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ILC = Ichthyosis linearis circumflexa 

NTS = Netherton syndrome 

SC = Stratum corneum 
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ABSTRACT 

Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts 

the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine 

protease activity in NTS correlates with changes in the stratum corneum ceramides, which are crucial 

components of the skin barrier. We examined two key enzymes involved in epidermal ceramide 

biosynthesis, glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ 

expression levels and activities of GBA and ASM between NTS patients and controls and correlated the 

expression and activities with i) stratum corneum ceramide profiles, ii) in situ serine protease activity, and 

iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active, 

epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize 

active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly 

in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more 

pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They 

also displayed a stronger increase in stratum corneum ceramides processed via ASM. We conclude that 

changes in the localization of active GBA and ASM correlate with i) altered stratum corneum ceramide 

composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS.   
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INTRODUCTION 

Netherton syndrome (NTS) is a severe autosomal recessive disorder related to uncontrolled serine protease 

activity caused by mutations in the SPINK5 gene (serine protease inhibitor Kazal-type 5) that encodes for 

the protease inhibitor LEKTI  (Lympho-epithelial Kazal-type-related inhibitor). This protein is crucial for a 

proper skin desquamation (shedding of the skin). Increased epidermal serine protease activity in NTS-

patients results in scaling and superficial peeling of the skin and skin inflammation (1, 2). Clinical 

manifestation varies to a high extent: some subjects demonstrate extensive and severe scaly erythroderma 

whereas others develop ichthyosis linearis circumflexa (ILC) with variable severity. The origin for this 

variation is not fully understood (3). Newborns are susceptible to life-threatening dehydration caused by 

increased water loss resulting from a defective skin barrier function (4). This barrier is primarily located in 

the stratum corneum (SC), and formed by terminally differentiated keratinocytes (corneocytes) embedded 

in a lipid matrix (5, 6). This matrix is composed of different lipid classes, like ceramides, cholesterol and 

fatty acids. Whereas in other tissues ceramides are usually involved in metabolism or cell signalling, 

ceramides in the stratum corneum mainly function as skin barrier components. SC Ceramides have very 

unique features compared to those present in other tissues: i) their carbon chains are much longer and ii) 

there is a large variation in their molecular architecture (subclass overview in Supplemental Figure S1)(7, 

8). Ceramides are not synthesized in the SC, but their precursors are synthesized by keratinocytes located 

in the viable epidermal layers (9, 10). These ceramide precursors (glucosylceramides and sphingomyelins) 

are subsequently stored in lamellar bodies. These lamellar bodies contain also the enzymes necessary for 

the final conversion once the lamellar bodies extrude their content into the extracellular environment. This 

takes place at the interface of the viable epidermis – more specifically the stratum granulosum (SG) – and 

the SC. The extruded ceramide precursors are then converted into their final barrier constituents by one final 

conversion step: sphingomyelines are converted into ceramides by acid sphingomyelinase (ASM, 

EC3.1.4.12), whereas glucosylceramides are converted by beta-glucocerebrosidase (GBA, EC3.2.1.45). 

Importantly, GBA may convert glucosyl-precursors of all ceramide subclasses, whereas ASM only converts 

sphingomyelin-precursors into subclasses [AS] and [NS] (Figure 1 and Supplemental Figure S1) (11, 12). 
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Thus, conversion by ASM leads to ceramides with a sphingoid base only (see Supplemental Figure S1 for 

ceramide nomenclature (13)). 

Previously, we reported an altered SC ceramide composition in NTS-patients (14). However, it is unknown 

whether this change in ceramide composition is caused by a disbalance of epidermal GBA and ASM enzyme 

activities in SC of NTS. Besides, the relation between expression/activity of both enzymes and how this 

relates to the ceramide composition and the clinical manifestation are not understood. Our aim was therefore 

to localize both expression and activity of ASM and GBA in the epidermis of 10 NTS-patients ( - ) and 

5 healthy controls. The results provide mechanistic insight how changes in localization of ASM and GBA 

associate with increased [AS] and [NS] SC ceramides, and whether this correlates with the localization of 

protease activity and patient clinical manifestations. 

