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 1.1. Photosynthesis 
After 3 billion years of evolution, nature has provided us with a wonderful machinery to 

convert sunlight into storable chemical energy: photosynthesis1,2. In the process of 

photosynthesis the waste product is oxygen, which sustains the life of oxygen-consuming 

organisms. Photosynthesis takes place in many different organisms. In higher plants and 

green algae, photosynthesis occurs in thylakoid membranes, which are present in 

chloroplasts. The stacked membranes are called grana whereas non-stacked membranes 

are known as stromal thylakoids3. 

Photosynthesis involves three consecutive steps. In the first step light energy is 

absorbed by light harvesting antenna complexes and funneled to a reaction center4,5. In the 

second step, the absorbed light energy is converted and stored into chemical forms as 

NADPH and ATP6,7. The third step involves using NADPH and ATP to assimilate the 

carbon or carbon fixation. In this final step the energy is stored in sugars, which are a 

form of cellular biochemical energy8. 

In higher plants, the Photosystem II (PSII) is selectively located in grana thylakoid 

membranes. It is practically possible to separate and isolate thylakoid membranes that 

contain mostly PSII by using a detergent-based method9,10. The PSII particles are capable 

of producing oxygen on illumination in the presence of an external artificial electron 

acceptor. Such PSII particles are used in our experiments in chapter 2. 

1.2. Photosystem II and Water Oxidation Complex  
Photosystem II performs water splitting, oxygen release and protonation of 

plastoquinone to store the electrons extracted from water in a chemical redox carrier. The 

detailed structure of Photosystem II has been studied and resolved by X-ray 

crystallography and it has been estimated that the core of the Photosystem II complex 

contains about 35 Chl molecules, 2 Pheophytins, 11 -carotenes and more than 20 

lipids11–13. It has been estimated that each Photosystem II converts the energy collected by 

approximately 200-300 Chl molecules14–17.  
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The luminal side of Photosystem II contains the water splitting machine, the oxygen 

evolving complex. The structure of the OEC has recently been resolved to a resolution of 

1.9 Å by X-ray crystallography by Umena et al.,13. The catalytic site of the OEC contains 

4 Mn and a Ca2+ ion and Cl- ions, which are required for stabilization of the structure and 

for proper functioning of the OEC18–21. 

1.3. Light Harvesting Complex II 
All oxygen evolving photosynthesizes, like higher plants and green algae, contain 

similar organization of their photosynthetic apparatus which appears to be highly 

conserved across species and taxonomic boundaries during evolution. This functional unit 

should represent an effective and robust machinery that adheres to a restricted set of key 

engineering principles to adopt to different growing conditions on Earth and to 

environmental stresses22–24. Above all, the photosynthetic apparatus must have flexibility 

with respect to continuously changing radiation conditions during the daily solar cycle and 

yearly seasonal cycle. Last but not least, short term variations due to different shading 

conditions must be balanced, for example in light spots on the ground. Understanding the 

underlying mechanism and high flexibility of light adaptation by the peripheral antenna is 

a major challenge in photosynthesis research. 

The LHC II complex is trimeric and each monomer contains 8 chlorophyll a, 6 

chlorophyll b, 2 luteins, 1 neoxanthin and 1 violaxanthin and the structure of LCH II of 

pea is shown in Fig.1. LHC II complexes are involved in regulatory mechanisms to avoid 

photodamage from incoming light energy5,25–28. Under high sunlight conditions, the LHC 

II antenna can rapidly change from the light harvesting state to a photoprotective state. 

The excess energy is dissipated as heat, by mechanism called non-photochemical 

quenching (NPQ)29–32. From the LHC II major light harvesting complexes the excitation 

energy is transferred via the core light-harvesting complexes to the reaction center, where 

water is oxidized by the Mn cluster of the oxygen evolving complex.  
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Figure 1. Structure of LHCII of pea27. Top view (left panel) and side view through the membrane 

(right panel) 

1.4. Rapid Freeze Quenching 
Rapid Freeze Quenching is one of the few methods that are used to study the 

catalytic mechanisms of enzymes through the analysis of transient intermediates33–37. 

Rapid freeze-quenching was developed by Graham, Ballou and Palmer in the nineteen 

sixties and seventies38,39. Initially the method was developed for studying the redox-

enzyme kinetics with EPR spectroscopy, since the continuous and stopped flow methods 

were not suitable for EPR spectroscopy.  

 The rapid freeze-quenching set-up is basically a continuous flow instrument. The 

flow is generated by a drive ram present in HPLC pumps, pushing two syringes, one 

loaded with enzyme and the other one contains the substrate activate the enzyme reaction. 

After mixing the sample is delivered through a nozzle to a cryo-bath, where the reaction is 

rapidly quenched. The sample aging time is varied by changing the length of the nozzle 

tubing. To quench the reaction either cold isopentane or liquid ethane or liquid nitrogen 

were used. 

  The dead-time or minimum total sample aging time a can be formulated as 

follows, 

              a = m + t + q 

In which a is the total aging time of the sample, m is the mixing time, t is the transport 

time and q is the quenching or freezing time. Rapid freeze-quenching methods generally 
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involved 40 s mixing time, 1 to 2 ms sample delivery time and 4 to 6 ms for the 

quenching time, yielding a total dead time of 5 to 7 ms40–43. 

By improving the methods used in rapid freeze-quenching the total dead-time was 

significantly improved to 130 s by Cherepanov and de Vries44. This was achieved by 

using a stainless steel mixer base with micro-channels of 50 m. The mixing time was 

determined at less than 2 s and the cold isopentane is used as quenching medium. 

The RFQ method developed by Cherepanov and Simon de Vries is used in this thesis to 

study the enzyme mechanisms. The two channels in the mixer were altered to one channel 

and the Photosystem II sample was illuminated with a high power red laser on the flow 

path just before quenching. The Photosystem II is quenched most effectively with cold 

isopentane or liquid nitrogen.  

1.5. Solid State NMR 
NMR chemical shifts depend on not only the different type of nucleus but also the 

orientation of nucleus to the static magnetic field Bo. In liquid state, the molecules exhibit 

Brownian motion and tumble rapidly in the order of nanoseconds to picoseconds. So the 

orientation-dependent chemical shift contributions such as chemical shift anisotropy and 

dipolar interactions are not present. In the solid state, the molecules are rigid and dipolar 

interactions are present, resulting in a powder like pattern. The NMR signal consists of 

contributions from molecules in different orientations. This is an important difference 

between two commonly-used NMR spectroscopies; liquid and solid state NMR. 

The powder pattern spectra of Solid State NMR contains a wealth of information, but it 

lacks site specific information, which are used for characterization of molecules and 

structure determination of biological samples. To obtain high resolution Solid State NMR 

spectra we need to remove the anisotropic interactions. This can be achieved by 

mechanical rotation at high speed at an angle of 54.74o also known as magic angle 

spinning as shown in fig. 2. The high speed rotation of the sample, which is packed in a 

rotor oriented at magic angle with respect to the static magnetic field Bo, results in 

disappearance of the anisotropic part and removes the anisotropic line broadening 

resulting in narrow lines45,46. 
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Figure 2. Depiction of the MAS technique. The sample is filled in the rotor and rotated at an anlge of 

54.74o (magic angle) with respect to magnetic field B0.  

1.5.1. Cross-Polarization 
Cross-polarization method is another important methodology in solid state NMR. There 

are two types of NMR active nuclei; one type are abundant spin nuclei like 1H, 19F and the 

other type are dilute spin nuclei like 13C and 15N. The former nuclei are highly natural 

abundant and the later ones have low natural abundance. When dealing with dilute spin 

nuclei in Solid State NMR, generally the signal is weak, due to long spin-relaxation time 

T1. So, large number of scans and averaging of the signals is required in direct 

polarization experiments for adequate resolution and good signal to noise ratio. 

To resolve the problem for dilute spin nuclei in Solid State NMR, cross-polarization 

methods are used. Cross polarization works by transferring the magnetization from 

abundant spin nuclei to dilute spin nuclei via their heteronuclear coupling interactions. 

Cross polarization enhances the magnetization of dilute spin nuclei and increases the 

signal to noise ratio. So less number of scans is required to get a good signal. Additionally 

the recycle delay, the time between the scans is reduced. The recycle delay depends on the 

system to return to equilibrium with Bo, which is governed by the abundant spin nucleus 

spin-lattice relaxation time47,48. 

Now consider the 1H-13C spin pair as an example and they are in a double rotating 

frame, which means that the magnetization of 13C and 1H precess about Bo. The cross 

polarization process starts with preparation of transverse magnetization of 1H and it is 

maintained along the rotating frame x or y axis by using the contact pulse in a given 

period of time. Simultaneously another contact pulse is given to 13C in order to create 
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transverse magnetization along its x or y rotating frame axis. The condition for 

transferring magnetization from 1H to 13C, the rotating frame energy level separation for 

the given two nuclei must be same. This is known as Hartmann-Hann matching 

condition49: 

( 1H) B1
1H  = (  13C) B1

13C 

1.5.2. Heteronuclear Correlation experiment 
Solid-state cross polarization magic-angle-spinning (CP-MAS) Frequency Switched 

Lee Goldburg (FSLG) Heteronuclear Correlation (HETCOR) spectra were obtained in a 

magnetic field of 750 MHz with the pulse sequence as shown below(see Fig.3). This 

experiment correlates the high-resolution proton spin signals with carbon spin signals. The 

correlation is obtained when 1H and 13C nuclei are dipolar coupled, it is therefore a 

through space correlation. The pulse sequence starts with preparation of a 90o pulse. 

Subsequently frequency switched Lee-Goldburg (LG) pulses were used to remove the 

large homonuclear dipolar couplings50,51. Mixing was achieved by the cross polarization 

pulse during contact time. During this period the magnetization transfers from proton to 

carbon. During the carbon acquisition the protons are decoupled from carbon by using 

TPPM decoupling scheme. 

                
Figure 3. Hetcor 1H-13C LG-CP pulse sequence; this pulse sequence starts with 90o preparation pulse 

followed by the Lee-Goldburg decoupling during t1. After that cross-polarization pulses are applied in 

mixing time on both 1H and 13C. During t2 13C FID is observed. 
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1.6. Electron Paramagnetic Resonance 
Electron paramagnetic resonance is called as electron spin resonance. It is a 

spectroscopic method based on observation of resonance absorption of microwave power 

by unpaired electron spins in an external magnetic field. When an external magnetic field 

B applied, a lower energy level is formed in which the electrons are aligned with external 

magnetic field, and a higher energy level is formed in which the electrons are aligned in 

the opposite direction of the magnetic field. The energy level difference is given by  

    E = g B = h         

 By varying the external magnetic field B, the difference in energy levels also 

changes. Resonance condition emerges when the energy of the microwaves is equal to the 

difference in energy levels. By observing the EPR spectra, three important parameters can 

be obtained: the g-factor, the width of the absorbed line and nuclear-hyperfine interactions 

that give rise to extra lines. 

 This thesis focus on three projects related to natural and artificial photosynthesis. 

Major light harvesting complex antenna photo protection mechanism, construction and 

working of novel flash excitation and rapid freeze quench instrument and structural 

determination of artificial light antenna complexes by using MAS NMR are the scope of 

this thesis.  

 Chapter 2 of this thesis describes the construction of an instrument which 

combined flash excitation and rapid freeze quenching to study the structural changes 

during water oxidation mechanism of Photosystem II . The construction involves novel 

methods in connecting the dark and light parts of flash methodology are explored.    

 In chapter 3 the role of Arg-Glu ion pair is investigated in conformational switch 

from light harvesting to photo protection mode in high light conditions of major Light 

Harvesting Complex II with MAS NMR and selective labeling of Arg.  

 MAS NMR studies alone can give the self-assembled structure of Zinc amino 

chlorines was investigated in the chapter 4. Finally chapter 5 discuss about the outlook 

and future experiments.  
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 2 
 

Design of a novel device enabling freeze-quench 
trapping of laser flash activated Photosystem II 
intermediates.  

