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A B S T R A C T

Background: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common causes of
end-stage renal failure, caused by mutations in PKD1 or PKD2 genes. Tolvaptan, the only drug approved for
ADPKD treatment, results in serious side-effects, warranting the need for novel drugs.
Methods: In this study, we applied RNA-sequencing of Pkd1cko mice at different disease stages, and with/
without drug treatment to identify genes involved in ADPKD progression that were further used to identify
novel drug candidates for ADPKD. We followed an integrative computational approach using a combination
of gene expression profiling, bioinformatics and cheminformatics data.
Findings: We identified 1162 genes that had a normalized expression after treating the mice with drugs
proven effective in preclinical models. Intersecting these genes with target affinity profiles for clinically-
approved drugs in ChEMBL, resulted in the identification of 116 drugs targeting 29 proteins, of which several
are previously linked to Polycystic Kidney Disease such as Rosiglitazone. Further testing the efficacy of six
candidate drugs for inhibition of cyst swelling using a human 3D-cyst assay, revealed that three of the six
had cyst-growth reducing effects with limited toxicity.
Interpretation: Our data further establishes drug repurposing as a robust drug discovery method, with three
promising drug candidates identified for ADPKD treatment (Meclofenamic Acid, Gamolenic Acid and Birinapant).
Our strategy that combines multiple-omics data, can be extended for ADPKD and other diseases in the future.
Funding: European Union’s Seventh Framework Program, Dutch Technology Foundation Stichting Technische
Wetenschappen and the Dutch Kidney Foundation.
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1. Introduction

Drug repurposing, defined as the application of known drugs and
compounds to treat new indications, is seen as a bypass for the long
and expensive process of developing new drugs. Estimates show that
drug repurposing can save more than 50% of the cost and time
needed to develop new drugs [1]. In the past, accidental discovery,
unintended side effects or obvious follow-on indications have led to
new uses of such drugs [2]. Notable examples of drug repurposing
include, Minoxidil (originally tested for hypertension; now indicated
for hair loss) and Viagra (originally tested for angina; now indicated
for erectile dysfunction and pulmonary hypertension). Current drug
repurposing efforts span the spectrum from blind screening chemical
libraries against specific cell lines [3] or against cellular organisms
[4], to serial testing in animal models [5], and to data-driven compu-
tational methods [6]. The latter category explores the fact that a sin-
gle molecule can act on several targets, making it valuable to
indications where these targets are also relevant [7]. Gene expression
profiles generated with expression microarrays or RNA-sequencing,
have been used for the identification of druggable targets and path-
ways [8�10] and are suited for the identification of drug repurposing
candidates under the assumption that diseases that share aberrant
molecular processes may be targeted by the same drugs. However,
gene expression profiles have mainly be used in isolation and
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Research in context

Evidence before this study

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a
progressive kidney disease, with 50% of patients reaching end-
stage kidney disease at the age of 55. Fluid-filled cysts that
gradually replace normal kidney parenchyma, accompanied by
massive fibrosis, are identified as the main cause of renal fail-
ure. Tolvaptan is currently the only approved drug for ADPKD
treatment, but with serious side-effects (i.e. diuresis). There-
fore, there is a need for drugs that specifically target the forma-
tion and growth of cysts, to slow down or halt disease
progression.

Added value of this study

Using a novel approach that combines bio and chemo-infor-
matics, we repurpose drugs for the treatment of ADPKD. We
compared transcriptomic data of ADPKD mouse models at
different disease stages, as well as before and after drug
treatment, to identify genes that are involved in ADPKD
progression. By screening the ChEMBL drug-protein interac-
tion database, we prioritized a list of candidate drugs that
target ADPKD progression-associated genes. Finally, we
showed that three out of six selected candidate compounds
exhibit cyst-growth reducing effects in vitro, without toxic
effects.

Implications of all the available evidence

We have identified three novel compounds that could be further
investigated and developed for the treatment of ADPKD, these
are Meclofenamic Acid, Gamolenic Acid, and Birinapant. Further-
more, our approach is applicable to other diseases, provided that
high quality transcriptomic/proteomics data is available for inte-
gration with large scale drug affinity and activity data.
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integrative approaches where gene expression profiles are combined
with other information are scarce.

Here we have undertaken a novel approach to repurpose drugs for
the treatment of Autosomal Dominant Polycystic Kidney Disease
(ADPKD). ADPKD is a genetic disease of the kidney, with a prevalence
of 4 to 10/10,000, it is one of the most common causes of end-stage
renal failure [11,12]. ADPKD is characterized by the gradual replace-
ment of normal kidney parenchyma by fluid-filled cysts and fibrotic
tissue with age, ultimately leading to end-stage renal disease in most
patients. The main genes mutated in patients with ADPKD are the
PKD1 and PKD2 genes [13]. ADPKD shows variable disease progres-
sion, with 50% of patients developing end-stage kidney disease by
the age of 60. While advances have been made in slowing the pro-
gression of some other forms of chronic kidney disease, standard
treatments have not reduced the need for renal replacement therapy
in ADPKD [14,15]. Unfortunately, several experimental interventions
have recently failed to show significant benefit in slowing the rate of
functional decline [16�18], while the interventions with positive
outcomes, including the approved drug Tolvaptan, reported modest
effects [19,20].

The difficulty in identifying drugs for ADPKD treatment can be
partially attributed to the lack of understanding of the functions of
the PKD1 and PKD2-gene products, and on how their inactivation
leads to cyst development. Strategies are focused on therapies that
can slow the rate of disease progression in PKD patients. The identifi-
cation of more and better drugs would require a macro-level under-
standing of the key molecular pathways contributing to cyst
Please cite this article as: T.B. Malas et al., Prioritization of novel ADPKD d
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initiation and growth in patients and animal models. Transcriptomics
deep-sequencing of disease states was proven successful in identify-
ing promising drug candidates in several examples [21,22].

