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An Experimental Proposal to Study Collapse of the Wave
Function in Traveling-Wave Parametric Amplifiers

Thomas H. A. van der Reep, Louk Rademaker, Xavier G. A. Le Large, Ruben H. Guis,
and Tjerk H. Oosterkamp*

1. Introduction

When a photon hits a single-photon detector, for example, a pho-
tomultiplier tube (PMT), a chain of events is set in motion that
would lead to an audible click or signal that can be processed by a

classical observer. In the case of a PMT, the
photon is absorbed in the PMT’s photo-
cathode, and, in turn, a photoelectron is
emitted. The electron is multiplied in sev-
eral stages, resulting in a detectable current
pulse at the anode of the device.

A similar situation occurs for microwave
photons in quantum bit (qubit) experi-
ments.[1] The readout of the qubit state,
which can be prepared in a single-photon
state,[2] occurs via readout lines that run
from the device to the measurement appa-
ratus. Implemented in the readout lines is
an amplification chain to enlarge the tiny
qubit signal to human proportions.

It follows that a measurement can be
seen as a process: A quantum signal enters
a measurement device (to which we here
count the amplification chain in case of
qubit experiments), it is amplified, and,
finally, the apparatus is read out. In this
article, we are interested in the questions:

at what point in the process did we really “measure” the quantum
state? When did the system change from being purely quantum
mechanical to classical?

We envision to probe the level of quantum coherence
during amplification by building an interferometer around
two microwave parametric amplifiers. By comparing the
measured interference pattern to the expected interference for
a fully quantum-mechanical state, we can infer at which
gain level we start deviating from this expectation. In the remain-
der of this article, we will, therefore, compare interference
visibilities for a quantum system to a system that experienced
a spontaneous measurement within the interferometer in the
Born sense.

The amplifiers we propose to use are typically used in the first
amplification stage of qubit readout lines, because they provide a
large gain, are nearly quantum-limited, and can be described
using conventional quantum theory.[3–13] Our experiments are
partially inspired by similar setups with optical photons using
non-linear optical parametric amplification, by, e.g., Zeilinger
and co-workers[14] and De Martini and co-workers,[15] or other
techniques by, e.g., Gisin and co-workers[16] and Rempe and
co-workers.[17]

In this article, we will not argue for one or the other possible
mechanisms of the collapse process. The variety of possible ideas
is large; see, e.g., the previous review.[18] Instead, the work pre-
sented here only relies on Born’s rule: the probability of a certain
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The readout of a microwave qubit state occurs using an amplification chain that
enlarges the quantum state to a signal detectable with a classical measurement
apparatus. However, at what point in this process is the quantum state really
“measured”? To investigate whether the “measurement” takes place in the
amplification chain, in which a parametric amplifier is often chosen as the first
amplifier, it is proposed to construct a microwave interferometer that has such an
amplifier added to each of its arms. Feeding the interferometer with single
photons, the interference visibility depends on the gain of the amplifiers and
whether a measurement collapse has taken place during the amplification
process. The visibility as given by standard quantum mechanics is calculated as a
function of gain, insertion loss, and temperature. A visibility of 1=3 is found in the
limit of large gain without considering losses, which is reduced to 0.26 in case the
insertion loss of the amplifiers is 2.2 dB at a temperature of 50mK. It is shown
that if the wave function collapses within the interferometer, the measured
visibility is reduced compared with its magnitude predicted by standard quantum
mechanics once this collapse process sets in.
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outcome after measurement is proportional to the wave function-
squared.

In Section 2, we calculate the Hamiltonian of the interferom-
eter in the lossless case in the time domain. In Section 3, we
introduce a measure for the visibility of our interferometer,
and we discuss the theoretical predictions for this visibility as
a function of the gain of the amplifiers. In Section 4, we discuss
the effect of losses followed by our ideas on observing spontane-
ous collapse in Section 5. In the final section, we conclude by
elaborating on the realization of the experiment and estimating
the feasibility of the experiment with parametric amplifiers with
a gain of 40 dB—a gain commonly used to read out qubits in
quantum computation experiments. Some of the detailed calcu-
lations are deferred to the appendices.

2. Model—Lossless Case

We consider the Mach–Zehnder-type interferometer shown in
Figure 1. The interferometer is fed by a single-photon source
(signal) in input 1, and a traveling-wave parametric amplifier
(TWPA) is added to each of its arms. Although other realiza-
tions of the experiment are conceivable, we argue in the appen-
dices why we view this version as optimal (see Section A1
and A2). The signal enters a hybrid (the microwave analog of
a beam splitter), thereby creating a superposition of 0 and 1 pho-
tons in each of the arms. The excitation in the upper arm of the
interferometer can be phase shifted, where we assume that the
phase shift accounts for an intended phase shift as well as all
unwanted phase shifts due to fabrication imperfections and
the non-linear phase shift from the TWPA. In the TWPA, ampli-
fication takes place by a wave mixing interaction. Throughout
this article, we use TWPAs working by a four-wave mixing
(4WM) process in a mode, which is phase-preserving (i.e., the
amplification is independent of the pump phase). We assume
the pump to be degenerate (one signal photon at frequency ωs

is created by destroying two pump photons at frequency ωp,
and by energy conservation, this gives rise to an idler at fre-
quency ωi ¼ 2ωp � ωs). We also assume that the pump is unde-
pleted (we neglect the decrease of pump photons in the
amplification process). Finally, we assume that the pump, signal,
and idler are phase-matched (2kp ¼ ks þ ki, where k is the wave
number including self-modulation and cross-modulation due to

the non-linear wave mixing). After the TWPA, the excitations
from the two arms are brought together using another hybrid,
and we can study the output radiation in both the signal and idler
mode with detectors A and B.

In this section, we ignore losses, the effect of which we will dis-
cuss in Section 4. Under the assumptions introduced earlier[12,13]

ĤTWPA ¼ �ℏχðâ†s â†i þH:c:Þ (1)

Here, ℏ is the reduced Planck constant h=2π, and χ is the non-
linear coupling constant derived from the third-order susceptibil-
ity of the transmission line, which considers the pump intensity.
â†n is the creation operator of mode n. Using the Heisenberg
equations of motion, one can solve for the evolution of the anni-
hilation operators analytically. This yields[12]

âsðiÞðtÞ ¼ âsðiÞð0Þ cosh κ þ iâ†iðsÞð0Þ sinh κ (2)

where κ ≡ χΔtTWPA is the amplification if the state spends a time
ΔtTWPA in the TWPA. Thus, we can determine the average num-
ber of photons in the signal (idler) mode as a function of the
amplification of the amplifier as

hn̂sðiÞiout ¼ hn̂sðiÞiincosh2κ þ ðhn̂iðsÞiin þ 1Þsinh2κ (3)

provided that the signal and/or idler are initially in a number
state. hn̂ioutðinÞ is the average number of photons leaving
(entering) the TWPA. From this relation, we define the amplifier
gain as Gs ¼ hn̂siout=hn̂siin.

Even though, under these assumptions, the calculation can be
done analytically (see Section A3), we present the numerical
implementation here, because to such an implementation, losses
can be added straightforwardly at a later stage.