 
A three-flash flow cell was designed to enable the study of single or 

multiple flash activated photochemical reactions. The performance of the device 

was tested with Photosystem II, in order to study transient intermediates in the 

mechanism of water oxidation by the manganese cluster. The novel methodology 

of flash flow RFQ-EPR allows rapid freeze quenching after flash activation 

followed by spectroscopic measurements, for example by EPR. The current setup 

consists of three 680 nm diode lasers as light sources, capable of delivering a 

maximum of three sequential flashes of 10 μs each, which drive Photosystem II 

through the Kok cycle as evidenced form the appearance, disappearance and 

subsequent reappearance of EPR signals associated with intermediates with 

specific Mn-multiline EPR spectra. The dead time, which is the time between the 

last flash and hyperquenching of the sample by freezing using liquid isopentane at 

140K as the quenching medium, is 2 ± 0.3 ms. The two interconvertible states of 

S2
+ which originates from the spin ground state of manganese cluster S=1/2, 5/2 

are produced at g=2 and g=4.1 in X band EPR by the flash RFQ method. The 

conversion efficiency by this method in transitions from S1
n to S2

+ is 100%, from 

S2
+ to S3

+ it is 75% and from S3
+ to S0

n a conversion efficiency of 60% is 

achieved.  
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2.1. Introduction 
Photosystem (PS) II is the water splitting multi-subunit protein complex in 

thylakoïd membranes of plants, algae and cyanobacteria1–5. PS II carries out light-driven 

oxidation of two water molecules to form molecular oxygen (O2)3. Upon flash activation 

of the PSII reaction center chlorophyll P680, charge separation occurs that generates one 

oxidizing and one reducing equivalent. The electron is transferred to pheophytin, then to 

the primary electron acceptor quinone QA, and finally to the secondary electron acceptor 

QB. After a second flash, QB is doubly reduced and protonated to form QBH2, which leaves 

the binding site and is replaced by a another acceptor molecule from the QB pool. The 

oxidized primary donor Chl P680 is reduced by an electron from the secondary donor 

Tyrosine161 from the D1 polypeptide, YZ, which is oxidized to the neutral tyrosine 

radical (YZ
*)4,6,7. The YZ

* is reduced by one electron from the water oxidizing complex in 

every charge separation cycle. The YZ
* serves as a mediator that decouples the proton 

transfer from the electron transfer in the catalytic unit8. The water oxidation complex 

consists of a Mn4Ca cluster that can accumulate a maximum of four positive charges upon 

which molecular oxygen is released from two water molecules and 4 H+ are ejected into 

the lumen2,7,8. 

In natural photosynthesis, the water oxidation happens in a cyclical process that 

contains 9 intermediates and transition states as shown in figure 1a9. Si
+/n can represent the 

one of the intermediate or transition state. Here subscript ‘i’ indicate the number of 

oxidation equivalents which are accumulated at water oxidation complex and the 

superscript indicate the charge of the PS II with respect to the dark stable S1
n state (n, 

neutral and +, positive) 

The water oxidation cycle in Figure 1 proceeds along a reaction coordinate with 

decoupled proton transfer and electron transfer steps with four intermediates and five 

transition states9. Although proton transfer and electron transfer alternate during the cycle, 

the charge state of the water oxidation cluster, which is neutral in the (S1
n) dark stable 

intermediate, changes to +1 after the first flash (S2
+) and remains positive until water 

oxidation takes place that reverts the cluster to its neutral form. Figure 1.b. shows a square 

diagram for proton transfer and electron transfer for the cycle in (a). The horizontal 
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reaction steps indicate proton transfers and vertical reaction steps are for electron transfer. 

Solid circles indicate stable intermediates and dashed circles depict the transition states 

according to Dau et al9. The steps along intermediates and transition states for the reaction 

coordinate in PS II are shown with thick arrows. The dashed diagonal lines indicate +1 

and neutral isocharge sequences of intermediates. The dark stable intermediate S1
n is on 

the neutral isocharge diagonal, and the water oxidation cluster moves over to the +1 

isocharge diagonal and the S2
+ intermediate with the first flash. After three flashes there is 

an effective mismatch between intermediates and transition states, and the system, which 

is in the S3
+ intermediate moves over from +1 isocharge intermediates to neutral 

intermediates by losing two protons and one electron end up in the S0
n neutral 

intermediate. The effective mismatch is resolved in the transition from S4
+ to S0

+ which 

are both transition states and are shown together on the reaction coordinate in the square 

diagram.  

 

 
 

Figure 1. (a) Water oxidation cycle in PS II and (b) square diagram for proton and electron transfer 

steps. Four states, S1n, S2+, S3+ and S0n, are stable intermediates on short time scales, while (S2n, S3+, 

S3n, S4+ and S0+) are the transition states9. The states S2+, S3+ are on the diagonal with +1 charge state 

and S1n, S0n are on the diagonal with neutral states. 
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EPR has proven to be invaluable to characterize PSII, capable of detecting 

differences between signals of the Mn4Ca cluster in its different Si
+/n states. The total spin 

of the states S2
+, S0

n are Stot= ½10,11. These are detectable by normal mode EPR and 

characterized in particular by multiline EPR signals at g = 2 with an average Mn-

hyperfine splitting of ~ 90 Gauss12–15. RFQ is extremely useful in trapping transient 

intermediates formed in biological enzymatic reactions, and the subsequent 

characterization by various spectroscopic methods including EPR, Mössbauer and 

Resonance Raman spectroscopy16–21. A flash-freeze approach has been used by Dau et al 

to study structural changes of the Mn complex during the water oxidation cycle by 

XAFS22,23. It is presently not possible, however, to trap PSII intermediate states by rapid 

freeze-quenching (RFQ) for the study of the Mn4Ca cluster by EPR. By the combination 

of RFQ and a newly designed three-flash flow cell we offer the prospect to study the 

transient kinetics of the Mn4Ca-cluster in Photosystem II. The developed technique is in 

fact applicable to the study of a wide variety of photochemical reactions in combination 

with a wide array of spectroscopic methods. 

2.2. Materials and Methods 
 

2.2.1. Preparation of Photosystem II membrane particles 
 

 Oxygen evolving PSII membrane particles were prepared from spinach following a 

method described by Berthold et al. with a modification of the procedure by Schiller et 

al24,25. The preparation was performed in the dark or under dim green light at 

approximately 4oC. Fresh spinach leaves were washed in ice cold water, destemmed and 

grinded in a blender for 20 seconds, in a medium that contained 0.4M sucrose, 0.4M 

NaCl, 35mM HEPES (pH 7.5), 4mM MgCl2, 1mM EDTA, 5mM ascorbic acid and 2 g/l 

BSA. The suspension was filtered through cheesecloth and centrifuged for 6 min at 

5000 g. The chloroplast pellet was resuspended in 25mM HEPES (pH 7.5), 150 mM 

NaCl, 8mM MgCl2 and centrifuged for 10 min at 5000 g. The pellet consists of thylakoid 

membranes and was diluted to a suspension of 2.5 mg Chl/ml with a buffer containing 1M 

glycine-betaine, 15mM NaCl, 10mM MgCl2 and 25mM HEPES (pH 6). The suspension 
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was further diluted, with 25% Trition-X100 (w/v) solution, to give a final Triton 

concentration of 5% (v/v) with a final concentration of 2 mg Chl/ml and was incubated in 

the dark with slow stirring for 25 min26. After incubation the suspension was centrifuged 

for 3 min at 1000×g to remove the starch, followed by centrifugation for 30 min at 

48000×g at 4oC. The dark green part of the pellet was subjected to two or three 

resuspension and centrifugation steps until the white starch spot on the bottom of the 

pellet was removed completely. The washed Photosystem II particles were stored in final 

buffer containing 400mM sucrose, 1M glycine-betaine, 30mM NaCl, 5mM MgCl2, 5mM 

CaCl2 and 50mM MES (pH 6) and stored at -80oC in aliquots of 0.75 ml at 10 mg Chl/ml.  

Oxygen evolution activity of Photosystem II membrane particles was measured 

polarographically with a Clark electrode in an assay buffer containing 400mM sucrose, 

1M glycine betaine, 30mM NaCl, 5mM MgCl2 and 50mM MES (pH 6) using saturating 

light (1200 W/m2). Exogenous artificial electron acceptors, 5mM K3[Fe(CN)6] and 0.3mM 

PPBQ from a freshly prepared stock of 250mM in water and 15mM in DMSO, 

respectively, were used27. PS II membrane particles were used that had oxygen evolution 

rates of 300-400 mol O2 (mg Chl h)-1. 

2.2.2. EPR experiments 

 X-Band EPR spectra were collected in normal mode at 10K using an ECS106 

spectrometer (Bruker) equipped with a home built cryostat28. Measuring conditions were 

9.45 GHz, 20 G modulation amplitude, 20 mW microwave power and the scan time was 3 

minutes. 

2.2.3. Rapid Freeze Quenching 

RFQ was performed in a quartz EPR sample tube connected to a funnel with a 

flexible plastic tube and immersed in isopentane which is cooled to 140 K by slow mixing 

of liquid N2 to it as described by Cherepanov et al17. The excess isopentane removed and 

EPR tubes were frozen and stored in liquid N2 until the EPR experiments were performed. 
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Three Red diode lasers each provides 800 mW output power, 105 m fiber core 

diameter, peak output at a fixed wavelength of 678 nm (BWT Beijing LTD, China) served 

as light sources. The PEEK tube and capillaries are connected by Micro Tight adapters 

(Upchurch Scientific). HPLC-type solvent delivery pump (Waters Inc. Type 515) with 

operational pressures ranging from 0-6000 psi. The experiments were carried out in 

complete darkness by using EyeClops night vision goggles (Jacks Pacific Inc. California, 

USA) which carry an internal infrared light source for vision that does not affect PSII. 

2.3. Results and Discussion 

2.3.1. The construction of Flash-RFQ setup 
The schematics of the Three-Flash Flow Cell for rapid freeze quenching of photo 

excited Photosystem II is shown in Figure. 2. A major challenge in constructing the setup 

is to obtain sufficient light intensity to get complete turnover of the sample, which 

requires a light intensity of > 2 mJ/cm2 for every flash29. To achieve this, fluid channels 

made from PEEK tube of inner diameter 400 m were connected to transparent fused 

silica capillaries of inner diameter 100 m with red diode lasers focused perpendicularly 

on the fused silica capillary tube by SMA couplers. Every red diode laser of 800 mW 

produces ~50 mJ/cm2. With a flow rate of 5 ml/min and 100 m inner diameter capillary 

tube, 25 times more light intensity is supplied to the sample than required for the full 

conversion. The overcapacity compensates for laser and flash-cell fiber coupling losses 

and for the divergence of the fiber beam that initiates the photochemical reaction. Since 

the PS II particles are moved at a high flow rate across regions of static continuous 

illumination by the red lasers, PS II particles are exposed to short flashes of red laser light.  

At a flow rate of 5 ml/min the PS II particles are exposed to red laser flashes of 10 μs, 

which avoids double hits30. 

The dark period between flashes should be more than 150 ms in order to allow for 

complete reduction of the quinone acceptor side31. Sections of PEEK tubing of 10 cm 

serve this purpose of establishing dark periods. The PEEK tubings are shown as yellow 

colored conduits in the 3D representation of the three flash cell at the bottom of Figure 2. 
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After the third flash the suspension leaves as a jet of 100 m diameter into a funnel that is 

connected to an EPR tube that is filled with isopentane at 140 K. 

                  

Figure 2. The flash photoexcitation and rapid freeze quenching set up for studying Photosystem II 

catalytic intermediates. 1) is the buffer bottle. The aqueous buffer serves as the carrier fluid for 

transporting the sample through the setup. It is made anaerobic by flushing with Ar, which flows 

continuously when the system is not in operation. 2) HPLC pump for sample injection, 3) Rheodyne 

injector for transferring aliquots of 0.5 ml sample into a low dead volume 4) through a 0.2 mm filter. 5) 

Stand to support the three flash cell, 6) The three flash cell with dimensions of 100 mm x 100 mm x 70 

mm, 7) SMA-connector to couple a capillary tube with the Red diode laser of 800 mW. 7.1, 7.2, and 

7.3 are laser excitation points. 8) Microtight adapters to connect the 100 μm ID fused silica capillary 

and 400 μm ID PEEK tube, 9) Jet with a diameter of 100 μm and 10) The sample collector funnel is 

attached to an EPR tube that is immersed in isopentane at 140K. 
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The jet speed and the distance between flash and quenching medium determines 

the time resolution for freeze quenching. The total aging time ( a) is the sum of the sample 

transport time t and the cryofixation time c 17. The sample transport time is determined 

by two factors, the linear flow rate and the distance from the third flash cells to the 

cryomedium as shown in Figure 2. At a linear flow rate of 5 ml/min the sample flow rate 

equals 10 m/s, and the sample transport time is 1.4 ± 0.2 ms when crossing a distance of 

15 mm between the location of the last flash and the quenching medium. The cryofixation 

time for a jet of 100 μm in isopentane is estimated as 0.6 ± 0.1 ms32,33. So, the sample 

aging time is 2.0 ± 0.3 ms. 