 

MATERIALS AND METHODS  

Subject inclusion and skin processing 

The study was conducted according to Declaration of Helsinki principles, with written informed consent 

from patients (or parents in case of minors). Study approval was obtained from the Comité de Protection 

des personnes in France, (number 101-13). Registration was performed at the French national regulatory 

agency (ANSM, Agence National de sécurité du Médicament, number 131066B42). Ten NTS-patients 

(details in Supplemental Table S2 and Supplemental Figure S4) were compared to 5 healthy controls. SC 

ceramides were obtained by harvesting SC of the ventral forearm with 10 poly(phenylene sulfide) tape-

strips (Nichiban, Tokyo, Japan) prior to ceramide extraction. Besides, 4 mm biopsies were taken for 

immunohistochemical staining and in-situ enzyme activity assays. Concerning NTS-patients, all biopsies 

were from lesional skin sites except for NTS . Subsequently, biopsies were snap-frozen in liquid nitrogen 

with matrix specimen (TissueTek O.C.T., Sakura Finetek Europe, Alphen a/d Rijn, Netherlands) and cut to 

enzyme studies (see below for more detail, and Figure 2 for an overview of the 

staining procedures).  
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Immunohistochemical staining of ASM and GBA 

Frozen skin sections were washed in PBS, pH=7.4, blocked with horse serum, incubated overnight at 4°C 

with primary antibody for GBA (ab125065, Abcam Cambridge, UK) and ASM (NBP2-45889, Novus 

Biologicals, Littleton, CO). Sections were washed in PBS and labeled with secondary antibody for GBA 

(711-295-152, Jackson ImmunoResearch Laboratories, West Grove, PA) or ASM (ab97035, Abcam). After 

1h incubation period, sections were washed twice in PBS and once in demineralized water and mounted 

using Vectashield with diamidino-phenylindole solution (DAPI, Vector Laboratories, Burlingame, CA). 

 

In-situ zymography of active ASM 

A new method was developed to visualize active ASM in human skin sections by in-situ zymography using 

6-hexadecanoyl-4-methylumbelliferylphosphorylcholine (6-HMU-PC) as ASM specific substrate 

(Moscerdam, Oegstgeest, Netherlands). All optimization steps are described in the supplemental Material 

and Methods. Briefly, skin sections were washed in 1% (v/v) Tween (Bio-Rad Laboratories, Cambridge, 

MA). Sections were incubated with 0.5mM ASM substrate in acetate buffer, pH=5.2, with 0.02% sodium 

azide and 0.2% sodium taurocholate. Subsequently, samples were washed in 1% Tween solution. Sections 

were mounted with Vectashield with propidium iodide solution (PI, Vector Laboratories). 

 

In-situ Activity Based Probe (ABP)-labeling of active GBA 

Active GBA was visualized using the recently developed ABP labeling method (15, 16). Briefly, skin 

sections were washed for 1 min. in 1% (v/v) Tween (Bio-Rad Laboratories) in MilliQ water solution. 

Subsequently, sections were incubated for 1h at 37°C with 100nM ABP MDW941 in McIlvaine buffer 

(150mM citric acid-Na2HPO4, pH=5.2, 0.2% (w/v) sodium taurocholate, 0.1% (v/v) Triton X-100). After 

incubation, samples were washed once in 1% Tween solution and once in MilliQ water. Sections were 

mounted with Vectashield with DAPI solution. 
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In-situ zymography of protease activity  

-patients embedded in Tissue-Tek O.C.T. compound were dried at 

room temperature for 10 min, rinsed with 2% Tween 20-PBS solution for 5 min, followed by 2x5 min 

washing in PBS. Skin sections were incubated overnight at 37

casein (EnzChek Protease Assay Kit, Invitrogen) in 10mM Tris-HCl-buffer, pH=7.8. Subsequently, sections 

were washed three times with PBS for 5 min, then mounted with Mowiol mounting medium.  

