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Abstract: Reflectance, a crucial earth observation variable, is converted from hyperspectral to
multispectral through convolution. This is done to combine time series, validate instruments,
and apply retrieval algorithms. However, convolution is often done incorrectly, with reflectance
itself convolved rather than the underlying (ir)radiances. Here, the resulting error is quantified for
simulated and real multispectral instruments, using 18 radiometric data sets (N = 1799 spectra).
Biases up to 5% are found, the exact value depending on the spectrum and band response. This
significantly affects extended time series and instrument validation, and is similar in magnitude
to errors seen in previous validation studies. Post-hoc correction is impossible, but correctly
convolving (ir)radiances prevents this error entirely. This requires publication of original data
alongside reflectance.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Reflectance, the spectral fraction of light reflected by a surface, is an essential earth observation
(EO) variable. It forms the basis for data products such as chlorophyll and suspended matter in
water [1–3], and canopy cover and biomass on land [4,5]. As such, it is a routine data product for
EO satellites, including NASA’s Landsat and ESA’s Sentinel programs, and in situ radiometers.
Spectral data are divided into two categories, namely multispectral and hyperspectral. Mul-

tispectral instruments observe in several broad, discrete wavelength bands. Examples include
the Moderate Resolution Imaging Spectrometer (MODIS) and the Visible Infrared Imaging
Radiometer Suite (VIIRS), but also in situ instruments including unmanned aerial vehicles
(UAVs) and even smartphones [6]. Conversely, hyperspectral instruments provide continuous
wavelength coverage with a fine spectral resolution. Examples include the TriOS RAMSES,
Seabird HyperOCR, and ASD FieldSpec field-going spectroradiometers, as well as the Ocean
Color Instrument (OCI) due to fly on the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)
mission. Hyperspectral data have a finer spectral sampling and, typically, resolution and thus
contain more information than multispectral ones, but depending on the instrument design, often
collect less light in each band, giving a worse signal-to-noise ratio.

Since the current EO landscape is a mixture of both types, it is often desirable to convert data
between the two, typically from hyper- to multispectral. Three common use cases for this process
exist, namely combining time series, instrument validation, and retrieval algorithms.

The first use case is merging and extending time series using different sensors. Long-term, high
temporal resolution time series are necessary to study fundamental biogeochemical processes
and long-term effects [7,8] such as climate change [9]. Current efforts focus on merging
multispectral time series, on the radiance or reflectance level [10–12], achieving relative errors
on reflectance <5% [10,12], or on the end product level [7,13]. Future efforts will focus on
extending multispectral time series with new hyperspectral sensors, for example extending
MODIS/VIIRS aerosol optical depth (AOD) series with OCI (PACE) data [14]. This is done
by converting hyperspectral data to the multispectral sensor’s bands, to simulate what the latter
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would have measured. However, calibration differences and sensor characterization imperfections
can introduce significant biases, for example up to 0.10 AOD for OCI-MODIS/VIIRS [14].
The second use case is the validation of multispectral (often satellite) data using in situ

hyperspectral sensors. This is done by comparing simultaneous match-up measurements from
both instruments [15]. Validation is done on all products, including normalized radiance [16],
reflectance [4,11,17,18], and derived products such as chlorophyll [7,19] and inherent optical
properties (IOPs) [18]. Similar validation is done for in situ multispectral sensors, such as UAVs
[20] and smartphones [21,22]. Vicarious calibration similarly involves comparing match-up data,
but aimed at determining satellite gain factors [23]. Since vicarious calibration is performed on
(normalized) radiance rather than reflectance, it is outside the scope of this work, though a brief
discussion is given in Sect. 2.4.

The third use case is the application of multispectral retrieval algorithms to hyperspectral data.
Such algorithms are commonly based on the ratio between spectral bands and are thus called
band-ratio algorithms. For example, band-ratio algorithms relating chlorophyll to Sentinel-2A
(S2A) Multi-Spectral Instrument (MSI) bands have been developed for Vietnamese [24] and
Estonian [1] lakes, the latter with a mean standard error in chlorophyll-a of 5%. While derived on
multispectral data, such algorithms are also applied to hyperspectral data, both to derive products
and for validation, requiring a spectral conversion. Differences between these converted data and
in situ data have been found [25], which may be due in part to incorrect treatment of radiometry.
It should be noted that instead of a spectral conversion, often only the central band wavelength
reflectance is used [3,19].