To numerically obtain the output state, we use QUTIP.[19] We
first split the Hilbert space of the interferometer into the upper
arm and the lower arm. Each of the arm subspaces is additionally
divided into a signal and an idler subspace. Hence, our numeri-
cal Hilbert space has dimension N4, where N � 1 is the maxi-
mum amount of signal and idler photons considered in each
of the arms. In this framework, the input state is

jψi ¼ j1iup;sj0iup;ij0ilow;sj0ilow;i (4)

where the labels “up” and “low” refer to the upper and lower arm
of the interferometer, respectively. We evolve this state by the
time evolution operator, generated by the Hamiltonian Ĥ of
the system. The first hybrid is described by the Hamiltonian

Ĥh1 ¼ � ℏπ
4Δth1

�X
n¼s;i

â†up,nâlow,n þH:c:
�

(5)

whereΔth1 is the time spent in the hybrid. Note that state evolution
with the above-mentioned Hamiltonian for a time Δth1 corre-
sponds to the transformation operator for an ordinary 90� hybrid

Ûh1 ¼ eiĤh1Δth1=ℏ ¼ ei
π
4

�P
n¼s, i

â†up,nâlow,n þH:c:
�

(6)

By the same reasoning, the Hamiltonian of the phase shifter
can be written as

Figure 1. Schematic overview of a balanced microwave amplifier setup.
Using a 90° hybrid (microwave analog of a beam splitter), a single photon
is brought in a superposition, which is then amplified using two identical
TWPAs, characterized by an amplification κ. Before entering the TWPAs,
the excitation in the upper arm is phase shifted byΔθ, which is assumed to
account for all phase differences within the setup. Using a second 90�

hybrid, we can study the output radiation from arms 6 and 7 using detec-
tors A and B. Using 4WM TWPAs, an idler mode is generated. The inter-
ference of the idler mode can be studied independently of the interference
of the signal mode using the same detectors.
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Ĥps ¼
ℏΔθ
Δtps

�X
n¼s, i

â†up,nâup,n þH:c:
�

(7)

where Δθ is the applied phase shift. In our numerical calcula-
tions, we use

Ĥðup=lowÞ
TWPA ¼ �ℏκðup=lowÞ

ΔtTWPA
ðâ†ðup=lowÞ;sâ†ðup=lowÞ;i þH:c:Þ (8)

for the TWPAs. After the TWPAs, the excitations from the two arms
are brought together using a second 90� hybrid to create interfer-
ence, which is measured with detectors A and B. The second
hybrid is described by a Hamiltonian Ĥh2 similar to Equation (5).

In summary, the proposed theoretical model of the
experiment in the absence of losses is as follows. We start with
an initial single signal photon in the upper arm, described
by Equation (4). We evolve this state for a time Δth1 with
Hamiltonian Ĥh1, followed by Ĥps for a timeΔtps, then for a time
ΔtTWPA with ĤTWPA of Equation (8), and, finally, for a time Δth2
with Hamiltonian Ĥh2. Finally, we will measure the photon den-
sities in detectors A and B, which leads to a given visibility of the
interference pattern. For the lossless case, the various Δt values
can be chosen arbitrarily.

3. Interference Visibility

From the state resulting from our calculations, we get the prob-
ability distribution of photon number states in detectors A and B,
PrðnA;s ¼ i, nA;i ¼ j, nB;s ¼ k, nB;i ¼ lÞ, from which we can calcu-
late the photon number statistics and correlations by performing
a partial trace (see Section A4). From the photon number statis-
tics, we can compute the visibility of the interference pattern.
Although microwave photon counters have been developed in
an experimental setting,[20–22] we can also envision the measure-
ment of the output radiation using spectrum analyzers. Such
instruments measure the output power, P, of the interferometer
as a function of time, and one can determine the number of pho-
tons arriving in the detectors as

n ¼ 1
ℏω

Z
t2

t1
PðtÞdt (9)

Measuring the average photon number at detectors A and B,
we can define the interference visibility as (Section A5)

VsðiÞ ≡
hnB;sðA;iÞi � hnA;sðB;iÞi
hnB;sðA;iÞi þ hnA;sðB;iÞi

����
Δθ¼0

(10)

In case the amplifiers have an identical gain, the calculation of
the visibility can be simplified by using a smaller Hilbert space.
This follows from the following observation: a single TWPA fed
with a j1isj0ii state yields the average number of
signal (idler) photons in detector B (A) as calculated with
Equation (3). Contrarily, feeding this TWPA with a j0isj0ii state
gives the average number of signal (idler) photons in detector
A (B) (see Section A6). This provides a reduced Hilbert space that
scales as 2N2 for calculating the visibility. Moreover, this obser-
vation implies that the visibility can be computed directly by
substituting Equation (3) into (10).

Therefore, the visibility in the lossless case can be solved
exactly. Regardless of the input, the parametric amplifier
always outputs sinh2κ extra photons. In the case of an initial sin-
gle-photon state, the extra term cosh2κ should be added.
Consequently, the signal visibility becomes

Vs ¼
cosh2κ

cosh2κ þ 2sinh2κ
(11)

In the limit of large gain, the sinh and cosh become equal in
magnitude, and consequently, the visibility tends to 1=3.
Similarly, the idler photon number will be 2sinh2κ in the arm
with an initial signal photon and sinh2κ in the other; conse-
quently, the idler visibility is constant at 1=3. The reduction from
1 to 1=3 is, thus, completely due to the addition of extra photons
by the parametric amplifier.

The results of the calculations of the signal and idler visibili-
ties are shown in Figure 2 (in red) and have been verified using
our analytical results from Section A3 up to κ ¼ 0.8 and our
numerical results up to κ ¼ 1.7. It shows that the signal interfer-
ence visibility drops from 1 to 1=3 with increasing gain, in accor-
dance with the previous study[23] and the remarks made above.
The signal visibility at κ ¼ 0 is 1, because this situation resembles
an ordinary single-photon interferometer. The idler visibility at
κ ¼ 0 is undefined due to the absence of idler photons. Please
note that a superposition of zero and one photon before an ampli-
fier with gain G does not result in a superposition of zero and G
photons after the amplifier. To emphasize that this results in
multiphoton interference, we present a figure in Section A4 that
shows the photon number correlations within the interferometer
arms. Furthermore, this figure shows how many photon Fock
states are involved for different gain of the amplifiers.

4. The Effect of Losses

To consider the effect of losses (dissipation/insertion loss), we
use the Lindblad formalism, which provides the expression
for the time evolution of the density matrix, ρ̂[24]

dρ̂
dt

¼ � i
ℏ
½Ĥ, ρ� þ

XN2�1

n¼1

�
Ĵnρ̂Ĵ

†

n �
1
2
fρ̂, Ĵ†n Ĵng

�
(12)

where f, g denotes the anticommutator, and Ĵn are jump opera-
tors. These operators describe transitions that the system may
undergo due to interactions with the surrounding thermal bath.
Losses can be described by the jump operators Ĵout and Ĵin. Ĵout
describes a photon leaving the system and entering the bath

Ĵout,n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þ nth,nÞ

q
ân (13)

where Γ is the loss rate, and nth,n ¼ 1=ðexpðℏωn=kBTÞ � 1Þ is the
thermal occupation number of photons in the bath. Ĵin describes
a photon entering the system from the bath

Ĵin,n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Γnth,n

p
â†n (14)

Here, we again see the advantage of using a description in the
time domain and putting Δt in the component Hamiltonians
(Equations (5), (7), and (8)) in Section 2. The total (specified)
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loss is mainly determined by the product ΓΔt relating to the
(insertion) loss as

IL ¼ �10log10ðð1� nth,n=hniniÞe�ΓΔt þ nth,n=hniniÞ
� 4ΓΔt

(15)

The approximation holds for nth,n small. This approach allows
us to define a constant loss rate for the whole setup, while adjust-
ing Δt for each component to match the actual loss. As the photon
state in the interferometer is now described by a density matrix,
the amount of memory for these calculations scales as N8.