By sequencing mild, moderate and advanced stages of ADPKD
mouse models, we identified genes involved in ADPKD progression.
To further validate these genes involvement in disease progression,
we compared their expression to the expression profiles of drug-
treated ADPKD mouse models and looked-for gene expression altera-
tions that are normalized after drug treatment. These genes have
been included in a drug repurposing analysis in which targets of
drugs published in ChEMBL have been compared to our expression
profiles. This resulted in the identification of several drugs that
potentially can be repurposed for ADPKD. We validated several of
these compounds in a 3D cyst culture assay and propose them as
potential candidates for ADPKD treatment (Supplementary Figure 1).

2. Materials and methods

2.1. Animal models and drug treatments

2.1.1. Mice used in the ADPKD progression analysis
The inducible kidney-specific Pkd1-deletion mouse model (tam-

KspCad-CreERT2;Pkd1lox2-11;lox2-11, referred to as iKsp-Pkd1del) and
tamoxifen treatments have previously been described [23]. In this
study mutant mice are called Pkd1cko mice. RNA sequencing was
done on kidneys from 5 adult Wild-type (Wt) mice and 24 iKsp-
Pkd1del mice with tamoxifen-induced gene disruption at the age of 38
or approximately 90 days (Mutant). Four mice per group were sacri-
ficed at 2wk, 3wk and 6wks after tamoxifen administration. Five
mice were sacrificed at 11wk of age, 4 at 12wk of age and 3 mice at
15wk after tamoxifen administration (Supplementary Table 1, Sup-
plementary Figure 2). In addition, a young PKD model was analyzed
with tamoxifen treatment at postnatal age of 10 days, as previously
described [24], and the kidneys were harvested at age of 4.7 weeks
(n = 3). Blood sampling and blood urea measurements were per-
formed using Reflotron technology (Kerkhof Medical Service) as
described previously [25]. Only male mice were used.

2.1.2. Ethics statement
All the animal experiments were evaluated and approved by the

local animal experimental committee of the Leiden University Medi-
cal Center (LUMC) and the Commission Biotechnology in Animals of
the Dutch Ministry of Agriculture.

2.1.3. Drug treated mice
Rapamycin (Sirolimus), Curcumin and soluble activin receptor IIB

Fc (sActRIIB-Fc) treated Pkd1cko mice and controls were previously
published [23,24,26] (Supplementary Figure 2).

2.1.4. Measurement of disease progression in ADPKD model
2KW/BW was used as measurement for disease severity and

strongly correlated with the cystic index (Supplementary Figure 3).

2.2. Statistical analysis

2.2.1. Processing of RNA sequencing samples
RNA sequencing was performed on the Illumina� HiSeq 2500.

The Illumina� mRNA-Seq Sample Prep Kit was used to process the
sample according the Illumina protocol "Preparing Samples for
Sequencing of mRNA" (1,004,898 Rev. D). Briefly, mRNA was iso-
lated from total RNA using the oligodT magnetic beads. After frag-
mentation of the mRNA, a cDNA synthesis was performed. This was
used for ligation with the sequencing adapters and PCR amplifica-
tion of the resulting product. The quality and yield after sample
preparation were measured with a DNA 1000 Lab-on-a-Chip (Agi-
lent Technologies). The size of the resulting products was consistent
rug candidates from disease-stage specific gene expression profiles,
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with the expected size distribution (a broad peak between
300�500 bp on a DNA 1000 chip). Clustering and DNA sequencing
using the Illumina cBot and HiSeq 2500 was performed according to
manufacturer’s protocols. A concentration of 15.0 pM of DNA was
used. Detailed run information per group is provided in Supplemen-
tary Table 1. HiSeq control software HCS v2.2.38 was used. Image
analysis, base calling, and quality check was performed with the
Illumina data analysis pipeline RTA v1.18.64 and Bcl2fastq v1.8.4.
All samples had a quality score Q30 for more than 93.6% of reads.
Resulting reads were aligned to the mouse reference genome ver-
sion GRCm38 using Tophat v.2.0.12 with default parameters [27].
The only exception is the use of the no-coverage-search which does
not perform an initial coverage search against the genome, thus
reducing substantially the computational time. After alignment,
HTSeq-count (Version 0.6.1) was used to estimate gene expression
by counting reads that were mapped to the reference genome
GRCm38 exons of each gene using the following options: -s
(stranded) = no, -a (mapping quality) = 10, -m (mode) = intersec-
tion-nonempty, -i (identification) = gene_id -t (feature to count) =
exon. Gene counts were transformed to Counts Per Million (cpm)
values and then normalized using the TMM normalization method
from the edgeR package (Robinson, McCarthy et al., 2010) (version
3.2) was used. Normalized genes were then used as an input for the
Voom transformation method implemented in the limma package
[28] in R 3.4.4. Genes with low expression values (cpm < 2 in more
than 50% of the samples) were excluded from differential gene
expression analysis. A linear-model was fit and differentially
expressed genes were calculated across all samples involved in
ADPKD progression and treated vs. untreated ADPKD samples. Raw
data was deposited in ArrayExpress and given the following identi-
fier E-MTAB-8086.

Validation datasets [15,29] were acquired from GEO (ID:
GSE72554 and GSE7869) and further processed using limma for the
identification of the differentially expressed genes in each of the dif-
ferent mice groups. For the data of Menezes et al., we compared the
resultant lists of differentially expressed genes with the different
clusters involved in ADPKD progression using the representation fac-
tor. The representation factor is the number of overlapping genes
divided by the expected number of overlapping genes drawn from
two independent groups. A representation factor > 1 indicates more
overlap than expected of two independent groups, a representation
factor < 1 indicates less overlap than expected, and a representation
factor of 1 indicates that the two groups have the same overlap for
independent groups of genes. For the data of Song et al., we combined
the differentially expressed genes (P-value < 0.05, t-statistics) of the
small and medium cysts and processed them using the method
detailed in “Annotation of Gene Expression Profiles” sub-section.

2.2.2. Principal component analysis (PCA)
Samples involved in ADPKD progression were selected and pre-

pared for Principal Component Analysis (PCA). Briefly, the above
noise level voom-transformed gene expression values were orga-
nized in a data matrix and given as an input for the ir.pca function in
R. The loadings of the different principal components were plotted in
a 2-dimensional plot using the ggplot2 package in R.

