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Abstract 

An affinity fingerprint is the vector consisting of compound’s affinity or potency against the reference panel of protein 
targets. Here, we present the QAFFP fingerprint, 440 elements long in silico QSAR‑based affinity fingerprint, com‑
ponents of which are predicted by Random Forest regression models trained on bioactivity data from the ChEMBL 
database. Both real‑valued (rv‑QAFFP) and binary (b‑QAFFP) versions of the QAFFP fingerprint were implemented and 
their performance in similarity searching, biological activity classification and scaffold hopping was assessed and com‑
pared to that of the 1024 bits long Morgan2 fingerprint (the RDKit implementation of the ECFP4 fingerprint). In both 
similarity searching and biological activity classification, the QAFFP fingerprint yields retrieval rates, measured by AUC 
(~ 0.65 and ~ 0.70 for similarity searching depending on data sets, and ~ 0.85 for classification) and EF5 (~ 4.67 and 
~ 5.82 for similarity searching depending on data sets, and ~ 2.10 for classification), comparable to that of the Mor‑
gan2 fingerprint (similarity searching AUC of ~ 0.57 and ~ 0.66, and EF5 of ~ 4.09 and ~ 6.41, depending on data sets, 
classification AUC of ~ 0.87, and EF5 of ~ 2.16). However, the QAFFP fingerprint outperforms the Morgan2 fingerprint 
in scaffold hopping as it is able to retrieve 1146 out of existing 1749 scaffolds, while the Morgan2 fingerprint reveals 
only 864 scaffolds.

Keywords: Affinity fingerprint, Biological fingerprint, QSAR, Similarity searching, Bioactivity modeling, Scaffold 
hopping
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Introduction
Virtual screening (VS) is a set of computational 
approaches used in the early stages of the drug discov-
ery process. A major goal of VS is to reduce a chemical 
library to the manageable number of potentially active 
compounds [1]. In virtual screening, molecules are 

typically represented by molecular fingerprints [2], that 
reflect their chemical structure, or by chemical descrip-
tors [3], that reflect their physico-chemical properties. 
However, the cellular response to a compound can be 
described without taking its chemical structure into 
account. Instead, the so-called bioactivity profile can be 
used to quantitatively describe compound interactions 
with the proteome [4, 5]. It was demonstrated that the 
comparison of compounds by their bioactivity profiles 
rather than by their structures can lead to the discov-
ery of structurally dissimilar compounds eliciting same 
biological responses [6]. For example in the COMPARE 
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approach [7, 8], GI50 data on 60 different human can-
cer cell lines were used to construct compound profiles 
and these enabled the discovery of structurally dissimilar 
compounds eliciting comparable bioactivities, often due 
to a shared mode of action [9, 10]. While the COMPARE 
profile is based on a cellular response, bioactivity profiles 
were also constructed using molecular target proper-
ties. In the so-called ‘affinity fingerprint approach’, 122 
small molecules were encoded by their binding poten-
cies against a reference panel of 8 proteins [11] and a 
regression model was used to predict compound poten-
cies on two new targets. Analogously, “biospectra” con-
sist of percentage inhibition values, measured at 10 µM 
concentration, across 92 ligand-binding GPCR, protease, 
ion channel and kinase assays [12]. Biospectra were suc-
cessfully applied to predict agonism/antagonism of 24 
dopamine-like compounds [12] and to investigate drug 
side-effects [13]. Apart from affinity fingerprints and 
biospectra, several other names for the description of a 
molecule using its experimentally determined bioactiv-
ity profile have been proposed: chemical genomic profile 
[14], chemical-genetic fingerprint [15] or activity spec-
trum [16, 17].

Although bioactivity profiling is a well-established 
methodology that was successfully applied for the dis-
covery of several drug leads [18–20], its disadvantage is 
that dose-response data must be collected for all used 
targets. A cost saving alternative is to construct bioactiv-
ity profile using historically accumulated bioactivity data. 
In the first study of this kind [21], a diverse collection of 
6000 small molecules showing potent antimalarial activ-
ity was identified by in silico compound profiling using 
bioactivity data from 131 unrelated cellular and enzy-
matic screens. In 2012, Petrone et  al. [22] introduced 
the so-called HTS fingerprint (HTSFP) which is defined 
using bioactivity data from 195 biochemical and cellu-
lar assays historically run at Novartis. Petrone et al. [22] 
demonstrated that using the HTSFP fingerprint leads to 
the state-of-the-art performance in virtual screening and 
that the HTSFP fingerprint particularly excels in scaffold 
hopping. HTSFP’s potential was further demonstrated for 
mode-of-action analyses [23–26] and for the selection of 
activity and chemotype-enriched screening sets [24, 27, 
28]. Though the HTSFP fingerprint enables compound 
comparisons on an unprecedented scale, it encounters 
one serious difficulty: a compound without the HTSFP 
fingerprint cannot be included in virtual screening. This 
problem is handled by Bioturbo similarity searching 
[24], in which a compound without a bioactivity profile 
is substituted by bioactivity profiles of structurally related 
compounds.

However, large screening collections, such as Novartis 
HTSFP data, are proprietary, which hampers academic 

laboratories and small companies to adopt affinity fin-
gerprints in their computational workflows. To over-
come these issues, recent studies used publicly available 
bioactivity data to classify biologically active compounds 
using affinity fingerprints. Riniker et al. [29] constructed 
a biological fingerprint using 95 assays publicly avail-
able in PubChem BioAssay repository [30]. When com-
pared with ECFP4 fingerprints in classification tasks, this 
biological fingerprint led to better performance for the 
majority of assays. Similarly, the PubChem HTSFP [31] 
fingerprint consists of activities from 243 PubChem bio-
chemical and cell-based assays spanning a large variety of 
target classes. Hit expansion experiments for 33 different 
targets yielded on average 27 times as many hits as a ran-
dom selection with the average AUC of 0.82 and outper-
forming ECFP4 fingerprint for 29 targets [31].

The disadvantage of any experimentally-based affin-
ity fingerprint is that a compound must be profiled 
across all fingerprint assays. A cost-efficient alternative 
is to evaluate compound activity in silico. For instance 
in DOCKSIM [32], affinity fingerprints were generated 
using DOCK [33] docking scores for the panel of 8 refer-
ence protein targets. This approach was later extended in 
the Flexsim-X method [34] by the application of flexible 
docking using the FlexX program [35] and by extending 
the panel of reference targets to 10. Other docking-based 
in silico profiling approaches include Drug Profile Match-
ing [36–38] and Docking Score Index [39, 40].