 

Fluorescence microscopy 

Protease activity was visualized with a Leica TCS SP8 SMD confocal microscope and analyzed with ImageJ 

software. All other stainings were imaged using a Zeiss Imager.D2 microscope connected to a Zeiss 

AxioCam Mrm camera (Zeiss, Göttingen, Germany). Images were taken at objective lens magnifications of 

20x and 63x (+10x ocular lens magnification). Activity of ASM was visualized by 6- ex=380nm, 

em=460nm. Active GBA was visualized with ABP- ex em=610nm.  

 

SC ceramide extraction and analysis 

A liquid/liquid extraction protocol was used to extract the SC lipids, including the ceramides. This procedure 

is based on the common methods to extract SC lipids, the Folch extraction and the Bligh and Dyer extraction 

(17, 18). Briefly, each SC sample was extracted using three successive extraction steps with different ratios 

of solvent solutions chloroform:methanol:water (2:1:0, 1:1:0, 1:2:1/2 v:v:v). Afterwards, the fractions of 

each individual sample were combined and washed with an equal volume of water and 0.25 M KCl to 

remove possible contaminants from e.g. the tape. Subsequently, samples were dried to N2 gas and the lipids 

were reconstituted in a solution of heptane:chloroform:methanol (95:2½:2½ v:v:v). Full details on this 

method (including validation parameters and extraction efficiencies) is described in our previously reported 

manuscript by Boiten et al. (19). LC/MS analysis was performed by normal phase chromatography (pva-

silica, 100x2.1mm i.d., 5μm particle size; YMC, Kyoto, Japan) attached to an Acquity UPLC H-class device 
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(Waters, Milford, MA, USA), programmed with an elution gradient of heptane towards 

heptane:isopropanol:ethanol (50:25:25). A Xevo TQ-S was used for MS analysis in positive ion mode. 

LC/MS ceramide data is plotted as relative abundance of internal standard corrected peak areas (%).  

 

Statistics 

For statistics on two independent means, p-values were calculated using unpaired t-tests with Welch 

correction (for unequal variances). A Two-way ANOVA with a Sidak’s multiple comparison test was 

performed to determine significant differences between the 12 ceramide subclasses for both groups (Healthy 

vs NTS). Correlations and the corresponding p-values are described with the Pearson correlation coefficient.  

 

RESULTS 

Abnormal ASM-activity and expression in NTS 

We developed an in-situ zymography method using selective ASM substrate that results in fluorogenic 

product 6-HMU (20). Figure 3a demonstrates that in control skin tissue, active ASM is predominantly 

localized at the interface between the stratum granulosum (SG) and SC, as well as the innermost SC layers. 

Fluorescent signal was also observed to a less extent in more superficial SC layers and in the viable 

epidermis. At higher magnifications, individual ‘striations’ of fluorescent signal are observed, illustrating 

ASM-activity in the lipid matrix surrounding the corneocytes. ASM-activity is not homogenously 

distributed among the striations, indicated by the high regional variance in fluorescence intensity. Figure 

3b,c illustrate that ASM is predominantly expressed at the SG/SC interface, and thus resembles to a large 

extent the results of the ASM-activity assay. However, the local variation in intensity that was observed for 

ASM-activity is not observed for the expression, implying that not all expressed ASM is active. Besides, 

ASM is also de novo expressed in the viable epidermis near the cell nuclei (Figure 3c). 

ASM-expression and activity in the epidermis of NTS demonstrated large variations between subjects and 

even within a single skin section (Overview of all individuals in Supplemental Figure S2). NTS-patients 

demonstrate the following differences compared to control skin: i) areas with intense staining of active ASM 
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near (and also in) parakeratotic cells in the SC (Figure 3d). ii) Other areas showed a reduction or almost 

complete absence of active ASM at the SG/SC interface compared with control skin. Instead, activity was 

either located in the middle/outermost SC layers and – in some skin sections – patchy distributed (Figure 

3e), or completely absent (Supplemental Figure S2). iii) NTS  and  demonstrated ASM-activity at the 

SG/SC interface, comparable to control skin (Figure 3f). 