Converting hyperspectral data to multispectral bands is commonly, though not exclusively (see
Sect. 2.2.1), termed spectral convolution. An in-depth description is provided in Sect. 2., but
in short, the hyperspectral data are multiplied by the spectral response function (SRF) of the
multispectral band and the product is integrated. This is done for quantities including radiance
[26,27], optical thickness [27,28], IOPs [18,29], vegetation indices [5], and reflectance [4,29].
However, reflectance is often convolved incorrectly. As shown in Sect. 2., hyperspectral

reflectance cannot simply be convolved to simulate what a multispectral instrument would
observe. Instead, the numerator and denominator, (ir)radiances, should be convolved sep-
arately and then divided. This error occurs frequently in the literature, for example in
[1,3–5,11,13,17,18,20–22,24,30,31], with few works convolving radiances before division
[19,25,32].

This work quantifies the error induced by incorrect spectral convolution of reflectance in each
of the three use cases, for a variety of synthetic and real instruments using 18 archival data sets
totaling N = 1799 spectra. To narrow the scope, this work focuses on remote sensing of ocean
color. However, the principles and methods apply broadly to any fractional quantity, including
other reflectances (soil, vegetation), attenuation coefficients, and degree of polarization, as well
as spatial convolution [33]. While the existence of this error has been pointed out previously
[29,32,34] and quantified at / 1% for a single data set and sensor [29], a large-scale quantitative
assessment has not yet been published.

This work fits into a wider field of EO error analysis. Recent efforts include investigations into
the out-of-band response of EO sensors [35], the impact of differing spectral [32] and spatial
[33] resolutions on satellite match-up analyses, and the impact of hyperspectral SRFs having
a non-zero bandwidth [36]. On the experimental side, significant efforts have gone into glint
removal in above-water radiometry [37–39] and rigorous characterization of instrumental [6,20]
and methodological [15,34] uncertainties. A broad, in-depth overview of uncertainties in ocean
color data is provided in the recently published International Ocean Color Coordination Group
(IOCCG) report number 18 [40].
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Sect. 2 describes the theoretical background of reflectance and spectral convolution. Sect. 3
describes the data used in this work and the method for quantifying the convolution error. Results
are presented in Sect. 4. Finally, Sect. 5 contains a discussion of the results and conclusions.

2. Theoretical background

2.1. Reflectance

Reflectance R is the ratio of upwelling over downwelling (ir)radiance. Radiance L(λ, θ, φ) is the
radiant energy per wavelength λ propagating in a direction (θ, φ), in W m−2 nm−1 sr−1, while
irradiance E(λ) is L integrated over a solid angle, in W m−2 nm−1. The units of R depend on
which ratio is taken. Since this work deals only with wavelength dependence, (θ, φ) terms are
dropped henceforth for clarity.

Different reflectances can be defined by dividing different (ir)radiances. Examples include the
bi-directional radiance reflectance [4], the non-directional irradiance reflectance [31], and the
uni-directional remote sensing reflectance Rrs used in ocean color [37,39]. As defined in Eq. (1),
Rrs is the ratio of water-leaving radiance Lw [37] over downwelling irradiance Ed [41], in units of
sr−1. This work focuses on Rrs, but the same mathematics apply to any reflectance.

Rrs(λ) =
Lw(λ)
Ed(λ)

(1)

2.2. Spectral convolution

Multispectral data are simulated from hyperspectral data through spectral convolution. As shown
in Eq. (2), this involves multiplying the hyperspectral data L(λ) by the multispectral band SRF
SB(λ), integrating the result over all wavelength in the band (

∫
λ∈B dλ), and normalizing by the

effective bandwidth. In this work, convolved quantities are denoted by a bar, such as L̄(B)
in Eq. (2). In practice, spectral convolution is often a sum over discrete L and SB data. The
convolution process is shown graphically in Fig. 1.

L̄(B) =

∫
λ∈B L(λ)SB(λ)dλ∫
λ∈B SB(λ)dλ

(2)

Fig. 1. Demonstration of spectral convolution with a boxcar SRF SB (bottom left). Each
column shows the convolution of a spectrum (Lw, Ed , Rrs) with SB, the shaded area showing
the integral as calculated with Eq. (2). The × symbol indicates a spectral convolution. The
band-average value of Rrs calculated in R-space is 42, significantly different from the correct
(L-space) value of 5.2/0.3 ≈ 15. Axis labels and units are dropped for clarity.