Photosystem II particles were solubilized in a buffer containing 1M betaine. This is 

critical to stabilize PS II and to enhance free liquid flow in the three-flash flow cell, which 

reduces the risk of clogging of the microfilter25,34,35. Prior to flash excitation, PSII 

membrane particles with 9 mg Chl/ml were exposed to ambient light for 5 minutes, 

followed by a period of 90 minutes dark adaptation, to bring the PS II reaction centers to 

dark stable intermediates S1
n. Upon continuous light exposure the PS II reaction centers 

have an equal distribution over four stable intermediates S1
n, S2

+, S3
+ and S0

n . When the 

light is switched off, the S2
+ and S3

+ convert back to S1
n on on a time scale of minutes, 

while the S0
n state converts to S1

n by dark incubation on a longer timescale of 90 minutes, 

since it requires transferring an electron and reduction of YZ
36. After the dark adaptation 

time, 0.3 mM of artificial electron acceptor PPBQ in DMSO was added to mimic the role 

of QB. PPBQ has similar efficiency in accepting the electron from QA
37.  

2.3.2. EPR responses of flash excited freeze quenched Photosystem II  
 The traces in figure 3A indicate the S2

+ multiline EPR responses that were 

generated by continuous illumination for 10 minutes at 200 K29. The S2
+ multiline signal 

is used as a reference to determine the conversion efficiency of a flash. Trace B depicts 

the multiline EPR signal from a sample that was first passed through the three-flash flow 

cell without flashes, and subsequently illuminated for 10 minutes at 200 K. Since the line 

shapes of the signals in 3A and 3B are the same, Photosystem II remains stable at the high 

flow rates and pressures generated during the freeze quenching experiment.  
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Figure 3. (uppper panel) The sample integrity and excitation efficiency can be verified using the S2+ multiline 

signal as a marker. Continuous illumination at 200K of (A) dark adapted reference sample and (B) freeze 

quenched sample with no flash. (C) Freeze quenched sample after one red laser flash of 10 μs and aging 

time of 2 ms. In the lower panel the effect of excitation time on the intensity of the S2+ multiline signal is 

shown. S2+ multiline signals were generated by one laser flash of 10 μs (D), 15 μs (E) and 25 μs (F) by 

adjusting the fluid flow rate to 5, 3.3 and 2 ml/min, respectively. The lines labelled -6 to 6 indicate the S2+ 

multiline peak positions that were used to determine peak heights and relative concentrations. 

For comparison, we have also performed some experiments with MHQ using a rotating 
disk for freezing the sample, which has the advantage of more rapid freezing compared to 
the RFQ in isopentane. However, it was found that the Mn was released under MHQ 
conditions due to degradation of PS II, and a free Mn2+ signal was observed (Appendix). 
Trace C in figure 3 is from a sample illuminated by one red laser in the three-flashflow 
cell freeze quenched. 
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Figure 4. EPR spectra showing the generation of S2+, S3+ and S0n states by sequential laser flashes followed 

by freeze-quenching. Trace A, dark signal, traces B, C and D represent the S2+, S3+ and S0n states 

respectively, and were after 1, 2 or 3 red laser flashes of 10 μs each. The total aging time, a of each sample 

is 2 ms and the exhaust jet is freeze quenched with cold isopentane at T=140K. The lines labelled -6 to -1 

indicate the S2+ multiline peak positions that were used to determine peak heights and relative 

concentrations. 

The normalized intensity of the S2
+ multiline signal of trace C is nearly equal to trace A 

and B which indicates complete conversion. The traces D,E and F in figure 3.b. show the 

S2
+ multiline signal generated by excitation after one flash with sample illumination times 

of 10, 15 and 25 s. These illumination times were achieved by varying the flow rates of 

5, 3.3 and 2 ml/min, respectively. Increasing the illumination time of 10, 15 and 25 s did 

not alter the average intensity of the peaks, indicating there were very few if any double 

hits. This confirms the full and clean conversion of S1
n to S2

+ in 10 μs. In the case of 

double hits, the S2
+ intensity would have decreased as it would have converted to S3

+. 

The results of multiple flashes are shown in Figure 4. After the sample preparation and 

the dark period, the sample is in the S1
n intermediate. The EPR spectra of S1

n, S2
+, S3

+ and 

S0
n were generated by application of 0, 1, 2 or 3 laser flashes, respectively. Trace B in 

figure 4 shows the multiline signal at g=2 with 92 G line spacing, which originates from 

the conversion into the S2
+ intermediate state, which has a total spin (S=1/2). The figure 5 

shows the g=4.1 signal with 500 G line width of S2
+ intermediate state with total spin 

(S=5/2). These two forms are interconvertible at room temperature.38,39 The g=4.1 signal 
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overlaps with a strong response from rhombic iron at 

g=4.31. Since the rhombic iron signal is not affected by 

the flashes, it can be subtracted to reveal the g=4.1 

response for the S2
+ intermediate (Figure 5). After two 

flashes the intensity of the S2
+ multiline signal pattern 

had decreased by 75% by partial conversion of the S2
+ 

intermediate to the S3
+form. The total spin of the S3

+ 

state is S=3, which does not give a response around g=2 

in normal mode X-band EPR40. After three flashes the 

strength of the multi-line signal increases (trace D). 

Studies of the S0 state have been performed with EPR 

in the past, and have provided converging evidence for a 

g=2 signal only, i.e. without the g=4.1 response that is 

characteristic for the second component of the S2
+ state 

(see Appendix, Figure 2A.2)41. Hence we attribute trace 

D in figure 4 to partial conversion to the S0
n state. The 

total spin of the S0
n intermediate state is S=½ and it 

produces g=2 multiline signal41. The intensity of the g=2 

signal is 45% of the original S2
+ multi-line signal (trace 

B) and this suggests an approximate 60% conversion by the third flash. Thus the 

conversion efficiencies from the initial S1
n state decreases after each flash, from 100% to 

75% to 60%, whilst each flash is saturating (Figure 3). Two possible explanations for this 

decreasing conversion efficiency can be given: 1) the dark time (150 ms) between flashes 

is too short or 2) the concentration of PPBQ (0.3 mM at 8 – 10 Chl mg/ml) is too low. In 

both cases this leads to incomplete regeneration of the QA
- radical state to QA, and the 

electron acceptor side of PS II is thought to limit the rate for oxygen evolution42.  

 

Figure 5. The EPR spectrum of 
the g=4.1 signal of the S2+ 
intermediate (bottom trace) is 
obtained from the difference 
between the EPR response after 
one flash (top trace) and data 
collected from rapidly freeze 
quenched sample without flash 
excitation (middle trace). 
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2.4. Conclusion 

The results indicate the successful implementation of a new flash-flow RFQ set up 

to study intermediates in photochemical reactions and its demonstration in resolving PSII 

intermediates. In its present form the total dead time ( a) is calculated at 2 ± 0.3 ms, 

determined by the jet travelling time 1.4 ± 0.2 ms and freeze quenching time 0.6 ± 0.1 ms. 

The present set up can deliver up to three flashes. The system is successfully tested for 

one, two and three flashes to drive the water oxidation by PS II.  
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2.5. Appendix 

Figure 2A.1: Free Mn2+ EPR signal of degraded Photosystem II under MHQ condition. 

                         

Figure 2A.2 The EPR spectrum of the S0n intermediate (bottom trace) is obtained from the difference 

between the EPR response after three flashes (middle trace) and data collected from rapidly freeze 

quenched sample without flash excitation (top trace). 
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 3 
Insights in the photoprotective switch of the Major 
Light-Harvesting Complex II (LHCII): A preserved 
core of arginine-glutamate interlocked helices 
complemented by adjustable loops. 
Light-harvesting antennae of the LHC family form transmembrane three-helix 

bundles of which two helices are interlocked by conserved arginine-glutamate 

(Arg-Glu) ion pairs that form ligation sites for chlorophylls (Chls). The antenna 

proteins of photosystem II have an intriguing dual function: in excess light they 

can switch their conformation from a light-harvesting into a photoprotective state, 

in which the excess and harmful excitation energies are safely dissipated as heat. 

Here we applied Magic-Angle Spinning (MAS) NMR and selective Arg isotope 

enrichment as a non-invasive method to analyze the Arg structures of the major 

light-harvesting complex II (LHCII). The conformations of the Arg residues that 

interlock helix A and B appear to be preserved in the light-harvesting and 

photoprotective state. Several Arg residues have very downfield shifted proton 

NMR responses, indicating that they stabilize the complex by strong hydrogen 

bonds. For the Arg C  chemical shifts, differences are observed between LHCII in 

the active, light-harvesting and in the photoprotective, quenched state. These 

differences are attributed to a conformational change of the Arg residue in the 

stromal loop region. We conclude that the interlocked helices of LHCII form a 

rigid core. Consequently, the LHCII conformational switch does not involve 

changes in A/B helix tilting but likely involves rearrangements of the loops and 

helical segments close to the stromal and lumen ends. 
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3.1. Introduction 
The elementary step in photosynthesis is the capture of solar energy by the light-

harvesting antenna. In eukaryotic organisms, this step is performed by a family of 

pigment-binding proteins called Light Harvesting Complexes (LHC) that absorb sunlight 

and transfer the excitation energy towards the reaction centers, where charge separation 

takes place1. The Lhcb antenna proteins of higher plants and moss and Lhcbm antenna 

proteins of LHC complexes in green algae contain three membrane-spanning helices A, B 

and C and their tertiary structure is typified by two crossing A/B helices interconnected by 

Arg-Glu ion-pairs that form ligation sites for Chls. 

The most abundant LHC complex in plants and green algae is the major light-harvesting 

complex II (LHCII), which captures about 50% of all land-bound chlorophylls. The 

LHCII complex is trimeric and each monomer forms a scaffold for 8 Chl a and 6 Chl b, 2 

luteins (Lut), 1 neoxanthin (Neo) and 1 violaxanthin (Vio) which is reversily replaced by 

zeaxanthin (Zea) upon de-epoxidation during the xanthophyll cycle2–4. 

In addition to their light-harvesting function, LHCII complexes are involved in several 

regulatory mechanisms that balance the incoming excitation energies and prevent 

photodamage1,4–6. Under high sunlight conditions, the photosynthetic antenna can rapidly 

switch from light-harvesting into a photoprotective state in which excess light energy is 

safely dissipated as heat7. This photoprotective mechanism is called non-photochemical 

quenching (NPQ) and protects oxygenic organisms against photooxidative damage. The 

major component of NPQ, qE, depends on the transmembrane proton gradient ΔpH. In 

plants, a decrease in lumenal pH triggers protonation of PsbS8,9 and of LHC complexes in 

photosystem II10 and activates the conversion of the LHC-bound xanthophyll cycle 

carotenoid from Vio to Zea11. In green algae, PsbS is absent, and the NPQ state is 

triggered by LhcSR; a pigment-binding complex with a short fluorescence lifetime that 

senses the decrease in lumenal pH12–14. In algae, LHCII also participates in quenching, in 

particular the Lhcbm1 component15,16. On a supramolecular scale, a reorganization of the 

thylakoid membrane takes place in which the LHCII complexes dissociate from 

photosystem II and self-associate or associate with PsbS17–20. The supramolecular 

rearrangements, xanthophyll exchange and decrease in lumenal pH were proposed to 
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promote subtle conformational changes inside the photosystem II light-harvesting 

proteins, by which altered chromophore configurations create a dissipation channel for the 

incoming light energy21.  

To date, the molecular basis for the photophysical process of NPQ is under much 

debate22–28 and it is unclear how the LHC’s respond to environmental changes and energy-

dissipative channels are formed. The LHCII complexes of plants have been studied 

extensively and were shown to reversibly switch their conformation between active, 

unquenched and photoprotective quenched conformational states24,29,30. In the 

photoprotective state, Chl excitations in LHCII are quenched by Chl-Lut energy transfer24 

or by low-lying Chl-Lut excitonic states23, while also Chl-Chl charge transfer states have 

been proposed25.  

There is a controversy whether the LHCII X-ray structures represent the active or 

quenched form of the protein22,31,32. LHCII complexes reconstituted in lipid nanodiscs 

retained their fluorescent state but showed small spectral changes compared to LHCII in 

detergent micelles33, suggesting that the protein can adopt slightly different conformations 

within its active state. The quenched state is associated with a twist in the configuration of 

the LHCII-bound Neo that may promote conformational changes at the Lut L1 site24. 

