
Energy Policy 147 (2020) 111856

Available online 1 September 2020
0301-4215/© 2020 Elsevier Ltd. All rights reserved.

China’s potential SO2 emissions from coal by 2050 

Yuan Qian a,b,c,*, Laura Scherer c, Arnold Tukker c,d, Paul Behrens c,e 

a Petroleum Exploration and Production Research Institute, SINOPEC, Beijing, 100083, China 
b Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China 
c Institute of Environmental Sciences (CML), Leiden University, 2333, CC Leiden, the Netherlands 
d Netherlands Organization for Applied Scientific Research TNO, 2595 DA, The Hague, the Netherlands 
e Leiden University College The Hague, 2595 DG, The Hague, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
SO2 emission reduction 
Desulfurization technologies 
Energy transition 
Energy scenarios 
Climate change 

A B S T R A C T   

Coal is the dominant emitter of Sulfur Dioxide (SO2) in some countries, comprising ~92% of total emissions in 
China. Mitigation of these emissions can be driven by a number of factors, such as energy-efficiency improve
ments, installation of scrubbers, and use of renewable energy. This study evaluates the historical reduction of 
overall SO2 emission intensity from coal consumption for 30 Chinese provinces between 2000 and 2016. These 
trends are further combined with expected coal use from 2020 to 2050 along with scenarios of future power 
generation to explore China’s future SO2 emissions. The results show that provinces starting with a high emission 
intensity in general have higher reduction rates. By 2050, China’s potential SO2 emissions are between 3.9 Mt 
and 4.1 Mt, and industry mitigation efforts, such as the installation of scrubbers, appear to contribute most to 
abatement. Additionally, this study estimates the impact on global average temperatures from SO2 mitigation 
due to the adoption of renewables in the electric sector using the MAGICC model and find an increase of ~0.01 
◦C by 2050. Considering the reduced abatement opportunities of desulfurization technologies and climate change 
effects of coal combustion, renewable energy provides the most promising option for SO2 mitigation.   

1. Introduction 

China’s GDP reached 10.8 trillion USD (in 2010 constant prices) by 
2018, contributing 13.1% to the world economy (World Bank, 2020). 
This growth has led to increasing environmental pressures and attention 
to sustainable development. China is now the largest global energy 
consumer and the second-largest emitter of SO2 behind India (Li et al., 
2011, 2017a; Zhang et al., 2016). Further, coal is the largest source of 
energy in China, which contributes significantly to SO2 emissions. Ac
cording to Su et al. (2011), ~92% of SO2 emissions are from coal con
sumption in 2007 in China. Between 2000 and 2015, coal consumption 
contributed ~64–73% of total energy consumption (Fig. 1(a)). More
over, of the total primary energy consumption from coal, ~42–52% was 
combusted in the electric sector (Fig. 1(b)). Furthermore, SO2 emissions 
from the electric sector contribute ~27%–47% of the total (Fig. 1(c)). In 
addition, Fig. 1(b) and (c) show that the manufacturing sector contrib
utes a large amount to energy consumption and SO2 emissions along 
with the residential consumption of coal. 

Efforts to reduce SO2 emissions take three different forms: pre- 
combustion measures (i.e. preferential use of low-sulfur content coal), 

process treatment during combustion (mainly efficiency improvements), 
and end-of-pipe treatment after combustion (the installation of scrub
bers) (Wang et al., 2017; Cheng and Zhang, 2018). With these more 
technical measures, an energy transition away from coal can also reduce 
emissions, for example by adopting low-carbon energy like renewables 
or nuclear (Arvesen and Hertwich (2011, 2012); Nazari et al. (2010); 
Zhang et al. (2007); Xie et al. (2018)). Currently, the deployment of 
scrubbers is an important measure to reduce SO2 emissions in the 
electric sector. However, according to Zhang et al. (2015), there is 
limited scope for further reduction in SO2 emissions by installing more 
scrubbers at power plants. Therefore, the adoption of renewable energy 
is a key strategy to further reduce SO2 emissions in the electric sector (Lu 
et al., 2010; Zhao et al., 2008). 

In China, SO2 emissions reduced by ~6.8% from 2000 to 2015. 
However, Fig. 1(a) shows that the coal consumption has more than 
doubled during the same time, indicating a large reduction of SO2 
emissions per unit of coal consumption over time. Based on the past 
reductions in SO2 emission intensity (i.e., SO2 emissions per unit of coal 
consumption), we can investigate how SO2 emissions may decline in the 
future. Here, learning curves can be used to describe a relationship 
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between cost reductions and cumulative production or capacity (Pan 
and Köhler, 2007; Yu et al., 2011). While traditionally used in economic 
fields, learning curves are increasingly applied in environmental fields. 
For example, Guo et al. (2016) and Li et al. (2017b) used them to 
investigate carbon mitigation in China. Several kinds of learning 
mechanisms are usually identified: learning by doing, learning by 
researching, learning by using, learning by interacting, and economies 
of scale (Kahouli-Brahmi, 2008). In this study, a learning curve approach 
is adopted to describe how SO2 emissions reduce with cumulative coal 
consumption. However, these learning mechanisms are usually applied 
to the learning effect of a given technology (Kahouli-Brahmi, 2008). In 
SO2 mitigation efforts, many kinds of technologies are adopted, e.g., 
technological advancement of scrubber efficiency and energy efficiency. 
Also, since the technology adoption (such as the roll-out of scrubbers 
nationally) has played a major role in emission reduction over time, the 
term “adoption effect” rather than “learning effect” is used in this study. 

