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The search for oxide materials with physical properties similar to the cuprate high Tc 

superconductors, but based on alternative transition metals such as nickel, has grown and 

evolved over time [1-10]. The recent discovery of superconductivity in doped infinite-layer 

nickelates RNiO2 (R = rare-earth element) [11,12] further strengthens these efforts. With a 

crystal structure similar to the infinite-layer cuprates – transition metal oxide layers 

separated by a rare-earth spacer layer – formal valence counting suggests that these 

materials have monovalent Ni1+ cations with the same 3d electron count as Cu2+ in the 

cuprates.  Here, we use x-ray spectroscopy in concert with density functional theory to 

show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, 

includes significant distinctions. Unlike cuprates with insulating spacer layers between the 

CuO2 planes, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly-

interacting three-dimensional 5d metallic state. This three-dimensional metallic state 

hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx
2
-y

2 symmetry in 

the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare 

earth intermetallics [13-15], well-known for heavy Fermion behavior, where the NiO2 

correlated layers play an analogous role to the 4f states in rare-earth heavy Fermion 

compounds. This unique Kondo- or Anderson-lattice-like “oxide-intermetallic” replaces 

the Mott insulator as the reference state from which superconductivity emerges upon 

doping.   

While the mechanism of superconductivity in the cuprates remains a subject of intense 

research, early on it was suggested that the conditions required for realizing high Tc 

superconductivity are rooted in the physics of a two-dimensional electron system subject to strong 

local repulsion [16, 17]. This describes the Mott (charge-transfer) insulators in the stoichiometric 



parent compounds, characterized by spin ½ Heisenberg antiferromagnetism, from which 

superconductivity emerges upon doping. A long-standing question regards whether these “cuprate-

Mott” conditions can be realized in other oxides; and extensive efforts to synthesize and engineer 

nickel oxides (nickelates) have promised such a realization [1-10]. Infinite-layer NdNiO2 became 

the first such nickelate superconductor following the recent discovery of superconductivity in Sr-

doped samples [11]. The undoped parent compound, produced by removing the apical oxygen 

atoms from the perovskite nickelate NdNiO3 using a metal hydride-based soft chemistry reduction 

process [10, 18-20], appears to be a close sibling of the cuprates—it is isostructural to the infinite-

layer cuprates with monovalent Ni1+ cations and possesses the same 3d9 electron count as that of 

Cu2+ cations in undoped cuprates. Yet, as we will reveal, the electronic structure of the undoped 

RNiO2 (R = La and Nd) remains distinct from the Mott, or charge-transfer, compounds of undoped 

cuprates, and even other nickelates. 

As a reference, we first discuss the electronic structure of canonical nickelates, NiO and 

LaNiO3. Rock salt NiO is a charge-transfer insulator, as characterized in the Zaanen-Sawatzky-

Allen scheme [21], whose charge-transfer energy  (promoting charge from oxygen ligands to Ni 

d orbitals) lies below the Coulomb interaction scale U on Ni sites. The valence Ni d orbitals 

strongly hybridize with oxygen ligands, yielding wavefunctions with mixed character α|3d8> + 

β|3d9L> (α2 + β2 = 1), with β2 ~ 0.2 [22, 23] per in a NiO6 octahedron, where L denotes a ligand 

hole on the oxygens. Such Ni-O ligand hybridization gives rise to a pre-peak in x-ray absorption 

spectroscopy (XAS) near the O K-edge (Fig. 1a). In addition, a large band gap set by  appears in 

the oxygen partial density of states (PDOS) obtained both experimentally (Fig. 1b) and from 

LDA+U calculations (Fig. 1e). In the perovskite RNiO3 where formal valence counting would give 

Ni3+ (3d7), both theoretical and experimental studies indicate that the perovskite structure leads to 



a decrease of  such that it becomes effectively negative [24]. Under such a scenario, electrons 

from oxygen ligands spontaneously transfer to Ni cations, giving rise to “self-doped” holes on the 

ligands, and a pre-peak in the O K-edge XAS (Fig. 1a). As expected for a negative charge-transfer 

metal, no band gap appears in the oxygen PDOS (Figs. 1c and f) [25]. 