Protonation of specific acidic residues under low lumenal pH conditions could trigger 

conformational changes of the short helix D and the BC loop2 and these residues are 

important for stabilizing the complex at different pH values34. Under NPQ conditions, 

changes in the thickness of the thylakoid membrane have been observed and it was 

proposed that LHCII adopts a more condensed structure35.  

In this work, we applied MAS-NMR techniques in combination with selective Arg 

isotope labeling as a non-invasive method to obtain high-resolution structural information 

of LHCII in its active and photoprotective states. Photosynthetic light-harvesting proteins 

are accessible for NMR via uniformly or selective isotope enrichment of the 

photosynthetic organisms36. This way, pigment-protein interactions could be detected in 

atomic detail inside intact purple-bacterial light-harvesting oligomers37–39. More recently, 

we performed a MAS-NMR analysis of LHCII from uniformly-13C enriched C. 

reinhardtii green algae cells40,41. The C. reinhardtii Lhcbm sequences have a high 
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similarity with Lhcb sequences of higher plants40, making C. reinhardtii LHCII a suitable 

in-vitro model system for the structural flexibility of plant Lhcb and algae Lhcbm 

proteins.  

Here we analyze LHCII complexes from an Arg-auxotrophic strain of C. reinhardtii 

that was supplied with 13C6-15N4 Arg. 1D 13C and 15N CP-MAS and 2D 1H-13C dipolar 

heteronuclear correlation (HetCor) Arg NMR spectra are presented of LHCII in quenched 

and unquenched states. The Arg residues that stabilize the interlocked helix pair in LHCII 

are identified owing to Chl ring current-induced shifts of their NMR responses. We show 

that these protein sites are preserved in the photoprotective state, confirming a structural 

view in which the flexible loop regions of the LHCII polypeptides are complemented by a 

relatively rigid scaffolding of the protein interior42.  

3.2. Materials and Methods 
3.2.1. Isotope enrichment and purification of LHCII trimers 
   Chlamydomonas reinhardtii strain cc424, an Arg-auxotrophic strain obtained 

commercially from Chlamy.org (www.chlamy.org) was grown in liquid TAP medium43 

with 50 mg/Lt of Arg used44. Cells were cultured at room temperature under continuous 

illumination at 60 E flux. Arginine was added separately to the cell cultures and for 

selective Arg enrichment was substituted by 13C6,15N4 Arg purchased from Silantes 

GmbH. The cells were harvested in mid-log phase by centrifugation (4000 rpm, 6 min, 4 
oC) and thylakoids were prepared as described in45 with few modifications described in46. 

Thylakoids were separated from other materials on a discontinuous gradient (24000 rpm, 

1hr, 4oC) in a TST-41.14 swingout rotor. Thylakoid membranes were washed 2 times, 

first with with 10mM HEPES, pH 7.5, and 5mM EDTA and finally with10mM HEPES, 

pH 7.5. Thylakoids were resuspended in solubilization buffer (10mM HEPES, pH 7.5) to 

a Chl concentration of 1 mg/ml and equal amounts of -dodecylmaltoside ( -DM) was 

added to get a final concentration of 0.6% -DM. The suspension was vortexed for a few 

seconds and centrifuged (15000 rpm, 10 min, 4oC) to remove unsolubilized material, and 

the supernatant was loaded on a sucrose density gradient, prepared by 0.65M sucrose,10 

mM tricine, pH 7.8, 0.03% -DM and ultracentrifuged for 17 hrs at 37000 rpm. The top 
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band of the sucrose gradient contained LHCII trimer complexes with more than 90% 

purity, verified by FPLC. 

For obtaining LHCII in its quenched state, isolated LHCII trimers in 0.03% -DM 

were dialyzed for 72 hrs against detergent-free buffer. The quenched state of the 

detergent-depleted LHCII aggregates was verified by low-temperature fluorescence 

spectroscopy, while the unquenched, light-harvesting state of the LHCII trimers in -DM 

was verified by time-resolved fluorescence spectroscopy. 

3.2.2 Fluorescence experiments 
 Steady-state fluorescence excitation and emission spectra were measured with a 

commercial spectrophotometer (Jobin Yvon, Fluorolog). For 77K fluorescence emission 

measurements, the samples were diluted in 40% Hepes/ -DM buffer and 60% glycerol 

(v/v) and cooled in a nitrogen-bath cryostat to 77K. 

 Time-resolved fluorescence emission measurements were performed at room 

temperature with a Streak camera setup. The sample was measured front-face using a 

1mm quartz cuvette. To minimize the effects of photodamage, about 10 spectra of 

maximal 1 minute per scan were acquired. It was verified that within this time period of 

illumination, no degradation of sample occurred. Excitation pulses of 400 nm (~100 fs) 

with vertical polarization were generated using a titanium:sapphire laser (Coherent 

Vitesse) with a regenerative amplifier (Coherent, MIRA seed and RegA), that was used to 

pump an optical parametric amplifier (Coherent, OPA). The repetition rate was 50 kHz 

with pulse energies of ~0.2 nJ. A tenfold increase or two-fold decrease of the excitation 

pulse energy did not affect the fluorescence lifetimes, confirming that experiments were 

performed in the annihilation-free regime. The obtained streak data were analyzed with 

Glotaran347. 

3.2.3. Solid-state NMR experiments 
 1D 13C and 15N and 2D 1H-13C frequency-switched Lee-Goldburg (FLSG) 

heteronuclear correlation experiments were performed with a Bruker AV-750 

spectrometer equipped with a 4-mm triple resonance MAS probe head, using a 13C radio 

frequency of 188.6 MHz. The temperature was lowered to 220-240 K under slow spinning 
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of the sample. For the NMR experiments, spinning frequencies of 13 kHz were used. The 

chemical shift scale was calibrated from a FSLG spectrum of solid tyrosine HCl salt. 

3.2.4. Density Functional Theory calculations 
DFT calculations were performed in vacuum within the DFT frame work and using 

the Gaussian 03 package48. The BLYP exchange correlation function49–51 was applied to 

produce the NMR chemical shifts48,52. The geometric arrangements of R70, E180 and 

Chl610 were extracted from the 2BHW crystallographic structure data for pea LHCII3. 

The phytyl group of the Chl610 was truncated at the ester group and replaced by an H 

atom. The truncation had no effect on the electronic structure of the porphyrin ring. The 

geometries were partially optimized, preserving the planar structure of the Chl macrocycle 

and of the backbone of R70 and E180. The 1H, 13C, 15N NMR chemical shieldings were 

calculated by using the gauge-independent atomic orbital (GIAO)53–56  on the whole 

complex and subsequently NMR calculations were performed. Both for partial 

optimization and NMR chemical shift calculations the BLYP/6-311G** basis set was 

used. 

3.3. Results 

3.3.1. Fluorescence conditions of LHCII in the detergent-solubilized and 
aggregated state 

LHCII was prepared in its active, light-harvesting state, by solubilizing the LHCII 

complexes in -DM buffer. Time-resolved fluorescence experiments on LHCII complexes 

concentrated in -DM buffer solution verified that the light-harvesting state of LHCII was 

retained in highly concentrated form required for the NMR experiments. Figure 3.1 shows 

the decay-associated spectra (DAS) obtained by a global-analysis fitting of the streak 

camera images of LHCII concentrated in -DM solution. The average fluorescence 

lifetime < f> of this sample is 3.0 ns, and this verifies that the concentrated sample of 

LHCII in -DM buffer retained its unquenched state. LHCII aggregates that reflect the 

photoprotective state of LHCII were produced by dialysis against detergent-free buffer. 

For the aggregate sample, the fluorescence signal was below the detection limit of the 

Streak camera setup and its quenched state was verified by a 77K steady-state 
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fluorescence emission spectrum. Figure 3.2 presents a 77K fluorescence spectrum of 

LHCII in -DM buffer (dashed spectrum) and after dialysis against detergent-free buffer 

(solid spectrum). Significant fluorescence quenching of LHCII aggregates formed upon 

dialysis is confirmed by the 10 fold decrease and 4 nm red shift of the fluorescence peak 

at 675 nm, and appearance of an additional fluorescence band at 695 nm, which has been 

associated with quenching and aggregation of LHCII30. 
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3.3.2. Arg NMR responses for LHCII in its active and dissipative state 
     Figure 3.3 shows the 1D 13C (A) and 15N (B) CP-MAS spectra of quenched (solid) and 

unquenched (dashed) LHCII. In panel C, the second derivative of the 15N spectra are 

drawn. The Arg chemical structure is drawn with the spectra in panel A. The natural 

abundance 13C NMR responses of the -DM detergent molecules are denoted with 

asterisks in the 13C spectrum of unquenched LHCII. Selective 13C6,15N4 Arg enrichment of 

the LHCII samples is confirmed by the characteristic C  Arg peaks around 158 ppm and 

N  and N  responses around ~72 and ~82 ppm, respectively. Both samples show splitting 

of NMR responses for the Arg C  C  and C  and for the N  and N  and N atoms. 

FIGURE 3.2. 77K fluorescence spectra of LHCII: 

A. LHCII in -DM buffer (dashed spectrum) and 
B. LHCII in detergent-free buffer after extensive 

dialysis for removal of the       -DM (solid 
spectrum). 

FIGURE 3.1.Decay-associated 
fluorescence   spectra and 
associated lifetimes of LHCII 

concentrated in -DM buffer solution.  
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FIGURE 3.3. A: 13C CP-MAS spectra of unquenched (dashed line) and quenched (solid line) LHCII. 

Detergent peaks in unquenched LHCII are denoted with asterisks. The chemical structure of Arg is 

also shown. B: 15N CP-MAS spectra of unquenched (dashed line) and quenched (solid line) LHCII.  

C: second derivatives of the 15N spectra in B.  

 
     Figure 3.4 shows an overlay of 1H-13C HetCor spectra of quenched (red) and 

unquenched (blue) LHCII in the Arg 13C  region (left panel) and 13C  region (right panel). 

The left panel presents the correlations between C and H i/H , while the right panel 

presents the correlations between C and H  (proton range 3-5 ppm) and between C  and 

H  (proton range 6-8.5 ppm). Since the H  proton signals (right panel) are in the range of 

6.5-8.5 ppm, the proton responses in the left panel between 8.5-10.5 ppm are attributed to 

the H i protons. The left panel also shows very peculiar well-resolved correlation signals 
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of narrow C  responses at 156.8 ppm 
13C associated with very upfield shifted 

proton responses centered around 4.2 

ppm 1H.                                  

Figure 3.5 shows the 1H-13C 

HetCor spectra in the region of the Arg 
13C  responses (A, unquenched and B, 

quenched LHCII). The correlation 

signals in the range 62-64 ppm are 

attributed to 13C natural abundance 

chemical shift signals of the detergent 

molecules. The Arg C  and C  

responses are strongly obscured by 

overlap with the detergent signals in 

the range 15-35 ppm and could not be 

resolved. A comparison of Fig. 3.5A 

and 3.5B shows that the C  correlation 

peak signal at 57 ppm 13C and 3.2 ppm 1H in the spectrum of unquenched LHCII 

(Fig.3.5A) apparently shifts considerably downfield in the 1H dimension and produces a 

doubled response for quenched LHCII (Fig.3.5B) 

                   
 

 

FIGURE 3.4. Heteronuclear 1H-13C correlation 

spectra of unquenched (blue) and quenched 

(red) LHCII in the Arg 13C  region (A) and in 

the 13C  region (B). 

FIGURE 3.5. Heteronuclear 1H-13C correlation spectra of unquenched  

(A) and quenched (B) LHCII in the Arg 13C  region. 
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3.4. Discussion 
The LHCII trimers C. reinhardtii are isomers composed of different Lhcbm 

polypeptides. These Lhcbm polypeptides contain 6 Arg residues that are conserved in the 

Lhcb sequences of Arabidopsis thaliana 40. The Lhcbm1, Lhcbm5 and Lhcbm10 

polypeptides contain additional Arg residues (two for Lhcbm1 and 10 and one for 

Lhcbm5) very close to the N terminus, in a flexible part of LHCII that was not resolved in 

the LHCII X-ray structures. Most likely the NMR responses of these additional Arg are 

also unresolved in our NMR datasets, since they are only present in a subpopulation of the 

LHCII isomers. Moreover, their NMR responses are likely to be weakened due to intrinsic 

disorder of the N-terminal part, which causes dynamic broadening of the NMR lines and 

poor cross polarization. For example, in MAS NMR datasets of purple bacterial antenna 

proteins the terminal ends of the  and  polypeptides were not resolved57. 