2.2.3. Gene expression clustering
Hierarchical clustering was applied on all differentially expressed

genes resulting from the pairwise comparisons of all samples
involved in ADPKD progression (FDR < 0.005, Supplementary Table
1). The hclust package in R was applied on the euclidean distance
matrix calculated using the dist R function. Utilizing the cutree func-
tion implemented in R, the resultant clustering tree was cut into 15
clusters. For each cluster, all gene members were plotted. In addition,
the average gene expression pattern was based on the averaged
expression values at each time-point.
Please cite this article as: T.B. Malas et al., Prioritization of novel ADPKD d
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2.2.4. Annotation of gene expression profiles
We annotated the resulting gene expression profiles using the

GeneTrail2 v1.5 tool [30]. We ran the over-representation analysis
against the Wikipathways database. We used all expressed genes
above noise level as background and accepted enriched terms with
P-value < 0.05.

2.2.5. Drug targets acquisition and prioritization
All high quality data on the selected protein targets were acquired

from ChEMBL release 22 [31]. High quality was defined as follows:
data points with a ChEMBL confidence score of 9 (direct single pro-
tein target assigned), with a pChEMBL activity value, and having >=
30 compound measurements per protein. The pChEMBL value is the
negative logarithm of activity in molar for curve fitted activity values
such as Ki, IC50, EC50, AC50, XC50. Furthermore, only human pro-
teins were considered. This led to a total of 990 protein targets
(directly assigned targets), and 356,396 interactions with 240,433
compounds. Mus musculus gene identifiers were converted to the
homologous homo sapiens identifiers using the BioMart tool on the
Ensembl website [32], and cross-checked with the Homo sapiens drug
targets. We prioritized the resulting drug targets from the ChEMBL
database [33] through several filtering steps based on a couple of cri-
teria. First the overlap between this set and the PKD progression
genes was kept, a total of 168 protein targets with 54,698 annotated
bioactivities, through 48,050 small molecules. Subsequently only
drug targets that were annotated to small molecules that have been
tested in phases 2, 3 or 4 of clinical trials were kept. This was aimed
at keeping molecules that have passed phase 1, which is aimed at
determining if a drug is safe for efficacy testing in phases 2 and 3,
phases 4 represents approved and marketed drugs. Secondly, we fil-
tered targets that have antineoplastic activity based on the Anatomi-
cal Therapeutic Chemical (ATC) Classification System [https://www.
who.int/classifications/atcddd]. Thirdly, for all remaining drugs and
targets, we investigated for each drug, its mode of action in relation
to each of its remaining targets and compared this to the direction of
deregulation in the PKD Progression. When a drug has a conflicting
mode of action to what is needed to correct the target’s expression in
ADPKD, that drug received low priority. For example, if drugA is an
agonist to an up-regulated target in PKD, drugA would be excluded
(or receive low priority). We kept the drugs that did not have a
known mode of action. Fourthly, for the remaining targets, we gave
the highest priority to drug targets that were dysregulated in the
early phases of the disease, followed by moderate phases and finally
advanced phases.

2.3. 3D cyst drug screening

The 3D cyst culture assay has been performed with Pkd1-KO
mouse-inner medullary collecting duct (mIMCD3) cells (mIMRFNPKD
5E4) as described previously [34]. In short: mIMRFNPKD cells were
mixed with Cyst-Gel (OcellO, Leiden, The Netherlands) to a final con-
centration of 150,000 cells/mL. 15ml of cell-gel mix was pipetted to
384-well plates (Greiner Clear, Greiner Bio-One B.V.) using a CyBio
Felix 96/60 robotic liquid dispenser (Analyik Jena AG). After gel poly-
merization at 37 °C for 30 min, 33 mL culture medium was added to
each well. Cells were grown in gel for 96 h, after which the cells were
co-exposed with forskolin (Calbiochem) and one of the following
molecules: Rapamycin (SelleckChem, S1039), Staurosporin (Selleck-
Chem, S1421); Birinapant (Bioconnect, PK-CA577-2597�1), Gamma-
Linolenic acid (Sanbio, 90,220�50), Eicosapentaenoic acid (Sanbio,
90,110�50), Meclofenamic Acid (Sanbio, 70,550�1), Zileuton (San-
bio, 10,006,967�10) and Indometacin (Sanbio, 70,270�1). Rapamy-
cin and Staurosporin were used as cyst swelling inhibiting or toxic
control respectively. All conditions were tested in quadruplicate.
After 72 h, cultures were fixed with 4% Formaldehyde (Sigma Aldrich)
and simultaneously permeabilized with 0.2% Triton-X100 (Sigma
rug candidates from disease-stage specific gene expression profiles,
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Aldrich) and stained with 0.25 M rhodamine-phalloidin (Sigma
Aldrich) and 0.1% Hoechst 33,258 (Sigma Aldrich) in 1x PBS
(Sigma Aldrich) for 12 h at 4C, protected from light. Imaging was
done using Molecular Devices ImageXpress Micro XLS (Molecular
Devices) with a 4x NIKON objective. For each well, 30 images in the
Z- direction (50 mm apart) were made for both channels. Each image
captures the whole well area. Image analysis for actin and nuclei was
performed using Ominer analysis software (OcellO BV.) integrated in
KNIME Analytics Platform (Konstanz, Germany, http://www.knime.
org/). Further data analysis was also done in KNIME. The main read-
out for efficacy, “cyst area”, was calculated per well as the average of
the area in px of each object in every in-focus plain. This measure-
ment was then normalized to positive (100%) and negative control
(0%). The parameters used for toxicity; “nuclei area” and “nuclei
roundness” were calculated in a similar fashion, “fraction apoptotic
nuclei” was calculated as the amount of nuclei without actin signal
relative to the total amount of nuclei, both as count-measurements.
Graphs were made in Graphpad 6 (GraphPad Software, La Jolla, CA).

3. Results

3.1. Gene expression patterns associated with disease severity

To study the different phases of ADPKD progression, we have
inactivated Pkd1 at postnatal day 38 or 90 (adult phase) in the kid-
neys and harvested these animals at different time points after gene
inactivation, resulting in five groups of mice with different disease
stages. In these mice the largest group of cysts originate from the
proximal tubules but cyst are also formed in distal tubules and col-
lecting ducts [35]. Pkd1cko animals sacrificed after 2, 3 or 6 weeks
after gene inactivation represent very early disease states. Pkd1cko
animals sacrificed at 11 and 12 weeks after gene inactivation repre-
sent a moderate state of the disease and Pkd1cko animals sacrificed at
15 weeks after gene inactivation represent advanced disease. The
kidney weight to body weight ratios (2KW/BW) of the five groups
concurred with increasing disease severity in these samples (Fig. 1A,
Supplementary Table 1).