The main disadvantages of docking-based approaches, 
namely the high computational footprint, the need for 
resolved protein structures and relatively low target space 
coverage, led to the development of the Bayes Affinity 
Fingerprint (BAF) [41]. In the BAF fingerprint, dock-
ing scores are replaced by Bayesian model scores, i.e. by 
probabilities that a ligand is active against a given set of 
targets. Models based on the BAF fingerprint improved 
retrieval rates in similarity searching across all activity 
classes on average by about 24% compared to the ECFP4 
fingerprint [41].

For compound biological activity prediction, various 
Quantitative Structure-Activity Relationship (QSAR) 
methods have been developed [42–44]. Recently, sev-
eral groups adopted QSAR models to predict compound 
activity across the human kinome and generated cor-
responding affinity fingerprints [45–48]. In the Profile-
QSAR (pQSAR) method [45], Naïve  Bayes models were 
trained on 115 Novartis proprietary kinase assays. Affin-
ity fingerprints, constructed from Bayes activity prob-
abilities, were than used to predict compound activity 
against kinases not included in the model yielding typi-
cally 20-fold to 40-fold enrichment of actives [45]. In 
pQSAR 2.0 [46], probabilities from Naïve Bayes models 
were replaced with IC50s predicted by Random Forest 
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regression. Median correlation between predicted and 
experimentally measured IC50 increased from  R2 = 0.24 
in pQSAR 1.0 to  R2 = 0.55 in pQSAR 2.0, making pQSAR 
2.0 activity predictions comparable to medium through-
put four-concentration IC50 measurements.

In addition to regression, binary QSAR (i.e., classifi-
cation) was also utilized for the construction of affinity 
fingerprints. For example, binary affinity fingerprints 
were obtained using Random Forest classification mod-
els trained on the ligands of ~ 200 kinases [47]. Similarly, 
Balfer et al. [48] used Support Vector Machines to con-
struct binary affinity fingerprints utilizing the panel of 
24 different kinases implicated in diverse human cancers 
[49].

To capitalize on a large amount of bioactivity data 
available in the ChEMBL database [50, 51], we developed 
an in silico QSAR-based affinity fingerprint QAFFP. The 
QAFFP fingerprint was constructed using the predictions 
of high quality Random Forest models trained on freely 
available (i.e., non-proprietary) data covering diverse 
sets of molecular targets. Its performance was compared 
with that of the Morgan2 fingerprint (i.e., Morgan finger-
print with radius 2, the RDKit [52] implementation of the 
widely-used ECFP4 fingerprint [2]) for similarity search-
ing, for the classification of compounds as active or inac-
tive and for scaffold hopping. In addition to similarity 
searching, compound classification and scaffold hopping, 
QAFFP fingerprint was also applied in regression setting 
to predict compound in vitro potency, as described in the 
accompanying paper [REFERENCE GOES HERE].

Methods
Definitions
The biological activity of a compound is quantified either 
by its affinity (given as Ki/Kd), and/or by its potency 
(given as IC50/EC50). Affinity and potency measures 
are further referred to as activity types. In a given organ-
ism, one or more activity types can be measured for each 
distinct molecular target, defined by its unique Uniprot 
ID, and each organism/target/activity type combination 
is referred to as an assay. Throughout the manuscript, 
both potency and affinity values are included under the 
umbrella term “affinity fingerprint”.

rv‑QAFFP fingerprint construction
The rv-QAFFP (rv stands for real valued) fingerprint of a 
compound is a vector containing compound’s biological 
activities across the panel of assays predicted by corre-
sponding QSAR models. The workflow for the construc-
tion of the rv-QAFFP fingerprint is shown in Fig. 1 and 
described below.

QSAR models were built using publicly available data 
extracted from the ChEMBL database, version 19 [50, 
51]. ChEMBL data are already extensively curated and 
standardized [57–59] using a pipeline [60] that includes 
salt stripping, neutralization and functional group nor-
malization. QSAR models were obtained using both bio-
chemical and cellular assay data, a strategy that proved 
to be successful in previous studies [22, 45]. To further 
increase the number of targets and the amount of train-
ing data, bioactivity data for both human and non-human 
targets were considered and separate models were built 
for individual organisms (Additional file  1). Only data 
sets satisfying the following criteria were considered: (i) 
activity type of EC50, IC50, Ki or Kd; (ii) activity relation-
ship defined as “=”; (iii) ChEMBL confidence score equal 
to 7 or 9 (i.e., a ligand binds directly either to a subunit in 
a target complex or to a single protein). For QSAR mod-
eling, only ligand sets with more than 50 distinct activ-
ity records were considered for further analysis. In the 
case where multiple activity values were annotated for 
the same ligand-target complex, their mean and stand-
ard deviation were calculated. The mean value was used 
as the activity value only if the standard deviation of all 
annotated measurements for a given compound-target 
system was lower than 0.5, otherwise the data point was 
discarded. A separate model was built for each assay 
resulting to the total number of 1360 models. Ligand 
sets combined for all 1360 models consist of 223,438 dis-
tinct compounds, with an average of 267 compounds per 
data set. The number of ligands used to train each QSAR 
model is given in Additional file 1.