Concerning ASM-expression, two types of expression profiles were observed in NTS skin sections i) Areas 

that demonstrated high intranuclear expression of ASM, either in parakeratotic cells of the SC (Figure 3g) 

and/or throughout upper epidermal cell layers (Figure 3h). Additionally, extracellular ASM-expression in 

these areas was not focused at the SG/SC interface but primarily manifested as a weak staining throughout 

(several layers of) the epidermis, including the SC. ii) Areas that demonstrated expression at the SG/SC 

interface: These areas showed generally a diffuse pattern across multiple SC layers, (Figure 3i). 

 

Altered GBA-activity and expression in NTS 

We compared the GBA-activity pattern with the enzyme expression in NTS and controls. In control skin, 

active GBA is not observed in the dermis or viable epidermis, but is evident throughout the entire SC, with 

increased intensity along the SG/SC interface (Figure 4a). These striations of Fluorescent ABP in the SC 

illustrate active GBA in the SC lipid matrix layers. Staining was not homogenously distributed, indicating 

that active GBA is not equally present throughout the SC.  

This profile changed drastically in NTS-subjects, and a large variance within and between patients was 

observed. In general, GBA-activity was either significantly lower (sometimes hardly present at all, Figure 

4b) or demonstrated a more diffuse pattern with low signal of active GBA located throughout all epidermal 

layers (Figure 4c). NTS skin sections with no visible parakeratosis and a generally more normal appearing 

morphology showed GBA-activity either present at the SG/SC interface or observed throughout all SC 

layers (Figure 4d). 

Regarding GBA-expression, control skin showed a concentrated band at the SG/SC interface and lower SC 

layers, and less expressed in upper SC layers (Figure 4e). De novo synthesized GBA enzyme was also visible 
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surrounding the nuclei of some epidermal cells, particularly those close to the SG/SC interface. In skin 

sections of NTS-patients, GBA-expression was highly variable between and within subjects: Five NTS-

subjects demonstrated some skin section areas in which GBA-expression was comparable to controls, 

showing a clear expression at the SG/SC interface (Figure 4f). For the other skin areas – and the other 5 

NTS subjects – GBA-expression appeared (partially) in the intracellular space throughout the viable 

epidermis, either with or without a more intense expression at the SG and SC transition area (Figure 4g). 

This expression pattern was particularly seen at skin areas with substantial parakeratosis, 

 

Inverse correlation between GBA activity and ASM-activity in single NTS skin sections 

When analyzing complete skin sections from each NTS-patient, six out of ten patients demonstrate a varying 

expression and/or activity profile along each section (multiple skin sections per subject were analyzed). 

Figure 5 demonstrates a representative example of these six patients for whom the following correlations 

were observed: i) In areas with substantial active GBA, almost no active ASM was observed (compare 

Figure 5a-d, area 1 with area 3). These areas had a relatively normal morphology with GBA-expression 

comparable to control skin. ii) Skin section areas with an abnormal morphology (particularly near 

parakeratotic cells) showed a drastic increase of active ASM, sometimes also within the corneocytes instead 

of being localized in the lipid matrix (compare Figure 5a-d, area 2 with area 4). iii) Areas with a mediocre 

intensity staining of active ASM (e.g. not absent, not intense/focused) also demonstrated mediocre 

intensities of active GBA (examples NTS  and  in Supplemental Figure S2). In general, there was strong 

evidence for an inverse relationship between the activity of GBA and ASM, rather then with the expression 

of both enzymes. 

 

Localization of active GBA and ASM coincide with serine protease activity 

Next, we compared the localization of the lipid enzymes with the localization of serine protease activity, 

generally not abundantly present in control skin (Supplemental Figure S2). In contrast, NTS-subjects had a 

large variation in serine protease activity, as observed for the activity of ASM and GBA. For individual 
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subjects, areas with increased serine protease activity matched areas with enhanced ASM-activity and 

decreased/absent GBA-activity. This is illustrated for NTS  in Figure 5.  