We carried out RNA sequencing of the different groups of mice
(Supplementary Figure 1). RNA was extracted from the five Pkd1cko
and wild-type (WT) groups and cDNA sequenced on the Illumina
2500 Hiseq platform. Applying principal component analysis (PCA)
on the gene expression profiles of these samples and plotting the first
components revealed that most of the variance between samples
could be attributed to differences in disease severity (principal com-
ponent-1 (pc1), explaining 28% of the total variance, Fig. 1B). Extract-
ing the 20 most influential genes in component-1 and plotting their
expression in all disease progressing samples showed that these
genes strongly correlated with disease progression (average Spear-
man's rank correlation coefficient = 0.7; Fig. 1C). Components-2 and
3 explained 26.7% and 8.3% of the variance respectively, where com-
ponent 3 may reflect the variation between different mice.

3.2. Expression patterns associated with ADPKD progression

To gain fine-grained insights into the different patterns of gene
expression during disease progression, we applied hierarchical clus-
tering on the 2731 differentially expressed genes (FDR < 0.005) dis-
criminating the groups of mice in different states of disease
progression. In the first round of clustering we grouped the 2731 dif-
ferentially expressed genes based on their expression patterns across
the different disease progression stages into 15 clusters. This resulted
in 12 gene clusters with distinct and coherent expression profiles,
ranging in size from 32 to 367 genes. Additionally, three clusters con-
tained genes that showed an aberrant pattern in just one of the sam-
ples. These clusters (cluster 3, 11 and 14) were removed from further
analysis (Fig. 2A, Supplementary Table 2). The remaining 12 clusters
Please cite this article as: T.B. Malas et al., Prioritization of novel ADPKD d
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were characterized by their gene expression patterns. For example,
cluster 1 shows up-regulation in the early pre-cystic phases of the
disease, particularly at 2wk, 3wk and 6wks after gene inactivation.
Cluster 4 on the other hand includes genes that are up-regulated in
the moderate phase of the disease starting from 11 weeks of gene
inactivation. Cluster 10 is an example of a cluster that contains genes
that are down-regulated in the advanced stages of the disease, at
12�15 weeks after gene inactivation. As we are interested in the
three distinct phases of the disease (i.e. early, moderate or advanced),
we further grouped the 12 clusters into 3 groups, where each of the
new groups represents one of the three distinct phases, with genes
up- or down- regulated particularly in early (n = 5 clusters), moderate
(n = 4 clusters) or late (n = 3 clusters) phases of disease (Fig. 2A).

3.3. The expression patterns can be replicated in an independent study

Menezes et al. recently published a study of a different Pkd1
knockout mouse model for ADPKD [15]. They included mouse sam-
ples at different disease stages namely, pre-cystic, cystic and severely
cystic. We tested the statistical enrichment, using the representation
factor (RF) method, of the genes in each of our three disease-stage
groups were compared to the genes that are differentially expressed
in pre-cystic, cystic and severely-cystic male mice of Menezes et al.
As expected, the early dysregulated group demonstrated the stron-
gest overlap with the pre-cystic groups in Menezes et al. study
(Fig. 2B). Likewise, the moderate stage group showed greater overlap
in the cystic and severely cystic groups. Similar patterns were
observed in the advanced gene group, which was most consistent
with the cystic and severely cystic groups (Fig. 2B). The strong over-
lap observed across disease stages was more evident in the up-regu-
lated clusters compared to the down-regulated clusters. Taken
together, these results reflect strong reproducibility of the expression
patterns in an independent study. Since 2KW/BW is an accepted
measurement of ADPKD disease stage and progression, we correlated
the expression values in the 12 distinct clusters with 2KW/BW. The
spearman coefficient plotted in Fig. 2C showed strong correlation of
moderate and advanced stage clusters with 2KW/BW, while the early
phase clusters had a weak correlation with 2KW/BW. This is
expected, because the early ADPKD samples have 2KW/BW similar to
that of the wild types.

3.4. Biological functions and pathways associated with ADPKD
progression

To understand the biological functions involved in ADPKD progres-
sion, we looked for the over-represented pathways in each of the three
disease phases, early, moderate and advanced. For each disease phase,
we combined the genes of the clusters that belonged to that phase and
used GeneTrail2 v1.5 Wikipathways database to annotate them
(FDR < 0.05). Terms enriched (FDR < 0.05) in any of the three disease
phases are shown in Fig. 3A and provided as Supplementary Table 3.
Hierarchical clustering was used to distinguish pathways that were
specifically enriched in the early, moderate or late phases of the dis-
ease, and the pathways that were dysregulated across all phases
(Fig. 3B). Interestingly, even at the pre-cystic phases we observed dys-
regulation in metabolism in the form of dysregulated TCA cycle and
fatty acid biosynthesis, as well as Wnt signaling. Additionally, we
observed dysregulation in G13 signaling pathway that is involved in
cytoskeletal remodeling in cells and is essential for receptor tyrosine
kinase-induced migration of fibroblast and endothelial cells. In the
moderate and advanced phases of the disease, proliferation-related
and inflammation-related pathways were dominant. The oxidative
stress pathway, p53 and DNA mismatch-repair pathways were clearly
visible in the advanced phase, along with alterations in metabolism.
TNFa and chemokine signaling were active during all phases, from
pre-cystic to advanced PKD. Using the work of Song et al. 2009 as a
rug candidates from disease-stage specific gene expression profiles,
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Fig. 1. Kidneys taken out at various disease stages show differences in expression profiles. (a) Boxplot representation of the 2KW/BW values for groups of Pkd1ckomice representing
different phases of ADPKD with increasing disease severity. (b) Results from principal component analysis of the Pkd1cko samples. Shown are the loadings of plot of pc1 (x-axis) and
pc3 (y-axis) of all samples. In the panel the samples are colored based on their 2KW/BW value. (c) Boxplots of the top 10 most up-regulated (left part) and the 10 most down-regu-
lated genes (right part) during disease progression, as extracted from the loadings of the genes on pc1. Expression data are given as log2 (counts per million).
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reference for human ADPKD, we confirmed the dysregulation of sev-
eral of the aforementioned pathways in PKD patients. These include
TCA cycle alterations, aberrant metabolism, active cytoskeleton
remodeling and inflammation (Supplementary Table 3D).