Due to differences between provinces, improvements in SO2 emis
sion intensity also differ. Although adoption effects can transfer across 
regions, with the more polluting regions benefitting from technologies 
developed in the less polluting regions, there is evidence of significant 
policy barriers to this technology diffusion (Li et al., 2014). Therefore, it 
is assumed that an analysis of adoption effects on SO2 emissions has to 
be made at the provincial level. 

Sulfate aerosols from SO2 emissions also have important climatic 
implications (Carmichael et al., 2002; Xie et al., 2016). Due to the 
cooling impact of aerosols, a reduction in SO2 emissions could lead to 
temperature increases (Hayhoe et al., 2002; Kaufmann et al., 2011, 
2006; Shindell and Faluvegi, 2010). Although most investigations of this 
effect have been on a global level (Ward, 2009; Ward et al., 2010), 
Berntsen et al. (2006) suggested that emissions reductions in different 
locations had different impacts on climate. Furthermore, according to 
Berntsen et al. (2006), the cooling climatic effect via sulfate aerosols 
would disappear quickly after mitigation since sulfate aerosols are 
short-lived components and regionally dependent. Due to the high 
proportion of coal consumption in China and India, Shindell and Falu
vegi (2010) estimated the climatic effect of emissions from coal-fired 
power plants for different scenarios of coal consumption and pollution 
control. They found different climate responses across the Northern 
Hemisphere, Southern Hemisphere extratropics, and Arctic. As renew
ables displace coal generation, there may be a climatic effect from 
reducing atmospheric aerosol loading. Few studies have focused on the 
impact of renewable energy development on SO2 emissions (Boudri 

et al., 2002; Shrestha and Timilsina, 1997; Xie et al., 2018; Yang et al., 
2016), and none at the provincial level. Considering the different pro
vincial characteristics and the negative impact of SO2 emissions (Qian 
et al., 2020, 2019), including the impact of renewables is essential. To 
the best of our knowledge, there is no research analyzing the climatic 
effect of SO2 change due to the adoption of renewable energy in specific 
regions. 

In this study, the improvement of SO2 emission intensities is explored 
based on historical information of SO2 emissions and coal consumption. 
Given the importance of the electricity sector on SO2 emissions, special 
attention is given to the substitution of renewable generation for coal 
generation into the future. For the first time, this study aims to analyze 
the impact of increased levels of renewable energy in the electric power 
sector across 30 provinces of China on the overall SO2 emissions, as well 
as the impact of Chinese mitigated SO2 emissions on the future global 
climate. 

2. Methodology and data 

2.1. SO2 intensity adoption curve (SIAC) 

Learning curves are usually applied to describe how the cost or 
environmental impact of a technology declines as it is deployed. Due to 
the diversity of SO2 mitigation approaches, this study develops an 
adoption curve, incorporating more than technical learning alone, to 
investigate the change of SO2 emission intensity. The adoption curve for 
SO2 emissions per unit of coal consumption is calculated as: 

SI = SI0⋅X− b (1)  

where SI represents the SO2 emission intensity, i.e., SO2 emissions per 
unit of coal consumption in kg/tce (tonne of coal equivalent). SI0 de
notes the initial SO2 emissions with fixed values, which can be deter
mined by initial coal consumption, energy structure, and SO2 emissions. 
X represents the cumulative coal consumption in Mtce (million tonnes of 
coal equivalent). -b gives the environmental adoption coefficient of cu
mulative coal consumption. b > 0 indicates that the SO2 emission in
tensity varies inversely with a change in X and vice versa. Theoretically, 
the equation includes an error term, but it is typically omitted in real- 
world applications (Fukui et al., 2017; Kahouli-Brahmi, 2008; Rubin 
et al., 2004; Yu et al., 2011). According to Eq. (1), each doubling of 
cumulative coal consumption results in a reduction of (1-2− b) in SO2 

Fig. 1. (a) Energy consumption by fuel types (Unit: Mtce), shares of (b) Coal consumption and (c) SO2 emissions in different sectors during 2000–2015.  
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emission intensity, which is defined as the adoption rate, while the 
quantity 2− b is defined as the progress ratio (Rubin et al., 2004). 

Eq. (1) indicates the rate of change of SO2 emission intensity caused 
by each marginal change of coal consumption. According to Yu et al. 
(2015), this study also adopts this change as the abatement potential of 
SO2 emission intensity. 

