

Cover Page

The handle http://hdl.handle.net/1887/81789 holds various files of this Leiden University
dissertation.

Author: Blom, K. van der
Title: Multi-objective mixed-integer evolutionary algorithms for building spatial design
Issue Date: 2019-12-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81789
https://openaccess.leidenuniv.nl/handle/1887/1�

Multi-Objective Mixed-Integer

Evolutionary Algorithms for

Building Spatial Design

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op woensdag 11 december 2019

klokke 10.00 uur

door Koen van der Blom

geboren te Berkel en Rodenrijs

in 1990

Promotiecomissie

Promotors: Dr. M.T.M. Emmerich

Prof. Dr. T.H.W. Bäck

Co-promotor: Dr. H. Hofmeyer (Technische Universiteit Eindhoven, NL)

Overige leden: Dr. M. Baratchi

Prof. Dr. H.H. Hoos (secretaris)

Dr. C.J. Hopfe (Loughborough University, UK)

Prof. Dr. A. Plaat (voorzitter)

Dr. M. Preuß

Prof. Dr. B.D. de Vries (Technische Universiteit Eindhoven, NL)

Prof. Dr. H.A.G. Wijshoff

Copyright c© 2019 Koen van der Blom.

This work is part of the TTW-Open Technology Programme with project number

13596, which is (partly) financed by the Netherlands Organisation for Scientific Re-

search (NWO).

Backcover: Quote from The Rake as recorded by Ruby Throat.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Research Questions . 2

1.3 Terminology . 4

1.4 Notation . 4

1.5 Outline . 4

1.6 Contributions of this Thesis . 5

1.7 Other Work by the Author . 7

2 Preliminaries 9

2.1 Optimisation . 9

2.1.1 Constraints . 10

2.1.2 Mixed-Integer Problems . 10

2.2 Multi-Objective Optimisation . 10

2.2.1 Pareto Optimality . 11

2.2.2 The Hypervolume Indicator . 12

2.3 Evolutionary Computation . 12

2.4 Building Spatial Design . 13

3 Design Space Representations 17

3.1 Superstructure or Superstructure Free 17

3.2 Supercube . 19

3.2.1 Examples . 20

3.2.2 Constraints on the Binary Variables 22

3.2.3 Constraints on the Continuous Variables 26

3.2.4 Analysis of the Supercube Search Space 27

iii

Contents

3.3 Conclusions . 30

3.3.1 Summary . 30

3.3.2 Future Work . 31

4 Basic Constraint Handling 33

4.1 Building Design Optimisation . 34

4.2 Evolution Strategies . 35

4.3 Objective Functions . 36

4.4 Methods . 38

4.4.1 Domain Specific Operators . 39

4.4.2 Penalties . 40

4.4.3 Repair Functions . 41

4.5 Experiments . 42

4.6 Results . 43

4.7 Conclusions . 50

4.7.1 Summary . 50

4.7.2 Future Work . 50

5 Problem Specific Constraint Handling and Multi-Objective Optimi-

sation 53

5.1 Algorithms . 56

5.1.1 Standard Algorithms Applied to Building Spatial Design 56

5.1.2 Tailored Algorithm for Building Spatial Design 57

5.2 Tailored Algorithm Evaluation . 58

5.2.1 Experiments . 58

5.2.2 Results . 59

5.3 Unbiased Operators . 62

5.3.1 Initialisation . 63

5.3.2 Mutation . 64

5.3.3 Tailored SMS-EMOA . 66

5.4 Landscape Analysis . 67

5.4.1 Setup . 68

5.4.2 Results . 68

5.5 Optimisation and Parameter Tuning 71

5.5.1 Optimisation Setup . 71

5.5.2 Parameter Tuning Setup . 73

5.5.3 Tuned Configurations . 75

iv

Contents

5.6 Conclusion . 80

5.6.1 Summary . 80

5.6.2 Future Work . 81

6 Local Search with Set Gradients 83

6.1 Multi-Objective Optimisation and the Hypervolume Indicator 85

6.2 HVI Gradient Ascent Multi-Objective Optimisation 86

6.2.1 Hypervolume Indicator Gradient 86

6.2.2 Normalisation . 87

6.2.3 Step Size Adaptation . 88

6.2.4 Update . 89

6.3 Algorithms . 89

6.3.1 HIGA-MO-SC . 90

6.3.2 SMS-EMOA-SC . 91

6.3.3 MEMO-SC . 92

6.4 Experiments . 93

6.4.1 Objective Functions . 93

6.4.2 Setup . 96

6.5 Results . 97

6.6 Conclusion . 103

6.6.1 Summary . 103

6.6.2 Future Work . 104

7 Mining Optimisation Data for Design Rules 107

7.1 Features . 108

7.2 Data Preparation . 111

7.3 Results . 114

7.3.1 Box Plots . 114

7.3.2 Decision Trees . 115

7.4 Conclusion . 117

7.4.1 Summary . 117

7.4.2 Future Work . 118

8 Towards General Multi-Objective Mixed-Integer Optimisation 121

8.1 Algorithms . 122

8.2 Experimental Setup . 123

8.2.1 Algorithm Settings . 125

v

Contents

8.3 Results . 126

8.4 Conclusion . 127

8.4.1 Summary . 127

8.4.2 Future Work . 128

9 Applications in Building Design 131

9.1 Combining Co-Evolution and Optimisation 132

9.1.1 Superstructure Free Representation 133

9.1.2 Conversion . 134

9.1.3 Co-Evolutionary Design Simulation 135

9.1.4 Combination . 136

9.1.5 Case Study . 138

9.1.6 Results . 139

9.2 Spatial Design Optimisation in Practice 141

9.2.1 Integrating BouwConnect BIM and Optimisation 142

9.2.2 Case Study . 142

9.2.3 Results . 143

9.3 Structural Design Optimisation . 146

9.3.1 Structural Design . 146

9.3.2 Design Response Grammar . 147

9.3.3 Case Study . 150

9.3.4 Results . 153

9.4 Conclusion . 155

9.4.1 Summary . 155

9.4.2 Future Work . 157

10 Conclusions 159

10.1 Summary . 159

10.2 Future Work . 162

Bibliography 165

Samenvatting 177

Curriculum Vitae 181

Glossary 183

vi

Contents

Acronyms 185

Symbols 189

vii

Contents

viii

Chapter 1

Introduction

1.1 Background

Darwin’s description of the origin of species has not only revolutionised the field of bi-

ology, but also influenced many other disciplines. It even affected the most unexpected

of fields, computer science. The relation between nature and computational machine

may not be intuitive, but is certainly clear upon closer inspection. In nature, evolu-

tion is able to find the most extraordinary solutions to the problem of survival, in an

unimaginably large set of possible solutions. Computers are tasked with quite similar

challenges in optimisation problems. As such, researchers envisioned algorithms using

the same process of evolution to find solutions to whatever problems are presented to

our computers.

This mimicry of nature has proven to be a tremendously successful tool in explor-

ing many alternative solutions, finding optimal solutions, or presenting the possible

trade-offs between solutions. Yet, many challenges remain in the field of evolution-

ary optimisation. How can constraints be handled? How to optimise with multiple

objectives in mind? How to handle mixed-variable search spaces? Although research

is progressing in each of these areas, this work takes a step further by investigating

the combination of the three: constraint handling, multi-objective optimisation, and

mixed-variable optimisation.

As a starting point this combination is focused on the domain of the built envi-

ronment. After all, what better place is there to challenge these techniques, and take

them beyond their current capacities, than in the real world? The built environment

is considered as a practical application area for the algorithms to optimise the build-

1

1.2. Research Questions

ings where people spend so many a waking – and sleeping – hour. Construction and

exploitation of these buildings is estimated to amount to 40 % of our resource expendi-

ture [45], and presents an opportunity for massive savings. Savings in costs, material

and immaterial, ultimately reducing the negative impact on our environment.

Here it is investigated how multi-objective evolutionary computing can improve

building designs, particularly in the earliest phases of the design process. During

these early stages decisions are made that largely restrict the options later in the

process. Changes to this fundamental design at later stages would result in having to

redo a significant part of the work, making it essential to find optimal designs early

on.

More specifically, this thesis focuses on spatial design, a field where all the interests

in improving evolutionary computation are met. Spatial design considers the shape of

a building, and its spatial organisation. In this design it is essential to consider multiple

objectives. It should be structurally sound, but also energy efficient. A design also has

to be feasible. This is enforced by structural constraints, that – for instance – prevent

designs with rooms floating in the sky from being considered. Describing these designs

to a computer requires multiple variable types, resulting in a mixed-integer search

space. The width of a room can be expressed by a real number, whereas the number

of rooms is necessarily integer. To handle all these challenges, a constraint handling

multi-objective mixed-integer evolutionary algorithm is developed in this thesis.

1.2 Research Questions

Improving multi-objective evolutionary computing, and applying it to spatial design

optimisation is no straightforward process. To achieve this vision, the following re-

search questions are considered in this thesis.

RQ1 (Chapter 3) How can elements of the solution space be represented?

To automate building spatial design optimisation, a computer understandable

representation is a must. However, defining such a representation is not straight-

forward. A representation easily understood and modified by a human is often

difficult to handle for a computer, and vice versa.

RQ2 (Chapters 4 and 5) How can the discovery of feasible designs be ensured?

Constraints arise from physical limits (buildings cannot float in the sky), but

also from practical matters such as the limitations of a simulator. Ensuring

2

Chapter 1. Introduction

no infeasible designs appear in a representation is challenging in itself, but can

also conflict with ensuring all feasible designs can be represented. As such, the

optimisation process must be able to navigate a search landscape limited by

constraints, and be able to reach every feasible solution.

RQ3 (Chapter 6) How can local search contribute to the improvement of solutions

found during global search in a multi-objective setting?

Identifying promising regions in the search space can be done efficiently through

global search by evolutionary algorithms. Given time, they can also approach

local optima. Assuming a relatively smooth surface however, traditional numer-

ical methods may do so faster and more precisely. On the other hand, not many

multi-objective numerical methods have been developed yet, and existing ones

have only been evaluated on simple test problems. If these multi-objective nu-

merical methods are applied successfully in local search, they may find better

local optima.

RQ4 (Chapter 7) What can be learned about building spatial design from the opti-

misation process?

Optimisation processes produce large amounts of data about the problem they

are tackling. This data provides an opportunity to learn about the optimisa-

tion problem, in this case building spatial design. By analysing the data, it

may be possible to answer questions such as: What properties are intrinsic to

an optimal building spatial design? How do optimal designs for different objec-

tives compare? What heuristics can humans learn from the solutions found by

algorithms?

RQ5 (Chapter 8) How can a generally applicable multi-objective mixed-integer algo-

rithm be developed?

The case study of building spatial design is an illustrative example of how multi-

objective mixed-integer optimisation can work. Unfortunately, algorithms spe-

cific to this problem will be inefficient, or may even not work at all, on other

problems. Developing a general multi-objective mixed-integer algorithm is there-

fore an important next step.

RQ6 (Chapter 9) How applicable are the developed algorithms to real world problems?

Beyond the question of how the developed algorithms perform on the considered

problem, it is important that they integrate well into the larger design process.

3

1.5. Terminology

To this end, the interaction of the optimisation processes with existing design

tools, and their human operators has to be investigated.

1.3 Terminology

Although this work primarily focuses on computer science aspects, there is a strong

interaction with the field of the built environment. At the intersection of multiple

disciplines it is important to clearly define the used terminology, in order to avoid

confusion when using language common to both disciplines. For instance, space is used

with different meanings in both fields. In computer science space commonly refers to

the space of possibilities, such as the real numbers. Whereas in civil engineering space

refers to a part of a building, such as a room, atrium, or hallway. To prevent this

confusion, space is always preceded by an identifier when used in the computer science

sense, e.g., real space, decision space, or objective space. While for civil engineering

no identifier is used, e.g., the building has three spaces, or an elongated space is

considered. Definitions for the large amount of technical terminology are provided in

the glossary (page 183).

1.4 Notation

Per the international system of units (SI)1 all unit names are written in lower case

(e.g. kelvin, or kilogram), and unit symbols are also in lower case, except for the first

letter when they are derived from a name (e.g. K, or kg).

1.5 Outline

Following on from this introduction, Chapter 2 provides the reader with background

information on optimisation, multi-objective optimisation, evolutionary computation,

and the basics of building spatial design. Chapter 3 then introduces a design space

representation for the considered problem of building spatial design, as progressively

developed over multiple published articles [16, 17, 21, 25], with the aim of answering

RQ1. Furthermore, additional unpublished work is presented on alternatives and limi-

tations of the described representation. In Chapter 4 the objectives for building spatial

design are considered as individual optimisation objectives, as previously published in

1https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf

4

Chapter 1. Introduction

[17]. In addition, basic constraint handling with penalty functions is investigated,

which is related to RQ2. Chapter 5 continues to look at constraint handling (still

RQ2), but now for the multi-objective case of building spatial design, as published in

[15, 16]. Since penalty based constraint handling proved to be of limited use, problem

specific operators, that do not violate the constraints, are developed. Furthermore,

the chapter employs landscape analysis to improve the understanding of the problem,

as well as parameter tuning to maximise algorithm performance. In Chapter 6 the pre-

viously introduced problem specific multi-objective algorithm is combined with local

search as published in [19] in order to answer RQ3. The optimisation data produced

during the local search study is analysed in Chapter 7 (RQ4). Here, the aim is to ex-

tract design rules from the data in order to verify that the resulting spatial designs are

sensible solutions, as published in [18]. Moving forward from specialised algorithms,

Chapter 8 pertains to RQ5 and considers general multi-objective mixed-integer opti-

misation with evolution strategies, which has been published in [20]. Chapter 9 then

looks at various applications of the introduced optimisation techniques for building

structural and building spatial design [21, 22, 23, 24, 25], which answers RQ6. The

thesis is then concluded in Chapter 10 with a discussion of the achieved results, an-

swers to the posed research questions, and interesting directions for future studies

relevant to this work.

1.6 Contributions of this Thesis

[15] Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, Thomas Bäck, and
Michael T. M. Emmerich. Configuring advanced evolutionary algorithms for
multicriteria building spatial design optimisation. In 2017 IEEE Congress on
Evolutionary Computation (CEC), pages 1803–1810. IEEE, 2017.

[16] Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, and Michael T. M.
Emmerich. Multicriteria building spatial design with mixed integer evolutionary
algorithms. In Julia Handl, Emma Hart, Peter R. Lewis, Manuel López-Ibáñez,
Gabriela Ochoa, and Ben Paechter, editors, Parallel Problem Solving from Nature
– PPSN XIV, volume 9921 of Lecture Notes in Computer Science, pages 453–462,
Cham, 2016. Springer International Publishing.

[17] Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, and Michael T. M.
Emmerich. A super-structure based optimisation approach for building spatial
designs. In M. Papadrakakis, V. Papadopoulos, G. Stefanou, and V. Plevris,
editors, VII European Congress on Computational Methods in Applied Sciences

5

1.7. Contributions of this Thesis

and Engineering – ECCOMAS VII, volume 2, pages 3409–3422, Athens, Greece,
2016. National Technical University of Athens.

[18] Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, and Michael T. M.
Emmerich. Analysing optimisation data for multicriteria building spatial de-
sign. In Kalyanmoy Deb, Erik Goodman, Carlos A. Coello Coello, Kathrin
Klamroth, Kaisa Miettinen, Sanaz Mostaghim, and Patrick Reed, editors, Evo-
lutionary Multi-Criterion Optimization, pages 671–682, Cham, 2019. Springer
International Publishing.

[19] Koen van der Blom, Sjonnie Boonstra, Hao Wang, Hèrm Hofmeyer, and Michael
T. M. Emmerich. Evaluating memetic building spatial design optimisation using
hypervolume indicator gradient ascent. In Leonardo Trujillo, Oliver Schütze,
Yazmin Maldonado, and Paul Valle, editors, Numerical and Evolutionary Opti-
mization – NEO 2017, pages 62–86. Springer, Cham, 2018.

[20] Koen van der Blom, Kaifeng Yang, Thomas Bäck, and Michael T. M. Emmerich.
Towards multi-objective mixed integer evolution strategies. In Michael T. M.
Emmerich, André H. Deutz, Sander C. Hille, and Yaroslav D. Sergeyev, editors,
Proceedings LeGO – 14th International Global Optimization Workshop, volume
2070, pages 020046–1–020046–4. AIP Publishing, 2019.

[21] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, Robert Amor, and
Michael T. M. Emmerich. Super-structure and super-structure free design search
space representations for a building spatial design in multi-disciplinary building
optimisation. In Electronic proceedings of the 23rd International Workshop of the
European Group for Intelligent Computing in Engineering, pages 1–10. Jagiel-
lonian University ZPGK, 2016.

[22] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, Joost van den Buijs,
and Michael T. M. Emmerich. Coupling between a building spatial design op-
timisation toolbox and bouwconnect BIM. In 35th CIB W78 2018 Conference:
IT in Design, Construction, and Management, pages 95–102. Springer, 2018.

[23] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, and Michael T. M.
Emmerich. Combined super-structured and super-structure free optimisation
of building spatial designs. In C. Koch, W. Tizani, and J. Ninić, editors, 24rd
International Workshop of the European Group for Intelligent Computing in
Engineering, pages 23–34. University of Nottingham, 2017.

[24] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, and Michael T. M.
Emmerich. Conceptual structural system layouts via design response grammars
and evolutionary algorithms. Automation in Construction, pages 1–24, 2019.
(submitted).

[25] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, Michael T. M. Em-
merich, Jos van Schijndel, and Pieter de Wilde. Toolbox for super-structured
and super-structure free multi-disciplinary building spatial design optimisation.
Advanced Engineering Informatics, 36:86–100, 2018.

6

Chapter 1. Introduction

1.7 Other Work by the Author

[14] Koen van der Blom and Thomas Bäck. A new foraging-based algorithm for
online scheduling. In GECCO ’18: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 53–60, New York, NY, USA, 2018. ACM.

[26] Sjonnie Boonstra, Koen van der Blom, Hérm Hofmeyer, and Michael T. M.
Emmerich. Co-evolutionary design processes applied to building spatial design
optimization. In Advances in Structural and Multidisciplinary Optimization.
Proceedings of the 13th World Congress of Structural and Multidisciplinary Op-
timization (WCSMO13), pages 1–6. Springer, 2020. (in print).

[105] Kaifeng Yang, Koen van der Blom, Thomas Bäck, and Michael Emmerich. To-
wards single- and multiobjective bayesian global optimization for mixed integer
problems. In Michael T. M. Emmerich, André H. Deutz, Sander C. Hille, and
Yaroslav D. Sergeyev, editors, Proceedings LeGO – 14th International Global Op-
timization Workshop, volume 2070, pages 020044–1–020044–4. AIP Publishing,
2019.

7

1.7. Other Work by the Author

8

Chapter 2

Preliminaries

This chapter provides a gentle introduction to the core subjects of this thesis. It covers

the basics of optimisation, multi-objective optimisation, evolutionary computation,

and building spatial design.

2.1 Optimisation

In optimisation the aim is to find an optimal, or at least an improved solution, to a

given problem. A problem may be that you want to design a house, but how do you

decide on the properties (number of rooms, floorspace, type of isolation material) of the

house? Let us assume – for the moment – that your only concern is the purchase price,

which you want to be as low as possible. That is, your objective is the minimisation of

the price of the house. Naturally, how much a house costs depends on the properties

of the house. A larger number of rooms, for instance, may result in a higher price.

Such properties may be captured in variables. Given an objective, and the variables

that influence its value, an objective function can be described. In other words, a

function describing how the objective value changes, given different input variables.

Altogether the optimisation problem can now be described mathematically as follows.

An objective function f , with a vector of input variables x, is to be minimised. With x

being an element of the search space S. Here the search space is the set of all possible

variable combinations. In short:

f(x)→ min, x ∈ S. (2.1)

9

2.2. Multi-Objective Optimisation

2.1.1 Constraints

Although unconstrained objective functions exist, in practice most optimisation prob-

lems consider constraints. Two classes of constraints are distinguished here, namely

equality and inequality constraints. For instance, for the design of a house, a specific

number of rooms c1 may be required, leading to an equality constraint of the form:

g(x) = c1. (2.2)

Further, there may be a minimum requirement to the number of square metres c2

in floorspace, resulting in an inequality constraint of the form:

h(x) ≥ c2. (2.3)

Finally, it is noted that a constraint might be applicable to a subset of the input

variables. For instance variables x1, . . . , x5 may be subject to constraint function g1,

while variables x3, . . . , xn are subject to constraint function g2.

2.1.2 Mixed-Integer Problems

Various types of variables may be considered in optimisation problems. Objective

values will generally have some ordering to them, and no major problems arise whether

they are real or integer. However, decision variables may consist of different types.

In this work we consider three classes of decision variables: real (also, continuous),

integer (also, discrete), and nominal discrete (also, categorical). Examples for each are

as follows, the height of a window could be a real variable, the number of rooms on the

ground floor is an integer, and the type of material in a wall can be nominal discrete.

Note that nominal discrete variables are usually encoded as integers, but by their

nominal nature are not ordered. As a result, handling them differently from regular

integer variables may be advantageous in an optimisation algorithm. Although both

real and integer variables are ordered, they still have differing properties and therefore

benefit from being treated separately as well.

2.2 Multi-Objective Optimisation

Equivalent to single-objective optimisation, multi-objective optimisation considers the

minimisation (or, without loss of generality, maximisation) of objective functions. In-

stead of optimising one function at a time, multiple functions are optimised in concert.

10

Chapter 2. Preliminaries

That is, rather than considering f(x)→ min, we consider f1(x)→ min, . . . , fm(x)→
min. Here, m indicates the number of objectives.

Beyond the basic concepts introduced in the following, the interested reader is

referred to [44] for a general overview and introduction to the field of multi-objective

optimisation, and state-of-the-art multi-objective evolutionary algorithms (MOEAs).

2.2.1 Pareto Optimality

In the single-objective case defining optimality is trivial: The smallest (or largest)

possible value for a given objective function is the optimum. In the multi-objective

case we could simply take the minimal value of each objective function, and say this

is the set of optima. However, this poses a problem. Consider a bi-objective problem,

with conflicting objectives. That is, optimal variables for one objective are not optimal

for the other and vice versa. An optimal solution in one objective is in this case likely

to be a low quality solution in the other objective. Clearly, it would be of interest

to find solutions that are in between, good – but not necessarily optimal – in both

individual objectives.

The Pareto (also: Edgeworth-Pareto) order makes it possible to measure optimality

of such in between solutions. This order is a partial order on the solutions. That is,

for some solutions it is clear which solution is preferable, but in other cases there

is no strict preference for one solution over the other. Any two solutions can be

compared using the notions of dominance, incomparability, and indifference. Here y

denotes a vector of m objective values. Also note that minimisation of the objectives

is considered in the following.

Definition 2.1 (Dominance). Solution y(1) is said to dominate solution y(2) if and

only if ∀i∈{1,...,m} : y
(1)
i ≤ y(2)i and ∃i∈{1,...,m} : y

(1)
i < y

(2)
i , in symbols y(1) ≺ y(2).

Definition 2.2 (Incomparability). Solution y(1) is said to be incomparable to solution

y(2) if and only if ∃i∈{1,...,m} : y
(1)
i < y

(2)
i and ∃i∈{1,...,m} : y

(1)
i > y

(2)
i , in symbols

y(1)‖y(2).

Definition 2.3 (Indifference). Solution y(1) is said to be indifferent to solution y(2)

if and only if ∀i∈{1,...,m} : y
(1)
i = y

(2)
i , in symbols y(1) ∼ y(2).

Observe that indifference is equivalent to equality in the objective space. If the

mapping f : S → Rm is considered, it is not equivalent to equality in the search space

S:

11

2.3. Evolutionary Computation

x(1) ∼ x(2) 6=⇒ x(1) = x(2) (2.4)

Note that these are all pairwise comparisons. In other words, they compare two

solutions to each other, but do not say anything about how an individual solution

compares to the set of all other solutions. For instance, identifying whether a solution

y(1) is Pareto optimal with respect to all other solutions y(i 6=1) requires (in the worst

case) a pairwise comparison to each of them.

2.2.2 The Hypervolume Indicator

Although the Pareto order makes it possible to compare two solutions with each other,

it provides no direct way to compare larger sets of (mutually incomparable) solutions.

Indicators aggregate information about a set of solutions, or introduce additional pref-

erence information (on how to distribute the set across the front), but in doing so are

necessarily imperfect measures. Two sets of solutions may, for instance, have an equiv-

alent indicator value, even if they are not equivalent themselves. The hypervolume

indicator [107] measures the region (m = 2, area; m = 3, volume; m ≥ 4, hypervol-

ume) covered by a set of points Y, relative to a reference point ρ. Given a single

point this is easily done by measuring the region between this point and the reference

point. With more points, things naturally get more complicated, since the different

regions between the two points and the reference point may overlap. The hypervolume

indicator measures the union of these two regions, rather than their sum. Further, it

is defined as a general measure, for any number of dimensions. For a more detailed

description of the hypervolume indicator, see [107].

Definition 2.4 (Hypervolume Indicator).

H(Y) = Λm(∪y∈Y[y,ρ]) (2.5)

here Λm denotes the Lebesgue measure on Rm, with m being the number of objective

functions.

2.3 Evolutionary Computation

Optimisation – in the single as well as the multi-objective case – concerns the minimi-

sation (or maximisation) of some objective function(s). Well-behaved functions can

be optimised efficiently by exact methods, such as gradient-based search. However,

12

Chapter 2. Preliminaries

many functions are non-differentiable or have complex (e.g. multimodal) landscapes,

and are not well suited to traditional optimisation techniques. Heuristic methods, and

nature inspired methods in particular, have shown great success in optimising for such

complex objective functions.

One class of nature inspired methods draws ideas from Darwinian evolution and

genetics, and is termed evolutionary computation. Different branches of evolutionary

computation were originally developed by independent communities. This resulted in

evolution strategies [81, 88], evolutionary programming [48], and genetic algorithms

[53]. Although differences exist between these branches, the core concepts are largely

the same. As such, a generalised model of evolutionary computation is considered in

the following.

Basically, a parent population of size µ is considered and evaluated on the target

objective function. From this population, individuals are selected through mating

selection. The selected parent individuals then produce λ offspring individuals through

recombination. Offspring individuals are then mutated. In this manner variation

is introduced into the offspring population, enabling the discovery of new solutions.

These offspring individuals are evaluated, and finally survival selection determines a

new parent population (again of size µ) to be used in the next generation, based on

the used performance metric.

While the above represents a general outline for an evolutionary algorithm, much

variation is possible. Imagine, for instance, an algorithm that only uses mutation.

Furthermore, for each of the basic steps multiple variations have been introduced

over time. In the case of survival selection the so called plus-strategy, and comma-

strategy [89, 90] were considered. A plus-strategy, written (µ + λ), selects the new

parent population from both the old parents and the offspring. On the other hand,

the comma-strategy, written (µ, λ), selects only from the offspring (which necessitates

λ ≥ µ).

2.4 Building Spatial Design

Applying optimisation techniques in building spatial design requires a basic under-

standing of the topic, which is introduced in the following.

Building spatial design concerns the design of the internal, and external shape of

a building, subdivided into so-called spaces1. A space is similar to a room, but also

1In some fields spaces are referred to as zones

13

2.4. Building Spatial Design

encapsulates concepts such as corridors and atria. In Figure 2.1 an example of a simple

spatial design consisting of three spaces is shown.

The building spatial design is an important part of the full building design since it

influences and restricts many other design decisions. In order to minimise the need for

Space 1

Space 2

Space 3

Figure 2.1: Example of a simple spatial design with three spaces.

repeated adjustments in other design components, the spatial design is more or less

fixed early on. However, due to its large impact on the rest of the design process, it is of

great value to find the best spatial design possible. Optimising spatial designs requires

a performance metric. Here the structural performance, and the energy performance

are considered.

Structural performance will be measured by the total amount of strain energy of

the structural elements of the building. Strain energy is an indicator for how well

loads are distributed via the different structural elements. The needed structural

elements are, however, not directly available in the spatial design. As such, structural

components with given properties are added to the spatial design in order to be able

to measure the strain energy. Specific properties of the added components, and the

procedures to arrange them, differ between experiments, and are therefore described

with the experiments.

Measuring energy performance is carried out in two ways, (a) outside surface area,

and (b) heating and cooling simulations. Outside surface area is cheap to compute,

and serves as a proxy for energy transfer between the building and the environment in

some experiments. Heating and cooling simulations make it possible to measure the

required energy to maintain a comfortable temperature. These simulations give a more

accurate picture since they are based on properties of the building elements, and they

14

Chapter 2. Preliminaries

take also into account internal energy transfer between spaces. As with strain energy,

the measurement of heating and cooling energy also requires additional properties not

available in the spatial design. Likewise, these are described along with the specific

experiments. More details are available in [25].

15

2.4. Building Spatial Design

16

Chapter 3

Design Space Representations

This chapter aims to answer RQ1, which asks for a problem representation for build-

ing spatial design. This is essential since, in order to optimise anything, a problem

representation is needed. That is, an encoding of the problem in decision variables.

Broadly, two classes of representations are considered here: Superstructure based rep-

resentations, and superstructure free representations. This chapter first discusses the

differences between these two types. As will become clear in this chapter, the su-

perstructure representation is preferred here for evolutionary computation. As such,

a superstructure is defined for spatial design representation, termed the supercube.

Following that, limitations of the chosen representation are analysed and compared to

an alternative representation. Finally, the chapter is summarised and directions for

future work are discussed.

3.1 Superstructure or Superstructure Free

Algorithmic optimisation – like any optimisation process – requires a problem repre-

sentation. This representation formalises the design space. In other words, the space

of possible solutions. If the representation is poorly defined the optimal solution may

be excluded from the design space. Or there may be so many infeasible solutions that

it becomes difficult to find any acceptable solution at all. A good representation is

therefore paramount to finding high quality solutions in an efficient manner. Even

so, different goals may benefit from different representations. Here two classes are in-

vestigated: superstructure representations, and their counterpart, superstructure free

representations.

17

3.1. Superstructure or Superstructure Free

A superstructure prescribes the possible solutions by encoding each of them in a

vector of constant length. This results in a preselection of solutions that can be found

by the optimiser, and which cannot, because they exist outside the superstructure. By

limiting the design space in this manner, the optimiser can focus its search, instead of

having to consider every possible alternative. On the other hand, if the global optimum

is not contained in the superstructure, it will never be found. Given the fixed size of

the superstructure, it may be possible to describe it as a mathematical program. If

this is done the problem can be solved by standard solvers (such as described in e.g.

[47]). The superstructure terminology originates from the process industry, where

configurations of chemical engineering plants are optimised. For example, Jackson

[56] described flow configurations in chemical reactors with a superstructure, although

without explicitly mentioning the term. Various more recent works [8, 11, 92] also

employ superstructures in other engineering fields.

To give an example of a superstructure, let us consider the optimisation of sunlight

illumination in a building. Using binary variables, windows can be in- or excluded

from the building design (where each binary variable is associated with a specific

window). Assume also a fixed number of variables per window that indicate their

location in the building. The maximal number of windows is fixed at the start of the

optimisation process, resulting in a fixed number of binary and positioning variables.

If the optimiser starts with four windows that can be turned on or off, it will find a

solution with somewhere between zero and four windows. However, it will never find

a solution with five windows, even if that would outperform all other solutions.

Since superstructures limit the optimisation to a predefined region of the design

space, superstructure free optimisation has been suggested to be able to reach all

possible solutions. Conversely to superstructures, the optimiser is now faced with

the task of searching through all possibilities, but there is no risk of excluding the

global optimum. Emmerich et al. [43] propose the use of replacement, insertion, and

deletion rules to modify (mutate, recombine) chemical process configuration designs

in evolutionary algorithms. However, the development of these modification operators

requires domain knowledge. Voll et al. [96] suggest a more general framework that uses

generic replacement rules in evolutionary algorithms. A similar strategy is followed in

[36], where it is exemplified for the optimisation of decision diagrams. Other examples

of superstructure free design spaces include the work found in [6, 62].

Many optimisation methods rely on the number of variables remaining fixed dur-

ing optimisation, which is not the case for a superstructure free representation. Due

to this, many optimisation methods can not handle superstructure free representa-

18

Chapter 3. Design Space Representations

tions. However, algorithms such as simulated annealing, evolutionary algorithms, and

heuristic local search can handle superstructure free representations. Simulated an-

nealing has been used in the design of processes, e.g. in [35]. In the field of structural

design, [59] describes a superstructure free approach in the optimisation of structural

topologies. Moreover, in [52] simulations of a co-evolutionary design process (these

simulations can also be interpreted as asymmetric subspace optimisation [75]) are

used to find a building spatial design for which a structural design created by certain

design rules shows minimal strain energy.

To provide an example of a superstructure free representation, consider again the

optimisation of sunlight illumination in a building. With a superstructure free repre-

sentation it is possible to only consider the fixed number of positioning variables per

window. Now, the optimiser can freely add and remove sets of positioning variables

to reduce or increase the number of windows. There are pitfalls, however. When a

window is removed its positioning information is lost. Then, when the optimiser later

adds a window, no information is retained on which positions have been tried before.

With the superstructure representation some information is saved (although still only

the last known position), even when a window is temporarily excluded from the de-

sign. Furthermore, an optimiser may attempt to evaluate designs with excessively

many windows, whereas a human designer might realise that there is no chance that

this particular design will perform well.

3.2 Supercube

Based on the definitions of superstructure and superstructure free representations it

becomes clear that with a superstructure a more focused search is possible, whereas

a superstructure free representation allows for a more exploratory search. A focused

search makes it possible to cover a significant part of the focus area, and possibly

guarantee local optimality (RQ3). Given extensive knowledge on this focus area, it

may be possible to analyse the data to gain new design insights (RQ4). As such, this

section proposes a superstructure representation for building spatial design, namely:

the supercube.

The supercube is a superstructure that aims to encode the spaces making up a

spatial design, as well as the shapes of these spaces. This is achieved by mapping

each space to a 3D rectangular grid, as visualised in Figure 3.1. By using binary

variables to turn different cells in this grid on or off, the shape of a space is carved

out. Further, each row, column, and pillar of the 3D grid can be stretched or shrunk

19

3.2. Supercube

with continuous variables, increasing the diversity of possible shapes. Using this 3D

grid limits the spaces to be composed out of cuboid (3D rectangles) shapes. However,

this also means the optimiser does not have to search through a massive number of

irregular shapes until it finds something that works reasonably well.

h1

h2

hNh

w1 w2 wNw

d1

d2

dNd

b`1,1,1

b`2,1,3

Figure 3.1: The grid used in the supercube representation, consisting of continuous width,
depth and height divisions denoted by wi, dj , hk, and for every space ` a collection of binary
cells b`i,j,k.

More formally, the supercube is delimited by the parameters Nspaces, Nw, Nd, and

Nh. These parameters indicate the number of spaces encoded in the supercube, and

the number of segmentations in width, depth, and height respectively. Each of these

is indexed as follows: ` ∈ {1, . . . , Nspaces}, i ∈ {1, . . . , Nw}, j ∈ {1, . . . , Nd}, k ∈
{1, . . . , Nh}. Given these parameters, the decision variables b`i,j,k ∈ {0, 1}, wi ∈ R+,

dj ∈ R+, and hk ∈ R+ are to be optimised. A binary variable b`i,j,k indicates whether

the cell with indices i, j, k is active for the space with index `. The continuous variables

wi, dj , hk denote the length of the grid segments.

3.2.1 Examples

To illustrate how the variables in the supercube can be used to encode building spatial

designs a few visual examples are introduced. Note that although these examples are

in 2D, everything discussed here extends to 3D.

First, Figure 3.2 shows how changes to the continuous variables of the supercube

affect the building spatial design. On the left, a supercube representation is shown

for which all dimensioning variables (wi, dj) have a value of 1. On the right, w1 is

20

Chapter 3. Design Space Representations

changed to 2, increasing the width of the whole column of cells. The dashed lines

in the figure indicate that the cells in the depicted supercube are active (b`i,j,k = 1).

Given that in this case all cells are active, and belong to a single space (` = 1, for

every cell), the corresponding building spatial design has the same exterior shape as

these visualisations of the supercube. However, the internal divisions are not present

in the spatial design. Those merely serve to indicate the division of the supercube into

cells.

b11,2,1
= 1

b12,2,1
= 1

b11,1,1
= 1

b12,1,1
= 1d 1

=
1
d 2

=
1

w
1 =

1
w
2 =

1

b11,2,1 = 1 b12,2,1
= 1

b11,1,1 = 1 b12,1,1
= 1d 1

=
1
d 2

=
1

w
1 =

2
w
2 =

1

Figure 3.2: Example of continuous variation in the supercube representation.

In Figure 3.3 an example of variation resulting from the discrete variables is shown.

On the left, the binary variable b12,1,1 – associated with the top-right cell – is set to 1

(indicating an active cell), while on the right it is set to 0 (i.e. it is inactivate). Here,

the dotted lines indicate an inactive cell (b`i,j,k = 0). As a result of this, the building

spatial design is changed from a square-shaped form on the left, to an L-shaped form

on the right. Like before, the outer contour of dashed lines correlates with the shape

of the single space encoded for this particular building spatial design.

b11,2,1
= 1

b12,2,1
= 1

b11,1,1
= 1

b12,1,1
= 1d 1

=
1
d 2

=
1

w
1 =

1
w
2 =

1

b11,2,1
= 1

b12,2,1
= 0

b11,1,1
= 1

b12,1,1
= 1d 1

=
1
d 2

=
1

w
1 =

1
w
2 =

1

Figure 3.3: Example of discrete variation in the supercube representation.

The binary variables from the example in Figure 3.3 can be described equivalently

by a 2 × 2 matrix (extending to 3D building spatial design naturally requires a 3D

matrix). Recall that a separate bit-mask is used for each space. Here each bit-mask is

denoted by B`, with ` ∈ 1, . . . , Nspaces. When three spaces are considered, this results

21

3.2. Supercube

in three matrices, this is depicted in Figure 3.4. The building spatial design is drawn

with solid lines, to differentiate it from the dashed and dotted lines previously used in

the visualisations of the supercube. Note that, unlike in the previous figures, not all

cell separators are shown. This is because those separators merely serve to visualise

the cells of the supercube, whereas here a building spatial design is shown. In the

building spatial design, separators only exist on their exterior. That is, only between

spaces, and to the outside. Notably, there is no divisor between the left half of space

3 and its right half.

B1 =[
0 0
1 0

] B2 =[
0 0
0 1

] B3 =[
1 1
0 0

]

S. 3

S. 1 S. 2

Figure 3.4: Example of multiple spaces (abbreviated by ’S.’) encoded in the supercube
representation.

3.2.2 Constraints on the Binary Variables

When it is not restricted by constraints, the supercube representation as described so

far may lead to infeasible building spatial designs, for example floating spaces could

occur. Therefore the following constraints are defined on the binary variables:

C1 There should be no overlap between spaces.

C2 All components of the building should be connected to the ground.

C3 Each space must exist, i.e. it must have at least one active cell.

C4 Each space forms a cuboid (3D rectangle) out of the cells assigned to it.

These four topology constraints are described here in mixed-integer nonlinear pro-

gramming (MINLP) form, see also [17, 21, 25]. By describing the constraints in MINLP

form, it is possible to use standard solvers (e.g. [47]) in combination with the super-

cube representation, conditional on all objective functions also being defined in MINLP

form.

22

Chapter 3. Design Space Representations

Constraint C1 (No overlap). Overlap between building spaces is not allowed, be-

cause it is impractical, and may lead to erroneous results in subsequent design analysis.

A constraint is needed for this because every space is represented by a separate bit-

mask (enumerated by `) of all cells in the supercube. Thus, overlap is not automatically

prevented in the representation. Equation 3.1 achieves this by taking the sum of each

cell over all masks. As a result of the binary representation, only if such a sum is

smaller or equal to one, no overlap exists at that position. If the bits corresponding to

the same cell were active in different bit masks, the sum would be greater than one,

and the overlap would be detected.

∀i,j,k
Nspaces∑

`=1

b`i,j,k ≤ 1 (3.1)

Constraint C2 (Ground connected). Building spatial designs normally stand on

the ground. Since this is difficult to check by a simple equation if vertical gaps are

allowed in the spatial design, the constraint considered here also enforces that there

are no vertical gaps. As a result of this constraint it is not possible to describe struc-

tures with cantilevers, overhangs or archways. The no vertical gaps restriction could

be abandoned if one is willing to use more complex procedures to check ground con-

nectedness constraints, but that would complicate the use of standard mathematical

programming solvers. In order to enforce that every space is ground connected, and

no vertical gaps exists, transitions from 0 to 1 for i, j beams are disallowed. This

ensures that for every pillar (i.e. a vertical column in the supercube) all active cells

have consecutive k indices, such that no vertical gaps exist. Moreover, if b`i,j,1 = 0 no

cells can be active in this beam without inducing a 0 to 1 transition, and thus violating

the constraint. As such, ground connectedness is also ensured.