Convolving hyperspectral data is really an approximation, due to the finite spectral resolution
of hyperspectral sensors. As derived in Appendix A, this method is valid if the full width at half
maximum (FWHM) of the multispectral band is at least double that of the hyperspectral sensor.
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2.2.1. Nomenclature

Various names for this process are used in the literature, including convolution or convolving
[4,5,11–13,15,17,20,22,26,31,32,34,36,41], SRF-weighting [28], simulation [25], and band-
averaging [6,18,21,26,27,29]. Since it is the most common term, ‘spectral convolution’ is used in
this work. However, it should be noted that this term may instead refer to smoothing the spectrum
with a kernel [42]. Finally, since neither process involves transforming the SRF, both are actually
cross-correlations rather than convolutions.

2.3. Reflectance convolution

Just as the hyperspectral remote sensing reflectance Rrs(λ) is Lw(λ) over Ed(λ), the convolved
R̄rs(B) is L̄w(B) over Ēd(B). Both are calculated as in Eq. (2) and then divided, as shown in
Eq. (3). Convolving (ir)radiances to calculate a band-average reflectance will be referred to in
this work as working in radiance space or L-space, and the result as R̄L

rs(B). Mathematically, this
is the correct method for convolving Rrs to simulate multispectral data.

R̄L
rs(B) =

L̄w(B)
Ēd(B)

=

∫
λ∈B Lw(λ)SB(λ)dλ∫
λ∈B Ed(λ)SB(λ)dλ

(3)

Instead, one might simply convolve Rrs itself. This will be referred to as working in reflectance
space or R-space and the result as R̄R

rs(B). The expression for R̄R
rs(B) is given in Eq. (4).

R̄R
rs(B) =

∫
λ∈B Rrs(λ)SB(λ)dλ∫

λ∈B SB(λ)dλ
=

∫
λ∈B

Lw(λ)
Ed(λ)

SB(λ)dλ∫
λ∈B SB(λ)dλ

(4)

Working in R-space is incorrect, as shown in Fig. 1 and the following example. First, let the SRF
SB(λ) be a boxcar response of 1 for 0 ≤ λ ≤ 1 and 0 elsewhere. Then all integrals need only
be evaluated for those wavelengths and the SRF bandwidth is 1. Second, let Lw(λ) = eeλ and
Ed(λ) = e−eλ. Such spectra are not physical but demonstrate the mathematical principles well.
As shown in Eqs. (5) and (6), R̄L

rs(B) ≈ 15 and R̄R
rs(B) ≈ 42 differ significantly.

R̄L
rs(B) =

∫ 1
0 eeλdλ∫ 1
0 e−eλdλ

≈
5.2
0.3
≈ 15 (5)

R̄R
rs(B) =

∫ 1
0

eeλ
e−eλ dλ
1

=

∫ 1

0
e2eλdλ ≈ 42 (6)

2.4. General rule

Convolution is a useful tool, but the order of operations is not always intuitive. A general rule of
thumb can be used, which applies to any kind of convolution (spectral or spatial) when converting
high- to low-resolution (spectral or spatial) data. For other purposes, such as smoothing,
reflectance itself can be transformed.

As a rule of thumb, only quantities the lower-resolution sensor would observe can be convolved.
This includes the at-sensor (ir)radiance (in physical units [34]) but not reflectance and derived
products. Propagation of in situ radiances, through surfaces when measured underwater [37]
or through the atmosphere for vicarious calibration [23], must occur prior to convolution to
accurately simulate the radiance at a multispectral sensor. Simplifications may be necessary
[27,35,43] but should be mathematically justified. Finally, hyperspectral upwelling radiance Lu,
measured in- or above-water, should be converted to Lw [37] before convolution when comparing
it to multispectral Lw.
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3. Methods

Archival data sets containing (ir)radiance and reflectance data were used to test the principles
described in Sect. 2 and quantify the errors resulting from working in R-space rather than L-space.
All analysis was done using custom Python scripts, available at https://github.com/burggraaff/
reflectance_convolution.