To study the effect, we set ωs;i ¼ 2π � 5GHz for now. This
implies nth,n as used in Equations (13), (14), and (15) can be
set to a constant nth. The loss rate Γ is set to 100MHz for the
full setup. For the hybrids and the phase shifter, we choose
Δtðh1, ps;h2Þ ¼ 1 ns (IL � 0.4 dB) and study the effect of losses
in the TWPAs by varying ΔtTWPA and T. We evolve the state
under the Hamiltonians Ĥh1 ! Ĥps ! Ĥðup=lowÞ

TWPA ! Ĥh2 as
described in Section 2.

Unfortunately, running the numeric calculation, we were not
able to increase the amplification to κ > 0.6 due to QUTIP work-
ing with a version of SCIPY supporting only int32 for element
indexing. However, again, it appears that we can use the method
of the reduced Hilbert space sketched in the last section. Thus,
the problem only scales as 2N4, and we have performed the
numeric calculation up to κ ¼ 1.0.

Applying the reduced Hilbert space approach, we found that
the parametric amplifier’s output in the presence of losses can be
fitted according to

hn̂sðiÞiout ¼ hn̂sðiÞioutjκ¼0cosh
2κ þ ðhn̂iðsÞioutjκ¼0 þ 1Þe�f sinh2κ

(16)

where the parameter f depends on Γ, the various Δt values
(if T > 0 ), nth, and the input state and is determined by a fit

to the numerical data (see Section A7). hn̂sðiÞioutjκ¼0 is the number
of photons leaving the amplifier in case no amplification is present

hn̂sðiÞioutjκ¼0 ¼ ðhn̂sðiÞiin � nthÞe�ΓΔttot þ nth (17)

This allows us to extrapolate the results to higher gain.
The results of the calculations with loss are also shown in

Figure 2, assuming the full setup is at a constant temperature.
We observe that losses decrease the interference visibility with
respect to the case where losses were neglected. However, even
for TWPA losses as high as 6 dB, the interference visibility survives.

As in the no-loss case, the signal and idler visibility converge
asymptotically to the same value. In the high-gain limit, the inter-
ference visibility is given by

V s;i ¼ ð1þ 2eΓΔttot�f þ 2ntheΓΔttotð1þ e�f Þð1� e�ΓΔttotÞÞ�1 (18)

by Equation (16). Assuming nth � 1, we find f � ΓΔttot=2
(see Section A7), and as a result

Vs;i �
1

1þ 2eΓΔttot=2
(19)

Thus, in the limit of low temperature, we find that the inter-
ference disappears exponentially with the loss in the setup. The
visibility becomes 1=e times the lossless visibility at ΓΔttot ¼ 3
(IL � 12 dB, but at this loss, it will not be possible to keep the
amplifiers in the limit of low nth).

Contrarily, in the limit of low losses, we find that f � 0 and

Vs;i �
1

3þ 4nthΓΔttot
(20)

Thus, we see that the interference visibility becomes 1=e times
the lossless visibility when approximately one photon jumps
from the bath into the system.

(a) (b)

Figure 2. Expected visibility of the interference pattern of the interferometer as a function of amplification κ for signal and idler using the reduced
Hilbert space (see text). The gain in dB on the upper axis is only indicative and does not consider the losses in the amplifiers
(G ¼ 10log10hnsiout=hnsiin ¼ 10log10 cosh κ þ 2 sinh κ). Without loss (red), the visibility tends to 1=3 for large gain. The visibility in case losses are added
to the system is plotted in gray for various amounts of loss in the TWPAs at a) T ¼ 50mK (nth ¼ 8.3� 10�3 ) varying ΓΔtTWPA (Γ ¼ 100MHz, loss
� 4ΓΔt [dB]) and b) ΓΔtTWPA ¼ 0.50 (Γ ¼ 100MHz) varying T. For each of the hybrids and the phase shifter, the loss is set to ΓΔt ¼ 0.1, and we have set
ωs;i ¼ 2π � 5GHz. The reduced Hilbert space calculations are presented in continuous lines, whereas an analytical fit and extrapolation according to
Equation (16) is dashed. We find that even TWPA losses as high as 6 dB do not reduce the visibility to 0.
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Experimentally, the conclusion is that efforts need to be made
to make the losses in the parametric amplifier so small that the
amplifier remains cold.

5. Observing Collapse

Although there is currently no universally agreed-upon model
that describes state collapse, we propose to mathematically inves-
tigate the effect of collapse on the proposed experiment using
Born’s rule in the following way.

To model the collapse, we split each of the amplifiers in the
upper and lower arm of the interferometer in two parts, and we
assume that the collapse takes place instantaneously in between
these two parts; see Figure 3. Thus, the first part of each amplifier
can be characterized by an amplification ηκ and the second by an
amplification ð1� ηÞκ, where η ∈ ½0, 1� sets the collapse position.
If η ¼ 0, the collapse takes place between the first hybrid and the
amplifiers, whereas for η ¼ 1, the collapse takes place between
the amplifiers and the second hybrid. For 0 < η < 1, the collapse
takes place within the amplifiers. For simplicity, we ignore the
fact that a photon is a spatially extended object. Moreover, we
will ignore here that the collapse process might be expected to
be stochastic in its position η, a point we will return to in
Section 6.

Then, by Born’s rule, we have to assume a collapse phenome-
nology. Regardless of the precise mechanism, such a collapse
will destroy the entanglement between the two interferometer
arms and yield a classical state. As for the type of classical state,
we will consider two options: the state collapses onto 1) a number
state, or 2) onto a coherent state. For both these options, we will
study the effect on the interference visibility given in the
following.

5.1. Collapse Onto a Number State

In case the collapse projects the instantaneous state onto
a number state, the state after projection is given by
jψ colliðN,MÞ ¼ jN þ 1iup;sjNiup;ijMilow;sjMilow;i or jψ colliðN,MÞ ¼
jNiup;sjNiup;ijM þ 1ilow;sjMilow;i, depending on whether the ini-
tial photon went through the upper or lower arm of the interfer-
ometer. Hence, this collapse phenomenology can be thought
of as resulting from the collapse taking place as a consequence
of a which-path detection within the amplifiers, which could
happen in a power meter that measures the intensity (energy)
of an incoming signal. The second part of the amplifiers, char-
acterized by the amplification ð1� ηÞκ, evolves jψ colli to

jψ 0
colli ¼

P
N,M cNMjψ colliðN,MÞ, where cNM are the weights

determined by ð1� ηÞκ and
P

N,M jcNMj2 ¼ 1. jψ 0
colli is the state

just before the second hybrid.
To determine the effect on the interference visibility of such a

collapse, we calculate hnX ,ni ¼â†X ,nâX ,n, the number of
photons arriving in detector X ∈ fA;Bg in mode n ∈ fs; ig.
This equation can be rewritten in terms of creation and
annihilation operators of the upper and lower arm of the inter-
ferometer by the standard hybrid transformation relations
â½A�fBg,n ↦ ðf1g½i�âup,n þ fig½1�âlow,nÞ=

ffiffiffi
2

p
to find

Vcoll
n ¼ ihâ†up,nâlow,n � âup,nâ

†

low,ni
hâ†up,nâup,n þ â†low,nâlow,ni

(21)

which equals 0 for any jψ 0
colli. Hence, we find that a collapse onto

a number state within the interferometer causes a total loss of
interference visibility.

5.2. Collapse onto a Coherent State

If a collapse in the amplifiers projects the quantum state
onto a coherent state, the state after collapse is jψ colli ¼
jαup;sijαup;iijαlow;sijαlow;ii with overlap ccoll ¼ hψ colljψqi. Here
jψqi is the instantaneous quantum state at the moment of col-
lapse. This collapse phenomenology can be thought of as a col-
lapse of the electrons in the transmission lines connecting the
different parts of the interferometer onto position states charac-
terized by a well-defined phase and amplitude. This is in contrast
to the electrons’ ill-defined phase and amplitude in case the
transmission lines are excited with a (superposition of ) photonic
number states. Moreover, the coherent state is generally seen as
the most classical state in quantum mechanics. Such a collapse
might occur in a vector network analyzer, which measures both
the intensity as well as the phase of an incoming signal.