The SO2 intensity change per marginal change in coal consumption 
can be derived by calculating the partial derivative of X in Eq. (1), which 
is expressed as follows: 

∂SI
∂X

= SI0⋅( − b)⋅X− b− 1 (2) 

Once Eq. (2) is calculated, the reduction potential of SI can be ob
tained by multiplying Eq. (2) with the change of X, which is given as: 

ΔSI =
∂SI
∂X

⋅ΔX =
∂SI
∂X

⋅(Xt − X0) (3) 

In Eq. (3), Xtand X0 denote the cumulative coal consumption in year t 
and 0, respectively. Based on Eq. (3), the SO2 emission intensity in the 
future can be obtained, which can be expressed as: 

SIt = SI0 + ΔSI (4) 

Once Eq. (4) is calculated, the reduction potential of SO2 emissions 
for a planned period can be obtained as: 

ΔS= SI0⋅COAL0 − SIt⋅COALt (5) 

In Eq. (5), COALt and COAL0 denote the coal consumption in year t 
and 0, respectively. 

2.2. Climatic effect of SO2 emissions 

To estimate the effect of SO2 emissions on the global mean temper
ature, the MAGICC6 (Model for the Assessment of Greenhouse gas 
Induced Climate Change version 6) model (Meinshausen et al., 2011) is 
adopted in this study. MAGICC6 is a reduced-complexity coupled 
gas-cycle climate model, which has been widely used in various studies 
(Jeganathan and Andimuthu, 2013; Osborn et al., 2006; Sharma et al., 
2012). According to different levels of concentrations, four representa
tive concentration pathway (RCP) emission scenarios are usually 
applied: RCP2.6 (Van Vuuren et al., 2007), RCP4.5 (Wise et al., 2009), 
RCP6.0 (Fujino et al., 2006), and RCP8.5 (Riahi et al., 2007). When 
investigating the climatic effect, MAGICC6 simulates the combined ef
fect of up to 23 types of emissions. While renewable energy expansion 
can play multiple roles in the concentrations of different gases, desul
furization technologies only influence one: SO2. In this study, we aimed 
to disentangle the climatic effect of SO2 emissions from the confounding 
effect of other emissions. Therefore, a MAGICC emissions scenario was 
constructed where the data of SO2 emissions is from the scenarios 
described below, and the other 22 annual emissions are set to zero. 
Otherwise, the model was run using standard parameter settings. 

2.3. SO2 mitigation in different sectors 

Coal is responsible for over 90% of the SO2 emissions in China and 
mainly used in the household and industrial sectors. In the household 
sector, coal is mainly used for cooking and heating. While in the in
dustrial sector, it is mainly used for power generation, heat production, 
or other production agents (e.g. steel production). Specifically, around 
42–52% of the coal is used for electricity production, which makes it a 
large SO2 emitter. 

In addition, SO2 mitigation approaches vary across sectors. In the 
residential sector, stove efficiency is very important (Liu et al., 2016a) 
whereas scrubber installation is important in the electricity sector (but 
scrubbers are difficult to deploy in other industrial and residential sec
tors (Chow, 2010; Xu et al., 2009)). For other industrial sectors, tech
nical innovation to improve energy efficiency is an important approach. 

A vital solution across all sectors is to electrify and replace coal with 
renewable energy. 

Turning to scrubbers specifically, their SO2 removal rate has 
increased significantly as a result of improvements in scrubber quality 
and operation (Xu, 2011). According to Xu (2011), 73.2% of SO2 
emissions were removed from coal power plants with SO2 scrubbers. 
Later, Hering and Poncet (2014) reported that scrubbers can remove 
more than 95% of SO2 in the flue gas in the coal power plants. To pro
mote scrubber installation, the Chinese government has implemented a 
series of policies, e.g., an on-grid tariff premium (Schreifels et al., 2012) 
and operational priority for power plants with scrubbers (Liu et al., 
2016b). With the supporting policies and technological improvement in 
scrubbers, the proportion of coal power plants equipped with scrubbers 
increased from 12% in 2005 to 83% in 2010 and further to 99% by the 
end of 2015. However, once scrubbers are installed across the whole 
power fleet, and realize a removal rate of over 95%, further reductions 
from scrubbers becomes limited. The ultimate solution is a transition to 
low-emission energy generation technologies such as renewables or 
nuclear. Since a shift of coal to renewables is relatively easy in the power 
sector but more complex in other industry sectors, we tried to first 
investigate the expansion of renewables in the electric sector in this 
study. 

2.4. Scenarios for a shift of coal to renewables in the electric sector 

To recap, it is assumed that SO2 reductions can be driven by tech
nological improvements or a shift to renewable energy. In order to 
capture the impact of transitioning to renewables, four different sce
narios with different shares of renewables (driven not only by SO2 
mitigation efforts but also climate policies) are designed in this study. 
First, a “no policies” scenario (NPS) which assumes no change in the 
share of renewable energy relative to 2016. Second, a “current policies” 
scenario (CPS) representing the same annual growth rate of electric 
power as NPS, but with a larger share of renewable energy that reflects 
China’s nationally determined contribution to climate mitigation under 
the 2015 Paris Agreement. Third, a “below 2 ◦C” scenario (B2S), rep
resenting a lower annual growth rate of electric power and a larger share 
of renewable energy. Fourth, and finally, to analyze the effects of the 
electric demand and renewable energy on SO2 emissions separately, a 
“renewable energy expansion” scenario (RES) is developed, where the 
annual growth rate of electric power is the same as under CPS, while the 
share of renewable energy is the same as under B2S. A summary of the 
scenarios is presented in Table 1. 