To check this based on the supercube variables, let bi,j,k be the outcome of a logical

OR of all ` bits belonging to cell i, j, k. In equations: ∀i,j,k : bi,j,k = sgn(
∑Nspaces
`=1 b`i,j,k),

where the sgn() may be omitted if the previously defined no overlap constraint (Equa-

tion 3.1) is satisfied. Using bi,j,k, if Equation 3.2 holds, the building spatial design has

no vertical gaps and stands on the ground. In short, it checks that no change from 0

to 1 occurs when moving upwards in a vertical beam of cells.

∀i,j :

(
Nh−1∑

k=1

(1− bi,j,k) bi,j,k+1

)
= 0 (3.2)

Constraint C3 (Existence). The number of described spaces is kept constant. That

is, all spaces should exist in the resulting spatial design. A building is usually designed

23

3.2. Supercube

with a certain purpose in mind, resulting in a requirement for a specific number of

spaces. With the supercube the desired number of spaces is easily specified, but that

every space exists (has an active cell) requires a constraint. Checking the existence of

each space is achieved by ensuring that every space is described by at least one cell.

In Equation 3.3, this is achieved by simply taking the sum over all combinations of

indices of a space, and checking whether this sum is at least one. I.e., at least one

active cell exists for this space.

∀` :

Nw∑

i=1

Nd∑

j=1

Nh∑

k=1

b`i,j,k ≥ 1 (3.3)

Constraint C4 (Cuboid). Spaces are constrained to cuboid shapes for practicality.

The restriction to cuboid spaces also helps to keep the size of the design space man-

ageable. Consider, for instance, how the number of – especially infeasible – designs

would increase when slanted structures are allowed. Searching through these to find

reasonable designs would be prohibitively expensive.

To check this condition, pairwise comparisons can be made between rows, columns,

and pillars of cells. In this comparison the number and position of transitions from 0

to 1, and from 1 to 0 have to be checked for equivalence. However, due to the nature

of the bit-masks used in the supercube, these checks would have to be done in two

directions. When comparing two rows with each other, for instance, transitions have

to be checked from left to right, as well as from right to left.

In order to prevent having to check in two directions, first each bit-mask in the

supercube will be extended with a single layer of cells all around it. These new cells

are set to have no relation to any space (b`i,j,k = 0), this extension is described by

Equation 3.4:

∀` : ∀i,j,k ∈ {0, . . . , Nw + 1} × {0, . . . , Nd + 1} × {0, . . . , Nh + 1} :

i = 0 ∨ j = 0 ∨ k = 0 ∨ i = Nw + 1 ∨ j = Nd + 1 ∨ k = Nh + 1⇒ b`i,j,k = 0
(3.4)

Now it is possible to identify the position, and number of transitions from 0 to 1,

and from 1 to 0 by checking a single direction, as shown in Figure 3.5. This process

is formulated in Equation 3.5 for transitions from 0 to 1, and in Equation 3.6 for

transitions from 1 to 0 (where transitions are checked from lowest to highest index

value). Note that these equations serve as example for transition checks in the height,

and similar equations are used for width and depth.

24

Chapter 3. Design Space Representations

0 1 0 1 0

0→ 1 0→ 1

1→ 0 1→ 0

Figure 3.5: Checking transitions from 0 to 1, and from 1 to 0. Zeros without border
indicate cells added by Equation 3.4.

∀` : ∀i1,j1,i2,j2 :

((
Nh∑

k=1

k
(
1− b`i1,j1,k−1

)
b`i1,j1,k

)
−
(
Nh∑

k=1

k
(
1− b`i2,j2,k−1

)
b`i2,j2,k

))(
Nh∑

k=1

b`i1,j1,k

)(
Nh∑

k=1

b`i2,j2,k

)
= 0 (3.5)

∀` : ∀i1,j1,i2,j2 :

((
Nh∑

k=1

k
(
1− b`i1,j1,k+1

)
b`i1,j1,k

)
−
(
Nh∑

k=1

k
(
1− b`i2,j2,k+1

)
b`i2,j2,k

))(
Nh∑

k=1

b`i1,j1,k

)(
Nh∑

k=1

b`i2,j2,k

)
= 0 (3.6)

Unfortunately, this still allows for some designs that ought to be infeasible. For

example, Figure 3.6a shows how a row of zeros is allowed. This, however, makes it

possible for a space to consist of multiple disconnected parts, which is not desirable.

At the same time, rows of zeros have to be allowed, to ensure parts of the bit-mask can

remain empty, leaving room for other spaces. In Figure 3.6b it is shown how taking

this further can lead to many disconnected components of a space.

1 1 1

0 0 0

1 1 1

(a) A row of zeros is allowed.

1 0 1

0 0 0

1 0 1

(b) A cross of zeros is allowed.

Figure 3.6: Designs that satisfy Equations 3.5 and 3.6, but should be infeasible.

To prevent these voids, and to ensure spaces are truly cuboid, Equation 3.7 is

introduced. This equation enforces spaces to have a connected, ortho-convex shape.

As before, this also relies on the layer of zero cells as added by Equation 3.4. With

Equation 3.7 the number of changes from zero to one are counted for each space, and

25

3.2. Supercube

for each axis. Any space where there are multiple changes from zero to one is not fully

connected and therefore infeasible. In conjunction with the previous equations (3.5

and 3.6) this ensures that every space has a fully occupied cuboid shape.

∀` :

∀i,j :

Nh∑

k=0

(
1− b`i,j,k

)
b`i,j,k+1 ≤ 1

∀i,k :

Nd∑

j=0

(
1− b`i,j,k

)
b`i,j+1,k ≤ 1

∀j,k :

Nw∑

i=0

(
1− b`i,j,k

)
b`i+1,j,k ≤ 1

(3.7)

3.2.3 Constraints on the Continuous Variables

In order to compare between different building spatial designs the total volume V0

is kept constant during optimisation. This can be achieved by a constraint on the

continuous variables. Since only the active cells (i.e. cells that are encoding part of

a space) are relevant to the volume computation, inactive cells have to be excluded.

To do this, here (as in Constraint C2) bi,j,k is again taken to be the result of a logical

OR over all ` bits of a cell i, j, k. By multiplying with bi,j,k, the volume contribution

of any cell that is inactive for all spaces (bi,j,k = 0) will be zero. For active cells, the

volume contribution is simply the product of the relevant width, depth, and height

variables. Note that bi,j,k is used here instead of summing over all spaces with b`i,j,k to

ensure that the volume is still correct even if a cell is active for multiple spaces (and

thus violates Constraint C1). Together, this yields the equality constraint in Equation

3.8 below:

Nw∑

i=1

Nd∑

j=1

Nh∑

k=1

bi,j,kwidjhk = V0 (3.8)

In addition, all continuous variables should be positive or taken from a range of

positive values:

∀i : wi > 0, ∀j : dj > 0, ∀k : hk > 0 (3.9)

26

Chapter 3. Design Space Representations

3.2.4 Analysis of the Supercube Search Space

To make optimal use of the supercube representation, understanding of its workings

and limitations is essential. To this end, here the representation is analysed with a

focus on duplicates and feasibility. Duplication is important, because having duplicates

in a representation may hamper the search process. For one, evaluating the same

solution multiple times is undesirable, but there may also be a problem with bias if

some some solutions are encoded more frequently than others. How many designs are

(in)feasible in the representation is indicative of how much time a search algorithm

might spend on actually useful (feasible) solutions, versus infeasible solutions.

Duplicate Designs

Within the previously described supercube representation, duplicate building spatial

designs can occur. Here a number of duplication types are discussed.

Stretch duplicates indicate duplicate designs that have different binary representa-

tions for a space, but still result in the same building spatial design due to variation

of the continuous variables. An example of this is shown in Figure 3.7. By reducing

the width of the two active cells in Figure 3.7a, and activating the other two cells, the

representation in Figure 3.7b is reached, with an equivalent spatial design associated

to it.

b11,1,1 = 1 b12,1,1 = 1 b13,1,1
= 0

b14,1,1
= 0

d
1
=

h
1
=

1

w
1 =

2
w
2 =

2
w
3 =

1
w
4 =

1

Space 1

(a)

b11,1,1
= 1

b12,1,1
= 1

b13,1,1
= 1

b14,1,1
= 1

d
1
=

h
1
=

1

w
1 =

1
w
2 =

1
w
3 =

1
w
4 =

1

Space 1

(b)

Figure 3.7: Example of stretch duplicates. Top: Supercube representations; Bottom:
Spatial designs.

Swap duplicates result in equivalent building spatial designs by swapping the bi-

nary assignments of one space with those of another. In Figure 3.8 this is exemplified

by swapping space 1 and 2 with each other. Although the spaces now have different

identifiers, these identifiers carry no meaning, they merely serve to differentiate be-

tween spaces. As such, since the shapes of the spaces and the building stay the same,

27

3.2. Supercube

the design is equivalent. Note that duplicates of this type are not affected by the

continuous variables at all.

b11,1,1
= 1

b12,1,1
= 1

b23,1,1
= 1

b24,1,1
= 1

d
1
=

h
1
=

1

w
1 =

1
w
2 =

1
w
3 =

1
w
4 =

1

Space 1 Space 2

(a)

b21,1,1
= 1

b22,1,1
= 1

b13,1,1
= 1

b14,1,1
= 1

d
1
=

h
1
=

1

w
1 =

1
w
2 =

1
w
3 =

1
w
4 =

1

Space 2 Space 1

(b)

Figure 3.8: Example of swap duplicates. Top: Supercube representations; Bottom: Spatial
designs.

Shift duplicates are equivalently shaped building spatial designs, encoded in a dif-

ferent selection of cells in the supercube. The example in Figure 3.9 shows how this

can occur. Although in this case the continuous variables influence whether the design

is equivalent, both binary representations can be stretched in the same way by the

continuous variables (assuming all continuous variables of a dimension have the same

bounds).

b11,1,1
= 1

b12,1,1
= 1

b13,1,1
= 1

b14,1,1
= 0

d
1
=

h
1
=

1

w
1 =

1
w
2 =

1
w
3 =

1
w
4 =

1

Space 1

(a)

b11,1,1
= 0

b12,1,1
= 1

b13,1,1
= 1

b14,1,1
= 1

d
1
=

h
1
=

1

w
1 =

1
w
2 =

1
w
3 =

1
w
4 =

1

Space 1

(b)

Figure 3.9: Example of shift duplicates. Top: Supercube representations; Bottom: Spatial
designs.

Other types of duplication, besides those mentioned up till now, may be consid-

ered. So far all considered duplication types produce the same building spatial design.

However, rotated and mirrored designs may be considered duplicates as well under

certain conditions. These are duplicates in the sense that they are structurally the

same, while their building spatial design differs. It is important to note that what

28

Chapter 3. Design Space Representations

is or is not a duplicate is largely determined by the considered objective function(s).

Rotations of a design, for example, may be equivalent in a structural sense, but differ

in terms of sunlight illumination. This is also the case for wind, which may have

different intensities for each direction. Since rotations and mirror images of designs

will not always be considered duplicates, these duplication types are not investigated

further here.

Duplicates and Feasibility

The binary representation considered for the supercube has a combinatorial search

space that encodes 2Nspaces×Ncells designs. Here Ncells := Nw×Nd×Nh, i.e. the num-

ber of cells in a bit-mask of the supercube. Feasible designs (that is, designs satisfying

all constraints) are duplicated exactly Nspaces! times,1 in the swap duplication sense.

This is because for a design to be feasible, every space must consist of at least one cell

(Constraint C3). As a result, cells assigned to space A may be swapped with those

of space B (without losing any structure , such that space A gets the cells of space

B and vice versa. Since every space has at least one cell assigned (Constraint C3),

Nspaces! such configurations of the same feasible building spatial design can be reached

by swaps.

For infeasible designs the number of swap duplicates is at most Nspaces!. The

exact number of times a specific design is duplicated depends on how many spaces

have equivalent bit-masks. When the bit-masks of all spaces are distinct, Nspaces!

duplicates exist. If there are equivalent bit-masks, there are fewer duplicates. This

is because swaps between equivalent bit-masks result in equivalent representations,

and thus do not lead to duplicates. For example, when two spaces both have no

active cells (their bit-masks are all zeros), swapping between them results in the same

representation.

Due to their dependence on the continuous variables, stretch and shift duplicates

are much less likely to occur, and as such not analysed in detail here.

Alternative Representation

It is clear now that the proposed supercube representation has a number of limitations.

Large numbers of infeasible, as well as duplicate designs are represented. Here an

alternative is investigated that replaces the binary variables with integers. This is

visualised in Figure 3.10. Instead of using a binary matrix B for each space, a single

1Assuming Ncells ≥ Nspaces. If this does not hold, no feasible designs exist.

29

3.3. Conclusions

integer matrix I is used. In the integer matrix every element holds the index of the

space to which the corresponding cell belongs, while 0 still indicates an inactive cell.

This representation has a combinatorial search space with (Nspaces + 1)Ncells de-

signs, resulting in a smaller search space than the binary supercube. Notably, only

designs that are infeasible because they violate Constraint C1 (no overlap) are not

represented anymore.

B1 =[
0 0
1 0

] B2 =[
0 0
0 1

] B3 =[
1 1
0 0

]

I =[
3 3
1 2

]

Figure 3.10: Example of integer instead of binary encoding for the supercube representa-
tion.

Although this alternative representation reduces the size of the search space, it

cannot make use of the previously defined MINLP constraints. Having to find new

MINLP formulations, or discarding the idea of mathematical programming altogether,

makes this an alternative of limited interest. Furthermore, procedures to deal with the

remaining infeasible regions are needed, regardless of using the binary or integer en-

coding. Moreover, all the discussed duplication types remain present in the considered

alternative. A downside of the binary encoding, however, is that the space complexity

grows from O(log2NspacesNwNdNh) to O(NspacesNwNdNh), which limits the size of

the buildings that can be represented.

Given these facts, the remainder of this work makes use of the binary represen-

tation. Nevertheless, studying alternative representations may make it possible to

optimise more efficiently, and should be considered in the future.

3.3 Conclusions

3.3.1 Summary

In this chapter the differences between superstructure and superstructure free repre-

sentations have been investigated. Superstructures allow for an extensive search for the

optimum with a great variety of algorithms, within a predefined region. On the other

hand, superstructure free representations make it possible to explore all options and

30

Chapter 3. Design Space Representations

potentially discover surprising solutions. As such, a superstructure is more suitable

for pure optimisation, while free representations allow more extensive exploration.

Based on this analysis, and the goal considered in RQ1, a superstructure represen-

tation has been defined. This representation, termed the supercube representation,

allows for the description of building spatial designs with cuboid spaces. In addition,

constraints on the supercube variables were defined to ensure feasibility of the designs.

Here feasibility was considered both in a practical sense (what can the simulator han-

dle), and in a realistic sense (what can actually be built).

The supercube representation was analysed to verify its suitability to be used in

practice, and to understand its limitations. Based on the analysis, limiting factors

to the supercube representation are the large number of infeasible designs that are

represented, and the number of duplicate designs, both in the feasible and infeasible

space. A considered alternative somewhat reduced the number of infeasible designs

represented. However, this advantage was found to be very limited, and the alternative

would also require new constraint formulations. In addition, regardless of using the su-

percube representation or the alternative, sophisticated constraint handling techniques

would have to be developed. Due to the limited advantage and the required time in-

vestment for new constraint definitions, the supercube representation was regarded to

be of greater practical use.

3.3.2 Future Work

A number of interesting research directions to follow up on the work presented here

remain. For instance, there is the question whether better representations exist than

those proposed here. It would be of particular interest to reduce the number of designs

that need to be searched through. Defining a representation that excludes the infea-

sible designs from the search space would naturally greatly simplify the optimisation

process. At the same time, care needs to be taken when defining such a representation

to ensure none of the feasible design alternatives are lost.

Another improvement to the existing representation would be one that does not

contain duplicate designs. However, beyond excluding exact duplicates, this requires

careful consideration of what constitutes an equivalent design for the considered prob-

lem. Rotated designs, for instance, may be equivalent in a structural sense, but not

in terms of solar illumination.

In the real world, spatial designs are not restricted to spaces with cuboid shapes

as considered here. Another follow up question is thus how a representation can be

31

3.3. Conclusions

defined that removes this restriction. Moreover, can such a representation provide a

toggle mechanism to choose whether it is restricted to cuboid shapes or not? This

mechanism would make it possible to investigate only cuboid designs when a broader

analysis is not needed, while still providing the freedom to search through all designs

for use cases that require it.

An ideal representation would combine all of the aforementioned aspects. Further-

more, it could be a generic spatial design representation. One aspect in that would

be the option to include or exclude certain designs, based on what is considered a du-

plicate for the optimisation problem under consideration. Naturally, a representation

that solves all of these issues is more challenging, but each individual challenge can

serve as a milestone towards it.

Given any of these suggested representations it would be valuable to still be able to

define mathematical programming constraints. Although this is yet another challenge,

it is a desirable property of a design space representation. Even so, depending on the

representation it may simply not be possible, in which case it would be good to prove

that this goal is unattainable.

32

Chapter 4

Basic Constraint Handling

With the definition of the supercube representation in the previous chapter, everything

is now available to start optimising building spatial designs. However, it was also

identified that numerous infeasible designs exist in this representation. To navigate

the infeasible space, this chapter aims to evaluate constraint handling techniques to

use during optimisation. This also ties in to answering RQ2, which asks for methods

to effectively handle constraints, specifically to ensure feasible building spatial designs

are discovered.

In order to improve the understanding of the supercube representation, the search

space, and the objectives, this chapter approaches building spatial design as a single-

objective problem. Based on the results it will be easier to extend to multi-objective

building spatial design in the next chapter (Chapter 5). To this end an evolution

strategy [82, 90] is used, and extended here with constraint handling mechanisms

suitable to the considered problem.

This chapter continues in Section 4.1 with a discussion of the problem of building

design, as well as a brief overview of work related to building design optimisation.

Section 4.2 introduces evolution strategies, which will be used in the optimisation

procedure. Then, in Section 4.3 the considered objective functions are discussed in

more detail. In Section 4.4 the integration of evolution strategies with constraint

handling techniques are discussed. The setup of experiments used to evaluate the

approach are then described in Section 4.5. An in-depth discussion of results is then

presented in Section 4.6. Finally, Section 4.7 provides a summary of the main results,

and indicates directions for future work.

33

4.1. Building Design Optimisation

4.1 Building Design Optimisation

Building design is traditionally performed by architects and engineers who create so-

lutions for discipline specific design problems. Nowadays these solutions are usually

assessed by, and modified in accordance with, design analysis tools. Such tools include

finite element methods (FEM) to simulate for instance structural performance or heat

transfers, and computational fluid dynamics (CFD) to simulate e.g. heat, ventilation,

and lighting problems. The division between the different disciplines within the field

of building design also calls for tools that allow engineers from different disciplines

to cooperate. An example of such a tool is computer aided design (CAD), which is

used to create and share designs. However, currently building information modelling

(BIM) [37] is on the rise. BIM is a method that uses data management in order

to dynamically share information with other disciplines. This allows engineers to –

among other things – take other disciplines into account in the early (also, concep-

tual) design phase. The early design phase is important for optimal building designs,

because decisions in the conceptual design stage often affect performances across all

disciplines. A design based on a single discipline may therefore lead to a suboptimal

multi-disciplinary design.

Optimisation in the built environment is mostly performed by parametrising build-

ing components, e.g. installation type, construction type, material type, dimensions,

or shapes. In [79] an overview of software tools for building optimisation is presented,

followed by the introduction of a new tool. The new tool allows design variables of a

building design to be selected for optimisation. Following that, an optimisation strat-

egy can be selected. Although such tools can change and greatly improve a design,

they cannot discover new designs (e.g. a new window cannot appear). Very recently,

advances in early design optimisation have been made. For example, in [52] an opti-

misation approach inspired by the human design process is used to optimise a building

spatial design for the structural performance of its related structural design. In the

building physics discipline, the software tools discussed in [3, 102] are able to provide

performance information for building designs. Statistical sensitivity analysis to predict

the impact of design variables on the optimality of a building design is presented in

[54]. This analysis is interesting for early design optimisation as the impact of each

design variable in distinct design stages can be investigated.

In this chapter building optimisation for early stage building spatial design is per-

formed using the previously defined supercube representation (Section 3.2). Although

the supercube does not allow for completely free exploration of designs, it does permit

34

Chapter 4. Basic Constraint Handling

significant changes in the shape of the building. Completely free exploration will be

investigated in Chapter 9, where the supercube is used in conjunction with a corre-

sponding superstructure free representation. Here, the supercube considers a layout

of building spaces that can be rearranged and resized for optimal performance. Opti-

misation methods are investigated for two different objective functions: (a) Structural

performance, for which the compliance is to be minimised, and (b) building physics,

for which the outside surface area is to be minimised. These disciplines are selected

because they are known to be dependent on the building spatial design. Later in this

thesis (Chapter 6) a resistance/capacitance (RC) network will be employed to anal-

yse heating and cooling energy, it will serve as a more accurate measure of building

physics performance. For the development of the optimisation method presented here

minimal surface area is used as objective function because it is cheaper to compute.

Details on the objective functions follow in Section 4.3.

4.2 Evolution Strategies

As outlined in the introduction evolutionary algorithms (EAs, Section 2.3) subsume

different algorithms that mimic natural evolution, in order to find improved or opti-

mised technological designs [4]. Population-based evolutionary algorithms generally

work according to a basic loop structure, the so-called generational loop. It starts

after an initialisation phase where an initial parent population consisting of µ indi-

viduals (solution candidates) is generated and evaluated. Then the loop begins by

establishing a ranking among the individuals according to their fitness (their perfor-

mance according to some objective function). Next, parents are selected to generate

an offspring population (also referred to as reproduction). In this step the ranking

of the population might be taken into account, although in Evolution Strategies – an

important EA variant – parent individuals are chosen randomly. From the selected

parent individuals, λ offspring individuals are created. Recombination is applied to

allow parts of the genomes (the decision variables, possibly encoded) from multiple

parents to be combined into a new genome. In order to introduce new – possibly

not previously considered – information into the genome, random perturbations are

applied through mutation of some of the variables in the newly produced genome.

When applicable, this is followed by constraint evaluation, where invalid individuals

may either be repaired, penalised, or discarded. Finally, the offspring population is

evaluated on the objective function, a new parent population is produced (note that

35

4.3. Objective Functions

here performance may be taken into account, unlike in the reproduction step), and

the loop starts anew.

The specific type of evolutionary algorithm used in this chapter is the (µ + λ)-

Evolution Strategy. Evolution Strategies (ESs) were developed by Ingo Rechenberg

and Hans-Paul Schwefel at the Technische Universität Berlin in the 1960s and are

especially well suited for solving engineering design problems [82, 90]. They are in-

teresting for this work because they are able to handle discrete as well as continuous

decision variables, as outlined in [69].

In Algorithm 1 the main loop of a (µ+ λ)-ES is summarised. In short, the parent

population (multiset) Xt, indexed by the number of iterations and consisting of µ

individuals, is used as a template to generate the offspring population X ′t of size

λ. Then, from the combination of parents and offspring the best individuals are

selected as the parents of the next generation Xt+1. The initialisation, mutation,

and recombination operators are chosen in a domain specific way, as will be discussed

later in this section. For a more detailed discussion on evolution strategies and their

properties the reader is referred to [4] and [12].

Algorithm 1 (µ+ λ) Evolution Strategy [90]

1: t← 0
2: Xt ← init() . Xt ∈ Sµ : Set of individuals
3: while t < tmax do . Generate λ solutions by (stochastic) variation operators
4: X ′t ← generate(Xt)
5: evaluate(Qt)
6: Xt+1 ← select(X ′t ∪Xt) . Rank and select µ best
7: t← t+ 1
8: end while

4.3 Objective Functions

Structural performance is optimised here by minimising the compliance. To compute

the compliance corresponding to a building spatial design, a building structural design

needs to be provided. This is carried out by applying a so-called structural grammar

on each space of the building spatial design. The grammar that is used here adds

four walls (slabs), with a roof (also a slab) on top. All of these are made of concrete

with a thickness t = 150 mm (millimetre), Young’s modulus E = 30 000 N mm−2

(newton per square millimetre), and a Poisson’s ratio ν = 0.3. The building spatial

design is then loaded with a live load of 1.8 kN m−2 (kilo newton per square metre)

36

Chapter 4. Basic Constraint Handling

on each floor/roof surface. Further, each outside surface is subjected to wind loads

of 1.0 kN m−2 for pressure, 0.5 kN m−2 for suction, and 0.4 kN m−2 for shear from

eight general directions (North, Northwest, West, etc.). After the transfer of the

loads to the building structural design and meshing of the structure, finite element

analyses are carried out to find the total compliance for all loads together. More

detailed information about this procedure can be found in [52]. In summary, the first

optimisation task is to minimise the total compliance (measured in newton metres),

subject to the given constraints.

Next, building physics performance is optimised by minimising the total outside

surface area. This objective can be computed for the supercube representation (Sec-

tion 3.2) as follows. Firstly, it is required that the building spatial design contains no

cantilevers, overhangs, or archways. This is achieved by Constraint C2, which ensures

that no vertical gaps exist with Equation 3.2. Additionally, the computation requires a

layer of cells with their binary variables equal to zero around the supercube (Equation

3.4).

To compute the outside surface area the surfaces of all outer walls, and the roof are

considered. These may be found by considering all rows, columns, and pillars of the

supercube. In width and depth the number of changes from zero to one are counted,

and then multiplied by the area corresponding to the considered dimensioning indices.

Finally, to consider both the entry and exit points, the outcome is multiplied by

two. In case of the height direction the multiplication by two is omitted, because the

connection with the ground layer is not counted as outside surface area. Since there

are no vertical gaps in feasible designs, the height direction is essentially the sum of

areas of all pillars with an active cell. The sum SA = Sw + Sd + Sh of Equations 4.1,

4.2, and 4.3 below is then the total outside surface area. Here Sw, Sd, and Sh are the

total outside surface area of the width vectors (rows), depth vectors (columns), and

height vectors (pillars), respectively. Note that once more, bi,j,k is taken as the result

of a logical OR over all ` bits of a cell i, j, k. In summary, the second objective function

is to minimise the outside surface area SA (measured in square metres), subject to the

given constraints.

Sw =

Nd∑

j=1

Nh∑

k=1

(
2

(
Nw+1∑

i=1

(1− bi−1,j,k) bi,j,k

)
djhk

)
(4.1)

Sd =

Nw∑

i=1

Nh∑

k=1

2

Nd+1∑

j=1

(1− bi,j−1,k) bi,j,k

wihk

 (4.2)

37

4.4. Methods

Sh =

Nw∑

i=1

Nd∑

j=1

((
Nh+1∑

k=1

(1− bi,j,k−1) bi,j,k

)
widj

)
(4.3)

4.4 Methods

This section provides a description of how the earlier introduced (µ + λ)-ES is cus-

tomised for building spatial design optimisation with the supercube representation,

and how the different constraints are handled. To this end, first a general overview

is given of the procedure that will be the subject of the later presented experiments.

The outline is visualised in Figure 4.1.

Start (t = 0, i = 0)
Initalise parent pop-
ulation Xt of size µ

Repair volume Repair successful? Check constraints

Stop early

Constraint
violations?

Return objective
value, i = i + 1

Return
penalty value

Select µ new
parents Xt+1

from Xt ∪ X ′
i > max?t = t + 1

Stop

Produce off-
spring population
X ′ of size λ

no

yes

no

yes

no

yes

Figure 4.1: Optimisation outline. Nodes shaded in grey are performed for each individual.

The process starts by initialising the parent population X of size µ. Following

this, the volume of all new individuals is repaired to be within a small margin of the

desired volume V0. If volume repair fails it is likely that incompatible settings were

provided, and the process is stopped early. Next, the constraints are checked, and in

case of constraint violations a penalty value is returned. If no constraints are violated,

then the objective value is computed and returned instead. Moreover, the evaluation

counter i is incremented. Based on these returned objective and penalty values, the

38

Chapter 4. Basic Constraint Handling

µ best individuals are selected from the parent and offspring populations. In the first

iteration this will naturally always be the initial population. If the maximum number

of evaluations is reached the process stops here, otherwise the iteration counter t is

incremented. Finally, a new generation starts by producing an offspring population

X ′ of size λ. The loop is then repeated by starting again from the volume repair step.

This process continues until the desired number of evaluations is reached. Note that

here evaluations are counted based on the number of valid (non-constraint violating)

solutions.

In the following subsections a number of these processes are discussed in more

detail. Specifically, domain specific ES operators (initialisation, selection, mutation,

crossover), penalty functions, and repair functions will be introduced.

4.4.1 Domain Specific Operators

The ES starts by generating an initial parent population of µ = 20 individuals. For

continuous variables initial values are drawn uniformly at random from [lb, . . . , ub],

with lb = 3.0, and ub = 19.8 (both in metres) being the lower, and respectively upper

bounds for the continuous variables. Step sizes of the continuous variables are simply

initialised to σ = 0.1. While binary variables are initialised to one with a probability

1/Ncells, or zero otherwise. Recall that Ncells = Nw ×Nd ×Nh.

Parental selection is done by choosing two parents (possibly the same twice) uni-

formly at random, for each of the λ = 100 offspring individuals that are generated.

Next, intermediate crossover is applied to the continuous variables as well as their

corresponding step sizes. That is, for each variable the arithmetic mean of the two

parents is taken. For binary variables dominant crossover is applied by copying the

value of the bit from one of the parents, chosen uniformly at random for each bit.

Mutation works as described in Algorithm 2. For convenience two definitions

are introduced, the number of continuous variables Ncont = Nw + Nd + Nh, and

the dimensionality of the search space Ndims = Ncont + Ncells × Nspaces. Gaussian

mutation with individual step sizes is applied to the continuous variables. To this

end the number g3 is drawn from a Gaussian distribution G(·, ·). Step sizes σ of

the continuous variables are mutated using the Gaussian numbers g1, g2 (also drawn

from G(·, ·)), the local learning rate τ1 = 1/
√

2
√
Ndims, and the global learning rate

τ2 = 1/
√

2×Ndims as in [69]. Finally, binary variables are mutated by flipping each

bit with a probability of 1/(Ncells × Nspaces), for which a number is drawn from the

uniform distribution U(·, ·).

39

4.4. Methods

Algorithm 2 Mutate

1: τ1 ← 1/
√

2
√
Ndims . Local learning rate

2: τ2 ← 1/
√

2×Ndims . Global learning rate
3: g1 ← G(0, 1)
4: for all i ∈ {1, . . . , Ndims} do
5: g2 ← G(0, 1)
6: g3 ← G(0, 1)
7: if i ≤ Ncont then
8: σ′i ← σi × exp(g1 × τ2 + g2 × τ1) . Mutate step size
9: x′i ← xi + g3 × σ′i . Mutate continuous variable

10: else
11: if U(0, 1) < 1/(Ncells ×Nspaces) then
12: x′i ← (xi + 1) % 2 . Mutate binary variable
13: end if
14: end if
15: end for

Following mutation, some variables may exceed their bounds. To repair them,

modified interval bounds treatment is applied as in [69]. Decision variables consider

the lower bounds lb and the upper bounds ub, while step size variables use the bounds

lbs = 0.01 and ubs = ub× 0.1.

Finally, survival selection works as is standard for evolution strategies. Namely,

the µ best (lowest objective value) individuals from the (µ∪λ) (parents and offspring)

individuals are selected to be the parent population of the next generation, this is also

referred to as elitist selection (the best/elite wins).

4.4.2 Penalties

The supercube representation considers a number of constraint functions that must

hold to ensure feasible designs are produced. However, when many infeasible (con-

straint violating) designs exist (like in the supercube representation, see Section 3.2.4)

an optimiser needs some technique to navigate towards feasible space. If no such tech-

nique is employed, in the worst case the optimiser might not find any feasible design

at all.

Here two approaches are considered, which will be compared empirically in Sec-

tion 4.5. First, a single fixed penalty value of pen = 999 999 999 is used whenever

any constraint is violated. This value is chosen to be well beyond any realistically

expected objective value to prevent any infeasible solution from being favoured over

a feasible solution, but is otherwise arbitrary. The penalty provides the optimiser

40

Chapter 4. Basic Constraint Handling

with the information that the considered design is of very low quality. However, if no

feasible design is found, this does not help to steer the search closer to feasible space.

Even so, this still provides a baseline when comparing with other methods. Second, a

graded penalty approach is used where the penalty value depends on the number of

constraint violations. The idea behind this approach is that the penalty value should

decrease when fewer constraints are violated. By favouring solutions that violate fewer

constraints, the search will be biased towards areas closer to feasible space. Given this

property, the graded penalty approach should be more suited to navigate the con-

straint landscape than the single penalty approach. Specifically, an infeasible solution

will receive a penalty value equal to pen + CV − 1. Here CV ∈ {1, . . . , 5} represents

the number of constraint violations, and pen is the same as before. Although the

absolute differences between these penalty values are small, together with elitist selec-

tion this means the individual with the least constraint violations is always favoured.

Note that five constraints are considered here. This concerns the four constraints de-

scribed in Section 3.2.2, where Constraint C4 is split into two parts: (a) cuboid shape

(Equations 3.5 and 3.6), and (b) connected cuboid (Equation 3.7).

4.4.3 Repair Functions

Given the constraint on the volume introduced by Equation 3.8, a mechanism is needed

to maintain a constant volume during optimisation. Since this concerns an equality

constraint on continuous variables, the use of penalty values would be less effective

than for the previously discussed constraints. That is, finding solutions with exactly

the right volume by the stochastic processes of an evolutionary algorithm is so unlikely

that another technique is needed to handle this constraint. Here, a repair function is

used to change any design that does not satisfy this constraint into one that does.

Repairing the volume works by scaling the continuous variables to satisfy a pre-

defined desired total volume V0 (in the following experiments V0 = 43 ×Ncells. How

these variables have to be scaled depends on the current total volume Vc, which is

simply the outcome of the left-hand side of Equation 3.8. Given the current and de-

sired volume, it is possible to compute the factor α = V0/Vc. The desired volume is

then reached by multiplying the continuous variables by the cubic root of α, as shown

in Equation 4.4. Note that this is only necessary for vectors (rows, columns, or pillars

in the supercube) that contain at least one active cell (cells that belong to a space).

Inactive cells do not influence the volume, and therefore can remain unchanged.

41

4.5. Experiments

∀i : w′i = 3
√
αwi ∀j : d′j = 3

√
αdj ∀k : h′k = 3

√
αhk (4.4)

Both the creation of new individuals (recombination and mutation), and the volume

repair procedure may result in continuous variables that exceed their boundaries. Such

boundaries result from the requirement for continuous variables to have positive values

(Equation 3.9), but also from limits set for a specific design process. For instance,

a lower bound lb may be set because a space that is less than half a metre wide

is not practically useful. Likewise, an upper bound ub is used to avoid excessively

wide/deep/high spaces. To correct for this, variables exceeding the lower bound are

set to the lower bound, while variables exceeding the upper bound are multiplied by

0.95 until they are within the bound. Since these corrections affect the volume, volume

repair is done iteratively together with bound corrections until both requirements

are satisfied. Note that the volume requirement is considered satisfied as long as

the volume remains within 1 % from the desired volume. This prevents an excessive

amount of time from being spent solely on satisfying this constraint, while staying

reasonably close to the requirement. The iterative process is repeated at most 26 times.

If this number of repetitions is insufficient for any of the individuals the optimisation

process is stopped and considered unsuccessful. The likelihood that this occurs is

dependent on the chosen bounds and the desired volume, but this did not occur during

any of the experiments presented in this chapter.

4.5 Experiments

Based on the described optimisation outline a number of experiments have been de-

vised. Single objective optimisation is considered, concerning the surface area and the

compliance objectives. By focussing on single-objective optimisation, and – for now

– leaving out the additional complications involved in multi-objective optimisation, it

is possible to purely focus on developing good constraint handling techniques. This is

first done with single penalty values to investigate how well the proposed supercube

representation functions in practice, and to set a baseline to compare against. Next,

the same objectives are considered, but now with the graded penalty, based on the

number of constraint violations. Through the comparison of these two approaches,

some first insights are gained into constraint handling for this heavily constrained

problem.

42

Chapter 4. Basic Constraint Handling

These experiments are all conducted with a budget of 1000 evaluations, and re-

peated five times. As mentioned before, only feasible candidates are evaluated, and

thus only feasible candidates reduce the remaining evaluation budget. To prevent the

optimisation process from going on forever (in case only infeasible solutions are found),

the process is stopped after generating one million candidate solutions, even if the bud-

get is not exhausted yet. Moreover, six different configurations of the supercube are

considered to give insight into algorithm behaviour and problem characteristics for

different numbers of cells and spaces. The considered configurations are: 2221, 2223,

2225, 3331, 3333, 3335. This notation has to be interpreted as follows. The first three

numbers indicate the number of width, depth, and respectively height divisions in the

supercube. Whereas the last number indicates how many spaces are considered. The

2221 configuration, for example, indicates a supercube that is two cells wide, deep,

and high, and encodes a single space.

Settings as used in the experiments for the parameters introduced in the previous

section are summarised in Table 4.1.

µ λ V0 lb ub lbs ubs

20 100 43 ×Ncells 3.0 19.8 0.01 ub× 0.1

Table 4.1: Parameter settings used for the constraint handling evolution strategy.

4.6 Results

Figure 4.2 shows mean convergence plots for the compliance objective when using the

single penalty approach. Note that this mean is only computed over the successful

runs, i.e. runs that found 1000 feasible solutions. After a rapid decrease in the

objective value during the first few hundred evaluations the optimisation process tends

to stagnate. In Figure 4.2a the results for the 222x configurations are shown. Only

three of the five runs for configuration 2225 were successful, so the mean of this

configuration is based on only three runs. In fact, for these unsuccessful runs no

feasible designs were found at all. This means that, for this problem size constraint

handling is already a major problem with a single penalty value. With the larger

supercube considered for the 333x configurations in Figure 4.2b this problem becomes

even more apparent. In case of the 3333 configuration two out of five runs also failed

to find any feasible solution, while for the 3335 configuration none of the runs found

43

4.6. Results

a feasible design. Evidently, a more sophisticated constraint handling technique is

needed.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

C
om

pl
ia

nc
e

(N
m

)

Evaluations

2221
2223
2225

(a) 222x configurations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100 200 300 400 500 600 700 800 900 1000

C
om

pl
ia

nc
e

(N
m

)

Evaluations

3331
3333

(b) 333x configurations.

Figure 4.2: Mean convergence of the compliance for all successful runs (maximum of five)
using a single penalty value. Configurations 2225 and 3333 had 3 successful runs, while 3335
had none.

For the surface area objective similar results can be observed in Figure 4.3. Here

too, a number of runs were not successful for various configurations. In Figure 4.3a

configuration 2225 completed two of the five runs successfully. Further, the 3333 and

3335 configurations in Figures 4.3b respectively had three and zero successful runs.

As was the case for the compliance objective, all unsuccessful runs here did not find

any feasible solution at all. When comparing between the two objectives, it appears

that the convergence speed is fairly similar.

 300

 320

 340

 360

 380

 400

 420

 0 100 200 300 400 500 600 700 800 900 1000

Su
rfa

ce
 a

re
a

(m
2)

Evaluations

2221
2223
2225

(a) 222x configurations.

 650

 700

 750

 800

 850

 900

 950

 0 100 200 300 400 500 600 700 800 900 1000

Su
rfa

ce
 a

re
a

(m
2)

Evaluations

3331
3333

(b) 333x configurations.

Figure 4.3: Mean convergence of the surface area for all successful runs (maximum of five)
using a single penalty. Configurations 2225, 3333, and 3335 had 2, 3, and no successful runs
respectively.

44

Chapter 4. Basic Constraint Handling

For the ease of discussion the considered constraints are briefly summarised next.

• No overlap (Constraint C1, Equation 3.1), each cell belongs to no more than one

space.

• Ground connected (Constraint C2, Equation 3.2), all cells are either on the

ground level, or have an active cell on the level below them.

• Existence (Constraint C3, Equation 3.3), all spaces exist, i.e. they are described

by at least one cell.

• Cuboid shape (part one of Constraint C4, Equations 3.5 and 3.6), the cells de-

scribing a space together form a cuboid shape, possibly with gaps.

• Connected cuboid (part two of Constraint C4, Equation 3.7), all cells in the same

row, column, or pillar are connected. Given that the cuboid shape constraint

also holds, this means that all cells forming a space are connected and form a

cuboid without voids.

Note that for some problem configurations certain constraints are always satisfied,

these are indicated as not applicable (N/A). For the 2221 and 3331 problem instances, a

single space has nothing to overlap with and can therefore never violate Constraint C1.

The 222x instances cannot have cuboids with gaps in them, because there are not

enough cells for this to occur.

Given these constraints, Table 4.21 shows the ratios of constraint violations for

every configuration and constraint type for the minimal compliance objective when

using a single penalty value. These values are computed by taking the ratio of con-

straint violations for a single run, and then taking the mean over the five runs. For

the small supercube sizes considered here, the existence constraint does not appear

to be a major problem. Although for the 3335 configuration it is already violated

frequently. The likelihood of violating the no overlap constraint naturally depends on

the ratio between the number of spaces and the number of cells. I.e., more spaces

per cell increases the likelihood of overlap. This is supported by the results for the

2223 and 2225 configurations. Meanwhile, the probability of constraint violation for

the 3335 configuration is extremely high (0.999327413), making it difficult to search

1The values shown in the table here differ from those originally reported in [17], because the results
there mistakenly showed numbers for a single run, rather than the average over five runs. However,
the primary conclusions still hold. The same goes for Tables 4.3, 4.4, and 4.5.