In this case, the second part of the parametric amplifiers
characterized by ð1� ηÞκ evolves the amplitudes α in jψ colli into
average amplitudes

ᾱupðlowÞ;sðiÞ ¼ αupðlowÞ;sðiÞ coshð1� ηÞκ þ iα�upðlowÞ;iðsÞ sinhð1� ηÞκ
(22)

by Equation (2). Then, the number of photons arriving in each
detector, for each individual collapse, is

ncollAðBÞ,n ¼
1
2
ðjᾱup,nj2 þ jᾱlow,nj2 ∓ 2jᾱup,njjᾱlow,nj sinðϕlow,n �ϕup;nÞÞ

(23)

where ϕi is the phase of the state ᾱi. Thus, we can obtain
the average number of photons arriving in each detector as an
integration over all possible collapsed states weighed by their
probability. That is

hncollX ,ni ¼
1
π4

Z
ncollX ,njccollj2d2αup;sd2αup;id2αlow;sd2αlow;i (24)

in which d2αn denotes the integration over the complex ampli-
tude of the coherent state n. Then, we determine the interference
visibility according to Equation (10).

Figure 3. Model of a TWPA in which a quantum state collapse takes place.
The quantum TWPA, characterized by amplification κ, is split into two
parts. One is characterized by the amplification ηκ and the other
by ð1� ηÞκ, where η ∈ ½0, 1� determines the position of the collapse.
We assume that the state collapse takes place instantaneously between
the two parts of the amplifier.
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In case we assume that the interferometer is lossless, we can
perform such a calculation analytically (see Section A8). The
resulting interference visibility is plotted in Figure 4 in which
we can observe that the interference visibility at high gain
depends on the location of collapse. For η ¼ 1, the signal and
idler visibility equals 1=3. For η ¼ 0.5, both visibilities tend to
�0.15, and in case η ¼ 0, the visibility tends to 1=5 for both signal
and idler.

6. Experimental Realization and Feasibility

As a single-photon source, we propose to use a qubit capacitively
coupled to a microwave resonator.[2] For the amplifiers, we can
use TWPAs in which the non-linearity is provided by Josephson
junctions. Currently, TWPAs providing 20 dB (κ ¼ 2.5) of gain
and 2 dB of (insertion) loss that operate at T ¼ 30mK have been
developed.[9]

The amplification process within the TWPAs is driven by a
coherent pump signal. Instead of increasing the gain of the
TWPAs by increasing the pump power, we propose to vary
the amplification by varying the pump frequency. In the latter
method, the amplification varies due to phase-matching condi-
tions within the amplifier. The advantage is that in this manner,
the transmission and reflection coefficients of the TWPA, which
depend on the pump power,[25] can be kept constant while vary-
ing the gain in the interferometer. Although we assumed perfect
phase matching in the amplifiers for the results shown in this
article, we do not expect a large difference if one changes from
a varying pump-power approach to a varying phase-matching
approach.

Our calculations are based on a Taylor expansion up to the
third-order susceptibility of a parametric amplifier. Typically,
microwave TWPAs work close to the critical current of the device,
such that this assumption might break down and we need to con-
sider higher orders as well. For TWPAs based on Josephson junc-
tions, we can estimate as follows at which current a higher order
Taylor expansion would become necessary.

In the Hamiltonian of a TWPA with Josephson junctions, the
non-linearity providing wave mixing arises from the Josephson
energy

EJ ¼ Icφ0

�
1� cos

�
Φ
φ0

��
¼ Icφ0

X∞
n¼1

ð�1Þn�1

ð2nÞ!
�
Φ
φ0

�
2n

(25)

Here, Ic is the junction’s critical current, and φ0 is the reduced
flux quantumΦ0=2π. Hence, the second-order (n ¼ 3) non-linear
effects have a factor 4!ðΦp=φ0Þ2=6! smaller contribution than the
first-order non-linear effects. This contribution causes the gener-
ation of secondary idlers and additional modulation effects. If we
require that this contribution is less than 5% of the energy con-
tribution of the first-order non-linear terms, we can estimate that
the theory breaks down at Φp=φ0 � 1.2 ðIp=Ic � 0.78Þ. It is only
in the third-order non-linearity that terms proportional to ðâ†s â†i Þn
with n > 1 start to appear, apart from yet additional secondary
idlers and furthermodulation effects. These terms have a maximal
contribution of approximately a factor 4!ðΦp=φ0Þ4=8! � 4� 10�3

less than the first-order non-linear term at the critical flux
(Φp=φ0 ¼ π=2) and are, therefore, negligible for practical
purposes.

The other assumption that might break down is the assump-
tion of an undepleted pump. If the signal power becomes too
close to the pump power, the pump becomes depleted. Typically,
this happens at Ps � Pp=100.

[25] At Ip=Ic ¼ 0.9, Pp � 1 nW in a
50Ω-transmission line with Ic ¼ 5 μA. In case our qubit photon
source has a T1 time of �100 ns,[2] implying the photon has a
duration in that order, the number of 5GHz-pump photons
available for amplification is in the order of 107. Hence, we expect
that pump depletion only starts to play a significant role in case
the gain becomes about 50 dB.

In our calculations, the only loss effect that was not considered
was the loss of pump photons due to the insertion loss of the
TWPA. If the insertion loss amounts to 3 dB, half of the pump
photons entering the device will be dissipated. To the best of our
knowledge, this effect has not been considered in the literature.
However, effectively, this must lead to a coupling constant χ
(Equation (1)), which decreases in magnitude in time. In a more
involved calculation, this effect needs to be considered for a bet-
ter prediction of the experimental outcome of the visibility.

Apart from making χ time-dependent, the loss of pump
photons will be the main reason for an increase in the tempera-
ture of the amplifiers. A dilution refrigerator is typically able to
reach temperatures of 10mK with a cooling power of 1 μW.
However, the heat conductivity of the transmission line to the
cold plate of the refrigerator will limit the temperature of the
TWPA. Still, we estimate that a dissipation in the order of
0.5 nW will not heat up the amplifiers above 50mK. However,
as shown in Figure 2, even if the amplifiers heat up to temper-
atures as high as 200mK, we still expect a visibility that should be
easily measurable, if no collapse would occur.

Figure 4. Comparison of the interference visibility resulting from a full
quantum calculation without collapse and under the assumption of state
collapse to coherent states within the interferometer assuming no losses.
If the state collapses between the amplifiers and the second hybrid
(η ¼ 1), the visibility is 1=3 for the signal and rises to 1=3 with increasing
amplification for the idler. In case the collapse takes place halfway through
the amplifiers (η ¼ 0.5), the visibility tends to 0.15 for both signal and idler
for high gain, and if the collapse is between the first hybrid and the ampli-
fiers (η ¼ 0), the visibility goes to 0.2 for signal and idler.
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Finally, a more accurate calculation of the expected interfer-
ence visibility would need to consider reflections within the setup
as well as the possible difference in gain between both amplifiers
and decoherence mechanisms that might be present, and we
have not considered here, such as pure dephasing.

The results we obtained for the interference visibility with a
collapse within the interferometer are only speculative as the
mechanism of state collapse is currently not understood. In case
the state collapses onto a number state, the resulting interference
visibility is 0 for any gain. We anticipate that this number might
increase in case the losses are considered in the calculation; how-
ever, still, we expect that the difference in interference visibility
between the cases of no collapse and collapse within the inter-
ferometer should be easily detectable.

