor is shared either with its creator upon creation , or it

is explicitly sent as a parameter of a message. Also, there is no pre-defined global

ordering where a sending actor can prioritize its message over the ones of other

actors.

Active objects [55,78] are descendants of actors where messages are asynchronous

method invocations and the operations of an object are defined in terms of methods

that are encapsulated and exposed via interfaces. The notion of active object is an

alternative to the traditional object’s built-in mechanisms for multi-threaded and

distributed programming, where support for structuring and encapsulation of the

state space, higher-level communication mechanisms and a common model for local

and distributed concurrency is missing [63].

In addition to the above, ABS active objects feature synchronization on futures

and cooperative scheduling of internal processes, which are elaborated as follows:

Synchronization on futures A future of a specific type is used as a unique

reference to the return value of an asynchronous method call with the same return

type. The future is unresolved if the corresponding return value is not yet available.

It is resolved otherwise and stores the value. The query to retrieve the value of a

future (via get operation) synchronizes the active object on the resolution of the

future, namely, the active object is blocked until the future is resolved. The value

is then retrieved.

Cooperative scheduling ABS also features cooperative scheduling, where the

active process of an object can deliberately yield control such that a process from

the set of suspended processes of the object can be activated, i.e., explicit coopera-

tion in contrast to the common mechanisms of thread preemption. The “release of

control” happens in explicit places of the ABS model, where the potential concurrent

interleavings of different processes are defined. These places are specified by await
and suspend statements, for conditional and unconditional release, respectively.

1.4 Language Definition

In the following, the ABS syntax of Concurrent Object layer of Core ABS is given.

We also briefly describe semantics of each syntactic structure. The syntax and

semantics for the functional layer is omitted as it is not the focus of this thesis. In

[48], the full formal definition of Core ABS is given.
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Syntactic categories

C, I,m in Names

g in Guard

s in Statement

Definitions

P ::= Dd F IF CL {T x; s}
IF ::= interface I {Sg }
CL ::= classC [(T x)] [implements I] {T x; M}
Sg ::= T m (T x)

M ::= Sg {T x; s }
g ::= b | e? | g ∧ g
s ::= s; s | x = rhs | suspend | await g | skip

| if b {s} [else {s}] | while b {s} | return e

rhs ::= e | new [local] C [(e)] | e!m(e) | e.m(e) | x.get

Figure 1.1: Core ABS syntax for the concurrent object level [48]

The Concurrent Object Layer of Core ABS is given in Figure 1.1. In this

grammar, an overlined entity v denotes a list of v. The IF denotes an interface.

Each interface has a name I and a list of method signatures Sg . A class CL has

a name C, interfaces I, formal parameters and state variables x of types T , and

methods M . (The fields of the class are both its parameters and state variables).

When the class is instantiated, the number, order and type of actual parameters

must match those of formal parameters. This also applies to the synchronous and

asynchronous method invocations. In ABS the object references are typed only with

interfaces (i.e., programming to interfaces). A reference variable with type I, where

I is an interface name, can hold a reference to an instance of a class C, provided

that C implements I.

A method signature Sg declares the return type T of a method with name m

and formal parameters x of types T . M defines a method with signature Sg , local

variable declarations x of types T , and a statement s. Statements can have access to

the fields of the current class, local variables, and the method’s formal parameters.

The state of a method is its local variables and the fields of the class it belongs to.

A program’s main block is a method body {T x; s}.
Right-hand side expressions rhs include object creation within the same cog

(written “new local C(e)”) and in a fresh cog (written “new C(e)”), method

invocations, and expressions e. Statements are standard for sequential composition,

assignment, skip, if, while, and return constructs. The statement suspend
unconditionally releases the processor, suspending the active process. In await g,

the guard g controls processor release and consists of Boolean conditions b and

return tests x? (see below). If g evaluates to false, the processor is released and the

process suspended. When the processor is idle, any enabled process from the object’s

pool of suspended processes may be scheduled. Consequently, explicit signaling is

redundant in ABS.

Besides the common synchronous method calls to passive objects e.m(ē), ABS

introduces the notion of concurrent objects (also known as active objects). These

concurrent objects interact primarily via asynchronous method invocations and fu-
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tures. An asynchronous method invocation is of the form of x = e!m(e), where e

is an object expression (i.e., an expression typed by an interface), and x is a future

variable used as a reference to the return value of the asynchronous method call m,

and thus the caller can proceed without blocking on the call. The method invoca-

tion itself will generate a process which is stored in the mailbox (process queue) of

the object e. Futures can be passed around and can be queried for the value they

contain.

There are two operations on a future expression e for synchronization on external

processes in ABS. The operation x = e.get blocks the execution of the active object

until the future expression e is resolved, where its value is assigned to x. On the

other hand, the statement await e? results in releasing control by the process,

where the future expression e is unresolved. This allows for scheduling another

process of the same active object and as such gives rise to the notion of cooperative

scheduling : releasing the control cooperatively so another enabled process can be

(re)activated. ABS provides two other forms of releasing control: the await b

statement which will only re-activate the process when the given boolean condition

b becomes true (e.g. await this.x == 3), and the suspend statement which will

unconditionally release control to the active object. Note that the ABS language

specification does not fix a particular scheduling strategy for the process queue of

active objects as the ABS analysis and verification tools will explore many (if all)

schedulability options; however, ABS backends commonly implement such process

queues with FIFO ordering.

When executed between objects in different cogs, then the statement sequence

x = o!m(e); v = x.get amounts to a blocking, synchronous call and is abbreviated

v = o.m(e). In contrast, synchronous calls v = o.m(e) inside a cog have the reentrant

semantics known from, e.g., Java method invocation. The statement sequence x =

o!m(e); await x?; v = x.get codes a non-blocking, preemptable call, abbreviated

await v = o.m(e). In many cases, these method calls with implicit futures provide

sufficiently flexible concurrency control to the modeler.

1.5 Distributed ABS

The ABS also supports distributed models at the implementation level, a cloud

extension to the ABS standard language, as implemented in [20]. This extension

introduces the Deployment Component (DC), which abstracts over the resources

for which the ABS program gets to run on. In the simplest case, the DC corre-

sponds to a Cloud Virtual Machine executing some ABS code, though this could

be extended to include other technologies as well (e.g. containers, microkernels).

The DC, being a first class citizen of the language, can be created (DC dc1 = new
AmazonDC(cpuSpec,memSpec)) and called for (dc1 ! shutdown()) as any

other ABS concurrent object. The DC interface tries to stay as abstract as possible

by declaring only two methods shutdown to stop the DC from executing ABS code
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while freeing its resources, and load to query the utilization of the DC machine

(e.g. UNIX load). Concrete class implementations to the DC interface are (cloud)

machine provider specific and thus may define further specification (CPU, memory,

or network type) or behaviour.

Initially, the Deployment Component will remain idle until some ABS code is

assigned to it by creating a new object inside using the expression o = [DC: dc1]
new Class(...), where o is a so-called remote object reference. Such references

are indistinguishable to local object references and can be normally passed around

or called for their methods. The ABS language specification and its cloud extension

do not dictate a particular Garbage Collection policy, but we assume that holding

a reference to a remote object or future means that the object is alive, if its DC is

alive as well.

1.6 Example

In Figure 1.2 we show a model of a thread pool in ABS with a given interface and a

fixed number of threads. The thread pool retrieves and executes tasks (asynchronous

method invocations) that are stored in its queue and returns their corresponding

futures. Once a thread terminates the execution of a task, it is assigned another

task from the queue if the queue is not empty, or remains idle otherwise.

The thread pool consists of a set of active objects (i.e., instances of Member)

that represent the threads, and one manager (i.e., an instance of Threadpool)

that manages the thread pool. Both the manager and the members provide the

same interface Service, which denotes the methods that can be executed by the

thread pool. In this example, Service provides two method signatures m1 and

m2. The intended behaviour of these methods is implemented in Member. The

implementation of the methods with the same signatures in Threadpool, however,

involves relegating the call to an available member’s corresponding method. It also

consistently updates the list of available members. For instance, m1 in Threadpool
awaits the availability of a Member instance, removes the member from the list of

available members, calls the corresponding m1 on the member, awaits on the future

resulting from the call, and finally adds the member to the list of available members

again as the task is finished.



12 The ABS Language

module threadpool;

interface Service
{

T1 m1(...);
T2 m2(...);
...

}

class Member implements Service {
T1 m1(...)
{

// implementation of m1
}
T2 m2(...)
{

// implementation of m2
}
...

}

class Threadpool(Int count) implements Service{

List<Service> available = Nil;

{
Int i = 1;
while(i<=count) {

Service thread = new Member();
available = cons(thread, available); i = i + 1;

}
}

T1 m1(...)
{

Service thread = this.getThread();
Future<T1> f = thread!m1(p1);
// p1 is a list of arguments received by m1
await f?;
available = cons(thread, available);
return f.get;

}

T2 m2(...)
{

Service thread = this.getThread();
Future<T2> f = thread!m2(p2);
// p2 is a list of arguments received by m2
await f?;
available = cons(thread, available);
return f.get;

}

...

Service getThread() {
await available != Nil;
Service thread = head(available);
available = tail(available);
return thread;

}
}

{ // main block
Service threadpool = new Threadpool(numberOfThreads);
Future<T1> f = threadpool!m1(...);
...

}

Figure 1.2: A model of thread pool



Part II

Case Study:

Preferential Attachment in ABS

This part consists of the following chapters:

Chapter 2 The Barabasi-Albert model (BA) is designed to generate scale-free

networks using the preferential attachment mechanism. In the preferential attach-

ment (PA) model, new nodes are sequentially introduced to the network and they

attach preferentially to existing nodes. PA is a classical model with a natural intu-

ition, great explanatory power and interesting mathematical properties. Therefore,

PA is widely-used for network generation. However the sequential mechanism used

in the PA model makes it an inefficient algorithm. The existing parallel approaches,

on the other hand, suffer from either changing the original model or explicit complex

low-level synchronization mechanisms. In this chapter we investigate a high-level

Actor-based model of the parallel algorithm of network generation and its scalable

mult-core implementation in the ABS language.

Chapter 3 Generation of social networks using Preferential Attachment (PA)

mechanism introduced in previous chapter features interesting mathematical prop-

erties which only appear in large-scale networks. However generation of such extra-

large networks can be challenging due to memory limitations. In this chapter, we

investigate a distributed-memory approach for PA-based network generation which

is scalable and which avoids low-level synchronization mechanisms thanks to uti-

lizing the powerful programming model and proper programming constructs of the

ABS language.
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Chapter 2

Preferential Attachment on

Multicore Systems

2.1 Introduction

Social networks in the real world appear in various domains such as, among others,

friendship, communication, collaboration and citation networks. Social networks

demonstrate nontrivial structural features, such as power-law degree distributions,

that distinguish them from random graphs. There exist various network generation

models that synthesize artificial graphs that capture properties of real-world so-

cial networks. Some existing network generative models are the Erdos-Renyi (ER)

[33] model of random graphs, the Watts-Strogatz (WS) [75] model of Small-world

networks, and the Barabasi-Albert model of scale-free networks. Among these mod-

els, Barabasi-Albert model, which is based on Preferential Attachment [18], is one

of the most commonly used models to produce artificial networks, because of its

explanatory power, conceptual simplicity, and interesting mathematical properties

[73]. The need for efficient and scalable methods of network generation is frequently

mentioned in the literature, particularly for the preferential attachment process

[4, 9, 19, 23, 41, 58–60, 73, 79]. Scalable implementations are essential since massive

networks are important; there are fundamental differences between the structure of

small and massive networks even if they are generated according to the same model,

and there are many patterns that emerge only in massive networks [56]. Analysis of

the large-scale networks is of importance in many areas, e.g. data-mining, network

sciences, physics, and social sciences [16]. The property that we have focused on in

this chapter is the degree of the nodes and by preferential attachment (PA) we mean

degree-based preferential attachment. In PA-based generation of the networks, each

node is introduced to the existing graph preferentially based on the degrees of the ex-

isting nodes, i.e., the more the degree of an existing node, the higher the probability

of choosing it as the target of a new connection.

The PA-based parallel and distributed versions of generating the scale-free graphs
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16 Preferential Attachment on Multicore Systems

are based on a partitioning of the nodes and a parallel process for each partition

which adds edges to its nodes. The edges are generated by random selection of

target nodes. The data structure prescribed in the Copy Model [54] guarantees that

the selection of the target is done consistently, e.g., the probability distribution of

selecting the target nodes in the parallel version should remain the same as the

distribution in the sequential one. However, from the point of view of the control

flow, the following main problem arises: random selection of the target node requires

synchronization between the parallel processes. The process that hosts the randomly

selected target node has possibly not determined the node yet. However the process

hosting the source node must be informed about the target node in the future once

it is determined.

random selection requires synchronization between the parallel processes, i.e.,

the target nodes are not resolved yet. and the need for conflict resolution, namely,

the selection of a node which has already been selected as a target of the given

source node.

The main contribution of this chapter is a high-level Actor-based model for

the PA-based generation of networks which avoids the use of low-level intricate

synchronization mechanisms. A key feature of the Actor-based model itself, so-called

cooperative scheduling, however, poses a major challenge to its implementation. In

this chapter, we discuss the scalability of a multicore implementation based on

Haskell which manages cooperative scheduling by exploiting the high-level and first-

class concept of continuations [62]. Continuations provide the means to “pause”

(part of) the program’s execution, and programmatically switch to another execution

context; the paused computation can be later resumed. Thus, continuations can

faithfully implement cooperative scheduling in a high-level, language-builtin manner.

The rest of the chapter is organized as follows. The description of the Actor-based

modeling framework which is used to model the PA-based generation of massive

networks is given in section 2.2. Section 2.3 elaborates on parallelizing the PA

model. Section 2.4 mentions the related works. Finally we conclude in section 2.5.

2.2 The Modeling Framework

We propose an Actor-based modeling framework that supports concurrency and

synchronization mechanisms for concurrent objects. It extends the ABS language

and, apart from the ABS functional layer which includes algebraic data types and

pattern matching, it additionally features global arrays as a mutable data structure

shared among objects. This extension fits well in the multicore setting to decrease

the amount of costly message passing, and also to simplify the model. In general, this

feature can cause complicated and hard-to-verify programs. Therefore the model

only allows using this feature in a disciplined manner, which restricts the array

to initially unresolved slots with single-write access (also known as promises in
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languages like Haskell and Scala1), to avoid race conditions. In this chapter, and

chapter 3 and 4 the initial value 0 denotes the unresolved state of a slot.

2.3 Parallel Model of the PA

In this section we present the solution for the PA problem utilizing the idea of

active objects cooperating in a multicore setting. For the solution we adopt the

copy model, introduced in [54]. We first introduce the main data structure of the

proposed approach which is based on the graph representation in copy model. Next

we present the basic synchronization and communication mechanism underlying our

solution and its advantages over existing solutions.

2.3.1 The Graph Representation

We introduce one shared array, arr, as the main data structure that holds the

representation of the graph. The array consists of the edges of the graph. Each

(i, j) where i, j > 0 and j = i + 1, and j mod 2 = 0 shows an edge in the graph

between arr[i] and arr[j] (Figure 2.1(a)).

According to the PA, each node is added to the existing graph via a constant

number of edges (referred to as m) targeting distinct nodes. There is also an initial

clique, a complete graph with the size of m0 where (m0 > m), which is stored at

the beginning of the array. Therefore the size of the array is calculated based on

the number of nodes, num, and the number of edges that connect each new node to

the existing distinct nodes, m. The connections of a new node are established via

a probability distribution of the degrees of the nodes in the existing graph, that is,

the more the degree of the existing node, the more the probability of choosing it as

the target. For instance, if the node n is the new node to be added to the graph

with the existing graph with [1..n − 1] nodes then, according to equation 2.1, the

probability distribution of choosing the existing nodes is [p1..pn−1]. (deg(i) gives the

degree of the node i in the existing graph)

pi =
deg(i)∑n−1
j=1 deg(j)

n−1∑
i=1

pi = 1 (2.1)

As mentioned, the connections for the new node should be distinct. Therefore if

a duplicate happens the approach retries to make a new connection until all the

connections are distinct. This graph representation provides the above mentioned

probability distribution since the number of occurrences of each node in the array

is equal to its degree. Figure 2.1(b) represents the position of node n in the graph

array, where m = 3. In order to add node n to the existing graph containing n− 1

nodes, with the assumption that m = 3, targets are selected randomly from the slots

1https://docs.scala-lang.org/sips/completed/futures-promises.html
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that are located previous to the node n (with the principle shown in Figure 2.2). It

is obvious that self-loop cannot happen, i.e., an edge whose source and target are

the same. Figure 2.1(c) illustrates an optimization on the array so that the array

only contains the targets of the edges since the sources for each node are calculable.

The array is half size as the one in Figure 2.1(b). Each slot in the array can have

one of two states: resolved or unresolved. In the former case it contains the node

number which is greater than zero, and in the latter it contains zero.

A sequential solution for the generation of such graphs consists of processing the

array from left to right to resolve all the slots. The parallel alternative, on the other

hand, is to have multiple active objects processing partitions of the array in parallel.

As shown in the following equations, we distinguish between the following uses of

indices. At the lowest level we have the indices of the slots. The next level is the id

of the nodes. Each node contains a sequence of slots. Finally at the top level we have

the id of the partitions. Each partition contains nodes and consequently slots. In

the proposed approach the partitions satisfy the following equations which express

that the sets of indices of the partitions are mutually disjoint (equation 2.3); that

their union is equal to the whole array (equation 2.2); furthermore, the sequence

of slots of each node must be placed in one partition (equation 2.4) so that one

active object resolves the new node and race conditions are avoided for the checking

duplicates:

w⋃
i=1

pari = G (2.2)

∀(1 ≤ (i 6= j) ≤ w).pari ∩ parj = ∅ (2.3)

∀i, j ∈ G.(node(i) = node(j))→ (par(i) = par(j)) (2.4)

where G is the global set containing all the indices of the shared array, w holds the

number of partitions, pari is the set which holds the indices of the ith partition of

the array, node(i) is a function that returns the node id to which the slot of the

array with index i belongs, and par(i) is a function that returns the partition id to

which the index i belongs. Note that indices that belong to a specific node differ

from the occurrences of that specific node in the array. The former indices are the

slots that represents the edges that are created during introducing the new node to

the graph, which its size is constant (denoted by m), while the latter changes during

the graph generation.

There are different approaches to partition the array so that they hold the above

equations, such as Consecutive and Round Robin Node Partitioning (CSP and RRP

respectively). As it is shown in [4], RRP is more efficient and it is observed a better

load balancing among processors as well as less unresolved chains of dependencies

which leads to less computational overhead. Therefore we have utilized RRP to

partition the array among active objects.
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(a) The array which represents the
graph

(b) The nth node and its connections
to the existing graph with n− 1 nodes

(c) A memory usage optimization to
the array based on copy model

Figure 2.1: The array representing the graph

2.3.2 Synchronization of Chains of Unresolved Dependen-

cies

Each active object only resolves (i.e. writes to) the slots which belong to its own

partition . Nevertheless it can read all the slots throughout the array. In the parallel

solution, an active object may select a slot as the target which is not resolved

yet since either the other active object responsible for the target slot has not yet

processed it or the target slot may wait for another target itself (see dependency

chains in figure 2.2). The way waiting for unresolved slots is managed is crucial

for the complexity of the model and its scalability. Next we describe the two main

approaches to deal with unresolved dependencies (Figure 2.3):

Synchronization by communication: Active object A processes its own partition

of the array and for each randomly selected, unresolved slot it sends a request to the

object B responsible for the target. When object B processes the request, it checks

whether the slot is resolved. If it is not then it stores the information of the request

(e.g. the sender id, the slot requiring the value of the target) in a corresponding

data structure. Because B is the only object which writes to the target slot when it

Figure 2.2: An example of the general sketch of dependencies (right to left) and
computations (left to right)
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(a)

(b)

Figure 2.3: Two different solutions for the PA problem (the second one is the pro-
posed approach)

is resolved, it suffices that B answers all the stored requests waiting for the resolved

target by broadcasting the value of the slot. As such this approach exploits the

wait-notify pattern rather than busy-wait polling, and it can be efficient depending

on how the programmer implements the data structure. However, this approach

involves a low-level user-defined management of the requests through the explicit

user-defined implementation of the storage and retrieval of the requests. Note that

in this approach there are exactly two messages that have to be passed for each

request for an unresolved slot (Figure 2.3(a)).

Synchronization by Cooperative Scheduling : Active object A processes its own

partition of the array and for each unresolved randomly selected slot it sends an

asynchronous self request called “request” for the target value. When object A

schedules and processes the request “request” it checks whether the slot is resolved

or not (by a Boolean condition) and if not it awaits on this condition. This means
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that the request process is suspended. It is notified when the boolean condition

evaluates to true and stored back in the object’s queue of active processes (Figure

2.3(b)). This approach also avoids busy-waiting and follows the wait-notify pattern.

However, the key feature in this approach is the use of cooperative scheduling in

which the executing process of an active object can release conditionally the control

cooperatively so that another process from the queue of the object can be executed.

The continuation of the process which has conditionally released the control will

be stored into a separate queue of suspended processes. These processes are stored

again in the object’s queue for execution when they are notified. The Haskell im-

plementation of this mechanism takes care of the low-level storage, execution and

suspension of the processes generated by asynchronous messages. The ABS code

itself, see below, remains high-level by means of its programming abstractions de-

scribing asynchronous messaging and conditional release of control.

2.3.3 The Actor-based Model of PA

The main part of the encoding of our proposed approach is depicted as a pseudo-code

in Figure 2.4. The full implementation of the model is provided online2. The worker

objects are active objects which resolve their corresponding partitions. To this aim,

each worker goes through its own partition and it checks a randomly selected target

for each of its slots (note that m denotes the number of connections, or slots in the

array, per node). Since we use the optimized array representation (shown in Figure

2.1(c)), half of the array that corresponds to sources of the edges are not part of the

array and the values (i.e., node numbers) are calculable from the index. However

those indices can be targeted. The auxiliary function result(arr, target) checks the

target index. If it is calculable, then it calculates and returns the value without

referring to the array. Otherwise, the value of the index should be retrieved from

the array. In such case, if the target slot is already resolved then the worker takes

the value and resolves the slot of the current index in case there is no conflict. If

it is not resolved yet then it calls the request method asynchronously. The request

method awaits on the target until it is resolved. Then it uses the value of the resolved

target to resolve the current slot, if there is no duplicate. In case of a duplicate, the

algorithm selects another target randomly in the same range as the previous one.

Note that the calls to the request method in lines 8 and 22 are asynchronous (de-

noted by exclamation mark) and synchronous (denoted by dot) respectively. The

asynchronous call is introduced so as to spawn one process per each unresolved

dependency. In the synchronous call, however, there is no need to spawn a new

process since the current process is already introduced for the corresponding unre-

solved dependency. Note that suspension of such a process thus involves in general

an entire call stack, which poses one of the major challenges to the implementation

of ABS, but which is dealt with in Haskell by the high-level and first-class concept

2https://github.com/kazadbakht/PA/blob/master/src/ParProRR.abs
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of continuations (described in more detail below).

1: Each active object O executes the following in parallel
2: run(...) : void
3: for each Node i in the partition do
4: for j = 1 to m do
5: target← random[1..(i− 1)2m]
6: current = (i− 1)m+ j
7: if result(arr, target) = 0 then
8: this ! request(current, target)
9: else if duplicate(result(arr, target), current) then

10: j = j − 1 . Repeat for the current slot j
11: else
12: arr[current] = result(arr, target) . Resolved

13:

14:

15: request(target : Int, current : Int) : void
16: await (result(arr, target) 6= 0)
17: . At this point the target is resolved
18: value = result(arr, target)
19: if duplicate(value, current) then
20: target = random[1..(target/m)2m]
21: . Calculate the target for the current again
22: this.request(target, current)
23: else
24: arr[current] = value . Resolved

25:

26:

27: duplicate(target : Int, current : Int) : Boolean
28: for each i in (indices of the node to which current belongs) do
29: if arr[i] == value then
30: return True
31: return False

Figure 2.4: The sketch of the proposed approach

2.4 Related Work

There exist some attempts to develop efficient implementations of the PA model

[4, 9, 19, 41, 58, 59, 73, 79]. Some existing works focus on more efficient implemen-

tations of the sequential version [9, 19, 73]. Such methods propose the utilization

of data-structures that are efficient with respect to memory consumption and time

complexity. Few existing methods are based on a parallel implementation of the PA
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model [4, 59, 79], among which some methods [59, 79] are based on a version of the

PA model which does not satisfy its basic criteria (i.e., consistency with the original

model). The approach in [4] requires complex synchronization and communication

management and generates considerable overhead of message passing. This stems

from that this latter approach is not developed for a multicore setting but for a dis-

tributed one. However our focus is to have a high-level parallel implementation of

the original PA model utilizing the computational power of multicore architectures

[12].