 Figure 3.6A shows the homology structure of the C. reinhardtii Lhcbm1 monomer, 

based on the pea LHCII X-ray structure (2BHW)3, with the 6 conserved Arg residues 

highlighted. Five Arg residues reside in the -helical part of the protein while the sixth 

Arg is located in the stromal loop region. The arginines that form ion pairs with Glu and 

ligate Chls, R70, R185 and R160, are indicated in the figure, as well as R25 in the loop 

region. Figure 3.6B shows the arrangement of one of the stabilizing Arg-Glu pairs in 

detail: R70 and E180 that link helix A and B and ligate Chl610. 
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R70R70

R185R185
R160R160

R25R25

E180E180

Chl610Chl610

R70R70

DD

AA
BB

CC

BB
AA

Lumenal surface
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FIGURE 3.6.A: Homology structure of C. reinhardtii LHCII highlighting the Arg residues. B: The 

geometric arrangements of R70, E180 and Chl610 taken from the 2BHW (3) LHCII X-ray structure. 
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According to the plant LHCII X-ray structures, the 6 Arg residues are capable of 

forming hydrogen bonds via their side chain H  or H  amides. The strong downfield NMR 

shifts of the Arg proton responses in the HetCor spectrum in Fig.3.4A suggest that also in 

C. reinhardtii LHCII strong hydrogen bonds are formed to the Arg residues that involve 

the NH i amide protons. 

3.4.1. Upfield shifted NMR responses are explained by Chl ringcurrent shifts 
for R70 and R185 

In the HetCor spectrum in Figure 4, left panel, the 13C  response at 156.8 ppm correlates 

with unusual upfield shifted proton responses at 4.2 ppm that are ~3 ppm shifted relative 

to the average values (7.4 and 6.8-6.9 ppm respectively) found for Arg H and H i in the 

Biological Magnetic Resonance Bank58. To find an explanation for these unusual shifts, 

we estimated the ring current effects that are produced by the Chl macrocycle rings. Chl 

ring currents can induce large shifts for the NMR responses of atoms in close vicinity to 

the ring center-distances59. Close inspection of the LHCII X-ray structures shows that both 

R70 and R185 have their side chains hanging over the macrocycle planes of the ligating 

Chls (Chl602 and 610) which positions the Arg side chain atoms close to the Chl rings. 

The third Arg residue involved in Chl ligation, R160, forms an ion pair with a Glu residue 

of the same helix (helix C) and has its side chain oriented perpendicular to the macrocycle 

plane of its ligating Chl (Chl609). For R160, only one proton is positioned close enough 

to the Chl ring center that it could experience significant ringcurrent effects. 

 The geometric arrangements of R70, E180 and Chl610 as shown in Fig.3.6B were 

taken from the 2BHW crystal structure and partially optimized as described in 

experimental procedure. Quantum-mechanical density-functional theory (DFT) 

calculations were performed for three structure models: (1) R70, (2) R70···E180 and (3) 

R70···E180···Chl610 to estimate the magnitude of Chl ringcurrent and H-bonding 

induced shifts of the R70 NMR responses. Table 3.1 shows how the chemical shifts of 

R70 (model 1) are affected by interaction with E180 (model 2) and by combined 

interaction with E180 and Chl610 (model 3). The effects of a partial geometry 
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optimization were most critical obvious for the calculated chemical shifts of the R70 H  

and H21 atoms. For these protons also non-optimized calculated shifts values are 

presented, in which the geometries were taken directly from the X-ray structure. 

The results in Table 3.1 show that both for the unmodified and for the partially 

optimized structures the presence of the Chl causes strong ring current shifts for the R70 

H  and H21 responses of ~-5 and ~-3.5 ppm (i.e. the differences between the NMR 

responses calculated for model 2 and 3), which we attribute primarily to the ring currents 

in the Chl610 that counteract the large downfield shifts due to H-bonding of these protons 

to the E180 carboxyl. For H the H-bond interaction with the E180 carboxyl is weakened 

when a ligand to Mg is formed via the same oxygen atom, which may also affect the 

H chemical shift. 

The net effect of H-bonding and ring current shifts in our calculations are that the 

H  and H21 NMR responses are shifted between +3.5 and -1 ppm, depending on the 

optimization procedure that was applied. The net effects for the other amide protons H11, 

H12 and H22 are shifts between -1.5 and 2 ppm, while the side chain carbon responses of 

C and C are shifted resp. -2.7 and  -2.4 ppm. 

 Although the exact geometries of the Arg-Glu-Chl structures may differ in C. 

reinhardtii LHCII from the plant LHCII X-ray structures, the trends of the calculated 

chemical shift changes match with the experimental observations of i) C  carbon 

responses that are shifted 2-3 ppm upfield from the bulk of C signals and that correlate 

with ii) proton responses that are shifted 0-2 ppm downfield in addition to iii) proton 

responses with significant upfield shifts, since for the H11, H12 and H22 the interaction with 

E180 and Chl610 produces shifts of -1.5 to -2 ppm. Hence, according to the DFT 

chemical shift calculations, the upfield shifted 1H-13C  correlations that are well-resolved 

in Fig 3.4A could originate from Arg-Glu-Chl interactions involving the two Arg residues 

that form an important structural motif by locking helix A and B. 

Our limited models do not take into account hydrogen bonds to other parts of the 

protein. In the LHCII X-ray structures, one amide proton of R70 is very close to the C13 
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keto carbonyl of Chl608. This proton is too far from the Chl ring centers to experience 

any ring current shift. A strong H-bond of this proton to the Chl608 carbonyl should 

induce a strong downfield shift of its NMR response. Instead, no strong downfield shifts 

are observed in the 1H dimension for the C signal at 156.8 ppm. This suggests that the H-

bonding patterns to the Chl side chains in C. reinhardtii LHCII differ from plant LHCII. 

In fact, in an earlier study on uniformly 13C-labeled C. reinhardtii LHCII we estimated 

that the number of Chls with H-bonded keto carbonyls is lower in C. reinhardtii LHCII 

TABLE 3.1. DFT-calculated NMR chemical shift effects on R70. The NMR chemcial 

shifts of R70 were calculated using model (1): R70, model (2): R70∙∙∙E180 and model 

(3): R70∙∙∙E180∙∙∙Chl610. Column 2:  Chemical shift differences between model (2) 

and model (1). Column 3: Chemical shift differences between model (3) and model 

(1). 

Atom R70···E180 

 (model 2) 

R70···R180···Chl610  

(model 3) 

 (ppm) (ppm) 
H  + 6.0 

+  3.5* 

+ 1.0 

- 1.1* 

H11 - 1.1 - 1.5 

H12 - 0.9 - 1.7 

H21 + 7.0 

+ 3.0* 

+ 3.7 

- 0.6* 

H22 - 0.8 - 2.1 

C  - 1.2 - 2.7 

C  - 1.2 - 2.4 

N  - 3.3 + 1.3 

N1 + 11.6 + 9.5 

N2 - 8.1 - 6.8 
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than in plant LHCII40. Comparing the C  regions in the HetCor spectra for quenched and 

unquenched LHCII (Fig.4), no significant changes are observed and the spectra are almost 

identical. In particular, the unusual correlation signal with very upfield proton shifts that 

we attribute to the helix-connecting Arg residues is preserved. The data imply that the 

Arg-Glu-Chl geometric arrangements are preserved in the quenched state, relative to the 

unquenched state. Since the Arg-Glu pairs interlock helix A and B, the conserved 

chemical-shift patterns suggest that the orientations of these two transmembrane helices, 

which define the tertiary structure, are also preserved in the two states. In addition, the 

Arg hydrogen bonding patterns appear to be preserved in the two forms of LHCII. 

 The DFT-calculated nitrogen chemical shifts of in Table 3.1 predict displacements 

of the Arg amide 15N NMR responses when a hydrogen bond is formed to Glu (model 2), 

which breaks the symmetry of the N i responses and induces an upfield shift of the N  

response. The splitting of the Arg 15N  signal (Fig.3.3B and C) therefore can be explained 

by the induced asymmetry when a hydrogen bond is formed to one of the two N atoms, 

while splitting of the Arg N signal is explained by heterogeneity of the Arg structures 

with respect to H-bonding of their side chain N  atoms. 

3.4.2. In quenched LHCII, R25 changes its backbone conformation 
The Arg 13C  chemical shift responses reflect moderate conformational changes 

between the quenched and unquenched forms of LHCII. In the spectrum of unquenched 

LHCII two C  correlation signals appear at 59.5 and 58.5 ppm and a smaller peak appears 

at 57 ppm. In the spectrum of quenched LHCII the latter peak is split into two weaker 

signals. 

 The LHCII X-ray structures 2BHW3 and 1RWT2 were used to predict the Arg 

backbone chemical shifts using the SHIFTX2 server. The structure-predicted Arg C  

shifts range between 58-60 ppm for the residues in the -helical stretches, while the Arg 

residue in the stromal loop region, R25, has a predicted C  shift of 56 ppm. In the NMR 

spectrum of unquenched LHCII (Fig.5A), the relative signal intensities of the C  peaks at 

59.5, 58.5, and 57 ppm are roughly in the order of 3:2:1, matching with 5 Arg located in 

the -helical stretches that have C shifts in the range 58-60 ppm and one Arg in the loop 
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region with a more upfield shifted C  response. Therefore we tentatively assign the 

response at 57 ppm to the C  of R25 in the stromal loop region. We cannot exclude that 

the response at 57 ppm 13C  includes the additional Arg residues at the N-terminal site, 

appearing in a subpopulation of LHCII. The backbone NMR chemical shifts of the 

additional Arg residues will likely fall in the chemical-shift range for random-coil 

structures, i.e. 54-58 ppm. 

 Apparently, the backbone conformation of R25 (and/or of the additional Arg at the 

N-terminal ends) is changed in the photoprotective state (Fig.3.5B). R25 is in the water-

exposed stromal region of the protein and this part of the protein is probably affected by a 

change in hydrophobicity or by protein-protein interactions inside the LHCII aggregates. 

3.4.3. Stability of the interlocked A and B helices in the LHCII core: 
implications for possible conformational changes 

 Early studies of Murakami and Packer60 showed a thinning of the thylakoid 

membrane bilayer upon illumination together with an increase in membrane 

hydrophobicity and similar effects were observed in electron microscopy micrographs of 

granal thylakoid membranes17,18. Johnson et al. performed an extended analysis and 

demonstrated that apparent changes in the appressed membrane zone upon illumination 

correlated with structural changes in membrane thickness. The authors suggested that the 

observed decrease in membrane thickness reflects conformational changes of LHCII, 

forming a more ‘condensed’ state35. A similar condensed state is proposed to form upon 

aggregation in vitro due to protein-protein interactions and changes in hydrophobicity21. 

Here we elaborate on this theory and reason that a hypothetical compressed conformation 

of LHCII can be established in two ways: 

 i) By increased helix tilting, which effect is a common respons of membrane 

helices to hydrophobic mismatch61,62. The LHCII monomers can be compressed by 

increasing the angles of the membrane-spanning helices A and B with respect to the 

membrane normal. This is illustrated in Figure 3.7B: the LHC structure in 3.7A is 

compressed by increased tilting of the interlocked helices, resulting in the structure drawn 

in 3.7B. However, such a mechanical movement would modify the geometric 

arrangements of the Glu and Arg residues linking the two helices, and of the Arg-Glu 
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ligated Chls (Fig.3.7B, encircled area). According to our results in Fig.3.4A this scenario 

is unlikely. The NMR data show that the responses of the involved Arg residues are 

almost identical for the quenched and unquenched forms of LHCII, while our modeling 

results predict that these responses are very sensitive to the specific orientations of the 

interacting Glu, Arg and Chls. Our findings match with the results of Dockter42 et al., 

which show that the LHCII polypeptides have low flexibility in the core region. 

 ii) Alternatively, a condensed state of LHCII can be created by rearrangement of 

protein segments located near the water interface. This is illustrated in Figure 3.7C, where 

segments at the stromal and lumenal ends of the structure in Fig.3.7A are refolded 

(encircled areas) to create a more compact conformation. Such conformational changes 

are in line with the NMR data and can explain the variability of the 13C  Arg response, 

which we tentatively attribute to rearrangement of R25 in the stromal region (Fig.3.5). 

While under our labeling conditions there are no residues reporting at the LHCII lumenal 

site, it has been proposed that changes in lumenal pH under NPQ conditions could 

enhance local refolding of the lumenal loop region by protonation of acidic residues2,34. 