Contrarily, if the state collapses onto a coherent state, the
visibility depends on the location of the collapse. This result
should be interpreted as follows. Let us assume that the state
collapses at a gain of 20 dB (κ ¼ 2.5). Then, neglecting losses,
the predicted signal interference visibility is �1=3 in case the
state does not collapse, whereas it equals 1=3 in the case the state
collapses between the amplifiers and the second hybrid (η ¼ 1).
However, if we increase the gain further, the expected location of
collapse (the location at which the state is amplified by 20 dB)
moves toward the first hybrid (η < 1), which will become appar-
ent in the measurement result as an initial gradual drop in the
interference visibility followed by an increase; see Figure 4.
Simultaneously, the idler visibility is expected to show the same
behavior.

It should be noted that the result for a calculation, in which
one assumes a state collapse onto a coherent state between the
interferometer and the detectors, is the same as when the state
would collapse between the amplifiers and the second hybrid of
the interferometer. However, even if this would be the case, one
can observe a collapse within the interferometer if the collapse
takes place within the amplifiers.

A second remark to this collapse phenomenology is that it
does not conserve energy. If one considers some state jψi with
an average photon number n, one finds that a collapse onto a
coherent state adds one noise photon to the state, i.e.,
hni ↦ hnicoll ¼ nþ 1. This behavior holds for each of the
Hilbert subspaces. Such an increase in energy is a property of
many spontaneous collapse models.[26–30]

It is due to this added photon and its amplification (see
Equation (22)) in the classical part of the TWPAs that the differ-
ences in the predicted interference visibility with and without
state collapse arise, although in the collapse, the phase correla-
tions between the signal and idler modes in both arms are pre-
served. The latter can be observed in our expression for ccoll in
Section A8. In case the photon is added after the amplifiers
(η ¼ 1), this photon can be added directly to the expression
for the number of output photons (Equation (3)), such
that the expression for the interference visibility (Equation (10))
goes from V s ¼ cosh2κ=ðcosh2κ þ 2sinh2κÞ to Vcoll

s ¼ cosh2κ=
ðcosh2κ þ 2sinh2κ þ 2Þ ¼ 1=3 using the reduced Hilbert space
approach. In case the state collapses before the amplifiers
(η ¼ 0), this photon can be added to hn̂sðiÞi in Equation (3)
directly. Then, as the amplifiers are, in this case, fully classical,
one can drop the þ1 in the term ðhn̂iðsÞi þ 1Þ in this equation,
which results from the commutator ½â, â†� ¼ 1. As such, it is

found that the interference visibility reduces to
Vcoll

s ¼ cosh2κ=ð3cosh2κ þ 2sinh2κÞ, which equals 1=5 in the
high-gain limit.

In case one assumes a collapse onto a coherent state, one
could calculate the expected interference visibility in case the
losses are included numerically by calculating the overlap
between the state evolved until collapse and many (order 106)
randomly chosen coherent states. However, due to the issue with
SCIPY noted in Section 4, we could not perform this calculation
for a reasonable number of photons. Still, we expect that,
although the difference in visibility between the situations with
and without collapse in the interferometer might be decreased,
this difference is measurable.

Finally, as remarked in Section 5, it might be expected that the
collapse will take place at a position η, which is stochastic in
nature. In principle, this can be considered as

hncollX ,n,expi ¼
Z

1

0
PDFðηÞhncollX ,nðηÞidηþ

�
1�

Z
1

0
PDFðηÞdη

�
hnqX ,ni

(26)

where hncollX ,n,expi is the experimentally expected number of
photons in detector X and mode n including a stochastic state
collapse, hncollX ,nðηÞi corresponds to the number of photons after
collapse calculated in Section 5, and hnqX ,ni is the number of pho-
tons expected from quantum evolution of the system as calcu-
lated in Section 3. PDFðηÞ is the probability density function
for η normalized to the probability that the collapse occurs in
the interferometer. From these average photon numbers, the vis-
ibility can be calculated using Equation (10). In case of a number
state collapse, the contribution to the interference visibility after a
collapse equals 0; see Section 5, and the visibility will decrease
according to the probability that the collapse occurs in the inter-
ferometer. On the other hand, for a coherent state collapse, the
visibility after collapse is unequal to 0, and thus, we would need
an explicit model for the stochasticity of the collapse process.
Although we have not performed the calculation for a coherent
state collapse, we may still expect the same behavior as described
before, i.e., as soon as the collapse process sets in the interfer-
ence visibility decreases faster to 1=3 than expected from our cal-
culations presented in Section 3, after which the visibility will
decrease to 1=5, while increasing the gain of both amplifiers
further.

Under these considerations, an experiment with two 40 dB
amplifiers (κ ¼ 4.7) at 50mK, which might be developed if losses
are reduced, is feasible.

7. Conclusion

We conclude that it should be possible to determine whether or
not a 40 dB-microwave parametric amplifier causes a wave func-
tion to collapse. If we insert such an amplifier into each of the two
arms of an interferometer, we can measure the visibility of the
output radiation. Neglecting losses, the interference visibility of
both signal and idler tends to 1=3 with increasing gain, in case no
collapse takes place. If the state collapses onto a number state
within the interferometer, the visibility reduces to 0, whereas
we found a significant deviation from 1=3 in the case that the
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state collapses onto a coherent state. In case the insertion loss of
the amplifiers is 2.2 dB, while the temperature of the devices is
50mK, we estimate an interference visibility of 0.26 at large
amplifier gain. In case wave function collapse sets in, we still
expect the visibility to decrease measurably.

In summary, this article predicts the possible outcome for an
experiment. If projection operators are at work in parametric
amplifiers in the same way that they appear to be at work in click-
ing single-photon detectors, this article predicts they might be
detectable.

Appendix

A1. Experimental Realization Using Resonator-Based Parametric
Amplifiers

The discussed setup is not the only conceivable realization of the
experiment. Instead of using a TWPA, it is also possible to use a
resonator-based parametric amplifier, such as the Josephson
parametric amplifier (JPA), if the bandwidth of the photons is
smaller than the bandwidth of the amplifier. TWPAs are broad-
band (BW � 5GHz[9]), whereas JPAs are intrinsically limited in
their bandwidth (BW � 10MHz[3]). However, both amplifiers
are suitable to amplify a single photon with a 1MHz bandwidth,
in case our photon source would have a T1 time in excess of 1 μs.

As we want to minimize losses and reflections in the interfer-
ometer arms, using a TWPA leads to a Mach–Zehnder-type inter-
ferometer, whereas using a JPA results in a Michelson-type
interferometer; see Figure 5. In case the JPA works in the
non-degenerate regime (ωs 6¼ ωi), the results of the interference
visibility as presented in this article are the same.

A2. Non-Degenerate Versus Degenerate Amplifiers

In the main text, we considered the amplifiers to be non-
degenerate, i.e., ωs 6¼ ωi. In case the amplifiers work in a degen-
erate regime

Ĥdeg ¼ �ℏχðâ†s â†seiΔϕ þH:c:Þ (27)

and the amplification will be dependent on the relative phase,
Δϕ, between the signal and the pump; see Figure 6. In this case,
we can still measure a visibility—in fact, Δϕ can be used as a
phase shifter in the experiment—as shown in Figure 7. In this
figure, the expected interference visibility in case the quantum state does not collapse within the interferometer is depicted

using continuous lines. In case we assume that the state collap-
ses into a coherent state in between the amplifiers and the second
hybrid, the resulting visibility can be calculated using the method
outlined in Section 5 and A8. The result is shown in Figure 7
using dashed lines. It is observed that for large amplification
κ, the two results approach each other asymptotically.