3.1. Radiometric data

18 archival radiometric data sets were used [44–58], totalingN = 1799 spectra. Data were sourced
from the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) [59] and PANGAEA
(https://pangaea.de/). Only data sets including either the original radiometric data or Rrs and Lw
or Ed were used. In most cases, the given Rrs and Ed were used and Lw = RrsEd was reconstructed.
This reduced the amount of post-processing, such as glint removal, that was necessary. All spectra
used in the further analysis are shown in Fig. 2. An overview of the data and post-processing is
provided in Appendix B.

Fig. 2. All radiometric data used in this work, in SI units. N(λ) is the number of spectra
that include wavelength λ. The bottom left panel is a zoom on the top right one. Individual
spectra are plotted with high transparency.

Small imperfections in the resulting data, such as residual atmospheric bands in Rrs (Fig. 2),
are no problem. For this work, it is only necessary to obtain a set of realistic spectra, not to
determine IOPs. Negative Rrs were removed since they are not physical but instead the result of
measurement error or over-correction of glint; this is no problem for the same reason.

3.2. Spectral convolution

Spectral convolution was implemented in the custom Python library described above. The
radiometric data were interpolated to the SRF wavelengths. If the radiometric data and SRF
wavelengths did not overlap fully, the convolution was only done if the integral of the SRF over
the non-overlapping wavelengths was ≤ 5% of its total integral. The integration was done using
the SciPy implementation of Simpson’s rule in the integrate.simps function.

In each experiment, data were convolved in both L- and R-space, and the resulting reflectances
were compared in absolute and relative terms. The absolute difference is ∆R̄rs = R̄R

rs(B) − R̄L
rs(B),

meaning a positive ∆R̄rs corresponds to an overestimation in R-space. The relative difference
was normalized to R̄L

rs(B), and set to 0% if R̄L
rs(B) = 0 sr−1. All spectra were treated separately,

enabling a statistical analysis of the difference on varying input spectra. Due to the finite
spectral resolution of the hyperspectral data, some data sets could not be convolved with some
multispectral SRFs (see Appendix A).

https://github.com/burggraaff/reflectance_convolution
https://github.com/burggraaff/reflectance_convolution
https://pangaea.de/
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3.3. Spectral response functions

3.3.1. Synthetic

The dependence of ∆R̄rs on band location and width was investigated by generating various
synthetic boxcar and Gaussian filters. Both are common approximations of real SRFs [5,29].
Boxcars were evaluated on wavelengths with an non-zero response, Gaussians on wavelengths
from 320–800 nm. For both, a 0.1 nm step size was used to properly sample narrow bands.
Central wavelengths between 330–809 nm (1 nm steps) and FWHMs of 6–65 nm (1 nm steps)
were used, representative of real multispectral instruments (Sect. 3.3.2).

Table 1. Summary of radiometric data sets used in this work. Spectral range, FWHM, and step are
in nanometers, the former rounded to the nearest integer. The number of spectra N is the number

after post-processing and removal of bad data.