In this study, data for the annual growth rate of electric power is 
taken from the World and China Energy Outlook 2050 (CNPC, 2016). The 
China Renewable Energy Outlook 2017 provided the trajectory for 
renewable energy expansion and the CPS and B2S have the same share of 
renewable energy in power generation. When predicting the energy 
development under CPS and B2S, the China Renewable Energy Outlook 
2017 assumed no construction of nuclear power plants. Analogously, 
this study assumed that nuclear power generation under the four sce
narios is the same as in 2016. The four scenarios assume coal 

Table 1 
Annual growth and share of renewable energy in the electric sector under 
different scenarios.   

No policies 
scenario 
(NPS) 

Current 
policies 
scenario (CPS) 

Renewable energy 
expansion scenario 
(RES) 

Below 2 ◦C 
scenario 
(B2S) 

Annual growth rate of electric power  
1.7% 1.7% 1.7% 1.4% 

Share of renewable energy in power generation 
2020 25% 33% 45% 45% 
2030 25% 51% 68% 68% 
2040 25% 65% 80% 80% 
2050 25% 78% 85% 85%  
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consumption by other sectors is the same as in 2016. As shown in Fig. 2, 
coal consumption increases under NPS but decreases in the others. 
Additionally, Table 2 shows that decreasing thermal power generation 
under the B2S is always larger than those under the NPS over the same 
period (thermal power includes coal, petroleum, natural gas, etc., 
though we only consider coal consumption as thermal power in this 
study). Furthermore, coal consumption under RES and B2S is almost the 
same and shows that the impact on reducing electricity demand on coal 
consumption is minor compared to the renewable transition. 

2.5. Data sources 

This study analyzes the SO2 emission intensity of 30 provinces and 
municipalities in China during 2000–2016. SO2 emissions and coal 
consumption data are obtained from the China Statistical Yearbook (NBS, 
2017a) and the China Energy Statistical Yearbook (NBS, 2017b), respec
tively. When estimating the effect of renewable energy expansion in the 
electric sector on overall SO2 emissions, electricity generation data from 

different sources are needed from the China Electric Power Yearbook (IEA, 
2016). Conversion factors for coal (kgce/kg) and electricity (kgce/KWh) 
are adopted from the China Energy Statistical Yearbook1 (NBS, 2017b). 
SO2 emission intensities and cumulative coal consumption for 30 
provinces during 2000–2016 are shown in Table 3. 

In order to facilitate the calculation in this study, Eq. (1) is linearized 
using a natural logarithmic transformation: 

ln(SI)= ln(SI0) − b ln(X) (6) 

When estimating the coefficients, the initial step is to check the data 
stability. In this study, the SO2 emission intensity and cumulative coal 
consumption data are tested to be stationary with two unit root tests 
Levin, Lin & Chu (Levin et al., 2002) and ADF-Fisher (Maddala and Wu, 
1999) (see Table S1 for results). Furthermore, the F-test results shown in 
Table S2 suggest a model arrangement with both variable intercepts and 
coefficients. Considering the differences in economic development, 
resource endowment, and other technical levels among provinces, it is 
reasonable to express Eq. (6) as: 

ln
(
SIi,t

)
= ln

(
SIi,0

)
− b1iln

(
Xi,t

)
(7)  

where i = 1, 2, …, 30 represent the 30 provinces and time t = 2000, 
2005, …, 2016. The other variables in Eq. (7) are the same as in Eq. (1). 

3. Results and discussions 

3.1. Provincial SO2 emissions 

Historically, total SO2 emissions in China decreased by 43.9%, from 
19.7 Mt in 2000 to 11.0 Mt in 2016. SO2 emission intensities experi
enced a large decline, from 9.6 kg/tce to 1.9 kg/tce. There were sig
nificant differences in SO2 emissions and intensities among provinces 
(see Fig. 3 and Fig. 4). Provinces with heavy industries or large pop
ulations were large SO2 emitters, e.g., Shandong, Hebei, and Inner 
Mongolia (Fig. 3). In 2016, Shandong, Hebei, Shanxi, Guizhou, and 

Fig. 2. Coal consumption under four scenarios in 2000–2050.  

Table 2 
Annualized growth rate assumptions for thermal power generation under four 
scenarios.   

2016–2020 2020–2030 2030–2040 2040–2050 

NPS 1.7% 1.7% 1.7% 1.7% 
CPS − 1.3% − 1.5% − 1.8% − 3.2% 
RES − 6.4% − 4.0% − 3.3% − 1.3% 
B2S − 6.7% − 4.2% − 3.6% − 1.7%  

Table 3 
Descriptive statistics at the provincial level.  