The O K-edge XAS tells a very different story for the infinite-layer nickelates LaNiO2 and 

NdNiO2, as shown in Fig. 1a. The lack of a pre-edge peak suggests that the oxygen ligands carry 

significantly less weight in the ground state wave function, signaling a weaker effective mixing 

between oxygen and the Ni1+ cations. Unlike NiO and LaNiO3, the oxygen PDOS (Fig. 1d) exhibits 

a diminished weight near the Fermi energy, also indicating that oxygen 2p orbitals carry less 

weight in the states near the Fermi energy by comparison; all of which is consistent with the 

calculated oxygen PDOS from LDA+U (Fig. 1g). 

While the oxygen electronic structure deviates significantly from other nickelates and 

cuprates [26], we examine the electronic structure of the Ni cation in RNiO2 using both XAS and 

resonant inelastic x-ray scattering (RIXS) at the Ni L3-edge (a core-level 2p to valence 3d 

transition).  As shown in Fig. 2a, while XAS for both NiO and LaNiO3 exhibit distinct multi-

peak structures originating from 2p63d8 –2p53d9 and 2p63d8Ln–2p53d9Ln multiplet transitions, 

respectively [23, 24], XAS for the infinite-layer nickelates shows a main absorption peak 

(denoted A), which closely resembles the single peak associated with the 2p63d9–2p53d10 

transition in cuprates [27]. In particular for LaNiO2, the XAS exhibits an additional lower energy 

shoulder A’, at which the RIXS spectrum consist a lower energy feature of ~ 0.6 eV (Fig. 2b and 

e). Note that this feature is absent in the RNiO3 (R = La, Nd) compounds (Fig. 2c, e, and Ref. 

24). Using exact diagonalization (see Method), we reproduce the general features from XAS and 

RIXS (Figs. 2f-h), including the A’ features, which highlights the hybridization between the Ni 



3dx
2-y

2 and La 5d orbitals. Thus, in configuration interaction, the Ni state can be expressed as a 

combination of |3d9> and |3d8R> where R denotes a charge transfer to the rare-earth cation (See 

Method and Supplementary Table 2). In NdNiO2, the ~ 0.6 eV feature due to the Nd-Ni 

hybridization also exists in RIXS (Figs. 2d, e), but it’s resonance energy (A’) almost coincides 

with the main absorption peak A. As a consequence, the A’ feature cannot be resolved in XAS 

(Fig. 2a).  

To further analyze the electronic structure, we turn to density functional theory.  The 

LDA+U scheme [28] has a long track record of reproducing correctly the gross features of 

correlated electronic structure for transition metal oxides. While generally first principle, one 

cannot be certain about the value of the local Coulomb interaction U; however, we can put bounds 

on it. The infinite-layer nickelates are undoubtedly less good metals than elemental nickel, 

characterized by U ~ 3 eV, which we can take as a lower bound.  From O K-edge XAS, the 

Coulomb interaction should be smaller than that of the large band gap charge-transfer insulator 

NiO, where U ~ 8 eV. Here, we choose U = 6 eV in our calculations for LaNiO2 (with a lowest 

energy antiferromagnetic solution, see Method for details), revealing some salient features that 

correlate with experimental observations: (a) As shown in Fig. 1g (and Fig. 3a), when compared 

to other nickelates, the oxygen 2p bands lie significantly further away from the Fermi energy, 

signaling reduced oxidation and implying a charge-transfer energy  that exceeds U. This places 

the RNiO2 infinite-layer nickelates within the Mott-Hubbard regime of the Zaanen-Sawatzky-

Allen scheme [21]. (b) The density of states near EF is dominated by the half-filled Ni 3dx
2

-y
2 states, 

which appear isolated from the occupied Ni 3d bands.  The characteristic lower and upper Hubbard 

bands (Fig. 3a), at least in part, signal a textbook single-band Hubbard model, all but confirming 

that the Ni cation should be in a very nearly monovalent 3d9 state, consistent with the Ni L-edge 



XAS and RIXS (Fig. 2). (c) The density of states at EF is actually finite, but small, as shown upon 

closer inspection of both Figs. 3a and 3b. Near the  point, a Fermi surface pocket forms of mainly 

La 5d character (Fig. 3b); it is quite extended and three-dimensional (see the wavefunction at kF, 

Fig. 3c, and Fermi surface, Fig. 3d). This contrasts with the two-dimensional (2D) nature of the 

correlated 3dx
2
-y

2 Ni states (Fig. 3b). In other words, the electronic structure of the infinite layer 

nickelate consists of a low density three-dimensional (3D) metallic rare-earth band coupled to a 

2D Mott system.  