Label Reference Location Instrument Spectra

N Range FWHM Step

as11 [44] Arabian Sea HyperTSRB 8 398 – 798 10 3.3

cariaco [45] Caribbean Sea SpectraScan PR650 58 380 – 780 8 4

clt-a [46] Chesapeake Bay ASD 56 350 – 1000 3 2

clt-s [46] Chesapeake Bay HyperSAS 161 354 – 796 10 2

gasex [47] South Atlantic Ocean HyperTSRB 7 352 – 710 10 2

he302 [48] North Sea RAMSES 41 320 – 950 10 5

msm213-h [49] North Atlantic Ocean HyperPro 56 360 – 800 10 5

orinoco [50] Caribbean Sea, Orinoco River SpectraScan PR650 70 380 – 780 8 4

rsp [51] Atlantic Ocean, Pacific Ocean HyperPro 27 349 – 802 10 3.3

sabor-h [52] Atlantic Ocean HyperPro 12 349 – 802 10 3.3

sabor-s [52] Atlantic Ocean HyperSAS 6 358 – 749 10 1

seaswir-a [53] Gironde, La Plata ASD 80 350 – 1300 3 1

seaswir-r [53] Gironde, La Plata, Scheldt RAMSES 198 350 – 900 10 2.5

sfp [54] Florida Strait SVC GER 1500 16 399 – 801 3 1.5

smf-a [55] Gulf of Mexico ASD 46 350 – 1000 3 2

sop4 [56] North Sea, Skagerrak RAMSES 870 360 – 750 10 5

taram [57] Mediterranean Sea HyperPro 42 348 – 803 10 3.3

tarao [58] Global HyperPro 45 401 – 750 10 3.3

3.3.2. Real instruments

The behavior of ∆R̄rs for real multispectral instruments, namely eleven satellite instruments
and three low-cost sensors, was also investigated. A selection of these is shown in Fig. 3.
Panchromatic bands were not used as they are intended for spatial sharpening, not reflectance
measurements. Only bands fitting the radiometric data (within 320–1300 nm) were used. The
satellite instruments were the Enhanced Thematic Mapper Plus (ETM+) aboard Landsat 7 [60],
Operational Land Imager (OLI) aboard Landsat 8 [61], Coastal Zone Color Scanner (CZCS),
Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), MODIS aboard Aqua and Terra, Medium
Resolution Imaging Spectrometer (MERIS), VIIRS aboard Suomi NPP [62], MSI aboard S2A/B
[63], and the Ocean and Land Colour Instrument (OLCI) aboard Sentinel-3A/B (S3A/B) [64].
These are all commonly used to measure Rrs. The low-cost sensors were one UAV, the DJI
Phantom Pro 4, and two smartphones, the iPhone SE and Samsung Galaxy S8 [6]. Such sensors
have become popular in their own right as they can provide radiance data, if radiometrically
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calibrated [6,20,21], but also serve as proxies for new cubesat sensors such as the Planet Labs
RapidEye and Dove series.

Fig. 3. Selected spectral response functions (SRFs) of real sensors used in this work, labeled
from top to bottom. For this plot, each SRF was normalized to a maximum of 1.

The radiometric response and SRF may be affected by mechanical and electronic effects,
including satellite launch and sensor drift, as well as by viewing angle and electronic cross-talk.
Using up-to-date calibration data from the instrument developer negates these problems. Here,
the SRFs recommended by instrument developers or in literature were used, representative of
what is done in the wider literature.

3.4. Retrieval algorithm propagation

Finally, the error induced by R-space convolution was propagated through several retrieval
algorithms. These were the polynomial OCx chlorophyll-a (Chl-a) algorithms [7] for MODIS
(OC6, OC3), SeaWiFS (OC4), MERIS (OC4), VIIRS (OC3), and CZCS (OC3), the exponential
Ha+17 S2A/MSI Chl-a algorithm [24], and the polynomial Lymburner+16 (LL+16) OLI total
suspended matter (TSM) algorithm [13]. These are representative of most multispectral retrieval
algorithms in the literature, which differ only in bands used or coefficient values.
Equation (7) describes OCx, with [Chl-a] in mg m−3, ai instrument-specific empirical

coefficients, and λB, λG the instrument’s blue and green bands. The Ha+17 algorithm is given in
Eq. (8), with B3, B4 the Rrs in the respective S2A/MSI bands. The LL+16 algorithm is given in
Eq. (9), with G, R the Rrs in the OLI Green and Red bands, and TSM in mg L−1.

log10 ([Chl-a]) = a0 +
4∑
i=1

ai
[
log10

(
Rrs(λB)

Rrs(λG)

)] i
(7)

[Chl-a] = 0.80 exp
(
0.35

B3
B4

)
(8)

TSM = 3957
(
G + R
2

)1.6436
(9)

For each input spectrum, both R̄L
rs and R̄R

rs were propagated through each algorithm and the results
were compared, analogous to the R̄rs comparison described in Sect. 3.2.
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4. Results

4.1. Simulated instruments

The reflectance convolution error ∆R̄rs was calculated for the synthetic SRFs described in Sect.
3.3.1. As an example, Fig. 4 shows ∆R̄rs as a function of central wavelength λc and FWHM
for the seaswir-a (see Table 1) data. The sign and magnitude of the error depend on the input
spectrum. For example, the local minima around 400 and 520 nm correspond to local maxima in
the derivative Ed spectrum dEd/dλ. Similarly, the local maxima at 480 nm correspond to a local
minimum in dEd/dλ. Furthermore, the magnitude of ∆R̄rs increases with wider FWHMs. This
is expected since Ed, Lw, and Rrs are less spectrally flat over a wider spectral range [29].