To construct QSAR models, compounds were encoded 
using 1024 bits long Morgan2 fingerprint. For each of the 
1360 ligand sets, a Random Forest (RF) regression model 
[61] was constructed using the module ensemble.Ran-
domForestRegressor from the Python machine learning 
library scikit-learn [62]. The number of decision trees in 
the forest was set to 100 [53, 63, 64] and the maximum 
number of features to the total number of features. A 
higher number of trees (500) was also investigated, but 
no significant improvement was found (data not shown). 
Each data set was split into training and test sets in the 
80:20 ratio using the stratified sampling of activity values. 
Each QSAR model was validated using the cross-vali-
dation correlation coefficient q2 , whereas the predictive 
power of the model on the test set (external validation) 
was evaluated using R

′2
0  , the coefficient of determination 

for the predicted vs. the observed values constrained to 
pass through the origin:

q2 = 1−

∑N
i=1

(
yi − ŷi

)2
∑N

i=1

(
yi − y

)2
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where N is the size of the validation set (for q2 ) or of the 
test set (for R′2

0 ), yi are observed, ŷi predicted and y aver-
age activities, and ŷr0i = k ′ŷ where k ′ =

∑
yiŷi/

∑
ŷ2i  is 

the slope of a predicted vs. observed regression line pass-
ing through an origin [65–67]. q2 was estimated using 
tenfold cross validation of the training set. The training 
set was split into tenfolds of the same size using the strat-
ified sampling of activity values. Because an RF algorithm 
incorporates random sampling, tenfold cross validation 
was repeated 10 times and the final q2 was reported as 
the mean over all tenfolds in all 10 runs. The final model 
was constructed using the entire training set and its 

R′2
0 = 1−

∑N
i=1

(
yi − ŷr0i

)2
∑N

i=1

(
yi − y

)2
predictive power was assessed by calculating R′2

0 for the 
test set.

Following previous recommendations for predictive 
bioactivity modeling [66, 68], only models with q2 ≥ 0.5 
and R′2

0 ≥ 0.6 were further considered for the construc-
tion of the QAFFP fingerprint. While the q2 cut-off guar-
antees good fitting of the model to the training data, the 
R′2

0 cut-off warrants a strong predictive power on new 
molecules (within the limits of a chemical diversity rep-
resented in a given data set). Although these thresholds 
may differ depending on modeling scenario [69] (e.g., 
higher errors can be tolerated in hit identification com-
pared to lead optimization), they are, for the purpose of 
our study, stringent enough and provide a sufficiently 
high predictive power. Using these thresholds, 440 

Fig. 1 The workflow for the calculation of the rv‑QAFFP fingerprint. 1360 ligand sets (Additional file 1) assayed against various molecular targets 
were extracted from the ChEMBL19 database [50, 51]. For each ligand set, Random Forest model was built using 80% of data for training and 20% 
for testing. Each QSAR model was validated using both internal (i.e., cross‑validated) and external (i.e., test set) error measures and only models that 
satisfied stringent quality criteria were used for the construction of the rv‑QAFFP fingerprint. The applicability domain of individual QSAR models 
was estimated using inductive conformal prediction [53–56]. The rv‑QAFFP fingerprint is composed of 440 affinities predicted for the panel of 
assays covering 376 distinct molecular targets



Page 5 of 16Škuta et al. J Cheminform           (2020) 12:39  

models, further referred to as point prediction models, 
out of the initial set of 1360 models were considered to 
be reliable and were used for the construction of the rv-
QAFFP fingerprint (Additional file 1). The comparison of 
the representation of target classes between 1360 and 440 
models (Fig. 2) shows that the assay space of 1360 models 
is evenly represented in 440 assays.

The QAFFP fingerprint of an unknown compound is 
obtained from the predictions of point prediction mod-
els applied on this compound. However, if the compound 
lies outside the Applicability Domain (AD) of the point 
prediction model, its biological activity might not be pre-
dicted reliably [70, 71]. Thus, it is important to estimate 
model AD. In the present work, the AD was estimated 
using the Conformal Prediction (CP) framework [53, 56].

A conformal predictor is the type of a confidence pre-
dictor that outputs, in contrast to a single value, a pre-
diction interval with a guaranteed maximum error rate 
corresponding to a user-defined confidence level 1− ε , 
where ε is called a significance level. For example, for 
a conformal regression model at 90% confidence level 
(i.e., at 10% significance level), at least 90% of all gener-
ated prediction intervals contain the correct value (i.e., 
no more than 10% of the actual values are outside the 
prediction interval). For each new compound, the non-
conformity score (measure) α is calculated. The noncon-
formity score is the way of measuring how similar a new 
compound is to the training set compounds and it is 
defined as α =

|yi−ŷi|
�i

 where yi is the observed bioactiv-
ity value, ŷi is the predicted bioactivity value and �i is the 
scaling factor of the prediction interval. In the present 
work, a separate RF model, an error prediction model, 
was trained to predict the residual ρi (i.e., the difference 
between the measured bioactivity and bioactivity pre-
dicted by the point prediction model), and this value was 

used as the scaling factor �i . The Conformal Predictor is 
then relating and ranking nonconformity scores of com-
pounds to be predicted to scores of previously experi-
mentally tested compounds. This is done by calculating 
a p-value (not to be confused with a p-value in statisti-
cal analysis), which is the fraction of existing compounds 
with nonconformity scores α smaller than is that of the 
new compound. If this fraction is small, the new com-
pound is very non-conforming, i.e. rather different from 
previous compounds in the model, and it will hence have 
larger associated prediction ranges.

In this work, inductive conformal prediction (ICP) 
[72] was employed. In ICP, the training set is randomly 
divided into a “proper” training set and a “calibration” set. 
The model is trained using the proper training set and the 
calibration set is used to generate nonconformity scores 
α . The disadvantage of ICP is that it requires more data 
because the calibration set instances must not be used 
to train the model. Therefore, we utilized cross-confor-
mal prediction (CCP) [73] in which data are, similarly 
to cross-validation, divided in k folds (k equals 10 in the 
present work) and hence all training data are used as the 
training as well as the calibration set in turn.

b‑QAFFP fingerprint construction
A standard molecular representation used in similarity 
searching are binary fingerprints [74]. To compare the 
performance of rv-QAFFP with ECFP4 binary fingerprint 
[2], which has been established as a well-performing 
benchmark method in several previous studies [75–77], 
rv-QAFFP was converted to a binary form, b-QAFFP, 
using an activity cutoff and taking into account model 
AD. The predicted value was considered to lie within 
model AD if, at the given confidence level, the width of 
the prediction interval does not exceed a threshold the 

Fig. 2 The representation of 12 target classes for all 1360 models and 440 models selected for the construction of QAFFP
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value of which was optimized. In b-QAFFP, all predicted 
values that lie above the activity cutoff and which are, at 
the same time, within model AD, were encoded as ones. 
All values that lie below the affinity cutoff but are still 
within model AD were encoded as zeros. Also, if the pre-
diction lies outside model AD, the value was set to zero 
assuming that a compound is more likely to be inactive 
than active, similarly to what was reported in several pre-
vious studies [1, 29, 78].