The main advantage of using non-degenerate instead of
degenerate amplifiers is that the latter have not been developed.
In the microwave regime, parametric amplifiers have been devel-
oped using Josephson junctions and kinetic inductance as the
source of non-linear wave mixing and the resulting amplification.
Both these sources lead naturally to non-degenerate devices
as the non-linearity scales quadratically with pump current.

Figure 5. Schematic overview of the implementation of the experiment
using JPAs. In this case, it is beneficial to use a Michelson-type interfer-
ometer to minimize losses.

Figure 6. Wigner function of the state entering the hybrid after amplifica-
tion by a degenerate amplifier (Equation (27)). Shown is the case where
the signal and the pump are in phase (Δϕ ¼ 0). If Δϕ 6¼ 0, the Wigner
function rotates according to the dashed-dotted lines.

Figure 7. Interference visibility of the experiment implementing degener-
ate parametric amplifiers as a function of amplification κ ¼ χΔtdeg and the
difference in relative phase of the two amplifiers, δΔϕ ¼ Δϕup � Δϕlow.
δΔϕ can effectively be used as a phase shifter, and we assume the inter-
ferometer to be lossless. The continuous lines represent the visibility
resulting from a quantum calculation. The dashed lines result from a cal-
culation in which we assume state collapse into coherent states between
the amplifiers and the second hybrid (η ¼ 1; see Section 5 and Section A8).
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One can use these as quasi-degenerate amplifiers by, e.g., biasing
the device using a direct current. This complicates the setups as
proposed in Figure 1 and 5, which can be a source of reflections
and decoherence. Moreover, such amplifiers will always have
non-degenerate contributions to their amplification, which com-
plicates the analysis of the experiment. Third, non-degenerate
amplifiers enable one to study two interference visibilities
(of both signal and idler) instead of one. For these reasons,
we consider non-degenerate amplifiers to be more suited for
our proposed experiment.

A3. Analytical Model

Without losses and using the assumptions for the TWPAs as pre-
sented in Section 3, we can obtain an analytical expression for the
output state. We start by creating a single signal photon in input
channel 1.

jψi1 ¼ â†1sj01s, 01i, 04s, 04si¼ j11s, 01i, 04s, 04si (28)

Here, â† is the creation operator working on the vacuum. We
then incorporate the 90� hybrid by making the transformation

â†1s ↦
1ffiffiffi
2

p �
iâ†2s þ â†3s

�
(29)

Next, a phase shift Δθ is applied to the upper arm

â†2s ↦ â†2se
iθâ†2sâ2s (30)

at which the state just before the TWPAs is

jψi2 ¼
1ffiffiffi
2

p ðieiΔθâ†2s â2s â†2s þ â†3sÞj02s, 02i, 03s03si (31)

¼ 1ffiffiffi
2

p ðieiΔθj12s, 02i, 03s03si þ j02s, 02i, 13s03siÞ (32)

For the TWPAs, we use the following Hamiltonian in the
interaction picture

ĤTWPA
eff ¼ �ℏχðâ†s â†i þ âsâiÞ (33)

Evolving the state under this Hamiltonian as
jψi3 ¼ e�iĤTWPA

eff t=ℏ, the output for a single amplifier in a single
arm is[31]

e�iĤTWPAt=ℏjNs, 0ii ¼ cosh�ð1þNsÞκ
X∞
n¼0

ði tanh κÞn
n!

�
â†s â†i

�njNs, 0ii

(34)

or, in case of a degenerate amplifier (in the special casesNs¼0∨1)

e�iĤdegt=ℏjNsi ¼ cosh
ð1þ2NsÞ

2 2κ

�
X∞
n¼0

ðði=2ÞeiΔϕ tanh 2κÞn
n!

ðâ†s â†sÞnjNsi
(35)

where Ns is the number of signal photons initially present, and
κ ≡ χt. Applying this relation to jψi2, we obtain the state after the
TWPAs.

jψi3 ¼
1ffiffiffi
2

p
�
cosh�2 κcosh�1 κ0ieiΔθ

X∞
n,m¼0

intanhnκ
n!

imtanhmκ0

m!
ðâ†5sâ†5iÞnðâ†8sâ†8iÞmâ†5s

þ cosh�1 κcosh�2κ0
X∞
n,m¼0

intanhnκ
n!

imtanhmκ0

m!
ðâ†5sâ†5iÞnðâ†8sâ†8iÞmâ†8s

	
⋅ j05s, 05i, 08s08si

(36)

where κ and κ0 are the amplification in the upper arm and lower
arm, respectively. Finally, the state traverses the second hybrid,
which is modeled by the transformations

â†5 ↦
1ffiffiffi
2

p ðiâ†6 þ â†7Þ

â†8 ↦
1ffiffiffi
2

p ðâ†6 þ iâ†7Þ
(37)

for both signal and idler. Thus, we arrive at the output state

jψi4 ¼
1
2
cosh�1κcosh�1κ0

���eiΔθ

cosh κ
þ 1
cosh κ0

�
â†6s þ

�
ieiΔθ

cosh κ
þ i
cosh κ0

�
â†7s

	

⋅
X∞
n,m¼0

intanhnκ
2nn!

imtanhmκ0

2mm!

��â†6sâ
†

6i þ i


â†6sâ

†

7i þ â†7sâ
†

6i

�þ â†7sâ
†

7i

�n�â†6sâ†6i þ i


â†6sâ

†

7i þ â†7sâ
†

6i

�� â†7sâ
†

7i

�mj06s, 06i, 07s07si
(38)
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This equation reproduces the interference visibilities as pre-
sented in Figure 2 in case the losses are neglected.

A4. Output of Numerical Calculations

From our numerical calculations, we obtain the probability distri-
bution of photon number states, PrðhniA;s ¼ i, hniA;i ¼ j, hniB;s ¼
k, hniB;i ¼ lÞ in detectors A and B (i, j, k, l ∈ ½0,N � 1�). Using
partial traces, we can compute the statistics and correlations
for each of the fourmodes and between pairs of modes. For exam-
ple, the number state probability distribution for signal photons
in detector B is shown in Figure 8.

In Figure 9, we show the photon number correlations between
the input arms of the second hybrid (arms 5 (top) and 8 (bottom))
for amplifications κ ¼ 0, 0.5, and 1. The top row (Figure 9a–c)
shows the correlations between the amount of signal photons
in both arms. It can be observed that the correlations are sym-
metric around the line n5s ¼ n8s. The second row (Figure 9d–f )
shows the correlations between the number of signal and idler
photons in arm 5. As shown, the number of idler photons is
always equal to the number of signal photons or less by 1, as
expected. The final row (Figure 9g–i) shows the correlations
between the number of idler photons in arms 5 and 8. For
increased amplification, these correlations look more and more
like the correlations for the signal photons.

A5. Definition of Interference Visibility

In the main text, the interference visibility is defined as

V sðiÞ ≡
hnB;sðA;iÞi � hnA;sðB;iÞi
hnB;sðA;iÞi þ hnA;sðB;iÞi

����
Δθ¼0

(39)

The rationale behind this definition is shown in Figure 10.
At Δθ ¼ 0, we expect the maximum number of signal photons

in detector B and the minimum in detector A. For the idler, the
opposite is the case.

A6. Comparison of Full and Reduced Hilbert Space

As mentioned, the Hilbert space of the full interferometer scales
as N4 (no loss), and the number of entries in the density matrix
scales as N8 (with loss). However, if the amplifiers are identical,
we can obtain the same result if we perform the calculation
twice—once with a j1isj0ii input state and once with a j0isj0ii
input state. The first yields hnB;sðA;iÞi and the second hnA;sðB;iÞi.
This implies that the same results can be obtained with a
Hilbert space of 2N2 (no loss) or 2N4 (with loss).