2.5 Conclusion and Future Work

We showed that the PA-based generation of networks allows a high-level multicore

implementation using the ABS language and its Haskell backend that supports coop-

erative multitasking via continuations and multicore parallelism via its lightweight

threads. An experimental validation of a scalable distributed implementation of our

model based on Haskell is presented in [12].

Future work will be dedicated toward optimizations of the Haskell runtime sys-

tem for the ABS. Other work of interest is to formally restrict the use of shared

data structures in the ABS to ensure encapsulation. One particular approach is to

extend the compositional proof-theory of concurrent objects [31] with foot-prints

[28] which capture write accesses to the shared data structures and which can be

used to express disjointness of these write accesses.



24 Preferential Attachment on Multicore Systems



Chapter 3

Preferential Attachment on

Distributed Systems

3.1 Introduction

Massive social networks are structurally different from small networks synthesized

by the same algorithm. Furthermore there are many patterns that emerge only in

massive networks [56]. Analysis of such networks is also of importance in many areas,

e.g. data-mining, network sciences, physics, and social sciences [16]. Nevertheless,

generation of such extra-large networks necessitates an extra-large memory in a

single server in the centralized algorithms.

The major challenge is generating large-scale social networks utilizing distributed-

memory approaches where the graph, generated by multiple processes, is distributed

among multiple corresponding memories. Few existing methods are based on a

distributed implementation of the Preferential Attachment model (PA, chapter 2)

among which some methods are based on a version of the PA model which does not

fully capture its main characteristics. In contrast, we aim for a distributed solution

which follows the original PA model, i.e., preserving the same probability distribu-

tion as the sequential one. The main challenge of a faithful distributed version of PA

is to manage the complexity of the communication and synchronization involved.

In a distributed version, finding a target node in order for the new node to

make connection with may cause an unresolved dependency, i.e., the target itself

is not yet resolved. However this kind of dependencies must be preserved and the

to-be-resolved target will be utilized when it is resolved. How to preserve these

dependencies and their utilization give rise to low-level explicit management of the

dependencies or, by means of powerful programming constructs, high-level implicit

management of them.

The main contribution of this chapter is a new distributed implementation of

an ABS model of PA. In this chapter, we show that ABS can be used as a pow-

erful programming language for efficient implementation of cloud-based distributed

25
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applications.

This chapter is organized as follows: Section 3.2 elaborates on the high-level pro-

posed distributed algorithm using the notion of cooperative scheduling and futures.

In Section 3.3, implementation-specific details of the model are presented. Finally,

Section 3.4 concludes the chapter.

Related Work. In chapter 2 (section 2.4) the existing related work for sequential

and parallel implementations of PA is presented. The work in this chapter is inspired

by the work in [4] where a low-level distributed implementation of PA is given in

MPI: the implementation code remains closed source (even after contacting the

authors) and, as such, we cannot validate their presented results (e.g, there are

certain glitches in their weak scaling demonstration), nor compare them to our own

implementation.

Since efficient implementation of PA is an important and challenging topic, fur-

ther research is called for. Moreover, our experimental data are based on a high-level

model of the PA which abstracts from low-level management of process queues and

corresponding synchronization mechanism as used in [4].

In [68], a high-level distributed model of the PA in ABS has been presented

together with a high-level description of its possible implementation in Java. How-

ever, as we argue in Section 3, certain features of ABS pose serious problems to

an efficient distributed implementation in Java. In this chapter, we show that these

problems can be solved by a run-time system for ABS in Haskell and a corresponding

source-to-source translation. An experimental validation of a scalable distributed

implementation based on Haskell is presented in [10].

3.2 Distributed PA

In this section, we present a high-level distributed solution for PA which is similar

to the ones proposed for multicore architectures in [12] (chapter 2) and distributed

architectures in [4, 68], in a sense that they adopt copy model introduced in [54]

to represent the graph. The main data structure used to model the graph which

represents the social network is given in section 2.3.1. We use the same data structure

for distributed PA as well.

The sequential algorithm of PA based on copy model is fairly straightforward

and the unresolved slots of the array are resolved from left to right. The distributed

algorithms however introduce more challenges. First of all, the global array should

be distributed over multiple machines as local arrays. The indices of the global array

are also mapped to the ones in the local arrays according to the partitioning policy.

Secondly, there is the challenge of unresolved dependencies, a kind of dependency

where the target itself is not resolved yet since either the process responsible for the

target has not processed the target slot yet or the target slot itself is dependent on

another target slot (chain of dependencies). Synchronization between the processes
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to deal with the unresolved dependencies is the main focus of this chapter. Next

we present the basic synchronization and communication mechanism underlying our

distributed approach and its advantages over existing solutions.

3.2.1 The Distributed ABS Model of PA

Two approaches are represented in Figure 3.1 which illustrate two different schemes

of dealing with the unresolved dependencies in a distributed setting. In order to

remain consistent with the original PA, both schemes must keep the unresolved

dependencies and use the value of the target when it is resolved. Scheme A (used

in [4]) utilizes message passing. If the target is not resolved yet, actor b explicitly

stores the request in a data structure until the corresponding slot is resolved. Then

it communicates the value with actor a. Actor b must also make sure the data

structure remains consistent (e.g., it does not contain a request for a slot which is

already responded).

In addition to message passing, scheme B utilizes the notion of cooperative

scheduling. Instead of having an explicit data structure, scheme B simply uses the

await statement on (target 6= 0). It suspends the request process until the target is

resolved. The value is then communicated through the return value to actor a. Also

await f? is skipped if the future f is resolved, and suspends the current process

otherwise. This statement is used to synchronize on the return value of a called

method. The above-mentioned await constructs eliminates the need for an explicit

user-defined data structure for storing and retrieval of the requests. The following

section describes an ABS implementation of the scheme B.

An ABS-like pseudo code which represents scheme B in the above section is given

in Figure 3.2. The full implementation of the model is provided online1. The main

body of the program, which is not mentioned in the figure, is responsible to set up

the actors by determining their partitions, and sending them other parameters of the

problem, e.g., n and m. Each actor then processes its own partition via run method.

The function whichActor calculates and returns the index of the actor containing the

target slot, based on n, m and the partitioning method. The request for the slot is

then sent asynchronously to the actor and the future variable is sent as a parameter

to the delegate function where the future value is obtained and checked for conflict.

If there is no conflict, i.e., the new target is not previously taken by the source, then

the slot is written with the target value. Recall that the one global array is divided

into multiple local arrays, one per actor. Based on the partitioning method, n and m

there is a mapping from the global indices to the local ones. The function whichSlot

maps an index of the global array to the index of a local array. The request method

is responsible to map the global index of the target to the local index function (via

whichSlot) and awaits on it and returns the value once the slot is resolved. Note

that, based on the same optimization of the array size discussed in chapter 2, the

1https://github.com/kazadbakht/PA/blob/master/src/DisPA.abs
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(a) Simple message passing

(b) Message passing with futures and cooperative scheduling

Figure 3.1: The process of dealing with unresolved dependencies in an actor-based
distributed setting
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method result(arr, target) checks if the value for the index target is calculable then

it returns the calculated value. Otherwise it checks the corresponding array index

in the array and returns the value.

1: Each actor O executes the following in parallel
2: Unit run(...)
3: for each node i in the partition do
4: for j = 1 to m do step
5: target← random[1..(i− 1)2m]
6: current = (i− 1)m+ j
7: x = whichActor(target)
8: Fut < Int > f = actor[x] ! request(target)
9: this ! delegate(f, current)

10:

11:

12: Int request(Int target)
13: localTarget = whichSlot(target)
14: await (result(arr, localTarget) 6= 0)
15: . At this point the target is resolved
16: return result(arr, localTarget)
17:

18:

19: Unit delegate(Fut < Int > f, Int current)
20: await f?
21: value = f.get
22: localCurrent = whichSlot(current)
23: if duplicate(value, localCurrent) then
24: target = random[1..(current/m)2m]
25: . Calculate the target for the current again
26: x = whichActor(target)
27: Fut < Int > f = actor[x] ! request(target)
28: this.delegate(f, current)
29: else
30: arr[localCurrent] = value . Resolved

31:

32:

33: Boolean duplicate(Int value, Int localCurrent)
34: for each i in (indices of the node to which localCurrent belongs) do
35: if arr[i] == value then
36: return True
37: return False

Figure 3.2: The sketch of the proposed approach
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3.3 Implementation

The distributed algorithm of Figure 3.2 is implemented directly in ABS, which is sub-

sequently translated to Haskell code [10], by utilizing the ABS-Haskell [20] transcom-

piler (source-to-source compiler). The translated Haskell code is then linked against

a Haskell-written parallel and distributed runtime API. Finally, the linked code is

compiled by a Haskell compiler (normally, GHC) down to native code and executed

directly.

The performance results of an experimental validation of the proposed approach

in ABS-Haskell transcompiler is presented in [10]. The parallel runtime treats ABS

active objects as Haskell’s lightweight threads (also known as green threads), each

listening to its own concurrently-modifiable process queue: a method activation

pushes a new continuation to the end of the callee’s process queue. Processes await-

ing on futures are lightweight threads that will push back their continuation when

the future is resolved; processes awaiting on boolean conditions are continuations

which will be put back to the queue when their condition is met. The parallel run-

time strives to avoid busy-wait polling both for futures by employing the underlying

OS asynchronous event notification system (e.g. epoll, kqueue), and for booleans

by retrying the continuations that have part of its condition modified (by mutating

fields) since the last release point.

For the distributed runtime we rely on Cloud Haskell [32], a library framework

that tries to port Erlang’s distribution model to the Haskell language while adding

type-safety to messages. Cloud Haskell code is employed for remote method acti-

vation and future resolution: the library provides us means to serialize a remote

method call to its arguments plus a static (known at compile time) pointer to the

method code. No actual code is ever transferred; the active objects are serialized

to unique among the whole network identifiers and futures to unique identifiers

to the caller object (simply a counter). The serialized data, together with their

types, are then transferred through a network transport layer (TCP,CCI,ZeroMQ);

we opted for TCP/IP, since it is well-established and easier to debug. The data are

de-serialized on the other end: a de-serialized method call corresponds to a contin-

uation which will be pushed to the end of the process queue of the callee object,

whereas a de-serialized future value will wake up all processes of the object awaiting

on that particular future.

The creation of Deployment Components is done under the hood by contacting

the corresponding (cloud) platform provider to allocate a new machine, usually

done through a REST API. The executable is compiled once and placed on each

created machine which is automatically started as the 1st user process after kernel

initialization of the VM has completed.

The choice of Haskell was made mainly for two reasons: the ABS-Haskell back-

end seems to be currently the fastest in terms of speed and memory use, attributed

perhaps to the close match of the two languages in terms of language features:
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Haskell is also a high-level, statically-typed, purely functional language. Secondly,

compared to the distributed implementation sketched in Java [68], the ABS-Haskell

runtime utilizes the support of Haskell’s lightweight threads and first-class continu-

ations to efficiently implement multicore-enabled cooperative scheduling; Java does

not have built-in language support for algebraic datatypes, continuations and its

system OS threads (heavyweight) makes it a less ideal candidate to implement co-

operative scheduling in a straightforward manner. On the distributed side, layering

our solution on top of Java RMI (Remote Method Invocation) framework was de-

cided against for lack of built-in support for asynchronous remote method calls and

superfluous features to our needs, such as code-transfer and fully-distributed garbage

collection.

3.3.1 Implementing Delegation

The distributed algorithm described in Section 3 uses the concept of a delegate

for asynchronicity: when the worker actor demands a particular slot of the graph

array, it will spawn asynchronously an extra delegate process (line 9) that will

only execute when the requested slot becomes available. This execution scheme

may be sufficient for preemptive scheduling concurrency (with some safe locking

on the active object’s fields), since every delegate process gets a fair time slice

to execute; however, in cooperative scheduling concurrency, the described scheme

yields sub-optimal results for sufficient large graph arrays. Specifically, the worker

actor traverses its partition from left to right (line 3), spawning continuously a new

delegate in every step; all these delegates cannot execute until the worker actor has

released control, which happens upon reaching the end of its run method (finished

traversing the partition). Although at first it may seem that the worker actors do

operate in parallel to each other, the accumulating delegates are a space leak that

puts pressure on the Garbage Collector and, most importantly, delays execution by

traversing the partitioned arrays “twice”, one for the creation of delegates and one

for “consuming them”.

A naive solution to this space leak is to change lines 8,9 to a synchronous in-

stead method call (i.e. this.delegate(f,current)). However, a new problem

arises where each worker actor (and thus its CPU) continually blocks waiting on the

network result of the request. This intensely sequentializes the code and defeats the

purpose of distributing the workload, since most processors are idling on network

communication. The intuition is that modern CPUs operate in much larger speeds

than commodity network technologies. To put it differently, the worker’s main cal-

culation is much faster than the round-trip time of a request method call to a remote

worker. Theoretically, a synchronous approach could only work in a parallel setting

where the workers are homogeneous processors and requests are exchanged through

shared memory with memory speed near that of the CPU processor. This hypothesis

requires further investigation.



32 Preferential Attachment on Distributed Systems

1: Unit run(...)
2: for each node i in the partition do
3: for j = 1 to m do step
4: target← random[1..(i− 1)2m]
5: current = (i− 1)m+ j
6: x = whichActor(target)
7: Fut < Int > f = actor[x]! request(target)
8: aliveDelegates = aliveDelegates + 1
9: this! delegate(f, current)

10: if aliveDelegates = maxBoundWindow then
11: await aliveDelegates <= minBoundWindow

Figure 3.3: The modified run method with window of delegates.

We opted instead for a middle-ground, where we allow a window size of dele-

gate processes: the worker process continues to create delegate processes until their

number reaches the upper bound of the window size; thereafter the worker process

releases control so the delegates have a chance to execute. When only the number of

alive delegate processes falls under the window’s lower bound, the worker process is

allowed to resume execution. This algorithmic description can be straightforwardly

implemented in ABS with boolean awaiting and a integer counter field (named

this.aliveDelegates). The modification of the run is shown in Figure 3.3; Similarly

the delegate method must be modified to decrease the aliveDelegates counter

when the method exits.

Interestingly, the size of the window is dependent on the CPU/Network speed

ratio, and the Preferential Attachment model parameters: nodes (n) and degree

(d). In [10], the performance results of the PA model presented in this chapter

in the Haskell backend are given. We empirically tested and used a fixed window

size of [500, 2000]. Finding the optimal window size that keeps the CPUs busy

while not leaking memory by keeping too much delegates alive for a specific setup

(cpu,network,n,d) is planned for future work.

3.4 Conclusion and Future Work

In this chapter, we have presented a high-level distributed-memory algorithm that

implements synthesizing artificial graphs based on Preferential Attachment mecha-

nism. The algorithm avoids low-level synchronization complexities thanks to ABS,

an actor-based modeling framework, and its programming abstractions which sup-

port cooperative scheduling. The experimental results for the proposed algorithm

presented in [10] suggest that the implementation scales with the size of the dis-

tributed system, both in time but more profoundly in memory, a fact that permits

the generation of PA graphs that cannot fit in memory of a single system.
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For future work, we are considering combining multiple request messages in

a single TCP segment; this change would increase the overall execution speed by

having a smaller overhead of the TCP headers and thus less network communication

between VMs, and better network bandwidth. In another (orthogonal) direction,

we could utilize the many cores of each VM to have a parallel-distributed hybrid

implementation in ABS-Haskell for faster PA graph generation.
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Part III

Enhancing Parallelism

This part consists of the following chapters:

Chapter 4 Asynchronous Actor-based software programming has gained increas-

ing attention as a model of concurrency and distribution. Many modern distributed

software applications require a form of continuous interaction between their compo-

nents which consists of streaming data from a server to its clients. In this chapter,

we extend the basic model of asynchronous method invocation and return in order

to support the streaming of data [13]. We introduce the notion of “future-based

data streams” by augmenting the syntax, type system, and operational semantics of

ABS. The application involving future-based data streams is illustrated by a case

study on social network simulation.

Chapter 5 In this chapter we introduce a new programming model of multi-

threaded actors which feature the parallel processing of their messages [15]. In

this model an actor consists of a group of active objects which share a message

queue. We provide a formal operational semantics, and a description of a Java-based

implementation for the basic programming abstractions describing multi-threaded

actors. Finally, we evaluate our proposal by means of an example application.
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Chapter 4

Futures for Streaming Data

4.1 Introduction

Since the rapid growth in big data, data streaming is widely used in many distributed

applications, e.g., telecommunications, event-monitoring and detection, and sensor

networks. Data streaming is a client/server pattern which, in essence, consists of

a continuous generation of data by the server and a sequential and incremental

processing of the data by the client. Data streams are naturally processed differently

from batch data. Functions cannot operate on data streams as a whole, as the

produced data can be unlimited. Hence, new programming abstractions are required

for the continuous generation and consumption of data in the streams.

Data streaming is highly relevant in modern distributed systems. Actor-based

languages are specifically designed for describing such systems [1]. They provide

an event-driven model of concurrency where messages are communicated asyn-

chronously and processed by pattern matching mechanism [7]. Concurrent objects

generalize this model to programming to interface discipline by modeling messages

as asynchronous method invocations. The main contribution of this chapter is to

integrate data streaming mechanism with concurrent object systems.

In this chapter, we extend the ABS language in order to support the streaming

of data between a server and its clients. We introduce “future-based data streams”

which integrates futures and data streams, and which specifies the return type of

so-called streaming methods. Upon invocation of such a method a new future is

created which holds a reference to the generated stream of data. Data items are

added to the stream by the execution of a yield statement. Such a statement takes

as parameter an expression the value of which is added to the stream, without

terminating the execution of the method. The return statement terminates the

execution of a streaming method, and is used to signal the end of data streaming.

Even though no new data is produced, the existing data values in the stream buffer

can be retrieved by the consumers.

The values generated by the server (the streaming method) can be obtained

37
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incrementally and sequentially by a client by querying the future corresponding to

this method invocation. By the nature of data streaming, it is natural to restrict

the streaming to the asynchronous method calls. Therefore there is no support for

synchronous invocation of streaming methods.

In this chapter, we introduce two different implementations of streams tailored

to different forms of parallel processing of data streams. Obtaining data from a

destructive stream involves the removal of the data, whereas in a non-destructive

stream the data persists. Which of the implementation is used is determined by the

caller of the streaming method (the creator of the stream) which is not necessarily

the consumer of the data stream. The creator can then provide the consumers with

a reference to the stream. Both the streaming method (producer) and the consumers

which hold a reference to the data stream are not exposed to the underlying imple-

mentation of the stream, i.e., these different implementations are not represented by

different types of data streams. This allows for a separation of concerns between the

generation and processing of data streams, on the one hand, and their orchestration,

on the other hand. This also enables reusability of the implementation of producers

and consumers for both consumption approaches.

A preliminary discussion of the overall idea underlying this chapter is given

in [11]. As an extension, in this chapter we introduce the different implementations

of data streams, an operational semantics for both implementations of streams,

a new type system which formalizes the integration of futures and data streams,

and a proof of type-safety. Further, we show how the basic mechanism in ABS of

cooperative scheduling of asynchronously generated method invocations itself can

be used to implement data streams and the cooperative scheduling of streaming

methods.

As a proof of concept, exploiting a prototype implementation for supporting

future-based data streams on top of ABS, we present the usage of the above-

mentioned feature in the implementation of a distributed application for the gener-

ation of distributed PA (chapter 2 and 3). The notion of data streaming abstracts

from the specific implementation of ABS. In our case, we make use of the distributed

Haskell backend of ABS [20] for the case study on future-based data streams reported

in this chapter.

The overall contribution of this chapter is a formal model of streaming data in

the ABS language, which fully complies and generalizes the asynchronous model of

computation underlying the ABS language. Since ABS is defined in terms of a formal

operational semantics which supports a variety of formal analysis techniques (e.g.,

deadlock detection [39] and [14]), we thus obtain a general formal framework for

the modeling and analysis of different programming techniques for processing data

streams, e.g., map-reduce and publish-subscribe [34]. To the best of our knowledge,

our work provides a first formal type system and operational semantics for a general

notion of streaming data in a high-level actor-based programming language.
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Plan of the chapter This chapter is organized as follows: the notion of a future-

based data stream is specified as an extension of ABS in Section 4.2. In section 4.3,

it is shown that the well-typedness of a program in the extended ABS is preserved.

Section 4.4 discusses the usage of streams in a distributed setting. In section 4.5, an

implementation of data streams is given as an API written in ABS. In Section 4.6,

a case study on social network simulation is discussed, which uses the proposed

notion of streams. Related works are discussed in section 4.7. Finally we conclude

in section 4.8.

4.2 Future-Based Data Streams

In this section, we define future-based data streaming in the context of the ABS

language. A streaming method is statically typed, namely, the return type of the

method is followed by the keyword stream, specifying that the method streams

values of that type. As mentioned before, ABS features a programming to inter-

faces discipline. Therefore the caller can asynchronously call a streaming method,

provided that the interface of the callee includes the method definition.

Data streaming is defined as a stream of return values from a callee to the data

consumers of the stream in an asynchronous fashion. An invocation of a streaming

method creates a stream. The callee first create an empty stream, and then produces

and stores data to the stream buffer via the yield statement. The caller assigns

the invocation to a variable of type Stream<T> for the return type T stream of

the callee. The stream variable can be passed around. Therefore different variables

in multiple processes (a process is the execution of an asynchronous method call)

may refer to the same stream and retrieve data from it.

We distinguish between two different kinds of streams: destructive and non-

destructive streams. The kind of stream is determined by the caller upon the invo-

cation of the streaming method. In destructive streams, values are retrieved from a

FIFO queue which stores the data produced but not yet consumed. Querying avail-

ability of data values in an empty queue gives rise to a cooperative release of control

(further discussed below). Also an attempt to take a value from a stream where the

callee is terminated (and thus no further data streaming will take place) gives rise

to the execution of a block of statements specified by programmer for this reason,

thus avoiding the generation of a corresponding error (see below). Parallel processes

which have access to the same destructive stream compete for the different data

items produced. Consequently, the parallel processing of destructive data streams

gives rise to race conditions, in the sense that different order of requests to read from

a stream may correspondingly give rise to different data values. Note that at most

one process can destructively read a specific data value. On the other hand, a non-

destructive stream allows complete sharing of all the data produced which are only

read to be processed. As described in more detail below, non-destructive streams

maintain access by means of cursors at different positions of the buffer which allows
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for its asynchronous parallel processing.

Abstracting from the typing information, to be discussed in more detail below,

the syntax of our proposed extension of ABS, i.e., that of future-based data streams,

is specified in Figure 4.1, where e denotes an expression (i.e., a variable name, etc),

e denotes a sequence of expressions, x is a variable name, m is a method name, and

s denotes a sequence of statements.

s ::= s; s | x = [nd] e!m(e) | yield e | return | suspend |
await e? finished {s} | x = e.get finished {s}

Figure 4.1: Syntax

In the asynchronous invocation x = [nd] e!m(e) of a streaming method, the

optional keyword nd indicates the creation of a new non-destructive stream.

Execution of the yield statement, which can only be used in the body of a

streaming method, consist of queuing the value of the specified expression.

Execution of the return statement by a streaming method indicates termina-

tion of the data generation which is signaled to the consumers of the stream by

queuing the special value η.

The active process unconditionally releases control by suspend. The object is

then idle and can activate a suspended process. The await-finished statement

allows to check the buffer of the stream denoted by the expression e in the following

manner: if there is at least one proper value, different from the signal η, in the buffer,

the statement is skipped. In case the buffer is empty, the current process suspends

such that the object can activate another process. The statement s is executed in

case the buffer only contains the signal η.