Fig. 4. Relative reflectance convolution error (Sect. 3.2) in the seaswir-a data with boxcar
filters of varying FWHM, as a function of central wavelength λc. Lines indicate the median
error for each filter, shaded areas the 5%–95% range.

Rather than a random error around a median of 0, the difference is a systematic bias in either
direction. This is especially clear in Fig. 4 at λc ≤ 460 nm. Being a bias, it needs to be corrected
rather than simply incorporated into an error budget. This will be discussed in Sect. 5.
Similar trends were found in the other data sets and with the Gaussian SRFs. For the latter,

the λc–∆R̄rs relation was similar to boxcars with the same FWHM, but larger in magnitude and
smoother. This is due to the Gaussian wings coveringmore of the spectrum than the boxcar’s sharp
edges. For example, for λc = 420 nm, ∆R̄rs = (−1.5±0.2)% for a 30 nm boxcar and (−3.8±0.4)%
for a 30 nm Gaussian, error bars indicating the 5%–95% range, for the seaswir-a data. Finally,
the same boxcar filter applied to the tarao data gave ∆R̄rs(420 nm) = (+0.01 ± 0.02)%. This
value is much smaller since the tarao spectra are smoother than the seaswir-a ones; a similar
trend was seen across all data sets. These differences highlight the importance of determining
this error for each filter and data set, as an ensemble correction is impossible.

4.2. Real instruments

∆R̄rs was also calculated using the real SRFs described in Sect. 3.3.2. For example, Fig. 5
shows the distribution of ∆R̄rs across all data for the five OLI bands. As with the synthetic
sensors, ∆R̄rs is typically a bias in one direction rather than a random error and its magnitude
and sign depend on the input spectrum. For example, in the OLI Blue band ∆R̄rs>0 for 77%
(1380/1799) of spectra while in Green ∆R̄rs<0 for 80% (1444/1799). Furthermore, a similar trend
for larger errors with wider bands was seen, for example in the OLI Green band (λc = 562 nm,
FWHM = 57 nm) ∆R̄rs = (−0.2+0.4−0.9)% while in the similar S3A/OLCI Oa6 band (λc = 560 nm,
FWHM = 10 nm) ∆R̄rs = (−0.00+0.03−0.05)%. No significant differences were found between paired
instruments such as S3A/OLCI and S3B/OLCI. Some multispectral band-data set combinations
are technically invalid (Appendix A); however, these need not be excluded from these overall
statistics, as they do not affect the observed trends.
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Fig. 5. Reflectance convolution error in the OLI bands using all data. The boxplots show
the error distribution across the data, with an orange median line, first–third quartile boxes,
and 5%–95% percentile whiskers. Outliers are not shown for clarity.

Comparing the convolution error between data sets, as in Fig. 6 for the OLI Green band, again
revealed significant differences. Depending on the data, ∆R̄rs was a systematic underestimation
(tarao ∆R̄rs = (−0.7 ± 0.2)%), overestimation (seaswir-r ∆R̄rs = (+0.2 ± 0.1)%), or a random
error around 0 (orinoco ∆R̄rs = (+0.1+0.3−0.5)%). This is similar to what was observed in Sect. 4.1
and again shows that the error must be quantified separately for each filter and data set.

Fig. 6. Reflectance convolution error in the OLI green band for each data set. The boxplots
represent the error distribution within each data set as in Fig. 5.

4.2.1. Low-cost sensors

Finally, the SPECTACLE low-cost sensors [6] are particularly interesting due to their broad
bands. The convolution error in their RGB bands, using all data, is shown in Fig. 7. Interestingly,
∆R̄rs was largest in the relatively narrow R bands, possibly due to the shapes of the input spectra
or the multi-peaked SRFs [6]. Overall, the large magnitude of ∆R̄rs (down to −5% in the R bands)
highlights the importance of correct spectral convolution for these sensors.

4.3. Retrieval algorithms

Finally, the reflectance convolution error was propagated through the retrieval algorithms
described in Sect. 3.4. The results for the smf-a data set are shown in Fig. 8. As in the previous
sections, the propagated error in Chl-a and TSM was a bias of a few percent. Its sign varied by
data set and by algorithm; for example, for the seaswir-a data, VIIRS OC3 underestimated Chl-a
(∆Chl-a = −1.4+0.7

−0.3%) while CZCS OC3 overestimated it (∆Chl-a = +0.8+0.3
−0.1%). The magnitude

of the error was consistently on the percent level for all data sets and algorithms. These results
are representative for most band-ratio algorithms, as discussed in Sect. 3.4.
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Fig. 7. Reflectance convolution error in the SPECTACLE sensor RGB bands using all data.
The boxplots represent the error distribution within each data set as in Fig. 5.