QAFFP performance assessment
The value of the QAFFP fingerprint was demonstrated 
for three common chemoinformatics applications: simi-
larity searching, biological activity classification and 
scaffold hopping. In addition, the accompanying paper 
[REFERENCE GOES HERE] describes the application of 
QAFFP fingerprint in regression setting for the predic-
tion of compound in vitro potency.

1) Similarity searching. In similarity searching, new 
potentially active compounds are identified by cal-
culating their structural similarity [79, 80] to already 
known actives. This approach is based on a similar 
property relationship which states that structurally 
similar compounds possess similar properties [81]. 
Similarity searching is suitable if just one active com-
pound is known. In similarity searching task, only the 
performance of the b-QAFFP fingerprint was evalu-
ated.

2) Biological activity classification. In a biological activ-
ity classification, known actives and inactives are 
taken as an input to build a classification model that 
is used to classify unknown compounds. Typically, 
machine learning approaches are used as classifiers 
[82, 83]. Machine learning classification approaches 
are suitable if several actives are available. In a bio-
logical activity classification, the performance of both 
the rv-QAFFP and b-QAFFP fingerprints was evalu-
ated.

3) Scaffold hopping. The aim of scaffold hopping is to 
discover active compounds that contain entirely new 
chemotypes [84–86]. The scaffold hopping potential 
was evaluated both for the rv-QAFFP and b-QAFFP 
fingerprints.

QAFFP fingerprint performance was assessed by two 
quality measures, AUC  and EF5, the combination of 
which gives a good idea about the ability of the method 
to separate true positives from false positives [87]. AUC  
is the area under the ROC curve and it quantifies the gen-
eral ability of a method to discriminate between actives 
and inactives [88]. AUC  equals to the probability that a 
classifier will rank a randomly chosen positive instance 

higher than a randomly chosen negative example. How-
ever, AUC  is not sufficiently sensitive to an early recog-
nition [89], meaning that it does not prioritize models 
that place actives earlier in the ranked list of compounds. 
Thus, AUC  was supplemented by the enrichment factor 
EF that explicitly measures the early recognition [89, 90]. 
EF is defined [91] as

where χ% is the fraction of the sorted dataset EF is calcu-
lated for, Pχ% is the number of actives in this fraction and 
Nχ% is the number of all molecules in this fraction, Ptotal 
is the number of actives in the data set and Ntotal the 
number of all molecules in the data set. A method that 
is superior to a random selection of compounds returns 
EF > 1. In this study, EF at top 5% ( χ = 0.05) of the sorted 
data set, abbreviated as EF5, was calculated.

QAFFP performance was compared to 1024 bits long 
Morgan2 fingerprint which is the equivalent of the 
ECFP4 fingerprint [2]. The ECFP4 fingerprint was chosen 
as a baseline for comparisons because of its high retrieval 
rates in various benchmarking studies [76, 92]. Differ-
ences in the performance between QAFFP and Morgan2 
fingerprints were assessed by a one-sided exact Wilcoxon 
paired signed-rank test (a nonparametric alternative for 
the paired t-test) implemented in the R package coin [93, 
94]. The effect size was assessed as a two-sided 95% con-
fidence interval of the average difference of the criterion 
(AUC  or EF5) between QAFFP and Morgan2 constructed 
by two-sided exact Wilcoxon signed-rank procedure.

Similarity searching
The performance of the b-QAFFP fingerprint in simi-
larity searching was assessed using the open-source 
benchmarking platform developed by Riniker et  al. [90, 
95]. The platform contains the lists of actives and inac-
tives gathered from three different data collections (DUD 
[96], MUV [97] and ChEMBL [50, 51] subset proposed by 
Heikamp and Bajorath [98]), lists of predefined training 
sets, lists of randomly selected query molecules and the 
Python code needed to perform the evaluation. The avail-
ability of predefined training and test (i.e. query) mole-
cules enables the easy reproduction of virtual screening 
experiments and the comparison of their results.

Two distinct data sets (Additional file 2) that simulate 
two following use cases are provided within the current 
version of the platform [95]:

1) Use case: a small set of diverse actives from a high-
throughput screen is available. For this use case, 
heterogeneous data sets (further referred to as HET 

EF(χ%) =

Pχ%
Nχ%

Ptotal
Ntotal
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data sets, “data sets I” in the original publication [95]) 
consisting of 69 sets were assembled from the follow-
ing three sources: 16 Maximum Unbiased Validation 
(MUV) data sets [97], 3 data sets from the Direc-
tory of Useful Decoys (DUD) [99], and 50 data sets 
extracted from ChEMBL [98].

2) Use case: a small set of related actives, i.e. compounds 
sharing one or two common scaffolds, from a publi-
cation or patent is available. For this use case, homo-
geneous data sets (further referred to as HOM data 
sets, “data sets II” in the original publication [95]) 
consisting of 37 sets were extracted from medicinal-
chemistry papers that typically include data on one 
or two chemical series.

Both HET and HOM data sets contain assays that are 
also present in the QAFFP fingerprint and these were, 
thus, removed from the QAFFP fingerprint. Namely, out of 
69 HET targets, 44 targets that correspond to 56 QAFFP 
assays are present in the QAFFP fingerprint (Additional 
file 2) which becomes, upon their removal, 384 bits long. 
Similarly, out of 37 HOM targets, 27 targets that corre-
spond to 38 QAFFP assays are present in the QAFFP fin-
gerprint (Additional file  2) which becomes, upon their 
removal, 402 bits long.

For each target of three data-set collections (MUV, DUD, 
ChEMBL), two compound lists are provided within the 
benchmarking platform, one for actives and one for inac-
tives. For HET data sets, the VS experiment was repeated 
50 times for each target, with different randomly selected 
training sets. To ensure the reproducibility of the results, 
the precalculated training sets are provided as the part of 
the benchmarking platform. In our case, each training set 
consisted of 10 actives (further referred to as query mol-
ecules) and of 20% of randomly selected inactives. The 
remaining actives and inactives formed the test set. For 
each molecule in the test set, its similarity to query mol-
ecules was calculated and only the highest similarity value 
was considered, corresponding to the MAX fusion rule 
[100]. The whole test set was then sorted by the decreas-
ing similarity and AUC  and EF5 were calculated from this 
ranked list.