 

Altered SC ceramide composition in NTS 

Metabolic processes of GBA and ASM directly affect the SC ceramide composition. Figure 6a shows the 

ceramide profile (expressed as relative peak areas) of the twelve most prominent ceramide subclasses from 

SC of controls versus NTS (individual data in Supplemental Figure S3). SC ceramide data of NTS  was 

excluded due to an extremely low amount of detected lipid content, leading to data that could be easily 

misinterpreted. In general, controls had a comparable ceramide composition with ceramide [NP] the most 

abundant (21, 22). NTS-patients demonstrated a strong reduction in ceramide [NP], and a significant 

increase in sphingosine ceramides [NS] and [AS], the only two ceramide subclasses that are enzymatic 

products of sphingomyelin by ASM (11, 12). Figure 6b shows that the abundance of these subclasses varied 

enormously among NTS-subjects. Abundances of ceramides [AS] and [NS] strongly correlated (R2 = 0.94, 

Figure 6c). Besides, the fraction of very long [EO] ceramides generally decreased in NTS-patients (Figure 

6d). These [EO] ceramides can only be synthesized via GBA and are crucial for a proper skin barrier. 

 

NTS clinical presentation aligns with SC ceramide abnormalities and their respective processing 

enzyme activity 

Table 1 provides an overview of the analyzed parameters and the clinical characteristics for each individual 

NTS-patient. The supplement contains specific information on the scoring procedure for each individual. It 

became apparent that GBA and/or ASM expression did not correlate with the clinical form defined as scaly 

erythroderma or ILC. However, (except for patient 2) proteolytic activity tended to be more elevated in 

NTS-patients with scaly erythroderma than in patients with ILC. Proteolytic activity was increased at areas 

with increased ASM activity and decreased GBA activity. Moreover, a relation between the clinical form 

and the activity score of GBA and ASM was observed. Additionally, the increase in the abundance of SC 

ceramides [AS] and [NS] and the reduction in [EO] ceramide amount were more pronounced in patients 
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with scaly erythroderma compared to patients with ILC, and were not observed in patients with minor forms 

of ILC. 

 

DISCUSSION 

This study is the first to assess and localize the expression and activity of both GBA and ASM in NTS. The 

new zymography method that we applied, uses 6-HMU-PC. This is, according to literature, a more robust 

and selective substrate-alternative than the standard Amplex Red Peroxidase/choline oxidase assay (20, 23). 

The developed method is also less labor intensive and enabled us to visualize with high spatial resolution 

active ASM in human epidermis. Together with GBA-activity labelling, we could localize both active 

enzymes in the SC lipid layers of NTS-patients and controls. This allowed us to relate activity of key lipid 

processing enzymes GBA and ASM to the ceramide profile.  

GBA-activity is abnormal in NTS.  

NTS-patients demonstrated abnormal GBA-expression and activity, particularly at areas with parakeratosis. 

GBA was still expressed in most NTS-patients, but only minimally active at the SC/SG interface where lipid 

synthesis and metabolism are crucial for optimal formation of the lamellar layers (24). A change in the local 

cellular environment (e.g. local pH, discussed below) or the absence of activator protein saposin-C (25, 26) 

may be underlying factors. Reduced/inactive GBA will lead to a cell-mediated response in which GBA-

expression is upregulated by the cell to maintain homeostasis (27), explaining GBA overexpression in 

several NTS-subjects. 
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Increased ASM-activity correlates with the abundance of CER [AS] and [NS]. 

The increase in ASM-activity can (at least in part) explain the increment in subclasses [AS] and [NS] in 

NTS, as those ceramides are reported to be the only subclasses that originate from conversion of 

sphingomyelins by ASM (besides by GBA)(11, 12). The strong correlation between ceramides [NS] and 