Photophysical quenching models have been proposed based on altered carotenoid-

Chl interactions, in specific between lutein Lut620 and Chla’s in the terminal-emitter 

domain (Chl610, 611 and 612)23,24. According to our data results here on 13C-15N-Arg 

LHCII, the ring current effects of Chl610 and 602 acting on R70 and R185 do not change 

in the quenched state. This is a strong indication that the orientations of Chl610 and of 

Chl602, which are in close distance with either of the two luteins in LHCII, are preserved. 

The position of Chl612 is also likely to be conserved, because its ligand N183 is close to 

the Arg-Glu interlocked helical core. Thus, photophysical quenching models based on 

altered lutein-Chla interactions must involve a change in the orientation of a lutein 

chromophore with respect to the fixed positions of the adjacent Chls. Indeed, the 

quenched state of LHCII has been associated with a conformational change of the Lut620 

carotenoid63. 
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A B C

 
FIGURE 3.7. Cartoon picture illustrating the possible effects of membrane thinning on LHCII. 

Compression of the LHC structure in A is achieved by i) increased tilting of the transmembrane 

helices, causing structural changes in the Arg-Glu interlocked core (B; the affected core region is 

encircled) or ii) reorientation of protein segments close to the water in face, causing structural changes 

in the regions near the lumenal and stromal sites (C; the affected end regions are encircled). A 

structural change as depicted in B will affect the orientations of Chl602 and 610 (green diamonds) that 

are ligated to the Arg-Glu interlocked core. However, such a structural rearrangement is unlikely 

according to the preserved NMR chemical shifts of the Chl-ligating Arg. The structural change 

depicted in C could reorient the the luteins (orange rods) that have their head groups bound to the 

affected protein end regions. 

 

A change in the orientation of a lutein could affect the NMR responses of closely-spaced 

Chl carbons, explaining the quenching-related changes of specific LHCII Chla NMR 

responses that were observed in41. Lut620 is stabilized by protein interactions via helix D 

and the loop segment connecting helix A and C. In a hypothetical, mechanistic model, 

changes in pH and hydrophobicity may re-orient these protein segments while 

maintaining the position of the interlocked helices A and B; resulting in a more compact 

protein structure as illustrated in Fig. 3.7C and moving Lut620 with respect to the fixed 

positions of Chl610 and 612, creating a photophysical quencher state. 

3.5. Conclusion 
We used a non-invasive method to selectively probe the structure and environment 

of the Arg residues in C. reinhardtii LHCII without the need for recombinant approaches. 

Our approach shows that solid-state NMR is a powerful method to determine the 

molecular structure of light-harvesting proteins while controlling their functional states. 
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The conformations of the Arg residues in the -helical regions near the stromal site and in 

the interlocked core are preserved in the light-harvesting and photoprotective states. In 

contrast, moderate changes are observed for the Arg in the stromal loop region. The 

results fit into a mechanistic picture where conformational changes of the LHCII end 

segments under NPQ conditions may re-orient a carotenoid with respect to the fixed 

positions of the Chls in the terminal emitting domain, rendering a photophysical response 

for dissipation of harmful excitation energies. 
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 4 
Structure determination of self-aggregated and 
semi synthetically prepared Zn 31-amino chlorin 
with MAS NMR and molecular modelling. 

Magic Angle Spinning NMR has been used to investigate the self-

assembled structure of a semi-synthetic self-aggregated artificial light harvesting 

antenna system. The self-assembly of a Zn 31-amino chlorin compound containing 
13C at natural abundance was studied by 1H-13C heteronuclear Magic-Angle 

Spinning (HETCOR MAS) NMR spectroscopy. Zn 31-amino chlorin was derived 

from naturally occurring chlorophyll a. The molecule was prepared by removing 

the side chain methyl group at the 31-amine position of a Zn 31-methylamino 

chlorin compound. From 1H-13C HETCOR MAS NMR experiments, 1H and 13C 

chemical shifts assignments for Zn 31-amino chlorin were obtained and the 

corresponding aggregation shifts relative to the monomer shifts in solution were 

determined. Large 1H aggregation shifts up to 11.4 ppm were observed, which 

reveal a closely packed stacking of molecules with overlapping macrocycles in the 

aggregate structure. Strong aggregation shifts of the 121, 31 and 21 protons provide 

evidence for a syn-anti parallel stack model in which the vertical stacks are 

laterally associated. We conclude that the removal of the 31-methyl group leads to 

tight packing of the molecules, with strong lateral hydrogen bonds formed 

between the side chain NH and CO groups of the adjacent molecules.  
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4.1. Introduction 
In Nature, chlorosomes in sulfur bacteria act as highly efficient light energy transfer 

systems and make it possible to survive under extreme low light conditions with single 

chlorophyll photon absorption rates of less than-one photon per hour1–6. The highly 

ordered, self-organized chlorosome structures have the capacity of harvesting light and 

transfer of the excitation energy over long distances through pigment-pigment 

interactions, i.e. by collective dielectric properties via alignment of their electric transition 

dipoles, hydrogen bond interactions and molecular overlap7–13. Semisynthetic artificial 

light-harvesting antenna molecules can mimic these properties and such self-assemblies 

can act as highly conductive nanowires14–17. Effective methodologies are required to 

reveal the packing order inside the antenna complexes for rational and directed design of 

novel materials for artificial light harvesting and catalytic energy conversion. The lack of 

long-range order in chlorosomes and their variability in size make high-resolution 

diffraction methods unsuitable to determine the molecular stacking pattern. 

The intriguing self-aggregation capacity of bacteriochlorophyll c (BChl c) in 

chlorosomes has been mimicked by using a semi-synthetic approach, in which the dye 

molecules are preprogrammed for self-aggregation. Tamiaki et al developed Zn 31-

hydroxy chlorin semi-synthetically, for which the spectral properties are similar to 

naturally occurring Bchls18. 31-hydroxyalkyl and 31-methoxyalkyl Zn-chlorins were semi-

synthetically prepared from naturally occurring Chl a by Huber et al, and their self-

assembled structures were determined by Ganapathy et al by combining solid state NMR 

and X-ray diffraction together with molecular modeling and quantum mechanical (QM) 

calculations19–21. Pandit et al demonstrated that the self-assembled structure of a Zn 31-

aminomethyl chlorin could be determined solely using solid-state NMR as a spectroscopic 

technique, by comparing the NMR structure with a library of possible stacking modes22. 

Self-assemblies of the Zn 31-hydroxyalkyl chlorin and Zn 31-methoxyalkyl chlorin 

showed symmetric NMR ring current shifts of the 21 and 121 protons, due to lateral 

packing interactions between vertical anti-parallel stacks. It was anticipated that these 

lateral interactions should be stabilized in stacks of the Zn 31-aminomethyl chlorin since 
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the amino group allows the formation of lateral hydrogen 

bonds between the NH and CO groups of adjacent 

chlorins. However, self-assemblies of this compound 

showed large ring current shifts for the 31 and 33 protons 

and only very moderate shifts for the 21 and 121 protons 

were observed. Molecular stacking models of the Zn 31-

aminomethyl chlorin suggested that the 33 methyl group 

prevents lateral hydrogen bonding of the amino group by 

steric hindrance. 

In this study, we analyzed the structure of a Zn 

31-amino chlorin (ZnChl) shown in Figure 4.1, in which 

the 33-methyl is absent. We show that the stacking of this 

ZnChl compound into self-aggregates induces large ring 

current shifts on both sides of the molecule, for the 31 as 

well as for the 21 and 121 protons. From this result, we 

propose that removal of the 33 methyl group enables the formation of syn-anti parallel 

stacks with strong lateral interactions among the stacks, in contrast to the antiparallel 

stacking determine previously for the 31-hydroxyalkyl and 31-methoxyalkyl Zn-chlorins21.  

4.2. Materials and Methods 
 

4.2.1. Preparation of ZnChl aggregates  
 

 Aggregates were prepared by adding 100 times excess of n-hexane to the ZnChl 

dissolved in CH2Cl2 or THF16,23,24. The sample was incubated at 4oC in the dark to form 

precipitates. The solvents were dehydrated using an aluminum column and stored over 4 

Å molecular sieves. The pellet was transferred to a 4 mm CRAMPS rotor and dried under 

vacuum overnight. All the steps were performed under dim green light and nitrogen flow 

to prevent photodamage.  

 

 

Figure 4.1. The aggregation 

shifts of ZnChl relative to their 

monomer in THF-d8 are 

indicated with circle and the 

size of the circle is proportional 

to the observed aggregation 

shifts.  
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4.2.2. Solid state NMR experiments 

 MAS NMR experiments were performed at a sample temperature of 293K with a 

Bruker-750 spectrometer equipped with a 4-mm triple resonance MAS probe head using a 
13C radiofrequency of 188.6 MHz and a spinning frequency of 13 kHz. The 1H chemical 

shift scale was calibrated from a Frequency Switched Lee-Goldburg (FSLG) 

heteronuclear correlation (HETCOR) spectrum of solid tyrosine HCl salt25. 2D 1H-13C 

hetero nuclear correlation data sets of the ZnChl aggregates were obtained using a cross 

polarization time of 0.25 ms. Monomers of the ZnChl were prepared by dissolving the 

compound in THF-d8 and were analyzed by solution NMR. The 1H and 13C chemical 

shifts of the monomer were determined from 1D 1H, 13C APT, 2D 1H-1H COSY and 1H-
13C HSQC NMR spectra recorded on a DMX-600 spectrometer.  

4.2.3. Molecular modeling 

The molecules were drawn and initial geometry optimizations were performed. 

The charges obtained from DMol3 calculation which uses density functional theory, were 

used for initial optimization. Chemical shift calculations were performed for slabs of 

ZnChl stacks with the CASTEP code, which utilizes the gauge-including projector 

augmented wave algorithm (GIPAW). Calculations utilized the generalized gradient 

approximation (GGA), revised Perdew, Burke and Ernzerhof (rPBE) functional with on-

the-fly pseudopotentials, a k-point spacing of 0.08 Å, and a plane wave basis set cut-off 

energy of 500 eV. Unit cell parameter optimization of the proposed unit cell under 

periodic boundary conditions was done with the LDA CA-PZ functional26–31.  

4.3. RESULTS AND DISCUSSION 

4.3.1. Absorption spectra of monomer and aggregates of ZnChl 
Aggregation of the ZnChl compound was confirmed by a red shift of the QY absorption 

maximum, i.e. a decrease of the monomer QY band at 645 nm and an absorption increase 

for the aggregation band at 725 nm (Figure 4.2.)20.   
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4.3.2. NMR responses for monomer and aggregates of ZnChl 
    Figure 4.3. shows the 1D 13C CP-MAS spectrum of the ZnChl aggregates. Narrow 

resonances in the spectrum indicate a well-ordered arrangement of the molecules in the 

packing. Figure 4.4. shows the 2D HETCOR 1H-13C spectrum at a cross polarization 

contact time of 0.256 ms in which the proton assignments are indicated. The solid-state 

proton shift values are listed in Table 4.1 as σ H
solid. The aggregation shifts are calculated 

as the chemical shifts in the solid-state relative to the chemical shifts for the monomer in 

solution. The 1H monomer shifts for the ZnChl σ H
liq and the aggregation shifts σH

i = σH
liq 

-  σH
solid are listed in Table 4.1. Significant upfield chemical shifts are observed and are 

depicted as circles for aggregation shift values, which are obtained by less than - 2 ppm in 

Figure 4.1, where the circle radius is proportional to the magnitude of the shift. These 

aggregation shifts are dominated by ring current effects that are also observed in another 

semi synthetically prepared Zn and Cd chlorins32,33. The cross-correlation peaks for C5, 

C10 and C20 show splitting of signals in both the 1H and 13C dimensions in Figure 4.4, 

indicative of two slightly different conformers of ZnChl molecules in the stacks. A second 

peak is observed at the same resonance position in the 13C dimension for 31 in the 1H-13C 

Figure 4.2. Absorption spectra of ZnChl in THF (monomers) and 

THF/n-hexane (8:100, aggregate form). 
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HETCOR spectrum (Figure 4.4.). We tentatively attribute this peak to the side chain NH 

proton. Protons with significant 1H upfield shifts are indicated in the correlation plot 

shown in Figure 4.5.  

 
 
Figure 4.3. 13C CP-MAS spectrum of ZnChl aggregates. 
 