In Figure 11, the result of the two calculations is compared as a
function of ΓΔtTWPA for κ ¼ 0.1 to 0.4. In this figure, the gray
solid data correspond to QUTIP’s master equation solver,
whereas the black dashed data are obtained using the reduced
Hilbert space approach. As shown, the results overlap very well,
such that we can use the reduced Hilbert space for our
calculations.

A7. Amplifier Output with Losses

In case transmission losses are considered, we can fit the average
number of photons leaving the amplifier with the function

hnsðiÞiout ¼ hnsðiÞioutjκ¼0cosh2κ þ ðhniðsÞioutjκ¼0 þ 1Þe�f sinh2κ

(40)

in which f is a fitting parameter depending on Γ, the various Δt
values, nth and the input state.

hnnioutjκ¼0 ¼ ðhnniin � nthÞe�ΓΔttot þ nth (41)

is the number of photons of mode n leaving the amplifier in case
the amplification κ equals 0. Here, hnniin is the number of pho-
tons of mode n entering the amplifier.

The result of a particular fit (Γ ¼ 100MHz, ΔtTWPA ¼ 10 ns—
otherΔt values are 1 ns; hence, ΓΔttot ¼ 1.3, � nth ¼ 8.3� 10�3)
is presented in Figure 12. In Figure 13, the magnitude of the
fitting factor f is plotted as a function of ΓΔttot and nth. We
observe that the agreement between the simulation and the
fitting function is excellent.

Equation (40) can be partially understood from comparison
with Equation (3) (repeated here for convenience)

hn̂sðiÞiout ¼ hn̂sðiÞiincosh2κ þ ðhn̂iðsÞiin þ 1Þsinh2κ (42)

It is obvious that, for κ ¼ 0, hn̂niin needs to be replaced by
hnnioutjκ¼0 to obtain the correct result. For κ 6¼ 0, it was found
that this replacement is not sufficient. By trial and error, we
found that multiplying the sinh term with a constant allows
us to describe the output correctly. We factor this constant as
e�f in accordance with transmission losses being generally asso-
ciated with a negative-exponent exponential function. We stress
that, although Equation (40) can be used to fit the number of
photons leaving the amplifier in the presence of losses, it is
not necessarily physically correct. However, for now, we leave

Figure 8. Probability distribution of the interferometer’s output in arm 7
(detector B) for the signal mode as a function of amplification κ. The prob-
abilities are cutoff at Pr< 10�5.
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this matter for future consideration, hoping it may help in a
future derivation of an expression in a closed form.

A8. Interference Visibility with Collapse onto Coherent States

To study the interference visibility in case of state collapse
within the interferometer, we assume that the state collapses
into a coherent state, the most classical state available in
quantum mechanics. Coherent states are expanded in Fock
space as

jαi ¼ e�jαj2=2 X∞
n¼0

αnffiffiffiffi
n!

p jni (43)

in which α ∈ C is the amplitude of the coherent state, and jni
are the number states. The mean number of photons in a
coherent state equals jαj2. From Equation (43), we can easily
compute the overlap between a coherent state and a number
state as

hαjni ¼ e�jαj2=2 ðα�Þnffiffiffiffi
n!

p (44)

Assuming that the interferometer is lossless and that the
collapse takes place within the interferometer, the squared
overlap between the collapsed coherent state jψicoll ¼
jαup;sijαup;iijαlow;sijαlow;ii and the instantaneous quantum state,
given by Equation (36) with κ ↦ ηκ, is

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Photon number correlations just before the second hybrid for various amplifications κ. a–c) Correlations between number of signal photons in
arms 5 and 8. d–f ) Correlations between the number of signal photons and idler photons in arm 5. g–i) Correlations between the number of idler photons
in arms 5 and 8. The color bars are cutoff at Pr< 10�5.
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jccollj2 ¼ jhψ colljψ3ij2 ¼
e�ðjαup;sj2þjαup;ij2þjαlow;sj2þjαlow;ij2Þ

2cosh6ηκ
⋅ ðjαup;sj2 þ jαlow;sj2 þ ðijαup;sjjαlow;sjeiðϕlow;s�ϕup;sÞ þ c:c:ÞÞ⋅

⋅
X

n,m, l, k

ðiÞnþm�l�k tanhnþmþlþk ηκ

n!m!l!k!
ðjαup;sjjαup;ijÞnþlðjαlow;sjjαlow;ijÞmþk ⋅ eiðn�lÞðϕup;sþϕup;iÞþðm�kÞðϕlow;sþϕlow;iÞ

(45)

in case the amplifiers are equal and setting the amplitudes to
α ¼ jαjeiϕα . The amplifiers evolve the amplitudes of the collapsed
state jψ colli further into average amplitudes

ᾱupðlowÞ;sðiÞ ¼ αupðlowÞ;sðiÞ coshð1� ηÞκ þ iα�upðlowÞ;iðsÞ sinhð1� ηÞκ
(46)

and the number of photons arriving in each of the detectors for
this particular collapse equals

ncoll½A�fBg,n ¼
1
2
j½i�f1gᾱup,n þ ½1�figᾱlow,nj2 (47)

In the last expression, we have used the standard hybrid trans-
formation relations

α½A�fBg,n ¼
1ffiffiffi
2

p ð½i�f1gαup;n þ ½1�figαlow,nÞ (48)

as well as that ncollAðBÞ,n ¼ jαAðBÞ,nj2. Explicitly

ncoll½A�fBg,s ¼
1
2

h
ðjαup;sj2 þ jαlow;sj2Þcosh2ð1� ηÞκ þ ðjαup;ij2 þ jαlow;ij2Þsinh2ð1� ηÞκ�

� ðijαup;sjjαup;ijeiðϕup;sþϕup;iÞ coshð1� ηÞκ sinhð1� ηÞκ þ c:c:Þþ
þ ½1�f�1gðijαup;sjjαlow;sjeiðϕup;s�ϕlow;sÞcosh2ð1� ηÞκ þ c:c:Þþ
þ ½1�f�1gðjαup;sjjαlow;ijeiðϕup;sþϕlow;iÞ coshð1� ηÞκ sinhð1� ηÞκ þ c:c:Þþ
þ ½�1�f1gðjαup;ijjαlow;sje�iðϕup;iþϕlow;sÞ coshð1� ηÞκ sinhð1� ηÞκ þ c:c:Þþ
þ ½1�f�1gðijαup;ijjαlow;ije�iðϕup;i�ϕlow;iÞsinh2ð1� ηÞκ þ c:c:Þ�
� ðijαlow;sjjαlow;ijeiðϕlow;sþϕlow;iÞ coshð1� ηÞκ sinhð1� ηÞκ þ c:c:Þ

i

(49)

Figure 10. Predicted interference pattern of the interferometer in Figure 1
(losses neglected): the average number of signal and idler photons in
detectors A and B for amplification 0.4. At phase shift Δθ ¼ 0, most of
the signal photons are expected in detector A, whereas most of the idler
photons end up in detector B.