[AS] (and between no other ceramides; Supplemental Table S1) supports this relationship. It is known that 

ceramides [AS] and particularly [NS] function as 2nd-messenger molecules in case of cellular stress or an 

inflammatory response (28-30). ASM is a key mediator, upregulated under these circumstances, leading to 

increased activity in parakeratotic cells. This induces an increase in [AS] and [NS] ceramides (31, 32) and 

ultimately an increase in sphingosine-1-phosphate, a strong immunoregulator for trafficking of T- and B-

cells (33-35). Both an altered expression of ASM and elevated levels of ceramides [AS] and [NS] are also 

related to skin diseases like atopic dermatitis and psoriasis (13, 36-38). It is reported that SC from these 

diseases show a decrease in ceramide [NP], similar as observed in our NTS cohort. These changes in the 

SC ceramide composition observed in NTS and other inflammatory skin diseases, indicate that also in other 

diseases the activity of GBA and ASM may be altered. The fact that patients with scaly erythroderma 

(NTS , , ) also demonstrate highly active ASM in parakeratotic cells supports the role of ASM as a 

mediator of stress/inflammation (39). This is in line with the observations of altered lamellar body secretion 

in NTS-patients and granules in stratum corneum areas with parakeratotic cells (40-42). In our NTS-cohort, 

the extent of parakeratosis related with the location and intensity of active ASM: i) SC areas without 

parakeratosis had either very limited activity or active ASM confined to the SC/SG interface (comparable 

to control skin); ii) Conversely, areas of very thick, heavily nucleated SC, as seen in NTS , , , , had 

an intense ASM-activity staining.  

Protease activity matches GBA and ASM activity 

Another key finding from this study is the mutual relationship between GBA, ASM and 

serine protease activities. Although NTS-patients demonstrated an extensive variation in the localization of 

active enzyme, a decrease in GBA-activity coincided with an increase in both ASM-activity and serine 

protease activity. Particularly for NTS , , , , this colocalization is most apparent at heavily nucleated 
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SC areas (Supplemental Figure S2). In contrast, the absence of serine protease activity correlated with the 

presence of active GBA. This implies a direct or indirect link between epidermal proteases and these lipid 

enzymes. One such common factor could be the local skin-pH. The acidic environment of the SC (between 

4-6) is crucial for epidermal barrier integrity, lipid enzymes function, and serine protease activity (43). 

Changes in skin-pH directly affect enzyme activity of lipid enzymes like GBA and ASM, which may lead 

to incompletely processed lamellar membranes and a disruptive skin barrier (23). Moreover, an increase in 

local skin-pH in NTS will lead to further increased protease activity of kallikreins 5 and 7 (besides the 

increment due to LEKTI deficiency). These proteases are involved in the desquamation process and 

degradation of lipid processing enzymes like GBA and ASM (23, 44). Indeed, NTS-patients suffer from 

defective Kallikrein 5/7 inhibition, which may contribute to the defective skin barrier in these patients (42, 

45). The increase in ceramides [AS] and [NS] will contribute to a more permeable barrier, as demonstrated 

with lipid membranes in which these ceramide subclasses were increased (46). 

Correlation with clinical form of NTS 

Finally, we elaborate on the relation between the clinical manifestations of the 10 NTS-subjects and the 

relation with SC lipids and lipid enzymes. No clear correlation between the expression of GBA/ASM and 

the clinical form was observed, in line with our previous study in NTS (14): NTS  and  had extensive 

ILC, but their expression closely resembled that of healthy skin. Additionally, NTS  and  were 

diagnosed with a minor form of NTS, but did show major differences in both GBA and ASM-expression.  

Strikingly, activity scores of both enzymes did very well match the clinical form of almost all subjects: all 

subjects demonstrated deviations in ASM+GBA-activity compared to control skin, including mild forms of 

NTS or non-lesional skin (NTS ) who also displayed altered ASM+GBA-activity. Marked abnormal 

localization of GBA+ASM-activity was associated with the most severe form of NTS with scaly 

erythroderma (NTS , , ). These subjects also demonstrated the highest levels of [AS] and [NS] 

ceramides. In contrast, NTS ,  who had a minor form of NTS, displayed a ceramide composition that was 

(of all NTS-subjects) most comparable to control skin. 

