Michiel Hogerheijde Leiden University & University of Amsterdam

Eva Bøgelund, Vachail Salinas, Mason Carney, Leon Trapman, Jeroen Terwisscha van Scheltinga

Ilse Cleeves, Stephano Facchini, Davide Fedele, Ryan Loomis, Karin Öberg, Charlie Qi, Ewine van Dishoeck Catherine Walsh, Jonathan Williams, David Wilner, and many more

Eva Bøgelund, Vachail Salinas, Mason Carney, Leon Trapman, Jeroen Terwisscha van Scheltinga

Ilse Cleeves, Stephano Facchini, Davide Fedele, Ryan Loomis, Karin Öberg, Charlie Qi, Ewine van Dishoeck Catherine Walsh, Jonathan Williams, David Wilner, and many more

Eva Bøgelund, Vachail Salinas, Mason Carney, Leon Trapman, Jeroen Terwisscha van Scheltinga

Ilse Cleeves, Stephano Facchini, Davide Fedele, Ryan Loomis, Karin Öberg, Charlie Qi, Ewine van Dishoeck Catherine Walsh, Jonathan Williams, David Wilner, and many more

Eva Bøgelund, Vachail Salinas, Mason Carney, Leon Trapman, Jeroen Terwisscha van Scheltinga

Ilse Cleeves, Stephano Facchini, Davide Fedele, Ryan Loomis, Karin Öberg, Charlie Qi, Ewine van Dishoeck Catherine Walsh, Jonathan Williams, David Wilner, and many more

Introduction

- Disks form planets efficiently
 - Exoplanets are ubiquitous
 - Time scale of formation <few Myr
- Dust grows: sub-µm → mm → cm → m → km → planetesimals → planetary cores
- ALMA has shown significant evolution of mm-sized grains
- Scattered light (e.g., SPHERE; GPI) shows rich structures in <µm-sized particles
- This talk: *chemistry* can add information about the *evolving dust*

Chemical processes

- Small dust grains are
 - main source of optical/infrared opacity → temperature
 - important source of ultraviolet extinction → penetration of the UV field

Henning+Semenov13

⇒ dust steers chemistry

- freeze out / sublimation of volatiles if *T* gets low enough: **snow lines**/surfaces
- **photodissociation** of molecules when UV-field gets strong enough
- photo-desorption of volatiles off ices when UV-field is strong enough

N₂H⁺ and N₂D⁺

 N_2H^+ present. Gas-phase N₂H⁺ means:

N_2H^+ and N_2D^+

- Rings of N_2H^+ outside the CO snow line / surface

N₂H+: a caveat

- Caveats (e.g., van 't Hoff+17):
 - 'Snow line' defined as 50%-CO freeze out, but N₂H⁺ requires much larger CO depletion → ring moves outward
 - N₂H⁺ also formed in upper layer where CO is already photodissociated but N₂ isn't yet.
 - Schwarz+19: excitation of N₂H⁺ in TW Hya is high (~40 K)

ALMA2019 • Science Results and Cross-Facility Synergies • Cagliari, October 14-18 2019 • Hogerheijde

N₂H⁺ and the 'missing CO' mass

- Corollary: N₂H⁺ traces disk gas that is 'CO-dark' → solves 'missing mass' problem
- Ongoing work by Trapman et al.
 - Gas-poor vs gas-rich models predict very different N₂H⁺ lines
 - Model predictions for several disks in Lupus:

• For recent observations of N₂H⁺ as a gas tracer: see Anderson+19

N₂H⁺ and the 'missing CO' mass

- Corollary: N₂H⁺ traces disk gas that is 'CO-dark' → solves 'missing mass' problem
- Ongoing work by Trapman et al.

• For recent observations of N₂H⁺ as a gas tracer: see Anderson+19

Gas-phase CO inhibits formation of H₂D⁺.

A small amount of CO is needed to convert H_2D^+ into DCO⁺.

Gas-phase DCO⁺ means: CO is largely, but not completely, gone from the gas.

• HD169142:

• DCO+ traces cold region outside outer 'mm ring', not otherwise detectable

• HD163296:

- DCO⁺ traces cold outer region
 - extent limited by return of photodesorbed CO / radial temperature inversion
- DCO+ inside 100 AU formed through a warmer deuteration channel (involves CH₂D+, C₂HD+, etc)

- HD163296:
 - DCO+ traces cold outer region
 - extent limited by return of photodesorbed CO / radial temperature

H₂CO and CH₃OH

• Grain surface (ice) formation route

• Gas-phase formation route

H₂CO

ADec [arcsec]

- H₂CO in disks formed by both paths (gas-phase and grain-surface
 - e.g., Öberg+17; Loomis+15
- HD163296 (Carney+16):
 - H₂CO also reveals both paths
 - Increase of H₂CO outside 'mm-ring': increased UV penetration → CO returns to gas phase → increased H₂CO production ?

Carney+16

H₂CO

- TW Hya also has H₂CO emission extending across the disk
 - Recent observations by Cleeves et al. team
- See poster Jeroen Terwisscha van Scheltinga

H₂CO and CH₃OH

- CH₃OH detected in TW Hya (Walsh+16)
- Carney+19: HD163296
 - Strict <u>upper</u> limit of CH₃OH/H₂CO<0.24
 - cf. TW Hya: CH₃OH/H₂CO~1.27

- Harsher UV radiation from Herbig star destroys CH₃OH upon photodesorption?
- Recent thermal evaporation event in TW Hya?

H₂CO and CH₃OH

Conclusions

- Several simple molecules are readily detected and show clear radial structure
 - N₂H⁺, DCO⁺, H₂CO

- Radial distribution can be linked to the role of dust in the disk
 - by regulating the temperature structure
 - by regulating the UV penetration

 ⇒ Chemistry of these simple molecules provides independent and much needed constraints on the distribution of large and small dust particles