The get-finished statement allows to actually retrieve (in case of a destruc-

tive stream) or read (in case of a non-destructive stream) a next data value. It

however blocks the whole object when the buffer is empty. As above, statement s is

executed when the buffer only contains the signal η.

In await-finished and get-finished, the keyword finished and its

following block can be omitted if the block is empty.

We next illustrate the difference in the behaviour of destructive and non-destructive

access to a stream by the following simple toy example. Consider the streaming

method m():

Int stream m() {
yield 1; yield 2; return;

}

This method adds 1 and 2, followed by a termination token to the resulting stream

buffer.
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The following snippet asynchronously calls the above method definition m()
on some object o which gives rise to two references r1 and r2 to the resulting

destructive stream.

Stream<Int> r1 = o!m();
Stream<Int> r2 = r1;

The following code uses the above references, with the assumption that it is the

only process that consumes data items of the stream:

Int x, y, z;
(1) Int x = r1.get finished {x = -1};
(2) Int y = r2.get finished {y = -1};
(3) Int z = r1.get finished {z = -1};

Once the process corresponding to the method call m() on (possibly remote)

object o is executed and the results are provided to the stream, the values 1, 2,

and −1 are assigned to x, y and z, respectively. These values are consumed

from the stream and assigned to the variables incrementally as soon as they are

provided by m(). In the above code, the object possibly blocks on any of the three

statements, if a value (whether an integer or the terminating token) is not yielded

to the stream yet. The statement (1) destructively reads 1 from the stream via

r1 and assigns it to x. The statement (2) destructively reads 2 from the same

stream via the other reference r2 and assigns it to y. However, the statement (3)
runs the finished statement which assigns −1 to z, since it reads the terminating

token (i.e., the stream is already terminated). Any further get operations on every

variable referring to the stream also read the terminating token.

To show how a non-destructive stream works in the same setting, suppose we

use the following references r1 and r2 in the above code (note that the keyword

nd denotes that the resulting stream is non-destructive).

Stream<Int> r1 = nd o!m();
Stream<Int> r2 = r1;

With the same incremental production of values and blocking mechanism, in

this setting the values 1, 1, and 2 are assigned to x, y and z, respectively. The

statement (1) non-destructively reads 1 from the stream via r1 and assigns it to

x. The statement (2) non-destructively reads 1 from the same stream via the other

reference r2 (with its own cursor to the stream) and assigns it to y. Finally, the

statement (3) assigns 2 to z, since the cursor of r1 is already moved forward by

statement (1). Note that any number of further get operations on r1 will read the

terminating token. It is important to observe the role of cursors per each stream

variable that gives rise to such behaviour.

Note that the assignment of a non-destructive reference (r2 = r1) is different

from the standard ABS assignment in the sense that, in addition to the assignment

of the reference to stream, it also assigns the cursor. Based on this design, the
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copying is required as each stream variable represents a new access to the stream to

all data values from the position its cursor denotes.

4.2.1 Design Decisions

Integration of streams with ABS, where we enjoy the advantages of both, roots in the

ever-growing application of data streaming in different domains. The consumption

approaches of the stream (i.e., destructive or non-destructive) are not fixed in the

streams in form of different data types. Instead, the creator of the stream determines

the consumption approach of the stream instance, in order to maintain generality.

Note that the creator of the stream is not necessarily the consumer of the stream, and

by design, it can be considered as part of the producer process (e.g., using factory

method design pattern) that forces one of the above consumption approaches to the

consumers.

We support both destructive and non-destructive data streams, as they can be

naturally used to implement, respectively, one-of-n semantics (only one consumer

reads a given data as in, e.g., data parallelism model), and one-to-n message delivery

(a given data can be read by all such consumers as in, e.g., one-to-many trainer and

learners and publish/subscribe model). Also integration of data streaming and coop-

erative scheduling enables enhancing concurrency and parallelism on the consumer

side.

Note that the above two approaches allow for designing a third hybrid consump-

tion approach where, at the intra-object level, every access to the stream buffer

is via an object field (shared variable), and at the inter-object level, the cursor is

copied (i.e., via passing parameters in method invocations).

4.2.2 Example of Destructive Streams

The code example in Figure 4.2 illustrates the use of ABS destructive data streams

in modeling a parallel map-reduce processing of a data stream. The mapping step

maps each streamed data value of type T to a data value of type Int, and the

reduction step calculates the average of those integers.

An ABS program is a set of interface and class definitions, followed by the main

block of the program, which is an anonymous block at the end of the program.

The main block is the initial run-time process (similar to public static void
main in java). Each class implements at least one interface. The type of a ref-

erence variable to an object can only be an interface, and the object must be an

instance of a class that implements the interface. Every object instance is an active

object, namely, it features a dedicated thread of control, and can have (at most)

one active process among its processes. Each process of an object is initiated by an

asynchronous call of a method of the object.
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interface IMapper<T> { class Producer implements IProd<T>

Int stream map(Stream<T> s); {

} T stream streamer() {

// yields a seq of data of type T

interface IReducer<T> { return;

Pair<Int, Int> reduce(Stream<T> s); }

} }

interface IPar<T> { class Par implements IPar<T> {

Int start(Stream<T> s, Int num); Int start(Stream<T> s, Int num) {

} Int m = 1;

interface IProd<T> { Int sum = 0, avg = 0, count = 0;

T stream streamer(); List<Fut<Pair<Int, Int>>> l = Nil;

} while(m<=num) {

class Mapper() IMapper<T> p = new Mapper();

implements IMapper<T> { Stream<Int> s2 = p!map(s);

Int stream map(Stream<T> s) { IReducer<T> q = new Reducer();

Bool last = False; l = Cons(q ! reduce(s2), l);

while(last==False){ m=m+1;

T v = s.get finished {last=True}; }

if (last == False) { while (l != Nil) {

yield v.value(); Pair<Int,Int> pair = head(l).get;

} case (pair) {

} Pair(a, b) => {

return; sum = sum + a;

} count = count + b;

} }

class Reducer() }

implements IReducer<T> { l = tail(l);

Pair<Int, Int> reduce(Stream<Int> s) }

{ if (count > 0) return sum / count;

Bool last = False; else return 0;

Int count = 0; }

while(last==False){ }

Int v = s.get {// Main block

finished {last=True}; IProd<T> producer = new Producer();

if (last == False){ Stream<T> s = producer ! streamer();

count = count + 1; IPar<T> par = new Par();

sum = sum + v; Int average = par.start(s, 4);

} }

}

return Pair(sum, count);

}

}

Figure 4.2: Parallel data processing based on Map-Reduce data model
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The program is composed of four interfaces: IProd types a class with a stream-

ing method to stream the data values of type T to be processed. The interface

IPar types a class for spawning multiple chains of active objects for map-reduce

processing. Each chain is a pipeline processing of the data values retrieved from the

stream which is shared among the chains. The interfaces IMapper and IReducer
type the objects that form a pipeline chain. These interfaces are implemented by

four classes Producer, Par, Mapper and Reducer, respectively. The above defi-

nitions are followed by the main block of the program. As shown in the main block,

the general idea is that the data values of the stream s will be processed in parallel

by num computationally identical pipelines, and the aggregated result, which is the

average of those values, is returned as the final result. Runtime control and data

flow of the example are also illustrated in Figure 4.3, where each thread represents

a process created by an asynchronous method call.

Figure 4.3: Control and data flow

The asynchronous invocation of method streamer on producer in the main

block returns a reference s to a stream. The method start provided by IPar<T>
enables parallel processing of the stream by creating multiple chains (num) of two

active objects of type IMapper<T> and IReducer<T>, where the former retrieves

values from s, and yields a mapped value of type integer to an intermediate stream

s2, and the latter consumes those integers from s2 and reduces them to a pair which

is the sum and the count of those integers processed by one chain. The futures
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of the pairs resulting from calling reduce in different chains are stored in list l.

The elements of the list are then used as a synchronization means, namely, awaiting

until each process resolves the corresponding future by providing the return value.

Finally the average is calculated by the start from the reduced pairs.

Similar to parallel map-reduce transformations on streams in languages like

Scala, the following pseudo-code can be used as a simplified abstract replacement

for the code in 4.2:

s.par(num).map(_.value).average();

where a sequence of transformation methods (e.g., map and filter) followed by a

reduce method (e.g., count and average) can be executed in parallel by num threads

(modeled by active objects) on stream s.

Note that our implementation utilizes two ways of parallelism: 1) horizontal

parallelism, which is achieved by creating multiple chains of active objects, e.g., pi
and qi and intermediate streams si in Figure 4.3, and 2) vertical parallelism, which

is achieved by pipeline processing, e.g., the process map in pi that yields values to si
runs in parallel with reduce in qi that consumes the values immediately upon their

availability.

4.2.3 Example of Non-Destructive Streams

In the example specified in Fig. 4.4, we represent a basic means of publish/subscribe

communication via non-destructive streams in a social network such as Twitter. An

object of class Member denotes a member in the network that can follow and be

followed by multiple members. The main idea is to implement each member object

such that: 1) it can follow multiple members by reading their stream of posts 2)

its stream of posts can be read by multiple members that follow the member 3) it

can post new items to its stream. The object naturally needs to interleave these

tasks. To this aim, each member is modeled as an actor with a process to post new

items to its stream (share), a set of processes one per each member it follows, in

order to read their streams (follow), and a set of processes from other members

that request to follow the member (request). These processes can be interleaved

by the ABS cooperative scheduling. The active process can cooperatively release

control conditionally, e.g., the await statement in follow which checks whether

there is no new post to be read from a specific member, or unconditionally, e.g., the

suspend in share after posting a new item gives rise to unconditional release of

control. In both cases, other processes of the member object can be activated.

The method follow sends a request to a member denoted by the argument p.

The data (i.e., posts) can be retrieved from the resulting stream r of the member p
by the current member. In other words, the current member object follows object p.

Further, a followed member returns a reference to the same data stream for all the

followers, denoted by r in the the class Member. Each follower uses its corresponding
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cursor to read from the stream belonging to the followed member. Note the difference

between the return types of share and request. The former is a streaming

method that creates and populates a stream, and can only be called asynchronously

with the return type Stream<Post>, whereas the latter is a non-streaming method

that returns a reference to an existing stream, and returns Stream<Post> or

Fut<Stream<Post>>, respectively, depending on being called synchronously or

asynchronously.

interface IMem { Unit follow(IMem p) {

Unit run(); Fut<Stream<Post>> f =

Unit follow(IMem p); p ! request();

Stream<Post> request(); await f?;

} Stream<Post> r = f.get;

Bool last = False;

class Member implements IMem while(last = False) {

{ await r? finished

Stream<Post> r; {

// r is a stream of //probably p left!

// posts for followers last = true;

}

Unit run() { Post post = r.get;

if (r == null) // consume post

r = nd this!share(); }

} }

Post stream share() { Stream<Post> request() {

Post post; // accept as a follower

while(True) { return r;

// Next post is ready }

yield post; }

suspend;

}

return;

}

Figure 4.4: Parallel data processing based on publish/subscribe pattern

By await statement, a follow process queries the availability of the next post

that is new from the perspective of the non-destructive stream variable r, denoted

by the variable cursor. If the new post is available it is retrieved and consumed.

Otherwise the process is suspended so that another enabled process is activated.

As such, the member receives posts from all the members it follows, processes the
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follow requests of other members, and posts new data. The stream corresponding

to a followed member can signal the termination. In such case, the follow process

in the follower object which corresponds to a followed member terminates after

retrieving the remaining posts, as the finished block of the await statement falsifies

the loop condition. The process that instantiates a new member (not mentioned

here) also initiates the member by calling the run which itself calls the share
method which returns a new stream and continuously adds new posts to it.

4.2.4 Type System

The ABS type system is presented in [48]. An extension of the type system is

specified below using the same notation, which types the streams and the statements

that use them (Figure 4.5). A typing context Γ is a mapping from names to types,

where the names can be variables, constants and method names. A type lookup is

denoted by Γ(x), which returns the type of the name x. By Γ[x 7→ T ] we denote

the update of Γ such that the type of x is set to T . Then Γ[x 7→ T ](x) = T and

Γ[x 7→ T ](y) = Γ(y) if x 6= y. An over-lined e denotes a sequence of syntactic

entities e.

The basic idea underlying the typing rules regarding streams in Figure 4.5 is

that the type stream〈T 〉 of streams of data items of type T itself cannot be defined

as a subtype of fut〈T 〉, since for a future variable x, a query x? gives rise to a

Boolean guard whereas for a stream variable x, the query x? is not a Boolean guard

because it not only checks whether the stream is empty or not but also whether it

has terminated. On the other hand, the type fut〈T 〉 of futures that refer to return

values of type T itself can be defined as a sub-type of stream〈T 〉 (as specified by

the rule T-FutureStream), where the stream buffer is either empty (denoted by a

sentinel ⊥) or contains an infinite sequence of the particular return value. For such

streams the finished statement never executes, as there is no termination token.

Note also that for such infinite streams there is no difference between destructive or

non-destructive reads.

We proceed with a brief explanation of the typing rules. A streaming method

is well-typed by T-StreamMethod, if its body s is well-typed in the typing context

extended by the parameters, local variables, and the return stream. The destiny

variable in ABS is a local variable which holds a reference to the return stream (or

future). A regular (non-streaming) method is similarly well-typed by T-Method in

core ABS.

By T-AsyncCall, an asynchronous method call to a non-streaming method has

type fut〈T 〉, if its corresponding synchronous call has type T . Whereas by T-AsyncStream

the type of an asynchronous call of a streaming method is of type stream〈T 〉, if the

interface T ′ of the callee includes the streaming method. As in ABS, by T-SyncCall,

a call to a method m has type T if its actual parameters have types T and the sig-

nature T → T matches a signature for m in the known interface of the callee (given
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by an auxiliary function match). The rule does not allow synchronous call on a

streaming method (note the difference between how the function match is used in

T-AsyncStream and T-SyncCall).

The yield statement is well-typed in a streaming method by T-Yield, if the

type of e is T and the enclosing method is a streaming method of type T . return
statement without parameter is only used in a streaming method to signal the

termination of streaming and the method, and is well-typed by T-ReturnStream.

The T-Return forces that the expression e of the return statement in a non-

streaming method is of type T , the return type of the enclosing method.

The await-finished is well-typed by T-AwaitStream, if a stream of some

type T is awaited and if the statement s is also well-typed. It is not difficult to see

how the statement get-finished is well-typed by T-GetStream.

(T-FutureStream)

Γ ` e : fut〈T 〉 T 4 T ′

Γ ` e : stream〈T ′〉

(T-Method)

Γ′ = Γ[x 7→ T , x′ 7→ T ′]

Γ′[destiny 7→ fut〈T ′′〉] ` s
Γ ` T ′′ m (T x){T ′ x′; s}

(T-StreamMethod)

Γ′ = Γ[x 7→ T , x′ 7→ T ′]

Γ′[destiny 7→ stream〈T ′′〉] ` s
Γ ` T ′′ stream m(T x) {T ′ x′; s}

(T-ReturnStream)

Γ(destiny) = stream〈T 〉
Γ ` return

(T-AsyncCall)

Γ ` e.m(e) : T

Γ ` e!m(e) : fut〈T 〉

(T-SyncCall)

Γ ` e : T ′ Γ ` e : T

match(m,T → T, T ′)

Γ ` e.m(e) : T

(T-Return)

Γ ` e : T

Γ(destiny) = fut〈T 〉
Γ ` return e

(T-AsyncStream)

Γ ` e : T ′ Γ ` e : T

match(m,T → T stream, T ′)

Γ ` [nd] e!m(e) : stream〈T 〉

(T-Yield)

Γ ` e : T Γ(destiny) = stream〈T 〉
Γ ` yield e

(T-AwaitStream)

Γ ` e : stream〈T 〉 Γ ` s
Γ ` await e? finished {s}

(T-GetStream)

Γ ` e : stream〈T 〉 Γ ` s Γ ` x : T

Γ ` x = e.get finished {s}

Figure 4.5: Type system

4.2.5 Operational Semantics

The operational semantics of the proposed extension is presented below as a tran-

sition system in SOS style [61]. First we extend the ABS run-time configuration

and then present those rules in the transition system that involve destructive and

non-destructive streams.
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Runtime Configuration

The runtime syntax of ABS is extended by the notion of stream is illustrated in Fig-

ure 4.6. Configurations cn consist of objects (object), invocation messages (invoc),

futures (fut), and data streams (stream). The commutative and associative compo-

sition operator on configurations is denoted by whitespace. The empty configuration

is denoted by ε.

cn ::= ε | fut | stream |
object | invoc | cn cn

object ::= ob(o, a, p, q)

fut ::= fut(f, value)

stream ::= stream(f, u)

process ::= {a | s} | error
q ::= ε | process | q q

invoc ::= invoc(o, f,m, v)

p ::= process | idle
a ::= T x v | a, a

value ::= v | ⊥
u ::= u.u | v | η | ⊥
v ::= o | f | t | (f, n)

Figure 4.6: Runtime configuration

The term ob(o, a, p, q) represents an object where o is the object identifier, a as-

signs values to the object’s fields, p is an active process (or idle), and q represents

a set of suspended processes.

The term invoc(o, f,m, v) represents an invocation message, where o is the callee

object, f is the identifier of a rendezvous for the return value(s) of the method

invocation which can be a stream or a future, depending on the invoked method

being a streaming method or not, m is the name of the invoked method, and v are

its arguments.

A process {a | s} consists of an assignment a of values to the local variables,

and a statement s. A process results from the activation of a method invocation in

a callee with actual parameters, and an associated future or stream. An error is

a process where the binding of such method invocation does not succeed.

A future is represented by fut(f, value), where f is the future identifier and value

denotes its current value which can either be the actual value returned or ⊥ which

denotes the absence of a return value.

Both destructive and non-destructive streams are semantically represented by

stream(f, u), where f is the stream identifier, and u denotes its buffer. Nevertheless,

the stream variables referring to destructive streams just hold the stream id, whereas

the value of a stream variable referring to a non-destructive stream is a pair (f, n),

where n denotes the associated position in the stream.

The buffer u is a FIFO queue, which contains a sequence of values v, and a

special symbol, either ⊥ which is a sentinel denoting end of buffer, or η which

denotes termination of streaming. The ⊥ is replaced by η after adding the last valid
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value to the queue when the streaming method terminates. The u = v.u′ denotes

the head v of the queue u, and its tail u′. In u′ = u.v, enqueuing the value v to the

end of the queue u forms the updated queue u′. The auxiliary function elem(u, n)

returns the content at the position n of the sequence u starting from 0.

A value v can be an object identifier, a future or stream identifier, a term t which

is a value of a primitive type, or a pair (f, n) which is a value of a variable referring

to a non-destructive stream.

Note that all the identifiers in a configuration are unique and terminal: o is used

for object, and f both for future and stream identifiers.

The rules of Figure 4.8 and 4.9 operate on the elementary configurations. To

have the rules to apply to full configurations, we need the following rule as well:

cn′ → cn′′

cn cn′ → cn cn′′

We also use the reduction system proposed in the ABS formal model to evaluate

expressions, e.g., f = [[e]]cna◦l in the active process of ob(o, a, {l|s}, q) holds if the ex-

pression e evaluates to the stream identifier f , in an assignment composed of a and l,

where the configuration cn ob(o, a, {l|s}, q) is given, and cn contains stream(f , u).

By definition, a ◦ l(x) = l(x) if x ∈ dom(l) or a ◦ l(x) = a(x) otherwise.

The following rule Async-Call represents asynchronous method invocation in

core ABS extended with a check that it is not a streaming method:

(Async-Call)

o′ = [[e]](a◦l) v = [[e]](a◦l) fresh(f) ¬streamer(o′.m(v))

ob(o, a, {l|x = e!m(e); s}, q)
→ ob(o, a, {l|x = f ; s}, q) invoc(o′, f,m, v) fut(f,⊥)

where it sends an invocation message to object o′ with the method name m, the

future f and the actual parameters v. The return value of f is undefined (i.e., ⊥).

Note that, based on Figure 4.6, the definition of v also includes the values f and (f, n)

for destructive and non-destructive streams in the extended semantics. Therefore

streams can be passed as actual parameters and assigned to formal parameters.

Also for the chapter to be self-contained, the following rules from the core ABS

[48] are mentioned. Rules Assign-Local and Assign-Field assign value of expression

e to the variable in, respectively, environment l for local variables or environment

a for fields of object a. Rule Suspend suspends the active process unconditionally.

Rule Activate activates a process p that is ready to execute for the idle object o

from the set q of its suspended processes.
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(Assign-Local)

x ∈ dom(l) v = [[e]](a◦l)
ob(o, a, {l|x = e; s}, q)
→ ob(o, a, {l[x 7→ v]|s}, q)

(Assign-Field)

x ∈ dom(a) v = [[e]](a◦l)
ob(o, a, {l|x = e; s}, q)
→ ob(o, a[x 7→ v], {l|s}, q)

(Suspend)

ob(o, a, {l|suspend; s}, q)
→ ob(o, a, idle, q ∪ {l|s})

(Activate)

p = select(q, a)

ob(o, a, idle, q)→ ob(o, a, p, q\p)

The auxiliary method select(q, a, l) selects the ready process by ensuring the

process will not be immediately re-suspended based on the states of a and l. Note

that we abstract from the notion of the ABS concurrent object group cog in the

rule. Also dom(a) denotes the set of variables in the environment a.

In the rest of this section, we present the semantic rules of the extended ABS,

where a data stream is involved. Given in Figure 4.7, the rules for the callee side,

which only write to the stream, are independent from how the stream is read (i.e.,

destructively or non-destructively). In the rule Yield, the active process, which is a

streaming method, enqueues the value v to the buffer of the stream f , followed by

the sentinel ⊥. The rule ReturnStream enqueues the value η to the buffer of the

stream f , which is a token denoting termination of streaming values in the buffer.

(Yield)

v = [[e]]cna◦l l(destiny) = f
ob(o, a, {l|yield e; s}, q) stream(f, u.⊥)
→ ob(o, a, {l|s}, q) stream(f, u.v.⊥)

(ReturnStream)

l(destiny) = f
ob(o, a, {l|return; s}, q) stream(f, u.⊥)
→ ob(o, a,idle, q) stream(f, u.η)

Figure 4.7: Operational semantics of streams on the callee side

In the following, the rules for destructive and non-destructive access to the data

stream are given. Note that the D and ND are prefixed to the rule names, which

stand for the destructive and non-destructive streams, respectively.

Semantics of Destructive Streams

In the rule D-AsyncCall, the object o calls asynchronously a streaming method m

with arguments v on object o′. The return stream is destructive with the fresh iden-
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tifier f as the access mode to the return stream of a streaming method is destructive

by default. We also use two auxiliary functions in this rule as follows: the function

streamer(o.m(v)) checks if the method m(v) of the object o is a streaming method.

The function fresh(f) guarantees that the newly introduced name f is not already

used in the system.

(D-AsyncCall)

o′ = [[e]]cna◦l v = [[e]]cna◦l fresh(f) streamer(o′.m(v))
ob(o, a, {l|x = e!m(e); s}, q)→

ob(o, a, {l|x = f ; s}, q) invoc(o′, f,m, v) stream(f,⊥)

(D-AwaitTrue)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) stream(f, v.u)→

ob(o, a, {l|s2}, q) stream(f, v.u)

(D-AwaitFalse)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) stream(f,⊥)→

ob(o, a, {l|suspend;await e? finished {s1}; s2}, q) stream(f,⊥)

(D-AwaitTerminate)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) stream(f, η)→

ob(o, a, {l|s1; s2}, q) stream(f, η)

(D-GetTrue)

f = [[e]]cna◦l
ob(o, a, {l|x = e.get finished {s1}; s2}, q) stream(f, v.u)→

ob(o, a, {l|x = v; s2}, q) stream(f, u)

(D-GetTerminate)

f = [[e]]cna◦l
ob(o, a, {l|x = e.get finished {s1}; s2}, q) stream(f, η)→

ob(o, a, {l|s1; s2}, q) stream(f, η)

Figure 4.8: Operational semantics of destructive streams

The await statement in rule D-AwaitTrue is skipped as there exists a data value

v in the buffer. By rule D-AwaitFalse, the process querying the empty (but not-yet-

terminated) stream f will be suspended. To this aim, the statement suspend for

unconditional suspension is added to the beginning of the sequence of the statements

of the process. According to the standard ABS, the suspend then suspends the
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active process, namely, it adds the process to q, where the active object is idle

and ready to activate a suspended process from q. In rule D-AwaitTerminate, the

finished block s1 of the statement is selected for execution, since the streaming is

terminated, i.e., the head of the buffer of the stream f is equal to the terminating

token η.