Index Unit Sample 
sizea 

Min Max Mean SD 

SO2 emission 
intensity 

kg/ 
tce 

510 1.2 26.7 6.0 3.9 

Cumulative coal 
consumption 

Mtce 510 2.8 6993.7 1107.9 1238.9  

a The sample size is the number of observations on 30 provinces for 17 years 
(during 2000–2016). 

1 Based on historical data, we calculated that the proportion of coal-fired 
power to the total thermal power is about 96%. Therefore, we adopted this 
percentage to estimate the coal-fired power generation. 
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Inner Mongolia were the largest emitters, accounting for 35.2% of the 
Chinese total. Shandong was the largest SO2 emitter due to its heavy 
industry and large population, while Hainan was the lowest SO2 emitter 
due to low levels of industry and population, consistent with Guo et al. 
(2016). In addition, SO2 emissions in most provinces declined over time, 
with emissions in developed provinces reducing fastest. For example, 
during 2000–2016, SO2 emissions in Beijing and Shanghai reduced by 
85% and 84%, respectively. However, SO2 emissions in some provinces 
increased, especially in the underdeveloped northwestern provinces. For 
example, emissions in Qinghai increased by 255% during 2000–2016 
and ranked the highest in the growth of emissions, followed by Xinjiang 
(55%). 

In terms of the SO2 emission intensity of coal consumption, Fig. 4 
shows that some underdeveloped southern provinces with heavy in
dustries had a larger SO2 emission intensity, e.g., Guangxi, Guizhou, 
Sichuan, and Hunan. In northeastern provinces, the sulfur content of 
coal is low, resulting in lower emissions (consistent with Zhao et al. 
(2008)). Some developed provinces also saw low emission intensities, e. 
g., Beijing, Shanghai, Fujian, and Zhejiang. Among the 30 provinces, the 
highest SO2 emission intensity in 2016 was 5.0 kg/tce for Yunnan, fol
lowed by 4.1 kg/tce for Qinghai and 3.9 kg/tce for Sichuan. Emission 
intensities in most provinces declined where Shaanxi, Guangxi, Tianjin, 
Hunan, and Shandong showed the largest rates of reduction, with 
92.8%, 91.7%, 87.5%, 86.9%, and 86.6%, respectively between 2000 
and 2016. Most provinces with a high SO2 emission intensity in the 
initial year (2000) showed a faster decline, e.g., Guangxi, Hunan, 
Shaanxi, Shandong, and Ningxia. 

3.2. Adoption coefficient analysis 

Fig. 4 shows large differences in SO2 emission intensities among the 
30 provinces, indicating large variations in factors that support desul
furization. The results of the adoption curve model are shown in Table 4. 
As shown in Table 4, the value of adjusted R2 is 0.84, indicating a 
reasonable fit of Eq. (7). The F-statistic is 45 and the p-value is < 0.01, 
suggesting that this model shows statistically significant results. 

Adoption coefficients (the parameter -b) of cumulative coal con
sumption for most provinces (except Qinghai) were <0, indicating that 

as cumulative coal consumption increased, SO2 mitigation efforts 
increased (see Table 4 for further details). However, coefficients varied 
across provinces. There were 24 provinces with adoption coefficients 
lower than the national average (− 0.25) where Guangxi saw the lowest 
(− 0.63, meaning a 1% increase in cumulative coal consumption drives a 
− 0.6% change in SO2 intensity). Among the remaining provinces, 
Qinghai’s adoption coefficient was the highest (0.09) and the only 
province with a negative adoption effect. This may be due to low 
environmental investments in Qinghai since it is one of the poorer 
provinces. 

Provinces with high SO2 emission intensities in 2000 also had high 
adoption rates. This is consistent with Pacini and Silveira (2014) who 
found that carbon intensities over time depended on the level at the start 
of the period (see Fig. 5). Provinces with high SO2 emission intensities in 
the year 2000, e.g., Guangxi, Chongqing, and Guizhou, saw faster 
emission declines than provinces with lower SO2 intensities, e.g., Hei
longjiang, Qinghai, and Jilin. However, there were several exceptions 
where provinces displayed high initial SO2 emission intensities but low 
adoption rates (e.g., Gansu) or low initial SO2 emission intensities but 
high adoption rates (e.g., Shanghai, Zhejiang, and Inner Mongolia). For 
Gansu, although the emission intensity in 2000 was high, the rate of 
reduction (71.3%) was lower than the national rate (80.6%), resulting in 
a higher intensity by 2016. Analogously, although the emission in
tensities of Shanghai, Zhejiang, and Inner Mongolia in 2000 were low, 
the rates of decline were faster than the national average, reaching up to 
84.5%, 82.5%, and 84.8%, respectively. 