A minimal model for these materials would look like  

𝐻 =∑(𝜀𝑘
𝑅𝑛𝑘,𝜎

𝑅 + 𝜀𝑘
𝑁𝑖𝑛𝑘,𝜎

𝑁𝑖 )

𝑘,𝜎

+ 𝑈∑𝑛𝑖,↑
𝑁𝑖

𝑖

𝑛𝑖,↓
𝑁𝑖 + ∑(𝑉𝑘,𝑖𝑐𝑘,𝜎

+ 𝑑𝑖,𝜎 + ℎ. 𝑐. )

𝑘,𝑖,𝜎

, 

where the first term describes the non-interacting rare-earth (R) and Ni bands with energies εk
R and 

εk
Ni, respectively, the second term represents the usual on-site Hubbard interaction with strength 

U in the quasi-two-dimensional Ni layer, and the third term describes the coupling with strength 

Vk,i between the R and Ni subsystems.  Here, nk,σ
R and nk,σ

Ni represent the usual number operators 

for the R and Ni subsystems, while ck,σ† (ck,σ) and dk,σ
† (dk,σ) create (annihilate) electrons in the 3D 

metallic R and 2D Hubbard-like Ni subsystems, respectively.  This model resembles the Anderson-

lattice (or Kondo-lattice) model for the rare-earth intermetallics [13-15], but with the notable 

addition of a weakly hybridized single-band Hubbard-like model for the Ni layer, rather than 

strongly interacting 4f states (or localized spin moments).  We can take this a step further by 

“downfolding” the band structure to a minimal model that should be the starting point for the 

unusual correlated electron physics in this system. Figure 4a shows the band structure for LaNiO2 

obtained from LDA without a Hubbard U (see Supplementary Information for details).  Here, 

consistent with previous calculations [2], two bands cross the Fermi level:  a fully three-

dimensional band with predominantly La 5d character, and a quasi-two-dimensional band with Ni 



3d character.  Wannier downfolding [29] produces one extended orbital with d3z
2
-r

2 symmetry 

centered on La (Fig. 4b) and another orbital confined primarily to the NiO2 planes with dx
2
-y

2 

symmetry centered on Ni (Fig. 4c), which are fully consistent with the expected orbital 

arrangements given the crystal and ligand field symmetries for this material and the LDA+U 

results shown in Fig. 3.  Full details about the downfolded model, including effective model 

parameters, can be found in the Supplementary Table 3. 

This downfolded model is to the best of our knowledge unique to this particular system. 

Viewed theoretically, this is uncharted territory and it is a natural question to ask what happens 

to the basic single-band Hubbard model when its states weakly hybridize with a metallic band. 

For example, do the spins in the NiO2 layers order antiferromagnetically or will the Kondo effect 

strongly screen the local moments and give rise to electronic band hybridizations in analogy to 

the case of heavy Fermions [13-15]? Note that unlike the rare-earth intermetallics, here, Ni spins 

interact via the strong short range super-exchange interaction, which replaces the RKKY 

interactions in the heavy Fermion compounds. More importantly, can superconductivity emerge 

in this model by introducing doped charge carriers? Apparently, experimental information, 

particularly about the Fermi surface, magnetic susceptibility, and information about other 

elementary excitations, such as spin, charge, and phonon excitations, will be required to gain 

further insights. Nevertheless, our results have provided a first glimpse into the novel electronic 

structure of the parent compounds of superconducting infinite-layer nickelates, which appear to 

serve as a birthplace of superconductivity upon doping. 

  



 

Methods 

Materials  

LaNiO3 films with 12 and 50 nm thicknesses were grown on top of 5 × 5 mm2 TiO2-terminated 

SrTiO3 (001) substrates by pulsed laser deposition (PLD) using a 248nm KrF excimer laser. Prior 

to growth, SrTiO3 substrates were pre-annealed at an oxygen partial pressure (pO2) of 5 × 10-6 torr 

for 30 min at 950 ℃ to achieve sharp step-and-terrace surfaces. The films were subsequently grown 

at a substrate temperature Tg of 575 ℃ and pO2 = 34 mtorr, using 1.4 J cm-2 laser fluence and 4 

mm2 laser spot size on the target. The growth was monitored by reflection high-energy electron 

diffraction (RHEED) intensity oscillations. After the growth, the samples were cooled down to 

room temperature in the same oxygen environment. Characterization by x-ray diffraction (XRD) 

scans with Cu Kα radiation indicated the presence of the perovskite phase of (001)-oriented 