3.5. Further selection of the ADPKD progression genes by evaluating
response to therapy

We have previously shown that treating Pkd1cko P40 mice with
Rapamycin and Curcumin and Pkd1cko P10 mice with soluble activin
receptor IIB Fc (sActRIIB-Fc) significantly reduced kidney size and
slowed the progression of ADPKD in mice [23,24,26] (Table 1). Here,
we sequenced the RNA of the kidneys of these drug-treated mice
using Illumina 2500 Hiseq platform and identified the differentially
expressed genes (DEGs) between the treated and untreated samples.
Please cite this article as: T.B. Malas et al., Prioritization of novel ADPKD d
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The curcumin treated samples are Pkd1cko P40 mice harvested at 11
weeks of age after gene inactivation; the same mouse model was
treated with Rapamycin and harvested at two time-points, 12 weeks
and 15 weeks after gene inactivation (Supplementary Figure 2). The
soluble activin receptor-Fc fusion (sActRIIB-Fc) treatment was given
to Pkd1cko P10 mice at two different time-points after tamoxifen
treatment, starting at 0.3 weeks for the early-treated samples and at
2.1 weeks for the late treated mice (Supplementary Figure 2). Both
groups were harvested at 4.1 weeks of age.

To balance the analysis between the different treatment groups,
we took equally sized lists of the most differentially expressed genes
(sorted on P-value). The size of the gene list was based on the treat-
ment group with the lowest number DEGs (i.e. sActRIIB-Fc treat-
ment), which is equal to 840 genes (P-value < 0.05 t-statistics,
Table 1). For 1162 out of the 2731 genes that we identified to be
rug candidates from disease-stage specific gene expression profiles,
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Fig. 2. 12 distinct expression patterns are associated with PKD progression. (a) The different expression patterns observed in Pkd1cko mice representing the progression of ADPKD
towards end-stage renal disease (weeks after tamoxifen induction). For each cluster, mean log-transformed gene expression levels relative to the control mice that did not receive
tamoxifen are plotted. The top panel represents the early dysregulated clusters, the middle panel represents the clusters dysregulated in the moderate to advanced stage and the
bottom panel the clusters associated with the advanced stage of the disease. (b) Replication of expression profiles in an independent study. For each cluster, a representation factor
reflecting the gene overlap of each cluster with the expression signatures from the five different mouse groups defined in the study by Menezes et al. [15] is given in a color repre-
sentation. A representation score > 1 reflects enrichment. (c) Correlation of gene expression with disease progression. For each cluster, the average Spearman’s correlation coeffi-
cient between the expression values of the genes in a cluster and the 2KW/BW ratio was calculated. Green represents a negative correlation while red reflects a positive correlation.
Clusters that were dysregulated in an early stage have the lowest correlation with the 2KW/BW increase, suggesting they follow a different trend in disease progression. (d) Associa-
tion of cluster with drug response. A bar chart representation for each cluster showing the proportion of the 2731 genes that were also affected by one of the drug treatments: sAc-
tRIIB-Fc early (Act Early) and late (Act Late), curcumin, rapamycin short (Rapa Short) and long (Rapa Long). The x-axis represents the % of genes that were significanltly
dysregulated (P < 0.05) due to the drug treatments per cluster per drug treatment.
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involved in ADPKD progression, the expression was normalized after
at least one drug treatment, i.e. upregulated genes were not or less
increased after treatment, or downregulated were not or less
decreased after treatment (Supplementary Table 2). Since the drug
Fig. 3. Pathways associated with disease progression and drug response. (a) A heatmap repre
(left). For each cluster category from Fig. 2A, the significantly enrichedWikipathways were obta
in the different phases of ADPKD (Early, Moderate and Advanced). On the right, a heatmap rep
drug treatment. Enrichment was established based on the representation (RF) factor calculation
tion of the different pathways involved in ADPKD’s progression. Pathways are selected based on

Please cite this article as: T.B. Malas et al., Prioritization of novel ADPKD d
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treatments were effective in slowing disease progression, these genes
reflect the healthier state of the kidneys upon drug treatment. By
focusing on genes that respond to therapy we strengthen the involve-
ment of the genes in disease progression and as potential target to
sentation of the molecular pathways significantly enriched in the different stages of PKD
ined (FDR< 0.05) and plotted in the heatmap. Color scale reflects the representation factor
resentation of the pathways that are enriched with significantly dysregulated genes after
, where pathways that had RF>= 1 are considered significant. (b) A schematic representa-
theirWikipathways significance (FDR) across the different disease stages in part A.

rug candidates from disease-stage specific gene expression profiles,
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Table 1
The results of the RNA-Sequencing results of the drug treated samples (Curcumin, Rapamycin and sActRIIB-Fc). Significant genes (P-value < 0.05, t-statistics) were identified
based on the comparison of the drug treated samples to the non-treated control (see methods for details) .

PubChem CID Drug name and drug treatment
(Supplementary figure 2)

No. of genes significant genes
(P-value < 0.05, t-statistics)

Normalized no. of genes
compared to PKD progressiona

No. of genes found in PKD
progression clusters

969,516 Curcumin 8030 840 503
5,284,616 Rapamycin Short 1600 840 441
5,284,616 Rapamycin Long 1250 840 322
NA sActRIIB-Fc late-short treatment 840 840 270
NA sActRIIB-Fc early-long treatment 4200 840 365
a Number is based on the lowest maximum of significant genes. This belongs to sActRIIB-Fc Late-Short treatment.
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identify novel drugs to treat ADPKD (Figure-2D Fig. 2D). Table 1 sum-
marizes the number of genes differentially expressed in the treated
samples and involved in ADPKD progression.
3.6. Identifying drug targets from the genes associated with ADPKD
progression

To identify candidate drugs that might have a favorable effect on
ADPKD, we screened the ChEMBL database for drug-protein interac-
tions. From ChEMBL, we only used high quality drug-protein target
interactions (See Methods). This generated a list of 990 protein tar-
gets (directly assigned targets), and 356,396 interactions with
240,433 compounds. We compared these drug targets to our set of
differentially expressed genes. From the total set of 1162 genes that
were involved in ADPKD progression, 168 genes were annotated in
ChEMBL as candidate drug targets and had enough high-quality bio-
activity information to be used in our subsequent analysis (Fig. 4A).
These 168 genes were targeted by 48,050 small molecules (Supple-
mentary Table 4: Step 11).