3.3. Outlook for the impact of renewable energy on SO2 emissions 

3.3.1. Reduction potential of SO2 emissions at the national level 
Based on the four scenarios introduced in Section 2.4 and the 

adoption curves derived in Section 3.2, the future reduction potential of 
SO2 emissions can be calculated. As shown in Fig. 6, overall SO2 emis
sions could be reduced to 4.1 Mt and 3.9 Mt under NPS and the other 
three scenarios in 2050, with an increased level of renewable power 
generation from 25% to ~80%. Compared to 2016, emissions would 
reduce by ~62–64% under the four scenarios by 2050. The provincial 
SO2 emission intensity and SO2 emissions in 2050 are shown in Table S4 

Fig. 3. SO2 emissions of 30 provinces in 2000 and 2016. Inset shows the emission share of the five largest emitters in this study in 2000 and 2016.  
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and Table S5, respectively. For ease of presentation, the 30 provinces 
were aggregated into eight regions (Feng et al., 2013; Qian et al., 2019; 
Wang et al., 2017) (see Table S3 for details). 

Fig. 6 shows that the total SO2 emissions continue to decrease under 
all four scenarios and the reduction potential under NPS was the lowest, 
which is due to the larger coal consumption under NPS than the other 
scenarios (Fig. 2). However, the differences in reduction potentials 
under the four scenarios were minor, especially compared to the po
tential improvement of SO2 abatement technologies. Therefore, 
although renewable energy in the electric sector was helpful to the 
mitigation of SO2 emissions, the main method appeared to be desul
furization technologies. With the adoption of desulfurization technolo
gies, under the NPS, total SO2 emissions would reduce by 1.9 Mt, 4.5 Mt, 
5.9 Mt, and 6.9 Mt in 2020, 2030, 2040, and 2050, respectively. 
Furthermore, as shown in Fig. 6, the rate of emission abatement declined 

over NPS, CPS, RES, and B2S, indicating that as desulfurization tech
niques improve there are fewer opportunities for further reduction. 
Additionally, as desulfurization technologies are implemented and 
improved, further SO2 abatement sees higher marginal costs. With the 
increasing cost, it is expected to see more abatement potential through 
electrification of current industrial and residential energy use which 
allows for a further renewable energy transition. Therefore, future 
emission reductions to zero require the conversion of all energy pro
duction to non-fossil fuel generation. 

It has to be noted that the reductions in SO2 emissions can be 
attributed to two drivers: (1) extrapolation of reduction rates to the 
future and (2) a shift to renewables in the electric sector. However, the 
assumption of the first driver can be questioned, especially for the 
electricity sector. Between 2000 and 2016, the vast majority of coal- 
fired power plants were equipped with scrubbers, implying further re
ductions of the SO2-emission intensity in this sub-sector may be too 
optimistic (even though the level of these reductions declines over time 
due to the adoption curve relationship). There are also limits to other 
factors in the first driver above, e.g., the use of coal with low sulfur 
content and efficiency improvements of scrubbers and within the energy 
system. As such, the projection in this study may represent an upper 
estimate, and reductions may be lower than this. Assuming no further 
reduction in the SO2-emission intensity of coal use is possible, only the 
reductions due to a shift to renewables in the electricity sector can still 
be expected, i.e. the difference in Fig. 6 between the NPS scenario (fully 
relying on reduced emission factors for coal) and the other scenarios. For 
example, compared to NPS, a further reduction of 220 kt could be 
achieved under CPS in 2050. At the same time, assuming no reductions 
in sulfur emission factors for coal is too pessimistic. After all, some 50% 
of the coal is used outside the electricity sector where further reductions 
can be expected. Overall, similar reductions to Fig. 6 may be observed if 
the historical reduction rates persist into the future, much smaller re
ductions may be observed if the expansion of renewable electricity 
generation is the only factor driving reductions, and somewhere in be
tween if there is a mix of factors. 

3.3.2. Future reduction potentials at the provincial level 
Fig. 7 shows that all provinces see decreasing emissions for all four 

scenarios, with the exception of Qinghai (more details can be seen in 
Table S6). As an economically underdeveloped western province in 
China, Qinghai’s economic growth mainly depends on energy-intensive 
industries, resulting in a variety of environmental problems (Guo et al., 

Fig. 4. The SO2 emission intensity of 30 provinces in China during 2000–2016: 
(a) shows 17 provinces with initial SO2 emission intensities higher than 8 kg/ 
tce; (b) shows 13 provinces with initial SO2 emission intensity lower than 8 
kg/tce. 

Table 4 
Results of the adoption curve model for 30 provinces between 2000-2016.  