The rule D-GetTrue assigns the value v from the head of the stream buffer to the

variable x destructively, i.e., v is removed from the buffer. By D-GetTerminate, the

finished block s1 of the statement is executed followed by s2, as the terminating

token is observed at the head of the buffer. Note that the state of x remains the

same. There is no rule for the get-finished statement when the buffer is empty

which implies that the active process (and the object) is blocked until the buffer

contains an element.

Semantics of Non-Destructive Streams

The operational semantics of ABS for those rules that involve non-destructive future-

based streams is given in Fig. 4.9. In ND-AsyncCall, an asynchronous call to a

streaming method m in o′ is given with the actual parameters v, that results in a

reference to a non-destructive stream. The keyword nd denotes the non-destructive

access to the resulting stream. Therefore, the return reference to the newly created

stream with identifier f is a pair of f and a cursor which is initialized to 0, denoting

the first position in the buffer which is initially ⊥.

Note that by the before-mentioned Assign-Local and Assign-Field, an assignment

x = y, where the variable y referring to a non-destructive stream f (i.e., (f, n) =

[[y]]cna◦l), the variable x also refers to the same stream and the cursor of x is initialized

to the same position in the buffer as the one of y (i.e., (f, n) = [[x]]cna◦l as well).

The await statement in rule ND-AwaitTrue is skipped because there is a value v

(which is not η) in the buffer of the stream f at the position determined by the cursor

of x. By rule ND-AwaitFalse, the process querying the stream f will be suspended

since the cursor of f denotes the empty position in the buffer (denoted by ⊥). By

the semantics, it is not difficult to see that this position will contain either a value

v or the termination token η. By the rule ND-AwaitTerminate, the finished block

s1 is selected for execution, as the cursor of f points at a position which contains η.

The rule ND-GetTrue assigns to the variable x the value v (which is not η) in the

stream buffer from the position determined by the cursor of y, and increments the

cursor. By ND-GetTerminate, the finished block s1 of the statement is selected

for execution followed by s2, as the cursor of variable y points at the terminating

token η in the buffer. Note that the state of x and the cursor are not modified.

There is no rule for the get-finished statement when the cursor denotes the

empty position in the buffer (i.e., ⊥) which implies that the active process (and the

object) is blocked.
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(ND-AsyncCall)

o′ = [[e]]a◦l v = [[e]]a◦l
fresh(f) streamer(o′.m(v))

ob(o, a, {l|x = nd e!m(e); s}, q)
→ ob(o, a, {l|x = (f, 0); s}, q) invoc(o′, f,m, v) stream(f,⊥)

(ND-AwaitTrue)

(f, n) = [[x]]cna◦l v = elem(u, n)
ob(o, a, {l|await x? finished {s1}; s2}, q) stream(f, u)

→ ob(o, a, {l|s2}, q) stream(f, u)

(ND-AwaitFalse)

(f, n) = [[x]]cna◦l ⊥ = elem(u, n)
ob(o, a, {l|await x? finished {s1}; s2}, q) stream(f, u)
→ ob(o, a, {l|suspend;await x? finished {s1}; s2}, q)

stream(f, u)

(ND-AwaitTerminate)

(f, n) = [[x]]cna◦l η = elem(u, n)
ob(o, a, {l|await x? finished {s1}; s2}, q) stream(f, u)

→ ob(o, a, {l|s1; s2}, q) stream(f, u)

(ND-GetTrue)

(f, n) = [[y]]cna◦l v = elem(u, n)
ob(o, a, {l|x = y.get finished {s1}; s2}, q) stream(f, u)
→ ob(o, a, {l|x = v; y = (f, n+ 1); s2}, q) stream(f, u)

(ND-GetTerminate)

(f, n) = [[y]]cna◦l η = elem(u, n)
ob(o, a, {l|x = y.get finished {s1}; s2}, q) stream(f, u)

→ ob(o, a, {l|s1; s2}, q) stream(f, u)

Figure 4.9: Operational semantics of non-destructive streams
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(F-AwaitTrue)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) fut(f, v)

→ ob(o, a, {l|s2}, q) fut(f, v)

(F-AwaitFalse)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) fut(f,⊥)

→ ob(o, a, {l|suspend;await e? finished {s1}; s2}, q) fut(f,⊥)

(F-GetTrue)

f = [[e]]cna◦l
ob(o, a, {l|x = e.get finished {s1}; s2}, q) fut(f, v)

→ ob(o, a, {l|x = v; s2}, q) fut(f, v)

Figure 4.10: Semantics of futures as streams

Semantics of Futures as Streams

The type of the value of any expression in ABS at runtime is a subtype of the

static type of the expression. The await and get without finished clause

can only be applied to futures and Boolean guards, and does exclude the streams.

This is guaranteed because Stream<T> is not a subtype of Fut<T> (discussed in

section 4.2.4). Recall that an await without finished clause on a stream is only

a syntactic sugar for the one with the clause where the following block is empty.

Different operational semantics of destructiveness and non-destructiveness does not

affect the type system.

In order to support the subtyping relation between stream〈T 〉 and fut〈T 〉 in the

operational semantics, as reflected in the type system, we need an extra set of seman-

tic rules, where a future variable appears as the parameter of await-finished
and get-finished statements. This set is presented in Figure 4.10. In these

rules, only the cases are specified where the future contains a value v or not (empty

stream). A resolved future is treated as an infinite stream of the same value v.

Therefore, termination of future is not defined. The rule names are prefixed with F
to denote that future appears as a stream.

We can prove on the basis of the operational semantics in a standard manner

that all program executions are type-safe, and in our case this additionally ensures

proper use of the data streams. This additionally amounts to ensuring that the

await-finished and get-finished constructs are applied at runtime only to

the data streams (and futures) and that the yield operation is only applied to the

context of a streaming method.
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4.2.6 Discussion on Buffer Size and Garbage Collection

The buffer of streams can grow indefinitely according to the above semantics. For

practical purposes, however, we must take into consideration the finite nature of

computer memory. This can be addressed by a different definition of the buffer which

is bounded to a maximum size m. The semantics of a successful write operation to

a bounded buffer requires a new premise where the buffer size is strictly less than

m. If the buffer is full, on the other hand, different design decisions can be made.

For instance writing to a full buffer can be blocking, i.e., the process is blocked until

the buffer size is less than m, or it is non-blocking but signals the process about

the failure. A successful destructive read operation, on the other side, decrements

the buffer size allowing the buffer to shrink. However this is not the case for non-

destructive streams, as the non-destructive read cannot change the buffer size since

the data will possibly be read by other cursors. Hence, we need a garbage collection

mechanism (GC) for non-destructive streams.

By definition, destructive streams do not cause any garbage. However, we can

have a definition of garbage for non-destructive streams. In this section, garbage

means a data element in the buffer of a non-destructive stream, which is read by all

the existing cursors. In what follows, we define a GC that is executed periodically.

It first obtains all the existing cursors in the system and then collects the garbages

accordingly. Some of the cursors can be obtained from the immediate value of a

variable, while other cursors can be wrapped with an outer future or stream in a

nested way. For instance, if the future variable x : fut〈stream〈T 〉〉 is resolved can

possibly contain a cursor. To include these cursors in the GC, first we need some

definitions. Let type T denote either a primitive type P (a type that is not a future

nor a stream) or a non-primitive type N as follows:

T ::= P | N
N ::= stream〈T 〉

For notational convenience we rewrite the type fut〈T 〉 to stream〈T 〉. We also rewrite

a run-time future object to a destructive stream with at most one element so that it

can be typed as a stream. Therefore a future fut(f,⊥) is rewritten to stream(f,⊥)

and fut(f, v) to stream(f, vη) in cn. The following algorithm obtains the set of all

cursors in the system, based on which it marks the garbage:

1. for each object (o, a, {l0|s0}, {{l1|s1}, .., {lk|sk}}) in the system, the set of cur-

sors that can be obtained in object o: cursor o = {cursor o([[x]]cna◦l : T ) | x ∈

a ∪
k⋃
i=0

li} where cursor o(v : T ) returns all the existing cursors obtained from

value v of type T in object o. The set of all the cursors existing in the system:

cursors =
⋃

cursor o. Note that for simplicity we assume there is no name

conflict of variable names in the mappings.
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2. for each stream identity f in the system, minf = min({n | (f, n) ∈ cursors}),
where min(S) returns the smallest number in a set S of numbers.

3. for each stream(f, u) in the system, all the data elements in u with the index

less than minf are garbage and must be collected.

For simplicity we use v : T for typing value v instead of using the formal run-time

type system. Below we define cursorno (v : T ) inductively, where n is the number of

times the term stream appears in the type T of the value v, e.g., n is 0, 1, and 2 for

the type P , stream〈P 〉 and stream〈stream〈P 〉〉, respectively. Note that n is finite, as

the type of a variable is a string with a finite length.

Base case: a cursor can neither be obtained from a value with a primitive type

(step 0), nor a value that refers to a destructive stream or a future of a primitive

type P (step 1). Whereas one cursor can be obtained from a value that refers to a

non-destructive stream of a primitive type P (step 1).

cursor 0
o(v : P ) = ∅

cursor 1
o(f : stream〈P 〉) = ∅ where stream(f, u) ∈ cn

cursor 1
o((f, n) : stream〈P 〉) = {(f, n)} where stream(f, u) ∈ cn

Inductive step: the induction hypothesis is that cursorno (v : N) returns all the

cursors obtained from the value v of type N where n = k. Below we show how we

obtain the cursors obtained from a value for n = k + 1 using the hypothesis:

cursork+1
o (f : stream〈N〉) =

⋃
vi∈sn(u)

cursorko(vi : N)

where stream(f, u) ∈ cn

cursork+1
o ((f, n) : stream〈N〉) =

⋃
vi∈sn(u)

cursorko(vi : N) ∪ {(f, n)}

where stream(f, u) ∈ cn

where sn(u) denotes a set of elements in the buffer u of stream(f , u) with index

greater or equal to n, except special elements ⊥ and η.

In order for the above algorithm to work, every data element in the buffer u must

have an absolute index starting from zero for the first element added to the buffer.

Recall that, by the semantics of ABS, every synchronous and asynchronous method

call forms a (suspended or active) process in the called object which is denoted by

{li|si}. Hence, the step 1 covers all the variable assignments in an object (cursor o)

and subsequently in the whole system (cursors). Also note that there is no need to

distinguish the cursors by their variable names or their processes or objects. The
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(T-Stream)

∆(f) = stream〈T 〉
∀i ∈ [1..n].(vali 6∈ {⊥, η} ⇒ ∆(vali) = T )

∆ `R stream(f, (val1, ..., valn)) ok

(T-StateStream)

∆(val) = (stream〈T 〉,Nat)
∆ `R v : stream〈T 〉

∆ `R stream〈T 〉 v val ok

(T-InvocStream)

∆(f) = stream〈T 〉 ∆(v) = T match(m,T → stream〈T 〉,∆(o))

∆ `R invoc(o, f,m, v)

Figure 4.11: The typing rules of streams for run-time configurations

only relevant aspect of the cursor for GC is that there exists at least one cursor that

points at a specific index of the buffer.

4.3 Subject Reduction for the Extended ABS

A run is a sequence of transitions from an initial state based on the rules of the op-

erational semantics, where initial state consists of ob(start, ε, p, ∅), an initial object,

start, with only one process p that corresponds to the main block of the program.

The subject reduction for ABS is already proven in [48], namely, it is shown that a

run from a well-typed initial configuration will maintain well-typed configurations,

particularly, the assignments preserve well-typedness and method bindings do not

give rise to the error process. In this section, we aim to extend the proof for the

ABS subject reduction theorem to also include the notion of stream as specified in

this chapter.

The typing context for the run-time configurations ∆ extends the static typ-

ing context Γ with typing dynamically created values (entities created at run-time),

namely, object and future identifiers. Let ∆ `R cn ok express that the configuration

cn is well-typed in the typing context ∆. The typing rules for run-time configura-

tions are defined for ABS and extensively discussed in [48]. The newly added rules

for typing streams are shown in Figure 4.11. By T-Stream, the stream f is of type

stream〈T 〉 if the buffer only contains values of type T or the special tokens η and

⊥. By T-StateStream, a variable v that refers to a stream val and provide non-

destructive access to it is well-typed. Nat denotes the type of natural numbers. The

type of val is a pair of the stream type and a Nat that holds the cursor to the

stream. The rule T-InvocStream allows the return type of an asynchronous method

invocation to be a stream as well.

In [48] (1) it is proven that the initial object corresponding to the main block of

a well-typed program is well-typed and also (2) it is shown that the well-typedness

of runtime configuration is preserved by reductions (Theorem 1). The proof for (1)

also applies here. We only need to extend the proof for (2) with respect to the new

transition rules introduced in section 4.2 as follows.
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Theorem 1 (Subject Reduction). If ∆ `R cn ok and cn→ cn′, then there is a ∆′

such that ∆ ⊆ ∆′ and ∆′ `R cn′ ok.

Proof. The proof is by induction over the defined transition rules in the opera-

tional semantics. We assume objects, futures, streams and messages not affected

by a transition remain well-typed, and are ignored below. The auxiliary function

match(m,T → stream〈T 〉, T ′) checks if a method m with T → stream〈T 〉 is provided

by the interface T ′.

• Process Suspension. It is immediate that the rules D-AwaitTrue,

ND-AwaitTrue,F-AwaitTrue, D-AwaitFalse, ND-AwaitFalse, F-AwaitFalse

D-AwaitTerminate, ND-AwaitTerminate, D-GetTerminate and

ND-GetTerminate preserve the well-typedness.

• Yield. By assumption, we have ∆ `R ob(o, a, {l|yield e; s}, q) ok, [[e]]a◦l = v

and ∆ `R stream(f, u.⊥) ok. Obviously, ∆ `R ob(o, a, {l|s}, q) ok. Since

l(destiny) = f and l is well-typed, we know that ∆(destiny) = ∆(f). Let

∆(f) = stream〈T 〉. By T-Yield, ∆ `R e : T and subsequently ∆(v) = T , so

∆ `R stream(f, u.v.⊥) ok.

• ReturnStream. By assumption, we have ∆ `R ob(o, a, {l|return; s}, q) ok,

and ∆ `R stream(f, u.⊥) ok. Obviously, ∆ `R ob(o, a, {l|s}, q) ok and ∆ `R
stream(f, u.η) ok.

• D-AsyncCall. Let ∆ `R ob(o, a, {l|x = e!m(e); s}, q) ok. We first consider

the case e 6= this. By T-AsyncStream, we may assume that ∆ ` e!m(e) :

stream〈T 〉 and by T-Assign that ∆(x) = stream〈T 〉. Therefore, ∆ ` e : T ′

and ∆ ` e : T such that match(m,T → T stream, T ′). Assume that [[e]]a◦l =

o′ and let ∆(o′) = C for some class C. Based on [48], there is a ∆′ such

that ∆′ `R [[e]]a◦l : T ′ and ∆′(o′) = C, so C � T ′. By assumption class

definitions are well-typed, so for any class C that implements interface T ′ we

have match(m,T → T stream, C). Also [[e]]a◦l similarly preserves the type of

e. Let ∆′′ = ∆′[f 7→ stream〈T 〉]. Since fresh(f) we know that f 6∈ dom(∆′),

so if ∆′ `R cn ok, then ∆′′ `R cn ok. Since ∆′ ` e!m(e) = ∆′′(f), we get

∆′′ `R ob(o, a, {l|x = f ; s}, q) ok. Furthermore, ∆′′ ` invoc(o′, f,m, v) ok and

∆′′ `R stream(f,⊥) ok. The case e = this is similar, but uses the class of

this directly for the match (so internal methods are also visible).

• ND-AsyncCall. Let ∆ `R ob(o, a, {l | nd x = e!m(e); s}, q) ok. The argument

is similar to the above case, but we get ∆′′ `R ob(o, a, {l|x = (f, 0); s}, q) ok
as the consequence, in addition to ∆′′ ` invoc(o′, f,m, v) ok and ∆′′ `R
stream(f,⊥) ok.

• D-GetTrue. By assumption, ∆ `R ob(o, a, {l|x = e.get finished{s1};
s2}, q) ok, ∆ `R stream(f, v.u) ok, and [[e]]a◦l = f . Let ∆(f) = stream〈T 〉.
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Consequently, ∆ `R e.get finished{s1} : T and ∆(v) = T , so ∆ ` x =

v, ∆ `R ob(o, a, {l|x = v; s}, q) ok and ∆ `R stream(f, u) ok. A similar

argument applies for F-GetTrue where f is the identity of a future object

fut(f, v).

• ND-GetTrue. By assumption, ∆ `R ob(o, a, {l|x = y.get finished{s1};
s2}, q) ok, ∆ `R stream(f, u) ok, [[y]]a◦l = (f, n) and elem(u, n) = v. Let

∆(f) = stream〈T 〉. Consequently, ∆ `R y.get finished{s1} : T and

∆(v) = T , so ∆ ` x = v, ∆ `R ob(o, a, {l|x = v; s}, q) ok, and ∆ ` y =

(f, n+ 1) ok.

4.4 Data Streams in Distributed Systems

In [10] a scalable distributed implementation of the ABS language is described. In

this section we adapt our proposed notion of data streams in ABS to reduce the

possible overhead of data steaming in a distributed setting.

To this aim, each streaming method is enabled to package the return values,

that is, the method populates its return stream buffer possibly not once per value,

but once per sequence of values. The package size can be specified explicitly as a

parameter or can be selected based on the underlying deployment, e.g., it can be

equal to the packet size of the TCP/IP technology involved. As such the number of

packets to be transferred through the network is minimized.

There are two conditions when the package is streamed before its size is equal to

the pre-specified package size: 1) when the streaming method terminates; 2) when

the streaming method cooperatively releases control. The first condition is obvious,

while the second prevents a specific kind of deadlock configuration. In general, ABS

programs may give rise to deadlocks (see [39] for a discussion of deadlock analysis

of ABS programs). However the notion packaging data streams should not give rise

to additional deadlock possibilities.

The above second condition prevents the following kind of deadlock situation. Note

that package size = n means that the number of yielded values needs to be equal

to n, so that they are streamed as a package, except for the last package where the

size may be less than n. Suppose there are two objects o1 and o2 in the run-time

configuration where o1 executes an active process which corresponds to method m1

given by

m1(){r=o2!m2();await r?;o2!satisfier();}

and the specification of the streaming method m2 is an active process p in object o2

given by

m2(){yield x; await e; yield y; }
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Furthermore, suppose the method satisfier in o2 changes the object state so that

the expression e (which is False initially) evaluates to True. It is not difficult

to see that for all n > 2, where n is the package size of the stream, the run-

time configuration is deadlocked. The reason is that the first yielded value is not

streamed before p releases control, as the package size is smaller than n. The

deadlock possibility can be generalized to a category of programs where a streaming

method releases control before it communicates the values which are yielded. The

solution is that the package with the size smaller than n is streamed, before the

process cooperatively releases control or blocks.

4.5 Implementation

In this section, we present a prototype implementation of future-based data streams

as an API written in ABS. This API (see Figure 4.12) can be used to simulate the

semantics of data streaming in ABS itself. The implementation details of the API

can be found online1.

As discussed in section 4.2, the Stream<T> datatype is parametrically poly-

morphic in its contained values of type T . The original ABS specification, however,

offers besides parametric polymorphism also subtype polymorphism, through its in-

terface types. In general, when defining and implementing languages with support

for subtype-polymorphism, often the issue of variance arises: where in the code it

is allowed (i.e. type-safe) to upcast to a supertype or downcast to a subtype. For

example, given a subtype relation (T is subtype of U), a structure S is called covari-

ant if S<T> is safe to “upcast” to S<U>; contraviarant if safe to “downcast” S<U>
to S<T>; invariant if none of the above two hold, i.e. subtype polymorphism cannot

be used for this structure, but other methods of polymorphism (e.g. parametric)

perhaps can. In practice, the “rule of thumb” suggests that structures which are

exclusively read-only (i.e. immutable) are allowed to be covariant, structures that

are written-only (e.g. log files) contravariant, and structures that are read-write

must be invariant.

The extension of ABS with stream that we describe in this chapter, strictly sep-

arates at the syntax level the role of the producer of values (write to the stream

structure) with the role of the consumer (read from the stream). Since the producer

can only append (produce) new values to the stream and not alter (mutate) past val-

ues, from the sole point of the consumer the stream structure seems as “immutable”

(covariant). In this sense, a consumer holding a variable of type Stream<T> should

be allowed to upcast it to type Stream<U>. Conversely, the producer is allowed to

yield values of subtype T, if the method call’s return type is typed as Stream<U>.

As such, at the surface level (syntax and type system) it is acceptable for the Stream
structure to be treated as covariant; however, at the implementation level it still re-

1https://github.com/kazadbakht/ABS-Stream/blob/master/lib/Streams.abs
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mains a challenge on how to guarantee type safety at the host language (in our case,

Haskell).

The Haskell language has parametric polymorphism but lacks built-in support for

subtype polymorphism; for this reason, the ABS-Haskell backend compiler generates

dynamic “upcasting” function calls where needed. However, this technique cannot

be applied as well with Haskell’s builtin vector datatype, which is a low-level built-in

structure that cannot be made covariant or contravariant since it has been fixed-

byte allocated in memory heap upon creation. For this reason, and also the fact

that arrays are in general a mutable (read-write) data structure, the vectors in

ABS (borrowed from Haskell) are treated as invariant. Since the implementation of

streams in ABS relies currently on vectors, there is the practical limitation of having

the Buffer type to be invariant. Similarly the Stream and Fut datatypes are

treated as invariant, because the ABS-Haskell backend treats each future Fut<T>
as a pointer to a vector size-1 stored in the heap that holds the value of T. Based

on this practical limitation, the Stream<T> datatype introduced in this extension

to ABS is treated as subtype-invariant, with support for parametric polymorphism.

The API is semantically compliant with the semantics of data streams defined in

this chapter: The method that yields to a stream is separated from the access mode

of readers to the stream (i.e., either destructive or non-destructive). Every reader

has access to a stream via an instance of either Dref or NDref for destructive

or non-destructive access mode, respectively. Furthermore a stream variable (that

refers to an instance of Dref or NDref) is only typed by the Stream interface,

abstracting from the underlying access mode.

The interface Buffer<T> is implemented by the class CBuffer. The FIFO

buffer (an instance of CBuffer) is implemented by a vector whose elements are of

type Maybe<T>, namely, each of which contains either a value (Just(v) where v

is of type T) or Nothing. A position in the vector can have three different states:

It contains Just(v) (a value v that can be read), Nil (the position is empty and

will be filled), and Nothing (a token of type Maybe<T>) that denotes termina-

tion of the stream. The interface Buffer<T> provides the methods yield() and

terminate() to the streaming method in order to write to the buffer and to ex-

plicitly terminate the stream of data values, respectively. The termination enqueues

Nothing to the buffer and is meant to be the last statement in the definition of

the streaming method (to simulate the terminating return). A stream maintains

a global index wrt to the buffer which denotes the position where the next yielded

value is written. It is incremented by every time calling yield. In destructive read,

the CBuffer maintains a global index (i.e., rd) to the buffer for all the readers

of the stream, whereas in non-destructive read, every reader (i.e., NDref instance)

maintains a local index (i.e., cursor) to the buffer.