 

Figure 4.4. 1H-13C HETCOR spectrum of ZnChl aggregates collected at a cross polarization contact 

time of 0.256 ms. 
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The observable NH resonance for ZnChl here indicates a relatively rigid 31 side chain in 

the stacks, in agreement with hydrogen bonding of the side chain amino protons. In 

comparison with the 31-hydroxy Zn chlorins studied by Ganapathy et al.21 there is a 

similar pattern for the C5, C10, C20, C31 and C121 chemical shifts. However, larger ring 

current shifts are observed for the ZnChl compound, i.e. -11.4 ppm for the 31-methyl, -7.5 

ppm for 21-methyl and -9.9 ppm for 121-methyl protons. The chemical shift for the C71, 

C81 and C82 are similar to the previously studied Zn 31-aminomethyl chlorin from Pandit et 

al22. In contrast to the Zn 31-aminomethyl chlorin studied by Pandit et al, but similar to the 

Zn 31-hydroxyalkyl chlorin and Zn 31-methoxyalkyl chlorin, ZnChl shows significant ring 

current shifts for the 121 and 21 protons22. It was assumed that the strong lateral 

interactions present in aggregates of Zn 31-hydroxyalkyl chlorin and Zn 31-methoxyalkyl 

chlorin are lacking in the Zn 31-aminomethyl chlorin because of steric hindrance induced 

by the 33-methyl group. In our present compound, we propose that the lack of 33- methyl 

Table 4.1. 1H chemical shifts for ZnChl in solution (σHliq) and in aggregates (σHsolid) and the 

aggregation shifts  σ Hi. 

Position σHliq σHsolid σHi = σHliq -  σHsolid 

21 3.29 -4.21 -7.5 

31 5.04 -6.72 -11.76 

5 9.57 3.7 -5.87 

71 3.29 2.21 -1.08 

81 3.8 2.92 -0.88 

82 1.71 1.55 -0.16 

10 9.61 7.6 -2 

121 3.61 -6.37 -9.98 

132 5.04 3.91 -1.13 

17 4.31 4.17 -0.14 

171 2.6 2.1 -0.5 

172 2.3 1.16 -1.14 

174 3.54 4.00 0.46 

18 4.52 3.4 -1.12 

181 1.79 1.14 -0.65 

20 8.48 5.9 -2.58 
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group apparently makes it possible to form lateral associates via intermolecular hydrogen 

bonds (NH•••CO). 

 

Table 4.2. 13C chemical shifts for ZnChl in solution (σ Cliq) and in aggregates (σ Csolid) and the 

aggregation shifts  Δσ Ci. 

Position σCliq (ppm) σCsolid (ppm) ΔσCi = σCliq - σCsolid 

13 1 195.48 192.87 -2.61 

17 3 173.80 174.02 0.22 

19 168.86 165.49 -3.37 

14 161.83 160.61 -1.22 

16 156.96 154.09 -2.87 

1 154.85 154.09 -0.76 

6 151.79 151.23 -0.56 

4 149.33 148.67 -0.66 

11 148.30 148.67 0.37 

9 145.99 145.32 -0.67 

8 144.11 144.85 0.74 

3 141.06 140.88 -0.18 

2 137.11 131.63 -5.48 

7 133.91 131.63 -2.28 

12 133.73 131.63 -2.10 

13 133.19 131.63 -1.56 

10 106.34 104.70 -1.64 

15 106.43 104.70 -1.73 

5 99.62 93.91 -5.71 

20 92.57 88.83 -3.74 

3 1 40.99 29.05 -11.94 

17 51.58 51.39 -0.19 

18 49.80 48.46 -1.34 

17 4 51.00 51.39 0.39 

13 2 48.90 48.46 -0.44 

17 2 31.02 30.41 -0.61 

17 1 30.75 29.35 -1.40 

18 1 23.94 23.36 -0.58 

8 1 20.29 18.54 -1.75 

8 2 18.10 18.16 0.06 

7 1 11.44 10.42 -1.02 

2 1 11.23 10.42 -0.81 

12 1 12.59 3.78 -8.81 
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Except for the long tail and methoxy or hydroxy side group, the chemical structure 

of ZnChl is identical to the compounds in Zn 31-hydroxyalkyl chlorin, Zn 31-methoxyalkyl 

chlorin and a similar pattern of ring current shifts for the 31, 21, 121 protons occurs. Hence, 

the stacking mode for our compound will likely be similar, i.e. consist of aggregates that 

are formed by laterally associated a syn-anti parallel stacks. The narrow lines of the 1D 

CP-MAS spectrum of the aggregate 

(Figure 4.3) suggest that it forms a 

microcrystalline material. Similar 

narrow lines are observed for self-

assemblies of Cd and other types of 

Zn chlorins19,22.  

The observed ring current shift 

pattern of the 121 and 21 protons 

would in principal agree with a 

parallel mode of stacking, however in 

parallel mode each chlorin 

experiences the ring current shift from 

one neighbor chlorin only and 

therefore the magnitudes of the ring 

current shifts are moderate. In contrast, 

in the stack model of Zn 31-

hydroxyalkyl chlorin and Zn 31-methoxyalkyl chlorin by Ganapathy et al, which are very 

similar to ZnChl, each chlorin experiences ring current effects from two lateral neighbors, 

so the observed ring current shifts are large21. Thus, the magnitude of the 121 and 21 

aggregation shifts suggest that the ZnChl is likely to assemble in similar fashion as the Zn 

31-hydroxyalkyl chlorin and Zn 31-methoxyalkyl chlorin.  

We observed here the largest aggregation shifts for a Zn chlorin reported so far for 

the members of Zn chlorin family. The aggregation shifts for the 121 and 21 protons are 

larger than the Zn 31-hydroxyalkyl chlorin and Zn 31-methoxyalkyl chlorin by Ganapathy 

Figure 4.5. Chemical shift correlation plot of ZnChl. 

The 1H shifts of the aggregates in Solid state NMR 

are plotted against the monomer shifts in THF-d8. 

The solid line represents the diagonal. 1H signals 

are indicated that show a large upfield shift in the 

solid relative to the monomer. 
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et al, and suggest that stronger lateral interactions occur21. This can be due to the 

formation of strong NH•••CO hydrogen bonds. The difference between the Zn 31-

hydroxyalkyl chlorin and Zn 31-methoxyalkyl chlorin in terms of ring current shifts was 

quite small. Since only the hydroxy Zn chlorin can form OH•••CO hydrogen bonds, it was 

concluded that the hydrogen bonding for ZnChl had only a weak effect on the packing. 

Stronger hydrogen bonds with shorter bond lengths will increase the overlap of two 

neighboring rings, hence increase in the ring current effects.  

 
 
Figure 4.6. Geometry-optimized lateral associated syn-anti parallel stacks of 16 ZnChl molecules. 
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The molecule ZnChl is chiral, so it will accommodate in one of the chiral space groups. 

Among the chiral space groups, the most frequently encountered are P1, P21 and P212121. 

Based on our previous explorations of natural chlorosomes, we conjecture that a for a 

parallel stacking the P21 packing is likely, since it allows for stacks running parallel in 

planes, with the planes running in opposite directions to cancel the overall electric dipole 

in the 3D structure34,35.  The screw and monoclinic cell allows for shifting the planes 

relative to one another to optimize the packing of the 171 side chains to increase the 

density to 1.25 g/cm3 which would be difficult to achieve within an orthorhombic 

arrangement. This density is in the range for organic compounds and is close to the 1.31 

g/cm3 determined for Ethyl Chlorophyllide a Dihydrate for which an X-ray structure is 

available36. 

In Pandit et al. it was noted that the NMR results could not discriminate between 

formation of vertically stacked a syn-anti dimers and anti-parallel stacks, because the 

orientation of the Zn chlorin molecules in the respective models was very similar, hence, 

produced the same ring current effects22. Alternatively to anti-parallel stacking, the ZnChl 

in this study may form stacked fibers of laterally associated syn-anti dimers, stabilized by 

hydrogen bonds. 

The experimental 13C NMR chemical shifts for slabs of ZnChl stack and calculated 

chemical shifts using CASTEP code are showed in Table 4.3. The RMSD is 5.26, which 

is not unusual for moderately large molecules37.   
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                  RMSD        5.26             
  

 

Table 4.3. 13C chemical shifts for ZnChl, experimental values in solid state (σs Cexpt), calculated 

chemical shifts with CASTEP code (σ Ccal) and the deviation. 

Position σs
C expt σC

cal Deviation 
131 192.87 200.01 -7.14 

173 174.02 181.74 -7.72 

19 165.49 168.30 -2.81 

14 160.61 165.86 -5.25 

16 154.09 160.73 -6.64 

1 154.09 155.27 -1.18 

6 151.23 154.03 -2.80 

4 148.67 147.94 0.73 

11 148.67 152.47 -3.80 

9 145.32 150.75 -5.43 

8 144.85 140.70 4.15 

3 140.88 136.96 3.92 

2 131.63 134.93 -3.30 

7 131.63 138.03 -6.40 

12 131.63 134.66 -3.03 

13 131.63 132.35 -0.72 

10 104.70 103.82 0.88 

15 104.70 107.29 -2.59 

5 93.91 96.72 -2.81 

20 88.83 94.05 -5.22 

31 29.05 30.79 -1.74 

17 51.39 51.52 -0.13 

18 48.46 50.88 -2.42 

174 51.39 50.84 0.55 

132 48.46 47.35 1.11 

172 30.41 31.70 -1.29 

171 29.35 31.55 -2.20 

181 23.36 16.80 6.56 

81 18.54 6.41 12.13 

82 18.16 6.41 11.75 

71 10.42 4.16 6.26 

21 10.42 -1.81 12.23 

121 3.78 2.77 1.01 

131 192.87 200.01 -7.14 
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4.4. Conclusion 
The here presented data on a new type of ZnChl compound contribute to the experimental 

underpinning of the library of stack modes for self-aggregated semi synthetic Zn chlorins. 

We demonstrate that the small change of removing the 33 methyl group of Zn 31-

aminomethyl chlorin has a significant effect on the self-assembly of this compound. The 

resulting aggregates form laterally associated syn-anti parallel stacks with tight packing 

interactions, explained by the formation of strong hydrogen bonds and the small amino 

motif. Solid-State NMR analysis provides a direct link between subtle modifications in 

the chemical structure and alterations in the resulting packing structure. This approach, in 

which novel dye molecules can be rapidly screened for functionality in terms of their self-

assembly interactions without the need for isotope label incorporation, will further 

advance the new generation of artificial leaf systems. 
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4.6. Appendix 
Figure 4A.1 1H NMR spectra of ZnChl in THF-d8 

 
 
Appendix 4A.2. 13C APT NMR spectra of ZnChl aminochlorin in THF-d8 
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Appendix 4A.3.13C-1H COSY spectrum of ZnChl aminochlorin in THF-d8 
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Appendix 4A.4. 13C-1H HSQC spectrum of ZnChl aminochlorin in THF-d8 

 
 

 



 

87 

 5 
 
 
 

Conclusions  
and  

Outlook 
 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                         Conclusions and outlook 
 

89 

The human race, since civilizations started, made many technological, scientific 

and economic advancements. However, at present mankind is running up against a wall, 

because of reaching global limitations with respect to food, energy, and natural resources. 

The population on earth is going to increase, and together with raising standards of living 

this makes that the demand for resources and energy also increases. Nevertheless, 

scientists believe that nature can provide us with solutions. Much about how to include 

sustainability in an efficient energy system can be learned from natural photosynthesis. 

Nature evolved the tetramanganese cluster in photosynthesis to oxidize water and store 

energy in the form of chemical compounds made from atmospheric CO2. This central 

motif did not change despite the diversities in soil, environments and climatic conditions 

across earth. In principle, sustainability in energy can be provided in the form of artificial 

photosynthesis (AP). To design AP systems, however, it is necessary to understand first 

how natural photosynthesis works at the molecular level, so that we can mimic and create 

artificial leaves. This thesis is about elements that can contribute to gaining fundamental 

understanding, by analyzing water oxidation in time with a new experimental setup, by 

resolving how cells modulate collection of photons in a light harvesting antenna, and by 

transferring principles of natural light collection to semi-artificial light harvesting 

systems. While rebuilding the energy system may turn out to be the grandest challenge 

mankind is currently facing, it is to be realized by new inventions and progress made by 

individual scientists, step by step.  