As we were interested in the set of candidate drugs that can be
repurposed for ADPKD, we extracted compounds that were tested in
2nd, 3rd or 4th phase clinical trials. 544 out of the 48,050 compounds
met these criteria, and these compounds interacted with 111 of our
selected targets (Supplementary Table 4: Step 12). Further restriction
Fig. 4. 3D-cysts assay of candidate compounds. (a) Top: Quantification of cyst size of the tes
mycin (0.01 mM) and staurosporin (0.25 mM) reduce cyst size, as well as brinapant, Gamole
500 mM, 500 mM and 100 mM respectively (N = 4 wells). Bottom: Assessment of staurospor
and the fraction of nuclei that are apoptotic show changes for reference compound stauros
two of the test compounds at highest tested dose; 100 mM for brinapant and 500 mM for Gam
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of the targets by including only those for which the mRNA levels
were normalized by treatment with one or more of the three differ-
ent drugs that slowed cyst formation in our preclinical models. This
resulted in a set of 63 unique candidate drug targets interacting with
339 compounds (candidate drugs) (Supplementary Table 5A). For
each candidate drug we have obtained its classification in the Ana-
tomical Therapeutic Chemical (ATC) Classification System (https://
www.who.int/medicines/regulation/medicines-safety/toolkit_atc/en/)
and removed drugs with antineoplastic classification, because theymay
show too serious side effects during long-term treatment for PKD. 32
unique targets and 116 candidate drugs passed this filtering (Supple-
mentary Table 5B). For each remaining drug-target interaction we
looked for information on the mode of action (MoA) of the drug. How-
ever, this information was only available for a small subset of these
interactions (12 targets and 23 drugs), and we filtered out the targets
that had a conflicting direction of dysregulation in relation to the its
drug MoA (3 targets were filtered out). We arrived at 29 genes that
could serve as a target for drug repurposing in ADPKD (Table 2; Supple-
mentary Table 5B).
3.7. Selection of candidate drugs

Analyzing the remaining 29 targets, we identified several that
were previously linked to ADPKD treatment. For example, Suramin
ted compounds normalized to forskolin induced swelling. Reference compounds rapa-
nic Acid, icosapent and Meclofenamic Acid at highest tested concentration of 100 mM,
in-like induction of toxicity. Graphs representing average nuclei area, nuclei roundness
porin and for icosapent. (b)Representative images of positive and negative control and
olenic Acid. Each scalebar is 400mM.

rug candidates from disease-stage specific gene expression profiles,
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Table 2
The 29 drug prioritized targets grouped based on their gene category
according to MsigDB (Supplementary Table 5B).

Gene category Count of genes Genes

Protein kinases 3 CDK1
PRKCB
PRKCZ

Transcription factors 3 PPARD
STAT3
THRA

Cytokines and growth factors/receptors 2 CCL2
CCR2

Other 21 SLC1A1
PTGER3
AKR1B10
LGALS3
BIRC2
HSD17B2
P2RX7
PLD2
CYP2J2
MGLL
FKBP4
PTGES
ALOX5AP
P2RY6
AKR1A1
MAPT
CYP51A1
TRAP1
AKR1C1
AKR1C3
AKR1C2
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Hexasodium a non-specific inhibitor of P2 receptors inhibiting P2Y
and P2X receptors reduced cyst growth in a 3D cysts models while a
P2 £ 7 receptor antagonist as well as gene knock-down were previ-
ously shown to inhibit cystogenesis in a zebrafish model for polycys-
tic kidney disease [36,37]. Suramin is also an antagonist of IL-6,
known to inhibit renal fibrosis in chronic kidney disease in rats [38].
Another identified drug, the PPARg agonist Rosiglitazone, was shown
to be effective in animal models for PKD [39�41]. Pioglitazone, a
close PPARg agonist to Rosiglitazone, is currently undergoing clinical
trials for ADPKD [ClinicalTrials.gov Identifier: NCT02697617].
Another prioritized candidate drug was the second mitochondrial-
derived activator of caspases (SMAC)-mimetic GT13072, which
slowed down PKD progression in two Pkd1mouse models [42]. Icosa-
pent also known as ethyl eicosapentaenoic acid, another candidate
drug prioritized by our analysis, was shown to reduce PKD severity in
a mouse model, but this could not be confirmed in a small clinical
trial [43]. Additionally, three candidate drugs, the spleen tyrosine
kinase inhibitors entospletinib and R-406, and the polo-like kinase 1
inhibitor BI-2536 were previously shown to be effective in a 3D Cyst
screen of the Selleckchem library of compounds [34]. Collectively,
Table 3
Drugs selected for validation in 3D Cyst experiment and their results.

PubChem CID Drug name Targets (pChEMB

49,836,020 Birinapant BIRC2 (7.3)
5,280,933 Gamma-Linolenic acid (Gamolenic Acid) PPARD (6.1)
446,284 Eicosapentaenoic acid (Icosapent) PPARD (5.4)
4037 Meclofenamic Acid AKR1C3 (6.3), AK
60,490 Zileuton ALOX5AP (5.5)
3715 Indometacin AKR1C3 (6.2) , PT

a pChEMBL is a combination of a number of roughly comparable measures of
negative logarithmic scale: -Log(molar IC50, XC50, EC50, AC50, Ki, Kd or Poten
selected targets for which the affinity was a pCHEMBL value > 4.0.
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these previous findings support our approach in successfully identify-
ing lead compounds for ADPKD drug repurposing.