 at W
alaeus Library / B

IN
 299, on M

ay 12, 2020
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org/


Page 14 of 25 
 

Future research on NTS patients as well as other patients with skin diseases that demonstrate similar changes 

in SC lipids (e.g. psoriasis, atopic dermatitis) could elucidate whether the observed changes in SC ceramide 

subclasses and their respective enzyme profile (expression and activity) is a unique feature of NTS or a 

more general profile for skin diseases. The toolbox of methods combined in this NTS-study may be used 

for a better understanding of the disease, and may even assist in diagnosing (the severity of) NTS in 

individual patients. Current diagnosis of NTS focuses on dermatological findings or by Trichoscopy (hair- 

and scalp structure evaluation), which may sometimes prove difficult or could – even today – lead to missed 

cases, in which misdiagnosis occurred for many years (47). Current DNA screening tests for SPINK5 

mutations are, in practice, not feasible for daily diagnostic confirmation. Therefore, analysis of the 

ceramides and the respective enzyme expression/activity localization can be useful as a complementary 

method that may assist in diagnosing these patients. 

Overall, the introduction of a new method to analyze both expressed and active ASM and GBA in-situ 

enabled us to reveal the relation between these lipid enzymes, the protease activity, and the SC ceramide 

composition in NTS patients. In addition, we demonstrate that differences in these enzyme activities relate 

to the clinical form of NTS. 
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TABLES 

 

Table 1: Overview of the individual NTS-subjects and their resemblance to control skin 

 GBA+ASM enzymes SC Ceramides Protease 

Subject Clinical form Expression 
Score 

Activity 
Score 

[AS]+[NS] 
(%) 

[EO] 
(%) 

Activity 
Score 

        
            
        
        
         
        
          
            
             

         
Control      

Each NTS-subject -  was characterized for the clinical form, and scored on enzymes GBA+ASM, the 

ceramide composition, and the protease activity. Scoring for expression and activity of lipid enzymes and 

protease was performed by classifying them among 4 subgroups: resembling control skin (o), mild changes 

(+), medium changes (++), or very different compared to control skin (+++). Values of the SC ceramides 

are the relative abundance of the respective sublasses (± SD for the heatlhy control group). ND indicates, 

not determined, * indicates unreliable outcomes (see text). 

  

Minor ILC + + + 9.8 8.2 + 
Minor ILC + + + + + 9.8 6.5 + + + 

Extensive ILC o + + 24.0 9.2 o 
Extensive ILC o + + 13.9 11.2 o 
Extensive ILC + + + + 19.0 6.9 + 
Extensive ILC * +   + + 18.7 5.5 + 
Extensive ILC + + + + * 3.5   * 0.0   + + 

Scaly erythroderma + + + + + 27.7 2.4 + + + 
Scaly erythroderma + + + + + + 34.7 4.5 + + + 
Scaly erythroderma + + + + + 50.0 1.3 ND 

Healthy (n=5) o o 8.0 ± 1.2 8.7 ± 0.5 o 
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FIGURES AND FIGURE LEGENDS 

 

 

 

Figure 1: Schematic overview illustrating the roles of GBA and ASM in human epidermis. Before 

ceramides become constituents of the SC barrier, a final metabolic conversion takes place in which ceramide 

precursors – either glucosylceramides or sphingomyelins – are converted by GBA or ASM, respectively. 
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Figure 2: Overview of all staining methods used to visualize in-situ expression and activity of GBA, 

ASM, and serine protease. Skin sections on microscope glass were treated to one of the different staining 

procedures: a) Expression of GBA and ASM is achieved via immunohistochemical staining. a1) First, a 1st 

antibody (GBA or ASM specific) binds to both active and inactive enzyme during an overnight staining 

period. a2) After washing procedures, a 2nd antibody with fluorescent label binds to the 1st antibody in a 
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1h incubation period. a3) After a second washing procedure, samples were analyzed by fluorescent 

microscopy. b) Activity of GBA was visualized by Activity Based Probe (ABP) labeling. b1) Skin sections 

are exposed to a solution of ABP-MDW941, followed by a 1h incubation period in which the ABP binds 

with high affinity and specificity to active GBA only. b2) Subsequently, Samples are washed and active 