45

4.6. Results

at all. The remaining three constraints show a similar pattern to the no overlap con-

straint, increasing violation probability with more spaces for both the 222x and 333x

configurations, and excessively many constraint violations for the 3335 configuration.

Config. No overlap Ground con-
nected

Existence Cuboid shape Connected
cuboid

2221 N/A 0.365825317 0.058657830 0.444417496 N/A
2223 0.360701373 0.370035639 0.140828056 0.515696088 N/A
2225 0.806357513 0.735303689 0.130767034 0.784227148 N/A
3331 N/A 0.502740860 0.017993546 0.587753423 0.115546192
3333 0.479018371 0.701397235 0.054896992 0.755925962 0.481095119
3335 0.999327413 0.999974401 0.816441071 0.999885802 0.998834023

Table 4.2: Mean constraint violation probability over five runs for minimal compliance
optimisation with a single penalty value for various problem configurations.

The constraint violations of the surface area in Table 4.3 show largely similar

behaviour to those of the compliance objective, with a large portion of the constraints

being violated with high probabilities. There are some minor variations between which

constraint is violated more or less often between the two objectives. However, this

can likely be attributed to chance, considering the small number of runs. Moreover,

constraint violations in both cases frequently occur more than 50 % of the time. This

further supports the findings from the convergence analysis, that the single penalty

approach is unable to handle this heavily constrained problem.

Config. No overlap Ground con-
nected

Existence Cuboid shape Connected
cuboid

2221 N/A 0.283941972 0.058233004 0.460658365 N/A
2223 0.363531813 0.363550249 0.135668651 0.510627974 N/A
2225 0.865383477 0.817330126 0.089653027 0.850689870 N/A
3331 N/A 0.486303466 0.046760850 0.524354276 0.137718976
3333 0.532956461 0.744087185 0.049183401 0.795422495 0.500961661
3335 0.999399612 0.999975601 0.816310074 0.999910402 0.998905822

Table 4.3: Mean constraint violation probability over five runs for surface area optimisation
with a single penalty value for various problem configurations.

Next, it is investigated whether a graded penalty approach is able to remedy this

problem. The used approach penalises based on the number of constraints that are

violated. This should allow evolutionary search to gradually correct violations, and

move towards feasible solutions faster.

Figure 4.4a shows the mean convergence of the compliance on the 222x config-

urations when using the graded penalty method. Notably, all runs were completed

46

Chapter 4. Basic Constraint Handling

successfully, which shows the advantage of this method over the single penalty ap-

proach. The convergence behaviour is largely similar to the single penalty method,

with quick improvements early on and stabilisation after a few hundred evaluations.

For the 333x configurations shown in Figure 4.4b the results are also largely the same.

Despite the fact that these configurations are more challenging than their 222x coun-

terparts, here too all runs were successful with the graded penalty method. Evidently,

the graded penalty method shows the expected and desired result of being better

equipped to deal with the constraint landscape than the single penalty approach.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

C
om

pl
ia

nc
e

(N
m

)

Evaluations

2221
2223
2225

(a) 222x configurations

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800 900 1000

C
om

pl
ia

nc
e

(N
m

)

Evaluations

3331
3333
3335

(b) 333x configurations

Figure 4.4: Mean convergence of the compliance over five runs using graded penalty values
based on the number of constraint violations.

 300

 310

 320

 330

 340

 350

 360

 370

 380

 390

 400

 410

 0 100 200 300 400 500 600 700 800 900 1000

Su
rfa

ce
 a

re
a

(m
2)

Evaluations

2221
2223
2225

(a) 222x configurations

 650

 700

 750

 800

 850

 900

 950

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Su
rfa

ce
 a

re
a

(m
2)

Evaluations

3331
3333
3335

(b) 333x configurations

Figure 4.5: Mean convergence of the surface area over five runs using graded penalty values
based on the number of constraint violations.

Mean convergence results of the graded penalty method for the surface area objec-

tive show similar improvements to those of the compliance objective. This holds for

both the 222x configurations in Figure 4.5a, and the 333x configurations in Figure 4.5b.

Furthermore, with all runs now being completed successfully, a more accurate analysis

47

4.6. Results

of the convergence behaviour is possible. Particularly for the 333x configuration it is

now possible to clearly observe the difference in convergence speed as the number of

spaces is increased from 1, to 3, and to 5, whereas this (expected) behaviour was not

clear at all with the single penalty approach (Figure 4.3b).

In terms of constraint violation probability, the results of the graded penalty

method are also an improvement over those of the single penalty method. This can be

observed for both the compliance objective in Table 4.4, and the surface area objective

in Table 4.5. Most notably, the probabilities around 0.99 observed in many cases with

the single penalty method (e.g. for compliance in Table 4.2) have disappeared. Even

so, many of the constraint violation probabilities are still around or above 0.5. Espe-

cially the number of violations of the existence constraint for the 3335 configuration

are cause for concern, since this suggests that this will remain a problem with larger

sized designs, which often have to be dealt with in real world applications.

Config. No overlap Ground con-
nected

Existence Cuboid shape Connected
cuboid

2221 N/A 0.361342915 0.058746357 0.453979888 N/A
2223 0.330288406 0.321899619 0.153398193 0.474461674 N/A
2225 0.475043604 0.345127277 0.305617513 0.443144107 N/A
3331 N/A 0.512244896 0.019280040 0.592070113 0.107721204
3333 0.114589803 0.476313711 0.131886344 0.564315490 0.100258658
3335 0.159904807 0.407218686 0.833920127 0.474255397 0.075510223

Table 4.4: Mean constraint violation probability over five runs for minimal compliance
optimisation with a graded penalty value for various problem configurations.

Config. No overlap Ground con-
nected

Existence Cuboid shape Connected
cuboid

2221 N/A 0.294695023 0.065057210 0.449316221 N/A
2223 0.352604824 0.150746218 0.153169050 0.475316636 N/A
2225 0.527390468 0.389167427 0.285392221 0.455517944 N/A
3331 N/A 0.482476598 0.048915412 0.523626333 0.121148832
3333 0.130755993 0.477704137 0.144945542 0.573464583 0.106156523
3335 0.173648794 0.400757221 0.839106603 0.477907732 0.086331151

Table 4.5: Mean constraint violation probability over five runs for surface area optimisation
with a graded penalty value for various problem configurations.

Visualisations of example results for some building spatial designs are analysed

next. A first observation is that different configurations result in different spatial de-

signs. This substantiates the need for optimisation since results from one configuration

do not generalise for another configuration. There is a clear distinction between the

48

Chapter 4. Basic Constraint Handling

results from minimal compliance optimisation (Figure 4.6) and those of surface area

optimisation (Figure 4.7). Surface area optimisation leads to compact cuboid, or near

cuboid, shapes, as might be expected. Minimal compliance optimisation on the other

hand produces a variety of shapes. Little use is made of the extra space in the 333x

configurations. For the 3333 configurations this may be explained by the availabil-

ity of only three spaces. There is a limited number of valid building spatial designs

that can make use of the larger number of cells with only three spaces. Note that

while it is possible to produce spaces consisting of a large number of cells, reaching

such a situation becomes increasingly difficult with more cells while also satisfying the

constraints. For example the largest space in the 3335 configuration for surface area

optimisation (Figure 4.7d) consists of just two cells. This is likely to play a role in

the limited use of space for both the 3333 and 3335 configurations. These frequent

issues with constraints complicate exploring all feasible solutions in the search space.

In particular, transitions between different feasible parts of the search space are chal-

lenging when many moves end up in infeasible parts of the search space. Evidently,

this is something that needs to be addressed in future work.

(a) 2223 (b) 2225 (c) 3333 (d) 3335

Figure 4.6: Examples of spatial designs optimised for minimal compliance.

(a) 2223 (b) 2225 (c) 3333 (d) 3335

Figure 4.7: Examples of spatial designs optimised for minimal surface area.

49

4.7. Conclusions

4.7 Conclusions

4.7.1 Summary

With this chapter, the previously introduced supercube representation (Chapter 3)

is subjected to first practical tests and assessed in combination with an optimisa-

tion algorithm. To this end, a brief overview of optimisation in building design, and

the canonical Evolution Strategy (ES) have been presented. Furthermore, objective

functions related to the two disciplines (structural, and building physics performance)

considered in this thesis are also introduced.

Based on the canonical ES, and the knowledge about the number of infeasible (con-

straint violating) designs in the supercube representation (Chapter 3, Section 3.2.4),

an ES variant has been developed to accommodate this situation. This algorithm

considers variation operators (mutation, recombination) suitable to the mixed-integer

nature of the supercube representation. Furthermore, penalty functions are used to

deal with the constraints on the binary variables (Chapter 3, Section 3.2.2), while

repair functions have been developed to satisfy the constraints on the continuous

variables (Chapter 3, Section 3.2.3). With that, first steps have been taken towards

answering RQ2, which calls for effective constraint handling.

This constraint handling ES is subjected to experiments comparing a single penalty

method with a graded penalty method. In the single penalty method a fixed penalty

value is returned regardless of the number of constraints that are violated, while the

graded penalty method applies penalties that grow with the number of violated con-

straints. The experiments showed that, as expected, a graded penalty allows for a

more effective search than a single penalty value. However, despite being more effec-

tive, constraint violations remain frequent. Due to this, it seems unlikely that larger

supercube configurations than those considered here can be optimised effectively, even

when using the graded penalty method. With this in mind, different constraint han-

dling techniques have to be developed.

4.7.2 Future Work

As mentioned, although the improvements when using a graded penalty are promising,

constraint violations still occur frequently, and likely prohibit the optimisation of larger

building spatial designs. One direction in which the graded penalty approach could be

improved is by increasing the granularity in which it penalises infeasible designs. In

the version evaluated in this chapter a design that violates (for instance) the existence

50

Chapter 4. Basic Constraint Handling

constraint once, would get the same penalty value as a design that violates the same

constraint multiple times (for different spaces). By penalising designs based on a

more fine-grained measure of constraint violation it should be possible to indicate a

smoother path towards feasible space for the search process. This removes plateaus in

the penalised part of the search space, but it might also introduce local optima.

Despite the possibilities to improve on the graded penalty approach, any penalty

based approach has the inherent downside of spending time on infeasible solutions

(except for the special – and unlikely – case were only feasible solutions are found).

An alternative that does not suffer from this drawback is the use of specialised search

operators that only navigate the feasible space. Naturally, developing such operators

requires careful consideration of how to navigate the feasible search space. After

all, every feasible solution should still be reachable, even if there are disconnected

feasible regions. The development of specialised operators for the building spatial

design problem will be investigated in the next chapter.

Another issue that was identified is that many optimised solutions seem to use a

limited selection of the cells in the supercube. Although this may just be the end result

of the optimisation process, it could also indicate that the search has difficulty moving

from one part of the feasible space to another. Considering the number of constraint

violations, and the number of changes that are often needed in the binary part of

the search space to transition from one feasible solution to another, this is a serious

concern. Fortunately, it should be possible to address the reachability of all feasible

solutions with specialised operators, as will be addressed in Chapter 5. Additionally,

in future work it may be worth investigating how global optimisation strategies such

as niching [93] can improve the variety of the discovered solutions.

51

4.7. Conclusions

52

Chapter 5

Problem Specific Constraint

Handling and Multi-Objective

Optimisation

In the previous chapter first steps have been made towards constraint handling tech-

niques for building spatial design, as is required to answer RQ2. The main conclusion

was that although the proposed penalty based methods were reasonably effective for

the small scale designs considered in the experiments there, they are unlikely to be

sufficient for the larger scale designs that are frequently needed in the real world.

To resolve this issue, in this chapter problem specific operators are developed which

ensure that only feasible designs are found. Furthermore, the two considered objec-

tives (structural, and energy performance) have so far only been considered separately.

Since there is an interaction between these disciplines, and they both affect the spatial

design, in this chapter they will be considered in a multi-objective context.

The use of multi-objective optimisation in building design is not new, and has

been shown to be effective in [54] when two objectives from the same discipline are

considered. However, traditionally, energy efficiency and structural design objectives

are dealt with in different engineering disciplines. Multidisciplinary optimisation aims

to combine different disciplines in order to find building designs that perform well with

respect to criteria from each of them. While in the building design domain the use

of multidisciplinary optimisation is still limited, it has already been used with great

success in areas such as automotive and aerospace engineering [70].

53

5.0.

This chapter contributes towards the use of multidisciplinary optimisation in build-

ing spatial design. Here the previously introduced (Section 4.3) objectives from struc-

tural design (compliance) and energy efficiency (total surface area) are considered

again. By proposing a multi-objective optimisation approach, the problem of con-

flicting objectives is also taken into account. In this case a Pareto front of building

spatial designs is computed that can be used in preparation of decision making, to

understand design principles that lead to high performance in one discipline or the

other discipline, and to find valid compromise solutions.

To achieve these goals (evolutionary) multi-objective optimisation algorithms, such

as SMS-EMOA [39] and NSGA-II [32], are employed. Within the algorithm structure,

the problem specific constraint handling operators are developed. In this manner

these traditional algorithms are adapted to handle the heavily constrained, and mixed-

integer search space of the supercube representation. First it is shown that the use of

problem specific operators (here initialisation and mutation are considered) is indeed a

promising direction by developing initial versions of them. Next, based on the positive

results, these methods are developed further to navigate the search space without bias.

The unbiased initialisation operator that will be introduced should be well suited

for use in landscape analysis. By using landscape analysis based on the initialisation

operator, insight is gained into the objective landscape corresponding to the objective

functions. Various methods for landscape analysis have been proposed in the literature,

see e.g. [80, 76]. A basic approach for landscape analysis is to look at the distribution

of function values over random samples, for example by density of states analysis

[83]. Additionally, landscape analysis can be used to identify how variation operators

behave in the objective landscape [57]. In this chapter it is applied to evaluate the

improved mutation operator, and to investigate its behaviour for different step sizes

on multiple problem instances.

Naturally, obtaining the optimal performance from the developed algorithms is

desirable. To achieve this, parameter tuning can be used, which aims at finding

the optimal settings for an algorithm to solve a problem. For instance, in [68] the

tuning and configuration of an image processing pipeline in coronary vessel image

analysis is considered as a mixed-integer optimisation problem. Specific algorithmic

and statistical solutions for tuning also exist, e.g. SMAC [55], irace [71], and SPOT [9].

Another way to improve algorithm performance is by integrating problem knowledge

into operators, which can significantly improve performance as shown for chemical

process design in [84]. This is also done in this chapter, and the settings of these

operators are tuned to further improve performance.

54

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

Many real world optimisation problems, such as building spatial design, are charac-

terised by expensive evaluation functions. As a result, tuning optimisation algorithms

for this type of problem involves an additional challenge. The irace package [71],

based on statistical significance of configurations, and the Mixed-Integer Evolution

Strategy (MIES) [69], a self-adaptive evolutionary algorithm with specialised opera-

tors for mixed-integer problems, are compared here for the tuning of the parameters

of the standard SMS-EMOA [39] and a tailored version of SMS-EMOA that uses the

newly introduced problem specific operators. This comparison serves three purposes.

Firstly, it allows fair insight into how the tailored and standard versions of SMS-EMOA

differ. Secondly, the qualities of two tuning methods, with different philosophies be-

hind them, can be compared. Finally, while state-of-the-art tuning methods have been

extensively evaluated on academic case studies, the comparison here considers a real

world problem.

Given these preliminaries, this chapter contributes as follows. Initialisation and

mutation operators suitable to the problem specific constraints, and the mixed-integer

nature of the problem are developed. Next, first results on multi-objective optimisation

of building spatial designs are provided and discussed. Following that, the problem

specific mutation and initialisation operators are improved to avoid biases. Using the

unbiased operators, landscape analysis of the building spatial design problem is per-

formed to identify problem features and to investigate the behaviour of the mutation

operator. Finally, parameter tuning is conducted for the considered algorithms and

discussed for optimisation problems with time consuming evaluation functions. More-

over, two parameter tuning algorithms are compared and their different merits are

discussed.

This chapter continues with Section 5.1, where algorithm details and the problem

specific operators are introduced. Thereafter, in Section 5.2 experiments are described,

followed by a discussion of the numerical results. In Section 5.3 the improved unbiased

initialisation and mutation operators are described. Section 5.4 then investigates the

objective landscapes for structural design and energy efficiency, as well as how the

mutation operator behaves in this landscape. To compare the standard SMS-EMOA

algorithm and a tailored version with the unbiased operators described in this chapter,

Section 5.5 discusses parameter tuning and algorithm performance for both of these

approaches. Finally, Section 5.6 summarises the chapter and discusses directions for

future work.

55

5.1. Algorithms

5.1 Algorithms

This section first describes how standard multi-objective evolutionary algorithms are

adapted for building spatial design by using the same techniques as applied for single

objective optimisation in Chapter 4. After that, problem specific initialisation and

mutation operators are introduced to replace the standard versions in an algorithm

tailored to the building spatial design problem.

5.1.1 Standard Algorithms Applied to Building Spatial Design

NSGA-II [32] and SMS-EMOA [39] are both standard algorithms in evolutionary multi-

objective optimisation (EMO), and will be used as a baseline in the experiments

here. Both algorithms largely work according to the same principles and are described

together in the following, and their differences are indicated as needed.

Initialisation works by setting binary variables to one with probability 1/Ncells, or

to zero otherwise. Here Ncells is again defined as Nw × Nd × Nh. The continuous

variables are initialised to a uniformly random value in [lb, ub], where lb = 3 and

ub = 19.8 (both in metres). As a final step of the initialisation procedure, the volume

is repaired to be within 1 % of the desired volume V0 = 43 ×Ncells (in cubic metres).

Here volume repair works as previously described in Section 4.4.3.

To generate offspring an individual is selected uniformly at random from the parent

population. Then recombination is applied with probability RP = 0.5, in which case

a second parent is selected uniformly at random. Otherwise the first parent is copied

to the offspring individual. Binary variables are swapped between the parents with a

probability of 0.25, while simulated binary crossover [30] is applied to the continuous

variables with probability 0.5. Variables that exceed their bound are set to lb or ub,

depending on which one is exceeded. Finally, either of the children is selected with

probability 0.5.

Mutation is applied with a probability of MT = 1/Ndims, where Ndims = Ncells ×
Nspaces+Nw+Nd+Nh is once more the total number of variables. Binary variables are

mutated by bit flips, while polynomial mutation [32] is applied to continuous variables

above the lower bound. Continuous variables that are exactly at the lower boundary

are reinitialised (according to the previously described initialisation procedure). Fol-

lowing mutation, variables exceeding their bounds are set to their appropriate bound-

ary values again, and the volume of the produced offspring is repaired as described in

Section 4.4.3.

Both algorithms use a (µ + λ) selection strategy, where for NSGA-II (20 + 20)

56

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

is considered, and for SMS-EMOA (50 + 1). NSGA-II does so by applying non-

dominated/crowding distance sortingto the population, and then selecting the first

µ individuals for the next parent population. On the other hand, SMS-EMOA selects

the population of size µ that retains the largest hypervolume, using (1.1e9, 1.1e9) as

reference point during optimisation.

Equivalent to the process in the previous chapter, in case of constraint violations

a penalty value pen = 999 999 998 + CV is returned according to the graded penalty

method (Section 4.4.2). The objective functions are only evaluated when no constraints

are violated. As such, infeasible solutions do not influence the remaining evaluation

budget.

5.1.2 Tailored Algorithm for Building Spatial Design

The general mutation and recombination operators used in NSGA-II and SMS-EMOA

have difficulties navigating heavily constrained objective landscapes, such as consid-

ered for the building spatial design problem. To resolve this, a problem specific mu-

tation operator is proposed which only produces mutants that do not violate the

constraints. Since in preliminary experiments the algorithms have fairly similar per-

formance, only SMS-EMOA is considered with the problem specific mutation operator.

A C

B

(a) Initialisation.

A A C

B B

(b) Mutation.

Figure 5.1: Problem specific operators that prevent constraint violations.

Additionally, initialisation is adapted to ensure all initial solutions are feasible

as well. Initialisation of the continuous variables causes no problems and is kept as

described in Section 5.1.1. Binary variables are initialised by selecting a non-fully

occupied pillar from the supercube for every space uniformly at random. The first cell

from the bottom that does not belong to any previously initialised space is then set to

active (b`i,j,k = 1) for this space. This process is visualised in Figure 5.1a, where spaces

A,B, and C can be imagined as having been dropped – one after the other – into the

supercube from above. Since the initial population resulting from this process consists

solely of single-cell spaces, it is not very diverse. To resolve this, twenty mutations (as

57

5.2. Tailored Algorithm Evaluation

described next) are applied to each individual in the initial population.

Having defined the initialisation procedure, a variation operator is needed to guide

the search. To this end, a problem specific mutation operator is defined next. With a

probability of 0.25 a binary mutation is applied, and otherwise a continuous mutation

is applied. In case of a continuous mutation, polynomial mutation [32] is always applied

to a single continuous variable, selected uniformly at random from those variables that

are relevant to at least one active cell. In case of a binary mutation, a random space

is selected and contracted or expanded by a surface of cells in a random direction as

shown in Figure 5.1b (where the arrows indicate possible moves for space B). This is

achieved by selecting one of the following faces of the space to make either an outward

or an inward move: left, right, top, bottom, front, or back. All moves are applied to

all cells along the selected face of a space, such that the space remains cuboid when

adding and removing cells. These moves are of size one, meaning that the width, depth

or height (depending on the selected face) of a space grows or shrinks by a single cell.

For any move Constraint C3 (all spaces must have at least one cell assigned to them)

and the supercube borders must be respected. In other words, any move violating

these constraints cannot be chosen. From all possible mutation moves that do not

result in a constraint violation one is chosen uniformly at random. To avoid issues

with the no overlap constraint (C1), whenever an outward move adds a cell to a space

B that is already part of another space A the cell is set to inactive (b`i,j,k = 0) for

space A.

A new offspring individual is then created as follows. A parent is selected uni-

formly at random, and mutation is applied. No recombination is used, but this may

be considered in future work. Although recombination may be able to aid the search,

designing a problem specific recombination operator that does not violate any con-

straint is complicated. Moreover, at the same time as not violating constraints, it

should also result in sensible new designs. Penalty values are also no longer used since

all offspring is now guaranteed to be feasible. The remaining procedures (such as

selection based on hypervolume contribution) are the same as before in Section 5.1.1.

5.2 Tailored Algorithm Evaluation

5.2.1 Experiments

Having adapted NSGA-II and SMS-EMOA to operate on the building spatial design

problem, it is now possible to compare them empirically. They will also form a baseline

58

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

to compare with the tailored SMS-EMOA variant. For these experiments a similar

setup is used as in the previous chapter (Section 4.5). The 2221, 2223, 2225, 3331,

3333, and 3335 configurations are considered again. Here the first three digits again

indicate the supercube size in width, depth, and height, while the last digit indicates

the number of spaces. The most important change is that now the two objectives

(minimal compliance, and minimal surface area) are optimised at the same time in

a multi-objective setting. Besides this, here an evaluation budget of 2500 is used

for five runs of each configuration and algorithm pair. The resulting Pareto front

approximations of the five runs are then averaged and analysed visually with median

attainment curves [49].

Further settings, as previously mentioned in the algorithm descriptions, are sum-

marised in Table 5.1.

(µ+λ) NSGA-II (µ+λ) SMS-EMOA V0 lb ub RP MT

(20+20) (50+1) 43 ×Ncells 3.0 19.8 0.5 1/Ndims

Table 5.1: Parameter settings for experiments with standard and tailored algorithms.

5.2.2 Results

Figure 5.2 shows the average convergence rate of the various problem configurations

over five runs. Here, the hypervolume is computed over log(1 + compliance), with a

reference point (35000, 2500) (compliance, surface area). Moreover, extreme outliers

in either objective (points beyond the reference point), are left out of the analysis.

Most configurations and algorithms show a quick convergence to a relatively stable

hypervolume value. In Figure 5.2 it can be observed that the tailored SMS-EMOA

variant produces similar results to the other two approaches for problems with a single

space. However, when three spaces are considered the tailored method improves over

the other two by a decent margin, and for five spaces it is clearly better, both in

terms of convergence speed and with regard to the final solution. In addition, for the

most complex configuration (3335) in particular it is not clear whether NSGA-II and

SMS-EMOA have converged,whereas the tailored SMS-EMOA does converge.

Next, the median attainment curves [49] produced by the algorithms will be anal-

ysed, and are shown in Figure 5.3. The attainment curve serves as a measure of the

probability to attain (dominate) certain nondominated points by the approximation

set. Both NSGA-II and SMS-EMOA produce similar curves as depicted in Figure 5.3.

59

5.2. Tailored Algorithm Evaluation

 7.56e+07

 7.58e+07

 7.6e+07

 7.62e+07

 7.64e+07

 7.66e+07

 7.68e+07

 0 500 1000 1500 2000 2500

H
y
p

e
rv

o
lu

m
e

Evaluations

NSGA-II-2221
NSGA-II-2223
NSGA-II-2225

SMS-EMOA-2221
SMS-EMOA-2223
SMS-EMOA-2225

tailored-SMS-EMOA-2221
tailored-SMS-EMOA-2223
tailored-SMS-EMOA-2225

(a) 222x configurations.

 4.8e+07

 5e+07

 5.2e+07

 5.4e+07

 5.6e+07

 5.8e+07

 6e+07

 6.2e+07

 6.4e+07

 0 500 1000 1500 2000 2500

H
y
p

e
rv

o
lu

m
e

Evaluations

NSGA-II-3331
NSGA-II-3333
NSGA-II-3335

SMS-EMOA-3331
SMS-EMOA-3333
SMS-EMOA-3335

tailored-SMS-EMOA-3331
tailored-SMS-EMOA-3333
tailored-SMS-EMOA-3335

(b) 333x configurations.

Figure 5.2: Average hypervolume growth over five runs, for one, three, and five spaces.

This indicates the considered optimisation process works, and is able to discover a

Pareto front approximation. The same behaviour as seen for the hypervolume con-

vergence can be observed from the attainment curves. Namely, the differences in

performance become more pronounced with larger problem sizes. Clearly, problem

specific operators are able to produce a better Pareto front approximation.

 300

 310

 320

 330

 340

 350

 360

 370

 380

 390

 400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
u
rf

a
ce

 A
re

a
 (

m
2
)

Compliance (Nm)

NSGA-II-2221
NSGA-II-2223
NSGA-II-2225

SMS-EMOA-2221
SMS-EMOA-2223
SMS-EMOA-2225

tailored-SMS-EMOA-2221
tailored-SMS-EMOA-2223
tailored-SMS-EMOA-2225

(a) 222x configurations.

 650

 700

 750

 800

 850

 900

 950

 1000

 1050

 0 5000 10000 15000 20000 25000

S
u
rf

a
ce

 A
re

a
 (

m
2
)

Compliance (Nm)

NSGA-II-3331
NSGA-II-3333
NSGA-II-3335

SMS-EMOA-3331
SMS-EMOA-3333
SMS-EMOA-3335

tailored-SMS-EMOA-3331
tailored-SMS-EMOA-3333
tailored-SMS-EMOA-3335

(b) 333x configurations.

Figure 5.3: Median attainment curves from five runs for one, three, and five spaces.

The standard deviations of the hypervolume at the final generation are relatively

small for most problem configurations and do not change the numerical result. Only for

the 3335 configuration (Table 5.2) large deviations occur for the generic methods, but

even their highest hypervolume solutions do not outperform the smallest hypervolume

found by the tailored method.

Since the 3335 configuration is the largest, it is also the best indicator for perfor-

mance on even larger building spatial designs that may be considered in real world

applications. As such, a Wilcoxon signed-rank test1 [104] is conducted for this configu-

1A non-parametric test to compare the distributions of different samples

60

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

algorithm min max mean median std dev

NSGA-II 60665475 63379795 6.22089e+07 62247270 1.05263e+06
SMS-EMOA 59642594 63387974 6.20227e+07 62313768 1.25616e+06
tailored SMS-EMOA 63492022 63495486 6.34941e+07 63494483 1145.48

Table 5.2: Hypervolume statistics per algorithm for the 3335 problem instance.

ration to identify whether performance differences are statistically significant. Results

of this test are summarised in Table 5.3. First NSGA-II and SMS-EMOA are compared

to see whether one is preferable over the other for this application. This comparison

results in W = −1, indicating there is no significant difference. Next, the same test

is applied between NSGA-II, and the tailored SMS-EMOA. This results in W = 15,

indicating the tailored method is better than NSGA-II with a statistical significance

of 0.05. The exact same outcome is found when the same comparison is made between

the standard SMS-EMOA, and the tailored SMS-EMOA. Evidently, the problem spe-

cific constraint handling operators make a valuable contribution to the performance,

and are worth developing further.

run NSGA-II SMS-EMOA tailored sgn× rank NS sgn× rank NT sgn× rank ST

1 60665475 59642594 63492022 -5 5 5
2 61445894 62300678 63493947 4 4 4
3 62247270 62313768 63494483 2 3 3
4 63305880 62468595 63494488 -3 2 2
5 63379795 63387974 63495486 1 1 1

W -1 15 15

Table 5.3: Wilcoxon signed-rank test results for the hypervolume attained for the 3335
problem instance.

Figure 5.4 shows the best found spatial designs in terms of each objective, as well

as a compromise solution at the knee point of the median attainment curve. This

is accompanied by some additional information on these spatial designs in Table 5.4.

As can be expected, the optimal spatial design in terms of minimal surface area has

a cuboid shape. The knee point solution is largely similar, but has a slightly lower

structure, and as a result it is stretched in both width and depth to maintain the vol-

ume. Finally, the minimal compliance solution has an elongated structure. Moreover,

it has a lower structure, which can be explained since it results in less strain on the

structural elements, which in turn reduces the compliance.

61

5.3. Unbiased Operators

(a) Minimal compliance. (b) Knee point. (c) Minimal surface area.

Figure 5.4: Best spatial designs found with the tailored SMS-EMOA for the 3335 config-
uration.

Compliance
(N m)

Surface
area (m)

Soil surface
(m)

Height
(m)

Longest
edge (m)

Shortest
edge (m)

Minimal compliance 214.658 741.181 303.228 6.361 22.182 13.670
Knee point 451.351 690.077 252.545 6.845 17.658 14.302
Minimal surface area 9483.320 685.562 227.177 7.603 15.128 15.017

Table 5.4: Details about the best spatial designs found with the tailored SMS-EMOA for
the 3335 configuration.

Table 5.5 shows the CPU time used by SMS-EMOA with problem specific oper-

ators. The other methods performed similarly because the compliance computations

used by far the most CPU time. Each experiment used a single core of an i7-3770 CPU

@ 3.40GHz processor, and had 16GiB DIMM DDR3 Synchronous 1600 MHz memory

available.

problem configuration 2221 2223 2225 3331 3333 3335

CPU time (minutes) 42 342 888 42 620 1008

Table 5.5: Average runtime of SMS-EMOA with problem specific operators over five runs,
rounded to the closest whole minute.

5.3 Unbiased Operators

Based on the success of the problem specific operators introduced in the previous

section, they are developed further. First, bias free versions of the initialisation and

mutation operators are introduced. Then, a new version of the tailored SMS-EMOA

and its tunable parameters is summarised.

62

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

5.3.1 Initialisation

The initialisation approach presented in Section 5.1.1 contains some clear biases. Start-

ing from single cell spaces results in a much lower probability of any space being stacked

on top of another. While the application of a number of mutations results in a more

varied initial population, the starting state of each initialisation is similar. The out-

come of the mutations depends on this initial state, and as such does not lead to a

truly random initialisation.

Here, an improved initialisation operator is presented that aims to produce an

unbiased initial population. This provides a better distribution of the initial population

over the search space. In addition, an unbiased random initialisation strategy is useful

for a number of landscape analysis approaches.

This newly proposed initialisation method works from the principle that spaces of

any shape should have equal probability to be included, as long as there is a large

enough area to place them. As a starting point, for a supercube of a given size

with a given number of spaces, all possible shapes and all possible positions of those

shapes are considered. For a supercube of a size given by its width, depth and height

(Nw, Nd, Nh) there are exactly Nw ×Nd ×Nh possible shapes that do not violate any

of the constraints, this is depicted in Figure 5.5. The number of possible shapes is

limited by the number of spaces Nspaces that need to fit in the supercube. There-

fore, the largest shape should leave at least Nspaces − 1 cells empty, such that the

remaining spaces can use at least one cell each. It follows from these observations

that the maximum size of a shape for a supercube described by the four parameters

Nw, Nd, Nh, Nspaces is limited to Nw ×Nd ×Nh − (Nspaces − 1).

×
1

1

2

3

2 3

Figure 5.5: Possible feasible shapes for a 3 × 3 2D grid, this pattern extends to 3D and
therefore to the supercube representation.

A space is then placed by uniformly at random selecting a pair of a possible shape

s and a feasible position for that shape. The shape’s possible positions are limited by

63

5.3. Unbiased Operators

the number of cells belonging to the shape. A heightmap of size Nw×Nd is considered,

and a shape has a width sw, depth sd, and height sh. The heightmap Mi,j is initialised

as a matrix of zeros, where i ∈ {0, . . . , Nw − 1} and j ∈ {0, . . . , Nd − 1}. The possible

positions of a shape are then every pair i, j where i+ sw ≤ Nw and j + sd ≤ Nd hold.

A position is feasible if and only if Mi,j + sh ≤ Nh and ∀m,n : Mm,n = Mi,j , where

m ∈ {i, . . . , i + sw} and n ∈ {j, . . . , j + sd}. Once a shape and position combination

is selected the corresponding bits b`m+1,n+1,k+1 are activated, where m and n are the

same as before, k ∈ {Mm,n, . . . ,Mm,n + sh} and ` is the space under consideration.

For every space that is placed, the heightmap is updated by Mm,n + sh, again for the

same values of m and n. Finally, once every space is placed, the continuous parameters

are initialised uniformly at random within their bounds as in Section 5.1.2.

5.3.2 Mutation

Mutation in Section 5.1.2 used a probability to either apply a binary mutation or

a continuous mutation. In case of a binary mutation a random space was selected

and contracted or expanded in a random direction (Figure 5.1b). For this move the

existence constraint (C3: all spaces must consist of at least one cell) and the supercube

borders are respected. In other words, any move violating these constraints cannot be

chosen. For a continuous mutation, polynomial mutation [32] was always applied to

a single continuous variable, randomly selected from those variables that are relevant

to at least one active cell. In the following this operator is improved and extended.

Firstly, when continuous mutation is selected, polynomial mutation is applied with

some probability to each continuous variable. This has the following implications.

There is now a chance that nothing is mutated, but continuous mutations are also no

longer limited to a single variable. This means that both small and large changes in

the continuous space are possible.

The binary mutation introduced in Section 5.1.2 contains a bias, making some

moves more likely to occur than others. However, in the design of evolutionary algo-

rithms, biases in the mutation operator should be avoided [103]. In this case, the bias

is an artefact of the used procedure, where first a space is selected, and then a feasible

(resulting in no constraint violations) move for that specific space is selected. As a

result, when space A has one possible feasible move and space B has three possible

feasible moves, the probability to select one of the moves for space B is lower than

the probability of selecting the move for space A. This is resolved here by selecting a

64

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

combination of a space and a move instead, resulting in equal probabilities for every

move.

Finally, the binary mutation operator is extended to allow mutations consisting of

multiple steps. With multiple steps a mutation may result in larger changes to candi-

date solutions, which may also help to escape local optima. Additionally, multi-step

mutations may be able to traverse infeasible regions in case of multiple disconnected

feasible regions. In Section 5.1.2 inward moves from the bottom of a space were

disallowed because they always result in an infeasible (constraint violating) space by

introducing a vertical gap (Constraint C2) in the topological design. Here, such moves

are allowed, along with most other constraint violating moves (only Constraint C3 and

the supercube boundaries may never be violated). As a result, intermediate moves may

lead to infeasible states.

Allowing infeasible intermediate states has a few implications. Figure 5.6 shows

how it is possible to move from an initial feasible state to both feasible and infeasible

intermediate states. Moreover, the same figure shows how an infeasible intermediate

state could lead to both a feasible and an infeasible final state. Moves to infeasible final

states are disallowed because only feasible final states are considered for evaluation.

A A A A A B

A A A A A B

B B BAAA

A A A

B A A A A A A

A A B A B B

B B B

Initial Intermediate Final

Figure 5.6: An initial state can result in both feasible and infeasible intermediate states, in
turn an infeasible intermediate state may or may not result in a feasible final state. Infeasible
spaces are shaded in grey, in both cases space A is not cuboid and thus violates Constraint C4.

Next, Figure 5.7 shows how spaces with an infeasible shape are mutated. Like with

a feasible shape, only the outermost line of spaces in one direction is contracted or

extended. Note that moving up from the initial state in the figure would be infeasible

since the space would expand beyond the supercube boundary, it would not result in

a feasible space of six cells as might be the intuition.

Mutations are then applied as follows: (1) apply a move to a uniformly at random

65

5.4. Unbiased Operators

selected combination of a space and movement direction as long as all spaces keep at

least one cell (Constraint C3) and supercube boundaries are respected, (2) if this is the

final move, try space and direction combinations, in a uniformly at random selected

order, until a move is found that satisfies all constraints. If no feasible state is found

after exhausting all possible moves the offspring is returned without any mutation (all

previous moves are discarded).

A A A A A A A A

A A A A A A A A

A A

Initial Expand Left Contract Down

Figure 5.7: Expansions and contractions are applied exclusively to the outermost line of
cells, even for a space in an infeasible state. The initial state here is infeasible (Constraint C4)
and only shown for illustrative purposes. Infeasible spaces are shaded in grey.

5.3.3 Tailored SMS-EMOA

The improved operators are integrated into a tailored version of SMS-EMOA, out-

lined in Algorithm 3. A number of options are available that will be used to tune the

algorithm later in this chapter (Section 5.5). Firstly, the population size is as usual

controlled by µ. One of two initialisation techniques is selected with IT : (1) initiali-

sation as in Section 5.1.2; or (2) unbiased initialisation as proposed in Section 5.3.1.

Next, IM controls how many mutations are applied with initialisation technique (1)

to increase initial diversity. Parameter MT controls the type of mutation that is ap-

plied. It represents the probability to mutate the binary variables with the unbiased

mutation operator from Section 5.3.2, and the inverse probability to apply polynomial

mutation to the continuous variables. With ST a technique to control the step size

in the binary mutation operator is selected: (1) a fixed number of moves FS ; or (2)

pooling, where uniformly at random either a local move of one step or an explorative

move of three steps is chosen. In the future, more options, such as step size adap-

tation, may be explored. When a fixed step size is used FS controls the number of

steps, otherwise it has no effect on the algorithm. MC denotes the probability to

apply polynomial mutation (if chosen instead of binary mutation) for each continuous

variable. The tailored SMS-EMOA (using the improved problem specific operators) is

compared to the standard SMS-EMOA (described in Section 5.1.1) after tuning the

parameters of both versions in Section 5.5.

66

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

Algorithm 3 Outline of the tailored SMS-EMOA and tunable parameters

Require: IT , µ, IM , MT , ST , FS , MC
1: if IT = 1 then
2: Generate population X of µ parents as in Section 5.1.2
3: for i ∈ {1, . . . , IM } do
4: Mutate all individuals in X as in Section 5.1.2
5: end for
6: else . IT = 2
7: Generate population X of µ parents as in Section 5.3.1
8: end if
9: while Stop condition not met do

10: X ′ ← A uniform random individual from X
11: if U(0, 1) ≤ MT then
12: if ST = 1 then . (Fixed step size)
13: n steps← FS
14: else . ST = 2 (Pooling)
15: if U(0, 1) ≤ 0.5 then
16: n steps← 1 . Local move
17: else
18: n steps← 3 . Explorative move
19: end if
20: end if
21: Mutate binary variables in X ′ with n steps as in Section 5.3.2
22: else
23: Apply polynomial mutation to each continuous variable in X ′ with proba-

bility MC
24: end if
25: X ← Select µ individuals from X ∪X ′
26: end while

5.4 Landscape Analysis

As mentioned in the introduction to this chapter, it is possible to employ landscape

analysis both to learn about the objective landscape, and to evaluate variation oper-

ators (e.g. mutation, recombination). With both an unbiased initialisation operator,

and an unbiased mutation operator having been defined in the previous section, ev-

erything is now in place to do landscape analysis. First, Section 5.4.1 describes the

considered setup, and then Section 5.4.2 discusses the results.

67

5.4. Landscape Analysis

5.4.1 Setup

The landscape of the multi-objective problem is analysed by randomly sampling solu-

tions generated by the newly introduced unbiased initialisation operator (Section 5.3.1).

This provides insight in the distribution of solutions over the objective landscape.

In addition to random sampling, mutations are applied to investigate the landscape

around the randomly sampled points. Through these mutations, the appearance of

the local landscape can be investigated. Moreover, it gives insight into the behaviour

of the unbiased mutation operator introduced in Section 5.3.2.