LaNiO3 and high epitaxial quality for all as-grown films. AFM topographic scans showed 

atomically flat surfaces. Reducing conditions [30] were adapted to remove apical oxygen for 

producing both the (001)-oriented LaNiO2.5 and LaNiO2 phases. For reduction experiments, each 

LaNiO3 sample was cut into 2 pieces of 2.5 × 5 mm2 size. The 2.5 × 5 mm2 sample was then 

vacuum-sealed together with blocks of CaH2 powder in a Pyrex glass tube (pressure < 0.1 mtorr). 

The tube was heated to 240 ℃ at a rate of 10 ℃/min and kept at this temperature for 30-120 mins, 

before cooled down to room temperature at a rate of 10 ℃/min. After the annealing process, 

remnant CaH2 powder on sample surface was rinsed off by 2-Butanone. The XRD scans in 

Supplementary Fig. 1a show the characteristic Bragg peaks of the 12 nm LaNiO3 film and the ~ 

50 nm LaNiO2 film used in the XAS and RIXS measurements of the main text. Additionally, a ~ 

50 nm LaNiO2.5 film was characterized as a reference sample. The 2θ peak position of these three 



films coincide with that of similar films on SrTiO3 [30]. The c-axis lattice constants extracted from 

the XRD scans are 3.809, 3.771, and 3.407 Å for the LaNiO2, LaNiO2.5, and LaNiO2 film, 

respectively. In comparison to LaNiO2 powder [17, 30], the c-axis lattice constant of the film is 

slightly expanded due to the compressive strain induced by the SrTiO3 substrate. 

NdNiO2 films grown on a SrTiO3 substrate with a thickness of ~10 nm were prepared using 

the conditions described in Ref. 10. NdNiO2 films with and without a capping layer of 5 unit cell 

(u.c.) SrTiO3 were measured, which show the same spectral properties. As a reference, we also 

measured a NdNiO3 film grown on a SrTiO3 substrate and capped with a 5 u.c. SrTiO3 film.  

Supplementary Fig. 1b displays the resistivity as a function of temperature of the LaNiO3 

film in a four-probe geometry, which shows metallic behaviour down to 2 K. The LaNiO2 film 

exhibits higher resistivity than LaNiO3 at 300 K, which increases further with decreasing 

temperature [Supplementary Fig. 1b]. Similar transport properties were reported in Refs. 19, 30, 

31.  

Commercially available NiO powder with ≥ 99.995% purity (Sigma-Aldrich) was used for 

the measurements. 

XAS and RIXS measurements 

XAS and RIXS spectra of the La-based nickelate samples were measured at the ADRESS beamline 

with the SAXES spectrometer at the Swiss Light Source (SLS) of the Paul Scherrer Institute [32]. 

For the RIXS measurements the scattering angle was fixed to 130° and the combined instrument 

resolution was approximately 100 meV at the Ni L3-edge. The scattering plane coincided with the 

crystallographic ac (bc) plane with a grazing incident angle θ = 15°. The XES and RIXS spectra 

shown in Fig. 1 of the main text were measured with π-polarized incident photons. Due to the 

strong fluorescence signal from the STO substrate, the XES of LaNiO3 and LaNiO2 shown in Fig. 



1 were obtained from the fluorescence signal identified in RIXS incident-photon-energy-and 

emission-energy map across the oxygen pre-edge (incident photon energy from ~ 525 eV to ~ 530 

eV). The elastic line and weak Raman-like excitations (in LaNiO2) were removed for clarity. 

The XAS and XES spectra of NiO shown in Fig. 1a were measured at beamline BL8.0 

using the q-RIXS endstation of the Advanced Light Source (ALS) of the Lawrence Berkeley 

National Laboratory. For the RIXS/XES measurements the scattering angle was fixed to 130° and 

the combined instrument resolution was approximately 300 meV at the Ni L3-edge and 

approximately 200 meV at the O K-edge. The XAS at the O K-edge for NdNiO3 and NdNiO2 (Fig. 