Regarding water oxidation, finding the transient intermediate in the S3
+ to S0

n step 

of the water oxidation mechanism of Photosystem II is a Holy Grail in Photosynthetic 

research. A crucial hurdle is to develop methodology to study the molecular mechanism of 

water oxidation reaction in time. Chapter 2 describes the design and construction of a 

three-flash flow cell enable the study of single or multiple flash activated photochemical 

reactions. The novel methodology of flash flow RFQ-EPR is implemented on 

Photosystem II particles made from spinach. The current setup can produce three 

sequential flashes of 10 μs each by using lights source of 680 nm diode lasers, which 

drive Photosystem II through the Kok cycle. The dead time is 2.0 ± 0.3 ms using liquid 

isopentane, maintaining at a temperature of 140K as cryomedium. The intermediate states 



Chapter 5 

90 

during water oxidation reaction of Photosystem II, S2
+, S3

+ and S0
n are characterized by 

EPR spectroscopy. For faster freezing, the nozzle diameter can be reduced and doing 

experiments in vacuum can remove oxygen signal from EPR spectrum, these are for 

future experiments. 

The role of arginine-glutamate (Arg-Glu) ion pairs are explored in the switch 

between the light harvesting and photoprotection modes of Major light harvesting 

complexes. In chapter 3 a non-invasive method to analyze the Arg structures of the major 

light-harvesting complex II (LHCII) by using Magic-Angle Spinning (MAS) NMR and 

selective Arg isotope enrichment in cc-424 mutant of Chlamydomonas reinhardtii. The 

conformations of the Arg residues that interlock helix A and B appear to be preserved in 

the light-harvesting and photoprotective state.  

In Chapter 4 the molecular packing of an artificial light-harvesting antenna self-

assembled from 31-aminofunctionalized zinc-chlorins was determined by MAS NMR. 

Ring-current NMR chemical shifts provided spatial constraints and together with 

quantum-mechanical modeling this allowed us to build a molecular-stack model in silico. 

Anomalously large 1H aggregation shifts up to 11.4 ppm were observed, which reveal a 

closely packed stacking of molecules in the aggregate structure. The method does not 

require isotope enrichment or crystallization and is generally applicable to determine de 

novo self-assembled structures of aromatic molecules with structural asymmetry, such as 

is commonly provided by functionalized side chains that serve to tune the self-assembly 

process. Electron diffraction studies which can reveal the 3D structure of these studied Zn 

chlorines can be the future experiments. 

In the coming years, it can be anticipated that these steps will be made, when many 

more researchers focus on fulfilling the fundamental research needs of artificial 

photosynthesis. 
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Summary 
 Decentralized plug and play systems for energy production are the future picture of 

our society. Artificial photosynthetic systems are used for this purpose. These systems are 

inspired by natural photosynthesis. Natural photosynthesis contains tetramanganese 

clusters to oxidize water and store the energy in the form of chemical compounds from 

atmospheric CO2.  

 Chapter 2 illustrates the detailed construction of a three-flash flow cell to study 

light induced biological reactions, specifically the water oxidation reaction of 

Photosystem II. This instrument is capable of producing the S2
+, S3

+ and S0
n intermediate 

states of the Kok cycle. I confirmed these by EPR experiments. The dead time is 2 ms for 

this instrument, which is the time between the last flash and hyperquenching of the sample 

by freezing using liquid isopentane as cryomedium. 

 In chapter 3, I study the mechanism of the major LHC II involved in 

conformational switching from light harvesting to the photoprotective state, in which 

excess light is dissipated as heat. I use MAS NMR as a non-invasive method to 

understand the structure and environment around Arg residues in Chlamydomonas 

reinhardtii LHC II. In this approach the Arg amino acid is selectively labeled with 13C 

isotopes. Solid state NMR results shows that the conformations of the Arg residues are 

preserved in both the light harvesting and the photoprotective state. These residues are 

found in the α-helical regions near the stromal site and in the interlocked core of LHC II 

complex.  

 Chapter 4 studies the structure of self-aggregated semi synthetic Zn 31 amino 

chlorin that forms syn-anti parallel stacks according to the solid state NMR data. The 

small change of removing 33 methyl group of Zn 31 aminomethyl chlorin has significant 

effect on self-assembly. Solid State NMR analysis provides a direct link between subtle 

modification in the chemical structure and alterations in resulting packing structure.  
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 Finally, chapter 5 provides an outlook on what steps can be performed next in 

hyperfreeze quenching NMR, LHCII studies, and artificial aggregates, based on the work 

presented in this thesis. 
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Samenvatting 
            Gedecentraliseerde plug-and-play-systemen voor energieproductie zijn het 

toekomstbeeld van onze samenleving. Hiervoor worden kunstmatige 

fotosynthesesystemen gebruikt. Deze systemen zijn geïnspireerd op natuurlijke 

fotosynthese. Natuurlijke fotosynthese bevatten tetramangaan clusters om water te 

oxideren en de energie op te slaan in de vorm van chemische verbindingen uit 

atmosferisch CO2. 

 Hoofdstuk 2 beschrijft de gedetailleerde constructie van een door drie-licht flitsen 

geactiveerde stroomcel om door licht geïnduceerde biologische reacties te bestuderen, in 

het bijzonder de wateroxidatiereactie van fotosysteem II. Dit instrument kan de S2
+, S3

+ en 

S0
n tussenliggende toestanden van de Kok-cyclus produceren. Ik bevestigde deze door 

EPR-experimenten. De dode tijd is 2 ms voor dit instrument, wat de tijd is tussen de 

laatste flits en hyperquenching van het monster door bevriezing met vloeibaar isopentaan 

als cryomedium. 

 In hoofdstuk 3 bestudeer ik het mechanisme van de belangrijkste LHC II die 

betrokken is bij conformationele omschakeling van het oogsten van licht naar de 

fotoprotectieve toestand, waarin overtollig licht wordt gedissipeerd als warmte. Ik gebruik 

MAS NMR als een niet-invasieve methode om de structuur en omgeving rond Arg-

residuen in Chlamydomonas reinhardtii LHC II te begrijpen. In deze benadering wordt het 

Arg-aminozuur selectief gemerkt met 13C-isotopen. Vaste stof NMR toont aan daf de 

conformaties van de Arg-residuen behouden blijven in zowel de lichtoogst als de 

fotoprotectieve staat. Deze residuen bevinden zich in de alpha-helix gebieden nabij de 

stomale plaats en in de met elkaar verbonden helices in de kernen van het LHC II 

complex.  

 Hoofdstuk 4 bestudeert de structuur van zelf-geaggregeerde semi-synthetische Zn 

31 -aminochlorines die syn-anti parallelle stapels vormen volgens de vaste toestand NMR 

metingen. De kleine verandering van het verwijderen van de 33-methylgroep van Zn 31-

aminomethylchloor heeft een aanzienlijk effect op de zelfassemblage. Vaste stof NMR-
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analyse laat een direct verband zien tussen de subtiele modificatie van de chemische 

structuur en wijzigingen in de resulterende pakking. 

 Hoofdstuk 5 ten slotte geeft een overzicht van de stappen die in de toekomst 

kunnen worden gezet met hyperfreeze quenching, LHCII-onderzoek en vaste stof NMR 

aan kunstmatige aggregaten, gebaseerd op het werk gepresenteerd in dit proefschrift. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

97 

Curriculum Vitae                      
 

I was born in Dharmavaram, Andhra Pradesh, India on July 20, 1986. After, I finished my 

schooling, I obtained my bachelor’s degree in Chemistry from Sri Krishna Devaraya 

University, Anantapur, India. After completion of bachelor’s degree in 2006, I started my 

Master Degree program in July 2007 at Indian Institute of Technology Madras. I 

completed my Masters degree with dissertation titled as “Implementation of 2D LASSY 

for 183W NMR” under the supervision of Prof. Dr. N. Chandra Kumar. In September 2009, 

I started my doctoral studies in the Biophysical Organic Chemistry group at Leiden 

University under the supervision of Prof. dr. H. J. M. de Groot. My research work was 

presented as posters at various national and international conferences like Euromar, 

Ireland 2012, NMR discussion group, DSM Delft, 2011, BioSolar Cells annual meeting 

2012 and 2013. I received best oral presentation award at Eurocores meeting, Bologna, 

Italy in 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

98 

Acknowledgments 
The time has arrived for me to thank so many people, who supported me 

emotionally, intellectually, financially, morally or hypothetically during or after my PhD 

career. The ever-inspiring idea of pursuing a career in science came to my mind when I 

first visited well-established research labs at Indian Institute of Science Bengaluru (IISc), 

India. I have fulfilled it by joining as a promovendus in Leiden University. First of all, my 

sincere gratitude goes to Prof. Huub for giving me an opportunity to express my scientific 

dream, for which I shall be indebted forever. You gave me a freedom to express my 

opinions and patiently listening to them during our regular scientific discussions. You 

recognized my talent as a good presenter and encouraged me to further strengthen my 

skills in giving a better scientific talk. Due to all of your efforts, I am now proudly can say 

that I am working as a “Teacher” in a college (which is equivalent to hbo in Netherlands) 

back at home in India. As a part of PhD life, I have had ups and downs like many others 

yet I enjoyed it with a great pleasure. The beautiful memories and incidents that I have 

encountered as a PhD student are now helping me to train the future generation in India. 

 I extend my sincere thanks to late Simon, who taught me how to be a dedicated 

scientist. Your unparalleled enthusiasm in the laboratory encouraged me to perform all 

experiments with a great passion. Your never lose hope attitude helped me to overcome 

my work-related stress and motivated me to perform better at work even though when 

experiments were not going as planned. Unfortunately, we scientific community lost a 

gem like you. 

  I would like to thank my co-promoter Anjali for her tremendous support from Vrije 

Universiteit Amsterdam. We had so many interesting and fruitful scientific discussions on 

LHCII, which led to a very nice publication in Journal of Biological Chemistry. I have 

enjoyed working with you and due to your continuous motivation, I have now a thesis in 

good shape. 

 I thank all SSNMR/BPOC group members for their support during my stay in 

Leiden. Liesbeth, I still remember my first day in Netherlands when you came to receive 

me from Schiphol. I appreciate your help in visa related work. I can proudly say that you 

are the heart of our group. Karthick anna, thank you very much for your help both in and 

out of the lab. I have learned cooking a delicious food from you. Brijith, I never forgot our 

discussions on not only on science but also on very interesting like agriculture, economy 



 

99 

during our lunch and coffee breaks. I also thank my colleagues at work Smitha, Firat, 

Adriano, Thomas, Vidya, Fons, Yohan, Yuliya, Alia, Franco, Dario, Jan Paul, Tirong, 

Zhongwu, Rubin, Maithili, Faezeh, Dipen, Remco, Xinmeng, Yang Shao thank you all for 

your support. I further extend my thanks to Sateesh from Wageningen for wonderful trips 

within and outside of Netherlands. Thanks Laura for Dutch translation of summary. 

  To be ever successful either in professional or personal life, it is only possible if 

you have a full support from family. I am happy to count myself as one of those lucky 

people who as a great support from parents and brothers. Last but not least I want to thank 

the special person in my life i.e. my lovable wife Prabhallika for standing beside me in 

both happy and hard times during my PhD. Furthermore, you gave me two sweetest gifts 

for life in the form of our children Satvik and Geetanshi. They are the reason for us to 

smile every second in our life. 

 

 

 

 



 

100 

Publications 
1. “Insights in the photoprotective switch of the major Light-Harvesting Complex II 

(LHCII): A preserved core of arginine-glutamate interlocked helices 
complemented by adjustable loops.” Kiran Sunku, Huub. J. M. de Groot, Anjali 
Pandit, The Journal of Biological Chemistry, 2013, 288, 19796-19804. 
 

2. “Design of a novel device enabling freeze-quench trapping of laser flash activated 
Photosystem II intermediates.” Kiran Sunku, Hans J. van Gorkom, Simon de Vries, 
Huub. J. M. de Groot. (Manuscript in preparation) 
 

3. “Structure determination of self-aggregated and semi synthetically prepared Zn 31-
amino chlorin with MAS NMR and molecular modelling.” Kiran Sunku, Naoto 
Kuwamura, Brijith Thomas, Alfred R. Holzwarth, Anjali Pandit, Huub. J. M. de 
Groot. (Manuscript in preparation) 
 

4. “Characterization of Polymer-Ceramic Nanocomposites for Advanced 
Applications.” Kiran Sunku, Satesh Gangarapu, Mohd Rafie Johan, 
Putla Sudarsanam.  Handbook of Polymer and Ceramic Nanotechnology, Springer, 
2019,1-16. 
 

5. “Fabrication of polymer-graphene nanocomposites.” Kiran Sunku, 
Satesh Gangarapu, Mohd Rafie Johan, Putla Sudarsanam. Handbook of Polymer 
and Ceramic Nanotechnology (Book chapter accepted) Springer, 2019. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