As before, problem instances are defined by four numbers corresponding to the

supercube parameters Nw, Nd, Nh and Nspaces. Experiments are conducted for three

different instances: 3331, 3333 and 3335. For each instance fixed step sizes from 1

to 5 are considered. In the experiment a single parent individual is generated with

the unbiased initialisation operator, and for this parent a single offspring individual is

generated using the unbiased mutation operator. This process is repeated 1000 times

for each instance and step size combination, totalling 5000 executions per instance.

In these experiments only binary mutations are considered. The rationale behind

this is that each possible distribution of spaces in the supercube corresponds to a

different – possibly overlapping – subspace in the objective landscape. When only

the continuous variables are changed the parent and offspring would be in the same

subspace. Since the number of possible space distributions in the supercube is large,

binary mutations will lead to better coverage of the objective landscape. Future work

may explore the subspaces more extensively, and for instance investigate the degree of

their overlap.

Continuous variables are initialised in]3, 19.8] and a volume V0 = 43 × Ncells is

maintained where Ncells = Nw × Nd × Nh. Recall that every individual is scaled to

this volume whenever it deviates (e.g. after mutation).

5.4.2 Results

In Figure 5.8 all parent individuals are plotted for the different problem instances

(5000 each). For the 3331 instance (Figure 5.8a) a clear Pareto front approximation

is visible, which is very similar to the one found in Section 5.2.2. Additionally, many

other parts of the landscape also show smooth curves. This suggests that these areas

are well covered by random sampling. The largest concentration of points is seen

reasonably close to the Pareto front. This makes it probable that random sampling

results in a decent solution for this instance.

68

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
u
rf

a
ce

 a
re

a
 (

m
2
)

Compliance (Nm)

(a) 3331.

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
u
rf

a
ce

 a
re

a
 (

m
2
)

Compliance (Nm)

(b) 3333.

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
u
rf

a
ce

 a
re

a
 (

m
2
)

Compliance (Nm)

(c) 3335.

Figure 5.8: Landscapes per problem instance, each with 5000 randomly initialised samples,
limited to points with compliance below 100 000 N m.

Both the 3333 and 3335 problem instances (Figures 5.8b and 5.8c) show a different

distribution over the objective landscape, indicating that these are, as expected, more

complicated. On the other hand, both of these also show a large concentration of

points in an area of decent solutions. It appears that finding fairly good solutions is

feasible with random sampling, but finding exact optima is still challenging.

Next, the absolute change in the compliance objective values is shown for each

instance and step size combination in Table 5.6. First of all, it may be observed that

the variance in the change to objective values is large for all considered cases. For

instances 3331 and 3333 the change in compliance from small to large step sizes shows

a very slight trend towards greater change with larger step sizes. For the 3335 instance

the absolute change for different step sizes shows a more parabolic behaviour, where

both small and large step sizes have less impact on the compliance than medium step

sizes. This is likely caused by larger step sizes reaching infeasible intermediate states

in the mutation more frequently, and then being unable to find a feasible final move

and reverting back to the original.

69

5.5. Landscape Analysis

steps min max mean median std dev zeros

instance 3331

1 3.10 333667 9359.36 2833.29 24848.95 0
2 0.00 401687 9228.16 2048.79 30041.31 209
3 0.00 3621254 16002.67 3758.13 118798.72 10
4 0.00 36910000 50354.11 3638.98 1166743.33 79
5 0.00 403216 11749.73 3516.93 32740.83 18

instance 3333

1 0.01 3.20e+16 3.22e+13 2672.43 1.01e+15 0
2 0.00 1.29e+15 1.31e+12 2283.77 4.07e+13 44
3 0.00 9.63e+13 1.61e+11 4527.37 3.58e+12 8
4 0.00 7.89e+18 8.13e+15 4319.85 2.49e+17 36
5 0.00 4.28e+18 5.00e+15 4823.08 1.37e+17 35

instance 3335

1 1.02 3.07e+17 4.75e+14 1235.32 1.11e+16 0
2 0.00 5.45e+33 5.45e+30 1331.23 1.72e+32 19
3 0.00 8.68e+22 8.68e+19 1999.31 2.74e+21 12
4 0.00 7.78e+12 1.74e+10 1709.64 3.26e+11 16
5 0.00 3.96e+17 3.96e+14 1153.29 1.25e+16 28

Table 5.6: Statistics for absolute change in compliance per instance.

Absolute change to the surface area in Table 5.7 shows a somewhat clearer trend

across the board. For instance, the trend of larger changes for larger step sizes seems

to be more pronounced when, for instance, looking at the mean and median.

Figure 5.9 visualises how objective values are distributed in both objectives for the

3333 instance. The other instances produced largely similar visuals. Although the

differences in absolute change do not appear to be very large between the various step

sizes, there does appear to be a trend towards larger changes for larger step sizes.

For both objectives zero changes also occur (see the rightmost column in Tables 5.6

and 5.7). There are multiple explanations for this. Firstly, when multiple steps are

taken a second move may be the inverse of the first and as such return to the original

solution. A second explanation is found in the design of the mutation operator, where

the algorithm reverts to the original individual if no feasible final moves are possible.

Finally, there are moves where only the interior of the building design changes, in

other words, where only walls are moved. In those cases the compliance changes, but

the surface area does not.

70

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

steps min max mean median std dev zeros

instance 3331

1 0.22 632.13 77.51 51.28 82.98 0
2 0.00 534.44 74.70 36.49 96.36 209
3 0.00 657.30 95.10 61.32 99.20 10
4 0.00 667.93 100.61 64.83 115.66 79
5 0.00 662.83 104.26 67.63 107.07 18

instance 3333

1 0.00 450.32 64.02 40.59 70.70 20
2 0.00 641.03 70.54 42.61 84.05 50
3 0.00 478.77 84.81 57.22 86.48 16
4 0.00 540.57 93.02 62.35 96.33 38
5 0.00 642.32 96.46 63.63 104.26 36

instance 3335

1 0.00 482.75 50.78 28.10 67.51 15
2 0.00 573.65 57.96 28.76 77.71 27
3 0.00 532.80 68.83 40.19 84.21 17
4 0.00 520.17 71.95 40.28 92.19 15
5 0.00 470.09 63.18 27.68 83.76 28

Table 5.7: Statistics for absolute change in surface area per instance.

5.5 Optimisation and Parameter Tuning

The landscape analysis in the previous section showed that the unbiased initialisation

operator is able to generate a diverse set of solutions, and the unbiased mutation oper-

ator produces larger changes with larger step sizes. Having confirmed these desirable

properties of the operators, they will now be evaluated in an optimisation setting.

This section first briefly reviews the experimental setup from Section 5.2.1, which will

be used here as well. Next, the considered setup for algorithm tuning is introduced.

Finally, the results of these experiments are discussed.

5.5.1 Optimisation Setup

SMS-EMOA as used here is the standard SMS-EMOA from [39], with the only changes

being the volume rescaling and the evaluation as described in the following paragraphs

(see also Section 5.1.1). A tailored version of SMS-EMOA with problem specific opera-

tors for building spatial design is used, this will be referred to as tailored SMS-EMOA.

Changes are as follows: (1) problem specific initialisation is used, where tuning will

select between the biased version from Section 5.1.2, and the unbiased one from Sec-

71

5.5. Optimisation and Parameter Tuning

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

1 2 3 4 5

A
b
so

lu
te

 c
h
a
n
g
e
 (

N
m

)

Step size

(a) Compliance.

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5

A
b
so

lu
te

 c
h
a
n
g
e
 (

m
2
)

Step size

(b) Surface area.

Figure 5.9: Absolute change to the objective values with 1000 samples for a single mutation
of 1 through 5 steps for the 3333 problem instance.

tion 5.3.1, and (2) offspring is generated with the unbiased problem specific mutation

operator as described in Section 5.3.2. All other settings, except for the evaluation

budget and tunable parameters detailed later, are exactly as in Section 5.2.1. Note

that no recombination operator is used with the tailored SMS-EMOA. The reason

behind this is that the standard recombination operators result in many constraint

violations because of the many infeasible solutions in the supercube as reported in

Section 3.2.4. Due to the complexity of developing such an operator, and the promis-

ing results when only using mutation as shown in Section 5.2.2, development of a

problem specific recombination operator is deferred to future work.

For both the standard and tailored versions of SMS-EMOA the considered opti-

misation problem is as follows. Objective functions are (1) the compliance in N m

(newton metre), and (2) the surface area in m2 (square metre), both to be minimised.

Binary and continuous variables are considered as described in Section 3.2. The bi-

nary variables are subject to four topological constraints as described mathematically

in Section 3.2.2. To comply to the volume constraint (Section 3.2.3), the continuous

variables are rescaled for any new individuals that are produced. Both algorithms

consider the reference point (1.1e9, 1.1e9).

Function evaluations for both of these algorithms proceed as follows. First con-

straints are checked. For constraint violations a penalty of 999 999 998+CV is returned

as the objective value for both objectives, for a number of constraint violations CV .

As in previous experiments, the fourth constraint is considered in two parts, result-

72

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

ing in CV ∈ {1, . . . , 5}. If the objective value is 999 999 999 or higher (i.e. at least

one constraint is violated) no evaluation is counted, but the individual may still be

selected, provided it passes the selection criteria. In other words, any individual vi-

olating a constraint or showing extremely poor performance is considered infeasible.

Note that although constraint violations do not occur with the tailored SMS-EMOA,

there may be individuals with extremely poor performance. In all other cases the

remaining evaluation budget is decreased by one.

5.5.2 Parameter Tuning Setup

The author gratefully acknowledges the helpful advice of Leslie Pérez Cáceres

and Manuel López-Ibáñez on setting up and using the irace package.

Acknowledgement

To tune the parameters of the standard and tailored SMS-EMOA for building

spatial design, two approaches are compared: The irace package [71] and the Mixed-

Integer Evolution Strategy (MIES) [69]. The objective is the maximisation of the

hypervolume indicator (HVI, sometimes also referred to as just hypervolume), with

reference point (100000, 1500). Note that here the hypervolume is taken over all eval-

uated individuals, not just over the individuals in the final population.

Objective function values are normalised to a [0, 1] range for both objectives. For

the compliance the used range is [0, . . . , 100000] and for the surface area a range of

[0, . . . , 1500] is considered. Data points exceeding either of these ranges are excluded

from the analysis. These ranges are based on investigation of the result data from

Section 5.2.2. This ensures that only extreme outliers are discarded and the data can

still be analysed visually.

For the standard SMS-EMOA three tunable parameters are considered as shown

in Table 5.8. The range for the mutation probability is restricted for the standard

SMS-EMOA because large mutations are likely to result in infeasible individuals. Too

small population sizes are also avoided since an initial population without feasible

individuals has great difficulty navigating to a set of feasible individuals even with

the graded penalties for constraint violations. As a result, the algorithm would use

extreme amounts of time without being able to evaluate feasible individuals.

For the tailored SMS-EMOA the parameters from Algorithm 3 (Section 5.3.3) are

tuned within ranges as shown in Table 5.9 (parameters without type are categorical).

From the results of the landscape analysis in Section 5.4.2 it can be concluded

73

5.5. Optimisation and Parameter Tuning

parameter symbol range type

Population size µ {10, . . . , 100} Z
Recombination probability RP [0.0, 1.0] R
Mutation probability MP [0.005, 0.100] R

Table 5.8: Configurable parameters for the standard SMS-EMOA.

parameter symbol range type

Population size µ {10, . . . , 100} Z
Mutation type probability MT [0.0, 1.0] R
Step size technique ST {1, 2}
Fixed number of steps FS {1, . . . , 5} Z
Continuous mutation probability MC [0.0, 1.0] R
Initialisation technique IT {1, 2}
Initialisation mutations IM {1, . . . , 100} Z

Table 5.9: Configurable parameters for the tailored SMS-EMOA.

that the 3331 (supercube of size 3 × 3 × 3 with a single space) problem instance is

rather simple. A more challenging tuning problem can be found in the 3333 instance.

Moreover, the evaluation time for this problem is less prohibitive than for the 3335

instance, as reported in Section 5.2.2. As such, the 3333 instance is used in the exper-

iments. The tuning budget consists of two parts, namely (1) the number of algorithm

executions, and (2) the number of function evaluations per execution. Firstly, the

number of algorithm executions is set to the minimum requirement enforced by the

irace package, which was 180 algorithm executions for the given settings and tunable

parameters. Secondly, the results in Section 5.2.2 show convergence to a near stable

state in about 300 function evaluations. With this in mind an evaluation budget of

300 is considered for tuning.

Both irace [71] (version 2.1.1662) and MIES [69] are used primarily with default

settings as described in their respective papers, any deviations from those settings will

be explicitly stated. As a result performance of both approaches is likely not optimal,

but the configuration of parameter tuners could be the subject of a whole other study,

and is considered out of scope here.

MIES is used with multiple step size mode for both real valued and integer pa-

rameters, and single step size mode for categorical parameters. In [69] it is suggested

to keep step size bounds for categorical variables in [1
nd
, 12] when using single step

size mode for a number of categorical variables nd. However, for nd = 2 this means

the step size is constant at 1
2 . Since two categorical variables are considered for this

74

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

experiment, and a fixed step size is unable to adapt anything, categorical step sizes

are instead bounded in [13 ,
1
2].

In [42] a (µ, κ, λ) strategy is shown to converge faster than a (µ, λ) strategy. Here κ

is the maximum number of generations that an individual can stay in the population.

Due to the small number of available evaluations, faster convergence is desirable here.

Instead of the (3, 5, 10) strategy from [42], here a (3, 3, 10) strategy is used. The

intuition is that due to the small number of generations, keeping individuals in the

population for a too large fraction of the generations would otherwise not differ from

a plus-strategy (see Section 2.3 for an explanation of a plus-strategy).

5.5.3 Tuned Configurations

Table 5.10 shows the configurations for standard SMS-EMOA. Here an untuned config-

uration (US) is included for comparison purposes. The parameters of this configuration

are almost the same as those used in Section 5.2.1. Only MP is now 0.0111, instead

of exactly 1
Ndims

.

ID µ RP MP mean HVI

untuned configuration (US)

US 50 0.5000 0.0111 0.5348

irace configurations (IxS)

I1S 31 0.8984 0.0385 0.5380
I2S 41 0.9650 0.0520 0.5385
I3S 73 0.8677 0.0427 0.5381

Mean 48 0.8942 0.0514 N/A
Std 19 0.1133 0.0105 N/A

MIES configurations (MxS)

M1S 15 0.9679 0.0323 0.5386
M2S 40 0.5567 0.0891 0.5365
M3S 5 0.9709 0.0351 0.5364
Mean 35 0.8088 0.0545 N/A
Std 35 0.1834 0.0262 N/A

Table 5.10: Parameter configurations for the standard SMS-EMOA: untuned and from
three repetitions of irace and MIES.

Both irace and MIES used around two weeks of computation time on a single CPU

core per repetition to tune the parameters. The number of output configurations for

irace can vary, but in this case there were nine in total after three repetitions. Since

irace clearly indicates which configuration it considers to be the best, this configuration

75

5.5. Optimisation and Parameter Tuning

is shown in Table 5.10 for each repetition. For MIES there are always three output

individuals, because the population size µ = 3. As a result, MIES also has a total of

nine output configurations after three repetitions. For each repetition of MIES, the

configuration with the largest hypervolume coverage is considered to be the best and

shown in Table 5.10. The table also shows the mean and standard deviation for each

parameter over all nine output configurations for both irace and MIES.

Compared to the untuned configuration (US), both tuning approaches found higher

recombination (RP) and mutation (MP) probabilities for the standard SMS-EMOA.

A possible explanation is that by producing larger and more frequent variations, the

algorithm is able to explore more effectively, and in turn finds better solutions. While

this is also likely to lead to more constraint violations, such solutions are not counted

for the evaluation budget here, and thus in fact result in more solutions being con-

sidered. In terms of population size not much can be concluded, except that many

different population sizes seem to allow for similar performance. Part of the reason

may be that all considered solutions are counted towards the final Pareto front approx-

imation, and therefore the population size has less influence. However, the population

size also plays a role in the diversity of possible offspring individuals that can be

reached, which is not explained by this argument. Combined with the larger mutation

and recombination rates however, it may simply not play a very large role in reaching

diverse solutions.

Parameter configurations for the tailored SMS-EMOA are reported in Table 5.11.

Here too, the settings for the untuned configuration (UT) are mostly as in Section 5.2.1.

Only MC is adjusted because continuous mutation changed in the unbiased mutation

operator (Section 5.3.2). For this application, irace found eleven solutions in total, of

which again only the best reported per repetition is shown in the table. For MIES

once more nine configurations were found, and for each repetition the one with the

largest hypervolume coverage is shown. As before, the mean and standard deviation

for each parameter are taken over the full set of output configurations, rather than

only the best per repetition.

With the tailored version using a smaller population size (µ), more frequent use of

the binary mutation operator (MT) and an increased probability to apply continuous

mutations (MC) seems to improve performance over the untuned configuration. While

for the standard SMS-EMOA increased variation probabilities could be explained by

being advantageous in the sense that constraint violations are not counted as evalua-

tion anyway, this cannot be the reason here. For the tailored SMS-EMOA it appears

that the increase in exploration caused by these settings is more advantageous than

76

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

ID µ MT ST FS MC IT IM mean HVI

Untuned configuration (UT)

UT 50 0.2500 1 1 0.3333 1 20 0.5384

irace configurations (IxT)

I1T 32 0.6890 1 4 0.6686 1 3 0.5390
I2T 21 0.2794 2 N/A 0.6894 2 N/A 0.5388
I3T 26 0.3960 2 N/A 0.3231 1 64 0.5393

Mean 28 0.5618 1.5 3.8 0.4752 1.4 34 N/A
Std 16 0.1463 0.5 0.4 0.2338 0.5 30 N/A

MIES configurations (MxT)

M1T 12 0.6212 1 2 0.7970 1 69 0.5374
M2T 6 0.4993 2 N/A 0.4381 1 60 0.5374
M3T 5 0.1176 2 N/A 0.5118 1 43 0.5365
Mean 14 0.4413 1.3 2.5 0.6780 1.4 53 N/A
Std 9 0.1791 0.5 0.5 0.1921 0.5 11 N/A

Table 5.11: Parameter configurations for the tailored SMS-EMOA: untuned and from three
repetitions of irace and MIES.

staying close to known solutions. It is also notable that there is a slight preference

for the biased initialisation technique (IT = 1). A possible explanation is that the

use of a large number of initialisation mutations (IM) mitigates the bias. What may

also play a role is that although the unbiased initialisation technique (IT = 2) is more

random, such solutions are not necessarily better.

In order to compare the optimised configurations and their corresponding al-

gorithms each of them is evaluated on the considered optimisation problem (Sec-

tion 5.5.1). Each configuration is compared at two stages in the optimisation process.

First with a budget of 300 evaluations using fifteen repetitions, and then with a budget

of 1000 evaluations using thirteen repetitions. In both cases all other settings are the

same as before. The mean hypervolume (HVI) values after 1000 evaluations are also

included in Tables 5.10 and 5.11.

Median attainment curves [49] of the resulting data are used to compare the dif-

ferent configurations, as well as the two tuning methods. In addition to those config-

urations, the Pareto front approximation found by taking 5000 random samples (RS)

for the landscape analysis from Section 5.4.2 is also included. This makes it possible

to compare random sampling with both SMS-EMOA variants. Figure 5.10 shows the

situation after 300 evaluations.

77

5.5. Optimisation and Parameter Tuning

 650

 700

 750

 800

 850

 900

 950

 1000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
u
rf

a
ce

 A
re

a
 (

m
2
)

Compliance (Nm)

I1S
I2S
I3S
I1T
I2T
I3T

M1S
M2S
M3S
M1T
M2T
M3T

US
UT
RS

Figure 5.10: Median attainment curves after 300 evaluations, over fifteen repetitions for
configurations tuned by irace and MIES for standard and tailored versions of SMS-EMOA,
untuned configurations, and a Pareto front approximation from 5000 random samples.

A first observation is that even with only 300 evaluations, a number of configura-

tions are already competitive with the results of 5000 random samples (RS). Evidently,

optimisation is effective here. Furthermore, the untuned configuration for the stan-

dard SMS-EMOA (US) is clearly not competitive with anything else, while the untuned

tailored SMS-EMOA (UT) performs better, it is among the worst of the other con-

figurations. This shows that tuning has been worthwhile in improving performance.

Notably, all configurations tuned for the standard SMS-EMOA (xxS) outperform the

untuned configuration in every part of the Pareto front approximation (PFA). For

the tailored SMS-EMOA (xxT), this is true for almost all parts of the PFA. In terms

of performance differences between tuned configurations there does not seem to be a

clear winner as far as optimal performance goes. However, there does seem to be less

variance between configurations found for the tailored SMS-EMOA, indicating that it

may be a more robust algorithm. With regard to the tuning approaches, it appears

that MIES is prone to finding high quality solutions in one objective, but then slightly

less so in the other objective. On the other hand irace seems to usually find a more

balanced PFA, but as a result does not find the highest quality solutions for every part

of the Pareto front.

Next, Figure 5.11 shows the situation for the same configurations after 1000 eval-

uations. It is obvious that everything progressed to find better solutions, and the use

78

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

of more evaluations was a worthwhile investment. For the surface area part of the

PFA, almost all configurations reach a very similar approximation. More variation is

seen in the knee point region and the compliance objective, where sometimes MIES

tuned tailored SMS-EMOA configurations are better, and other times the irace tuned

 650

 700

 750

 800

 850

 900

 950

 1000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
u
rf

a
ce

 A
re

a
 (

m
2
)

Compliance (Nm)

I1S
I2S
I3S
I1T
I2T
I3T

M1S
M2S
M3S
M1T
M2T
M3T

US
UT
RS

Figure 5.11: Median attainment curves after 1000 evaluations, over thirteen repetitions for
configurations tuned by irace and MIES for standard and tailored versions of SMS-EMOA,
untuned configurations, and a Pareto front approximation from 5000 random samples.

versions. Except for the occasional outlier, the standard SMS-EMOA configurations

are not competitive in these areas of the PFA. Besides the untuned standard SMS-

EMOA, all configurations now outperform, or are competitive with the 5000 random

samples.

In summary it is evident that even with a relatively limited tuning budget both

tuning approaches (irace and MIES) are able to improve over untuned configurations,

but there is no clear preference for one or the other. Although the standard SMS-

EMOA is not much worse in its final results, it appears to be less robust (even with

tuned configurations) in its performance than the tailored version. Moreover, based

on the results in Figure 5.11 it also appears to be the case that the standard SMS-

EMOA is slower to converge to the true Pareto front, and might even get stuck before

reaching it. Even so, these are promising results since based on Section 5.2.2 it can

be expected that differences between the standard and tailored methods will only be

larger for more difficult and realistic problem instances. Clearly, the development of

the tailored SMS-EMOA has been beneficial.

79

5.6. Conclusion

5.6 Conclusion

5.6.1 Summary

Due to the limited success of penalty methods in navigating the constrained landscape

of the building spatial design problem, this chapter continued the investigation of how

to navigate these landscapes effectively (RQ2). To this end, problem specific operators

have been developed. Specifically, initialisation and mutation operators. In addition,

with a basic understanding of the objectives (thermal and structural performance)

having been established, this chapter addressed them in a multi-objective fashion.

Development of the problem specific operators led to basic initialisation and mu-

tation techniques that can only reach feasible solutions (non constraint violating). In

order to assess the performance of an algorithm using these operators a comparison

has been made to an algorithm using the penalty techniques previously developed in

Chapter 4. The results showed that while both approaches work for the most basic

problem instances, the penalty based algorithms quickly fall behind when larger prob-

lems are considered. Clearly, the problem specific operators are beneficial in navigating

the search space.

Although these basic problem specific operators already showed promise, they con-

tained clear biases. Moreover, while it is not clear whether any disconnected feasible

regions exist, the basic mutation operator was unable to reach such regions due to

fixed size moves. To resolve this, as well as the bias, an unbiased problem specific

mutation operator has been developed. Likewise, an unbiased initialisation operator

has also been introduced.

As a first test for these new unbiased operators, they have been subjected to

landscape analysis. The initialisation operator showed differences in search space

complexity between a very basic problem instance, and two more complex variants.

In addition, the mutation operator showed a correlation between its step size and the

degree of change to the produced solutions. This is a desirable property since it means

that this parameter can control the balance between exploration and exploitation of

this operator.

Following the landscape analysis, parameter tuning has been applied in order to

assess whether the unbiased operators are indeed preferable over the basic ones. In

addition, this served to compare the parameter tuning package irace [71] to the mixed-

integer evolution strategy (MIES) [69]. The results showed that the unbiased mutation

operator indeed reaches better performance than the basic one. For the initialisation

operators there was no great preference for either, but since the unbiased operator

80

Chapter 5. Problem Specific Constraint Handling and Multi-Objective
Optimisation

initialises a diverse population with less computational effort it is recommended over

the basic version. In terms of tuning no clear advantage has been shown for either the

irace package or MIES. Evidently, although less commonly used, MIES is an adequate

tool to tune the parameters of an algorithm.

5.6.2 Future Work

The results with the problem specific operators showed that a mutation only evolu-

tionary algorithm is able to navigate the constrained landscape. However, in order to

scale up to larger problem sizes (buildings with more spaces) further research in this

direction is needed. One aspect that could help the search process is the inclusion of

a recombination operator. What makes this a challenging research direction is that it

is not obvious how to recombine the discrete part of the supercube representation in

such a way that designs remain both feasible, and result in a reasonable combination

of two parent designs.

An aspect of the problem specific mutation operator that could be improved is the

inclusion of step size adaptation. This is a standard component of Evolution Strategies

[81, 88], that allows the mutation strength to be adapted during the execution of the

algorithm. Through this process, the algorithm can start with a more explorative

approach, and become more exploitative as it converges. The main challenge here

is figuring out what an effective adaption mechanism is for the newly introduced

operator.

Landscape analysis showed how the considered problem quickly becomes more

difficult when problem instances are considered beyond the most basic versions. What

is not yet clear is how the interplay between the continuous and discrete components

of the supercube representation influences the complexity. To elucidate this, it should

be investigated to which degree different discrete subspaces overlap in objective space,

as a result from continuous variations within these distinct discrete subspaces.

Since the considered problem of building spatial design requires costly evaluations,

algorithms that require fewer evaluations would be valuable. One way to reduce the

number of evaluations that are needed is the use of so-called surrogate models (also

called metamodels). Such models aim to provide a cheaper alternative for the actual

objective function, at the cost of accuracy. How to integrate this into the building

spatial design problem, and the used mixed-integer representation is an open question.

Like in the optimisation process, surrogate models can also be applied in parameter

tuning. As seen in this chapter, tuning algorithms for relatively small building spa-

81

5.6. Conclusion

tial designs is already expensive. Future work can investigate how parameter tuning

techniques with surrogate models (e.g. SPOT [9] and SMAC [55]) can be used to cope

with tuning algorithms that optimise larger building spatial designs.

82

Chapter 6

Local Search with Set

Gradients

In the previous chapter problem specific constraint handling operators were introduced

to efficiently navigate the search space, and as such RQ2 was answered. Furthermore,

parameter tuning was employed to maximise the performance of the algorithm. How-

ever, finding exact optima remains a challenge. To this end this chapter follows up

on RQ3, and investigates whether local search can improve the solutions found during

the global search performed by evolutionary optimisation.

The ultimate goal in optimisation is finding the global optimum. Convergence to

the global optimum is quick for convex and continuous optimisation problems when

exact methods like gradient search are used. In complex functions, however, such ex-

act methods may get stuck in local optima. Exploring multiple local optima requires

different methods, such as evolutionary algorithms for example. However, heuristic

methods like evolutionary algorithms may be slower to lock in on an exact (local) op-

timum. As such, a combination of these methods could provide advantages over either

of the individual methods. Hybrids of such heuristic and exact methods are called

memetic algorithms [77]. Here, a combination of evolutionary search and gradient

search is proposed.

Gradient search, like other exact optimisation methods, has traditionally been used

for the single-objective case. In fact, until recently gradients were only defined for sin-

gle points. In the generalisation of gradient methods for multi-objective optimisation

the challenge arises that typically a set of points is considered together, the so-called

83

6.0.

Pareto front. One way to measure the quality of a Pareto front approximation (PFA)

is the hypervolume indicator (HVI). In [40] the HVI gradient is described, which allows

a set of points to be moved towards the Pareto front, and to be distributed well across

the Pareto front. The HVI gradient has been tested on benchmark functions [41], and

improvements to its computation [40], as well as to the navigation of dominated points

[97, 98] have been proposed, but it was never tested on real world problems.

Other gradient approaches for multi-objective optimisation exist as well. The key

difference is the use of set gradients (in case of the HVI gradient), as opposed to single

point gradients [46, 85], and gradients that are used for the computation of bounds on

subspaces [34]. Other ideas to use gradients in memetic search have been proposed in

the literature, such as continuation methods that start from a pre-computed Pareto

optimal point and locally extend Pareto fronts by steps along tangent planes [74, 86].

Moreover, directed search has been proposed, which steers points in a desired direction,

either across or towards the Pareto front. Such methods also use gradients in order

to construct these directions in the decision space [87]. Further, recent developments

on derivative free exact local methods are summarised in [29]. The HVI gradient is

favoured here since it updates the Pareto front approximation as a whole, and local

optimality has been verified [41].

In this work the HVI gradient is applied to the real world problem of building

spatial design for the first time. Furthermore, this chapter employs simulations to

measure energy efficiency, rather than the previous substitute of outside surface area.

The combination of an evolutionary multi-objective optimisation algorithm (EMOA)

and the HVI gradient results in a memetic multi-objective optimisation (MEMO)

algorithm. Specifically, here the S-metric (also known as HVI) selection EMOA (SMS-

EMOA [39]), with specialised operators (Section 5.3) for the building spatial design

optimisation problem is used. For the HVI gradient component the hypervolume

indicator gradient ascent multi-objective optimisation (HIGA-MO) approach from [97]

is employed.

To summarise, key points of this chapter are as follows. The HVI gradient is used

in a memetic setting for the first time. Since local optimality of the HVI gradient has

been verified [41] it is an excellent candidate to explore the potential of local search for

the considered problem. In addition, it may provide guarantees with regard to local

convergence in the continuous subspace. Furthermore, the HVI gradient method is also

subjected to constraints and a mixed-integer search space for the first time. These new

challenges should provide insight into the effectiveness of the HVI gradient in more

complex search spaces. Finally, more accurate measures of energy and structural

84

Chapter 6. Local Search with Set Gradients

performance are considered in this chapter.

The remainder of this chapter is structured as follows. Section 6.1 reviews the

basics of multi-objective optimisation, and briefly describes the principles of the hy-

pervolume indicator. In Section 6.2 the hypervolume indicator (HVI) gradient, and

its use in algorithms are discussed. Section 6.3 starts by describing a local search

algorithm (based on the HVI gradient) and a global search algorithm (based on SMS-

EMOA) for the building spatial design problem, and then considers how they can be

combined into a memetic algorithm. Following this, Section 6.4 describes the experi-

mental setup for the evaluation of the different algorithms. This is naturally succeeded

by Section 6.5, where the results are analysed. Finally, Section 6.6 summarises the

chapter as a whole, and discusses future work resulting from the study.

6.1 Multi-Objective Optimisation and the Hyper-

volume Indicator

Given their importance to the introduction of the HVI gradient, key concepts of multi-

objective optimisation and the HVI are briefly summarised here. A more gentle intro-

duction is available in Section 2.2.

In continuous multi-objective optimisation problems (MOPs) the goal is to search

for the candidate decision vector x = [x1, . . . , xd] that optimises a tuple of objective

functions y = f(x) := [f1(x), . . . , fm(x)], simultaneously. Without loss of generality,

it is assumed that each objective function fi : Rd → R has to be minimised.

Given that the different functions will rarely have common optimal values for x,

the outcome of a MOP is usually a Pareto front of solutions, with differing values for

y. In continuous MOPs, the efficient set [38] is typically approximated by a finite set

(of size µ): X = {x1, . . . ,xµ} ⊂ Rd. The corresponding Pareto front approximation

Y = {y1, . . . ,yµ} ⊂ Rm is the image of X under f , namely yi = f(xi), i = 1, 2, . . . , µ.

The quality of a Pareto front, or an approximation thereof, can be measured with

the hypervolume indicator (HVI), in the early literature also known as the S-metric

[106, 107]. The HVI measures the volume (or area in bi-objective cases) that is dom-

inated by a set of points in the objective space, with respect to a reference point

ρ ∈ Rm. For notational brevity the hypervolume indicator is denoted as H for math-

ematical use, while otherwise the more expressive abbreviation HVI is used. As such,

the hypervolume indicator for Y is denoted with H(Y). Given this quality measure,

it is also possible to compare different Pareto front approximations (PFAs) to each

85

6.2. HVI Gradient Ascent Multi-Objective Optimisation

other. However, it should be noted that this measure is entirely dependent on how

the reference point is chosen. In other words, the ranking of PFAs is determined in

part by the value used for the reference point.

6.2 HVI Gradient Ascent Multi-Objective Optimi-

sation

This section first introduces the hypervolume indicator (HVI) gradient in its general

form. Following this, subsections for normalisation of the HVI gradient, step size

adaptation for the HVI gradient, and finally update rules for the considered points are

included.

6.2.1 Hypervolume Indicator Gradient

To give a derivation of the hypervolume indicator (HVI) gradient over approximation

sets, it is proposed to use the so-called set-oriented approach: By concatenating the

vectors in X the µd-vector X = [x>1 , . . . ,x
>
µ]> ∈ Rµd is defined. Note that the

restriction to R here is intentional, the gradients will be taken exclusively for the real

subspace of the considered problem, while the discrete subspace remains constant.

Likewise, a µm-vector Y = [y>1 , . . . ,y
>
µ]> ∈ Rµm can be defined for the objective

values. Furthermore, the following mapping can be introduced: F : Rµd → Rµm,X 7→
Y. Using the mapping F, the HVI can be related to the decision space: HF(X) :=

H(F(X)) = H(Y). Note that this is simply the definition of a more concise symbol

for the same concept.

The full HVI gradient can then be expressed as in Equation 6.1, and represents

the direction of steepest improvement of the HVI for the entire Pareto Front Approx-

imation (PFA).

∇HF(X) =

[
∂HF(X)

∂x(1)

>
, . . . ,

∂HF(X)

∂x(µ)

>]>
. (6.1)

Subsequently, Equation 6.2 defines subgradients for each point of the PFA. Note that

although subgradients are computed for individual points, their combination is not

merely the direction of maximal improvement for each point, but for the whole set.

∂HF(X)

∂x(i)
=

[
∂HF

∂x
(i)
1

, . . . ,
∂HF

∂x
(i)
d

]>
. (6.2)

86

Chapter 6. Local Search with Set Gradients

Each subgradient can then be computed as:

∂HF

∂x
(i)
j

(X) =

m∑

k=1

∂H

∂y
(i)
k

(Y)× ∂fk(x(i))

∂x
(i)
j

. (6.3)

For the m = 2 case, when the indices are given by the ascending order of the first

objective f1, the first term of the summation can be expressed as follows:

∂H

∂y
(i)
1

= y
(i)
2 − y

(i−1)
2 ,

∂H

∂y
(i)
2

= y
(i)
1 − y

(i+1)
1 .

Note that strictly greater (smaller) values are subtracted, since any points that are

equivalent in some objective, should also move the same in that objective.

Applying the HVI gradient is only possible if the gradient can be computed. Since

for many problems, like the one considered in this work, the analytical expression

of derivatives is not available, numerical computation of the gradient is considered

as alternative. As such, the second term of the summation in Equation 6.3 may be

computed numerically according to the finite difference method. For a small number

h, the approximation reads,

∂fk(x(i))

∂x
(i)
j

=
fk(x(i) + ejh)− fk(x(i))

h
.

Note that ej is the j-th standard basis in Rd. Here h = 0.01 is chosen, which equates

to a change of 10 mm (millimetre) in the building spatial design. This value was chosen

such that it both represents a meaningful change to the design, and it is small enough

such that it provides a sufficient accuracy to approximate the gradient. Moreover, it

was ensured that the employed simulator for the evaluation of a solution’s quality was

sufficiently sensitive. In other words, that it gave different objective values for changes

of this size.

6.2.2 Normalisation

A limitation of the HVI gradient method is the so-called creepiness behaviour, as

analysed in [51]. Creepiness refers to how the points move towards the Pareto front

in a suboptimal way. When the differences between subgradients are large, the steps

taken by the points are largely unbalanced, leading to a non-uniform convergence to

the Pareto front. To avoid creepiness, the subgradients are normalised according to

Equation 6.4, before using them to update the original points.

87

6.2. HVI Gradient Ascent Multi-Objective Optimisation

Gnorm =

[
∂HF

∂x(1)∥∥ ∂HF

∂x(1)

∥∥

>

, . . . ,
∂HF

∂x(µ)∥∥ ∂HF

∂x(µ)

∥∥

>]>
, where

∥∥∥∥
∂HF

∂x(i)

∥∥∥∥ =

√√√√
d∑

j=1

(
∂HF

∂x
(i)
j

)2

. (6.4)

6.2.3 Step Size Adaptation

In [98], the authors mentioned that the normalised subgradients may lead to oscillatory

(even divergent) behaviour. To mitigate this effect, the step size adaptation mechanism

that has been proposed in [97] is adopted as follows. In Equation 6.5 〈·, ·〉 stands for

the dot product in Rd. For each search point, I is calculated by the inner product of

the normalised HVI subgradients in two consecutive iterations. This is used to find

whether the step size should be increased, for positive values, or decreased otherwise.

The subscript t on the subgradient is used to indicate the iteration.

I
(i)
t =

〈(
∂HF(X)

∂x(i)

)

t−1
,

(
∂HF(X)

∂x(i)

)

t

〉
, i = 1, . . . , µ , t = 1, 2, (6.5)

Since the inner product may vary largely between generations, the stabilisation is

achieved by taking the cumulative p of this value, over t generations with exponential

decay (Equation 6.6). The accumulation coefficient 0 < c < 1 controls how much new

information will be incorporated.

p
(i)
t ← (1− c)× p(i)t−1 + c× I(i)t , i = 1, . . . , µ , t = 1, 2, (6.6)

Given the cumulative inner product the value of the step size σ
(i)
t+1 for the next time

step can be found according to Equation 6.7. The parameter α controls the rate of

change for updates to the step size.

σ
(i)
t+1 =

σ
(i)
t × α if p

(i)
t < 0,

σ
(i)
t if p

(i)
t = 0,

σ
(i)
t /α if p

(i)
t > 0.

0 < α < 1 . (6.7)

The parameters c = 0.7 and α = 0.8 are used here as they were used in [97], but

should ideally be tuned for the specific problem. Both
(
∂HF(X)
∂x(i)

)
t−1

and p
(i)
t−1 are

initialised to zeros, such that the starting position is neutral.

88

Chapter 6. Local Search with Set Gradients

6.2.4 Update

Which points are updated, and when, has a large influence on how the Pareto front

approximation (PFA) changes. The obvious choice is to move the points on the current

PFA. However, what to do with dominated points is not immediately obvious. In [66]

the authors defined a new search direction according to which they suggested to move

dominated points.

In the bi-objective case, this direction is defined as the sum of normalised gradients

from two objective functions. It guarantees that dominated decision points move into

the dominance cone [98]. However, such a method only considers the movement of

single points, instead of a set of search points, and does not generalise naturally to

higher dimensions.

Alternatively, in [97], the authors suggested to move all points, including the dom-

inated points, according to the HVI gradient. In order to do this, the whole popu-

lation is partitioned by the so-called nondominated sorting procedure [32], resulting

in multiple subsets (fronts) of nondominated solutions. Subsequently, the HVI gra-

dient is well-defined on each front by ignoring other fronts that dominate it. Since

both approaches require the same number of evaluations the exact method from [97]

is used here, as shown in Equation 6.8. Given that the numerical computation of the

gradients requires a large number of evaluations (equal to the number of continuous

decision variables) investigating alternatives that use fewer, or no, evaluations could

be a promising future direction.

In this work, the step size parameter σ is initialised to 0.0025×(ubr−lbr) according

to practical usage of the algorithm. Here ubr and lbr refer to the upper and lower

bounds of continuous decision variable r respectively. The gradient-based update is

as follows,

x
(i)
j ← x

(i)
j + σ(i) ∂HF(X)

∂x
(i)
j

, i = 1, . . . , µ , j = 1, . . . , d . (6.8)

6.3 Algorithms

Each subsection here describes one of the considered algorithms. First the HIGA-

MO-SC approach, as adapted from the standard HIGA-MO [97] algorithm. Second

the SMS-EMOA-SC algorithm, previously introduced in [15]. Finally, a combination

of the two in the form of a memetic algorithm, MEMO-SC, is considered.

89

6.3. Algorithms

6.3.1 HIGA-MO-SC

The HVI gradient method adapted to the context of building spatial design is de-

scribed in Algorithm 4. There, HIGA-MO [97] is adjusted to work with the supercube

representation and forms the HIGA-MO-SC algorithm. An initial population is gen-

erated with the problem specific initialisation procedure introduced in Section 5.3.1.