The reader can read from a stream by asynchronously calling pull() on the

Stream object that returns a future representing the next data value, whether

resolved or not. The operation pull is overridden in Dref and NDref for de-
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Figure 4.12: Class diagram of ABS Stream library

(1) Maybe<T> dread() {
(2) Int temp = rd;
(3) rd = rd + 1;
(4) await (buffer[temp] != Nil);
(5) return buffer[temp]; // is not null
(6) }

(7) Maybe<T> ndread(cursor) {
(8) await (buffer[cursor] != Nil);
(9) return buffer[cursor]; // is not null
(10)}

Figure 4.13: Destructive and non-destructive read in CBuffer

structive and non-destructive read from the buffer, respectively. The former calls

dread() method of the Buffer which returns the first valid element in the vector,

indicated by the index rd in buffer, and increments rd. Whereas the latter calls

ndread(cursor) of the Buffer where the cursor is a field of the NDref, which

returns the element indicated by the index cursor in the vector. The implementa-

tion of dread() and ndread(cursor) is given in Figure 4.13 where await at

lines (4) and (8) cooperatively release control until the condition (indicating whether

the buffer element has been produced) holds.

Also the method clone is used to copy a non-destructive stream object, a

new instance of NDref which has a reference to the same stream but a new cursor

which is initialized with the value of the cursor of the original object. For destructive

streams, the method only returns the reference to this which is of type Dref.
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Awaiting the future resulting from calling pull() queries the availability of

next data value. Therefore, statement await r? finished {S} is expressed in

the library as follows:

(1) f = r!pull(); // a future f to the target data value
(2) await f?; // awaits if the future f is not resolved yet
(3) m = f.get; // gets the resolved data value
(4) if (m == Nothing) // Nothing is the special token denoting the termination
(5) {S}

where r is a reference to a stream object and S is a block of statements. This can

either give rise to the release of control in case the data is not available (line 2) or

to skip otherwise. The variable m is of type Maybe<T> which contains either the

value v, denoted by Just(v), where v is of type T, or Nothing.

Similarly, statement x = r.get finished {S} can be expressed using the

library as follows:

(1) f = r!pull(); // a future to the target data value
(2) m = f.get; // gets the resolved data value
(3) case (m) {
(4) Nothing => {S} // "Nothing" is the special token denoting the termination
(5) Just(v) => {x = v} // the value v is assigned to x
(6) }

In line 2, the object running this process blocks until the the data value is written

to the future f.

The keyword nd is implemented in the API by a Boolean argument passed to

the called streaming method. The argument specifies whether the return object of

the streaming method to be an object of class Dref or class NDref.

The following snippet shows how the library is used to stream integer data

values. The streaming method m instantiates a stream, delegates yielding values to

the stream asynchronously to an auxiliary method m2, and returns the stream to

the caller. Note that m sends the same list of parameters it receives to m2.

// caller :
// False means the return stream is non-destructive
Fut<Stream<Int>> f = o!m(False, ...);
Stream<Int> r = f.get; // r is a reference to the stream
// reading from the non-destructive stream r
...

// callee
Stream<Int> m(Bool isDestr, ...){

Buffer<Int> b = new Cbuffer();
// b is the return stream which is filled by m2
this!m2(b, ...);
// isDestr determines the access mode to the stream
// i.e., destructively or non-destructively
if (isDestr)

return new Dref<Int>(b);
else

return new NDref<Int>(b, 0);
}

// the implementation of the callee
Unit m2(Buffer<Int> b, ...) {
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Int x ;
...
b!yield(x); // yield a value
...
b!terminate(); // termination token

}

Remark. In the above-mentioned API, having multiple readers for one stream

may result in a performance bottleneck, as the buffer object itself queries the avail-

ability of data item to be returned for every pull request (via dread or ndread).

Alternatively, such availability check can be delegated to the reader’s pull method

itself. However in the current design, doing the checks of line (4) and (8) in Figure

4.13 in their corresponding pull definitions give rise to busy-wait polling. The key

feature that enables delegating the check without busy-wait polling is the data type

Promise<T>. A promise is of this type is either contains a data value of type T
(resolved) or not. An unresolved promise p can be resolved by p.give(v) with some

data value v. Similar to futures, get and await operations can also be applied to

promises.

By converting the type of the buffer vector from Maybe<T> to

Promise<Maybe<T>>, the methods dread and ndread can immediately return

to the reader’s pull request the promise object in the vector that holds the expected

value, which is either already resolved and can be retrieved or will be resolved in

the future. In this new design, the ndread in CBuffer only returns the promise

without availability check as follows:

(1) Promise<Maybe<T>> ndread(cursor) {
(2) return buffer[cursor];
(3) }

And pull method in NDref which checks the availability is given as follows:

(1) Maybe<T> pull() {
(2) Fut<Promise<Maybe<T>>> f = b!ndread(cursor); // cursor is a field in NDref
(3) Promise<Maybe<T>> p = f.get;
(4) await p?; // availability check is moved to pull
(5) Maybe<T> result = p.get;
(6) case (result) {Just(v) => cursor = cursor + 1;}
(7) return result;
(8) }

In line (6), if result is equal to Nothing then cursor is not incremented,

such that the next pull requests to this object result in Nothing. Similar changes

apply to pull in Dref and dread() in CBuffer for destructive read, except the

index rd which is updated in dread.

An implementation similar to the example in Figure 4.2 using the above API

is provided online2. We also ran the implementation on a PC which was an Intel

Core i7-5600U 2.60GHz × 4 with 12GB RAM, and 64-bit Ubuntu 16.04 LTS as the

2https://github.com/kazadbakht/ABS-Stream/blob/master/Examples/map\
_reduce.abs
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Figure 4.14: Execution time of parallel map-reduce program for 106 data values

operating system. In Figure 4.14, we represent the time measured for execution of

the program for different number of parallel processors in 5 runs. On average for this

specific implementation, we observed that for two cores we achieve 1.59× speedup

compared to one core, and for four cores 1.13× speedup compared to two cores.

Lower speedup achieved for higher number of processors, among other reasons,

stems from the fact that a stream is a shared resource where parallel access and

yielding values to it in a safe manner is limited. This is confirmed experimentally,

by adding more workload on the reader per data value that it reads from the stream.

As such, the access rate to the stream becomes low enough such that the stream is

not a performance bottleneck. With this modification, we could achieve up to 1.41

speedup for four cores compared to two cores.

The current implementation does not feature garbage collection of streams: pro-

duced data values are stored in a vector which dynamically (at-runtime) grows

indefinitely (until memory exhaustion). This choice was made for a separation of

concerns. This orthogonal issue of garbage collection can be trivially solved in the

case of destructive streams: all produced values before the global index can be con-

sidered as garbage. A future implementation should automatically reclaim the space

for such values and appropriately resize (shrink) the vector. In the case, however, of

non-destructive streams, some extra bookkeeping and communication is involved to

have safe, distributed garbage collection of streams. One possible implementation

would require storing at the producer’s side a global (system-wide) minimum of all

the readers’ local cursors. Besides this bookkeeping of the producer, once a reader

forwards a Stream<T> to another ABS process (local or remote), it involves notify-

ing the producer about the local minimum of the new reader process. Furthermore,

in case of a real distributed system, the producer should monitor the quality of the

network connection to every reader, otherwise it runs the risk of memory leaking

from a dropped connection to a reader.
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Figure 4.15: Resolving dependencies in Distributed PA using cooperative scheduling

4.6 Case Study

In this section, we use data streams in the ABS model of the distributed PA pro-

posed in chapter 3. Figure 4.15 illustrates the high-level scheme for the unresolved

dependencies proposed in chapter 3, using the notion of an active object, future,

and cooperative scheduling in ABS.

In above scheme, the current, unresolved slot which belongs to the active object a

requires the value of the unresolved target slot which belongs to the the active

object b. To this aim, the object a asynchronously calls the request method of the

object b, and delegates the resulting future as a suspended process in its queue, so

that the active process continues with the rest of its partition. On the other side,

the request awaits on a Boolean condition which checks if the target is resolved and

returns the value. Finally, the delegate method which awaited on the future, gets

the future value and processes it.

4.6.1 Incorporating Data Streams

The generation of distributed PA-based graphs as described above is fairly high-level

and intuitive at the modeling level. However, the number of messages and return

values communicated among the active objects poses a considerable overhead. Pack-

aging the requests and the corresponding return values can considerably improve the

performance of the run-time system.

In the distributed scheme in Figure 4.15, the request is sent per each required

target slot, which is too fine-grained. Instead, we propose a modification of the

algorithm so that the requests for the target values located on the same active object

are sent together as a package of requests via one message, and the returning values

are received via a stream with packaging capability. An experimental validation of a

scalable distributed implementation of our model that utilizes streams is presented

in [11] which is based on Haskell. It shows a significant performance improvement

for the model compared the one presented in [10] (chapter 3).

Resolving the dependencies in the modified approach is shown in Figure 4.16. For
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Figure 4.16: The modified approach using destructive streams

all i ∈ [1, p], each pair (si, ti) represents a request from object a to object b, where

si represents the index of an unresolved slot belonging to the partition hosted by a,

and ti represents its corresponding slot belonging to the partition hosted by b. The

value obtained from each ti is used to resolve the unresolved slot si. Assuming p is

the package size, the list [t1, .., tp] is sent to b as a package of requests, and the

requests process returns corresponding values per each ti via a stream r (e.g., yield

array[ti]). Figure 4.17 illustrates abstract ABS code for requests which streams the

values, and for delegates which receives them.

4.7 Related Work

There already exists a variety of different programming constructs for streaming

data in different programming languages like Java, and software frameworks for

processing big data like Apache Hadoop and Spark.

Asynchronous generators specified in [66] enable the streaming of data in an

asynchronous method invocation. This includes, on the callee side, yielding the

data, and on the caller side receiving them as an asynchronous iterator or raising

an exception if there is no further yielded data. These generators are defined in the

context of the multi-threaded model of concurrency, where asynchrony is provided

by spawning a thread for a method call.

Akka Streams [70] provides an API to specify a streaming setup between actors

which allows to adapt behavior to the underlying resources in terms of both memory

and speed.

There are also languages which utilize the notion of channel as a means of com-

munication, inspired by the model of Communicating Sequential Processes (CSP).

For instance, Go language and JCSP [76], which is a library in Java, provide CSP-

like elements, e.g., processes (referred to as Goroutines in Go) that communicate via

channels by means of read and write primitives. Buffered channels in Go provide

asynchronous read (cf. write) when the buffer is not empty (cf. not full). Otherwise

the primitives are blocking.

Similarly to asynchronous generators, streaming data as proposed in this chapter
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1: Each actor o executes the following in parallel
2: Unit run(...)
3: while the whole partition is not yet processed do
4: /*

Resolve the slots. Next pack of unresolved sources = [s1, .., sp] from
the partition belonging to this object, and its corresponding targets =
[t1, .., tp] whose owning partition hosted by some object w are calculated

5: */
6: Stream<Int> f = w ! requests(targets);

. The stream f is destructive by default
7: this ! delegates(f, sources);

8:

9: Int stream requests(List<Int> targets)
10: while targets is not nil do
11: Int tar = head(targets);
12: targets = tail(targets);
13: await (arr[tar] 6= 0);

. At this point the target is resolved
14: yield arr[tar];

15:

16: Unit delegate(Stream<Int> r, Int sources)
17: while True do
18: Int val;
19: await r? finished {break;}

. Quit the while if r is terminated
20: val = r.get;
21: Int src = head(sources);
22: sources = tail(sources);
23: // Use val to resolve arr[src]

Figure 4.17: The sketch of the data streaming in the modified approach

is fully integrated with asynchronous method invocation, i.e., it is not a separate

orthogonal concept like channels are. But its integration with the ABS language

allows for an additional loose coupling between the producer and consumer of data

streams: by means of cooperative scheduling of tasks the consumption of data can

be interleaved with other tasks on demand.

The distributed shared memory (DSM) paradigm [34, 57, 72] enables access to

a common shared space across disjoint address spaces, where communication and

synchronization between processes are enforced through operations on shared data.

The notion of tuple space was originally integrated at the language level in Linda

[37]. The processes communicate via insertion/read/removal of tuples into/from the

tuple: out() to write a tuple into a tuple space, in() to retrieve (and remove),
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and read() to read (without removing) a tuple from it.

Similarly to tuple spaces, the interaction model of streams proposed in this chap-

ter provides time and space decoupling, namely, data producers and consumers can

remain anonymous with respect to each other, and the sender of a data needs no

knowledge about the future use of that data or its destination (the reference to a

stream can be passed around). Also producer-side synchronization decoupling is

guaranteed, whereas, the consumer-side decoupling is not provided in tuple-spaces,

as the consumers synchronously pull the data. In ABS streams, however, the decou-

pling is provided at the consumer object level, thanks to the notion of cooperative

scheduling. Similarly to tuple space in-based and read -based communication, the

destructive and non-destructive data streams, respectively, can be naturally used to

implement one-of-n semantics (only one consumer reads a given data), and one-to-n

message delivery (a given data can be read by all such consumers).

4.8 Future work

We focused on extending the main asynchronous core of ABS with data streams.

Other main features of the ABS like concurrent object groups (cogs) and deployment

components are orthogonal and compatible with this extension. As an example,

ABS features cog that, in principle, shares a thread of control among its constituent

objects, which enables internal synchronous calls. By the nature of data streaming,

it is natural to restrict the streaming to the asynchronous method calls.

Another interesting line of work consists of investigating a more efficient GC for

non-destructive streams. The approach proposed in this chapter involves a periodic

execution of GC that requires gathering information from all actors in the system

synchronously which can in practice give rise to a bottleneck. Alternatively, a more

efficient GC can be investigated where each stream maintains a table counting the

number of cursors to each data element in the buffer.

The ABS with Haskell backend supports real-time programming techniques which

allows for specifying deadlines with method invocations. This provides an interest-

ing basis to extend ABS with real-time data streaming which may, as an example,

involve timeout on read operations. We also need to extend the various formal

analysis techniques (e.g., deadlock detection, general functional analysis based on

method contracts) currently supported by the ABS to the ABS model of streaming

data discussed in this chapter.



Chapter 5

Multi-Threaded Actors

5.1 Introduction

Object-oriented programs organize data and corresponding operations by means of

a hierarchical structure of classes. A class can be dynamically instantiated and as

such extends the concept of a module. Operations are performed by corresponding

method calls on class instances, namely objects. In most object-oriented languages,

like Java, method calls are executed by a thread of control which gives rise to a

stack of call frames. In a distributed setting, where objects are instantiated over

different machines, remote method calls involve a synchronous rendez-vous between

caller and callee.

It is generally recognized that asynchronous communication is better suited for

distributed applications. In the Actor-based programming model of concurrency [2]

actors communicate via asynchronous messages. In an object-oriented setting such

a message specifies a method of the callee and includes the corresponding actual

parameters. Messages in general are queued and trigger execution of the body of

the specified method by the callee, when dequeued. The caller object proceeds with

its own execution and may synchronize on the return value by means of futures [27].

In [64] JCoBox, a Java extension with an actor-like concurrency model based on

the notion of concurrently running object groups, the concept of coboxes is intro-

duced which integrates thread-based synchronous method calls with asynchronous

communication of messages in a Globally Asynchronous, Locally Sequential man-

ner. More specifically, synchronous communication of method calls is restricted to

objects belonging to the same cobox. Objects belonging to the same cobox share

control, consequently within a cobox at most one thread of synchronous method

calls is executing. Only objects belonging to different coboxes can communicate via

asynchronous messages.

Instead of sharing control, in this chapter we introduce an Actor-based language

which features new programming abstractions for parallel processing of messages.

The basic distinction the language supports is that between the instantiation of an

71
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Actor class which gives rise to the initialization of a group of active objects sharing

a queue and that which adds a new active object to an existing group. Such a

group of active objects sharing a message queue constitutes a multi-threaded actor

which features the parallel processing of its messages. The distinction between

actors and active objects is reflected by the type system which includes an explicit

type for actors and which is used to restrict the communication between actors

to asynchronous method calls. In contrast to the concept of a cobox, a group of

active objects sharing a queue has its own distinct identity (which coincides with

the initial active object). This distinction further allows, by means of simple typing

rules, to restrict the communication between active objects to synchronous method

calls. When an active object fetches a message from the shared message queue,

the object starts executing a corresponding thread in parallel with all the other

threads. This basic mechanism gives rise to the new programming concept of a

Multi-threaded Actor (MAC) which provides a powerful Actor-based abstraction

of the notion of a thread pool, as for example, implemented by the Java library

java.util.concurrent.ExecutorService. We further extend the concept of a MAC with

a powerful high-level concept of synchronized data to constrain the parallel execution

of messages.

In this chapter we provide a formal operational semantics like Plotkin [61], and a

description of a Java-based implementation for the basic programming abstractions

describing sharing of message queues between active objects. The proposed run-time

system is based on the ExecutorService interface and the use of lambda expressions

in the implementation of asynchronous execution and messaging.

Related work Since Agha introduced in [2] the basic Actor model of concurrent

computation in distributed systems, a great variety of Actor-based programming

languages and libraries have been developed. In most of these languages and li-

braries, e.g., Scala [42], Creol [49], ABS [48], JCoBox [64], Encore [21], ProActive

[22], AmbientTalk [74], Rebeca [69], actors execute messages stored in their own mes-

sage queue. The Akka library for Actor-based programming however does support

sharing of message queues between actors. In this chapter we introduce a new cor-

responding Actor-based programming abstraction which integrates a thread-based

execution of messages with event-based asynchronous message passing.

Our work complements in a natural manner that of [64] which introduces groups

of actors sharing control. Another approach to extending the Actor-based concur-

rency model is that of Multi-threaded active objects (MAO) [44] and Parallel Actor

Monitors (PAM) [65] which allow the parallel execution of the different method in-

vocations within an actor. Another approach is followed in the language Encore

which provides an explicit construct for describing parallelism within the execution

of one method [35]. In contrast to these languages, we do allow the parallel execution

of different asynchronous method invocation inside a group of active objects which

provides an overall functionality as that of an actor, e.g., it supports an interface
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for asynchronous method calls and a unique identity. Further we provide a new

high-level language construct for specifying that certain parameters of a method are

synchronized, which allows a fine-grained parameter-based scheduling of messages.

In contrast, the more coarse-grained standard scheduling of methods as provided

by Java, PAM, and MAO, and JAC [43] in general only specify which methods can

run in parallel independent of the actual parameters. [77] also shows the notion

of Microsoft COM (Component Object Model)’s multi-threaded apartment. In this

model, calls to methods of objects in the multi-threaded apartment can be run on

any thread in the apartment. It however lacks the ability of setting scheduling strate-

gies (e.g. partial order of incoming messages in the next section). Multi-threaded

actors offer a higher level of abstraction to parallel programming and can be viewed

as similar to the OpenMP [25] specification for parallel programming in C, C++

and Fortran.

The rest of this chapter is organized as follows: In section 5.2, an application

example is established, by which we introduce the key features of MAC. Section 5.3

describes the syntax of MAC and the type system. Section 5.4 presents the opera-

tional semantics. In Section 5.5 we show the implementation of MAC in the Java

language and explain its features through an example. We draw some conclusions in

Section 5.6 where we briefly discuss extensions and variations describing static group

interfaces, support for the cooperative scheduling of the method invocations within

an actor (as described in for example [49]), synchronization between the threads of

a MAC, and encapsulation of the active objects belonging to the same actor.

5.2 Motivating Example

In this section, we explain an example which is used in the rest of the chapter to

show the notion of MAC. We also raise a challenge regarding this example which is

solved later in our proposed solution. We present a simple concurrent bank service

where the requests such as withdrawal, checking, and transferring credit on bank

accounts are supported. The requests can be submitted in parallel by several clients

of the bank. The system should respect the temporal order of the submitted requests

on the same accounts. For instance, checking the credit of an account should return

the amount of credit for the account after withdrawal, if there is a withdrawal

request for that account which precedes the check request. The requests can be

sent asynchronously. Therefore, respecting temporal order of two events means that

there is a happens-before relation between termination of the execution of the former

event and starting the execution of the latter.

Existing technologies are either not able to implement this property or they need

ad-hoc explicit synchronization mechanism which can be complicated and erroneous.

Using locks on accounts (e.g. synchronized block in Java) may cause deadlock or

violate the ordering, unless managed explicitly at the lower level, since two accounts

are involved in transferring credit. Another approach is to implement the scheduler



74 Multi-Threaded Actors

in PAM [65] to support such ordering which raises synchronization complexities.

The last alternative we investigate in this section is that to implement the service as

a thread pool (e.g. ExecutorService in Java), where the above ordering is respected

explicitly via passing the future variable corresponding to the previous task, to

the current one. The variable is then used to force the happens-before relation by

suspending the process until the future is resolved (e.g. get method in Java). One

challenge is that the approach requires that the submitter knows and has access

to the future variables associated to the previous task (or tasks in case the task

being submitted is a transfer). The other challenge is that, in a parallel setting

with multiple concurrent source of task submitters, how to provide such knowledge.

Last but not least, the approach first activates the task by allocating a thread and

then the task may be blocked which imposes overhead, while a desirable solution

forces the ordering upon the task activation. As shown in the rest of the chapter,

we provide the notion of MAC which overcomes this issue only via annotating the

parameters based on which we aim to respect the temporal order.

5.3 Syntax of MAC

Figure 5.1 specifies the syntax. A MAC program P defines interfaces and classes,

and a main statement. An interface IF has a name I and method signatures Sg. A

class CL has a name C, interfaces I that C implements (that specify the possible

types for its instances), formal parameters and attributes x of type T , and methods

M . A multi-threaded actor consisting of a group of active objects (a MAC) which

share a queue of messages of type I is denoted by Actor<I>. The type Fut<T>
denotes futures which store return values of type T . The fields of the class consist

of both its parameters and its attributes. A method signature Sg declares a method

with name m and the formal parameters x of types T with optional sync<l> modifier

which is used to indicate that the corresponding parameter contains synchronized

data. The user-defined label l allows to introduce different locks for the same data

type. Informally, a message which consists of such synchronized data can only be

activated if the specified data has not been locked.

Statements have access to the local variables and the fields of the enclosing

class. Statements are standard for sequential composition, assignment, if and while

constructs. The statement e.get, where e is a future variable, blocks the current

thread until x stores the return value. Evaluation of a right-hand side expression

new C (e) returns a reference to a new active object within the same group of the

executing object, whereas new actor C (e) returns a reference to a new actor which

forms a new group of active objects. By e.m(e) we denote a synchronous method

call. Here e is assumed to denote an active object, i.e., e is an expression of some

type I, whereas e!m(e) denotes an asynchronous method call on an actor e, i.e., e

is of some type Actor<I>.

Listing 5.1 contains an example of an actor bank which implements a bank
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T ::= Bool | I | Actor<I> | Fut<T>

P ::= IF CL {T x; s}
CL ::= class C[(T x)] implements I{T x;M}
IF ::= interface I{Sg}
Sg ::= [sync<l>] T m([sync<l>] T x)

M ::= Sg{T x; s}
s ::= x = e | s; s | e.get | if b{s1}else{s2} | while b{s}
e ::= null | b | x | this | new [actor] C[(e)] | e.m(e) | e!m(e)

b ::= e? | b | b ∧ b

Figure 5.1: Syntax

service. The services provided by a bank are specified by the interface IEmployee
which is implemented by the class Employee. A bank is created by a statement

Actor <IEmployee> bank = new actor Employee().

New employees can be created on the fly by the addEmp method. The ac-

tual data of the bank is represented by the instances of the class Account which

implements the interface IAccount and which contains the actual methods for

transferring credit, checking and withdrawal. A simple scenario is the following:

(1) Fut<Int> f = bank!createAcc(...);
(2) Int acc1 = f.get;
(3) Fut<Bool> f3 = bank!withdraw(acc1, 50);
(4) Fut<Int> f2 = bank!check(acc1);

Line 1 models a request to create an account by an asynchronous method call.

The result of this call is a number of the newly created account. Lines 3 and 4

then describe a withdrawal operation followed by a check on this account by means

of corresponding asynchronous method calls. These calls are stored in the message

queue of the actor bank and dispatched for execution by its empoyees, thus allowing

a parallel processing of these requests. However, in this particular scenario such

a parallel processing of requests involving the same account clearly may give rise

to inconsistent results. For example a main challenge in this setting arises how to

ensure that the messages are activated in the right order, i.e., the order in which

they have been queued. Note that the execution of messages can be synchronized

by means of standard synchronization mechanisms, e.g., synchronized methods in

Java. Another approach is to use transactional memory to recover from inconsistent

states. However both approaches do not guarantee in general that the messages

are activated in the right order because they do not provide direct control of their

activation.
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By declaring in Listing 5.1 all the parameters of the methods of the interface

IEmployee which involve account numbers as synchronized by means of a single

lock ”a” we ensure mutual exclusive access to the corresponding accounts. More

specifically, the selection for execution of a queued message which contains a request

to withdraw a certain amount for a specified account, for example, requires that (1)

no employee is currently holding the lock ”a” on that account and (2) no preceding

message in the queue requires the lock ”a” on that account. Similarly, a message

which contains a transfer request, which involves two accounts, requires that (1) no

employee is currently holding the lock ”a” on one of the specified accounts and (2)

no preceding message in the queue requires the lock ”a” on one of these accounts.