Figure 11. Visibility as a function of losses in the TWPAs for various κ.
Γ ¼ 100MHz, T ¼ 50mK, and ωs;i ¼ 2π � 5GHz. ΓΔt ¼ 0.1 in the other
components of the setup. The data in gray (solid) are obtained from
QUTIP’s master equation solver using an N8 Hilbert space with N ¼ 5.
Overlain (black dashed) is the data obtained from the reduced Hilbert
space (2N4; see text). As can be observed, the overlap is very good.
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ncoll½A�fBg,i ¼
1
2

h
ðjαup;sj2 þ jαlow;sj2Þsinh2ð1� ηÞκ þ ðjαup;ij2 þ jαlow;ij2Þcosh2ð1� ηÞκ�

� ðijαup;sjjαup;ijeiðϕup;sþϕup;iÞ sinhð1� ηÞκ coshð1� ηÞκ þ c:c:Þþ
þ ½1�f�1gðijαup;sjjαlow;sje�iðϕup;s�ϕlow;sÞsinh2ð1� ηÞκ þ c:c:Þþ
þ ½�1�f1gðjαup;sjjαlow;ije�iðϕup;sþϕlow;iÞ sinhð1� ηÞκ coshð1� ηÞκ þ c:c:Þþ
þ ½1�f�1gðjαup;ijjαlow;sjeiðϕup;iþϕlow;sÞ sinhð1� ηÞκ coshð1� ηÞκ þ c:c:Þþ
þ ½1�f�1gðijαup;ijjαlow;ijeiðϕup;i�ϕlow;iÞcosh2ð1� ηÞκ þ c:c:Þ�
� ðijαlow;sjjαlow;ijeiðϕlow;sþϕlow;iÞ sinhð1� ηÞκ coshð1� ηÞκ þ c:c:Þ

i

(50)

With these ingredients, we can obtain the average number of
photons arriving in each of the detectors as

hncollX ,ni ¼
1
π4

Z
ncollX ,njccollj2d2αup;sd2αup;id2αlow;sd2αlow;i (51)

as discussed in the main text. Here, d2α ¼ jαjdϕαdα, and the
bounds of the integrals are ½0,∞i for integration over the ampli-
tudes and ½0, 2πi for integration over the phases.

Due to the complex exponentials in Equation (45) and (49) and
the integration over the full domain ½0, 2πi for the phases, it is
immediately observed that the integrand of Equation (51) only
contributes to the integral for integrand terms that are indepen-
dent of ϕupðlowÞ;sðiÞ. Then, integration over the phases yields a fac-
tor of 16π4.

For the calculation of hncollB;s i � hncollA;s i and hncollA;i i � hncollB;i i, we
find that only the terms scaling as e	iðϕup;s�ϕlow;sÞ and
e	iðϕup;i�ϕlow;iÞ from Equation (49) and (50) will contribute to the
integral. For the term scaling as eiðϕup;s�ϕlow;sÞ, we find a contribu-
tion to hncollB;s i � hncollA;s i

Δs,1 ¼
8cosh2ð1� ηÞκ

cosh6ηκ

Z
jαup;sj3jαup;ijjαlow;sj3jαlow;ij⋅

⋅ e�ðjαup;sj2þjαup;ij2þjαlow;sj2þjαlow;ij2Þ⋅

⋅ B0ð2jαup;sjjαup;ij tanh ηκÞB0ð2jαlow;sjjαlow;ij tanh ηκÞ⋅
⋅ djαup;sjdjαup;ijdjαlow;sjdjαlow;ij

(52)

where we have used the identity
P∞

n¼0 x
2n=ðn!Þ2 ¼ B0ð2xÞ, in

which BnðxÞ is the modified Bessel function of the first kind.
For the contribution from Equation (49) scaling as
e�iðϕup;s�ϕlow;sÞ, we find the same expression. For the term in
Equation (49) scaling as eiðϕup;i�ϕlow;iÞ, we find a contribution

Δs,2 ¼
8sinh2ð1� ηÞκ

cosh6ηκ

Z
jαup;sj2jαup;ij2jαlow;sj2jαlow;ij2

⋅ e�ðjαup;sj2þjαup;ij2þjαlow;sj2þjαlow;ij2Þ⋅

⋅ ½B1ð2jαup;sjjαup;ij tanh ηκÞ � jαup;sjjαup;ij tanh ηκ�⋅
⋅ ½B1ð2jαlow;sjjαlow;ij tanh ηκÞ � jαlow;sjjαlow;ij tanh ηκ�⋅
⋅ djαup;sjdjαup;ijdjαlow;sjdjαlow;ij

(53)

to hncollB;s i � hncollA;s i. Here, we have used the identityP∞
n¼0 x

2nþ1=½ðnþ 1Þðn!Þ2� ¼ B1ð2xÞ � x. Again, the contribution
of the term in Equation (49) scaling as e�iðϕup;i�ϕlow;iÞ yields an
equal contribution, such that

hncollB;s i � hncollA;s i ¼ 2ðΔs,1þΔs,2Þ (54)

For hncollA;i i � hncollB;i i, we find the similar expression

hncollA;i i � hncollB;i i ¼ 2ðΔi,1 þ Δi,2Þ (55)

in which Δi,1ð2Þ follow from Equation (52) and (53) by replacing
coshð1� ηÞκ with sinhð1� ηÞκ and vice versa.

Similarly, we find that for the calculation of hncollB;s i þ hncollA;s i and
hncollA;i i þ hncollB;i i, only the terms without exponential factor and
the terms scaling as e	iðϕup;sþϕup;iÞ and e	iðϕlow;sþϕlow;iÞ from
Equation (49) and (50) will contribute to the integral. For the
terms without exponential, we find a contribution

Figure 12. Average number of signal and idler photons reaching the detec-
tor as a function of κ (Γ ¼ 100MHz, ΔtTWPA ¼ 10 ns—other Δt values are
1 ns; hence, ΓΔttot ¼ 1.3, – nth ¼ 8.3� 10�3 ). The output from the
reduced Hilbert space calculation is in gray. The colored dashed lines
are the result from a fit using Equation (40). Note that the curves for signal
photons in detector A and idler photons in detector B are overlapping.
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Σs,1 ¼
8

cosh6ηκ

Z
jαup;sjjαup;ijjαlow;sjjαlow;ij⋅

⋅
h
ðjαup;sj2 þ jαlow;sj2Þcosh2ð1� ηÞκþ

þ ðjαup;ij2 þ jαlow;ij2Þsinh2ð1� ηÞκ
i
⋅

⋅ ðjαup;sj2 þ jαlow;sj2Þe�ðjαup;sj2þjαup;ij2þjαlow;sj2þjαlow;ij2Þ⋅

⋅ B0ð2jαup;sjjαup;ij tanh ηκÞB0ð2jαlow;sjjαlow;ij tanh ηκÞ⋅
⋅ djαup;sjdjαup;ijdjαlow;sjdjαlow;ij

(56)

to hncollB;s i þ hncollA;s i. Again, the contribution to hncollA;i i þ hncollB;i i, Σi,1,
is the same except that coshð1� ηÞκ ↦ sinhð1� ηÞκ. For the
term scaling as eiðϕup;sþϕup;iÞ, we find a contribution

Σ2 ¼
8 coshð1� ηÞκ sinhð1� ηÞκ

cosh6ηκ
⋅

⋅
Z

jαup;sj2jαup;ij2jαlow;sjjαlow;ijðjαup;sj2 þ jαlow;sj2Þ⋅

⋅ e�ðjαup;sj2þjαup;ij2þjαlow;sj2þjαlow;i j2Þ⋅

⋅ ½B1ð2jαup;sjjαup;ij tanh ηκÞ � jαup;sjjαup;ij tanh ηκ�⋅
⋅ B0ð2jαlow;sjjαlow;ij tanh ηκÞ⋅
⋅ djαup;sjdjαup;ijdjαlow;sjdjαlow;ij

(57)

to hncollB;s i þ hncollA;s i and hncollA;i i þ hncollB;i i. The contribution from the
other exponentially scaling terms from Equation (49) and (50)
contributing to the integral yields the same values, whence

hncollB;s i þ hncollA;s i ¼ Σs,1 þ 4Σ2 (58)

hncollA;i i þ hncollB;i i ¼ Σi,1 þ 4Σ2 (59)

Using Equation (54), (58), (55), and (59), we easily compute the
interference visibilities for signal and idler. We evaluated the
integrals in these equations using MATHEMATICA.
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