Following this, the population is sorted according to nondominated sorting [32]. Each

front is then updated separately as follows. First, the HVI gradient is computed for

the continuous subspace as previously described in Section 6.2.1. Second, the HVI

gradients are normalised using Equation 6.4. Third, step sizes are updated by em-

ploying Equations 6.5, 6.6, and 6.7. Finally, the old points are replaced with new

points generated according to the normalised HVI gradients and the updated step

sizes.

Algorithm 4 HIGA-MO-SC

1: input: µ, λ, σ, c, α, h
2: output: PFA based on all evaluated solutions
3: Initialise population X of µ parents as in Section 5.3.1
4: while Stop condition not met do
5: while X 6= ∅ do
6: Xnds ← NDS1(X) . Where NDS1 returns the first front after

nondominated sorting
7: X ← X \Xnds

8: Compute the HVI gradient for Xnds according to Section 6.2.1
9: Normalise HVI gradient of Xnds according to Equation 6.4

10: Update step size of Xnds according to Equations 6.5, 6.6, and 6.7
11: Move Xnds according to Equation 6.8
12: X ′ ← X ′ ∪Xnds

13: end while
14: X ← X ′

15: end while

Note that HIGA-MO-SC as used here differs from HIGA-MO from [97] in two

aspects. First, the step sizes are updated before moving points, rather than after.

As a result the gradient information of the current iteration is immediately taken

into account. Second, and most significantly, here gradients are numerically approxi-

mated. Therefore, they require a number of function evaluations equal to the number

of continuous decision variables.

Discussion on whether to call this algorithm memetic or not is possible, since the

HVI gradient operates on a population level. Here, it is important to note that there

90

Chapter 6. Local Search with Set Gradients

are two equivalent views on the HVI gradient. One view is that the HVI gradient

consists of the gradients of the hypervolume contributions. In that sense, a point

can locally improve by increasing its hypervolume contribution. If this is performed

simultaneously for all points – the second view – the effect is equivalent to following

the set gradient of the HVI. A detailed discussion is provided in [40].

6.3.2 SMS-EMOA-SC

Algorithm 5 SMS-EMOA-SC

1: input: µ,MT,MC
2: output: PFA based on all evaluated solutions
3: Initialise population X of µ parents as in Section 5.3.1
4: while Stop condition not met do
5: x′ ← A uniform random individual from X
6: if U(0, 1) ≤ MT then . Where U(0, 1) returns a uniform random number
7: if U(0, 1) ≤ 0.5 then
8: n steps← 1 . Local move
9: else

10: n steps← 3 . Explorative move
11: end if
12: Mutate binary variables in x′ with n steps as in Section 5.3.2
13: else
14: Apply polynomial mutation to each continuous variable in x′ with proba-

bility MC
15: end if
16: Rescale the continuous variables of x′ until the design reaches the desired spa-

tial volume
17: X ← Select µ individuals from X ∪ x′

18: end while

The SMS-EMOA SuperCube (SMS-EMOA-SC) algorithm is the result of tuning

the tailored SMS-EMOA in Section 5.5.3. Through the use of problem specific initial-

isation and mutation operators SMS-EMOA-SC as described in Algorithm 5 considers

only feasible solutions. In discrete space the initialisation operator generates random

building spatial designs composed of cuboid spaces consisting of a random number of

cells, within the restrictions of the supercube representation. The continuous variables

are initialised uniformly at random within their bounds. Either discrete mutations are

applied with probability MT = 0.4993, or continuous mutations with probability

1−MT . Mutation in discrete space works by extending or contracting existing spaces

to change their shape, while ensuring that these changes finally lead to another feasible

91

6.3. Algorithms

design. Since this mutation procedure can consist of multiple steps, it is possible to

move into infeasible regions, and then back to feasible space. Consequently, discon-

nected feasible areas can be reached as well. For mutation of the continuous variables,

polynomial mutation [32] is applied with probability MC = 0.4381. Both MT and

MC are used with values as found by parameter tuning in Section 5.5.3, although

somewhat different objective functions were considered there.

Note that mutation is applied either in discrete space, or in continuous space.

When mutations are applied on the discrete variables a design may get a significantly

altered shape. As a result the optimal settings for the continuous variables change,

and mutating them at the same time may have little meaning. Further, all designs are

rescaled in the continuous domain (as described in Section 4.4.3) to the same volume

to be able to make a sensible comparison between them. Therefore, any changes

in the discrete domain automatically also result in changes in the continuous domain.

Finally, mutations in discrete space may – chosen uniformly at random – consist either

of a single step, to make a local move, or of three steps, to make an explorative move.

6.3.3 MEMO-SC

Algorithm 6 shows how the SMS-EMOA-SC Section 6.3.2 and the HIGA-MO [97]

algorithms are combined into a new memetic algorithm. The evaluation budget is

split between the two approaches according to a given fraction frac = 0.5 to be used

for global search. Aside from this, the behaviour is the same as for the separate

algorithms.

Algorithm 6 MEMO-SC

1: input: µ,MT,MC, λ, σ, c, α, h
2: output: PFA based on all evaluated solutions
3: Initialise population X of µ parents as in Section 5.3.1
4: while Stop condition not met do
5: if eval ≥ evalmax × frac then
6: Generate a new population as in Algorithm 4
7: else
8: Generate a new population as in Algorithm 5
9: end if

10: end while

Although different hybridisation strategies are possible, here a relay hybrid [94]

is chosen. This is favoured over an alternate-hybrid for various reasons. Applying

the relatively expensive HVI gradient at earlier stages of the optimisation process

92

Chapter 6. Local Search with Set Gradients

may result in costly updates to points in suboptimal discrete subspaces. Furthermore,

optimising the points in low quality discrete subspaces may even impede finding better

solutions in overlapping discrete subspaces. For instance, only 10 % of the solutions in

some subspace A may be able to improve over the Pareto front (PF) of subspace B. As

such, the further the search is away from the PF of B, the more likely it is that a newly

discovered solution of the higher quality subspace A is accepted into the population

by the evolutionary algorithm. Despite these possible issues, evaluating alternatives

to the considered relay hybrid, with appropriate consideration for the noted pitfalls,

may still be worth investigating in future work.

6.4 Experiments

For the comparison of the three algorithms (SMS-EMOA-SC, HIGA-MO-SC, and

MEMO-SC) two objectives are considered as discussed in Subsection 6.4.1. Following

that, Subsection 6.4.2 describes the experimental setup.

6.4.1 Objective Functions

In this work two objectives are considered for the building spatial design problem,

related to two disciplines: structural design, and building physics. For both objectives

measurements are computed through simulations [23, 25]. Settings for each of the

simulation models are described briefly in the following.

Note that for both structural design (SD), and building physics (BP), improved

metrics are used here compared to the previous chapters (4, 5). For the SD objective,

the number of wind load cases has been reduced to four and the magnitudes of the loads

have changed. The BP objective now uses realistic heating and cooling performance

like in [23], instead of only a measure of the outer surface area. Moreover, error control

has been introduced in the solver of the BP simulations to prevent possible erroneous

results compared to [23].

Structural Design

The structural design (SD) objective for a given building spatial design is obtained by

taking the total strain energy, here defined as compliance, in N mm (newton millime-

tre) from a Finite Element (FE) analysis that has been performed on an SD model

developed for that spatial design. An SD model is obtained by means of a design

grammar, i.e. a set of design rules that add discipline specific details to a building

93

6.4. Experiments

spatial design. Specifically, the SD grammar adds structural aspects – like structural

components, loads, and constraints – to the spatial design [25].

The following SD grammar has been defined for the studies in this work: For

every surface in the spatial design a concrete slab is added with thickness t = 150 mm

(millimetre), Young’s modulus E = 30 000 N mm−2 (newton per square millimetre),

and Poisson’s ratio ν = 0.3. Furthermore, each edge of a surface will be constrained

if both endpoints of that edge have an equal z-coordinate that is at or below zero

(i.e. ground level). Next, a live load case plive = 5.0 kN m−2 (kilo newton per square

metre) in −z-direction is applied on each concrete slab with a surface normal oriented

vertically. Finally, wind load cases are applied, with for each wind load case three load

types: pw,p = 1.0 kN m−2 for pressure, pw,s = 0.8 kN m−2 for suction, and pw,sh =

0.4 kN m−2 for shear. Four wind load cases are defined, in positive and negative x-

and y-direction respectively. The load types are assigned to all external surfaces of

the building spatial design (except to the ground floor surface). This is carried out

according to the orientation of the external surface normal vector with respect to the

wind direction vector. Pressure is applied if they are opposing, suction if they have

the same orientation, and shear if they are perpendicular to each other.

FE analysis starts with meshing all the components into finite elements and nodes.

Here a structural component is divided into ten elements along every dimension, which

results in 10n elements for n-dimensional components. For each load case, loads and

boundary conditions are then applied to the nodes, and stiffness relations between the

nodes are obtained via finite element formulations. The discretised structural design

is formulated as a sparse linear system, which is then solved by the simplicial-LLT

solver from the C++ library Eigen [50]. For each load case, the strain energy for each

element can be computed once the system has been solved. Finally, the objective is

then easily computed as the sum of strain energies over all elements, over all load

cases. Note that here, for each element, the strain energy is calculated by u>Ku,

where u is the displacement vector of an element, and K is its stiffness matrix.

Building Physics

The building physics (BP) objective is computed as the sum of heating and cooling

energy in kW h (kilo watt hour) that is required to keep the air of all spaces of the

building spatial design within a certain temperature range during a given simulation

time period. The BP design grammar adds thermal related aspects – like volumes of

air, thermal separations (e.g. walls and floors), temperature set points, and tempera-

ture profiles – to the building spatial design.

94

Chapter 6. Local Search with Set Gradients

The BP grammar starts by defining temperature profiles for the weather and the

ground. The ground temperature is set to be constant at Tg = 10 ◦C. The temperature

data of the weather is obtained from real world measured data by KNMI (Koninklijk

Nederlands Meteorologisch Instituut) at De Bilt, The Netherlands [61]. Two periods

are simulated, three full hot summer days starting 1976, July 2, and three full cold win-

ter days starting 1978, December 30. The grammar initialises all spaces of the building

spatial design with their volume, and assigns a heat capacity Cs = 3600 J K−1 m−3

(joule per kelvin per cubic metre), a heating set point Th = 18 ◦C, a cooling set point

Tc = 20 ◦C,1 a heating power Qh = 100 W m−3 (watt per cubic metre), a cooling

power Qc = 100 W m−3, and a ventilation rate of one air change per hour. Subse-

quently, the thermal separations are added, with their heat conduction properties and

their connections to the volumes and temperature profiles. All surfaces in the build-

ing spatial design are assigned a concrete slab with thickness t = 150 mm, density

% = 2400 kg m−3 (kilogram per cubic metre), specific heat capacity C = 850 J K−1 kg−1

(joule per kelvin per kilogram), and thermal conductivity k = 1.8 W K−1 m−1 (watt

per kelvin per metre). Additionally, each external surface is assigned insulation on

the outside with thickness t = 150 mm, density % = 60 kg m−3, specific heat capacity

C = 850 J K−1 kg−1, and thermal conductivity k = 0.04 W K−1 m−1 (values based on

stone wool [13]). A warm-up period is defined for each simulation period, starting to

run backwards from four days after the beginning of the actual simulation period and

ending when the start of the period is reached.

For the simulation, the BP model is first abstracted as a Resistor-Capacitor (RC)

network [63], where each volume or separation is modelled by a temperature point

called a state. Between each temperature point a resistance is modelled, and a

grounded capacitor is attached to each temperature point. The heat flux through

the capacitors and resistors in the RC-network can be described by a set of first order

ordinary differential equations (ODEs) [25]. This system is solved using time steps

of 15 minutes using the error controlled explicit Runge-Kutta-Dopri5 solver by odeint

[2]. The simulated heating or cooling of spaces is controlled at each time step by first

predicting the energy demand for that time step with the system of ODEs. Then the

predicted heating or cooling demand is accepted if it is lower than the available power

1Although these set points are close together, this does not result in issues relevant for the presented
optimisation problem. Cooling may become active when it is colder outside than inside, but due to the
15 minute time steps will not result in a temperature drop below the heating set point. Further, these
simulations result in a somewhat distorted view with regard to the quantitative energy performance
(which is anyway not accurate because things like solar irradiation are not considered), but the
qualitatively performance between spatial designs matches reality. This is sufficient because only
qualitative comparisons between spatial designs are considered here.

95

6.4. Experiments

in a space, otherwise it is set to the available power. All heating and cooling energies

are summed over all spaces and time steps to finally yield the BP objective.

6.4.2 Setup

A number of aspects of the proposed approach are evaluated empirically. Specifically,

a comparison is made between the three described methods: SMS-EMOA-SC, HIGA-

MO-SC, and MEMO-SC. Moreover, two versions of both the HIGA-MO-SC and the

MEMO-SC algorithms are considered, one with gradient step size adaptation and one

without.

Note that due to the mixed-integer nature of the problem the pure HIGA-MO-

SC approach cannot be expected to be competitive with the other methods. It is

considered here solely to study the behaviour of the HVI gradient on the constrained

landscape of this real world problem, and the value of step size adaptation. It may also

be used to show that the exploration of the discrete subspace, which HIGA-MO-SC

lacks, is essential to find high quality solutions, but this is not new information.

A problem with a supercube size 3333 is considered here. Meaning the supercube

has three cells in with, depth, and height dimensions, and also consists of three spaces.

Although in Section 4.6 it was found that for a mid-sized supercube like this constraint

navigation is still reasonably simple, this problem size already consists of nine contin-

uous variables. For the hypervolume indicator (HVI) gradient, including numerically

computing the gradient (nine evaluations, one per continuous variable), this means

each new point requires ten evaluations. Since the focus of this study is on analysing

the behaviour of the HVI gradient, and not on constraint navigation, the problem size

is considered to be sufficient here.

Given a 3 × 3 × 3 supercube, 27 discrete variables (per space, so 81 in total),

and nine continuous variables exist: three each for width, depth, and height. The

continuous variables for width and depth are bounded in]0.5, 20], while those for

height are bounded in]3, 20] (all in metres). This ensures all spaces in the building

are sufficiently large for human occupation. During optimisation these variables are

rescaled such that the volume of the building spatial designs is kept within one cubic

millimetre of V0 = 300 m3 (cubic metre), as described in [23].

For these experiments each algorithm is executed 35 times with an evaluation

budget of 10 000. The MEMO-SC approaches are set to switch halfway (i.e. frac =

0.5), and thus use 5000 evaluations each on evolutionary search and gradient search.

This halfway switch is chosen in order to allow the evolutionary search to progress

96

Chapter 6. Local Search with Set Gradients

sufficiently in discrete space, while also giving the gradient search enough time to

advance and adjust step sizes as needed. Note that although the evaluation budgets are

equal, the number of sampled points is not. During evolutionary search each evaluation

equates to a sampled point, while during HVI gradient search ten evaluations are used

per sampled point.

Each algorithm considers a population size µ = 25. This value is chosen to ensure

a high likelihood of having a well covered PFA. Moreover, it is not so large that it

would prohibit applying gradient approximation to the whole population. Note that

with 25 individuals the initialisation costs 25 evaluations, leaving 9975 for the rest of

the process. This means HIGA-MO-SC is not split exactly in two halves of 5000. Since

HIGA-MO-SC stops when it has an insufficient evaluation budget left to generate a

new point (in this case 10 evaluations), it ultimately uses five evaluations less than the

two other algorithms. However, this should have no significant impact on the results.

Settings for the SMS-EMOA-SC algorithm are given in Table 6.1. Parameters MT

and MC control the probability to perform a discrete or continuous mutation, and the

probability of mutation per continuous decision variable respectively (see Section 6.3.2

for details). A reference point of (1.1e9, 1.1e9) is used as in Section 5.5. The settings

for HIGA-MO-SC are available in Table 6.2, details on their values are available in

Section 6.2. Finally, MEMO-SC uses settings from either of the other two algorithms,

depending on whether it is in the global or local search phase.

µ MT MC

25 0.4993 0.4381

Table 6.1: Settings for SMS-EMOA-SC.

µ λ σ c α h

25 25 0.0025 0.7 0.8 0.01

Table 6.2: Settings for HIGA-MO-SC.

6.5 Results

In Figure 6.1 results are shown for a single execution of the SMS-EMOA-SC, adaptive

HIGA-MO-SC, and adaptive MEMO-SC algorithms. Both the Pareto front approxi-

mations (PFAs), and the points considered during the search (limited to those suffi-

97

6.5. Results

 610

 620

 630

 640

 650

 660

 670

 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000

H
ea

tin
g/

co
ol

in
g

en
er

gy
 (k

W
h)

Compliance (Nmm)

SMS-EMOA-SC
MEMO-SC adapt

HIGA-MO-SC adapt
SMS-EMOA-SC PFA

MEMO-SC adapt PFA
HIGA-MO-SC adapt PFA

Figure 6.1: Scatter plot of the PFA region for a single execution of the SMS-EMOA-SC,
adaptive HIGA-MO-SC, and adaptive MEMO-SC approaches.

ciently close to the PFAs) are shown. Evidently, SMS-EMOA-SC and MEMO-SC seem

to perform similarly well. In contrast to these results – unsurprisingly – HIGA-MO-

SC lags behind, unable to navigate the discrete landscape. Even so, HIGA-MO-SC is

clearly able to navigate the continuous landscape within the discrete subspaces it is

confined to upon initialisation.

 610

 615

 620

 625

 630

 635

 640

 40000 45000 50000 55000 60000

H
ea

tin
g/

co
ol

in
g

en
er

gy
 (k

W
h)

Compliance (Nmm)

Evaluations 1-5000 Evaluations 5001-10000

(a) SMS-EMOA-SC.

 610

 615

 620

 625

 630

 635

 640

 40000 45000 50000 55000 60000

H
ea

tin
g/

co
ol

in
g

en
er

gy
 (k

W
h)

Compliance (Nmm)

Evaluations 1-5000 Evaluations 5001-10000

(b) Adaptive MEMO-SC.

Figure 6.2: Scatter plot of the PFA region for a single execution.

Figures 6.2a and 6.2b display the behavioural difference in the search strategies

of the SMS-EMOA-SC and MEMO-SC approaches during the second half of the op-

timisation process. MEMO-SC strongly focuses on local improvements to the PFA,

while SMS-EMOA-SC continues to explore as well as exploit. Another interesting

observation is that for this specific execution MEMO-SC seems to find two partially

overlapping discrete subspaces that both contribute to the PFA. This results in a PFA

98

Chapter 6. Local Search with Set Gradients

consisting of two parts, one similar to what is found by SMS-EMOA-SC in Figure 6.2a,

and an extra part in the upper-left corner of Figure 6.2b. Note that the differences in

discrete subspaces that are discovered are an artifact of comparing single executions.

Given a second execution, the discovered discrete subspaces might be reversed.

A visual comparison of the results over multiple repetitions is done using median

attainment curves [49]. Figure 6.3 shows the high level overview of the results, includ-

ing all of the approaches. Moreover, the results are split in a first and a second half, to

indicate how much the algorithms improved during the second half. From this figure

it is clear that, as expected, the pure HVI gradient methods are not competitive in a

mixed-integer environment. Even so, it is also evident that these methods work, and

effectively improve their Pareto front approximations (PFA). It also becomes clear

form this figure that the use of step size adaptation has a significant effect on the

optimisation progress.

 610

 620

 630

 640

 650

 660

 670

 680

 690

 700

 710

 0 200000 400000 600000 800000 1e+06 1.2e+06

H
ea

tin
g/

co
ol

in
g

en
er

gy
 (k

W
h)

Compliance (Nmm)

SMS-EMOA-SC FH
SMS-EMOA-SC SH

HIGA-MO-SC FH
HIGA-MO-SC SH

HIGA-MO-SC adapt FH
HIGA-MO-SC adapt SH

MEMO-SC FH
MEMO-SC SH

MEMO-SC adapt FH
MEMO-SC adapt SH

Figure 6.3: Median attainment curves per algorithm (35 repetitions each), first halves
(FH) and second halves (SH).

When zoomed in on the knee point area of the median attainment curves in Fig-

ure 6.4, it can be seen that there is not much difference between the adaptive MEMO-

SC, and the regular MEMO-SC algorithms. While SMS-EMOA-SC appears to be able

to find better solutions in the heating and cooling energy objective, even during the

first half of the search. This is a striking result, given that these three algorithms

behave exactly the same during the first half of the search process. Note that despite

their equivalent behaviour, given their separately generated random seeds, they can

still find different results due to chance.

99

6.5. Results

 611

 612

 613

 614

 615

 616

 617

 618

 619

 620

 40000 50000 60000 70000 80000 90000 100000

H
ea

tin
g/

co
ol

in
g

en
er

gy
 (k

W
h)

Compliance (Nmm)

SMS-EMOA-SC FH
SMS-EMOA-SC SH

MEMO-SC FH
MEMO-SC SH

MEMO-SC adapt FH
MEMO-SC adapt SH

Figure 6.4: Median attainment curves per algorithm (35 repetitions each), first halves
(FH) and second halves (SH); zoomed in on the knee point area.

To understand what is happening Figure 6.5 shows the nondominated solutions

of every repetition for all considered algorithms. In this figure, multiple different

PFAs – that are frequently found by all of the competitive approaches – can clearly

be identified. These evidently represent the PFAs for different discrete subspaces.

Looking back at Figure 6.4, it appears that despite using 35 repetitions, the number

of times each algorithm ends up in each discrete subspace differs sufficiently to end up

with differing median attainment curves. After all, the median attainment curve may

be different even if one of the algorithms ends up in (for instance) the optimal discrete

subspace only a single time more than the other algorithms.

Based on the points found in Figure 6.5 it is also possible to visualise the trade-off

between the two objectives. In Figure 6.6 three example solutions are shown, together

with some details on their features in Table 6.3. One for each objective, and one

from the knee point area. For compliance it seems that long, evenly distributed walls

with short floor spans are optimal for the distribution of strain across the structural

elements. On the other hand, optimal energy efficiency is found by using a cubic shape

and some spaces as padding to the outside, in order to provide insulation.

The union of all solutions found over all repetitions of all the approaches is taken.

Based on the nondominated solutions of this collection (Figure 6.7), the objective val-

ues are normalised. From these nondominated solutions it is found that for compliance

a range of [0, 500 000] can be considered, while in energy use a range of [610, 660] is

sufficient. All objective values then are normalised from those ranges to a [0, 1] range.

Given the normalised objective values, statistics over the hypervolume indicator

100

Chapter 6. Local Search with Set Gradients

 610

 615

 620

 625

 630

 635

 640

 645

 650

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

H
ea

tin
g/

co
ol

in
g

en
er

gy
 (k

W
h)

Compliance (Nmm)

SMS-EMOA-SC FH
SMS-EMOA-SC SH

HIGA-MO-SC FH
HIGA-MO-SC SH

HIGA-MO-SC adapt FH
HIGA-MO-SC adapt SH

MEMO-SC FH
MEMO-SC SH

MEMO-SC adapt FH
MEMO-SC adapt SH

Figure 6.5: Nondominated solutions from each of the 35 repetitions per algorithm, first
halves (FH) and second halves (SH); zoomed in.

Figure 6.6: Example solutions: optimal compliance (left), a knee point solution (centre),
and optimal energy efficiency (right).

(HVI) can be computed, with reference point (1,1). Table 6.4 shows these results per

algorithm for the first half of the optimisation process. Considering that SMS-EMOA-

SC and both MEMO-SC approaches are equivalent in the first half, it is not surprising

to see their very similar performance here. Although SMS-EMOA-SC performs slightly

better overall, this is purely based on chance.

Further, it should be noted that these results largely depend on which discrete

subspace an algorithm ends up in. For instance, consider two partially overlapping

Pareto front approximations PFA1 and PFA2, and two equivalent algorithms A1, A2,

executed for 10 repetitions each. Now, by chance A1 could end up in PFA1 8 out

of 10 times, while A2 does the reverse. Seemingly A1 would then be better in one

objective, and A2 in the other, although they are actually the same algorithm. In

101

6.5. Results

Compliance
(N mm)

Heating/cooling
energy (kW h)

Surface
area (m)

Soil surface
(m)

Height
(m)

Longest
edge (m)

Shortest
edge (m)

Optimal com-
pliance

24478.9 655.7 251 100 3.0 20.2 4.9

Knee point 37816.4 611.7 216 60 5.0 8.6 7.0
Optimal en-
ergy efficiency

435965.0 610.7 215 58 5.2 7.6 7.6

Table 6.3: Details on the features of the optimal compliance, knee point, and optimal
energy efficiency spatial designs.

 610

 615

 620

 625

 630

 635

 640

 645

 650

 655

 660

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

H
ea

tin
g/

co
ol

in
g

en
er

gy
 (k

W
h)

Compliance (Nmm)

SMS-EMOA-SC
HIGA-MO-SC

HIGA-MO-SC adapt
MEMO-SC

MEMO-SC adapt

Figure 6.7: Nondominated solutions over all 35 repetitions per algorithm, second halves
only.

other words, even for a simple case a reasonably large number of repetitions is required.

Alternatively each discrete subspace could be analysed separately, but this is contrary

to the goal of finding high quality discrete subspaces in the first place. Moreover,

recall that the problem at hand does not merely consider two discrete subspaces, but

many – often difficult to reach – subspaces.

Table 6.5 contains the results after completion of the second half of the search pro-

cess. Once more, SMS-EMOA-SC seems to outperform all other approaches. More-

over, when comparing the results in Table 6.5 to those in Table 6.4 it can be observed

that SMS-EMOA-SC shows the greatest improvement during the second phase of the

search. Although this could be taken as surprising, when taken together with Fig-

ures 6.4 and 6.5, it can be postulated that SMS-EMOA-SC simply found the best

PFA more often. Moreover, SMS-EMOA-SC is still able to make discrete moves in

the second phase, and may therefore find a new, better, front while the MEMO-SC

approaches cannot. Regardless of the reason SMS-EMOA-SC appears to be better

102

Chapter 6. Local Search with Set Gradients

Algorithm Min Max Mean Median Std. dev.

SMS-EMOA-SC 0.86052 0.92815 0.88674 0.88899 0.01764
HIGA-MO-SC 0.25969 0.75421 0.45662 0.45798 0.11305
HIGA-MO-SC adapt 0.40257 0.76252 0.57560 0.57260 0.09315
MEMO-SC 0.86112 0.90129 0.88068 0.87780 0.01220
MEMO-SC adapt 0.85973 0.92788 0.88049 0.87633 0.01892

Table 6.4: Statistics of the normalised HVI per algorithm after the first half, over 35
repetitions, best values in bold.

Algorithm Min Max Mean Median Std. dev.

SMS-EMOA-SC 0.86337 0.92910 0.89087 0.89048 0.01602
HIGA-MO-SC 0.31499 0.77975 0.49822 0.48678 0.10857
HIGA-MO-SC adapt 0.49186 0.85363 0.69118 0.71397 0.08543
MEMO-SC 0.86146 0.90300 0.88163 0.87950 0.01197
MEMO-SC adapt 0.86193 0.92797 0.88168 0.87793 0.01843

Table 6.5: Statistics of the normalised HVI per algorithm for the second half, over 35
repetitions, best values in bold.

during the local search phase, the performance of the HIGA-MO-SC approach is also

striking. It significantly improves in all metrics during the second phase, and is clearly

a viable method for this problem, as long as it is given a good discrete subspace to

work in.

All in all, it appears that both the SMS-EMOA-SC and MEMO-SC approaches

are able to converge to good Pareto front approximations. Since this is already true

after the first half of the search process, there is simply little to improve for either the

HVI gradient in MEMO-SC, or the evolutionary approach in SMS-EMOA-SC during

the second half. Further, it is observed that, for the problem here, the quality of the

found PFA depends more on the discrete, than on the continuous decision variables.

6.6 Conclusion

6.6.1 Summary

In this work a building spatial design problem for two objectives has been considered.

For this problem the shape of a building had to be optimised for structural performance

and energy performance. Provided an existing mixed-integer representation, three

algorithms have been applied to this optimisation problem: An algorithm based on

the hypervolume indicator (HVI) gradient (HIGA-MO-SC), an adapted version of

103

6.6. Conclusion

SMS-EMOA (SMS-EMOA-SC), and a memetic algorithm combining the two methods

(MEMO-SC).

Results showed that the HVI gradient method by itself could not compete with the

evolutionary and memetic approaches. Considering the mixed-integer nature of the

problem, this is not surprising. It has also been shown that the evolutionary approach

performed slightly better during the local search phase than the memetic algorithm.

However, this may be the result of larger global moves, rather than of its implied local

search abilities.

Although the algorithm does not improve significantly in most cases, the HVI gra-

dient remains useful in providing a guarantee of local convergence in the continuous

subspace. The non-deterministic evolutionary algorithm cannot provide such guaran-

tees. However, based on the results, in many cases it has a good practical performance

in adjusting the continuous variables. Further, the effort spent on solving the integer

problem appears to have a more significant impact on the overall result. As such,

the answer to whether local search can improve over the results found during global

search (RQ3) is positive, but whether it is worth the effort in practice will be situation

dependent.

6.6.2 Future Work

Improvement of the MEMO-SC algorithm may be possible by focusing on moving

nondominated points, rather than all points. This could reduce the number of used

evaluations on points that might never reach the Pareto front, because they are either

simply too far away, or worse, stuck in a discrete subspace that is completely dominated

by another. Challenges herein are found in how it is ensured that there are sufficiently

many points on the Pareto front, and subsequently, how to ensure they remain on the

Pareto front during the search.

Other hybridisation strategies could also be explored for the MEMO-SC algorithm.

In this work a relay hybrid – where first evolutionary search is applied, and then HVI

gradient ascent – has been considered. An alternate-hybrid strategy, which continu-

ously alternates between the two approaches, should also be investigated. Additionally,

a comparison between HIGA-MO-SC and SMS-EMOA-SC on a single discrete sub-

space (such that only continuous variables are considered by both of them) could give

interesting insights.

One limitation of the HVI gradient is that it cannot navigate mixed-integer space.

To overcome this, surrogate models (approximations of the objective functions that

104

Chapter 6. Local Search with Set Gradients

can be cheaply evaluated) can be considered. For instance, surrogate models are used

for the mixed-integer case in [68]. Use of the HVI gradient is possible in this case by

taking the HVI gradient of the surrogate model, rather than of the actual objective

functions. Otherwise, it may be that methods integrating the HVI gradient are not well

suited to problems with far more integer than continuous variables, as is considered

here. To investigate this, a comparison to a problem with a small number of integer

variables would be interesting as future work.

If the MEMO-SC algorithm, as it was presented in this work, is improved by the

suggestions above (or by other means), such that it provides advantages beyond the

evolutionary approach, new directions open up. Then, in the future, combining an

improved MEMO-SC algorithm and the cooperation between superstructure and free

representations presented in [23] can lead to an optimisation strategy covering all

levels of the building spatial design problem. Specifically, it would allow exploration

with a free representation using co-evolutionary design simulation (as in e.g. [23, 52]),

followed by global search with the evolutionary algorithm, and local search with the

HVI gradient method when using the superstructure representation.

Finally, despite the existence of a plethora of different measures to compare the

quality of Pareto front approximations (PFAs), determining which PFA is better,

or how two PFAs differ remains challenging. In particular this holds if, as in this

work, there is a desire for statistical significance and comparisons are done over multi-

ple repetitions per algorithmic approach. Moreover, mixed-integer landscapes further

complicate the process, where different repetitions may end up in distinct, but pos-

sibly overlapping, discrete subspaces. Evidently, much work remains in the area of

multi-objective quality measures.

105

6.6. Conclusion

106

Chapter 7

Mining Optimisation Data for

Design Rules

Up to this point, a mixed-integer representation has been defined for the building

spatial design problem in Chapter 3. Based on this representation, multi-objective

evolutionary algorithms have been devised, along with problem specific operators in

Chapters 4 and 5. Furthermore, the application of the hypervolume indicator gradient

[40], to improve local search, was studied in Chapter 6, which resulted in a considerable

amount of optimisation data.

Despite all this progress, the transfer of an optimisation result to a design expert is

not merely a matter of stating ”this solution is better than the previous one”. For an

optimised building spatial design to be used, the solution must be trusted by the design

expert. To inspire such confidence in the optimised design, the optimised results should

be made explainable. This can be achieved by learning heuristic design rules from the

optimisation data. Given such rules, it becomes clear why the design is effective.

Ideally, not only known rules that experts trust and understand are obtained, but also

new insights. By combining known and new design rules it is possible for experts, and

automated (e.g. co-evolutionary [23]) design systems, to improve their design process.

These improved design processes can then be applied to similar problems, without

another lengthy optimisation procedure. Learning these design rules, new and old, is

the focus of RQ4, and as such of this chapter.

The process of learning innovative design rules from optimisation data was intro-

duced in [33], and termed innovization. This concept has since been applied to a

107

7.1. Features

variety of problems such as clutch brake design in [33], and truss design in [7]. Later,

the learning process was interleaved with the optimisation process in [78], and further

automated in [7, 31]. Furthermore, in [8] it was studied how an optimiser learns new

concepts over time. Here it is investigated whether simple techniques used to verify

optimisation results may also lead to innovative insights.

This work is a first step in applying innovization in building spatial design. The

following contributions are made: Optimisation results are verified through data anal-

ysis of a subset of the 800 000 solutions found by multi-objective optimisation in Sec-

tion 6.5. Handling a dataset of this size also results in new challenges. With this in

mind, simple and computationally inexpensive analysis techniques are applied.

From here on, this chapter first introduces features to enable the discovery of

heuristic design rules in Section 7.1. The preparation of the considered dataset is then

described in Section 7.2. Section 7.3 evaluates the results from analysis of the data,

and the implications that follow. Finally, Section 7.4 briefly summarises the study,

and proposes possible directions for future work.

7.1 Features

The supercube representation introduced in Chapter 3 is a mixed-integer represen-

tation of the building spatial design problem, consisting of binary and positive real

numbers. Raw data in this format is difficult to interpret in terms of building prop-

erties, making it difficult to learn directly from this data. To ease this process, this

section introduces elementary features that allow building engineers to characterise a

building spatial design. Such features are necessarily domain specific. However, the

same process may be applied in other domains.

Given that the supercube representation is key to understanding the dataset and

features, its essential components are briefly reintroduced in the following. Since it

is used for building spatial design, the supercube representation considers a number

of spaces that together form the building spatial design. Each space is defined as a

cuboid (3D rectangle), such that the whole building consists of rectangular surfaces,

like in Figure 7.1. Additional constraints ensure that the floors of all spaces are

connected with the soil via other spaces, that is, in the given representation no floating

or overhanging spaces may exist.

All considered features are listed in Table 7.1 with their definitions and explana-

tions. Except for the last three, all other features are computed both for the building,

and for individual spaces. Since the ordering of spaces is arbitrary, including values

108

Chapter 7. Mining Optimisation Data for Design Rules

Soil surface area

Inside surface area

h
1

h
2

h
3h

0 x

y

z

minx3

maxx3

Space 1

Space 2

Space 3

Figure 7.1: Example building spatial design, annotated with a selection of features.

for each of them in the feature set would be of little use. Therefore, statistics are taken

over all spaces in a building for each feature. In particular, the minimum, maximum,

mean, median, range, standard deviation and Gini index (average deviation from the

mean) are considered. Since the last three features in Table 7.1 do not make sense for

individual spaces (e.g. mean height of a space is equal to its height), they are only

computed for the building as a whole.

Values for w, d, h are found by taking max∗−min∗, where ∗ corresponds to x, y, z

respectively. In other words, they are simply the distance between the minimal and

maximal coordinates of a given dimension. For example, the minx and maxx of space

3 are marked in Figure 7.1. Note that these values are computed for the full design,

as well as for individual spaces, as indicated for height in Figure 7.1 with h for the

complete building spatial design, and h1, h2, h3 for each individual space.

To differentiate between various surfaces, the following surface area definitions

are used. First, to distinguish between different locations of the surfaces, a non-

overlapping division is made between inside (in area), outside (out area), and soil

(soil area) surface area. Exterior surfaces are considered as outside, while interior

surfaces are considered as inside. The ground floor which connects with the soil is

excluded from the outside surface area, and taken as soil surface area. In Figure 7.1,

examples of inside and soil surface area are highlighted (the rest is outside surface

area). Second, to distinguish between walls and floors/ceilings, a division between

109

7.1. Features

Feature Definition Explanation

vol w × d× h Volume of the space, or sum of spaces for the full design
short min(w, d) Shortest horizontal edge, indicator of span
long max(w, d) Longest horizontal edge, indicator of span
height maxz −minz Height of the space or the full building spatial design
out sum(out area) Outside surface area, indicator of energy flow
in sum(in area) Inside surface area, indicator of energy flow
soil sum(soil area) Soil (ground floor) surface area, indicator of spread
horz sum(horz area) Horizontal surface area, indicator of total wall area
vert sum(vert area) Vertical surface area, indicator of floor and roof area
in out in/(in+ out) Ratio between inside- and outside surface area
out vol out/vol Ratio between outside surface area and volume
long short long/(long + short) Ratio between longest- and shortest horizontal edge
meanh sum(h× roof area)/soil Mean height of the building
meanh h meanh/height Ratio between the mean height and the height
height soil height/soil Ratio between the height and the soil area

Table 7.1: Features, definitions, and explanations.

horizontal (horz area) and vertical (vert area) surface area is made. The horizontal

surface area includes all floors and ceilings (so also the ground floor) while the vertical

surface area consists of all walls, regardless of them being interior or exterior. Finally,

the roof area considered for meanh is a part of the roof area in the building spatial

design positioned at equal height.

Note that when considering a building as a whole, each surface is counted only

once per considered distinction (e.g. horizontal/vertical). However, on the space level,

surfaces are sometimes counted twice. That is, for two neighbouring spaces, both

count their connecting surface as being part of, for instance, their horizontal surface

areas. As a result, the sum of the surface areas of all spaces is not (necessarily) equal

to the total surface area of the building.

In some cases, different features measure the same thing. For instance, the outside

surface area of a building has an equal distribution (but not value) to the mean out-

side surface area of the spaces. Despite this, such features are kept to simplify data

processing. In the analysis, only one representative should be used for these equivalent

features, unless the differing values provide additional insights.

Additionally, some features may result in distributions similar to each other. This

is particularly common for the range, standard deviation, and Gini index. However,

even small differences may make one of them more valuable in distinguishing between

solution classes than the other. Since, a priori, it is not known which is more useful

in which situation, all of them are included.

110

Chapter 7. Mining Optimisation Data for Design Rules

Finally, it is noted that undefined (NAN) values may appear in a few cases. Some

spaces may be disconnected (meaning they do not share a wall with another space).

As a result, it can occur in a building design that none of the spaces has a neighbour,

from which it follows that their inside surface area is zero. In these cases, the Gini

indices of the interior surface area, and of the ratio between inside and outside surface

areas will be undefined and marked as NAN (the Gini index divides by the sum of the

set of spaces, which is zero in this case). However, since these are very low quality

solutions, they are not considered in the analysis in the rest of this chapter. This will

become clear in the next section.

7.2 Data Preparation

In order to learn heuristic rules for building spatial design, the dataset from the optimi-

sation experiments in Section 6.5 is used. The dataset is a Pareto front and an archive

from a building design optimisation that aimed for a building spatial design consisting

of three spaces, with a total volume of 300 m3 (cubic metre). Note that while these

may seem like simple building spatial designs, they already require 9 continuous and

81 binary variables to encode with the supercube representation (Section 3.2), leading

to a large search space. The optimisation runs resulted in a dataset of around 800 000

solutions. Here the data is prepared for analysis in the following five steps. First,

classes are defined to enable the discovery of different qualities in different groups of

solutions. Second, the nondominated (ND) set is identified. Third, the knee point

solution is identified. Fourth, solutions are assigned labels to link them to a class,

based on the previously identified ND set and knee point. Fifth, a procedure is de-

scribed to equalise the number of solutions in each class for those analysis techniques

that demand this. Note that all steps are defined such that they should at least be

generalisable for two-dimensional convex Pareto fronts with a pronounced knee-shape.

To be able to learn from the features defined in the previous section, the data

is split into different classes. This is accomplished based on objective values, rather

than features. Classification based on objective values allows for the verification of the

optimisation procedure: Do design experts agree that the designs with good objective

values are indeed good? In addition, it is often a combination of features that indicate a

certain quality in the building spatial design, making feature based classification more

complex. Further, by classifying on known good qualities of a building spatial design,

finding innovative design rules would become very unlikely. Here, four categories of

solutions are considered: the knee point area (KP), good in the compliance objective

111

7.2. Data Preparation

(F1), good in the heating/cooling energy objective (F2), and relatively low quality

solutions (BD). The aim is to data-mine for heuristic design rules that make it possible

to differentiate between all of these distinct classes. For problems with more objectives

additional classes F* can be added as needed.

The classification considers two primary aspects: (1) It should clearly distinguish

between the classes in the objective space, and (2) It should be computationally ef-

ficient to enable processing of the large dataset of circa 800 000 points. The com-

putational efficiency should also allow the proposed methods to generalise to larger

building spatial designs than those considered here.