For HOM data sets, the VS experiment was performed 
once for each paper using, as the training set, all actives 
from the paper and 10% of the inactives. The test set con-
sisted of 99 actives from the benchmarking data set for the 
same target and the rest of the inactives.

The similarity between molecules was evaluated by the 
Rogot-Goldberg index sRG [101]

sRG =
a

2a+ b+ c
+

d

2d + b+ c

where a is the number of bits set to 1 in both objects, 
d is the number of bits set to 0 in both objects, b is the 
number of cases in which bits in the first objects are set 
to 1 and bits in the second object are, at the same time, 
set to 0, and c is the number of events in which bits in 
the first objects are set to 0 and bits in the second object 
are, at the same time, set to 1. The Rogot-Goldberg index 
represents an efficient alternative [102] to the commonly 
used Tanimoto index, however, it takes into account not 
only bits set to 1, but also bits set to 0. For the b-QAFFP 
fingerprint, the Rogot-Goldberg index is more realistic 
measure than the Tanimoto index because the informa-
tion at which targets the compound is active is equally 
important as the information at which targets it is 
inactive.

To compare the performance of the b-QAFFP and 
Morgan2 fingerprints, both types of fingerprints were 
calculated for HET and HOM data sets. The affinity 
cutoffs of 5 (i.e., 10  µM), 6 (i.e., 1  µM), 7 (i.e., 100  nM) 
and 8 (i.e., 10 nM) were used for the construction of the 
b-QAFFP fingerprint. Model AD was estimated using 
conformal prediction, but the case of not using AD was 
also considered. An ICP was used with the confidence 
level of 90% and the maximum interval width, that distin-
guishes whether the prediction is reliable enough, was set 
to 4.0 (i.e., predicted value ± 2.0). For every data set and 
every type of fingerprint, a separate model was trained 
and its performance was assessed by calculating the AUC  
and EF5 values for the test set.

Biological activity classification
Both HET and HOM sets are highly imbalanced with a 
considerably higher amount of inactives (e.g., MUV data 
sets contain 30 actives and 15,000 inactives, see Addi-
tional file 2), which limits their utility for the training of a 
classification model. Thus, new data sets, further referred 
to as the CLASS data sets, were constructed from 920 
assays that were not used for QAFFP construction. The 
CLASS data sets were selected using the following crite-
ria: (1) compounds with a potency ≤ 5 were considered 
as inactive, compounds with a potency ≥ 6 as active, (2) 
for every CLASS data set (assay), more than 60 inac-
tives and more than 60 actives must be available (3) only 
assays that share no more than 10% of ligands with any 
of QAFFP assays were included in the CLASS data sets. 
The CLASS data sets consist of 23 assays (21 IC50 and 2 
EC50) covering 23 targets (Additional file 3).

To construct the rv-QAFFP fingerprint, the AD was 
estimated by an ICP. If the prediction interval width for 
the given data point was larger than ± 2.0 at the con-
fidence level of 90%, the prediction was considered 
unreliable and it was replaced by an average of all reli-
ably predicted affinities. The b-QAFFP fingerprint was 
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constructed using several affinity cutoffs (5 (i.e., 10 µM), 
6 (i.e., 1 µM), 7 (i.e., 100 nM) and 8 (i.e., 10 nM)) consid-
ering or not considering the AD that was estimated by an 
ICP using the confidence level of 90% and the maximum 
interval width was set to 4.0 (i.e., predicted value ± 2.0). 
All compounds lying outside the AD were substituted 
with zeros.

In the biological activity classification task, the CLASS 
data sets were used to train RF models to classify ligands 
as active or inactive. Because some CLASS data sets are 
imbalanced (Additional file 3), a balanced RF model [103] 
from the imbalanced-learn Python package [79] was 
trained. Each RF model consisted of 100 trees [53, 63, 64] 
and GINI index was used as a purity criterion to split a 
node. Ligands were encoded by the Morgan2 (1024 bits 
long), rv-QAFFP and b-QAFFP (both 440 bits long) fin-
gerprints. fivefold cross-validation was used to evaluate 
model performance. Each cross-validation was repeated 
10-times and final results were averaged over all repeti-
tions and all splits.

Scaffold hopping
Scaffold hopping was benchmarked using the CLASS 
data sets (Additional file  4) with one set removed 
(ChEMBL ID: CHEMBL5313) as it did not contain 
enough scaffolds. Ligands were encoded by the Morgan2 
(1024 bits long), rv-QAFFP and b-QAFFP (both 440 bits 
long) fingerprints. The following settings were used to 
construct the rv-QAFFP and b-QAFFP fingerprints:

1) rv-QAFFP—RF models were trained on raw data 
considering or not considering model AD estimated 
by an ICP. At the confidence level of 90%, if the pre-
diction interval width was larger than ± 2.0, the pre-
diction was considered unreliable and it was replaced 
by an average of all reliably predicted affinities.

2) b-QAFFP—the affinity cutoffs of 5 (i.e., 10  µM), 6 
(i.e., 1 µM), 7 (i.e., 100 nM) and 8 (i.e., 10 nM) were 
used for the construction of the b-QAFFP finger-
print. Model AD was estimated by ICP, but the case 
of not using AD was also considered. An ICP was 
used with the confidence level of 90% and with the 
maximum interval width of ± 2.0. Ligands lying out-
side model AD were considered to be inactive (i.e., 
corresponding bits were set to 0).

For each ligand, its cyclic skeleton (CSK) [104] was gen-
erated. The CSK, also known as a graph framework [105], 
is derived from the Bemis and Murcko (BM) scaffold 
[105] by converting all heteroatoms to carbon and set-
ting all bond orders to 1. Compound was considered to 
be active if the negative decadic logarithm of its potency 
was higher than 6. The CSKs of all active compounds 

in a given assay are further referred to as active CSKs 
(ACSKs). In addition, active CSKs with at least five 
active compounds are further referred to as rich active 
CSKs (RACSKs). For the given assay, the training set was 
formed by compounds from one RACSK plus all inactive 
compounds. The test set then consisted of all remain-
ing active compounds. Thus, the number of training 
sets for each assay equals to the number of its RACSKs 
(Additional file 4). Using each training set, a balanced RF 
model [79, 103] was constructed and applied on the test 
set. Compounds in the test set were classified either as 
active or as inactive using the probability threshold of 0.5. 
For each classified active, its CSK was retrieved and the 
number of unique CSKs, summed over all training data 
sets, was calculated for each assay. The scaffold hopping 
potential was assessed for the Morgan2, rv-QAFFP and 
b-QAFFP fingerprints. In addition, ACSKs retrieved 
using both rv- and b-QAFFP fingerprints were pooled 
and reported as rv+b-QAFFP.