Province ln(SI0) -b Province ln(SI0) -b 

Beijing − 1.044 − 0.277*** Henan − 0.196 − 0.311*** 
Tianjin − 0.087 − 0.423*** Hubei − 0.403 − 0.311*** 
Hebei 0.313 − 0.378*** Hunan 0.951 − 0.475*** 
Shanxi − 0.106 − 0.343*** Guangdong 1.200 − 0.504*** 
Inner Mongolia 0.373 − 0.399*** Guangxi 2.073 − 0.627*** 
Liaoning − 0.677 − 0.234*** Hainan − 1.532 − 0.332*** 
Jilin − 1.233 − 0.243*** Chongqing 1.333 − 0.499*** 
Heilongjiang − 1.614 − 0.178*** Sichuan 1.020 − 0.434*** 
Shanghai 0.504 − 0.474*** Guizhou 1.546 − 0.501*** 
Jiangsu 1.148 − 0.508*** Yunnan − 1.094 − 0.182*** 
Zhejiang 0.198 − 0.399*** Shaanxi 1.334 − 0.544*** 
Anhui − 0.710 − 0.306*** Gansu − 0.370 − 0.258*** 
Fujian − 0.774 − 0.280*** Qinghai − 2.525 0.095* 
Jiangxi − 0.552 − 0.243*** Ningxia 0.077 − 0.418*** 
Shandong 1.153 − 0.475*** Xinjiang − 0.307 − 0.308*** 
Constant 3.939*** Obs. 510 
R-squared 0.855 Mean dependent var 1.628 
Adjusted R-squared 0.836 S.D. dependent var 0.569 
S.E. of regression 0.230 Sum squared resid 23.825 
F-statistic 45.072 Durbin-Watson stat 0.738 
Prob(F-statistic) 0.000   

***/**/* Denote significance at the 1%, 5%, and 10% level, respectively. 
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2016). The potential emission reduction across Beijing, Hainan, 
Shanghai, and Tianjin was minor under the four scenarios. One potential 
reason is that emissions in these provinces were already the lowest 
among the 30 provinces in 2016, indicating that further reduction po
tential is limited. In addition, the economic structure could also affect 
the SO2 emissions. For Hainan, economic development depends pre
dominantly on tourism and agriculture, while industrial development is 
slow, resulting in a low level of emissions. For Beijing, Shanghai, and 

Tianjin, as the most developed city-level provinces in China, the eco
nomic focus gradually moved from secondary to tertiary economic 
sectors. In 2016, the output in services in Beijing, Shanghai, and Tianjin 
accounted for about 80.2%, 69.8%, and 56.4% in the total, much higher 
than the national average (49.1%). Over 2000–2016, emissions in these 
provinces reduced by 85.2%, 84.0%, and 78.6%, respectively. 

As shown in Fig. 7, some provinces see a large reduction potential in 
the future, e.g., Shandong, Inner Mongolia, Shaanxi, Xinjiang, Guizhou, 

Fig. 5. Adoption rates and SO2 emission intensities for 30 provinces between 2000 and 2016.  
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Jiangsu, Shanxi, Hebei, and Guangdong. One of the reasons is that the 
energy-intensive industries played an essential role in the economic 
development in these provinces. For example, in 2016, the thermal 
generation in Shandong, Jiangsu, and Inner Mongolia were largest, 
followed by Guangdong, Shanxi, Hebei, and Xinjiang. The thermal 
generation in these provinces accounted for about 27.6% of the total 
generation in 2016. 

In addition, some provinces with a larger adoption effect also 
exhibited a higher reduction potential, e.g., Shaanxi and Guizhou. Ac
cording to the results shown in Fig. 7, under the four scenarios, the 
abatement amount of SO2 emissions in Shaanxi and Guizhou would 
account for ~11.2–15.1% to the total abatement amount in the future. 
However, there were also some exceptions. For example, in Anhui, both 
emissions and potential reductions in emission intensity are lower than 
those in Shanghai, even though the potential for the reduction was 
higher in Anhui. This can be explained by a slower rate of reduction in 
thermal generation in Anhui. By 2050, the estimated thermal generation 
of Anhui reduces by 4.9% compared to 2016 under the B2S; for 
Shanghai, it is 10.8%. Again, these conclusions assume historical re
ductions of the SO2 emission intensities from coal use can be extrapo
lated towards the future. 

3.4. Outlook for climatic effect of SO2 emissions in the future 

Naturally, the reduction in SO2 emissions results in an increase in 
global average temperature between 2016 and 2050, estimated at ~0.6 
◦C, very similar for all four energy scenarios. In addition, MAGICC re
sults indicated an increase of ~0.01 ◦C in the global average tempera
ture from SO2 mitigation by 2050 due to the adoption of renewables in 
the electric sector. Specifically, NPS saw an increase of 1.42 ◦C 
compared to the pre-industrial baseline, while the increase was 1.43 ◦C 

under B2S. However, although a reduction in SO2 emissions could lead 
to increasing global temperatures, this effect can be offset by a change in 
other emissions, e.g., a reduction in carbon dioxide or black carbon 
(Carmichael et al., 2002). When renewable energy is deployed, the 
benefits of emission reductions in other gases and aerosols largely 
outweigh the costs of a reduced cooling effect from sulfate aerosols (de 
Gouw et al., 2014; Shahsavari and Akbari, 2018; van den Broek et al., 
2009). It should also be noted that the sulfate aerosols are short-lived 
components, which would lead to radiative forcing and cause climatic 
change only during the period with SO2 mitigation measures. For some 
other long-lived components (e.g., CO2, N2O, and CH4), the climatic 
change caused by these gases is a long-term issue (Berntsen et al., 2006). 