The formal details of this synchronization mechanism is described in the following

section.

Listing 5.1: Syntax Example
interface IEmployee {

IAccount createAcc(...);
Bool transfer(sync<a> Int accNum1, sync<a> Int accNum2, Int amount);
Bool withdraw(sync<a> Int accNum, Int amount);
Int check(sync<a> Int acc);

}

interface IAccount {
Bool transfer(IAccount acc2, Int amount);
Bool withdraw(Int amount);
Int check();

}

class Employee implements IEmployee {
Int createAcc(){

Int accNum = ...;
IAccount acc = new Account(accNum, ...); \\account creation
return accNum;

}
Bool transfer(Int accNum1, Int accNum2, Int amount){

IAccount acc1 = getAccount(accNum1);
IAccount acc2 = getAccount(accNum2);
acc1.transfer(IAccount acc2, Int amount);...

}
Bool withdraw(Int acc, Int amount){

IAccount acc1 = getAccount(acc1);
acc.withdraw(Int amount);...

}
Int check(Int accNum){

IAccount acc = getAccount(accNum);
acc.check();...

}
Unit addEmp(){ ...

IEmployee emp = new Employee();
}
IAccount getAccount(Int accNum){...}

}

class Account(Int acn, ...) implements IAccount {
...

}



Operational Semantics 77

5.4 Operational Semantics

Runtime concepts We assume given an infinite set of active object and future

references, with typical element o and f , respectively.

We assume distinguished fields myactor, I, and L which denote the identity of

the actor, the type of the active object, and the set of pairs of synchronized entries

locked by the active object, respectively. A local environment τ assigns values to the

local variables (which includes the distinguished variables this and dest, where the

latter is used to store the future reference of the return value). A closure c = (τ, s)

consists of a local environment τ and a statement s. A thread t is a sequence (i.e.,

a stack) of closures. A process p of the form (o, t) is a runtime representation of an

active object o with an active thread t. An actor a denotes a pair (o, P ) consisting

of an object reference o, uniquely identifying the actor as a group of active objects,

and a set of processes P . A set A denotes a set of actors. By e we denote an event

m(v̄) which corresponds to an asynchronous method call with the method name

m and values v. For notational convenience, we simply assume that each event

also includes information about the method signature. A queue q is a sequence of

events. A (global) context γ consists of the following (partial) functions: γh, which

denotes for each existing object its local state, that is, an assignment of values to

its fields; γq, which denotes for each existing object identifying an actor its queue of

events, and, finally, γf , which assigns to each existing future its value (⊥, in case it

is undefined).

Some auxiliary functions and notations. By γ[o ← σ] we denote the assign-

ment of the local state σ, which assigns values to the fields of o, to the object o

(affecting γh); by γ[o.x ← v] we denote the assignment of the value v to the field

x of object o (affecting γh); by γ[o ← q] we denote the assignment of the queue

of events q to the object reference o (affecting γq); and, finally, by γ[f ← v] we

denote the assignment of value v to the future f (affecting γf ). By act-dom(γ) and

fut-dom(γ) we denote the actors and futures specified by the context γ. We assume

the evaluation function valγ,τ (e). The function sync-call(o,m, v) generates the clo-

sure corresponding to a call to the method m of the actor o with the values v of the

actual parameters. The function async-call(o,m, v) returns the closure correspond-

ing to the message m(v), where v̄ includes the future generated by the corresponding

call (which will be assigned to the local variable dest), o denotes the active object

which has been scheduled to execute this method. In both cases we simply assume

that the class name can be extracted from the identity o of the active object (to

retrieve the method body). The function init-act(o, v, o′) returns the initial state of

the new active object o. The additional parameter o′ denotes the the actor identity

which contains o, which is used to initialize the field myactor of o. The function

sg(m(v)) returns the signature of the event m(v). Finally, syncm(v̄) returns the

synchronized arguments of event m(v̄) together with their locks (i.e., the arguments
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specified by sync<l> modifier in the syntax where l is the lock).

The Transition Systems Figure 5.2 gives a system for deriving local transition

of the form: γ, (o, t) → γ′, (o, t′) which describes the effect of the thread t in the

context of γ. Rules (ASSIGN-LOCAL) and (ASSIGN-FIELD) assign the value

of expression e to the variable x in the local environment τ or in the fields γh(o
′),

respectively. o′ is the identity of the active object corresponding to the current

closure. Rules (COND-TRUE) and (COND-FALSE) evaluate the boolean expression

and branch the execution to the different statements depending on the value from

the evaluation of boolean expression e. Rule (SYNC-CALL) addresses synchronous

method calls between two active objects. A synchronous call gives the control to the

callee after binding the values of actual parameters to the formal parameters and

forming a closure corresponding to the callee. The closure (τ0, s0), which represents

the environment and the statements of the called method, is placed on top of the

stack of closures. Rule (SYNC-RETURN) addresses the return from a synchronous

method call. We assume that return is always the last statement of a method

body. Therefore, the rule consists of obtaining the value v of the return expression

e, updating the variable which holds the return value on the caller side with v, and

removing the closure of the callee from the stack. Rule (NEW-ACTOB) creates a new

active object in the same actor by allocating an identity to the new active object

and extending the context γh with the fields of the active object.

Rule (READ-FUT) blocks the active object o until the expression e is resolved,

i.e., if e is evaluated to a future which is equal to ⊥ then the active object blocks.

Rule (NEW-ACTOR) creates a new actor o′ and sends the special event init

to it with the class name C and the values v obtained by evaluating the actual

parameters of the constructor. This event will initialize the actor with one active

object of type C with the parameters v. Rule (ASYNC-CALL) sends a method

invocation message to the actor o′ with the new future f , the method name m, and

the values v obtained by evaluating the expressions e of the actual parameters. The

rule updates γ to place the message in the queue of the target actor o′ and also to

extend the set of futures with f with the initial value ⊥.

Rule (SCHED-MSG) addresses the activation of idle objects of an actor. The

rule specifies scheduling a thread for the idle object o by binding an event from the

queue of the actor o′ to which the active object o belongs, and removing the event

from the queue. The q\m(v) removes the first occurrence of message m(v̄) from the

queue.
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ASSIGN-LOCAL
v = valγ,τ (e)

γ, (o, t.(τ, x = e; s))

→ γ, (o, t.(τ [x← v], s))

(ASSIGN-FIELD)
o′ = τ(this) v = valγ,τ (e)

γ, (o, t.(τ, x = e; s))

→ γ[o′.x← v], (o, t.(τ, s))

(COND-FALSE)
valγ,τ (e) = False

γ, (o, t.(τ, if e then {s1} else {s2}; s))
→ γ, (o, t.(τ, s2; s))

(SYNC-CALL)
o′ = valγ,τ (e) v = valγ,τ (e)

(τ0, s0) = sync-call(o′,m, v)

γ, (o, t.(τ, x = e.m(e); s))

→ γ, (o, t.(τ, x =?; s).(τ0, s0))

(COND-TRUE)
valγ,τ (e) = True

γ, (o, t.(τ, if e then {s1} else {s2}; s))
→ γ, (o, t.(τ, s1; s))

(SYNC-RETURN)
v = valγ,τ (e)

γ, (o, t.(τ, x =?; s).(τ0, return e))→
γ, (o, t.(τ, x = v; s))

(READ-FUT)
valγ,τ (e) 6=⊥

γ, (o, t.(τ, e.get; s))

→ γ, (o, t.(τ, s))

(ASYNC-RETURN)
v = valγ,τ (e) f = τ(dest)

γ, (o, (τ, return e))

→ γ[f ← v, o.L← ∅], (o, ε)

(NEW-ACTOB)
o′ 6∈ dom(γh)

γ, (o, t.(τ, x = new C(e); s))→
γ[o′ ← init-act(o′, val(γ,τ)(e), γh(o.myactor))], (o, t.(τ [x← o′], s))

(NEW-ACTOR)
o′ 6∈ act-dom(γ) v = valγ,τ (e)

γ, (o, t.(τ, x = new actor C(e); s))→ γ[o′ ← init(C, v)], (o, t.(τ [x← o′], s))

(ASYNC-CALL)
f /∈ fut-dom(γ) v = valγ,τ (e) o′ = valγ,τ (e) γq(o

′) = q

γ, (o, t.(τ, x = e!m(e); s))→ γ[f ←⊥, o′ ← q.m(v, f)], (o, t.(τ, x = f ; s))

(SCHED-MSG)
o′ = γh(o.myactor)

γq(o
′) = q m(v) = select(γh(o.I), lock(γ, o′), q) (τ, s) = async-call(o,m, v)

γ, (o, ε)→ γ[o′ ← q\m(v), o.L← syncm(v)], (o, (τ, s))

Figure 5.2: Operational Semantics at the Local Level
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The event selection mechanism is underspecified, provided that it respects the

temporal order of events in the queue that use the same synchronized data with

the same locks. For instance, suppose given events with the order m1, m2, m3,

m4 and m5 in the queue of an actor with the required set of pairs of lock and

data: {(l, v1)}, {(l’, v1)}, {(l, v1), (l, v2)}, {(l, v2)}, and {(l, v3)} for the events

respectively (Recall that each synchronized entry is a pair consisting of a data value

and a user-defined lock which is specified in the program by the sync<l> modifier

on the method parameters). The actor also contains more than one active object. If

event m1 is activated then event m2 can be scheduled in parallel since the required

lock for v1 is different. However, m3 cannot be scheduled unless m1 is terminated.

Event m4 also cannot be activated in parallel with m1, even though v2 is free, since

m3 which requires v2 precedes m4 in the queue. However m5 can be activated in

parallel with m1. The semantics of the select function is defined as follows:

select(I, L,m(v̄).q) =

{
m(v̄) in case L ∩ syncm(v̄) = ∅ ∧ Sg(m(v̄)) ∈ I
select(I, L ∪ syncm(v̄), q) otherwise

where L ⊆ Labels × Data and select(I, L, ε) =⊥ (where ⊥ stands for undefined).

The signature of selected method requires to be supported by the active object

type, I. The set of synchronized entries of the message, syncm(v̄), also requires

to be mutually disjoint with the union of synchronized entries of the actor and the

synchronized arguments of the messages preceding to the message in the queue. The

binding proceeds then by assigning the set of synchronized entries of the method

to the field L of the object. Lock(γ, o) =
⋃
{o′.L|γh(o′.myactor) = o} returns the

synchronized entries of the actor o, that is, the union of synchronized entries of its

objects, represented by field L of each object.

Rule (ASYNC-RETURN) evaluates the expression e and assigns the resulting

value v to the future f associated to the method call. The return statement belongs

to an asynchronous method invocation if there is only one closure in the thread stack

(i.e., the closure generated by (SCHED-MSG)). The set L of synchronized entries

associated to the invocation are also released by assigning ∅ to the field L of the

active object. Then the closure is removed and the active object o becomes idle.

Figure 5.3 gives the rules for the second level, the actor level. Rule (PROCESS-
UPDATE) specifies that if the domain of the heap remains the same then only the

current process is updated. Rule (PROCESS-CREATE), on the other hand, shows

that if the domain of the heap has been extended with a new active object o′ then

a new idle process p′′ for the active object o′ is introduced to the processes of the

actor.

Figure 5.4 gives the rules for the third level, the system level. Rule (ACTOR-
UPDATE) specifies that if the domain of γ remains the same then only the current

actor is updated. Rule (ACTOR-CREATE), on the other hand, shows that if the

domain of γ has been extended then a corresponding new actor configuration a′′ is

added to the system. Note that this actor is identified by the reference which has
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been added to γ. This reference is also used to identify the initial active object of

the newly created actor.

(PROCESS-UPDATE)
γ, p→ γ′, p′

dom(γh) = dom(γh′)

γ, (o, P ∪ {p})→ γ′, (o, P ∪ {p′})

(PROCESS-CREATE)
γ, p→ γ′, p′

o′ ∈ dom(γh′)\dom(γh) p′′ = (o′, ε)

γ, (o, P ∪ {p})→ γ′, (o, P ∪ {p′, p′′})

Figure 5.3: Operational Semantics at the Actor Level

We have the following the description of the initial state for the operational

semantics in the local, actor, and system level respectively:

p0 = ( , (τmain, smain)) a0 = ( , {p}) A0 = {a}

The p0 represents a process with the context τmain for the main body and its state-

ment smain. The process is considered to be an active object with the anonymous

identity which is denoted by underscore. The a0 represents an anonymous actor

with the underscore identity in the system and the process p0 in the process set.

The gamma is initialized as the following,

γ[ ← {myactor ← }]

as the active object state for p0. Any object which is created in the main body is a

free object, an active object that belongs to the anonymous actor. All the objects

which are created by a free object are also free objects. The field myactor of all the

free objects is equal to underscore. The anonymous actor does not receive any event

as it has no identity in the program.

We conclude this section with the following basic operational property of syn-

chronized data:

Theorem 2. First, let Object(a) = {o | (o, t) ∈ P, for some process p} denote the

set of objects in a which contains the set processes P . For every configuration A

(ACTOR-UPDATE)
γ, a→ γ′, a′

act-dom(γ) = act-dom(γ′)

γ,A ∪ {a} → γ′, A ∪ {a′}

(ACTOR-CREATE)
γ, a→ γ′, a′ o ∈ act-dom(γ′)\act-dom(γ)
γ′q(o) = q.init(C, v) a′′ = (o, {(o, ε)})

γ,A ∪ {a} →
γ′[o← q, o← init-act(o, v, o)], A ∪ {a′, a′′}

Figure 5.4: Operational Semantics at the System Level
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Table 5.1: The interface for group management

poolSize()
Returns the number of threads in the actor’s
pool of suspended threads.
groupSize()
Returns the number of internal actors in the
group.
groupThreadNumber()
Returns the number of threads (active and
suspended) in the group.

reachable from the initial configuration A0 we have o.L ∩ o′.L = ∅ for any o, o′ ∈
Object(a) (o 6= o′)

This invariant property follows immediately from the definition of the select

function. It expresses that at run-time there are no two distinct asynchronous

method invocations which require the same synchronized data.

5.5 Experimental Methodology and Implementa-

tion

In this section we present the implementation of the MAC in a widely used, main-

stream programming language, the Java language. The implementation has to take

into account the transparency of parallel computation from the user’s perspective

and the functions that are exposed by the abstract class. The outline of the imple-

mentation is presented in Listing 5.4.

As shown in the operational semantics in section 5.4, the default policy schedules

the idle objects non-deterministically. However, there is the possibility to overload

the policy using the runtime information to allow a preferential selection of the

active objects. Furthermore, the current selection method presented is minimal,

in the sense that it can be overloaded with different arguments to provide more

selection options based on application specific requirements.

To this aim, each new actor in a group is a subclass of class Group which provides

an interface S that can be used for specifying different scheduling policies (e.g.

addressing load balancing concerns). The internal actors can call the methods in S

synchronously. Table 5.1 describes the methods in the S.

5.5.1 Actor Abstract Class

The Java module creates an abstract class, Actor, that provides a runtime sys-

tem for queuing and activation of messages. It exposes two methods to the outside
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world for interaction, namely send(Object message) and getNewWorker(Object... pa-

rameters). This layout is used to allow a clear separation between internal object

selection, message delivery and execution. This class is the mediator between the

outside applications and the active objects defined by the internal interface Ac-

tiveObject. These Active Objects will be assigned execution of the requests sent

to the actor. Our abstract class contains a queue of availableWorkers and a set

of busyWorkers separating those objects that are idle from those that have been

assigned a request. Parallel execution and control is ensured through a specific Java

Fork Join Pool mainExecutor that handles the invocations assigned to the inter-

nal objects and is optimized for small tasks executing in parallel. The class uses a

special queue, named messageQueue, that is independent of the thread execution.

It is used to store incoming messages and model the shared queue of the group.

This message queue is initialized with a comparator(ordering function) that selects

the first available message according to the rule (SCHED-MSG) specified in Section

5.4. To use this abstract class as a specific model, it needs to be extended by each

interface defined in our language in order to be initialized as an Actor.

The default behavior of the exposed method getNewWorker(Object... parame-

ters) is to select a worker from the availableWorkers queue. The workers are in-

serted in a first-in-first-out(FIFO) order with a blocking message delivery if there is

no available worker (i.e. the availableWorkers queue is empty). While the behavior

of this method is hidden from the user, it needs to be exposed such that the user

has a clear view of the selection, before sending a request.

An interesting observation here is that the Actor interface extends the Com-

parable such that once the abstract class is extended a specific or a natural or-

dering of the workers can be made in the queue. When overriding the getNew-

Worker(Object... parameters), additional arguments can be processed to offer an

ActorGroup with several types of Actors available for selection and concurrency

control. For this implementation example, our abstract class offers the signature

getNewWorker(Object... parameters) with a simple non-deterministic selection.

The second exposed function, send(Object message, Set<Object> data, takes the

first argument in the form of a lambda expression, that models the request. The

format of the lambda expression must be

() -> ( getNewWorker() ).m()

The second argument specifies a set of objects that the method m() needs to lock

and maintain data consistency on. Therefore when a request is made for a method

m() the runtime system must also select an Active Object from the availableWorkers

queue to be assigned the request, as well a set of data that needs concurrency control.

Execution is then forwarded to the mainExecutor which returns a Java Future to

the user for synchronization with the rest of the application outside the actor. The

selection of the ActiveObject is important to form the lambda expression that saves

the application from having a significant number of suspended threads if the set of

data that is required is locked.
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The application outside of the Actor sends requests asynchronously and must

be free to continue execution regardless of the completion of the request. To this

end we provide the class Message illustrated in Listing 5.2 which creates an object

from the arguments of the send method and initializes a future from the lambda

expression.

Listing 5.2: Message Class in Java
import java.util.Set;

import java.util.concurrent.Callable;

import java.util.concurrent.ForkJoinTask;

import java.util.concurrent.atomic.AtomicInteger;

public class Message {

static final AtomicInteger queuePriority = new AtomicInteger(0);

String name;

Object lambdaExpression;

Set<Object> syncVariables;

ForkJoinTask<?> f;

AtomicInteger preemptPriority;

int priority = 0;

public Message(Object message, Set<Object> variables, String name) {
this.lambdaExpression = message;

this.syncVariables = variables;

this.name = name;

this.preemptPriority = new AtomicInteger(0);

priority = queuePriority.getAndAdd(1);

f = null;

if (message instanceof Runnable)

f = ForkJoinTask.adapt((Runnable) message);

if (message instanceof Callable<?>)

f = ForkJoinTask.adapt((Callable<?>) message);

}

public Message(Message m) {
this(m.lambdaExpression, m.syncVariables, m.name);

this.preemptPriority.set(m.preemptPriority.get());

}

@Override

public String toString() {
return name + ” ” + syncVariables + ” :< ” + priority + ”,”

+ preemptPriority + ” >”;

}
}

This class contains the specific parts of a message which are the lambdaExpres-

sion, the syncData on which the request need exclusive access and the Future f

which captures the result of the request. To maintain a temporal order on messages

synchronize on the same messages the class also contains a static field queuePriority

which determines a new message’s priority upon creation and insertion in the queue.

The Actor runs as a process that receives requests and runs them in paral-

lel while maintaining data-consistency throughout its lifetime. The abstraction is

data-oriented as it is a stateful object maintaining records of all the data that its

workers are processing. It contains a set of busyData specifying which objects are
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currently locked by the running active objects. An internal method, named re-

portSynchronizedData is defined to determine if a set of data corresponding to a

possible candidate message for execution is intersecting with the current set of busy-

Data. This method is used as part of the comparator defined in the messageQueue

to order the messages based on their availability. The main process running the

Actor is then responsible to take the message at the head of the queue and schedule

it for execution and add the data locked by the message to the set of busyData. It

is possible that at some point during execution, all messages present in the mes-

sagesQueue are not able to execute due to their data being locked by the requests

that are currently executing. To ensure that our Actor does not busy-wait, we

forward all the messages into a lockedQueue such that the Actor thread suspends.

The Actor is a solution that makes parallel computation transparent to the user

through the internal class implementation of its worker actors. These objects are

synchronized and can undertake one assignment at a time. Each request may have

a set of synchronized variable to which it has exclusive access while executing. At

the end of the execution, the active object calls the freeWorker(ActiveObject worker,

Object ... data) method that removes itself from the busyWorkers set and becomes

available again by inserting itself in the availableWorkers queue. At this point,

the lockedQueue is flushed into the messageQueue such that all previously locked

messages may be checked as candidates for running again. All of the objects that

were locked by this ActiveObject are also passed to this method such that they

can be removed from the busyData set and possibly release existing messages in

the newly filled messageQueue for execution. This control flow is illustrated in an

example in the next section, however our motivation is to modify this module into

an API and use it as a basis for a compiler from the modeling language to Java.

5.5.2 Service Example and Analysis

Listing 5.3 shows the implementation of a Bank service as an Actor. As a default

behavior, whenever a new concrete extension of an Actor is made, the constructor

or the addWorkers method may create one or more instances of the internal Active

Object. The behavior of getNewWorker(Object... parameters) is overridden to en-

sure the return of a specific internal Active Object with exposed methods, in this

case the BankEmployee. This internal class implements the general Active Object

interface and exposes a few simple methods of a general Bank Service. The methods

withdraw, deposit, transfer and checkSavings all perform their respective operations

on one or more references of the internal class Account a reference which is made

available through the method createAccount. The MAC behavior is inherited from

the Actor and only the specific banking operations are implemented.

To test the functionality, as well as the performance of the MAC we implement a

simple scenario that creates a fixed number of users each operating on their own bank

account. We issue between 100 and 1 million requests distributed evenly over the
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Listing 5.3: Bank Class in Java
public class Bank extends Actor {

public void addWorkers(int n){
for (int i = 0; i < n; i++) {

availableWorkers.add(new BankEmployee());
}

}

@Override
public BankEmployee getNewWorker(Object... parameters) {

BankEmployee selected worker = null;
try {

selected worker = (BankEmployee) availableWorkers.take();
busyWorkers.add(selected worker);

} catch (InterruptedException e) {
e.printStackTrace();

}
return selected worker;

}

class BankEmployee implements ActiveObject {

public Account createAccount() {
Account a = new Account();
Bank.this.freeWorker(this);
return a;

}

public boolean withdraw(Account n, int x) {
boolean b = n.withdraw(x);
Bank.this.freeWorker(this, n);
return b;

}

protected boolean deposit(Account n, int x) {
boolean b = n.deposit(x);
Bank.this.freeWorker(this, n);
return b;

}

public boolean transfer(Account n1, Account n2, int amount) {
boolean b = n1.transfer(n2, amount);
Bank.this.freeWorker(this, n1, n2);
return b;

}

public int checkSavings(Account n) {
int res = n.checkSavings();
Bank.this.freeWorker(this, n);
return res;

}

class Account {
//Acount processing methods

} } } }

fixed number of accounts. To ensure that some messages have to respect a temporal

order and forced await execution of prior requests on the same account we issue sets

of 10 calls for each account. This also ensures that the selection rule (SCHED-MSG)
does not become too large of a bottleneck as in the case of issuing all operations

for one bank account at a time. We measure the time taken to process the requests

based on a varying number of Active Objects inside in the Bank Service. The

performance figures for a MAC with 1,2 and 4 available Active Objects is presented

in Figure 5.5

The results validate our solution in the sense that the time:message ratio is

almost linear with very little overhead introduced by the message format and the

selection function. Furthermore the benefit of parallelism is maintained with the

increasing volume of request issued to the service. To emphasize this we computed
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Figure 5.5: Performance Times for processing 100-1M messages

Figure 5.6: Throughput for processing 1M messages

the throughput of the service in relation to the number of Active Objects running

and present it in Figure 5.6. From these results we can infer the scalability of the

MAC for parallel computation.