1a) were taken at 41A BlueMagpie beamline at Taiwan Photon Source. The XAS and RXIS map 

at the Ni L-edge for the NdNiO2 were taken at I21 beamline at the Diamond Light Source. The 

RIXS spectrometer is set at 146 degree, with a resolution of approximately 50 meV. The scattering 

plane coincided with the crystallographic ac (bc) plane with a grazing incident angle ~10°. π-

polarized incident photons were used for this measurement. 

All XAS at O K-edge (Fig. 1) were taken in fluorescence yield mode with a grazing incident 

angle of 10 and 20 degrees for the La-based and Nd-based nickelates, respectively. The grazing 

incident geometry is used to reduce the signal arising from the STO substrate. The spectrum is 

normalized such that the intensity at the pre-edge and the post-edge is 0 and 1, respectively.  

All XAS at the Ni L-edge (Fig. 2) were taken in fluorescence yield mode with a normal 

incident geometry. These XAS are normalized such that the intensity at the pre-edge and the post-

edge are 0 and 1, respectively. For the XAS of the La-based nickelates, the intense La M4-line 

centered around 850.5 eV (Supplementary Fig. 2a) was fitted by a Lorentzian peak profile and 

subtracted from the LaNiO3 and LaNiO2 XAS to correct for the overlap between the tail of the La 

M4-line and the Ni L3-edge. The resulting spectra are shown in Fig. 2 of the main text.   



Theory calculations  

For the oxygen partial density of states (PDOS) as shown in Fig. 1e-g and the electronic structure 

of LaNiO2 shown in Figure 3, LDA+U calculations were performed using the GGA method and 

the simplified version by Cococcioni and de Gironcoli [33], as implemented in Quantum 

ESPRESSO [34]. We find that an antiferromagnetic solution, with wave vector (π,π,π), leads to 

the lowest energy, with a two Ni, body centered tetragonal (BCT) unit cell and corresponding 

Brillouin zone.  

 The Ni L3-edge RIXS calculations [Fig. 2] were performed using an exact diagonalization 

technique [35, 36], which accounts for the full overlap of the many-body wavefunctions. The 

microscopic Hamiltonian used for these calculations includes both material-specific on-site 

energies and hybridizations as encoded in a Wannier downfolding of the bandstructure [37] and 

the full set of Coulomb interactions as expressed in terms of Slater integrals. The Wannier 

downfolding parameters for paramagnetic LaNiO2 (a one Ni, tetragonal unit cell), as shown in 

Supplementary Table 1 were obtained from Wannier90 [38] for 12-orbital (O px/py/pz, Ni dz
2/dx

2
-

y
2/dxy/dxz/dyz, La dz

2) Wannier downfolding was used in the Ni L-edge RIXS calculation for 

LaNiO2, where the relevant parameters appear in Supplementary Table 1. The Slater integrals for 

Ni 3d in the LaNiO2 calculations were: F0 = 0.5719 eV, F2 = 11.142 eV, and F4 = 6.874 eV. The 

Slater integrals for Ni 3d-2p interactions are: F0
p,d = 0.148 eV, F2

 p,d = 6.667 eV, G1
 p,d = 4.922 eV, 

and G3
 p,d = 2.796 eV.  The values of F2, F4, F2

 p,d , G1
 p,d and G3

 p,d are taken from Ref [37]. We 

take 0.7 as a screening factor for the non-monopole terms. A core-level spin-orbit coupling of 12.5 

eV has been used for the Ni 2p core electrons. The resulting weight of the Ni wave function is 

shown in Supplementary Table 2. 



The two-orbital, low energy model for the physics of LaNiO2 appears in Fig. 4. This model,  

obtained once again by  Wannier downfolding the DFT paramagnetic solution for LaNiO2 in the 

one Ni, tetragonal unit cell (the same method as that used to obtain the noninteracting part of the 