Results and discussion
Data statistics
440 QSAR models used for the QAFFP construction were 
built using 256 IC50, 137 Ki, 37 EC50 and 10 Kd assays 
that cover 376 distinct molecular targets; i.e. 64 targets 
were modeled with more than one assay. However, these 
“duplicates” are not redundant as the maximum Pearson 
correlation coefficient between two assays belonging to 
the same target was only 0.53. 376 targets originate from 
34 organisms (Additional file 1), a majority comes from 
human (254 targets) followed by rat (45 targets) and 
mouse (18 targets).

Performance of b‑QAFFP fingerprint in similarity searching
The results of the evaluation of various approaches for 
the construction of the b-QAFFP fingerprint are given 
in the Table 1 for HET data sets, and in the Table 2 for 
HOM data sets. Further details can be found in the Addi-
tional files 5 and 6, Figs. 1 and 2. 

The Tables  1 and 2 show that the best setting for the 
construction of the b-QFFP fingerprint is to estimate the 
AD with an ICP and to use the affinity cutoff of 5 (i.e., 
10  µM). While at this setting the b-QAFFP fingerprint 
yields statistically significantly better AUC  both for the 
HET and HOM data sets (verified by the one-sided exact 
Wilcoxon signed-rank test with the p-value for alter-
native hypothesis Morgan2 < QAFFP being p-value = 
7.50e−04 for HET and p-value = 5.79e−07 for HOM), 
EF5 is significantly better for the Morgan2 fingerprint 
in the case of the HET data sets (p-value is 6.70e−04 
for alternative Morgan2 > QAFFP) and there are no sig-
nificant differences in EF5 between the b-QAFFP and 
Morgan2 fingerprints for the HOM data sets (p-value = 
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0.21 for two-sided alternative Morgan2 ≠ QAFFP). The 
corresponding nonparametric 95% confidence intervals 
reveal that the average excess of b-QAFFP’s AUC  over 
Morgan2’s AUC  can be expected in the range from 0.12 
to 0.49 for the HET data sets and from 0.58 to 0.12 for 
the HOM data sets. On the other hand, the 95% non-
parametric confidence interval for the average excess of 
Morgan2’s EF5 over b-QAFFP’s EF5 shows the effect size 
ranging from 0.28 to 0.69 for the HET sets. The analy-
sis of nonparametric 95% confidence intervals for dif-
ferences between two fingerprints shows, that though 
b-QAFFP yields significantly better values than Morgan2 
for some measures and vice versa, the effect size is rela-
tively small. Thus, it may be concluded that the b-QAFFP 
and Morgan2 fingerprints they provide comparable 
results in similarity searching.

Performance of b‑QAFFP and rv‑QAFFP fingerprints 
in biological activity classification
For every of the 23 CLASS data sets and for every type 
of fingerprint, a separate RF model was trained and its 
performance was assessed by calculating the AUC  and 
EF5 for the test set. In addition, rv-QAFFP models were 
trained using both raw and Z-standardized data (i.e., all 
data points were converted to their Z-values), but no 
significant differences between these two approaches 
were identified. Average value for each quality measure, 
together with its standard error of the mean, is given in 

the Table  3. Further details can be found in the Addi-
tional files 6 and 7, Figs. 3 and 4.

The highest rv-QAFFP’s AUC  is achieved if the rv-
QAFFP fingerprint is constructed from models trained 
on raw data without regard to their ADs. The difference 
between considering and not considering the AD lies in 
a way data points outside the AD are treated. When the 
AD is taken into account, these data points are imputed 
by the mean over all reliably predicted affinities. If the AD 
is not considered, these data points are filled in by pre-
dicted affinities, though estimated with less confidence.

The recommended settings for b-QAFFP fingerprint 
construction are same as those identified for similar-
ity searching, i.e. to estimate the AD with an ICP and 
to use the affinity cutoff of 5 (i.e., 10 µM). At these set-
tings, both b-QAFFP and rv-QAFFP fingerprints per-
form, in terms of AUC , significantly worse than the 
Morgan2 fingerprint (p-value of the signed-ranked 
paired test for alternative Morgan2 > QAFFP is p-value 
= 3.58e−07 for both b-QAFFP and rv-QAFFP). The 
average deficit of b-QAFFP AUC  compared to Morgan2 
AUC  can be expected in the range 0.01–0.03 (with 95% 
confidence) and the average deficit of rv-QAFFP AUC  
to Morgan2 AUC  in the range 0.01–0.02 (with 95% con-
fidence). However, these differences can be considered 
as small, compared to the average AUC  value of ~ 0.86. 
In terms of EF5, no statistically significant differences 
were detected between the Morgan2, b-QAFFP and 

Table 1 The comparison of the performance of the Morgan2 (ECFP4) and b-QAFFP fingerprints for similarity searching 
for 69 HET data sets

Model AD was estimated by an ICP. Affinities predicted to lie outside model AD were encoded by zeros. Various affinity cutoffs were used to construct the b-QAFFP 
fingerprint. Best results are shown in a column in italic. Data shown are averages over all HET data sets with their standard errors of the mean. The b-QAFFP fingerprint 
is 384 bits long

FP Morgan2 b‑QAFFP

AD – No Yes

Cutoff – 5 6 7 8 5 6 7 8

AUC 0.66 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.65 ± 0.01 0.58 ± 0.01 0.70 ± 0.01 0.62 ± 0.01 0.63 ± 0.01 0.56 ± 0.01

EF5 6.41 ± 0.40 3.67 ± 0.25 4.52 ± 0.33 4.50 ± 0.30 2.27 ± 0.16 5.82 ± 0.34 4.65 ± 0.32 3.97 ± 0.26 1.76 ± 0.12

Table 2 The comparison of the performance of the Morgan2 (ECFP4) and b-QAFFP fingerprints for similarity searching 
for 37 HOM data sets