Since the considered classes are defined based on the nondominated (ND) set and

the knee point, these have to be identified first. For ND set computation the well-

known log-linear time algorithm based on sorting is employed [65]. Based on the ND

set, the knee point is derived as follows. First the objective values of the ND set are

normalised to a [0, 1] range, where outliers beyond 1.5 times the interquartile range

are set to the appropriate boundary value. Next, the Euclidean distance to the origin

(0, 0) is computed for each normalised ND point. The point with the smallest distance

is then taken as the knee point (indicated with ’kp’ in Figure 7.2), which is a reasonable

approximation for the given dataset.

 610

 620

 630

 640

 650

 660

 25000 30000 35000 40000 45000 50000 55000 60000 65000

H
e

a
ti
n

g
/c

o
o

lin
g

 e
n

e
rg

y
 (

k
W

h
)

Compliance (Nmm)

ALL

KP

F1

F2

BD

ND

kp

KP

F2

F1 BD

kp

Figure 7.2: Division of data into different classes: All points (ALL), knee point area (KP),
objective one (F1), objective two (F2), bad solutions (BD) included in the analysis; relative
to the nondominated set (ND), and the knee point (kp). A subset of the full dataset is shown.

112

Chapter 7. Mining Optimisation Data for Design Rules

The data is then classified based on the knee point p = (p1, p2), and the ND set.

For this, the ND set is first reduced to the ND points that were not considered an

outlier after normalisation, but the non-normalised values are used. In order to classify

in a computationally efficient manner, each class is defined by a bounding box. These

bounding boxes are found based on the length of the range of the ND set in objective

one r1, and objective two r2. For the knee point area class (KP) the lower bound of

the box is set to (0, 0), while the upper bound is set to (p1 + r1 × 0.2, p2 + r2 × 0.2).

For class F1 a lower bound of (p1 + r1 × 0.35, 0), and an upper bound of (p1 + r1 ×
0.75, p2) are taken. Similarly, F2 is found with the bounds (0, p2 + r2 × 0.35), and

(p1, p2 + r2 × 0.75). Lastly, BD uses the bounds (p1 + r1 × 0.35, p2 + r2 × 0.35), and

(p1 + r1 × 0.75, p2 + r2 × 0.75). Following this, points are assigned a label based on

the box they are located in. Any remaining unlabelled points are excluded from the

analysis. Note that the parameters 0.2, 0.35, 0.75 are heuristic in their nature. It is

possible to change them slightly, but overlap of the regions should be avoided.

The result of the classification process is visualised in Figure 7.2. Note that gaps

are left between the different classes to improve the chances of being able to distinguish

between them. If the classes would directly neighbour each other, points on the border

are likely to have very similar features. This would impede learning what makes a

solution perform well (or not) in one objective or the other. Future work could study

how these points can be included in the analysis.

In Figure 7.3 a randomly selected example of a building spatial design is shown for

each class. Although the examples for KP and F1 look similar, the design for F1 is far

more elongated. This result can be expected, as the short spans (here coupled with

elongated spaces) allow F1 designs to reduce the strain energy, at the cost of a larger

surface area, which reduces thermal efficiency. The F2 design shows the reverse, with

a much more compact design. Finally, the BD design is not very evenly arranged in

the spatial sense, and shows relatively poor performance in both objectives.

After processing the dataset1 70 088 of the 806 430 solutions are labelled, includ-

ing 5978 KP, 3400 F1, 48 482 F2, and 12 228 BD solutions respectively. Given the

mixed-integer nature of the representation, multiple discrete subspaces can be seen in

Figure 7.2, indicated by the apparition of different curves in the point cloud. Since

the dataset is not homogeneous, the resulting classes do not have an equal number of

points. For some types of analysis, however, it is critical to have equally sized classes.

In such situations, excess solutions are removed from the larger classes uniformly at

random. In all other situations, all labelled data is used.

1The dataset is available under http://moda.liacs.nl/index.php?page=code

113

7.3. Results

(a) KP. (b) F1. (c) F2. (d) BD.

Figure 7.3: Typical examples of the different classes.

7.3 Results

Two techniques are used for data analysis: Box plots and decision trees. Box plots

give insight into the distribution of feature data for different solution classes. As such,

it may be possible to identify features that allow for a clear distinction between two or

more classes. Besides, the decision tree can provide information about distinguishing

features, since it generates clear rules based on such features. Moreover, it gives

confidence measures for the classification of solutions to different classes. Finally, by

using the learned decision tree on new data, it is possible to validate whether those

rules can indeed be used reliably.

7.3.1 Box Plots

To generate box plots all labelled data is used, with each feature normalised to a [0, 1]

range, without removing outliers. In the plots, each class is then visualised by an

individual box, such that any differences become clearly visible.

In Figure 7.4 a subset of the features is shown that appears to allow for a significant

amount of distinction between the different classes. Notice, for example, how the

mean of the most extended horizontal edge (long.mean) enables differentiation between

objective one (F1), and objective two (F2).

Surprisingly the soil surface area (soil.mean), and the horizontal surface area (not

in the figure) both showed exactly the same distributions. This occurs because all

buildings considered in the labelled dataset are single-storey buildings. For such single-

storey buildings, the horizontal surface area is equal to the soil surface area plus the

roof area. Since these two areas are equal, the horizontal surface area is exactly twice

the soil surface area, which results in their equal distributions.

It appears then that, in general, single-storey buildings have a good performance

114

Chapter 7. Mining Optimisation Data for Design Rules

 0

 0.2

 0.4

 0.6

 0.8

 1

short.m
ean

long.mean

height.building

out.mean
in.std

soil.m
ean

vert.m
ax

out_vol.building

long_short.b
uilding

meanh

KP F1 F2 BD

Figure 7.4: Boxplot of a selection of distinguishing features.

for the given objectives, even if they are not necessarily optimal. After all, the labelled

solutions are all relatively close the Pareto front approximation. Naturally, this result

may not generalise to designs with a larger number of spaces. This also indicates it

may be interesting to include an even worse class of solutions in future analysis to

see how things differ with even worse solutions. Additionally, a feature indicating the

number of storeys of a building spatial design could be useful as well in this case. Even

if just to identify this type of situation more easily.

7.3.2 Decision Trees

In order to use decision trees to their full potential, the data should be equally dis-

tributed among the classes. As such, this is carried out as described previously (Sec-

tion 7.2). Since the smallest class contains 3400 solutions, the other classes are reduced

to the same number of data points, resulting in a total of 13 600 solutions. This total is

split into a training set of 10 200 solutions, and a test set of 3400 solutions by sampling

uniformly at random. Note that as a result of random sampling, the representation of

each class is not necessarily exactly equal in either of the training and test sets, but

still sufficiently close. The training and test sets then consist of approximately 2550,

respectively 850 solutions per class. Only labelled solutions are used, no normalisation

115

7.3. Results

is applied, and no outliers of individual features are removed. In the future it may be

of interest to do the same study with unlabelled solutions to see if the generated rules

generalise.

Given the prepared dataset, the decision tree in Figure 7.5 was generated with the

CART algorithm [27] implemented in the R package rpart [95] with default settings.

In each node probabilities of belonging to each class are given (from left to right: BD,

F1, F2, KP), as well as the percentage of the data concerned. From this figure, it can

be found that the longest horizontal edge, the outer surface area, the ratio between

the longest and shortest horizontal edge, and the ratio between the inner and outer

surface area provide important information to distinguish between different classes of

solutions.

long.build >= 15

long_short.min < 0.8

out.build >= 236

in_out.std < 0.14

long.gini >= 0.043

BD

.25 .25 .25 .25

100%

F1

.03 .97 .00 .00

26%

KP

.33 .00 .34 .34

74%

F2

.49 .00 .50 .00

49%

BD

.87 .00 .12 .00

28%

BD

1.00 .00 .00 .00

23%

F2

.33 .00 .66 .01

5%

BD

.92 .00 .05 .03

1%

F2

.09 .00 .91 .00

4%

F2

.00 .00 .99 .01

21%

KP

.00 .00 .02 .98

25%

yes no

Figure 7.5: Decision tree based on data.

These rules indicate properties of a building that contribute to qualities present in

different solution classes. The first split shows that relatively long buildings (long.build)

are likely to be efficient in objective one (compliance). This split intuitively makes

sense, since buildings that are more stretched out are likely to have short spans. Note

that this is under the assumption that not just the building is stretched out, but the

spaces as well (e.g. F1 in Figure 7.3).

In the other branch buildings are a bit more compact. Additionally, it can be seen

that buildings where the minimal ratio of the spaces between the longest and shortest

horizontal edge (long short.min) is relatively high, are very likely to be solutions in

the knee point area. This indicates that although the building as a whole is more

compact, the individual spaces remain somewhat elongated to balance between the

two objectives.

The primary split between low quality solutions and the second objective (energy)

116

Chapter 7. Mining Optimisation Data for Design Rules

is made based on the outer surface area of the entire building (out.build). Since a

larger outer surface area is an indicator of a more significant loss of energy to the

outside, this appears to be a sensible rule. Further, these rules provide clear pointers

on how to navigate towards the PF. It may be possible to incorporate this in problem

specific operators to speed up the optimisation process.

From the decision tree in Figure 7.5 it appears classification of solutions is possible

with high precision. To validate this, the tree was used to classify the 3400 solutions in

the test set. Table 7.2 shows the resulting predictions. All assignments were made with

a confidence of at least 90 %, showing that it is possible to classify designs quite reliably.

A particularly notable result is the classification of the majority of the solutions in the

F2 and KP classes, which, for this dataset, is done with near perfect confidence. Not

only does this provide confidence in the optimisation process, but these rules could

even be useful during optimisation. By classifying new solutions based on these rules

it may be possible to identify which solutions are more likely to perform well, such

that expensive simulations might only be needed for those.

Prob. .0000 .0008 .0046 .0048 .0051 .0162 .0276 .0345 .0483 .0926 .9074 .9241 .9655 .9784 .9949 .9952

BD 1758 0 0 0 728 0 54 0 0 0 0 0 0 860 0 0
F1 1649 860 0 0 0 0 0 0 0 0 0 0 891 0 0 0
F2 891 0 0 748 0 860 0 0 54 0 119 0 0 0 728 0
KP 728 0 860 0 0 0 0 891 0 119 0 54 0 0 0 748

Table 7.2: Decision tree results on the test set. Columns relate to the predicted probability
of belonging to a specific class, whereas rows refer to classes. Each cell then contains the
number of solutions that belong to a solution class, with a particular probability.

Based on first discussions with a design expert, it can be concluded that interesting

heuristics are learned that accurately describe high quality building spatial designs.

However, it seems to remain difficult to foresee the consequences of changes in feature

values with respect to the objective values. In order to improve this, visual aids would

be helpful. For instance, a slider controlling the weights of the structural and thermal

objectives could be used to change the spatial design in real-time.

7.4 Conclusion

7.4.1 Summary

In this chapter optimisation data from previous experiments (Section 6.5) has been

analysed to learn what makes a good building spatial design perform well with respect

117

7.4. Conclusion

to compliance and energy performance. This information could then be used to inform

a design expert why a proposed new design should be considered. Moreover, if new

design rules are learned, the expert can use them in the future.

To be able to analyse the optimisation data, this chapter included a process to

go from optimisation data to practically analysable data. To this end, features have

been defined that describe a building spatial design in a meaningful way for a design

expert. Following that, the data was subdivided in multiple classes, representing so-

lutions that are good in objective one (structural performance), objective two (energy

performance), both objectives, or neither objective.

Data analysis has been performed through the use of box plots and decision trees.

The box plots provided a clear overview of which features are likely to be useful in

differentiating between the classes. Then, the decision tree produces specific rules to

assign solutions to one of the previously defined classes. Further, these rules have been

tested with new solutions (not used to produce the decision tree), which resulted in

high precision (≥ 96%) classification of solutions. Finally, from discussions with a de-

sign expert it was identified that the learned rules accurately describe what constitutes

a good building spatial design.

With respect to RQ4 it can be said that it is indeed possible to learn valuable infor-

mation from optimisation data, or to confirm existing empirical knowledge. Clearly,

the optimised designs have been proven to conform with rules known by design experts,

learned from the data.

7.4.2 Future Work

Besides generating insight, the design rules could also be useful in steering the multi-

objective optimisation process. For future work, it would be interesting to investigate

which moves in the optimisation process result in improvements. In other words, given

an existing design, what changes to its features will, with high probability, result in

an improved design. Furthermore, it may be possible to apply learned rules in co-

evolutionary design processes [23]. Or, one could use the results from data mining

to implement a mechanism to discard inferior solutions without the to use expensive

simulations during optimisation.

The current work analyses data for a specific type of building. To generalise the

conclusions, the same methods should be evaluated on a larger variety of building

types. Given the computationally efficient nature of the used approach, it is probable

that larger building spatial designs can be handled, however this must still be verified.

118

Chapter 7. Mining Optimisation Data for Design Rules

Additionally, currently only a subset of the optimisation data is labelled. As a

result, it is unclear whether the learned rules generally allow the identification of, for

instance, solutions that perform well in the compliance objective. It may be the case

that some areas of the objective space, that have not been considered here, have similar

characteristics in some features. This should be studied in the future. A challenge is

how to do proper analysis with both sparse and dense areas in the objective space.

In the same line of including the currently unlabelled solutions into the analysis,

it would be interesting to consider how the inclusion of solutions that lay between the

currently considered classes would influence the ability to learn useful rules. Moreover,

including solutions beyond the current worst class may provide new insights in how

solutions change as they come closer to the Pareto front.

To improve the usefulness of the learned design rules for a design expert, it would

be beneficial to have them more involved in the process. As such, an option might

be introduced that allows them to use sliders to get a feel for the relation between

different feature and objective values. The development of effective tools for these

ideas is a challenging future direction towards a user-friendly workflow from problem

specification to results and insights.

119

7.4. Conclusion

120

Chapter 8

Towards General

Multi-Objective

Mixed-Integer Optimisation

So far this thesis has focused on the development of mixed-integer methods for multi-

objective building spatial design. However, general methods for multi-objective mixed-

integer (MOMI) optimisation are also needed, as stipulated by RQ5. This chapter

takes first steps towards this goal.

Multi-objective optimisation for either only continuous or only integer variables is

widely studied, the mixed-integer case is however largely neglected. In single-objective

optimisation the mixed-integer case was successfully tackled by algorithms such as the

Mixed-Integer Evolution Strategy (MIES) [69]. This chapter aims to extend the MIES

algorithm for the multi-objective case.

It should be noted that other multi-objective mixed-integer approaches exist, such

as the Enhanced Directed Search (EDS) method [67, 100]. Another technique is the

direct zigzag method [99], but it was reported to be outperformed by the EDS method

[100]. However, both the direct zigzag and the EDS methods do not distinguish

between integer and nominal discrete (encoded by integers) variables like MIES does.

Naturally, handling these variables separately may be advantageous.

Another approach to multi-objective mixed-integer optimisation is found in [105].

This work applies Bayesian Global Optimisation (BGO) to the problem. Although

mixed-integer BGO does differentiate between integer and nominal discrete variables,

121

8.1. Algorithms

BGO would require an extensive introduction and is therefore not included in this

thesis. As such, this alternative is not elaborated on.

As in canonical evolution strategies (ES) [81, 91], one of the core principles of the

MIES algorithm is automatic step size adaptation, i.e., the online adaptation of the

strength of the stochastic perturbations. However, step size adaptation mechanisms for

the single-objective case do not necessarily directly transfer to the multi-objective case.

Furthermore, in [101] the authors analysed step size adaptation in evolutionary multi-

objective optimisation for continuous problems, and reported the best performance

when recombination is not used.

This chapter analyses mutation only approaches and step size adaptation in multi-

objective mixed-integer evolution strategies. To this end, comparisons are made on

both the performance in terms of diversity and convergence (combined in the hyper-

volume) to the Pareto front, as well as in terms of step size adaptation for the different

variable types.

Section 8.1 introduces the considered algorithms and variations. Next, in Sec-

tion 8.2 the experimental setup is introduced. Thereafter, the results are discussed in

Section 8.3. Finally, Section 8.4 summarises the chapter and provides an overview of

directions for future work.

8.1 Algorithms

Here three versions of a proposed algorithm will be introduced and compared. The core

idea is the combination of the mixed-integer evolution strategy (MIES) [69] and the

S-metric selection evolutionary multi-objective algorithm (SMS-EMOA) [39]. Then, a

variant is considered that does not use recombination, and one that selects offspring in

a tournament during mutation. Each of the three variants is described in the following.

Firstly, an algorithm is considered that combines the canonical mixed-integer evo-

lution strategy (MIES) as proposed in [69] with S-metric selection and nondominated

sorting as used in SMS-EMOA [39], as well as the (µ + 1) strategy considered there.

In the multi-objective case recombination may have a disruptive effect on the step size

adaptation mechanism. This is the result of different individuals navigating towards

different parts of the Pareto front. However, this first variant will retain recombination

for comparison purposes.

Secondly, an alternative is considered that only uses mutation, but is otherwise

equivalent to the first algorithm. Instead of mutating the offspring resulting from

recombination, mutation is applied to a uniformly at random selected individual.

122

Chapter 8. Towards General Multi-Objective Mixed-Integer
Optimisation

Thirdly, an approach is considered that uses a tournament between mutants of the

same parent as a local selection mechanism, but is otherwise equivalent to the second

algorithm. In the tournament λk mutants are generated for the selected individual,

rather than one. The mutant with the greatest hypervolume contribution is chosen

as the winner, and enters S-metric selection as usual. The idea is that competition

between offspring may benefit step size adaptation. That is, the mutant with the

better step size should also have the better performance, and should thus be selected.

In [69] no bounds were considered for continuous and integer step sizes. However,

since these step size adaptation mechanisms were not designed with multi-objective

optimisation in mind, step sizes might behave erratically and grow excessively. This

could be one of the negative effects of recombining individuals that are navigating

towards different parts of the Pareto front. To prevent this, step sizes for continuous

and integer variables are given an upper bound equal to half the used variable range

(as given in the next section). Step sizes of nominal discrete variables were already

bounded in [69], and are bounded equivalently here.

8.2 Experimental Setup

To evaluate the algorithms three problems are considered: the multi-sphere (msphere)

function in Equation 8.1, the multi-barrier (mbarrier) function in Equation 8.2, and

the multi-objective optical filter (moptfilt) problem from [1, 5]. For the multi-objective

case both the sphere and barrier functions can be adjusted with an offset for each term,

such that continuous, integer, and nominal discrete optima are different in the second

objective. The settings considered for each of these problems are shown in Table 8.1.

Here r, z,d represent vectors of continuous, integer, and nominal discrete variables

respectively, and nr, ni, nd the dimensionality for each of them.

fsphere1(r, z,d) =

nr∑

i=1

r2i +

nz∑

i=1

z2i +

nd∑

i=1

d2i → min

fsphere2(r, z,d) =

nr∑

i=1

(ri − 2)2 +

nz∑

i=1

(zi − 2)2 +

nd∑

i=1

(di − 2)2 → min

(8.1)

123

8.2. Experimental Setup

fbarrier1(r, z,d) =

nr∑

i=1

(
r2i + θ sin(ri)

2
)

+

nz∑

i=1

A [zi]
2

+

nd∑

i=1

Bi [di]
2 → min

fbarrier2(r, z,d) =

nr∑

i=1

(
(ri − 2)2 + θ sin(ri − 2)2

)

+

nz∑

i=1

(A [zi]− 2)2 +

nd∑

i=1

(Bi [di]− 2)2 → min

(8.2)

problem nr r range nz z range nd d range

fsphere 5 [0, 20] 5 [0, 20] 5 [0, 20]
fbarrier 5 [0, 20] 5 [0, 20] 5 [0, 20]
foptfilt 11 [0, 1] N/A N/A 11 {0, 1}

Table 8.1: Settings of the benchmark functions.

For the barrier function θ = 1, and A is generated by Algorithm 6 from [69]

with the parameter C = 20. This results in a vector of increasing integers that are

occasionally swapped to create barriers for the optimisation algorithm, as shown in

Equation 8.3. Further, Bi∈{1,...,nd} is a set of nd random permutations of the integer

sequence {0, 1, . . . , 20}, shown in Equation 8.4. Both A and B remain fixed for all

experiments. Unlike in [69], here smooth wave-like barriers are used in the continuous

part, rather than staircase-like barriers.

A =
[
0 1 2 4 6 3 5 7 8 9 11 12 10 14 15 16 13 17 19 20 18

]
(8.3)

A variant of the optical filter problem from [1, 5] with mixed variables and a

second objective is considered here. Pairs of continuous and (binary) nominal discrete

variables are used. When a binary variable is active, the corresponding continuous

variable is used in the objective functions, otherwise it is ignored. If all bits are

inactive a penalty of (250, 1250) is returned.

124

Chapter 8. Towards General Multi-Objective Mixed-Integer
Optimisation

B =

15 19 3 14 10 20 9 12 11 13 18 5 17 1 6 2 16 7 0 4 8

14 11 9 20 16 15 0 10 2 13 3 4 1 5 17 6 7 12 8 18 19

20 17 15 4 0 14 11 5 8 7 16 9 12 3 13 6 18 1 2 19 10

14 5 18 6 9 11 8 2 20 7 12 13 3 0 10 15 16 4 1 17 19

16 13 3 20 10 15 4 8 7 1 0 19 14 5 12 6 2 18 17 9 11

19 4 11 17 16 12 0 7 6 18 8 1 5 14 10 15 2 3 9 20 13

6 1 3 14 8 4 2 15 10 9 13 5 16 18 19 11 7 12 0 20 17

16 1 17 15 0 12 11 18 13 7 19 14 2 8 9 3 10 20 4 6 5

13 6 14 17 11 2 4 19 7 20 8 18 3 10 5 1 0 12 9 16 15

18 20 15 4 11 9 0 6 5 8 12 17 19 3 14 16 10 7 1 13 2

10 12 3 18 19 9 1 17 11 15 5 8 13 6 2 20 7 14 0 16 4

6 19 0 14 1 7 17 12 16 18 11 4 13 8 15 3 20 9 10 2 5

1 13 11 5 10 15 20 2 6 14 18 12 8 7 0 9 3 17 4 16 19

18 7 13 3 6 8 20 11 2 15 12 9 4 19 0 5 1 14 10 17 16

20 1 14 10 15 13 11 5 2 9 18 3 12 4 8 7 19 6 17 0 16

5 6 9 19 14 3 12 17 13 11 15 10 0 2 4 20 18 16 1 8 7

19 15 5 12 18 6 1 14 2 16 0 11 4 7 13 8 3 9 10 17 20

3 13 17 9 6 12 4 20 14 18 5 10 2 8 19 11 1 7 0 15 16

7 17 0 20 8 18 12 11 13 15 3 4 10 5 1 6 19 14 16 9 2

4 1 3 15 19 8 16 14 10 6 18 5 0 7 20 17 11 9 13 12 2

11 3 16 5 4 14 10 17 0 19 13 8 12 15 1 20 18 6 9 7 2

(8.4)

The original objective considers the transformation of a light wave by means of

a filter that consists of layers of different materials from a limited set of materials

(discrete variables). The layers can have different widths (continuous variables). The

transformed waveform is compared to a target waveform and the root mean square

error is measured, and to be minimised.In addition, a second objective is considered,

the minimisation of the filter thickness:

foptfilt2(r,d) =

nr∑

i=1

ridi → min. (8.5)

8.2.1 Algorithm Settings

The canonical approach uses dominant recombination for the variables, and interme-

diate recombination for the step sizes as in [69]. All three approaches use single step

size mode in all domains (continuous, integer, and nominal discrete), meaning a single

step size per domain. Furthermore, µ = 10, and a reference point (2500, 2500) are con-

sidered for all approaches and objective functions. The tournament based approach

uses a tournament of size 2. Step sizes are initialised to 25 % of the variable range for

continuous and integer variables, and 1
nd

for nominal discrete variables. Step sizes are

125

8.3. Results

bounded to [0, 10] for continuous, [1, 10] for integer (upper bounds equal half of the

range as mentioned before), and [1
nd
, 0.5] for nominal discrete variables. An evaluation

budget of 10 000 is used in order to be able to analyse the hypervolume and step size

convergence during various phases in the optimisation process.

8.3 Results

For both the msphere and mbarrier problems the canonical MIES with S-metric selec-

tion shows the fastest convergence in Figure 8.1, and outperforms the other approaches

throughout the optimisation process. The mutation only approach has a slower start,

but ultimately reaches only slightly worse hypervolume values. For both the msphere

and mbarrier problems the tournament approach is clearly worse than the other two.

Any possible advantages of the additional selection pressure in the tournament ap-

proach are clearly mitigated by the larger number of evaluations used per generation.

On the moptfilt problem all three approaches quickly converge to a stable situation.

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

H
y
p
e
rv
o
lu
m
e

Evaluations

msphere

Canonical

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

H
y
p
e
rv
o
lu
m
e

Evaluations

mbarrier

Mutation

 5.2e+06

 5.3e+06

 5.4e+06

 5.5e+06

 5.6e+06

 5.7e+06

 5.8e+06

 5.9e+06

 6e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

H
y
p
e
rv
o
lu
m
e

Evaluations

moptfilt

Tournament

Figure 8.1: Mean hypervolume convergence over 25 repetitions.

Although it has more variables (22), it may be easier due to the smaller variable ranges

that need to be searched.

The median attainment curves [49] in Figure 8.2 show that the canonical and

mutation approaches find similar Pareto front approximations on the msphere and

mbarrier functions, with the canonical approach remaining slightly better, as expected

given the observed hypervolume convergence. All three approaches find very similar

Pareto front approximations for the moptfilt problem, which suggests that they are

close to the true Pareto front.

From Figure 8.3 it appears that step sizes σ for continuous and ς for integer vari-

ables stabilise reasonably well, whereas step sizes ζ for the nominal discrete variables

show more erratic behaviour. However, Figure 8.4 shows that step sizes generated

126

Chapter 8. Towards General Multi-Objective Mixed-Integer
Optimisation

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

f 2

f1

msphere

Canonical

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400

f 2

f1

mbarrier

Mutation

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 22 24 26 28 30 32 34 36

f 2

f1

moptfilt

Tournament

Figure 8.2: Median attainment curves over 25 repetitions.

for the offspring vary widely. The exception is the step size for continuous variables

where the mutation only and tournament approaches do seem to stabilise. Although

the tournament approach does so much later, this is likely due to its slower con-

vergence. Thus, it appears only using mutation does indeed contribute to step size

adaptation, but integer and nominal discrete step size adaptation have to be adjusted

for the multi-objective case. Further, despite step sizes not adapting well when using

recombination, it does result in better algorithm performance.

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e
a
n
 s

te
p
 s

iz
e
 i
n
 t

h
e
 p

o
p
u
la

ti
o
n

Evaluations

Continuous (σ)

Canonical

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e
a
n
 s

te
p
 s

iz
e
 i
n
 t

h
e
 p

o
p
u
la

ti
o
n

Evaluations

Integer (ς)

Mutation

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e
a
n
 s

te
p
 s

iz
e
 i
n
 t

h
e
 p

o
p
u
la

ti
o
n

Evaluations

Nominal discrete (ζ)

Tournament

Figure 8.3: Mean step size in the population for each variable type, single run on the
msphere problem.

8.4 Conclusion

8.4.1 Summary

In this chapter first steps have been taken towards general multi-objective mixed-

integer optimisation, in accordance with RQ5. To this end the mixed-integer evolu-

tion strategy (MIES) [69] has been extended with multi-objective components from

127

8.4. Conclusion

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
te

p
 s

iz
e

Evaluations

Continuous (σ)

Canonical

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
te

p
 s

iz
e

Evaluations

Integer (ς)

Mutation

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
te

p
 s

iz
e

Evaluations

Nominal discrete (ζ)

Tournament

Figure 8.4: Step size per generated individual for each variable type, single run on the
msphere problem.

SMS-EMOA [39]. Three variants of the considered algorithm have been introduced.

Firstly, a variant that used MIES in its canonical form. Secondly, a variant that ex-

cluded recombination. Thirdly, a variant without recombination, but with a mutation

tournament.

These approaches have been evaluated on three multi-objective mixed-integer prob-

lems, two test functions, and the real world problem of optical filter design. The two

test functions considered all three types of variables: continuous, integer, and nominal

discrete. In the optical filter problem only continuous and nominal discrete variables

have been used.

The results, surprisingly,showed that the canonical variant of the algorithm per-

forms best. Recombination seems to have a significant advantage in exploration, and

is thus useful, despite its expected disruptive effect in step size adaptation for multi-

objective problems. Further, the experiments showed that when only mutation is used,

step sizes only adapt well for the continuous variables. Finally, mutation tournaments

did not lead to sufficient additional selection pressure to offset the extra evaluation

costs.

8.4.2 Future Work

Multiple directions of future work come to mind considering the experimental results.

For instance, more work is needed to improve step size adaptation for the multi-

objective case. First off, adaptation mechanisms have to be developed that allow

integer and nominal discrete step sizes to stabilise. Second, step size adaptation that

works together with recombination also has to be developed.

128

Chapter 8. Towards General Multi-Objective Mixed-Integer
Optimisation

Another interesting question is what recombination is actually doing that makes

it so effective. Is it, for instance, particularly useful for the navigation of the discrete

landscape? Additionally, once the workings of recombination are better understood, it

may be considered to switch partway through the optimisation process to a mutation-

only approach. After all, if one is more effective in exploration, and the other in

exploitation, this would be a beneficial strategy.

In addition to questions arising from the experiments presented here, the MOMIES

algorithm has to be developed further in other directions as well. Throughout this

thesis, the importance of constraint handling has become overtly apparent. As such,

integrating constraint handling into the MOMIES algorithm is a natural next step to

investigate.

129

8.4. Conclusion

130

Chapter 9

Applications in Building

Design

This chapter is primarily based on several articles to which the author con-

tributed, but was not the main contributor. Specifically, Section 9.1 contains

parts from [21] (later extended in [25]) and [23], Section 9.2 is based on [22], and

Section 9.3 summarises [24]. For all of these works Sjonnie Boonstra was the

main contributor, and the author was second contributor.

Acknowledgement

So far this thesis has focused on algorithm development. First for building spatial

design, and then for general applications (Chapter 8). However, the final research

question (RQ6) asks how these algorithms are beneficial to real world problems. To

this end, three applications of the developed algorithms are showcased in this chapter.

The first two employ the problem specific building spatial design algorithm (SMS-

EMOA-SC), while the third uses the general multi-objective mixed-integer evolution

strategy (MOMIES).

Superstructures (such as the supercube from Chapter 3) allow optimisation al-

gorithms to efficiently explore a limited search space. Real world design processes,

however, often also consider options outside such predefined boundaries. In order to

benefit from both the efficient search of an optimisation algorithm, and to explore a

greater diversity of solutions, a combination of two methods is proposed in the first

application domain. Specifically, co-evolutionary design simulation and evolutionary

131

9.1. Combining Co-Evolution and Optimisation

optimisation are combined. A working example of this combination is implemented

and evaluated.

Building Information Modelling (BIM) [37] is frequently used in the building design

practice. However, integrating BIM with an optimisation algorithm is not straightfor-

ward. In this second application, the interaction between a BIM environment and the

previously introduced SMS-EMOA-SC algorithm (Section 6.3.2) is investigated, and

gaps between the optimisation environment and the BIM environment from practice

are identified.

During building spatial design optimisation, the quality of the design has to be

assessed. To assess the structural performance, for instance, a building structural de-

sign is needed. Generating a building structural design can be realised by heuristic

grammars. The quality of fixed, pre-defined grammars is, however, not guaranteed. A

new grammar is developed that can quickly generate high quality structural assign-

ments for a given building spatial design. This is achieved by optimising the rules that

operate the grammar. In this third application, the performance of this new grammar

is assessed by comparing it to a baseline of structural assignments set by the MOMIES

algorithm (Section 8.1).

This chapter continues in Section 9.1 with the exploration of a combination of co-

evolutionary design simulation and evolutionary optimisation. Then, in Section 9.2

the gaps between optimisation tools and their practical use in a BIM environment

are investigated. Section 9.3 follows with a showcase application of the MOMIES

algorithm. Finally, Section 9.4 summarises these contributions, and discusses future

research directions.

9.1 Combining Co-Evolution and Optimisation

To benefit from both exploration and optimisation, a relay hybrid search using both a

superstructure and a superstructure free representation is proposed. To this end, SMS-

EMOA-SC (Section 6.3.2) is used with the supercube representation (Section 3.2),

and co-evolutionary design (CD) simulations [52] are used with a superstructure free

representation. First the superstructure free representation is introduced, together

with methods to convert it to the supercube representation and back. This is followed

by a description of the CD method, the relay method, and finally a case study.

132

Chapter 9. Applications in Building Design

9.1.1 Superstructure Free Representation

Although in Chapter 3 a superstructure representation was selected for building spatial

design optimisation, a design process can also benefit from a free representation. For

instance, during optimisation the number of spaces is constant in the supercube rep-

resentation (Section 3.2), but this is not necessarily the case in the design process. To

allow the free exploration of all possible building spatial designs, here a superstructure

free representation is introduced.

This representation, called movable sizeable, describes a building by a vector of

spaces s, as shown in Equation 9.1. Here, si represents a space, L the coordinates of

the space origin and D the geometry of the space. Here, w, d and h indicate the width

in x, depth in y, and height in z coordinates respectively. Also see Figure 9.1, where an

example of the movable sizeable representation is given, as well as the corresponding

building spatial design.

s = {s1, s2, . . . , sNspaces} where si = [L,D]

L = [x, y, z]

D = [w, d, h]

(9.1)

h
1
,h

3
h
2

w1, w2 w3

d 1
, d 2

d 3

{x1, y1, z1}

{x2, y2, z2}

{x3, y3, z3}

(a) Movable sizeable representation.

Space 1

Space 2

Space 3

(b) Spatial design.

Figure 9.1: The movable sizeable representation corresponding to a spatial design.

133

9.1. Combining Co-Evolution and Optimisation

9.1.2 Conversion

For a combined search process using both the supercube and the movable sizeable

representations, it has to be possible to convert a design from one representation to

the other. To this end, two conversion mechanisms have been developed: One that

converts from supercube to movable sizeable, and another that converts from movable

sizeable to supercube.

Conversion from the supercube representation to the movable sizeable representa-

tion works as follows. First, for each space in the supercube, the smallest and largest

indices are extracted per dimension (w, d, h) according to Equation 9.2. Then, Equa-

tion 9.3 computes the coordinates of the origin of a space by taking the sum over all

indices below its minimal index. Note that if the minimal index is one, there is nothing

to take the sum of, and the sum is thus zero. Finally, the sum of all values from the

minimal to the maximal index results in the dimensions of a space, per Equation 9.4.

i`min = min({i|b`i,j,k}) i`max = max({i|b`i,j,k})
j`min = min({j|b`i,j,k}) j`max = max({j|b`i,j,k})
k`min = min({k|b`i,j,k}) k`max = max({k|b`i,j,k})

(9.2)

x` =

i`min−1∑

p=1

wp y` =

j`min−1∑

q=1

dq z` =

k`min−1∑

r=1

hr (9.3)

w` =

i`max∑

i=i`min

wi d` =

j`max∑

j=j`min

dj h` =

k`max∑

k=k`min

hk (9.4)

Next, the conversion procedure from the movable sizeable to the supercube repre-

sentation is described. In order to find the dimensioning variables wi, dj , hk, first the

minimal (e.g. x) and maximal (e.g. x+w) coordinates of every space are stored. These

values are then sorted in ascending order (per dimension), and duplicates are removed.

The dimensioning variables are then found as wi = xi+1 − xi, with i ∈ 1, . . . , n − 1,

and n being the number of values. For the variables dj and hk the same procedure

is applied, but based on y and z respectively. To find which binary variables b`i,j,k
should be active for a space `, the coordinates of the binary variable (or cell) are taken

according to Equation 9.3, where instead of the minimal indices the indices relevant

to the binary variable are used. Then, given such a coordinate, a binary variable

(cell) belongs to a space, and is thus set to one, if (for example in the case of the x

dimension, but this goes for y and z too) xi ≥ xspace, and xi < xspace + wspace.

134

Chapter 9. Applications in Building Design

9.1.3 Co-Evolutionary Design Simulation

Co-evolutionary design (CD) simulations (as proposed in [73] – among others) have

already been used in [52] to optimise the structures belonging to building spatial

designs. The method was shown to find better designs quickly, but was also found

to be sensitive to local optima. The process followed by the CD simulations was

to delete poorly performing spaces, and then recover the original number of spaces

and the volume by dividing spaces and rescaling the design. Given those promising

results, the superstructure free representation will also be used in combination with

CD simulations.

In the case study the CD simulation will use a simple selection and modification

rule set. As such, only a single solution is generated after each co-evolutionary cycle.

The selection and modification rule starts by evaluating the performance of each space

in a design with respect to each discipline (again structural and energy performance).

These performances are then normalised based on the minimal and maximal points.

Here the minimal and maximal points are defined as the points containing the lower,

and respectively upper bound performance values of each discipline. Subsequently,

the space associated with the worst performance is removed, e.g. space s4 in the

example in Equation 9.5. Here the worst performance is measured by the shortest

distance to the maximal (anti ideal) point for both disciplines. Recall that in this

equation, s denotes a set of spaces {s1, . . . , sn}, with every space si consisting of a set

of coordinates {xi, yi, zi} and a set of dimensions {wi, di, hi}, as previously introduced

in Equation 9.1.

s{s1, s2, s3, s4} → s{s1, s2, s3} (9.5)

Next, a space is split to restore the original number of spaces, e.g. s1 is split into

s5, s6 in Equation 9.6. To decide which space is split, the spaces are ranked according

to their distance to the minimal (ideal) point. The best performing space is chosen,

unless splitting it would result in a space with a side smaller than twice the constraint

on the supercube’s minimal division length (see next paragraph). In that case, the

next best ranked space is considered for splitting, until one is found that satisfies the

constraint. By default, spaces are split in a vertical oriented plane (normal in (x, y)

direction) along a line parallel to the x axis, or parallel to the y axis when the space’s

side in x direction is longer than its side in the y direction. A space is never split in a

horizontal plane (normal in z direction). Finally, after splitting, the complete design

is scaled up equally in the x and y directions to match the original design volume.

135

9.1. Combining Co-Evolution and Optimisation

Scaling of the design completes the selection and modification rule set, resulting in a

new design in Equation 9.7. The full procedure is also depicted in Figure 9.2.

s1{{x1, y1, z1}, {w1, d1, h1}} →

s5{{x1, y1, z1}, { 12w1, d1, h1}}
s6{{x1 + 1

2w1, y1, z1}, { 12w1, d1, h1}}
(9.6)

s{s2, s3, s5, s6} (9.7)

s1 s2 s3 s4
delete s1 s2 s3

split
s5 s6 s2 s3

scale s5 s6 s2 s3

Figure 9.2: A movable sizeable design changed according to CD modification rules.

The minimal division length in the supercube ensures liveable spaces that are nei-

ther too low nor too thin to use. Exact settings of the minimal values of width, depth,

and height divisions are given in the case study settings. Although this constraint does

not directly apply to the MS representation, taking it into consideration vastly reduces

the chances of (but not entirely prevents) generating designs that would be considered

infeasible in the SC representation. Any such infeasible designs are manually excluded

for this study.

9.1.4 Combination

To allow for both a wider exploration, and efficient optimisation of interesting design

alternatives, a hybrid search employing both the supercube, and the movable sizeable

representations is introduced. A straightforward combination of methods is the relay

scheme, as shown in Figure 9.3. In this scheme, methods are executed in relays, and

apart from the first, each method is initialised with the results from the previous

method. For a detailed exposition of possible hybridisation schemes the interested

reader is referred to [94].

In this case, CD is used as the starting method because it makes sense to explore

first, before starting a time consuming optimisation process. Even so, starting with

SMS-EMOA-SC could be studied in the future. Beginning with the CD method means

the user needs to provide an initial design in the movable sizeable format, i.e., a

collection of spaces with their locations and dimensions.

In each iteration, a method generates a number of design solutions, of which one or

136

Chapter 9. Applications in Building Design

Design Input

n evaluations

SMS-EMOA

Designs along

SMS-EMOA path
Selected design(s)

n cycles

CD
Selected designs(s)

Conversion MS → SC Conversion SC → MS

Designs along

CD path

OR

Figure 9.3: Relay hybridisation for the supercube (SC) and movable sizeable (MS) repre-
sentations.

multiple have to be selected for the next method to continue with. Pareto optimality

could help in this selection. However, the number of designs that are contained in a

Pareto front approximation (PFA) varies. Thus, selecting the entire PFA could lead to

excessive computational costs if a CD simulation is performed for each point, and in the

case of SMS-EMOA-SC it could result in an initial population larger or smaller than

the desired population size. Therefore, the so-called knee point solution is used. The

knee point solution is selected here as the point that lies closest to the minimal (ideal)

point. SMS-EMOA-SC starts with a supercube sized to contain this design, and adds

an additional layer of cells on each side to allow for more variation. This means that for

each iteration of the relay method the supercube size used by SMS-EMOA-SC may be

different, and can thus result in the discovery of different designs. Then, given the size

of the supercube and the desired population size, the population is initialised randomly

according to the operator from Section 5.3.1. Completely random initialisation is

chosen over the inclusion of initial solutions based on the design produced by CD,

because preliminary results showed that such solutions are too dominant over randomly

initialised designs, and hamper SMS-EMOA-SC in its search. For CD no additional

initialisation process is needed beyond the conversion of the knee point design to the

movable sizeable format.