Hamiltonian for the LaNiO2 RIXS calculation, but only for the two bands that cross EF), yields the 

independent hopping parameters listed in Supplementary Table 3, cutoff for absolute values 

smaller than 0.008 eV.  The two Wannier orbitals are shown in Fig. 4b of the main text: (1) a very 

extended orbital, centered on La, with d3z
2
-r

2 character, which makes-up the majority character of 

the three-dimensional band; and (2) a more localized orbital, centered on Ni and primarily confined 

to the NiO2 plane, with dx
2
-y

2 character, which makes-up the majority character of the quasi-two-

dimensional band.  Note that this paramagnetic solution in the tetragonal Brillouin zone has one 

large quasi-two-dimensional hole-like Fermi surface from the Ni-centered orbital and two smaller 

three-dimensional electron-like Fermi surfaces center at the Γ- and A-points from the La-centered 

orbital.  The low energy, antiferromagnetic bandstructure from LDA+U [Fig. 3] would result from 

a (π,π,π) band-folding of the La-centered band, which moves the A-point to the Γ-point, formation 

of upper and lower Hubbard Ni-centered bands, gapping-out the large hole Fermi surface, and a 

shift in chemical potential to compensate for the loss of carriers, which leaves a single electron 

pocket at the Γ-point. 

 The non-interacting bands of the effective low energy model can be written in tight-

binding form as 



 

 

where the appropriate matrix elements can be found in Supplementary Table 3. 
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Figure 1 | X-ray spectroscopy near the O K-edge and LDA+U calculation. a, X-ray 

absorptions spectra (XAS) of NiO, LaNiO3, and LaNiO2. Red arrows mark the pre-edge peaks 

indicative of Ni-O hybridization. The lower panel shows the XAS of NdNiO3 and NdNiO2. 

Dashed vertical lines indicate features of the SrTiO3 (STO) substrate (solid grey line) in the XAS 

of NdNiO3 and NdNiO2, due to thinner film thickness than that of the La-based films shown in 

the upper panel. Spectra are vertically offset for clarity. b-d, X-ray emission spectrum (XES) and 

XAS in the pre-edge region, roughly reflecting the occupied (red shading) and unoccupied (black 

shading) oxygen PDOS, respectively. Vertical lines illustrate the band gap projected in the 

oxygen density of states, corresponding to the effective charge transfer energy Δ in NiO and 

LaNiO3. e-g: LDA+U calculations for the PDOS with O 2p orbital character. (U=8eV for NiO 

and LaNiO3, U=6eV for LaNiO2). Red and black shadings indicate the occupied and unoccupied 

oxygen PDOS, respectively. Insets are sketches of the relationship between U and  in the 

Zaanen-Sawastzky-Allen scheme for each compound. 

  



 
 

Figure 2 | X-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering 

(RIXS) at the Ni L3-edge. a, Normalized absorption spectra across the Ni L3-edge of NiO, 

LaNiO3, LaNiO2, and NdNiO2. The La M4-line was subtracted from the LaNiO2 and LaNiO3 

spectra (see Supplementary Fig. 2). The markers A indicate the main peak for LaNiO2 and 

NdNiO2. A’ labels a lower energy shoulder in the XAS of LaNiO2. Spectra are vertically offset 

for clarity. b-d, RIXS intensity map of LaNiO2, LaNiO3, and NdNiO2 measured as a function of 

incident photon energy at T = 20 K. The corresponding XAS is superimposed as a solid black 

line in each map. The dashed box highlights the ~0.6 eV features of LaNiO2 and NdNiO3 that are 

associated with the Ni-La and Ni-Nd hybridization, respectively. e, RIXS energy loss spectra of 

LaNiO3, LaNiO2, and NdNiO2 at incident energies indicated by vertical dashed lines in b-d. The 

black arrows highlight the 0.6 eV features of LaNiO2 and NdNiO2. f-g, Calculated RIXS maps 

and absorption spectra (solid black lines) of LaNiO2 for a 3d9, 3d8R, and 3d9+3d8R (R denote a 

charge transfer to the rare-earth cation) ground state, respectively. The lightly dashed box in 

panel f highlights the same feature as the box in panel b.   



 
 

Figure 3 | Electronic structure of LaNiO2. Theoretical calculations of the electronic structure 

in the LDA+U framework with U = 6 eV (antiferromagnetic solution). a, Band structure of 

LaNiO2 along high symmetry directions in the body centered tetragonal (BCT) Brillouin zone 

(BZ). The BZ with labeled high symmetry points is also shown in d. The right-hand side shows 

the La 5d (green), Ni 3d (blue), O 2p (red) and La 4f (grey) partial density of states with a 

smaller energy broadening than that used in Figs. 1e-g. b, Orbital-projected band structure of 

LaNiO2 near EF. The color code is identical to that used in panel a, representing the projection 

onto orbitals with different atomic character.  c, Top- and side-views of an electron density 

contour for the single-particle wavefunction at kF along - (yellow marker in panel a). d, Fermi 

surface (closed electron pocket) around  with dominant La 5d character in the first BCT BZ 

with labeled high symmetry points. 