5.6 Conclusion and Future Work

In this chapter we have introduced the notion of multi-threaded actors, that is, an

actor-based programming abstraction which allows to model an actor as a group

of active objects which share a message queue. Encapsulation of the active objects

which share a queue can be obtained by simply not allowing active objects to be

passed around in asynchronous messages. Cooperative scheduling of the method

invocations within an active object (as described in for example [49]), can be ob-

tained by introduction of a lock for each active object. In general, synchronization

mechanisms between threads is an orthogonal issue and as such can be easily in-

tegrated, e.g., lock on objects, synchronized methods (with reentrance), or even

synchronization by the compatibility relationship between methods as defined in

[43] and [44]. Other extensions and variations describing dynamic group interfaces

can be considered along the lines of [50].



88 Multi-Threaded Actors

Future work will be dedicated toward the development of the compiler which

allows importing Java libraries, and further development of the runtime system, as

well as benchmarking on the performance. Other work of interest is to investigate

into dynamic interfaces for the multi-threaded actors and programming abstractions

for application-specific scheduling of multi-threaded actors.
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Listing 5.4: Actor Abstract Class in Java
public abstract class Actor implements Runnable {

protected ForkJoinPool mainExecutor;
protected PriorityBlockingQueue<Message> messageQueue;
protected ConcurrentLinkedQueue<Message> lockedQueue;
protected PriorityBlockingQueue<ActiveObject> availableWorkers;
protected Set<ActiveObject> busyWorkers;
protected Set<Object> busyData;

public Actor() {
//initialization of internal data structures

}

@Override
public void run() {

while (true) {
try {

Message message = messageQueue.take();
if (reportSynchronizedData(message.syncData)) {

synchronized (busyData) {
busyData.addAll(message.syncData);

}
mainExecutor.submit(message.f);

} else {
this.lockedQueue.offer(newM);

}
} catch (InterruptedException e) {

e.printStackTrace();
}

}}

// message format: ()−>getWorker().m()
public <V> Future<V> send(Object message, Set<Object> data) {

Message m = new Message(message, data, name);
messageQueue.put(m);
return (Future<V>) m.f;

}

public ActiveObject getNewWorker(Object... parameters) {
ActiveObject selected worker = null;

try {
selected worker = availableWorkers.take();
busyWorkers.add(selected worker);

} catch (InterruptedException e) {
e.printStackTrace();

}

return selected worker;
}

private boolean reportSynchronizedData(Set<Object> data) {
Set<Object> tempSet = new HashSet<Object>();

synchronized (busyData) {
tempSet.addAll(busyData);
tempSet.retainAll(data);

if (tempSet.isEmpty()) {
return true;

}
return false;

} }

protected void freeWorker(ActiveObject worker, Object... data) {

synchronized (busyData) {
busyWorkers.remove(worker);
availableWorkers.offer(worker);

messageQueue.addAll(lockedQueue);
lockedQueue.clear();

for (Object object : data) {
busyData.remove(object);

} } }

public interface ActiveObject extends Comparable<ActiveObject> {
// the active objects in charge of requests

}
}
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Part IV

Deadlock Analysis

This part consists of the following chapter:

Chapter 6 In this chapter, we introduce an approach for detecting deadlocks in an

actor-based program in ABS. The underlying language features active objects, that

communicate asynchronously, and cooperative scheduling of the tasks belonging to

an object. To this aim, we model the system as a well-structured transition system

based on predicate abstraction and prove the decidability of the deadlock detection.
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Chapter 6

Deadlock Detection for

Actor-Based Coroutines

6.1 Introduction

Actors [2][47] provide an event-driven concurrency model for the analysis and con-

struction of distributed, large-scale parallel systems. In actor-based modeling lan-

guages, like Rebeca [69], Creol [51], and ABS [48], the events are generated by

asynchronous calls to methods provided by the actors. The resulting integration

with object-orientation allows for new object-oriented models of concurrency, better

suited for the analysis and construction of distributed systems than the standard

model of multi-threading in languages like Java.

The new object-oriented models of concurrency arise from the combination of

different synchronization mechanisms. By design, the basic run-to-completion mode

of execution of asynchronously called methods as for example provided by the lan-

guage Rebeca does not provide any synchronization between actors. Consequently,

the resulting concurrent systems of actors do not give rise to undesirable conse-

quences of synchronization like deadlock. The languages Creol and ABS extend the

basic model with synchronization on the values returned by a method. So-called

futures [27] provide a general mechanism for actors to synchronize on return values.

Creol and ABS further integrate a model of execution of methods based on and in-

spired by coroutines, attributed by D. Knuth to M. Conway [24]. This model allows

for controlled suspension and resumption of the executing method invocation and

so-called cooperative scheduling of another method invocation of the actor.

Both the synchronization mechanisms of futures and coroutines may give rise

to deadlock. Futures may give rise to global deadlock in a system of actors. Such

a global deadlock consists of a circular dependency between different method in-

vocations of possibly different actors which are suspended on the generation of the

return value. On the other hand, coroutines may give rise to a local deadlock which

occurs when all method invocations of a single actor are suspended on a Boolean
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condition. In this chapter we provide the formal foundations of a novel method for

the analysis of such local deadlocks.

To the best of our knowledge, our work provides a first method for deciding local

deadlocks in actor-based languages with coroutines. The method itself is based on

a new technique for predicate abstraction of actor-based programs with coroutines,

which aims at the construction of a well-structured transition system. In contrast,

the usual techniques of predicate abstraction [17] aim at the construction of a finite

abstraction, which allows model checking of properties in temporal logic. In [29], a

restricted class of actor-based programs is modeled as a well-structured transition

system. This class does not support coroutines and actors do not have a global state

specifying the values of the global variables.

Methods that utilize different techniques aiming at detection of global deadlocks

in various actor settings include the following. The work in [53] uses ownership

to organize CoJava active objects into hierarchies in order to prevent circular rela-

tionships where two or more active objects wait indefinitely for one another. Also

data-races and data-based deadlocks are avoided in CoJava by the type system that

prevents threads from sharing mutable data. In [26], a sound technique is proposed

that translates a system of asynchronously communicating active objects into a Petri

net and applies Petri net reachability analysis for deadlock detection. The work that

is introduced in [38] and extended in [45] defines a technique for analyzing deadlocks

of stateful active objects that is based on behavioural type systems. The context is

the actor model with wait-by-necessity synchronizations where futures are not given

an explicit ”Future” type. Also, a framework is proposed in [52] to statically verify

communication correctness in a concurrency model using futures, with the aim that

the type system ensures that interactions among objects are deadlock-free.

A deadlock detection framework for ABS is proposed in [39] which mainly focuses

on deadlocks regarding future variables, i.e., await and get operations on futures.

It also proposes a naive annotation-based approach for detection of local deadlocks

(await on Boolean guards), namely, letting programmers annotate the statement

with the dependencies it creates. However, a comprehensive approach to investigate

local deadlocks is not addressed. Our approach, and corresponding structure of

the chapter, consists of the following. First, we introduce the basic programming

concepts of asynchronous method calls, futures and coroutines in Section 6.2. In

Section 6.3 we introduce a new operational semantics for the description of the local

behavior of a single actor. The only external dependencies stem from method calls

generated by other actors and the basic operations on futures corresponding to calls

of methods of other actors. Both kinds of external dependencies are modeled by

non-determinism. Method calls generated by other actors are modeled by the non-

deterministic scheduling of method invocations. The basic operations on futures

are modeled by the corresponding non-deterministic evaluation of the availability

of the return value and random generation of the return value itself. Next, we

introduce in Section 6.4 a predicate abstraction [17, 40] of the value assignments to
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the global variables (“fields”) of an actor as well as the local variables of the method

invocations. The resulting abstraction still gives rise to an infinite transition system

because of the generation of self -calls, that is, calls of methods of the actor by the

actor itself, and the corresponding generation of “fresh” names of the local variables.

Our main contribution consists of the following technical results.

• a proof of the correctness of the predicate abstraction, in Section 6.5, and

• decidability of checking for the occurrence of a local deadlock in the abstract

transition system in Section 6.7.

Correctness of the predicate abstraction is established by a simulation relation be-

tween the concrete and the abstract transition system. Decidability is established

by showing that the abstract system is a so-called well-structured transition sys-

tem, cf. [36]. Since the concrete operational semantics of the local behavior of a

single actor is an over-approximation of the local behavior in the context of an ar-

bitrary system of actors, these technical results together comprise a general method

for proving absence of local deadlock of an actor. A short discussion follow-up in

Section 6.8 concludes the chapter.

6.2 The Programming Language

In this section we present, in the context of a class-based language (with a subset of

ABS features), the basic statements which describe asynchronous method invocation

and cooperative scheduling.

A class introduces its global variables, also referred to as “fields”, and methods.

We use x, y, z, . . . to denote both the fields of a class and the local variables of the

methods (including the formal parameters). Method bodies are defined as sequential

control structures, including the usual conditional and iteration constructs, over the

basic statements listed below.

Dynamic instantiation For x a so-called future variable or a class variable of

type C, for some class name C, the assignment

x = new

creates a new future or a unique reference to a new instance of class C.

Side effect-free assignment In the assignment

x = e

the expression e denotes a side effect-free expression. The evaluation of such an

expression does not affect the values of any global or local variable and also does
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not affect the status of the executing process. We do not detail the syntactical

structure of side effect-free expressions.

Asynchronous method invocation A method is called asynchronously by an

assignment of the form

x = e0 !m(e1, . . . , en)

Here, x is a future variable which is used as a unique reference to the return value

of the invocation of method m with actual parameters e1, . . . , en. The called actor

is denoted by the expression e0. Without loss of generality we restrict the actual

parameters and the expression e0 to side effect-free expressions. Since e0 denotes an

actor, this implies that e0 is a global or local variable.

The get operation The execution of an assignment

x = y.get

blocks till the future variable y holds the value that is returned by its corresponding

method invocation.

Awaiting a future The statement

await x?

releases control and schedules another process in case the future variable x does

not yet hold a value, that is to be returned by its corresponding method invoca-

tion. Otherwise, it proceeds with the execution of the remaining statements of the

executing method invocation.

Awaiting a Boolean condition Similarly, the statement

await e

where e denotes a side effect-free Boolean condition, releases control and schedules

another process in case the Boolean condition is false. Otherwise, it proceeds with

the execution of the remaining statements of the executing method invocation.

We describe the possible deadlock behavior of a system of dynamically generated

actors in terms of processes, where a process is a method invocation. A process is

either active (executing), blocked on a get operation, or suspended by a future or

Boolean condition. At run-time, an actor consists of an active process and a set of

suspended processes (when the active method invocation blocks on a get operation

it blocks the entire actor). Actors execute their active processes in parallel and

only interact via asynchronous method calls and futures. When an active process
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awaits a future or Boolean condition, the actor can cooperatively schedule another

process instead. A global deadlock involves a circular dependency between processes

which are awaiting a future. On the other hand, a local deadlock appears when all

the processes of an actor are awaiting a Boolean condition to become true. In the

following sections we present a method for showing if an initial set of processes of

an individual actor does not give rise to a local deadlock.

6.3 The Concrete System

In order to formally define local deadlock we introduce a formal operational seman-

tics of a single actor. Throughout this chapter we assume a definition of a class C

to be given. A typical element of its set of methods is denoted by m. We assume

the definition of a class C to consist of the usual declarations of global variables and

method definitions. Let Var(C) denote all the global and local variables declared

in C. Without loss of generality we assume that there are no name clashes between

the global and local variables appearing in C, and no name clashes between the

local variables of different methods. To resolve in the semantics name clashes of the

local variables of the different invocations of a method, we assume a given infinite

set Var such that Var(C) ⊆ Var . The set Var\Var(C) is used to generate “fresh”

local variables. Further, for each method m, we introduce an infinite set Σ(m) of

renamings σ such that for every local variable x of m, σ(x) is a fresh variable in Var ,

i.e. not appearing in Var(C). We assume that any two distinct σ, σ′ ∈
⋃
m Σ(m) are

disjoint (Here m ranges over the method names introduced by class C.) Renamings

σ and σ′ are disjoint if their ranges are disjoint. Note that by the above assump-

tion the domains of renamings of different methods are also disjoint. By auxiliary

function fresh(σ′) we check that the renaming σ′ ∈ Σ(m) is different from all the

existing renamings in Q.

A process p arising from an invocation of a method m is described formally as

a pair (σ, S), where σ ∈ Σ(m) and S is the sequence of remaining statements to

be executed, also known as continuation. An actor configuration then is a triple

(Γ, p, Q), where Γ is an assignment of values to the variables in Var , p denotes

the active process, and Q denotes a set of suspended processes. A configuration is

consistent if for every renaming σ there exists at most one statement S such that

(σ, S) ∈ {p} ∪ Q.

A computation step of a single actor is formalized by a transition relation between

consistent actor configurations. A structural operational semantics for the derivation

of such transitions is given in Table 6.1. Here, we assume a given set Val of values of

built-in data types (like Integer and Boolean), and an infinite set R of references or

“pointers”. Further, we assume a global variable refs such that Γ(refs) ⊆ R records

locally stored references.

We proceed with the explanation of the rules of Table 6.1. The rule <ASSIGN>
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<ASSIGN>
(Γ, (σ, x = e;S), Q)→

(Γ[xσ = Γ(eσ)], (σ, S), Q)

<NEW>
r ∈ R\Γ(refs)

(Γ, (σ, x = new;S), Q)→
(Γ[refs = Γ[refs ] ∪ {r}], (σ, x = r;S), Q)

<GET-VALUE>
v ∈ Val

(Γ, (σ, x = y.get;S), Q)→
(Γ[xσ = v], (σ, S), Q)

<GET-REF>
r ∈ R

(Γ, (σ, x = y.get;S), Q)→
(Γ[refs = Γ(refs) ∪ {r}], (σ, x = r;S), Q)

<REMOTE-CALL >
Γ(yσ) 6= Γ(this)

(Γ, (σ, x = y !m(ē);S), Q)→
(Γ, (σ, x = new;S), Q)

<LOCAL-CALL>
Γ(yσ) = Γ(this) fresh(σ′)

(Γ, (σ, x = y !m(ē);S), Q)→
(Γ[z̄σ′ = Γ(ēσ)], (σ, x = new;S), Q ∪ {(σ′, S ′)})

<IF-THEN>
Γ(eσ) = true

(Γ, (σ,if e {S ′} else {S ′′};S), Q)→
(Γ, (σ, S ′;S), Q)

<IF-ELSE>
Γ(eσ) = false

(Γ, (σ,if e {S ′} else {S ′′};S), Q)→
(Γ, (σ, S ′′;S), Q)

<WHILE-TRUE>
Γ(eσ) = true

(Γ, (σ,while e {S ′};S), Q)→
(Γ, (σ, S ′;while e do {S ′};S), Q)

<WHILE-FALSE>
Γ(eσ) = false

(Γ, (σ,while e {S ′};S), Q)→ (Γ, (σ, S), Q)

<AWAITB-TRUE>
Γ(eσ) = true

(Γ, (σ,await e;S), Q)→
(Γ, (σ, S), Q)

<AWAITB-FALSE>
Γ(eσ) = false (σ′, S ′) ∈ Q

(Γ, (σ,await e;S), Q)→
(Γ, (σ′, S ′), (Q ∪ {(σ,await e;S)})\{(σ′, S ′)})

<AWAITF-SKIP>
(Γ, (σ,await x?;S), Q)→

(Γ, (σ, S), Q)

<AWAITF-SCHED>
(σ′, S ′) ∈ Q

(Γ, (σ,await x?;S), Q)→
(Γ, (σ′, S ′), (Q ∪ {(σ,await true;S)})\{(σ′, S ′)})

<RETURN>
(σ′, S ′) ∈ Q

(Γ, (σ,return e), Q)→ (Γ, (σ′, S ′), Q\{(σ′, S ′)})

Figure 6.1: Concrete transition relation
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describes a side effect-free assignment. Here, and in the sequel, eσ denotes the result

of replacing any local variable x in e by σ(x). By Γ(e) we denote the extension of

the variable assignment Γ to the evaluation of the expression e. By Γ[x = v], for

some value v, we denote the result of updating the value of x in Γ by v.

The rule <NEW> describes the non-deterministic selection of a fresh reference

not appearing in the set Γ(refs). The rule <GET-VALUE> models an assignment

involving a get operation on a future variable y which holds a value of some built-in

data type by an assignment of a random value v ∈ Val (of the appropriate type).

The rule <GET-REF> models an assignment involving a get operation on a future

variable y which holds a reference by first adding a random value r ∈ R to the

set Γ(refs) and then assign it to the variable x (note that we do not exclude that

r ∈ Γ(refs) ).

It should be observed that we model the local behavior of an actor. The ab-

sence of information about the return values in the semantics of a get operation is

accounted for by a non-deterministic selection of an arbitrary return value. Further,

since we restrict to the analysis of local deadlocks, we also abstract from the possi-

bility that the get operation blocks and assume that the return value is generated.

The rules regarding choice and iteration statements are standard. The rule

<REMOTE-CALL> describes an assignment involving an external call (Γ(yσ) 6=
Γ(this), where yσ denotes y, if y is a global variable, otherwise it denotes the

variable σ(y)). It is modeled by the creation and storage of a new future reference

uniquely identifying the method invocation. On the other hand, according to the

rule <LOCAL-CALL> a local call (Γ(yσ) = Γ(this)) generates a new process and

future corresponding to the method invocation. Also it is checked that the renaming

σ′ is fresh. Further, by Γ[z̄σ′ = Γ(ēσ)] we denote the simultaneous update of Γ which

assigns to each local variable σ′(zi) (i.e., the renamed formal parameter zi) the value

of the corresponding actual parameter ei with its local variables renamed by σ, i.e.,

the local context of the calling method invocation. For technical convenience we

omitted the initialization of the local variables that are not formal parameters. The

body of method m is denoted by S ′.

The rule <AWAITB-TRUE> describes that when the Boolean condition of the

await statement is true, the active process proceeds with the continuation, and

<AWAITB-FALSE> describes that when the Boolean condition of the await state-

ment is false, a process is selected for execution. This can give rise to the activation

of a disabled process, which is clearly not optimal. The transition system can be

extended to only allow the activation of enabled processes. However, this does not

affect the results of this chapter and therefore is omitted for notational convenience.

The rule <AWAITF-SKIP> formalizes the assumption that the return value re-

ferred to by x has been generated. On the other hand, <AWAITF-SCHED> formal-

izes the assumption that the return value has not (yet) been generated. Note that

we transform the initial await statement into an await on the Boolean condition

“true”. Availability of the return value then is modeled by selecting the process for
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execution. Finally, in the rule RETURN we assume that the return statement is the

last statement to be executed. Note that here we do not store the generated return

value (see also the discussion in section 6.8).

In view of the above, we have the following definition of a local deadlock.

Definition 6.3.1. A local configuration (Γ, p, Q) deadlocks if

for all (σ, S) ∈ {p} ∪ Q we have that the initial statement of S is an

await statement await e such that Γ(eσ) = false.

In the sequel we describe a method for establishing that an initial configuration

does not give rise to a local deadlock configuration. Here it is worthwhile to ob-

serve that the above description of the local behavior of a single actor provides an

over-approximation of its actual local behavior as part of any system of actors. Con-

sequently, absence of a local deadlock of this over-approximation implies absence of

a local deadlock in any system of actors.

6.4 The Abstract System

Our method of deadlock detection is based on predicate abstraction. This boils

down to using predicates instead of concrete value assignments. For the class C,

the set Pred(m) includes all (the negations of) the Boolean conditions appearing

in the body of m. Further, Pred(m) includes all (negations of) equations x = y

between reference variables x and y, where both x and y are global variables of

the class C (including this) or local variables of m (a reference variable is either

a future variable or used to refer to an actor.) In addition to these conditions,

the set Pred(m) can also include user-defined predicates that possibly increases the

precision of the analysis.

An abstract configuration α is of the form (T, p,Q), where, as in the previous

section, p is the active process and Q is a set of suspended processes. The set T

provides for each invocation of a method m a logical description of the relation

between its local variables and the global variables. Formally, T is a set of pairs

(σ, u), where u ⊆ Pred(m), for some method m, is a set of predicates of m with fresh

local variables as specified by σ. We assume that for each process (σ, S) ∈ {p} ∪Q
there exists a corresponding pair (σ, u) ∈ T . If for some (σ, u) ∈ T there does not

exist a corresponding process (σ, S) ∈ {p} ∪ Q then the process has terminated.

Further, we assume that for any σ there is at most one (σ, u) ∈ T and at most one

(σ, S) ∈ {p} ∪Q.

We next define a transition relation on abstract configurations in terms of a

strongest postcondition calculus. To describe this calculus, we first introduce the

following notation. Let L(T ) denote the set {uσ |(σ, u) ∈ T }, where uσ = {ϕσ |ϕ ∈
u }, and ϕσ denotes the result of replacing every local variable x in ϕ with σ(x).
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Logically, we view each element of L(T ) as a conjunction of its predicates. Therefore,

when we write L(T ) ` ϕ, i.e., ϕ is a logical consequence (in first-order logic) of L(T ),

the sets of predicates in L(T ) are interpreted as conjunctions. (It is worthwhile to

note that in practice the notion of logical consequence will also involve the first-order

theories of the underlying data structures.) The strongest postcondition, defined

below, describes for each basic assignment a and local context σ ∈ Σ(m), the set

spσ(L(T ), a) of predicates ϕ ∈ Pred(m) such that ϕσ holds after the assignment,

assuming that all predicates in L(T ) hold initially.

For an assignment x = e we define the strongest postcondition by

spσ(L(T ), x = e) = {ϕ | L(T ) ` ϕσ[e/x], ϕ ∈ Pred(m)}

where [e/x] denotes the substitution which replaces occurrences of the variable x by

the side effect-free expression e. For an assignment x = new we define the strongest

postcondition by

spσ(L(T ), x = new) = {ϕ | L(T ) ` ϕσ[new/x], ϕ ∈ Pred(m) }

The substitution [new/x] replaces every equation x = y, with y distinct from x, by

false, x = x by true. It is worthwhile to note that for every future variable and vari-

able denoting an actor, these are the only possible logical contexts consistent with

the programming language. (Since the language does not support de-referencing,

actors encapsulate their local state.)

For an assignment x = y.get we define the strongest postcondition by

spσ(L(T ), x = y.get) = {ϕ | L(T ) ` ∀x.ϕσ, ϕ ∈ Pred(m) }

The universal quantification of the variable x models a non-deterministic choice for

the value of x.

Table 6.2 presents the structural operational semantics of the transition relation

for abstract configurations. In the <ASSIGN> rule the set of predicates u for each

(σ′, u) ∈ T , is updated by the strongest postcondition spσ′(L(T ), (x = e)σ). Note

that by the substitution theorem of predicate logic, we have for each predicate ϕ

of this strongest postcondition that ϕσ′ will hold after the assignment (x = e)σ

(i.e., xσ = eσ) because L(T ) ` ϕσ[e/x]. Similarly, the rules <GET> and <NEW>
update T of the initial configuration by their corresponding strongest postcondition

as defined above.