An alternative to selection based on the knee point is hypervolume-based subset

selection [28, 64]. This method selects a representative subset (a specified number of

points) from a PFA and could be studied in the future as another approach to select

the design – or set of designs – to continue from.

137

9.1. Combining Co-Evolution and Optimisation

9.1.5 Case Study

To test the relay method it is used in a case study for the optimisation of a building

spatial design. In addition, its performance is compared to optimisation with only

SMS-EMOA. This section continues with a description of the considered objectives,

and the experimental settings.

Objectives

As in the rest of this thesis, the considered objectives again concern the structural

performance, and the thermal performance. To be able to evaluate these objectives

for a given spatial design, additional properties are needed. These properties are as-

signed based on individual grammars for each objective. The settings of the structural

grammar are the same as those presented in Section 6.4.1. For the thermal grammar

there are minor differences, as described in the following.

Temperature regulation in the thermal grammar is done by cooling when the tem-

perature is above Tc = 25 ◦C, or heating when the temperature is below Th = 20 ◦C.

For the outside temperature real world data from the Royal Dutch Meteorological

Institute (KNMI) [61] is used. Specifically a time period from 01-07-2014 01:00 to

31-07-2014 24:00 is simulated. It should be noted that 2014 is considered considered

to be an exceptionally warm year [60].

Considering the structural and thermal grammars, the objectives are as follows.

The compliance is to be minimised, and is computed as the total strain energy for all

elements and load cases in N m (newton metre). Further, the thermal performance in

kW h (kilo watt hour) also has to be minimised, and is found as the sum of the heating

and cooling energy used over the simulated time period.

Settings

The case study compares an individual run of SMS-EMOA-SC to the relay method

which combines SMS-EMOA-SC and co-evolutionary design (CD) simulation. SMS-

EMOA-SC is used here as described in Section 6.3.2, and also with the settings spec-

ified there. The relay method works as described before in Subsection 9.1.4.

As in previous experiments, the constraints presented in Section 3.2 are considered

here for all methods. Further, to prevent unrealistic designs from being generated, the

dimensioning variables of the supercube are constrained. This will ensure the cells are

never too small. The width and depth variables use a minimum of 500 mm, whereas

the height variables consider a minimum of 3000 mm.

138

Chapter 9. Applications in Building Design

The modification rules used in the CD method already work within the bounds of

most constraints. There are two exceptions, however. Constraints on the dimensioning

variables are not followed, since the MS representation does not know the concept of

cells. Further, Constraint C2 C2 may also be violated by the modification rules. To

prevent infeasible designs from being transferred to SMS-EMOA-SC, these constraints

are check manually for this study.

Both the individual SMS-EMOA-SC method, and the relay method share a number

of settings. They consider a volume V0 = 300 m3 (cubic metre), for a building spatial

design consisting of eight spaces.

Specific to the individual run of SMS-EMOA-SC is the use of a supercube with

three, two, and five cells in the width, depth, and height dimensions respectively.

This supercube is then initialised at random with the operator from Section 5.3.1.

Furthermore, SMS-EMOA-SC is executed for 5000 evaluations.

The relay method starts with the CD method and a building spatial design consist-

ing of two spaces in x, one space in y and four spaces in z direction. All of these spaces

measure 3500 mm in width, 3570 mm in depth, and 3000 mm in height. Five iterations

are considered for the relay method, each consisting of 10 evaluations for CD, and

1000 for SMS-EMOA-SC. This results in a total of 5050 evaluations, comparable to

the 5000 from the individual execution of SMS-EMOA-SC.

9.1.6 Results

Results of both the individual SMS-EMOA-SC run, and the relay method are shown in

Figure 9.4. A first observation is that the solutions in the Pareto front approximation

(PFA) found by SMS-EMOA-SC dominate most of the solutions found by the relay

method. The relay method did, however, find better performing solutions in some

of its iterations with regard to structural design (SD). For instance, iteration 1 of

the relay method finds solutions with an SD performance of around 20 N m, versus

approximately 25 N m for the best solution found by SMS-EMOA-SC. However, only

two out of five iterations were able to compete with SMS-EMOA-SC on this part of the

PFA. This shows that restarting the search with a new supercube shape is of limited

use when 1000 evaluations are used per iteration. Regardless, a greater diversity of

designs is explored by the relay method, even if not many are competitive.

When the first iteration of the relay method was allowed to continue running until

5000 evaluations were reached, however, it was able to outperform most of the PFA

discovered by SMS-EMOA-SC individually. This suggests two things. Firstly, more

139

9.1. Combining Co-Evolution and Optimisation

Figure 9.4: Pareto front approximations for each iteration of the relay method, a single
run of SMS-EMOA-SC, and an extended run based on the first iteration of the relay.

than 1000 evaluations are needed by SMS-EMOA-SC to converge with the considered

settings. Secondly, the CD method is able to suggest interesting search regions. The

question remains, however, why the relay method did not find further improvements

after the first iteration.

Figure 9.5: The path of the relay method, i.e. selected designs (knee points) after each
optimisation run. Here SC stands for supercube.

Figure 9.5 provides some insights into the search process of the relay method. For

each iteration, it shows both the input and output designs for CD as well as SMS-

EMOA-SC. Here it becomes clear that although CD discovers an improved knee point

design in the first iteration, in subsequent iterations it did not manage to do so. As

a result, the variations in the supercube size are in fact solely based on the output of

140

Chapter 9. Applications in Building Design

SMS-EMOA-SC itself. This also explains why the designs in Figure 9.5 only change

after the first iteration during execution of SMS-EMOA-SC, and not when CD is

performed. What is also notable, is that the supercubes for iterations four and five

are the same. Despite that, they unveiled very different PFAs (Figure 9.4). Evidently,

at least in these early stages of the optimisation process, there is great variation in

the progress of SMS-EMOA-SC towards the Pareto front.

9.2 Spatial Design Optimisation in Practice

The author gratefully acknowledges the contributions of Jeffrey van den Heuvel,

whose efforts in the interaction between the optimisation tool and BouwConnect

have lead to many new insights.

Acknowledgement

Recently, optimisation has received more attention in the building design practice.

This attention results from stricter demands on performance measures, but also from

the increasing number of objectives and disciplines that are taken into consideration.

Since all of these aspects result in an increased complexity, building design optimisation

can no longer be handled adequately by humans alone, and optimisation techniques

are necessary.

BIM adds structure to the data used in the AEC (Architecture, Engineering, and

Construction) industry, which simplifies the collaboration between different disciplines.

However, BIM is also complex due to all the information it includes, which makes

integration with optimisation techniques difficult. Further, changes to a BIM model

can result in changes to the number of variables to be considered during optimisation.

Given the prominence of both building design optimisation research, and the use of

BIM in building design practice, here the interaction between them is studied. Partic-

ularly, the aim is to identify the barriers that keep designers from using optimisation

methods in a BIM context. To this end a case study is presented on the interaction

between a designer using a BIM environment and an optimisation method.

Despite these challenges, here the combination of BIM and optimisation is investi-

gated. First the considered BIM environment is discussed, along with its integration

with building spatial design optimisation. This is followed by a study of how a designer

interacts with an optimiser. Finally, the results of this case study are evaluated.

141

9.2. Spatial Design Optimisation in Practice

9.2.1 Integrating BouwConnect BIM and Optimisation

BouwConnect BIM1 is used in the following study. This BIM tool has a product

library that describes product parts with data objects. Each data object gives infor-

mation on things such as the material, shape, and function. Further, a building model

environment makes it possible to place products in a building spatial design. This

environment is also able to compute metrics for energy, daylight, ventilation, and fire

safety. All of this is, naturally, based on the spatial design and the included products.

The connection between BouwConnect and the optimiser is facilitated by an XML

(eXtensible Mark-up Language) file. From this file the supercube representation can

be extracted to be used by the optimiser. On the other hand, when transferring data

to the BIM environment, building elements that describe a space are extracted form

the XML file.

9.2.2 Case Study

In this case study, a building design from BouwConnect BIM is modified based on

optimisation results. To do so, the following procedure is considered. An existing

design is selected, the design is then transferred to SMS-EMOA-SC (Section 6.3.2),

and optimised. Based on the optimisation results, the design in the BIM environment

is then modified. Finally, a comparison is made between the initial and the new

designs, while also analysing the process.

Figure 9.6 depicts the selected design, which cuboid shapes fit well with the limi-

tations of the supercube representation. Note that the light grey wall in Figure 9.6a

is shared with a neighbouring building, and the same goes for the wall opposite to

it. Figure 9.6b includes the dimensions (in metres) of the design, as used in the

experiments.

Although some parts of the conversion process from BouwConnect to the opti-

miser were automated, others could not. Particularly, BouwConnect defines building

elements, whereas the supercube representation considers spaces. As a result, spaces

had to be defined manually based on the building elements, before they could be used

by the optimiser.

The objectives, as well as the settings used form SMS-EMOA-SC considered in this

case study are the same as those described in Section 6.4. Further, the constraints

from Section 3.2 are also used again. Based on the design in Figure 9.6 a fixed volume

V0 = 357 m3 is considered, for a supercube with six spaces, and three divisions each

1www.bouwconnect.nl

142

Chapter 9. Applications in Building Design

(a) BIM model in BouwConnect. (b) Spatial layout with dimensions in metres.

Figure 9.6: The initial design considered in the case study.

in width, depth, and height. Note that although the supercube settings are based on

the original design, SMS-EMOA-SC starts from designs that are randomly initialised

within those supercube restrictions. Finally, SMS-EMOA-SC is executed 10 times, for

10 000 evaluations.

To select an optimal design from the Pareto front approximation (PFA) produced

by SMS-EMOA-SC, the following procedure is employed. First, the PFA is taken over

all results from the ten runs. These solutions are then normalised to a [0, 1] range,

after which the point closest to the origin (0, 0) is selected. The chosen solution is

imported into BouwConnect and, based on the original, information is added that is

necessary for the calculations BouwConnect performs.

9.2.3 Results

Figure 9.7a shows a scatter plot of the performances for designs found during the

ten runs of SMS-EMOA-SC, as well as the original design, and the Pareto front ap-

proximation (PFA). Vast improvements are shown over the original design for both

objectives considered by the optimiser. In Figure 9.7b a closer look at the trade-off

between solutions in the PFA is provided. The visualisations of the knee point de-

sign and the extremal solutions for both objectives also give insight in how the design

changes for different objectives.

The selected knee point design, together with its dimensions in millimetres, is

visualised in Figure 9.8. Since this design is considerably different from the original

(Figure 9.6) the designer had to make a number of additional design decisions in Bouw-

Connect. Particularly notable is that the walls parallel to the y direction are assumed

143

9.2. Spatial Design Optimisation in Practice

(a) Scatter plot without outliers (< 5 %). (b) Normalised Pareto front approximation.

Figure 9.7: Optimisation results for ten runs of SMS-EMOA-SC.

x
zy

46
25

29
16

3453

2197

2083

2163 2462 2916
6118

Figure 9.8: The knee point design found by SMS-EMOA-SC, including dimensions in
millimetres.

to be fully shared with other buildings, although they are longer than in the original

design, and as such result in a larger shared surface. Consequently, the orientation of

some windows also had to be changed. Another change was the reassignment of the

functions of each space, since the spaces are distributed very differently in the new

design.

A comparison is made between the original and the optimised design based on

various characteristics generated by BouwConnect and SMS-EMOA-SC, as shown in

Table 9.1. Most notable is that, although the volume of the design is maintained, the

floor area has been reduced by 50 %. On the other hand, SMS-EMOA-SC was very

effective in reducing the objectives it considered, strain energy, and heating and cooling

144

Chapter 9. Applications in Building Design

energy. This also resulted in a reduction of the total annual energy use2. The energy

index,2 on the other hand, takes into account the floor area in its computation. Since

the floor area became smaller, the energy index be came worse (higher). Specifically,

the index changed from 32.82/118 = 0.28 MW h m−2 to 25.45/59 = 0.43 MW h m−2.

The differences between the values for the heating and cooling energy and the total

annual energy use can also be explained. Heating and cooling energy is computed

over just six days (details in Section 6.4.1), while the total energy use considers a full

year and takes ventilation, hot water, and lighting into account on top of heating and

cooling.

source characteristic original design optimised design

SMS-EMOA-SC volume 357 m3 357 m3

BouwConnect floor area 118 m2 59 m2

SMS-EMOA-SC strain energy 1.871× 105 N mm 0.2322× 105 N mm
SMS-EMOA-SC heating and cooling energy 733.5 kW h 713.3 kW h
BouwConnect total annual energy use2 32.82 MW h 25.45 MW h
BouwConnect energy index2 1.85 2.03

Table 9.1: Comparison of characteristics between the original and optimised designs.

An important part of this study is the identification of practical aspects that com-

plicate the use of optimisation for building spatial designs in BIM environments. With

this in mind, a first remark is that the optimised design is not practical, as evidenced by

the floor area being reduced by half, even though for practical applicability it would

be essential to keep this (near) constant. While maintaining the floor area, rather

than the volume, would be a simple change for an optimisation expert, changing the

behaviour of the optimiser is non-trivial for designers using a BIM environment.

Due to the mismatch in how the two tools describe the building design, the transfer

of designs between them could only be automated to a limited extend. Specifically,

BouwConnect describes the design with building elements (which is usual in BIM),

whereas the supercube representation considers spaces. To be able to fully automate

the conversion process, either the BIM environment, or the optimisation environment

will have to be adapted to take this difference into account.

Adding information that is essential to the computations in BouwConnect to the

optimised designs also turned out to be labour intensive. To streamline this process,

properties from similar existing designs could be transferred to the new design in an

automated manner. In cases where some properties of the new design differ from any

2 According to Dutch regulation NEN-7120

145

9.3. Structural Design Optimisation

known design, these could be indicated to a human designer to be resolved manually.

Even though that would still require some work, it reduces the number of manual

design decisions.

9.3 Structural Design Optimisation

Structural design is one of the two disciplines – together with architecture (aesthetics,

spatial design) – that has the most influence on building designs during the early

design stages. These two disciplines also interact strongly. After all, in practice a

building spatial design requires a structural design to be meaningful. Which parts of

the spatial design are occupied is determined by the structural design, and as such

also influences what the design looks like [58].

Here a grammar is introduced that aims to generate high quality structural designs

in an efficient manner. This contrasts with the handcrafted, and simplistic grammar

used earlier in Section 6.4.1. With a grammar that is capable of quickly generating

structural grammars it is possible to support architects, structural engineers, and spa-

tial design optimisation algorithms. Architects benefit from feedback on the structural

performance of their designs, while engineers are aided in their job by the grammar.

For optimisation algorithms the benefit lies in being able to efficiently assess the perfor-

mance of spatial designs. This is particularly helpful because optimisation frequently

requires the evaluation of a large number of designs.

This section continues with an introduction of some required structural design

concepts. Then the design response grammar is introduced, and evaluated in a case

study. Finally, the results are presented and discussed.

9.3.1 Structural Design

Here the structural design is described in largely the same way as in the simulator

from [25]. To produce a structural design for a spatial design, the spatial design

is segmented in rectangles and lines to appropriately handle assignments concerning

multiple spaces or surfaces. Every rectangle (a surface belonging to one or more

spaces) may then be assigned one of four structural types. Specifically, a beam, truss,

flat shell, or no structure as shown in Figure 9.9a. Using these types, a structural

design can be generated as in the example in Figure 9.9b.

Following the assignment of types to the rectangles, the rectangle and line rules

from [24] are employed. These rules are needed because neighbouring rectangles or

146

Chapter 9. Applications in Building Design

...

beam

Portal frame

of beams

truss

Truss Layout

flat shell

Slab

no structure

No structure

(a) Possible structural types.

no structure truss

truss

beam

beam

flat shell

(b) Generated structure based on types.

Figure 9.9: Structural types and their assignment to rectangles.

lines may have conflicting type assignments. To resolve such conflicts these rules define

a procedure to follow, and a preference among the types in case one has to be chosen.

During simulation, loads are assigned to the rectangles to compute the performance

(see [25, 24] for details). In some cases the rectangle where a load should be applied

has no structure assigned to it. To appropriately transfer the load to the relevant

components, such a rectangle is assigned a low stiffness flat shell. By using a low stiff-

ness, these components have no influence on the overall stiffness. Note that rectangles

without structure are not always replaced by a low stiffness flat shell, but only when

needed.

9.3.2 Design Response Grammar

To efficiently provide high quality structural assignments for building spatial designs,

a design response grammar is proposed here. This grammar assigns structural types

based on a design response, instead of the grammars used in the rest of this thesis,

which used very basic assignment rules. The response used here is the strain energy

of a substitute component. Such substitute components are used because building

spatial designs do not have a structural response of their own. Based on the response,

the grammar will then replace these substitute components by beams, trusses, flat

shells, or nothing. Substitute components work similarly to other components, and

use the rectangle and line segment rules described in [24]. These rules check whether

the line or rectangle belongs to a wall or floor, and resolve type conflicts between

neighbouring rectangles and lines. Such conflicts may occur when different types have

been assigned. In this case, a type is selected based on a ranking of the types, and

can thus be resolved for the relevant rectangles/lines. In this ranking, the substitute

component always comes last. As a result, already assigned types are always preferred

over the substitute.

147

9.3. Structural Design Optimisation

Each of the four types that can replace the substitute component is appropriate

for some kind of loading. Trusses correspond with shear loading, beams with in-plane

normal loading, and flat shells with out-of-plane loading. Finally, when non of these

loading types apply the no structure type is appropriate. These loading types relate

to the stiffness response of the substitute component. The stiffness is separated into

bending, normal, and shear values, which are associated with the out-of-plane bending,

in-plane normal, and in-plane shear loads respectively.

Equations for the out-of-plane behaviour already exist, as described in [10]. The

in-plane behaviours are separated here according to Equation 9.8. Here, ν is Poisson’s

ratio, and E denotes Young’s modulus in N2 mm. For the interested reader, a detailed

description is available in [25, 24].

E

1− ν2

total in-plane

1 ν 0

ν 1 0

0 0 1−ν
2

 =

E

1− ν2

normal in-plane

1 ν 0

ν 1 0

0 0 0

 +

E

1− ν2

shear in-plane

0 0 0

0 0 0

0 0 1−ν
2

 (9.8)

The basic idea of the grammar is that the structural design model is updated

iteratively. Based on the spatial design, the building is partitioned into rectangles.

Initially, each rectangle is assigned a substitute component to be able to compute a

response (i.e. a performance measure) for each rectangle. Based on the performances,

the substitute rectangles are clustered, and new component types are assigned to the

cluster(s) with the highest mean strain energy. For each rectangle in a cluster the

shear, normal, and bending responses are then checked to either assign a truss, beam,

or respectively flat shell. If none of them are assigned, the rectangle receives the no

structure type. The loop then starts again, until a stopping criteria is reached.

A more detailed description is given in the following based on Algorithm 7. The

initialisation (line 1) simply assigns a substitute component to every rectangle. Then

the loop begins on line 3, and continues for ηconv iterations. Such an iteration i starts

by generating a structural design (based on rectangle and line rules from [24]), com-

puting the total design response Utot,i,j (the sum of shear, normal, and bending strain

energies) of all substitute rectangles j, and clustering them based on this response.

Here clustering is done by considering multiple runs of the k-means algorithm [72]

and selecting the best result as follows. Cluster sizes from 4 to 10 are evaluated

for 50 runs each. Then, for each cluster size k, the run with the lowest variance

σsum,k =
∑k
i=1 σi is stored. Next, for these values the second order change σ′′sum,k

148

Chapter 9. Applications in Building Design

Algorithm 7 Iterative replacement of substitute components

1: Assign substitute type to all rectangles
2: i = 0
3: while i < ηconv do
4: Evaluate structural design generated based on rectangle and line rules [24]
5: Compute design response Utot,i,j for all substitute rectangles j
6: Cluster substitute rectangles based on Utot,i,j
7: while nsubs,0 − dnsubs,0/ηconve · i < nsubs,i do
8: for all rectangles j in the cluster with the highest mean value do
9: Compute individual responses Ubend,i,j , Unorm,i,j , Ushear,i,j

10: if Utot,i,j < ηnoise · Utot,mean,0 then
11: for all k ∈ [0, 1, 2] do
12: if ck = 1 AND Ushear,i,j/Utot,i,j ≥ ηshear then
13: Assign truss to rectangle j and go to line 21
14: else if ck = 2 AND Unorm,i,j/Utot,i,j ≥ ηnorm then
15: Assign beam to rectangle j and go to line 21
16: else if ck = 3 AND Ubend,i,j/Utot,i,j ≥ ηbend then
17: Assign flat shell to rectangle j and go to line 21
18: end if
19: end for
20: end if
21: if j has type substitute then
22: Assign no structure to rectangle j
23: end if
24: end for
25: end while
26: i = i+ 1
27: end while

is computed according to Equation 9.9, and finally, the one with the highest value is

chosen.

σ′′sum,k = σsum,k+1 + σsum,k−1 − 2σsum,k (9.9)

Continuing with Algorithm 7, a while loop is entered on line 7 that repeats based

on the initial number of substitute rectangles nsubs,0, and the number of substitute

rectangles in the current iteration nsubs,i. Then, for every rectangle in the cluster

with the highest mean value (line 8), first the individual bending, normal, and shear

responses (Ubend,i,j , Unorm,i,j and Ushear,i,j respectively) are computed. If the total

response Utot,i,j of this rectangle is less than some fraction ηnoise of the mean response

of the initial structural model Utot,mean,0 (Equation 9.10), it may be assigned a new

149

9.3. Structural Design Optimisation

type. This check aims to avoid type assignments based on numerical noise that may

occur when the magnitude of the design response is small.

Utot,mean,0 =

∑nsubs,0
j=0 Utot,0,j

nsubs,0
(9.10)

Next, line 11 loops over an ordered list c which holds a predetermined permutation

of the set {1, 2, 3} which corresponds to the types (1 for truss, 2 for beam, and 3 for flat

shell), and indicates the order that decides which type is considered first for assign-

ment. Each of the types (truss, beam, and flat shell) is assigned based on whether the

ratio between the corresponding response (shear, normal, and bending respectively),

and the total response exceeds a given type dependent threshold (ηshear, ηnorm, ηbend).

If a type is assigned, the algorithm continues after the for loop, otherwise it tries the

next type in c.

Finally, on line 21 the algorithm checks whether a rectangle still has the substitute

type, in which case it is assigned the no structure type instead. This can happen if

the noise threshold (ηnoise) was not exceeded, or if none of the response thresholds

(ηshear, ηnorm, ηbend) were exceeded. After incrementing the loop counter (line 26),

the next iteration starts.

An example of how the described design response grammar might generate a struc-

tural design for a given spatial design is shown in Figure 9.10. Starting from the

substitute design in Figure 9.10a, beams are assigned to some rectangles in the inter-

mediate design (Figure 9.10b), and after the final iteration the design in Figure 9.10c

is produced. Note that for this example parameters of the grammar have been selected

for illustrative purposes to show all structural types.

9.3.3 Case Study

To assess the performance of the design response grammar it is evaluated by gener-

ating a structural design for a given building spatial design. To find good parameter

settings for the design response grammar 95 832 possible parameter configurations are

considered. These configurations on average use three evaluations each (depending

on ηconv), resulting in a total of 287 496 evaluations. In addition, the grammar is

compared to structural assignments optimised by the MOMIES algorithm introduced

in Chapter 8. Next, since the aim is to produce a grammar that can generate high

quality structural designs at a low computational cost, parameter configurations are

selected based on their performance and evaluated on a new design.

Two minimisation objectives are considered in the case study. Total strain energy

150

Chapter 9. Applications in Building Design

(a) Substitute. (b) Intermediate. (c) Final.

Figure 9.10: Example of the iterative process in which the design response grammar
generates a structural design.

measured in Newton metres (N m), and structural volume measured in cubic metres

(m3). Strain energy is computed by finite element analysis, while the structural volume

is computed as the sum of volumes of all components in the structural model.

To compute these two objectives the following settings are considered. A live load of

0.005 N mm−2 is considered. Further, wind loads from four directions (north, south,

east, west) are considered with magnitudes of 0.001 N mm−2, 0.0004 N mm−2, and

0.0008 N mm−2 for pressure, shear, and suction respectively. Finally, each structural

type has its specific settings as shown in Table 9.2.

type thickness width height cross sectional
surface

Young’s modulus Poisson’s
ratio

flat shell 150 mm – – – 30 000 N mm−2 0.3
beam – 150 mm 150 mm – 30 000 N mm−2 0.3
truss – – – 22 500 mm2 30 000 N mm−2 –
substitute 150 mm – – – 0.03 N mm−2 0.3

Table 9.2: Settings used for each structural type.

As a test problem a structural design will be generated for the low rise building

in Figure 9.11. This is a typical spatial design of a low rise building, and will as

such also give insight into the practical applicability. Next, to evaluate the parameter

configurations for the design grammar that will be selected based on the test results,

the portal building shown in Figure 9.12 is considered.

For the test with the low rise building, full enumeration of the possible parameter

combinations for the design response grammar is considered. The relevant parameters

151

9.3. Structural Design Optimisation

36m

6x6m

9
m

1
1
m

2
m

36m

6x6m

1
2
m

4
x
3

m

1 - 0m

2 - 3m

3 - 6m

4 - 9m

5 - 12m

Floor plan Front view Isometric view

x
y

z

Figure 9.11: Spatial design of a low rise building with four floors, six spaces per floor, and
a horizontal walkway on each floor.

24m

1 - 0m

2 - 6m

3 - 12m

4 - 18m

5 - 24m

6m 6m12m

4x6m

2
4
m

4
x
6
m

Front view

2
x
6
m

24m

1
2
m

Floor plan 1 & 2

6m 6m12m

2
x
6
m

24m

1
2
m

4x6m

Floor plan 1 & 2

Isometric view

xy

z

Figure 9.12: Spatial design of a portal building with four floors, 24 spaces, and a passage
through its centre.

are shown in Table 9.3, and result in 95 832 possible parameter configurations. Based

on their performance for the low rise building, three parameter configurations will be

selected to be evaluated on the portal building to get a first indication about how well

they generalise.

In order for the MOMIES algorithm to optimise the structural assignments in a

structural design, the problem needs to be encoded in decision variables. The encoding

used here is as follows. Each variable can take a value from the set {1, 2, 3, 4}. These

numbers correspond to the different structural types, 1 for no structure, 2 for truss, 3

for beam, and 4 for flat shell. The low rise design consists of 168 of these variables,

while the portal design has 104 decision variables.

MOMIES is used with a reference point of (8× 1010 N mm, 700 m3) is for the low

rise building, and (1× 1010 N mm, 300 m3) for the portal building. These reference

points also serve as the penalty value that is assigned as performance for designs that

152

Chapter 9. Applications in Building Design

description parameter values

shear threshold ηshear [0.0, 0.1, . . . , 1.0]
bending threshold ηbend [0.0, 0.1, . . . , 1.0]
normal threshold ηnorm [0.0, 0.1, . . . , 1.0]
noise threshold ηnoise {0.025, 0.050, 0.075}
number of iterations ηconv {1, 2, 3, 4}
checking order c all permutations of {1, 2, 3}

Table 9.3: Design response grammar parameter ranges.

are structurally unstable. Further, MOMIES uses dominant crossover for the decision

variables, and intermediate crossover for the step size. A single step size value for

all variables is used, initialised to 1/nd, where nd is the number of decision variables.

Finally, a population size of µ = 50 is used with an evaluation budget of 10 000, and

five repetitions.

9.3.4 Results

Figure 9.13 shows the solutions discovered by MOMIES during the optimisation of the

structural assignments. Some variance can be seen in the Pareto front approximations

(PFAs) of the different runs, but all of them found high quality solutions. On the

right side of the figure, examples of structural designs found by the algorithm are

shown. Specifically, one design that performs well for each individual objective, a

compromise solution, and a poor performing solution. All of these designs show – to the

human eye – rather chaotic assignments of structural types. Evidently, homogeneous

assignments are not needed to achieve good performance. However, this does not follow

common practice. For practical use it may therefore be worth investigating whether

optimisation of more consistent designs would still result in competitive designs.

The results for full enumeration of the possible parameter configurations for the

design response grammar are shown in Figure 9.14. Moreover, they are compared

to the PFA resulting from the combination of all runs by the MOMIES algorithm.

Better solutions are found by the design response grammar in the knee point region,

as well as both extremal regions. These areas are, however, only sparsely populated

by the design response grammar. MOMIES on the other hand, has a wide selection

of solutions in the knee point area, which may provide a decision maker with more

freedom to choose. Moreover, for the design response grammar 287 496 evaluations

were used, which is almost six times the 50 000 evaluations used by MOMIES. On the

other hand, if the well performing parameter configurations generalise, this is a one

153

9.3. Structural Design Optimisation

0 2 4 6 8

Strain Energy [Nmm] 108

40

60

80

100

120

140

160

S
tr

u
c
tu

ra
l
V

o
lu

m
e
 [
m

³]

Design 2

All solutions

PFA run 1

PFA run 2

PFA run 3

PFA run 4

PFA run 5
1.4e+08 Nmm

63.1 m³
5

5.7e+07 Nmm

125.3 m³
6

9.4e+08 Nmm

45.6 m³
7

4.4e+08 Nmm

134.4 m³
8

6

7

8

5

Figure 9.13: Optimisation results of a low rise building by MOMIES (left), and examples
of corresponding structural designs (right).

108 1010

Strain Energy [Nmm]

0

100

200

300

400

500

600

700

S
tr

u
c
tu

ra
l
V

o
lu

m
e

 [
m

³]

Design 2

109 1011107

Design Response Grammar

PFA by Optimizer

5.8e+07 Nmm

79.8 m³
5

8.0e+06 Nmm

610.5 m³
6

9.1e+09 Nmm

23.5 m³
7

5.6e+09 Nmm

403.6 m³
8

5

6

7

8

Figure 9.14: Results of the design response grammar for a low rise building compared to
the PFA of MOMIES (left), and examples of corresponding structural designs (right).

time cost for the design response grammar, whereas MOMIES has to start from scratch

for every new design. Even if MOMIES were to use fewer evaluations, say 10 000, that

would still be far more expensive than the design response grammar which would only

need a handful of evaluations. Another advantage of the design response grammar

is the practicality of the produced structural designs. These designs are far more

consistent than those produced by MOMIES, and thus more practical to construct.

Based on the results of the design response grammar, the parameter configurations

in Table 9.4 were chosen for their good performance. Figure 9.15 visualises the results

achieved by these parameter configurations, compared to the MOMIES algorithm.

MOMIES clearly shows better performance, but the results of the design response

grammar are competitive with the PFA. Most importantly, this shows that the design

response grammar is indeed capable of finding high quality solutions for minimal com-

154

Chapter 9. Applications in Building Design

putational cost. Each of the parameter configurations of the design response grammar

used only two evaluations, whereas MOMIES used 50 000.

In summary, it is concluded that the discrete component of the MOMIES algorithm

introduced in Chapter 8 is effective in real world applications. Furthermore, with the

design response grammar promising steps were made towards the goal of developing a

grammar capable of producing high quality structural designs at a low cost.

parameter ηshear ηbend ηnorm ηnoise ηconv c

configuration 1 0.0 1.0 1.0 0.025 1 (3, 2, 1)
configuration 2 0.1 1.0 0.0 0.025 1 (1, 2, 3)
configuration 3 0.2 1.0 0.0 0.025 1 (1, 2, 3)

Table 9.4: Selected parameter configurations for the design response grammar.

0 1 2 3 4 5

Strain Energy [Nmm] 109

50

100

150

200

S
tr

u
c
tu

ra
l
V

o
lu

m
e

 [
m

³]

Results Comparison Design 4

All Solutions by Optimizer

PFA by Optimizer

Design Response Grammar

2
3

1

Figure 9.15: Comparison of results by the design response grammar and MOMIES on the
portal design.

9.4 Conclusion

9.4.1 Summary

Over the course of this chapter applications of the algorithms developed in this thesis

have been explored with the goal of answering RQ6. This question asks how the

developed algorithms benefit applications in the real world design process. To this end,

155

9.4. Conclusion

the first section of this chapter investigated the interaction of the superstructure based

SMS-EMOA-SC algorithm (Section 6.3.2) with a superstructure free co-evolutionary

design process that more closely resembles the design practice. In the second section,

interaction between an optimisation algorithm (again SMS-EMOA-SC) and a building

information modelling environment was studied for practicality. Finally, the third

section looked at the use of the generally applicable multi-objective mixed-integer

evolution strategy (MOMIES, Chapter 8) in structural design optimisation.

The superstructure based SMS-EMOA-SC has been compared to superstructure

free co-evolutionary design, as well as a relay hybrid method that combines the two.

By using a superstructure free representation a more exploratory search that is nat-

ural to the design process becomes possible. On the other hand, a superstructure

representation enables effective optimisation in interesting design regions. However,

the restrictions of the superstructure prevent the discovery of other interesting design

regions, that a free representation allows. The combination of these two aspects has

been shown to be possible with a relay hybrid. Unfortunately, the modification rules of

the co-evolutionary method had limited effect, and improved versions of those would

likely result in a more useful hybrid method.

In line with the use of building information modelling (BIM) in the building design

practice, the integration of optimisation and BIM has been investigated. A building

spatial design has been transferred from a specific BIM environment (BouwConnect)

to the supercube representation (Section 3.2) to be optimised by SMS-EMOA-SC.

After optimisation, the spatial design was transferred back to the BIM environment.

SMS-EMOA-SC proved to be effective at optimising its given objectives, but less so

for specific (but related) regulations used in practice. Furthermore, the transfer of the

building spatial design between the optimisation and BIM environments turned out

to be laborious due to the need for manual adjustments.

To assess the use of the MOMIES algorithm introduced in Chapter 8 it has been

applied to structural design optimisation. Here it functioned to set a baseline for an

automated design grammar that has been developed with the aim of producing high

quality structural assignments at a minimal cost. MOMIES proved to be an effective

optimiser in the nominal discrete domain and found a good approximation of the

knee point region of the Pareto front. At the same time, after full enumeration of

its parameter configurations, high quality settings were found for the design response

grammar. With these settings it was evaluated on a new design case, and shown to

find solutions near the knee point region discovered by MOMIES, while using only a

few evaluations.

156

Chapter 9. Applications in Building Design

9.4.2 Future Work

A successful first step was made in the hybrid use of the superstructure and superstruc-

ture free representations in optimisation. However, various new research directions

also presented themselves. To effectively explore various interesting design regions,

new modification rules have to be developed for the co-evolutionary design method.

SMS-EMOA-SC, in addition, would benefit from better diversity handling. This would

allow it to include an initial design in its search, without being biased towards it to

the extend that it does not explore other options sufficiently.

Improvements to the interaction between optimisation tools and BIM environments

are also necessary. SMS-EMOA-SC proved itself as an effective optimiser, but unless

the considered objectives closely match the regulations used in practice, it remains

of limited use. Furthermore, the transfer of designs between BIM and optimisation

environments has to be automated. Currently this involves too many manual design

decisions, while these could be automated or guided based on similar existing designs.

Many of these improvements may seem practical in nature, but will require strong

interaction with practitioners to get right.

The design response grammar is already effective at finding high quality solutions

with a minimal number of evaluations, but it may be possible to find even better pa-

rameter configurations for it. For instance, a number of parameters that are continuous

in practice were discretised to make full enumeration of the parameter configurations

possible. If these parameters are kept as continuous values, an optimiser could be

applied to handle the larger number of options, and in turn find better solutions.

With regard to the used MOMIES algorithm, it proved effective in optimising in

the nominal discrete domain for a real world problem. However, it should still be

evaluated more extensively on continuous, integer, and mixed problems.

157

9.4. Conclusion

158

Chapter 10

Conclusions

This thesis investigated many different aspects of multi-objective mixed-integer op-

timisation problems related to the built environment. In this conclusion, first the

contributions of each chapter are briefly summarised, together with answers to their

corresponding research questions. After that, paths to future discoveries are discussed

that opened up as a result of this work.

10.1 Summary

Chapter 1 gave a high level introduction to the topic of study in this thesis.

Chapter 2 then provided a starting point to this study by introducing key concepts

used throughout the thesis. Specifically, it covered the basics of optimisation for

a single objective, as well as for multiple objectives. Evolutionary computation was

introduced next as an approach to solve such optimisation problems. Finally, it covered

the main application domain of this work: building spatial design.

Chapter 3 introduced a representation for building spatial designs in response to

the first research question:

RQ1 How can elements of the solution space be represented?

The introduction of the supercube representation makes it possible to encode an

arbitrary number of spaces, and to control their dimensions. To be able to check

159

10.1. Summary

the feasibility of building spatial designs, a number of constraints on the representa-

tion were introduced as well. These constraints are polynomial expressions directly

formulated on the binary and continuous decision variables. Hence they can be ex-

actly computed in a straightforward manner, and, at least in principle, can be used in

equation based solvers.

Chapters 4 and 5 looked at how to manage the constraints used in the supercube

in order to answer the second research question:

RQ2 How can the discovery of feasible designs be ensured?

Penalty functions that act on constraint violating solutions are shown to aid the

search process in Chapter 4. They are, however, also found not to scale sufficiently for

larger supercube sizes. Chapter 5 presents problem specific initialisation and mutation

operators that navigate only the feasible space, and thus do not suffer from the larger

infeasible regions present in larger sized supercubes.

Chapter 6 investigated the benefits of a local search strategy with the third research

question in mind:

RQ3 How can local search contribute to the improvement of solutions found

during global search in a multi-objective setting?

Hypervolume indicator gradient ascent multi-objective optimisation (HIGA-MO)

is shown to work for a real world problem, and with numerically approximated gradi-

ents. Even so, the number of evaluations needed for numerical approximation of the

considered high dimensional problem, prevents it from outperforming the considered

evolutionary algorithm (SMS-EMOA-SC). This means that as a local search compo-

nent HIGA-MO would likely outperform SMS-EMOA-SC at some point due to the

convergence properties of the hypervolume gradient, but the number of evaluations

needed would be impractical.

Chapter 7 evaluated the value of the data that is generated during optimisation

based on the fourth research question:

RQ4 What can be learned about building spatial design from the optimisa-

tion process?

160

Chapter 10. Conclusions

Based on optimisation data, key properties of high quality building spatial designs

can be learned, by automatically extracting design rules from the data. These design

rules can then be communicated to design experts to prove to them that the discovered

solutions are trustworthy, since they typically correspond to well-known design rules

used by experts.

Chapter 8 explored the possibilities of a general mixed-integer algorithm for multi-

objective optimisation to answer the fifth research question:

RQ5 How can a generally applicable multi-objective mixed-integer algorithm

be developed?

Promising first steps are made towards a general purpose multi-objective mixed-

integer evolution strategy (MOMIES). MOMIES is shown to perform well in practice,

and recombination has been discovered to be more valuable in multi-objective opti-

misation than previously believed, although the reasons are still unclear. Step size

adaptation for the multi-objective case requires more thought, as the current methods

still show erratic behaviour and are not capable of reliably tracking optimal mutation

step sizes.

Chapter 9 presented various applications of the developed algorithms in response

to the sixth research question:

RQ6 How applicable are the developed algorithms to real world problems?

In application, SMS-EMOA-SC proved to be a useful component in a hybrid al-

gorithm that also explored which supercube configurations were most interesting to

work with. Furthermore, SMS-EMOA-SC was shown to be a good optimiser, but the

settings and objectives considered in the earlier academic cases do not always align

with the practicalities of the real world. In the nominal discrete space of structural

design optimisation MOMIES proved to be a highly effective algorithm.

In summary, this thesis has made tools available for the multi-objective optimi-

sation of building spatial designs. To this end a representation has been introduced,

as well as specialised operators for the building spatial design problem. Furthermore,

the potential benefits of a memetic algorithm, where stochastic global search is com-

bined with deterministic local search, has been explored. Practical utilisation of these

methods has also been studied. Both by analysis of the optimisation data to help

human designers, as well as through real world studies of the algorithms. Finally, a

161

10.2. Future Work

general algorithm, not restricted to the building spatial design problem, has also been

developed.

10.2 Future Work

Although considerable progress has been made in the context of this thesis, much more

work remains. Some perspectives for this future research are included here, and are

briefly discussed.

New or modified representations that contain fewer infeasible or duplicate solutions

than the supercube representation would be very helpful in tackling larger building

designs, and in speeding up the search process in general. Chapter 3 already suggested

a number of possible directions, such as the use of an integer representation instead

of the current binary one. However, as also mentioned before, caution is needed when

considering what is or is not a duplicate since this is largely problem dependent. With

a new representation it is also likely that new operators are needed. As such, repre-

sentations and operators should be considered in concert to avoid poorly compatible

combinations.