To identify new candidate drugs for the ADPKD drug development
pipeline, we evaluated six compounds in a 3D Cyst assay similar to that
performed by Booij et al. [34]. The six candidate drugs, Zileuton, Indo-
metacin, Meclofenamic Acid, Gamolenic Acid, icosapent and Birinapant
(Table 3) were selected based on additional evidence for the potential
therapeutic potential for ADPKD present in the Euretos Knowledge Plat-
form (https://www.euretos.com/) and the scientific literature.

3.8. Wet-lab validation of selected candidate drugs

To test the selected drug candidates, we grew renal epithelial cells
(mIMRFNPKD 5E4) in a 3D-gel matrix to allow cyst formation. After
96 h, cysts were co-exposed to forskolin, to induce cyst swelling, and
the selected compounds for a period of 72 h. Rapamycin, shown before
to reduce cyst swelling in several models [34,44], was used as a posi-
tive control for cyst swelling inhibition and demonstrated the
expected reduction in cyst size (Fig. 4A). Of the selected drug candi-
dates, Meclofenamic Acid, Gamolenic Acid, icosapent and Birinapant
slowed cyst growth at the highest concentration tested; 100 mM,
500 mM, 500 mM and 100 mM respectively. Zileuton and indometha-
cin, however were not as effective (Fig. 4A, top), showing no effect on
cyst size on any of the tested concentration up to 100 mM and 40 mM
respectively. Birinapant was the most potent compound, with 50%
inhibition of cyst swelling around 50mM. These results were validated
in an independent experiment (Supplementary Figure 4). To be able to
distinguish true swelling inhibiting properties from severe toxicity,
which also leads to reduced cyst size, staurosporin was included as a
prototypic toxic compound at. Looking at the effect of staurosporin at
0.25 mM on phenotypic parameters such as nucleus size and shape as
well as nucleus fractionation, there is clear induction of cytotoxicity.
Of the selected compounds however, only icosapent shows similar
kind of phenotypic changes, starting at a concentration of around
100 mM (Fig. 4A, bottom). Representative images of treatment effect
can be found in Fig. 4B. These results indicate that 3 out of 6 novel
compounds selected through our approach demonstrated to be able to
inhibit cyst swelling in vitro without apparent toxicity.

4. Discussion

In this study we combined comprehensive gene expression profil-
ing and bioinformatics, with cheminformatics to identify drugs for
repurposing and targets to further explore for ADPKD treatment. Our
approach is based on an innovative strategy that combines transcrip-
tomics sequencing of different disease states of ADPKD and drug
assays databases to arrive to a list of candidate drugs that could have
a treatment potential for PKD. Our methodology zooms-in on a set of
genes involved in ADPKD progression and proposes candidate drugs
that could alter disease progression by targeting relevant genes. Our
L valuea) Results in 3D cyst assay ATC code (Level 4)

Effective n/a
Effective D11AX
Effective n/a

R1C1 (5.5), AKR1C2 (5.1) Effective M01AG
Not effective n/a

GES (4.4) , AKR1C2 (4.3) Not effective C01EB
M01AB
M02AA
S01BC

half-maximal response concentration/potency/affinity to be compared on a
cy). We have tested compounds at 100 mM (pCHEMBL value 4). We have

rug candidates from disease-stage specific gene expression profiles,
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work is of high relevance to PKD patients since they have limited
treatment options. Tolvaptan (Jinarc), the only treatment now avail-
able, has limited efficacy, and side-effects like massive diuresis may
limit patient adherence [20,45]. Therefore, there is a need for drugs
that specifically target the formation and growth of cysts to slow
down or halt disease progression. Given the complexity of altered
signaling in cyst-lining epithelia, a broad range of potential targets
are available, and drug-repurposing is a relative fast strategy for the
development of new treatments.

We used a tamoxifen-induced Pkd1cko mouse model to generate
expression profiles of the kidneys of 7 groups of mice with varying
levels of disease progression. Using clustering techniques, we arrived
at groups of genes that show altered expression in mild, moderate
and advanced stages of the disease, each characterized by increased
or reduced activation of certain pathways and pathogenic processes.
In the early stage, the TCA cycle, fatty acid biosynthesis, EGFR signal-
ing and G13 signaling were most significantly altered, indicating
altered metabolism, proliferation and cytoskeletal remodeling, con-
firming previous studies in PKD [15,46]. In the moderate phase, we
specifically observed increased MAPK and mTOR signaling, both
involved in a broad range of cellular processes including cell prolifer-
ation and cell stress-related pathways (MAPK) or cell growth, prolif-
eration, protein translation, autophagy, as well as actin cytoskeleton
remodeling and apoptosis (mTOR) [23,47,48]. Additionally, at this
stage we observed an up-regulation of cytokines such as IL-5 and IL-
3, corresponding to inflammatory infiltrates and an active injury
response. Inflammation and associated fibrosis became even more
prominent in the advanced phase with increased expression of mac-
rophage markers [49,50]. Furthermore, in the late-phase we see evi-
dence of severe cell damage and tissue injury response with the up-
regulation of pathways involved in oxidative stress, DNA damage
response, and P53 signaling [29,51].