In the rule <REMOTE-CALL> we identify a remote call by checking whether the

information this 6= yσ can be added consistently to L(T ). By T ∪ {(σ, ϕ)} we

denote the set { (σ′, u) ∈ T | σ′ 6= σ } ∪ { (σ, u ∪ {ϕ}) | (σ, u) ∈ T }. In the rule

<LOCAL-CALL> the set of predicates u of the generated invocation of method m

consists of all those predicates ϕ ∈ Pred(m) such that L(T ) ` ϕ[ēσ/z̄], where

z̄ denotes the formal parameters of m. By the substitution theorem of predicate
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<ASSIGN>
T ′ = { (σ′, spσ′(L(T ), (x = e)σ)) | (σ′, u) ∈ T }

(T, (σ, x = e;S), Q)→ (T ′, (σ, S), Q)

<GET>
T ′ = { (σ′, spσ′(L(T ), (x = y.get)σ)) | (σ′, u) ∈ T }

(T, (σ, x = y.get;S), Q)→ (T ′, (σ, S), Q)

<NEW>
T ′ = { (σ′, spσ′(L(T ), (x = new)σ)) | (σ′, u) ∈ T }

(T, (σ, x = new;S), Q)→ (T ′, (σ, S), Q)

<REMOTE-CALL>
L(T ) ∪ {this 6= yσ} 6` false

(T, (σ, x = y !m(e);S), Q)→ (T ∪ {(σ,this 6= y)}}, (σ, x = new;S), Q)

<LOCAL-CALL>
L(T ) ∪ {this = yσ} 6` false

u = {ϕ | L(T ) ` ϕ[ēσ/z̄], ϕ ∈ Pred(m) } fresh(σ′)

(T, (σ, x = y !m(e);S), Q)→
(T ∪ {(σ′, u)} ∪ {(σ,this = y)}, (σ, x = new;S), Q ∪ {(σ′, S ′)})

<IF-THEN>
L(T ) ∪ {eσ} 6` false

(T, (σ,if e {S ′} else {S ′′};S), Q)
→ (T ∪ {(σ, e)}, (σ, S ′;S), Q)

<IF-ELSE>
L(T ) ∪ {¬eσ} 6` false

(T, (σ,if e {S ′} else {S ′′};S), Q)
→ (T ∪ {(σ,¬e)}, (σ, S ′′;S), Q)

<WHILE-TRUE>
L(T ) ∪ {eσ} 6` false

(T, (σ,while e do {S}′;S), Q)
→ (T ∪ {(σ, e)}, (σ, S ′;while e do {S ′};S), Q)

<WHILE-FALSE>
L(T ) ∪ {¬eσ} 6` false

(T, (σ,while e do {S ′};S), Q)
→ (T ∪ {(σ,¬e)}, (σ, S), Q)

<AWAIT-TRUE>
L(T ) ∪ {eσ} 6` false

(T, (σ,await e;S), Q)→ (T ∪ {(σ, e)}, (σ, S), Q)

<AWAIT-FALSE>
L(T ) ∪ {¬eσ} 6` false (σ′, S ′) ∈ Q

(T, (σ,await e;S), Q)→ (T ∪ {(σ,¬e)}, (σ′, S ′), (Q ∪ {(σ,await e;S)})\{(σ′, S ′)})

<AWAITF-SKIP>
(T, (σ,await x?;S), Q)
→ (T, (σ, S), Q)

<AWAITF-SCHED>
(σ′, S ′) ∈ Q

(T, (σ,await x?;S), Q)→
(T, (σ′, S ′), (Q ∪ {(σ,await true;S)})\{(σ′, S ′)})

<RETURN>
(σ′, S ′) ∈ Q

(T, (σ,return e), Q)→ (T, (σ′, S ′), Q\{(σ′, S ′)})

Figure 6.2: Abstract transition system
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logic, the (simultaneous) substitution [ēσ/z̄] ensures that ϕ holds for the generated

invocation of method m. Note that by definition, L(T ) only refers to fresh local

variables, i.e., the local variables of m do not appear in L(T ) because for any (σ, u) ∈
T we have that σ(x) is a fresh variable not appearing in the given class C. For

technical convenience we omitted the substitution of the local variables that are

not formal parameters. The renaming σ′, which is assumed not to appear in T ,

introduces fresh local variable names for the generated method invocation. The

continuation S ′ of the new process is the body of method m. The generation of

a new future in both the rules <REMOTE-CALL> and <LOCAL-CALL> is simply

modeled by the x = new statement.

By <IF-THEN>, the active process transforms to the ”then” block, i.e. S ′,

followed by S, if the predicate set L(T ) is consistent with the guard e of the if-

statement. (Note that as L(T ) is in general not complete, it can be consistent with

e as well as with ¬e.) The other rules regarding choice and iteration statements

are defined similarly. By <RETURN> the active process terminates, and is removed

from the configuration. A process is selected from Q for execution. Note that the

pair (σ, u) ∈ T is not affected by this removal.

The rules <AWAIT-TRUE> and <AWAIT-FALSE> specify transitions assum-

ing the predicate set L(T ) is consistent with the guard e and with ¬e, respec-

tively. In the former case, the await statement is skipped and the active process

continues, whereas in the latter, the active process releases control and a process

from Q is activated. Similar to the concrete semantics in the previous section, in

<AWAITF-SKIP> and <AWAITF-SCHED>, the active process non-deterministically

continues or cooperatively releases the control. In the latter, a process from Q is

activated.

We conclude this section with the counterpart of Definition 6.3.1 for the abstract

setting.

Definition 6.4.1. A local configuration (T, p,Q) is a (local) deadlock if

for all (σ, S) ∈ {p} ∪ Q we have that the initial statement of S is an

await statement await e such that L(T ) ∪ {¬eσ} 6` false.

6.5 Correctness of Predicate Abstraction

In this section we prove that the concrete system is simulated by the abstract system.

To this end we introduce a simulation relation ∼ between concrete and abstract

configurations:

(Γ, p, Q) ∼ (T, p,Q), if Γ |= L(T )

where Γ |= L(T ) denotes that Γ satisfies the formulas of L(T ).

Theorem 3. The abstract system is a simulation of the concrete system.
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Proof. Given (Γ, p, Q) ∼ (T, p,Q) and a transition (Γ, p, Q) → (Γ′, p′, Q′), we need

to prove that there exists a transition (T, p,Q)→ (T ′, p′, Q′) such that (Γ′, p′, Q′) ∼
(T ′, p′, Q′).

For all the rules that involve the evaluation of a guard e, it suffices to observe

that Γ |= L(T ) and Γ |= e implies L(T ) ∪ {e} 6` false.

We treat the case x = e where e is a side effect-free expression (the others cases

are treated similarly). If p = (σ, x = e;S), where e is a side effect-free expression,

then Γ′ = Γ[(x = e)σ]. We put T ′ = { (σ′, spσ′(L(T ), (x = e)σ)) | (σ′, u) ∈ T }.
Then it follows that (T, p,Q) → (T ′, p′, Q′). To prove Γ′ |= L(T ′) it remains to

show for (σ, u) ∈ T and ϕ ∈ spσ′(L(T ), (x = e)σ) that Γ′ |= ϕσ′: Let (σ′, u) ∈ T
and ϕ ∈ spσ′(L(T ), (x = e)σ). By definition of the strongest postcondition, we

have L(T ) ` ϕσ′[(x = e)σ]. Since Γ |= L(T ), we have Γ |= ϕσ′[(x = e)σ]. Since

Γ′ = Γ[xσ = Γ(eσ)], we obtain from the substitution theorem of predicate logic that

Γ′ |= ϕσ′ ⇐⇒ Γ |= ϕσ′[(x = e)σ]

and hence we are done.

We conclude this section with the following observation: if the initial abstract

configuration (T, p,Q) does not give rise to a local deadlock then also the config-

uration (Γ, p, Q) does not give rise to a local deadlock, when Γ |= L(T ). To see

this, by the above theorem it suffices to note that if (Γ′, p′, Q′) is a local dead-

lock and Γ′ |= L(T ′) then (T ′, p′, Q′) is also a local deadlock because for any

(σ,await e;S) ∈ {p′} ∪Q′ we have that Γ′ 6|= eσ implies L(T ′) ∪ {¬eσ} 6` false.

6.6 Example

We represent the proposed method by means of an example. Given partial definition

of the class C as follows:

class C {
Int a = 0;
void m() {

a= a + 1; await a < 5;
}
...

}

We want to check the program for the absence of the local deadlock, where Q

contains only one process (σ,a=a+1;await a<5), which is an invocation of the

method m. The Pred(m) = {a < 5,¬(a < 5), a = 3,¬(a = 3)} is the set of

predicates of the method m, and a user-defined predicate a = 3 and its negation.

We try to check the system for the absence of deadlock for the initial u = {a < 5},
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1:((σ, {a < 5}), (σ,a=a+1;await a<5), ∅)

2: ((σ, {¬(a < 5)}), (σ,a=a+1;await a<5), ∅)

4: ((σ, {a < 5}), (σ,await a<5), ∅)

5: ((σ, {¬(a < 5)}), (σ,await a<5), ∅)

6: ((σ, {a < 5}), (σ, ε), ∅)

3: ((σ, {a = 3}), (σ,a=a+1;await a<5), ∅)

Figure 6.3: Example of the abstract system

u = {¬(a < 5)} and u = {a = 3}. The abstract systems for three different initial

states form a finite transition system which is shown in Figure 6.3.

The states 1,2 and 3 denote the three initial states. State 5 denotes a local

deadlock configuration. State 6 denotes a normal termination configuration. The

resulting transition system shows that the execution of method m, where initially

a > 4, possibly causes deadlock.

6.7 Decidability of Deadlock Detection

The abstract local behavior of a single actor, as defined in the previous section,

gives rise, for a given initial configuration, to an infinite transition system because

of dynamic generation of local calls and the corresponding introduction of fresh local

variables. In this section we show how we can model an abstract system for which

the transition relation is computable as well-structured transition system and obtain

the decidability of deadlock detection for such abstract systems. To this end, we

first provide a canonical representation of an abstract configuration which abstracts

from renamings of the local variables by means of multisets of closures. A closure

of a method m is a pair (u, S), where S is a continuation of the body of m and

u ⊆ Pred(m). (Here Pred(m) denotes the set of predicates associated with m as

defined in Section 6.3). The set of continuations of a statement S is the smallest set

Cont(S) such that S ∈ Cont(S) and ε ∈ Cont(S), where the “empty” statement ε

denotes termination, and which is closed under the following conditions

• S ′;S ′′ ∈ Cont(S) implies S ′′ ∈ Cont(S)

• if e {S1} else {S2}; S ′ ∈ Cont(S) implies S1;S ′ ∈ Cont(S) and S2;S ′ ∈
Cont(S)

• while e {S ′}; S ′′ ∈ Cont(S) implies S ′; while e {S ′}; S ′′ ∈ Cont(S).
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Note that for a given method the set of all possible closures is finite. We formally

represent a multiset of closures as a function which assigns a natural number f(c)

to each closure c which indicates the number of occurrences of c. For notational

convenience we write c ∈ f in case f(c) > 0.

In preparation of the notion of canonical representation of abstract configura-

tions, we introduce for every abstract configuration α = (T, p,Q) the set ᾱ of triples

(σ, u, S) for which (σ, u) ∈ T and either (σ, S) ∈ {p} ∪Q or S = ε.

Definition 6.7.1. An abstract configuration (T, p,Q) is canonically represented by

a multiset of closures f , if for every method m and closure (u, S) of m we have

f((u, S)) = |{σ | (σ, u, S) ∈ ᾱ }|

(where |V | denotes the cardinality of the set V ).

Note that each abstract configuration has a unique multiset representation. For any

multiset f of closures, let T (f) denote the set of predicates {∃v | (v, S)n ∈ f},
where ∃v denotes v with all the local variables appearing in the conjunction of the

predicates of v existentially quantified.

The following lemma states the equivalence of a set of closures and its canonical

representation.

Lemma 6.7.1. Let the abstract configuration (T, p,Q) be canonically represented

by the multiset of closures f . Further, let (σ, u) ∈ T , where σ ∈ Σ(m), and ϕ ∈
Pred(m). It holds that

L(T ) ` ϕσ iff {u} ∪ T (f) ` ϕ

Proof. Proof-theoretically we reason, in first-order logic, as follows. For notational

convenience we view a set of predicates as the conjunction over its elements. By the

Deduction Theorem we have

L(T ) ` ϕσ iff ` L(T )→ ϕσ

From the laws of universal quantification we obtain

` L(T )→ ϕσ iff ` ∀X(L(T )→ ϕσ)

and

` ∀X(L(T )→ ϕσ) iff ` ∃XL(T )→ ϕσ

where X denotes the set of local variables appearing in L(T ) \{uσ}. Note that no

local variable of X appears in ϕσ or uσ.

Since any two distinct v, v′ ∈ L(T ) have no local variables in common, we can
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push the quantification of ∃XL(T ) inside. That is,

` ∃XL(T )→ ϕσ iff ` {∃Xv | v ∈ L(T ) } → ϕσ

No local variable of X appears in uσ, therefore we have

` {∃Xv | v ∈ L(T ) } → ϕσ iff ` uσ ∧ {∃Xv | v ∈ L(T ) } → ϕσ

Again by the Deduction Theorem we then have

` uσ ∧ {∃Xv | v ∈ L(T ) } → ϕσ iff {uσ} ` { ∃Xv | v ∈ L(T ) } → ϕσ

Clearly uσ ` ∃u and ∃Xv is logically equivalent to ∃v, for any v ∈ L(T ) \{uσ}. So,

we have

{uσ} ` { ∃Xv | v ∈ L(T ) } → ϕσ iff {uσ} ` { ∃v | v ∈ L(T ) } → ϕσ

Since f represents (T, p,Q) we have that T (f) = { ∃v | v ∈ L(T ) }. Renaming the

local variables of uσ and ϕσ then finally gives us

{uσ} ` { ∃v | v ∈ L(T ) } → ϕσ iff {u} ` T (f)→ ϕ

which proves the lemma.

We next define an ordering on multisets of closures.

Definition 6.7.2. By f 4 f ′ we denote that f(c) 6 f ′(c) and f ′(c) = 0 if f(c) = 0.

In other words, f 4 f ′ if all occurrences of f belong to f ′ and f ′ does not add

occurrences of closures which do not already occur in f . The following result states

that this relation is a well-quasi-ordering.

Lemma 6.7.2. The relation f 4 f ′ is a quasi-ordering such that for any infinite

sequence (fn)n there exist indices i < j such that fi 4 fj.

Proof. First observe that for a given class there is only a finite number of closures.

We show that the proof for the standard subset relation for multisets also holds

for this variation. Assume that for some set X of closures we have constructed an

infinite subsequence (f ′n)n of (fn)n such that f ′i(c) 6 f ′j(c), for every c ∈ X and i < j.

Suppose that for every c /∈ X the set { k | f ′j(c) = k, j ∈ N } is bounded. It follows

that there exists an f ′k which appears infinitely often in (f ′n)n, since there exists only

a finite number of combinations of occurrences of closures in X̄ = { c | c /∈ X }. On

the other hand, if there exists a d /∈ X such that set { k | f ′j(d) = k, j ∈ N } has no

upperbound then we can obtain a subsequence (f ′′n)n of (f ′n)n such that f ′′i (c) 6 f ′′j (c)

for every c ∈ X ∪ {d} and i < j. Thus, both cases lead to the existence of indices

i < j such that fi 4 fj.
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From the above lemma it follows immediately that the following induced ordering

on abstract configurations is also a well-quasi-ordering.

Definition 6.7.3. We put (T, (σ, S), Q) 4 (T ′, (σ′, S), Q′) iff f 4 f ′, for multi-

sets of closures f and f ′ (uniquely) representing (T, (σ, S), Q) and (T ′, (σ′, S), Q′),

respectively.

We can now formulate and prove the following theorem which states that this well-

quasi-ordering is preserved by the transition relation of the abstract system.

Theorem 4. For abstract configurations α, α′, and β, if α → α′ and α 4 β then

β → β′, for some abstract configuration β′ such that α′ 4 β′.

Proof. The proof proceeds by a case analysis of the transition α→ α′. Crucial in this

analysis is the observation that α 4 β implies that α = (T, p,Q) and β = (T ′, p, Q),

for some T and T ′ such that

L(T ) ` ϕσ ⇐⇒ L(T ′) ` ϕσ′

for renamings σ, σ′ ∈ Σ(m), where m is a method defined by the given class C, such

that (σ, u, S) ∈ ᾱ and (σ′, u, S) ∈ β̄, for some closure (u, S) and predicate ϕ of the

method m. This follows from Lemma 6.7.1 and that f 4 f ′ implies T (f) = T (f ′),

where f and f ′ represent α and β, respectively. Note that by definition, f ′ does not

add occurrences of closures which do not already occur in f .

It follows that abstract systems for which the transition relation is computable are

well-structured transition systems (see [36] for an excellent explanation and overview

of well-structured transition systems). For such systems the covering problem is

decidable. That is, for any two abstract configurations α and β it is decidable

whether starting from α it is possible to cover β, meaning, whether there exists a

computation α →∗ α′ such that β 4 α′. To show that this implies decidability

of absence of deadlock, let α be a basic (abstract) deadlock configuration if α is a

deadlock configuration according to Definition 6.4.1 and for any closure (u, S) there

exists at most one renaming σ such that (σ, u, S) ∈ ᾱ. Note that thus f(c) = 1,

for any closure c, where f represents α. Let ∆ denote the set of all basic deadlock

configurations. Note that this is a finite set. Further, for every (abstract) deadlock

configuration α there exists a basic deadlock configuration α′ ∈ ∆ such that f 4
f ′, where f and f ′ represent α and α′, respectively. This is because the different

renamings of the same closure do not affect the definition of a deadlock. Given

an initial abstract configuration α, we now can phrase presence of deadlock as the

covering problem of deciding whether there exists a computation starting from α

reaching a configuration β that covers a deadlock configuration in ∆.

Summarizing the above, we have the following the main technical result of this

chapter.
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Theorem 5. Given an abstract system with a computable transition relation and

an abstract configuration α, it is decidable whether

{ β | α→∗ β } ∩ { β | ∃β′ ∈ ∆: β′ 4 β } = ∅ (6.1)

Given this result and the correctness of predicate abstraction, to show that an initial

concrete configuration (Γ, p, Q) does not give rise to a local deadlock, it suffices to

construct an abstract configuration α = (T, p,Q) such that Γ |= L(T ) and for which

Equation (6.1) holds. Note that we can construct T by the constructing pairs (σ, u),

where u = {φ ∈ Pred(m) | Γ |= φσ} (assuming that σ ∈ Σ(m)).

6.8 Conclusion

For future work we first have to validate our method for detecting local deadlock

in tool-supported case studies. For this we envisage the use of the theorem-prover

KeY [3] for the construction of the abstract transition relation, and its integration

with on-the-fly reachability analysis of the abstract transition system.

Another major challenge is the extension of our method to (predicate) abstrac-

tion of local futures, that is, futures generated by self calls. Note that in the method

described in the present chapter, we do not distinguish between these futures and

those generated by external calls. The main problem is to extend the abstraction

method to describe and reason about local futures which preserves the properties of

a well-structured transition system.

Of further interest, in line with the above, is the integration of the method of

predicate abstraction in the theorem-prover KeY for reasoning compositionally about

general safety properties of actor-based programs. For reasoning about programs in

the ABS language this requires an extension of our method to synchronous method

calls and concurrent object groups.
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Epilogue

In the following, we present a few major research directions concerning the new

modeling and analysis techniques introduced in this thesis.

Regarding the preferential attachment case study discussed in parts II and III,

the proposed models are implemented in the ABS with the Haskell backend, and

[10–12] that represent the performance results for the generation of the social net-

works. A further challenge is to investigate the practical limits of the network size

(i.e., the number of nodes in the resulting network) that can be generated in the

parallel and distributed implementations. To this aim, the models need to be further

investigated for improvements in both time and memory complexities, that possi-

bly enable generation of larger networks. Also the Haskell backend can be further

improved such that ABS leverages efficient underlying Haskell data structures.

The ABS with Haskell backend supports real-time programming techniques which

allows for specifying deadlines with method invocations. This provides an interest-

ing basis to extend ABS with real-time data streaming which may, as an example,

involve timeouts on read operations. Another interesting direction is to extend the

various formal analysis techniques (e.g., deadlock detection, general functional anal-

ysis based on method contracts) currently supported by the ABS to the ABS model

of streaming data discussed in part III.

A major new research direction, in line with the deadlock analysis technique in-

troduced in part IV, is to extend the predicate abstraction technique to the full ABS

language. This requires the development of abstraction techniques which capture in

a finite model an unbounded number of actors and their interactions.

This line of research is related to the development of a theory for proving cor-

rectness of ABS models. An open problem in this area is a proof theory for an

actor-based language like ABS which integrates asynchronous method invocations,

futures and cooperative scheduling, which is both sound and complete. Further

proof-theoretical challenges concern the asynchronous programming techniques of

data streaming and multi-threaded actors introduced in this thesis.
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Summary

The mainstream object-oriented languages use multi-threading as the model of

concurrency and parallelism. However, reasoning about the correctness of multi-

threaded programs is notoriously difficult. Also due to the complexity of balancing

work evenly across cores, the thread model is of little benefit for efficient processor

use or horizontal scalability. On the other hand, chip manufacturers are rapidly

moving towards so-called manycore chips with thousands of independent processors

on the same silicon real estate. Current programming languages can only leverage

the potential power by inserting code with low level concurrency constructs, sac-

rificing clarity. Alternatively, a programming language can integrate a thread of

execution with a stable notion of identity, e.g., in active objects.

Abstract Behavioural Specification (ABS) is a language for designing executable

models of parallel and distributed object-oriented systems based on active objects,

and is defined in terms of a formal operational semantics which enables a variety of

static and dynamic analysis techniques for the ABS models.

The overall goal of this thesis is to extend the asynchronous programming model

and the corresponding analysis techniques in ABS. Based on the different results,

the thesis is structured as follows: Part I gives a preliminary overview of the ABS. In

part II, we apply an extension of ABS with a restricted notion of shared memory to

provide a parallel and distributed model of preferential attachment which is used to

simulate large-scale social networks with certain mathematical properties. In Part

III, we formally extend ABS to enhance both asynchronous programming by data

streaming between processes, and parallelism by multi-threading within an actor.

Finally in part IV, a new technique based on predicate abstraction is introduced to

analyze the ABS models for the absence of deadlock within an actor.
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Samenvatting

Veelvoorkomende objectgeoriënteerde programmeertalen maken gebruik van ”mul-

tithreading” als het gaat om het modelleren van parallelle berekeningen: er zijn

meerdere leidraden aan de hand waarvan meerdere aan elkaar parallellopende

berekeningen worden uitgevoerd. Echter is het redeneren over de correctheid van

programma’s met meerdere leidraden erg lastig. Bovendien is het evenredig verdelen

van rekenwerk over rekenkernen complex: het leidraadmodel benut mogelijk niet alle

beschikbare rekencapaciteit van parallelle processoren en is lastig horizontaal op te

schalen. Computerchipfabrikanten maken tegenwoordig chips met meer rekenker-

nen dan voorheen. Zo zijn chips, met duizenden onafhankelijke rekenkernen geëtst

op dezelfde siliciumplaat, niet meer ondenkbaar. Huidige programmeertechnieken

gebaseerd op het leidraadmodel, kunnen niet op eenvoudige wijze gebruikmaken

van de toename in rekencapaciteit van dergelijke chips, tenzij programma’s hiervoor

specifiek zijn ontworpen: dit vergt veel bijzondere operaties, op laag niveau in de

architectuur, om toename in parallellisme te bevangen. Het alternatief is een andere

programmeertechniek, waarbij de ideeën van een leidraad van een berekening en van

een zekere identiteit van een object zijn verenigd. Deze programmeertechniek wordt

ook wel programmeren met ”actieve objecten” genoemd.

De ABS-taal (ABS staat voor ”Abstract Behavioural Specification”) is bedoeld

voor het ontwerpen van uitvoerbare wiskundige modellen van parallelle en gedis-

tribueerde, objectgeoriënteerde computersystemen. In ABS maakt men gebruik van

actieve objecten. De taal is gedefinieerd in termen van een formele operationele

semantiek, die een verscheidenheid aan statische- en dynamische analysetechnieken

mogelijk maakt: o.a. het detecteren van wederzijdse uitsluiting (”deadlock”).

Het uiteindelijke doel van dit proefschrift is het uitbreiden van het programmeer-

model en de bijbehorende analysetechnieken in ABS. Dit proefschrift is opgedeeld

in vier delen op basis van verschillende resultaten: deel I beschrijft vliegensvlug de

ABS-taal, benodigd voor de andere delen. In deel II passen we een uitbreiding,

viz. een beperkte vorm van gemeenschappelijke geheugencellen, toe om een paral-

lel en gedistribueerd model van het ”preferential attachment”-algoritme te geven,

dat men gebruikt voor simulatie van grootschalige sociale netwerken met bepaalde

wiskundige eigenschappen. In deel III formaliseren we uitbreidingen van ABS voor

programmeren met gegevensstromen tussen processen, en meerdere leidraden binnen

objecten. Tenslotte wordt in deel IV een nieuwe techniek gëıntroduceerd gebaseerd
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op predicatenabstractie, om ABS modellen te analyseren op vrijheid van wederzijdse

uitsluiting.
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