Local search with the hypervolume indicator (HVI) gradient successfully improved

the Pareto front approximation found during global search. It was, however, not

able to outperform SMS-EMOA-SC. The primary shortcoming is found in the many

evaluations needed to approximate the gradient for the considered high dimensional

problem. To overcome this, methods are needed that reduce the computational costs

of an algorithm using the HVI gradient. One interesting direction is the use stochastic

gradient descent methods, which is currently used with success in the optimisation of

weights in deep neural networks . These networks, like building spatial designs (in

the supercube representation), require the adaptation of a large number of continuous

variables for a given discrete structure. Another option would be the use of surrogate

models that can be learned from previously obtained evaluation data. These would

both allow cheap numerical approximation of the HVI gradient on the model, rather

than the true function, and enable the navigation of discrete space. Another way to

reduce computation costs is to move fewer points based on the HVI gradient. Only

nondominated points could be considered, rather than all points, for instance.

Since differences in performance are larger between discrete subspaces than within

them, median attainment curves struggle to adequately present the performance differ-

ences for algorithms that sometimes end up in one discrete subspace, and sometimes in

another. New multi-objective performance measures for mixed-integer problems that

162

Chapter 10. Conclusions

take these things into account are thus a must.

Integrating the insights that can be gained from optimisation data into the opti-

misation process has the potential to improve, and possibly speed up the optimisation

process. These insights could be used to only perform expensive evaluations for can-

didate solutions that look at least somewhat promising, instead of for all candidates.

Another new direction in this area could be the use of learned design qualities in guid-

ing the variation operators. By biasing the operators to directions that are likely to

produce improved designs, the search could be speeded up. Naturally, the risk is that

unexpected design alternatives will not be found. How to balance this bias with the

needed exploratory components will therefore require careful consideration.

Finally, another promising path for future work is continue the development and

analysis of MOMIES, the general purpose multi-objective mixed-integer optimisa-

tion technique that resulted from this thesis. To be a full fledged general optimiser,

MOMIES will also have to include a constraint handling component capable of operat-

ing in the multi-objective mixed-integer environment. In addition, step size adaptation

has to be tailored for multi-objective optimisation to improve its effectiveness. This

is particularly true for the integer and nominal discrete adaptation mechanisms, since

they were shown to have particularly irregular behaviour. Recombination was shown

to be surprisingly effective for the multi-objective case, but it remains unclear why.

Investigating this is especially interesting since it was previously shown that the value

of recombination can be questioned in the multi-objective setting [101]. A deeper

understanding could elucidate when it is of value to use recombination, and when to

avoid it.

163

10.2. Future Work

164

Bibliography

[1] J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Do-
browolski, F. T. Goldstein, D. E. Gustafson, and R. A. Kemp. Antireflection
coatings for germanium ir optics: a comparison of numerical design methods.
Applied Optics, 27(14):2832–2840, 1988.

[2] Karsten Ahnert and Mario Mulansky. Odeint - solving ordinary differential
equations in C++. AIP Conference Proceedings, 1389(1):1586–1589, 2011.

[3] Shady Attia, Elisabeth Gratia, André De Herde, and Jan L. M. Hensen.
Simulation-based decision support tool for early stages of zero-energy building
design. Energy and Buildings, 49:2–15, 2012.

[4] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Handbook of Evolu-
tionary Computation. IOP Publishing Ltd., 1997.

[5] Thomas Bäck and Martin Schütz. Evolution strategies for mixed-integer op-
timization of optical multilayer systems. In Evolutionary Programming, pages
33–51, 1995.

[6] Robert Baldock and Kristina Shae. Structural topology optimization of braced
steel frameworks using genetic programming. In Ian F. C. Smith, editor, Intelli-
gent Computing in Engineering and Architecture: 13th EG-ICE Workshop 2006,
Ascona, Switzerland, June 25-30, 2006, Revised Selected Papers, pages 54–61,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[7] Sunith Bandaru and Kalyanmoy Deb. Automated innovization for simultaneous
discovery of multiple rules in bi-objective problems. In Ricardo H. C. Takahashi,
Kalyanmoy Deb, Elizabeth F. Wanner, and Salvatore Greco, editors, Evolution-
ary Multi-Criterion Optimization, pages 1–15, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[8] Sunith Bandaru and Kalyanmoy Deb. Temporal innovization: Evolution of de-
sign principles using multi-objective optimization. In António Gaspar-Cunha,
Carlos Henggeler Antunes, and Carlos Coello Coello, editors, Evolutionary
Multi-Criterion Optimization, pages 79–93, Cham, 2015. Springer International
Publishing.

165

Bibliography

[9] Thomas Bartz-Beielstein, Christian W. G. Lasarczyk, and Mike Preuß. Sequen-
tial parameter optimization. In 2005 IEEE congress on evolutionary computa-
tion, volume 1, pages 773–780. IEEE, 2005.

[10] Jean-Louis Batoz and Mabrouk Ben Tahar. Evaluation of a new quadrilateral
thin plate bending element. International Journal for Numerical Methods in
Engineering, 18(11):1655–1677, 1982.

[11] A. D. Belegundu and S. D. Rajan. A shape optimization approach based on
natural design variables and shape functions. Computer Methods in Applied
Mechanics and Engineering, 66(1):87–106, 1988.

[12] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a comprehen-
sive introduction. Natural computing, 1(1):3–52, 2002.

[13] R. Blok and N. Nieuwenhuizen. Tabellen voor bouw-en waterbouwkundigen.
Thieme Meulenhof BV, 2006.

[14] Koen van der Blom and Thomas Bäck. A new foraging-based algorithm for
online scheduling. In GECCO ’18: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 53–60, New York, NY, USA, 2018. ACM.

[15] Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, Thomas Bäck, and
Michael T. M. Emmerich. Configuring advanced evolutionary algorithms for
multicriteria building spatial design optimisation. In 2017 IEEE Congress on
Evolutionary Computation (CEC), pages 1803–1810. IEEE, 2017.

[16] Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, and Michael T. M. Em-
merich. Multicriteria building spatial design with mixed integer evolutionary
algorithms. In Julia Handl, Emma Hart, Peter R. Lewis, Manuel López-Ibáñez,
Gabriela Ochoa, and Ben Paechter, editors, Parallel Problem Solving from Na-
ture – PPSN XIV, volume 9921 of Lecture Notes in Computer Science, pages
453–462, Cham, 2016. Springer International Publishing.

[17] Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, and Michael T. M.
Emmerich. A super-structure based optimisation approach for building spatial
designs. In M. Papadrakakis, V. Papadopoulos, G. Stefanou, and V. Plevris,
editors, VII European Congress on Computational Methods in Applied Sciences
and Engineering – ECCOMAS VII, volume 2, pages 3409–3422, Athens, Greece,
2016. National Technical University of Athens.

[18] Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, and Michael T. M.
Emmerich. Analysing optimisation data for multicriteria building spatial de-
sign. In Kalyanmoy Deb, Erik Goodman, Carlos A. Coello Coello, Kathrin
Klamroth, Kaisa Miettinen, Sanaz Mostaghim, and Patrick Reed, editors, Evo-
lutionary Multi-Criterion Optimization, pages 671–682, Cham, 2019. Springer
International Publishing.

166

Bibliography

[19] Koen van der Blom, Sjonnie Boonstra, Hao Wang, Hèrm Hofmeyer, and Michael
T. M. Emmerich. Evaluating memetic building spatial design optimisation us-
ing hypervolume indicator gradient ascent. In Leonardo Trujillo, Oliver Schütze,
Yazmin Maldonado, and Paul Valle, editors, Numerical and Evolutionary Opti-
mization – NEO 2017, pages 62–86. Springer, Cham, 2018.

[20] Koen van der Blom, Kaifeng Yang, Thomas Bäck, and Michael T. M. Emmerich.
Towards multi-objective mixed integer evolution strategies. In Michael T. M.
Emmerich, André H. Deutz, Sander C. Hille, and Yaroslav D. Sergeyev, editors,
Proceedings LeGO – 14th International Global Optimization Workshop, volume
2070, pages 020046–1–020046–4. AIP Publishing, 2019.

[21] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, Robert Amor, and
Michael T. M. Emmerich. Super-structure and super-structure free design search
space representations for a building spatial design in multi-disciplinary building
optimisation. In Electronic proceedings of the 23rd International Workshop of the
European Group for Intelligent Computing in Engineering, pages 1–10. Jagiel-
lonian University ZPGK, 2016.

[22] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, Joost van den Buijs,
and Michael T. M. Emmerich. Coupling between a building spatial design op-
timisation toolbox and bouwconnect BIM. In 35th CIB W78 2018 Conference:
IT in Design, Construction, and Management, pages 95–102. Springer, 2018.

[23] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, and Michael T. M.
Emmerich. Combined super-structured and super-structure free optimisation of
building spatial designs. In C. Koch, W. Tizani, and J. Ninić, editors, 24rd
International Workshop of the European Group for Intelligent Computing in
Engineering, pages 23–34. University of Nottingham, 2017.

[24] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, and Michael T. M.
Emmerich. Conceptual structural system layouts via design response grammars
and evolutionary algorithms. Automation in Construction, pages 1–24, 2019.
(submitted).

[25] Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer, Michael T. M. Em-
merich, Jos van Schijndel, and Pieter de Wilde. Toolbox for super-structured
and super-structure free multi-disciplinary building spatial design optimisation.
Advanced Engineering Informatics, 36:86–100, 2018.

[26] Sjonnie Boonstra, Koen van der Blom, Hérm Hofmeyer, and Michael T. M.
Emmerich. Co-evolutionary design processes applied to building spatial design
optimization. In Advances in Structural and Multidisciplinary Optimization.
Proceedings of the 13th World Congress of Structural and Multidisciplinary Op-
timization (WCSMO13), pages 1–6. Springer, 2020. (in print).

[27] Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen. Classifica-
tion and Regression Trees. Chapman and Hall/CRC, 1984.

167

Bibliography

[28] Karl Bringmann, Tobias Friedrich, and Patrick Klitzke. Generic postprocessing
via subset selection for hypervolume and epsilon-indicator. In Thomas Bartz-
Beielstein, Jürgen Branke, Bogdan Filipič, and Jim Smith, editors, Parallel Prob-
lem Solving from Nature – PPSN XIII, pages 518–527, Cham, 2014. Springer
International Publishing.

[29] A. L. Custódio, M. Emmerich, and J. F. A. Madeira. Recent developments in
derivative-free multiobjective optimization. Computational Technology Reviews,
5(1):1–31, 2012.

[30] Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated binary crossover for
continuous search space. Complex Systems, 9(2):115–148, 1995.

[31] Kalyanmoy Deb, Sunith Bandaru, David Greiner, António Gaspar-Cunha, and
Cem Celal Tutum. An integrated approach to automated innovization for dis-
covering useful design principles: Case studies from engineering. Applied Soft
Computing, 15:42–56, 2014.

[32] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002.

[33] Kalyanmoy Deb and Aravind Srinivasan. Innovization: Innovating design prin-
ciples through optimization. In GECCO ’06 Proceedings of the 8th annual con-
ference on Genetic and evolutionary computation, pages 1629–1636, New York,
NY, USA, 2006. ACM.

[34] M. Dellnitz, O. Schütze, and T. Hestermeyer. Covering pareto sets by multi-
level subdivision techniques. Journal of Optimization Theory and Applications,
124(1):113–136, Jan 2005.

[35] W. B. Dolan, P. T. Cummings, and M. D. Le Van. Algorithmic efficiency of
simulated annealing for heat exchanger network design. Computers & Chemical
Engineering, 14(10):1039–1050, 1990.

[36] Stefan Droste and Dirk Wiesmann. Metric based evolutionary algorithms. In
Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Julian Miller, Peter
Nordin, and Terence C. Fogarty, editors, Genetic Programming, pages 29–43,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[37] Chuck Eastman, Paul Teicholz, Rafael Sacks, and Kathleen Liston. BIM Hand-
book: A Guide to Building Information Modeling for Owners, Managers, De-
signers, Engineers and Contractors. Wiley & Sons, 2011.

[38] Matthias Ehrgott. Multicriteria Optimization, volume 491. Springer Science &
Business Media, 2005.

168

Bibliography

[39] Michael Emmerich, Nicola Beume, and Boris Naujoks. An EMO algorithm us-
ing the hypervolume measure as selection criterion. In Carlos A. Coello Coello,
Arturo Hernández Aguirre, and Eckart Zitzler, editors, Evolutionary Multi-
Criterion Optimization, pages 62–76, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[40] Michael Emmerich and André Deutz. Time complexity and zeros of the hyper-
volume indicator gradient field. In Oliver Schuetze, Carlos A. Coello Coello,
Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral, and
Pierrick Legrand, editors, EVOLVE - A Bridge between Probability, Set Oriented
Numerics, and Evolutionary Computation III, pages 169–193, Heidelberg, 2014.
Springer International Publishing.

[41] Michael Emmerich, André Deutz, and Nicola Beume. Gradient-based / evo-
lutionary relay hybrid for computing pareto front approximations maximizing
the S-metric. In Thomas Bartz-Beielstein, Maŕıa José Blesa Aguilera, Christian
Blum, Boris Naujoks, Andrea Roli, Günter Rudolph, and Michael Sampels, ed-
itors, Hybrid Metaheuristics, pages 140–156, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[42] Michael Emmerich, Monika Grötzner, Bernd Groß, and Martin Schütz. Mixed-
integer evolution strategy for chemical plant optimization with simulators. In
I. C. Parmee, editor, Evolutionary Design and Manufacture: Selected Papers
from ACDM ’00, pages 55–67, London, 2000. Springer London.

[43] Michael Emmerich, Monika Grötzner, and Martin Schütz. Design of graph-
based evolutionary algorithms: A case study for chemical process networks.
Evolutionary Computation, 9(3):329–354, 2001.

[44] Michael T. M. Emmerich and André H. Deutz. A tutorial on multiobjective
optimization: fundamentals and evolutionary methods. Natural Computing,
17(3):585–609, Sep 2018.

[45] European Commission. Challenging and Changing Europe’s Built Environment:
A Vision for a Sustainable and Competitive Construction Sector By 2030. Eu-
ropean Construction Technology Platform, 2005.

[46] Jörg Fliege and Benar Fux Svaiter. Steepest descent methods for multicrite-
ria optimization. Mathematical Methods of Operations Research, 51(3):479–494,
Aug 2000.

[47] Christodoulos A. Floudas. Nonlinear and Mixed-Integer Optimization: Funda-
mentals and Applications. Oxford University Press, 1995.

[48] Lawrence J. Fogel. Autonomous automata. Industrial Research, 4:14–19, 1962.

[49] Carlos M. Fonseca, Viviane Grunert da Fonseca, and Lúıs Paquete. Exploring
the performance of stochastic multiobjective optimisers with the second-order

169

Bibliography

attainment function. In Carlos A. Coello Coello, Arturo Hernández Aguirre,
and Eckart Zitzler, editors, Evolutionary Multi-Criterion Optimization, pages
250–264, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[50] Guennebaud, G. and Jacob, B. and others. Eigen v3: a C++ linear algebra
library, 2010. [Online; accessed 7-May-2018].

[51] Victor Adrián Sosa Hernández, Oliver Schütze, and Michael Emmerich. Hy-
pervolume maximization via set based newton’s method. In Alexandru-
Adrian Tantar, Emilia Tantar, Jian-Qiao Sun, Wei Zhang, Qian Ding, Oliver
Schütze, Michael Emmerich, Pierrick Legrand, Pierre Del Moral, and Carlos A.
Coello Coello, editors, EVOLVE - A Bridge between Probability, Set Oriented
Numerics, and Evolutionary Computation V, pages 15–28, Cham, 2014. Springer
International Publishing.

[52] Hèrm Hofmeyer and Juan Manuel Davila Delgado. Coevolutionary and genetic
algorithm based building spatial and structural design. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 29(04):351–370, 2015.

[53] John H. Holland. Outline for a logical theory of adaptive systems. Journal of
the Association for Computing Machinery, 9(3):297–314, 1962.

[54] Christina J. Hopfe, Michael T. M. Emmerich, Robert Marijt, and Jan L. M.
Hensen. Robust multi-criteria design optimisation in building design. Proceed-
ings of Building Simulation and Optimization, Loughborough, UK, pages 118–
125, 2012.

[55] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In Carlos A.
Coello Coello, editor, Learning and Intelligent Optimization, pages 507–523,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[56] Roy Jackson. Optimization of chemical reactors with respect to flow config-
uration. Journal of Optimization Theory and Applications, 2(4):240–259, Jul
1968.

[57] Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure of
problem difficulty for genetic algorithms. In ICGA, volume 95, pages 184–192,
1995.

[58] Lachmi Khemlani, Anne Timerman, Beatrice Bennen, and Yehuda E. Kalay.
Intelligent representation for computer-aided building design. Automation in
Construction, 8(1):49 – 71, 1998.

[59] Rafal Kicinger, Tomasz Arciszewski, and Kenneth De Jong. Evolutionary com-
putation and structural design: A survey of the state-of-the-art. Computers &
Structures, 83(23):1943–1978, 2005.

170

Bibliography

[60] Koningklijk Nederlands Metereologisch Instituut. Jaar 2014 – uitzonderlijk
warm, zeer zonnig, en vrij droog, 2015. [Online; accessed 18-February-2019].

[61] Koningklijk Nederlands Metereologisch Instituut. Daggegevens van het weer in
Nederland, 2018. [Online; accessed 7-May-2018].

[62] John R. Koza, David Andre, Forrest H. Bennett, III, and Martin A. Keane.
Use of automatically defined functions and architecture-altering operations in
automated circuit synthesis with genetic programming. In Proceedings of the 1st
Annual Conference on Genetic Programming, pages 132–140, Cambridge, MA,
USA, 1996. MIT Press.

[63] Rick Kramer, Jos van Schijndel, and Henk Schellen. Simplified thermal and
hygric building models: A literature review. Frontiers of Architectural Research,
1(4):318–325, 2012.

[64] Tobias Kuhn, Carlos M. Fonseca, Lúıs Paquete, Stefan Ruzika, Miguel M.
Duarte, and José Rui Figueira. Hypervolume subset selection in two dimen-
sions: Formulations and algorithms. Evolutionary Computation, 24(3):411–425,
2016. PMID: 26135717.

[65] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. J. ACM, 22(4):469–476, October 1975.

[66] Adriana Lara, Gustavo Sanchez, Carlos A. Coello Coello, and Oliver Schütze.
HCS: A new local search strategy for memetic multiobjective evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation, 14(1):112–132, Feb
2010.

[67] David Laredo Razo. EDS: A continuation method for mixed-integer multi-
objective optimization problems. Master’s thesis, CINVESTAV-IPN, Mexico
City, 2015.

[68] Rui Li, M. T. M. Emmerich, J. Eggermont, E. G. P. Bovenkamp, T. Bäck,
J. Dijkstra, and J. H. C. Reiber. Metamodel-assisted mixed integer evolution
strategies and their application to intravascular ultrasound image analysis. In
2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on
Computational Intelligence), pages 2764–2771, June 2008.

[69] Rui Li, Michael T. M. Emmerich, Jeroen Eggermont, Thomas Bäck, Martin
Schütz, Jouke Dijkstra, and Johan H. C. Reiber. Mixed integer evolution strate-
gies for parameter optimization. Evolutionary computation, 21(1):29–64, 2013.

[70] Xingtao Liao, Qing Li, Xujing Yang, Weigang Zhang, and Wei Li. Multiobjective
optimization for crash safety design of vehicles using stepwise regression model.
Structural and Multidisciplinary Optimization, 35(6):561–569, 2008.

[71] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Bi-
rattari, and Thomas Stützle. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives, 3:43–58, 2016.

171

Bibliography

[72] David J. C. MacKay. Information Theory, Inference and Learning Algorithms.
Cambridge university press, 2003.

[73] Mary Lou Maher and Hsien-Hui Tang. Co-evolution as a computational and
cognitive model of design. Research in Engineering Design, 14(1):47–64, Feb
2003.

[74] Adanay Mart́ın and Oliver Schütze. Pareto tracer: a predictor-corrector method
for multi-objective optimization problems. Engineering Optimization, 50(3):516–
536, 2018.

[75] Joaquim R. R. A. Martins and Andrew B. Lambe. Multidisciplinary design
optimization: A survey of architectures. AIAA journal, 51(9):2049–2075, 2013.

[76] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs,
and Günter Rudolph. Exploratory landscape analysis. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, GECCO
’11, pages 829–836, New York, NY, USA, 2011. ACM.

[77] Pablo Moscato. On evolution, search, optimization, genetic algorithms and mar-
tial arts: Towards memetic algorithms. Caltech concurrent computation program
158-79, Technical Report, pages 1–68, 1989.

[78] Amos H. C. Ng, Catarina Dudas, Henrik Boström, and Kalyanmoy Deb. Inter-
leaving innovization with evolutionary multi-objective optimization in produc-
tion system simulation for faster convergence. In Giuseppe Nicosia and Panos
Pardalos, editors, Learning and Intelligent Optimization, pages 1–18, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[79] Matti Palonen, Mohamed Hamdy, and Ala Hasan. MOBO a new software for
multi-objective building performance optimization. In Proceedings of the 13th
Internationcal Conference of the IBPSA, pages 2567–2574, 2013.

[80] Erik Pitzer and Michael Affenzeller. A comprehensive survey on fitness landscape
analysis. In János Fodor, Ryszard Klempous, and Carmen Paz Suárez Araujo,
editors, Recent Advances in Intelligent Engineering Systems, pages 161–191.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[81] Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart,
1973.

[82] Ingo Rechenberg. Evolutionsstrategie ’94, Werkstatt Bionik und Evolutionstech-
nik Band 1. Frommann Holzboog, Stuttgart, 1994.

[83] Helge Rosé, Werner Ebeling, and Torsten Asselmeyer. The density of states —
a measure of the difficulty of optimisation problems. In Hans-Michael Voigt,
Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel
Problem Solving from Nature — PPSN IV, volume 1141 of Lecture Notes in

172

Bibliography

Computer Science, pages 208–217, Berlin, Heidelberg, 1996. Springer Berlin Hei-
delberg.

[84] G. Sand, J. Till, T. Tometzki, M. Urselmann, S. Engell, and M. Emmerich.
Engineered versus standard evolutionary algorithms: A case study in batch
scheduling with recourse. Computers & Chemical Engineering, 32(11):2706 –
2722, 2008. Enterprise-Wide Optimization.

[85] S. Schäffler, R. Schultz, and K. Weinzierl. Stochastic method for the solution
of unconstrained vector optimization problems. Journal of Optimization Theory
and Applications, 114(1):209–222, Jul 2002.

[86] Oliver Schütze, Carlos A. Coello Coello, Sanaz Mostaghim, El-Ghazali Talbi, and
Michael Dellnitz. Hybridizing evolutionary strategies with continuation methods
for solving multi-objective problems. Engineering Optimization, 40(5):383–402,
2008.

[87] Oliver Schütze, Vı́ctor Adrián Sosa Hernández, Heike Trautmann, and Günter
Rudolph. The hypervolume based directed search method for multi-objective
optimization problems. Journal of Heuristics, 22(3):273–300, Jun 2016.

[88] Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. PhD
thesis, Technische Universität Berlin, 1975.

[89] Hans-Paul Schwefel. Numerische optimierung von computer-modellen mittels
der evolutionsstrategie. Interdisciplinary Systems Research, 26:319–354, 1977.

[90] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley
& Sons, Inc., New York, NY, USA, 1981.

[91] Hans-Paul Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, Inc.,
New York, NY, USA, 1993.

[92] Zbigniew Sekulski. Least-weight topology and size optimization of high speed
vehicle-passenger catamaran structure by genetic algorithm. Marine Structures,
22(4):691–711, 2009.

[93] Ofer M. Shir, Michael T. M. Emmerich, and Thomas Bäck. Adaptive niche
radii and niche shapes approaches for niching with the CMA-ES. Evolutionary
Computation, 18(1):97–126, 2010.

[94] E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics,
8(5):541–564, Sep 2002.

[95] Terry Therneau and Beth Atkinson. rpart: Recursive Partitioning and Regres-
sion Trees, 2018. R package version 4.1-13.

[96] Philip Voll, Matthias Lampe, Gregor Wrobel, and André Bardow.
Superstructure-free synthesis and optimization of distributed industrial energy

173

Bibliography

supply systems. Energy, 45(1):424–435, 2012. The 24th International Confer-
ence on Efficiency, Cost, Optimization, Simulation and Environmental Impact
of Energy, ECOS 2011.

[97] Hao Wang, André Deutz, Thomas Bäck, and Michael Emmerich. Hypervolume
indicator gradient ascent multi-objective optimization. In Heike Trautmann,
Günter Rudolph, Kathrin Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu
Jin, and Christian Grimme, editors, Evolutionary Multi-Criterion Optimization,
pages 654–669, Cham, 2017. Springer International Publishing.

[98] Hao Wang, Yiyi Ren, André Deutz, and Michael Emmerich. On steering dom-
inated points in hypervolume indicator gradient ascent for bi-objective opti-
mization. In Oliver Schütze, Leonardo Trujillo, Pierrick Legrand, and Yazmin
Maldonado, editors, NEO 2015: Results of the Numerical and Evolutionary Opti-
mization Workshop NEO 2015 held at September 23-25 2015 in Tijuana, Mexico,
pages 175–203, Cham, 2017. Springer International Publishing.

[99] Honggang Wang. Direct zigzag search for discrete multi-objective optimization.
Computers & Operations Research, 61:100 – 109, 2015.

[100] Honggang Wang, David Laredo, Oliver Cuate, and Oliver Schütze. Enhanced
directed search: a continuation method for mixed-integer multi-objective opti-
mization problems. Annals of Operations Research, Sep 2018.

[101] Simon Wessing, Rosa Pink, Kai Brandenbusch, and Günter Rudolph. Toward
step-size adaptation in evolutionary multiobjective optimization. In Heike Traut-
mann, Günter Rudolph, Kathrin Klamroth, Oliver Schütze, Margaret Wiecek,
Yaochu Jin, and Christian Grimme, editors, Evolutionary Multi-Criterion Opti-
mization, pages 670–684, Cham, 2017. Springer International Publishing.

[102] Michael Wetter and Elijah Polak. Building design optimization using a conver-
gent pattern search algorithm with adaptive precision simulations. Energy and
Buildings, 37(6):603 – 612, 2005.

[103] Dirk Wiesmann. From syntactical to semantical mutation operators for structure
optimization. In Juan Julián Merelo Guervós, Panagiotis Adamidis, Hans-Georg
Beyer, Hans-Paul Schwefel, and José-Luis Fernández-Villacañas, editors, Paral-
lel Problem Solving from Nature — PPSN VII, volume 2439 of Lecture Notes
in Computer Science, pages 234–243, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[104] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bul-
letin, 1(6):80–83, 1945.

[105] Kaifeng Yang, Koen van der Blom, Thomas Bäck, and Michael Emmerich. To-
wards single- and multiobjective bayesian global optimization for mixed integer
problems. In Michael T. M. Emmerich, André H. Deutz, Sander C. Hille, and

174

Bibliography

Yaroslav D. Sergeyev, editors, Proceedings LeGO – 14th International Global Op-
timization Workshop, volume 2070, pages 020044–1–020044–4. AIP Publishing,
2019.

[106] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca.
Performance assessment of multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation, 7(2):117–132, April 2003.

[107] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolutionary
algorithms — a comparative case study. In Agoston E. Eiben, Thomas Bäck,
Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving
from Nature — PPSN V, pages 292–301, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

175

Bibliography

176

Samenvatting

In dit proefschrift (getiteld: Multi-Criteria Gemengd-Geheeltallige Evolutionaire Al-

goritmen voor Gebouw Ruimtelijk Ontwerp) is onderzocht hoe evolutionaire algo-

ritmen toegepast kunnen worden op complexe problemen. Deze complexiteit komt

voort uit meerdere aspecten. Allereerst gaat het om een multi-criteria probleem.

Dit betekent dat er oplossingen gevonden moeten worden die een afweging maken

tussen meerdere verschillende eisen. Ten tweede is de representatie van dit probleem

gemengd-geheeltallig. Dit introduceert complexiteit omdat het doorzoeken van reële

getallen efficiënt gedaan wordt met andere technieken dan het doorzoeken van dis-

crete getallen. Oftewel, meerdere technieken moeten gecombineerd worden. Het derde

aspect is het omgaan met restricties. Zulke restricties zijn er om te garanderen dat

gevonden oplossingen valide zijn.

Al deze aspecten worden meegenomen in het oplossen van een praktisch probleem:

De optimalisatie van gebouw-ruimtelijke ontwerpen in een vroeg ontwerpstadium. Dit

is van belang omdat het aanpassen van het ontwerp in latere fases veel werk kost, er

moeten dan namelijk meerdere aspecten opnieuw worden bekeken. Door vroeg in het

ontwerpproces te optimaliseren kan er dus tijd bespaard worden. Daarnaast leidt de

optimalisatie ook tot betere prestaties. In deze scriptie worden prestaties op het gebied

van temperatuur (koeling en verwarming), evenals structurele aspecten meegenomen.

Om te beginnen moet er een representatie voor de mogelijke oplossingen ontwikkeld

worden voor het ruimtelijke ontwerp (Hoofdstuk 3). Deze zogeheten supercube rep-

resentatie maakt het mogelijk om een arbitrair aantal ruimtes te beschrijven, en de

dimensies daarvan in te stellen. Om de validiteit van de ruimtelijke ontwerpen te kun-

nen controleren zijn er ook een aantal restricties voor de representatie gëıntroduceerd.

Deze restricties zijn polynomiale expressies die op directe basis van de binaire en reële

variabelen geformuleerd zijn. Om deze reden kunnen ze op eenvoudige wijze pre-

cies berekend worden en daardoor, in principe, gebruikt worden in op vergelijkingen

177

Samenvatting

gebaseerde oplossers.

Vervolgens is de vraag hoe er met de restricties op de supercube omgegaan kan

worden, om het vinden van valide ontwerpen te garanderen. Hoofdstuk 4 laat zien

dat het gebruik van straffuncties die reageren op het overschrijden van de restricties

kan helpen in het zoekproces. Helaas wordt er ook aangetoond dat ze niet voldoende

schalen naar grotere supercube afmetingen. In Hoofdstuk 5 worden probleemspecifieke

initialisatie- en mutatieoperatoren gepresenteerd die enkel door de valide zoekruimte

navigeren, en daardoor geen last hebben van de grote invalide regio’s die voorkomen

bij grotere supercube afmetingen.

Hoofdstuk 6 bekijkt hoe, in een multi-criteria setting, een lokale zoekstrategie

bij kan dragen aan de verbetering van oplossingen die tijdens het globale zoekproces

gevonden zijn. De resultaten laten zien dat hypervolume indicator gradiënt stijging

multi-criteria optimalisatie (HIGA-MO) werkt in een praktijkgerichte setting, evenals

met numeriek benaderde gradiënten. Ondanks dit positieve resultaat, weerhoudt het

aantal evaluaties dat nodig is voor de numerieke benadering in deze hoog-dimensionale

setting HIGA-MO ervan betere resultaten te produceren dan het gebruikte evolutio-

naire algoritme (SMS-EMOA-SC). Dit betekent dat als lokale zoekcomponent HIGA-

MO waarschijnlijk uiteindelijk wel beter zou zijn dan SMS-EMOA-SC, dankzij de

convergentie-eigenschappen van de hypervolume gradiënt, maar het aantal benodigde

evaluaties zou ondoenlijk zijn.

De optimalisatieprocessen genereren een schat aan data. De vraag is dan ook:

Wat kan er van deze data geleerd worden over gebouw-ruimtelijk ontwerp (Hoofd-

stuk 7)? Gebaseerd op de optimalisatiedata kunnen door middel van het automatisch

extraheren van ontwerpreglementen sleuteleigenschappen van hoge kwaliteit gebouw-

ruimtelijke ontwerpen geleerd worden. Deze ontwerpreglementen kunnen vervolgens

gebruikt worden om aan een ontwerpdeskundige te laten zien dat de ontdekte oplossin-

gen betrouwbaar zijn. Deze reglementen komen over het algemeen namelijk overeen

met welbekende ontwerpreglementen die gebruikt worden door de ontwerpdeskundi-

gen.

Volgend op de ontwikkeling van optimalisatiemethodes voor het gebouw-ruimtelijk

ontwerpprobleem, wordt er in Hoofdstuk 8 verkend of het mogelijk is een generiek

multi-criteria gemengd-geheeltallig evolutionaire strategie (MOMIES) te ontwikkelen.

Er zijn veelbelovende eerste stappen gemaakt die laten zien dat dit in de praktijk

goed werkt. Verder is er ontdekt dat recombinatie waardevoller is in multi-criteria

optimalisatie dan voorheen werd gedacht, hoewel het nog onduidelijk is hoe dit komt.

Daarnaast is er nog nader onderzoek nodig naar de aanpassing van de stapgrootte in de

178

Samenvatting

multi-criteria setting, de huidige methodes laten namelijk nog onberekenbaar gedrag

zien en zijn niet betrouwbaar in het volgen van de optimale mutatiestapgrootte.

Als laatste bijdrage van dit proefschrift wordt er onderzocht in hoeverre de ont-

wikkelde algoritmes toepasbaar zijn op praktische problemen (Hoofdstuk 9). SMS-

EMOA-SC heeft bewezen een waardevol component te zijn in een hybride algoritme

dat ook verkende welke supercube-configuraties het meest waardevol waren om mee

te werken. Verder is duidelijk geworden dat SMS-EMOA-SC een goede optimal-

isatiemethode is, maar dat de instellingen en de doelfuncties die eerder gebruikt wer-

den in de academische experimenten niet altijd direct aansluiten op de realiteit van

de praktische problemen. Voor de optimalisatie van nominaal-discrete variabelen van

structurele ontwerpen is MOMIES een zeer effectief algoritme gebleken.

Samenvattend heeft deze scriptie technieken beschikbaar gemaakt voor multi-criteria

optimalisatie van gebouw-ruimtelijke ontwerpen. Om dit te bereiken is er een repre-

sentatie gëıntroduceerd, evenals gespecialiseerde variatieoperatoren voor het gebouw-

ruimtelijk ontwerpprobleem. Daarnaast zijn de potentiële voordelen van een memetisch

algoritme onderzocht, waar stochastische globale zoekprocessen gecombineerd worden

met deterministische lokale zoekprocessen. Ook is de praktische toepassing van de

methodes onderzocht. Zowel door de analyse van de optimalisatiedata, als door de

toepassing op praktische problemen. Tot slot is er een generiek algoritme ontwikkeld,

dat niet gelimiteerd is tot het gebouw-ruimtelijk ontwerpprobleem.

179

Samenvatting

180

Curriculum Vitae

Koen was born on the 27th July 1990 in Berkel en Rodenrijs. After graduating with

a B ICT from The Hague University of Applied Sciences in 2012, he completed his

MSc at Leiden University in 2014. Under the supervision of Michael Emmerich, Hèrm

Hofmeyer (Eindhoven University of Technology), and Thomas Bäck he conducted the

research presented in this doctoral thesis at the same university. Currently, still in

Leiden, he is a post-doctoral researcher in meta-algorithmics supervised by Holger

Hoos.

181

Curriculum Vitae

182

Glossary

(building) spatial design

The design of the external and internal geometrical shape (of a building)

binary space / the space of binary numbers / Bn ∈ {0, 1}n

The space of n-tuples of integers restricted to two possible values, usually zero
and one

categorical / nominal discrete space

The space of tuples of categorical variables (usually encoded by integers)

decision / variable / search / design space

The space of candidate solutions in the chosen representation

discrete space

The space of tuples of integers and categorical variables (usually encoded by
integers)

feasible space

The space of solutions that do not violate any constraints

hypervolume (indicator) / S-metric

The volume covered by a set of points relative to a reference point

infeasible space

The space of solutions that violate one or more constraints

integer space / the space of integer numbers / Zn

The space of n-tuples of whole numbers; positive numbers, and possibly also
negative numbers and zero

mixed-integer space

The space of tuples containing a combination of real and discrete values

183

Glossary

objective space / solution space

The space of solution/objective performances, typically a subset of Rm, where
m is the number of objective functions

real space / the space of real numbers / continuous space / Rn

The space of real vectors of dimension n

space

Part of a building spatial design, e.g. a room, corridor, atrium, etc.

structural component

Structural component of a building, e.g. a beam, strut, slab, etc.

structural design

The set of structural components with their position and properties, which cir-
cumvents and distributes forces

subspace

Part of a more general collection; integer space is a subspace of real space, for
instance

supercube

A superstructure to encode building spatial designs

superstructure

A design space representation that represents a relevant subset of the entire
design space and each element of the superstructure is a solution that is encoded
by a vector of constant length

superstructure free

A design space representation that is not encoding solutions by using a super-
structure

184

Acronyms

AEC

Architecture, Engineering, and Construction

BGO

Bayesian Global Optimisation

BIM

Building Information Modelling

BP

Building Physics

CAD

Computer Aided Design

CD

Co-evolutionary Design

CFD

Computational Fluid Dynamics

EA

Evolutionary Algorithm

EDS

Enhanced Directed Search

EMO

Evolutionary Multi-Objective Optimisation

EMOA

Evolutionary Multi-Objective Optimisation Algorithm

185

Acronyms

ES

Evolution Strategy

FE

Finite Element

FEM

Finite Element Method

HIGA-MO

Hypervolume Indicator Gradient Ascent Multi-Objective Optimisation

HIGA-MO-SC

Hypervolume Indicator Gradient Ascent Multi-Objective Optimisation Super-
Cube

HVI

Hypervolume (Indicator)

MEMO

Memetic Multi-Objective Optimisation

MEMO-SC

Memetic Multi-Objective Optimisation SuperCube

MIES

Mixed-Integer Evolution Strategy

MINLP

Mixed-Integer Nonlinear Programming

MOMI

Multi-Objective Mixed-Integer

MOMIES

Multi-Objective Mixed-Integer Evolution Strategy

MOP

Multi-Objective Optimisation Problem

NSGA-II

Nondominated Sorting Genetic Algorithm II

ODE

Ordinary Differential Equations

186

Acronyms

PF

Pareto front

PFA

Pareto front approximation

RC

Resistance/Capacitance

SD

Structural Design

SMS-EMOA

S-Metric Selection Evolutionary Multi-Objective Algorithm

SMS-EMOA-SC

S-Metric Selection Evolutionary Multi-Objective Algorithm SuperCube

XML

eXtensible Mark-up Language

187

Acronyms

188

Symbols

α ratio between desired and current volume

B binary matrix

b`i,j,k indicator of activity for a specific cell belonging to a specific space for the super-
cube

C heat capacity

c accumulation coefficient

CV number of constraint violations

D geometry of a space in the movable sizeable representation

d number of decision variables

d vector of nominal discrete decision variables

dj size of a specific depth division of the supercube

E Young’s modulus

ej j-th standard basis in Rd

f(·) objective function

F mapping between X and Y

f(·) vector of objective functions

FS fixed number of steps

G(·, ·) Gaussian distribution

g(·) equality constraint function

Gnorm normalised subgradient

H(·) hypervolume of a set of objective vectors

189

Symbols

h(·) inequality constraint function

HF(·) hypervolume of a set of decision vectors

hk size of a specific height division of the supercube

I inner product of normalised HVI subgradients in two consecutive iterations

I integer matrix

IM initialisation mutations

IT initialisation technique

k thermal conductivity

κ maximum number of generations that an individual can stay in the population

K stiffness matrix of an element

L coordinates of the location of a space’s origin in the movable sizeable representation

Λ Lebesgue measure

λ offspring population size

λk tournament size

lb lower bound

M heightmap

m number of objectives

MC continuous mutation probability

MP mutation probability

MT mutation type probability

µ parent population size

Ncells number of cells

Ncont number of continuous variables

Nd number of divisions in depth for the supercube

Ndims number of decision variables in a given supercube

Nh number of divisions in height for the supercube

Nspaces number of spaces

190

Symbols

ν Poisson’s ratio

Nw number of divisions in width for the supercube

p cumulative value of I

pen penalty value

plive live load

pw,p wind load, pressure

pw,s wind load, suction

pw,sh wind load, shear

Qc cooling power

Qh heating power

r vector of continuous decision variables

ρ reference point

% density

RP recombination probability

S set of solutions

s a space in the moveable sizeable representation

SA total outside surface area

s a vector of spaces in the moveable sizeable representation

Sd total outside surface area of depth vectors

sd shape depth

sgn(·) sign function

Sh total outside surface area of height vectors

sh shape height

σ step size of continuous variables

ς step size of integer variables

ST step size technique

Sw total outside surface area of width vectors

191

Symbols

sw shape width

t thickness

τ1 Local learning rate

τ2 Global learning rate

Tc cooling set point temperature

Tg ground temperature

Th heating set point temperature

U(·, ·) Uniform distribution

ub upper bound

u displacement vector of an element

V0 total volume

Vc current volume

wi size of a specific width division of the supercube

X finite set of decision vectors

x decision variable

X vector of concatenated decision vectors

x vector of decision variables

Y finite set of objective vectors

y objective value

Y vector of concatenated objective vectors

y vector of objective values

z vector of integer decision variables

ζ step size of nominal discrete variables

192