Model AD was estimated by an ICP. Affinities predicted to lie outside model AD were encoded by zeros. Various affinity cutoffs were used to construct the b-QAFFP 
fingerprint. Best results are shown in a column in italic. Data shown are averages over all HOM data sets with their standard errors of the mean. The b-QAFFP 
fingerprint is 402 bits long

FP Morgan2 b‑QAFFP

AD – No Yes

Cutoff – 5 6 7 8 5 6 7 8

AUC 0.57 ± 0.02 0.61 ± 0.02 0.58 ± 0.03 0.61 ± 0.02 0.57 ± 0.02 0.65 ± 0.02 0.59 ± 0.02 0.61 ± 0.02 0.56 ± 0.02

EF5 4.09 ± 0.42 3.44 ± 0.30 3.52 ± 0.47 3.88 ± 0.54 2.33 ± 0.24 4.67 ± 0.53 3.56 ± 0.51 3.39 ± 0.53 1.81 ± 0.21
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rv-QAFFP fingerprints. Therefore, the performance of 
the QAFFP fingerprints can be considered comparable to 
that of the Morgan2 fingerprint also for biological activ-
ity classification.

Performance of b‑QAFFP and rv‑QAFFP fingerprints 
in scaffold hopping
For every of the 22 CLASS data sets (one CLASS data set 
was not used as it contained no RACSK) and for every 
type of fingerprint, a separate RF model was trained and 
its performance was assessed by calculating the average 
number of ACSKs per an assay (Table 4).

Table 4 reveals that for both rv-QAFFP and b-QAFFP 
there are no differences in the performance whether 
AD is considered or not. The average number of 
recovered ACSKs is lower for rv-QAFFP compared 

to b-QFFP. For b-QAFFP, the results are pretty sta-
ble for thresholds of 5, 6 and 7. Only for threshold 8, 
a significant increase in the average number of recov-
ered ACSKs can be observed. Threshold 8 means that 
only very potent molecules (< 10 nM) are considered as 
active, at this threshold b-QAFFP bit density dramati-
cally drops (Table  5) and data become too sparse. For 
sparse data, it’s very likely that for some RF node the 
bootstrapped sample and the random subset of features 
will play along to produce an invariant feature space. 
This will influence RF predictions and, thus, threshold 8 
can be considered as an extreme case.

QAFFP scaffold hopping potential was assessed for 
rv-QAFFP constructed from raw data without con-
sidering model AD and for b-QAFFP using affinity 
threshold of 5 and estimating model AD by an ICP sub-
stituting missing values (unreliable predictions with 
interval wider than ± 2.0 at the confidence level of 90%) 
by zeros. These settings, though suboptimal, are con-
sistent with settings for similarity searching (Tables  1 
and 2) and biological activity classification (Table 3).

Out of 1749 existing ACSKs from 22 CLASS data 
sets, the Morgan2 fingerprint revealed 864 (49%) and 
the rv-QAFFP fingerprint 911 ACSKs (52%) (Figs.  3, 
4, Additional file  4). The differences between Morgan2 
and rv-QAFFP (Table  6) are not statistically significant 
(p-value of two sided Wilcoxon signed-rank paired test 
is 0.11). On the other hand, the b-QAFFP fingerprint, 
that unveiled 1065 (61%) ACSKs, performed significantly 
better (p-value = 1.43e−04 for alternative b-QAFFP > 
Morgan2 using Wilcoxon signed-rank paired test) than 
the Morgan2 fingerprint. The highest number of ACSKs 
(1146. i.e. 66%) was identified when ACSKs found by the 
rv-QAFFP and b-QAFFP were joined together (further 
denoted as rv+b-QAFFP). This combination works sta-
tistically significantly better than the b-QAFFP finger-
print alone (p-value = 1.43e−04 for alternative b-QAFFP 
> rv+b-QAFFP using Wilcoxon signed-rank paired test).

Table 3 The comparison of the performance of the Morgan2 (ECFP4), rv-QAFFP and b-QAFFP fingerprints for biological 
activity classification of 23 CLASS data sets

Model AD was estimated by an ICP with the confidence level of 90%. rv-QAFFP models were trained using raw data. Considering AD for rv-QAFFP means that if the 
prediction interval width was larger than ± 2.0, the prediction was regarded unreliable and was replaced by the average of all reliably predicted affinities. Various 
affinity cutoffs were used to construct the b-QAFFP fingerprint. Affinities predicted to lie outside model AD were encoded by zeros. Best results are shown in columns 
in italic. Data shown are averages over all CLASS data sets with their standard errors of the mean. Both rv-QAFFP and b-QAFFP fingerprints are 440 bits long

FP Morgan2 rv‑QAFFP b‑QAFFP

AD – No Yes No Yes

Cutoff – – – 5 6 7 8 5 6 7 8

AUC 0.87 ± 0.01 0.86 ± 0.01 0.86 ± 0.02 0.83 ± 0.01 0.85 ± 0.01 0.84 ± 0.02 0.77 ± 0.01 0.85 ± 0.02 0.85 ± 0.02 0.83 ± 0.02 0.73 ± 0.01

EF5 2.16 ± 0.16 2.08 ± 0.14 2.08 ± 0.13 2.03 ± 0.13 2.09 ± 0.14 2.08 ± 0.14 1.89 ± 0.11 2.10 ± 0.14 2.08 ± 0.14 2.04 ± 0.13 1.78 ± 0.10

Fig. 3 The number of ACSKs identified by the Morgan2, b‑QAFFP 
and rv‑QAFFP fingerprints. The total number of ACSKs in the CLASS 
data sets is 1749



Page 11 of 16Škuta et al. J Cheminform           (2020) 12:39  

Thus, it may be concluded that while the Morgan2 
and rv-QAFFP fingerprints exhibit similarly low scaf-
fold hopping potential, the b-QAFFP fingerprint is 
better by ca 10%. The highest number of ACSKs was 
revealed when ACSKs from both rv-QAFFP and 
b-QAFFP fingerprints were joined together; this com-
bination yielded 17% more ACSKs than the Morgan2 
fingerprint.