To arrive to a set of candidate drugs that could be repurposed for
ADPKD, we took advantage of ChEMBL, where we identified mole-
cules that target genes of the ADPKD progression profile. The advan-
tage of using ChEMBL is that it is based on primary scientific
literature, allowing us to validate the source of the bioactivity when
needed. However, it should be noted that a similar approach could be
envisioned with PubChem Bioassay or another source of biological
activities. To make sure that the drug target relationships are of high
quality we followed a series of filtering steps that led to 116 mole-
cules binding to 29 genes. It is known that on average approved drugs
show activity for 6 protein targets, so our selected molecules cannot
be considered more promiscuous than normal in particular given
that they have gone through phase 1 clinical trials [52]. Our filtering
steps aim to minimize the number of ‘wet-lab’ experiments by focus-
ing on only the most relevant and most confident information from
literature. To be able to repurpose approved drugs, we did not only
retrieve bioactivity data but also retrieved the primary (mode of
action) target of each drug. Hence, we also included associated gene
targets for approved drug that do not directly relate to the working
mechanism described in the literature. As we included only drugs
that are used in phases 2, 3 or 4 clinical trials and then filtered out
drugs that have antineoplastic effects, we aimed to optimize our
selection of drug repurposing candidates. The rationale being that
compounds showing toxicity effects in phase 1 drugs known to kill
(tumor) cells are less suitable for chronic administration to ADPKD
patients. Out of the 116 candidate drugs that we prioritized for
ADPKD treatment, we identified 5 molecules that were previously
linked to PKD in 3D cultures and/or preclinical studies. More research
is required to decide for further clinical development of these drugs/
drug targets. Using a 3D-cyst drug screen assay, we have tested the
effect of a further 6 drugs on cyst size at four or five dosages. In all
cases the screening concentration we used was higher than the noted
pChEMBL value (indicating that more than 50% of the compound was
bound to the targets). 4 out of the 6 tested drugs had a positive
Please cite this article as: T.B. Malas et al., Prioritization of novel ADPKD d
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impact on cyst size (decreased cyst size compared to controls). This
became more evident at the high dosage, which might suggest a cer-
tain toxic effect on the cyst. We further analyzed the toxicological
effects of these drugs and our initial toxicology analysis, revealed
toxic effects of only 1 of the tested drugs.

The three remaining effective and nontoxic compounds are
Meclofenamic Acid, Gamolenic Acid and Birinapant. From Table 3 it
follows that the following targets could be responsible for the
observed activity of these three compounds: BIRC2, PPARD, and
AKR1C1. BIRC2 is the only known target for Birinapant and is in the
identified targets. PPARD is a target for both Gamolenic Acid and Ico-
sapent (and in the list of identified targets). AKR1C1, AKR1C2, and
AKR1C3 are all in the list of identified targets and have an affinity for
the active Meclofenamic Acid. However, the inactive compound Indo-
metacin also has an affinity for AKR1C2 and AKR1C3, ruling them out
as the prime targets for Meclofenamic Acid. Finally, PTGES and
ALOX5AP seem not to be relevant targets as the inactive compounds
Indometacin and Zileuton have affinity for them. It should be noted
that the here retrieved targets represent only the targets for which
activity was measured in the scientific literature; absence of these
measurements does not demonstrate the absence of potential affin-
ity. Moreover, the tested compounds may also have more targets on
which they may demonstrate affinity (Supplementary Table 6). How-
ever, we selected in our approach only genes that were shown to be
affected in ADPKD, which is not true for the other targets listed in
Supplementary Table 6.

For the identified drugs we were also able to obtain more relevant
information from literature, interestingly all these results are in line
with our findings from Table 3. Meclofenamic Acid has been identi-
fied to target aldo-keto reductase family 1, which is implicated in ste-
roid metabolism [53], which was reported to be involved in cyst
development in cpk rat, a PKD model [54]. Gamolenic Acid has been
selected based on PPARd, which controls an array of metabolic genes
involved in glucose homeostasis and fatty acid synthesis/storage,
mobilization and catabolism. For other PPAR family members, PPARa
and PPARg , are being studied in (pre)clinical trials for PKD [40,55].
Birinapant is a SMAC mimetic and known modulator of apoptosis,
which binds to and inhibits the activity of Inhibitors of Apoptosis Pro-
teins (IAPs), including BIRC2(=cIAP1) thereby freeing caspases to acti-
vate apoptosis [56]. Another SMAC mimetic, GT13072, was
previously shown to slow down PKD progression in Pkd1 mouse
models [42]. Overall, these drug candidates are relevant to the molec-
ular events involved in ADPKD progression. However, further testing
and pre-clinical experiments are needed to determine the efficacy of
these drugs for ADPKD treatment.

To our knowledge this is the first drug repurposing effort in
ADPKD at this scale. It expands on the previous transcriptomics
efforts performed by others in the field. In this study we used deep
RNA-sequencing of ADPKD transcriptomics across multiple disease
stages, rather than microarrays [15,29,57,58]. The aforementioned
studies differ in several elements, most notably their source of stud-
ied samples. Where we and Menezes et al. used adult Pkd1 mutant
mice, Pandey et al. used embryonic kidneys of Pkd1 mutants and
both Song et al. and de Almedia et al. used patient obtained ADPKD
kidneys of ADPKD patients. Despite these differences, comparable
dysregulated pathways have been reported. In all studies, abnormali-
ties in metabolism, cell cycle and cell death are observed. Our results
suggest that irregulates in metabolism and cell growth could play a
role in early cyst development. Furthermore, we sequenced drug-
induced ADPKD models to target progression involved genes at a
higher precision, and thus enabling enhanced drug-repurposing. Our
method screens thousands of approved drugs for their potential to
treat ADPKD, expanding the work of others that focused on studying
a selected number of drugs [59�63].

Although our approach is supported by wet-lab and in silico
experiments, we acknowledge several limitations of our study. (1).
rug candidates from disease-stage specific gene expression profiles,
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For the adult onset PKD mice, we only included males, while several
results suggest ADPKD presentation differences between males and
females [64]. Despite the differences in progression rates, gene net-
work analyses revealed that the underlying mechanisms of PKD pro-
gression between male and female mice do not differ [15]; (2) Our
starting point was gene expression data, while not all molecular pro-
cesses act through changes in gene expression. Stage specific proteo-
mics data and analysis of posttranslational modifications would be
needed to obtain a more comprehensive insight in the molecular
pathways associated with disease progression and would improve
the quality of our drug predictions; (3) Drugs and their targets are
biased towards the most studied drugs, diseases, and proteins (i.e.
enzymes and G protein coupled receptors make up more than 75% of
the data), while less-well characterized drugs may constitute equally
good candidates for drug repurposing strategies [65]; (4) Further
functional wet-lab experiments would be needed to determine the
exact contribution of each gene to ADPKD progression and cyst
growth. As more data will be implemented in ChEMBL and other bio-
medical database in the future, the power of this approach will
increase. In addition, this approach is widely applicable to other dis-
eases as well, provided that large scale high quality transcriptomic/
proteomics data is available to be compared to databases cataloging
drug affinity and activity towards a broad range of protein targets.
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