  

  



 

Figure 4 | Modeling the rare-earth infinite layer nickelates. a, Band dispersion of LaNiO2, 

highlighting two bands which cross EF in the paramagnetic LDA calculation. The inset shows the 

high symmetry points in the tetragonal BZ.  b, Isosurface plots for an extended La-centered d3z
2
-

r
2 -like and essentially planar Ni-centered dx

2
-y

2
 -like Wannier orbital for the minimal low-energy 

model of LaNiO2. These two orbitals produce the three-dimensional band (La, green) and quasi-

two-dimensional band (Ni, blue) highlighted in a. 
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Supplementary Figure 1 | XRD characterization and electrical transport measurements. a, 

XRD pattern of the LaNiO3, LaNiO2.5, and LaNiO2 films grown on SrTiO3 (001) substrates, 

measured with Cu Kα radiation. The red arrows indicate the nickelate film peaks and the black 

arrows the (002) SrTiO3 substrate peak. The film peak shifts to higher 2θ values as a function of 

apical oxygen reduction. The curves are offset in vertical direction for clarity. b, Resistivity vs. 

temperature of the LaNiO3 and LaNiO2 film.  



 
Supplementary Figure 2 | Ni L-edge and O K-edge x-ray absorption spectra (XAS). A, 

Normalized XAS of LaNiO3 and LaNiO2 across the Ni L3,2-edge before subtraction of the La M4 

line. The XAS of NiO powder is also shown. Spectra are offset in vertical direction for clarity. B, 

Normalized XAS of LaNiO2.5 across the O K-edge.   
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Supplementary Table 1 Materials parameters for LaNiO2 obtained from Wannier downfolding. 

The diagonal terms represent on-site energies. The off-diagonal terms represent the hopping 

between two orbitals. The shaded area only shows those parameters whose absolute value is larger 

than 0.1.  All values are in units of eV.  The triplet [i,j,k] appearing next to each orbital shows its 

relative position within a one Ni, LaNiO2 tetragonal unit cell along the unit a, b, and c axes, 

respectively, with Ni at [0,0,0]. 



Orbital configuration 
Approximate 

percentage 

Dipole 

transition spin 

up (minority 

spin) 

Dipole 

transition spin 

down (majority 

spin) 

d9 d4  d5 56% Yes No 

d8R 

d3R  d5 24% Yes No 

d4  d4R  14% Yes Yes 

d7R2 d3R  d4R  6% Yes Yes 

 

Supplementary Table 2: Orbital configurations and their approximate percentage shown in the 

many-body ground state calculation.  Here, R represents a rare earth electron in the La cage 

surrounding each Ni, in analogy to the standard ligand hole (L), due to hybridization between Ni 

and La.  This is akin to a charge transfer, but from Ni to the rare earth, instead of oxygen to 

transition metal more commonly encountered in oxides.   



 

Supplementary Table 3: Tight-binding model parameters for the two-orbital model for LaNiO2. 

The elements in the table show all the independent hopping parameters with a absolute magnitude 

larger than 0.008 eV. The triplet of integers [i,j,k] represents hopping between unit cells with a 

relative separation r = i a + j b + k c, where a, b, and c are unit vectors in the respective directions.  

Here, for simplicity we take a=b=c=1 and measure all momenta kx, ky, and kz, accordingly. 

Tetragonal symmetry dictates that for the rare earth- (R-) and Ni-band parameters, the hopping 

with triplet [i,j,k] would be equivalent to [-i,j,k], [i,-j,k], [i,j,-k], [-i,-j,k], [-i,j,-k], [i,-j,-k], [-i,-j,-k], 

and all combinations with i ↔ j, with a phase factor of 1 or -1 depending on the symmetry of the 

orbitals.  The triplet [0,0,0] represents the orbital site energy ε0.  The La-centered and Ni-centered 

Wannier orbitals have relative unit cell coordinates  [0.5, 0.5, 0.5] and [0.0, 0.0, 0.0], respectively, 



which only affects the equivalent triplets for the cross-orbital-hybridization terms tR-Ni. The fermi 

energy EF is at 0 eV. 
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