Conclusions
We have developed a QSAR-based workflow for the con-
struction of QSAR affinity fingerprint QAFFP. QAFFP 
is available in two versions: rv-QAFFP (rv- stands for 
real-valued) and b-QFFP (b- stands for binary). The rv-
QAFFP fingerprint consists of biological activities pre-
dicted across 440 high-quality assays selected from the 
ChEMBL19 database and the b-QAFFP fingerprint was 

Fig. 4 ACSKs recall using the b‑QAFFP (a) and rv‑QAFFP fingerprints (b) and their combination rv+b‑QAFFP (c). Recall is the percentage of ACSKs 
revealed from all ACSKs existing in the given data set
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constructed by the binarization of the rv-QAFFP finger-
print. The following settings are recommended for the 
construction of the rv-QAFFP and b-QAFFP fingerprints:

• rv-QAFFP—use predicted bioactivities (i.e., it is not 
necessary to Z-standardize them) without consid-
ering model AD.

• b-QAFFP—to binarize rv-QAFFP values, use the 
affinity threshold of 5 on the –log scale, estimate 
model AD by an ICP, substitute missing values 
(unreliable predictions with interval wider than 
± 2.0 at the confidence level of 90%) by zeros.

We would like to stress, that though there exist many 
tunable settings in QAFFP construction pipeline, our 
aim was not to optimize each of them for every con-
ceivable application. That would lead to lots of different 

settings for different use cases which would be rather 
confusing for the end user. Instead, we decided to pro-
pose such QAFFP setting that is robust enough and 
yields constantly reasonable results. We believe that 
our published recommendations for the construction of 
rv- and b-QAFFP fingerprints meet these requirements.

The performance of both QAFFP fingerprints was 
assessed in three cheminformatics tasks: similarity 
searching, bioactivity classification and scaffold hop-
ping. In all tasks, the QAFFP fingerprints were com-
pared to 1024 bits long Morgan2 fingerprint (Morgan 
fingerprint with the radius of 2, an equivalent to the 
ECFP4 fingerprint) using non-parametric Wilcoxon 
paired signed-rank test. It was found that the perfor-
mance of both rv-QAFFP and b-QAFFP fingerprints is 
similar to that of the Morgan2 (ECFP4) fingerprint in 
similarity searching and bioactivity classification. How-
ever, compared to the Morgan2 fingerprint, the QAFFP 
fingerprints were able to retrieve significantly higher 
number of new scaffolds. These findings are rather 
encouraging given that (i) the QAFFP fingerprints are 
much shorter, (ii) the QAFFP fingerprints are defined 
on a purely data-driven fashion, without selecting the 
targets following biological reasons, and (iii) the mod-
els from which the QAFFP fingerprints are derived are 
far from perfect as their quality is influenced by, for 
example, QSAR modeling errors [106, 107], experi-
mental errors in publicly available data [108–110], data 
curation errors [68, 111] or data imputation noise. On 

Table 4 The average number of ACSKs per an assay (and its standard error of the mean SEM) in 22 CLASS sets revealed 
by the Morgan2, rv-QAFFP and b-QAFFP fingerprints

Model AD was estimated by an ICP with the confidence level of 90%. rv-QAFFP models were trained using raw data. Considering AD for rv-QAFFP means that if the 
prediction interval width was larger than ± 2.0, the prediction was regarded unreliable and was replaced by the average of all reliably predicted affinities. Various 
affinity cutoffs were used to construct the b-QAFFP fingerprint. Affinities predicted to lie outside model AD were encoded by zeros. Data shown are averages over 22 
CLASS data sets with their standard errors of the mean (SEM). Both rv-QAFFP and b-QAFFP fingerprints are 440 bits long. The recommended settings are shown in 
columns in italic

FP Morgan2 rv‑QAFFP b‑QAFFP

AD No Yes No Yes

Cutoff – – – 5 6 7 8 5 6 7 8

Average 39.27 41.41 41.45 48.40 47.80 48.89 66.14 48.41 47.89 48.54 67.58

SEM 8.25 8.51 8.68 10.26 10.47 11.18 16.02 10.37 10.54 10.88 16.84

Table 5 The average number of ON bits in b-QAFFPs calculated for HET set compounds

Model AD was estimated by an ICP with the confidence level of 90% and the maximum interval width, that distinguishes whether the prediction is reliable enough, 
was set to ± 2.0. Affinities predicted to lie outside model AD were encoded by zeros. b-QAFFP is 440 bits long

no AD AD

Cutoff 5 6 7 8 5 6 7 8

Average [%] 92.5 53.5 14.5 1.6 71.1 39.4 10.4 1.2

Average [count] 407 235 64 7 313 174 46 5

Table 6 The average number of  ACSKs per  an  assay 
revealed by  the  Morgan2, rv-QAFFP and  b-QAFFP 
fingerprints in 22 CLASS sets

In addition, the union of ACSKs revealed by both rv-QAFFP and b-QAFFP is 
reported. Averages are shown together with their standard errors of the mean. 
Additional file 4 contains detailed information about the number of revealed 
ACSKs for individual assays

Morgan2 rv‑QAFFP b‑QAFFP rv+b‑QAFFP

Average # of 
ACSKs

39.27 ± 8.25 41.41 ± 8.51 48.41 ± 10.37 52.10 ± 11.12



Page 13 of 16Škuta et al. J Cheminform           (2020) 12:39  

the other hand, QAFFP fingerprint is de facto a set of 
transformed Morgan fingerprints and it, thus, implic-
itly considers the structure of compounds. For this rea-
son, two structurally similar compounds will show a 
similar predicted QAFFP profile and possible “activity 
cliffs” [112, 113] will not be identified.

To conclude, despite the fact that the QAFFP finger-
prints are defined on a purely data-driven fashion and that 
underlying QSAR models rely solely on public data, we 
have demonstrated that large-scale QSAR modeling [114] 
is a promising method for the construction of affinity 
fingerprints. Though affinity fingerprints are inherently 
noisy, a signal-to-noise ratio is high enough to enable 
the discovery of bioactive molecules based on biological 
similarity rather than chemical similarity. In the future, 
we plan to optimize the composition of the QAFFP fin-
gerprint [115] and to use more biology-informed criteria 
(e.g., bioactivity data on cancer-related targets are likely 
to provide high predictive power to find hits eliciting 
anticancer activity). Future studies will also be needed 
to investigate the utility of both binary and real-valued 
QAFFP fingerprints for ligand and target clustering or 
to evaluate the utility of the QAFFP fingerprint for com-
mon computational drug design tasks, including diversity 
selection, hit expansion, target identification, drug repur-
posing, and the prediction of adverse side effect.
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