3.5. Limitations of this study 

As stated above, part of the SO2 mitigation was caused by the 
installation of end-of-pipe scrubbers after combustion which was 
extrapolated into the future based on the adoption curve, assuming that 
the current desulfurization technologies will continue to improve. 
However, since there is currently a large proportion of scrubbers 
installed in the electric sector, the additional SO2 mitigation due to 
scrubbers from power plants in the future may be limited to techno
logical or operational improvements of existing infrastructure. 
Furthermore, there are limits for improvement of these desulfurization 
technologies in the future (e.g., 100% removal efficiency of scrubbers is 
not practical due to thermodynamic considerations). Therefore, the 
reduction potential of SO2 emissions will likely be less than the results 
shown in Fig. 6. 

If the effect of scrubbers is to be distinguished from other approaches 
(such as using low-sulfur content coal), more detailed data are required, 
e.g., SO2 emissions due to thermal generation and investment in 

Fig. 6. Reduction potentials of SO2 emissions for 8 regions in 2020, 2030, 2040, and 2050.  
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desulfurization treatment in power plants at the provincial level. The 
China Environment Yearbook provides some data on the investments in 
desulfurization treatment for industrial SO2 emissions over 2011–2015 
and shows that some provinces with high levels of environmental in
vestments also have a high adoption rate. For example, in Ningxia, 
environmental investment in desulfurization treatment accounts for 
~17% of the regional GDP in 2015, and the adoption rate of Ningxia is 
also high (adoption coefficient of − 0.418). However, provinces have 
different economic levels and environmental efforts can also differ. For 
example, some provinces may put more money in the desulfurization 
technologies before 2011 and others invest more after 2011. Since the 
temporal coverage of environmental investment data begins in 2011, 
using these data to explain the technological effect of scrubbers at the 
provincial level may be misleading. Therefore, the effect of end-of-pipe 
treatment was not separated from the overall effect in this study. 

In addition, due to the lack of data, this study only covers 2000 to 
2016, a period when China was rapidly expanding its power plant and 
industrial infrastructure. This implies that every year a significant 

number of new plants came into operation. Although other studies have 
also made similar analyses over such short time spans (Fukui et al., 
2017; Pan and Köhler, 2007), it should be kept in mind that this is an 
anomalous period in China’s development and that the lag time for 
electric power infrastructure is very long. If more relevant data are 
available, an analysis over a longer time period may provide further 
insights. 

4. Conclusions and policy implications 

This study analyzed the overall effect of adopting desulfurization 
technologies (e.g., use of coal with less sulfur content, improvement of 
energy efficiency, and installation of scrubbers) and substitution with 
renewable energy in the electric sector on SO2 emission intensity over 
2000–2016. Using an adoption curve modelling approach, estimates of 
the reduction potential of SO2 emissions in 2020, 2030, 2040, and 2050 
were made. Based on this, a change in the global average temperature 
above the pre-industrial level was projected. 

Fig. 7. Reduction potentials of SO2 emissions for 30 provinces in 2020, 2030, 2040, and 2050 (The colors in the legend follow the same order as the stacked bars. The 
points below 0 show a total increase in SO2 emissions under different scenarios, the points above the stacked bars denote the total reduction of SO2 emissions under 
different scenarios.). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Different trends were found among the different provinces. All 
provinces showed a positive adoption effect, except for Qinghai, indi
cating a lower level of environmental deployment. The higher the SO2 
emission intensity in the starting year (2000), the higher is the adoption 
effect over the rest of the period. Provinces with energy-intensive in
dustries and high SO2 emissions show a large abatement potential. 

The four scenarios also revealed that both desulfurization technol
ogies in industry and renewable energy substitution in the electric sector 
help to reduce future emissions. In general, overall SO2 emissions could 
be reduced from 11.0 Mt in 2016 to 4.1 Mt and 3.9 Mt under NPS and the 
other three scenarios in 2050. With regard to the SO2 mitigation mea
sures, the effect of adoption across the industry sector as a whole appears 
to contribute most to future emission reductions. While future pro
jections suggest a shift from 25% renewables in 2016 to around 80% 
renewables in 2050, this is less effective, since electric sector emissions 
only represented 27% of the Chinese total in 2015. However, consid
ering the reduced abatement opportunities from the further improve
ment of desulfurization technologies and climate change effects of coal 
combustion, renewable energy provides the most promising option for 
SO2 mitigation. 

A reduction in SO2 emissions and thus sulfate aerosols in China leads 
to a notable global warming effect. Due to the adoption of renewables in 
the electric sector, the global average temperatures could increase 
~0.01 ◦C by 2050. However, the adoption of renewables can also lead to 
a reduction in other emissions and global temperatures. Despite this 
trade-off, it is still necessary to mitigate SO2 emissions due to its adverse 
effect on health and the environment. The findings in this study are 
highly relevant for other countries around the world whose electricity 
production still heavily relies on coal consumption, such as India, 
Poland, and South Africa. 
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