GBA is localized via fluorescent microscopy. c) Both protease activity and the new method to visualize 

ASM activity is established by in-situ zymography. c1) First, skin sections are exposed to a solution with 

substrate that can specifically bind to the enzyme of interest (6-HMU-PC to visualize active ASM, and 

BODIPY FL casein for serine protease activity). c2) Then, an incubation period is maintained in which the 

substrate is converted into a product that is fluorescent (1h for ASM activity, overnight for protease activity). 

c3) Finally, samples are washed and active ASM or protease is visualized by microscopy. Thus, localization 

of active enzyme is achieved by visualizing fluorescent product that has been converted by the enzyme of 

interest. Note that for all methods a-c), sections were mounted with mounting medium containing a 

counterstaining solution with DAPI or PI to stain for nuclei prior to microscope analysis.  
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Figure 3: Epidermal ASM activity and expression in controls (a-c) and NTS (d-i). a) In-situ 

zymography visualizing ASM-activity (blue, 63x magnification, counterstaining with PI (red)). Inset/zoom 

illustrates the localization of active ASM in the lipid layers, and the high local variation in active ASM. b) 

ASM-expression (red, 20x magnification, counterstaining with DAPI (blue)). c) Higher magnification (63x) 

localizes ASM-expression in the SC lipid layers. Arrows indicate location of ASM-expressed near nuclei of 

viable keratinocytes. d-f) representative in-situ zymography of ASM in different NTS-patients (63x 

magnification). g-i) Representative ASM-expression in different NTS-patients (20x magnification). Note 

that purple staining indicates nuclei (blue DAPI staining) that also show intense expression of ASM (red). 

Scale bars represents 20 m. See Supplemental Figure S2 for an overview of all individual NTS patients 

and ASM expression/activity patterns 
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Figure 4: GBA staining in controls and NTS skin sections. a-d) Active GBA (yellowish, 63x 

magnification). a) GBA labeling representative for control subjects including a magnified area 

demonstrating labeling in the SC lipid layers, and b-d) three representative images for three different GBA 

activity patterns observed in NTS-subjects. Dotted grey line represent the SG/SC interface. e-g) skin 

sections stained for expressed GBA (red, 20x magnification) of e) control human skin and f,g) two types of 

expression profiles, representative for all NTS-subjects. At areas with parakeratosis, usually a narrow 

staining at the SG/SC interface was not present; Rather a transition area was observed (indicated by *). In 

all sections, DAPI (blue) was used as counterstaining. Scale bar represents 20 m. See Supplemental Figure 

S2 for an overview of all individual NTS patients and GBA expression/activity patterns. 
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Figure 5: High local variation in GBA, ASM, and protease staining and/or activity in NTS patients. 

Five different stainings on five sequential -frozen sections from NTS  and presented with 

matching skin areas. a) GBA-activity (yellowish, 63x magnification) from two different areas (1,2) within 

a single cut section (blue = DAPI counterstaining). b,c) Respectively GBA and ASM-expression, labeled in 

red (with DAPI as blue counterstaining, magnification 20x). d) ASM-activity (light blue, 63x magnification) 

from two different areas (3,4) within a single cut section (red = PI counterstaining). e) Serine protease 

activity is shown in purple/orange (63x magnification) including a magnified area illustrating active serine 

proteases at some areas in the SC lipid layers. 
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Figure 6: Data on the SC ceramides in controls (green) and NTS-patients (red). a) Bar plot of the 

ceramide abundances (presented as relative peak area%) of the 12 ceramide subclasses (mean ± 95% CI). 

P-values were calculated using a Two-way ANOVA with Sidak’s multiple comparison test. b,c) Dot plot 

and correlation plot of ceramides [AS] + [NS]. As explained in text, NTS  was excluded in all statistical 

analyses. (Including NTS  changes R2 value to 0.93). d) Dot plots of the [EO]-ceramides, known to be 

important for a proper skin barrier function. Horizontal lines and their corresponding values indicate means 

± SD. Unpaired t-tests with Welch correction were used to obtain p-values for B) and D). 
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