Fig. 8. Propagated convolution error in the Chl-a (OCx, Ha+17) and TSM (LL+16) retrieval
algorithms (Sect. 3.4), using the smf-a data set. The boxplots represent the error distribution
within each data set as in Fig. 5.

5. Discussion & conclusions

In this work, the effects of incorrectly convolving reflectance when simulating multispectral data
(Sect. 2.) were investigated. While this error has been pointed out previously [29,32,34], it still
commonly occurs in the literature (see Sect. 1.). Only one quantitative analysis was found, in
which for one data set and one sensor the difference was found to be /1% and neglected [29].
However, this result cannot be generalized to all data sets and sensors, as shown in this work.
Significant errors, up to several percent, in the remote sensing reflectance (∆R̄rs) were found

for all data sets and sensor bands (Sects. 4.1 and 4.2). The error was largest near features in
the input spectra, particularly peaks in the derivative of Ed (dEd/dλ), and for sensors with wide
FWHMs, especially low-cost sensors (Sect. 4.2.1). For example, in the narrow (FWHM ≈ 10
nm) OLCI bands, |∆R̄rs | / 0.1%, while in the wide (FWHM >50 nm) R bands of low-cost
sensors, |∆R̄rs |>5% for >5% of the spectra. Furthermore, the magnitude and sign of ∆R̄rs differed
significantly between data sets due to varying spectral shapes.
Since uncertainty requirements are typically ±5% for satellite-derived Rrs, and even stricter

for validation data [40], errors on this scale are significant. Moreover, the error was typically a
bias, causing a systematic over- or underestimation of R̄rs and derived products. Preventing such
biases is crucial to obtain representative data [40]. Finally, the convolution error is important
simply due to its prevalence in the literature [1,3–5,11,13,17,18,20–22,24,30,31].
If not prevented, the convolution error will create dubious patterns in combined time series.

Depending on the data set and sensor, the convolution error is similar to or larger than errors
found in existing band-shifting algorithms for combining multispectral time series [10,12]. With
the launch of PACE, for which time series extension is a primary goal [14], this effect must be
accounted for to achieve desired uncertainty requirements [32,40].
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Similarly, incorrect reflectance convolution in instrument validation leads to systematic over-
or undercorrections. For example, reflectances from the HydroColor smartphone app have been
validated using WISP [21] and HyperSAS [22] data, convolved in R-space, finding significant
errors and biases. Biases of −9.5× 10−4 to +1.3× 10−4 sr−1 were found in the WISP comparison;
in Sect. 4.2.1, the convolution error caused biases on the order of 10−4 sr−1 for 5%–14% of
spectra, varying per band. Errors in the HyperSAS comparison were on the percent level, similar
to the errors up to 5% found in Sect. 4.2.1. Interestingly, in both studies the convolved data
underestimated the multispectral data, as would be expected from the negative biases found in
this work. This suggests that the convolution error may have contributed a significant part of the
error in both studies. However, a direct comparison is difficult due to differing input spectra,
as shown in Fig. 6, and band responses. Thus, the error in these cases cannot definitively be
attributed to incorrect convolution. Additionally, many other factors causing significant errors in
low-cost sensor data are known [6].
This importance for validation also applies to satellites. For example, in [18], systematic

underestimations up to 1% were found in band-average R̄rs (compared to hyperspectral Rrs)
convolved in R-space with the OLI, MSI, and ETM+ SRFs. This is similar to, and may be
explained by, the reflectance convolution error found for these sensors in Sect. 4.2 and shown
in Figs. 5 and 6. The same study found no significant errors in convolved VIIRS and OLCI
reflectance, agreeing with the correlation between FWHM and error demonstrated in Sect. 4.1.
Conversely, the effects on retrieval algorithms are minor. The convolution error in Chl-a and

TSM algorithms (Sect. 4.3) was on the percent level. Since errors in satellite-retrieved Chl-a
can be up to 500% [2], a bias of a few percent can safely be neglected. Typical TSM errors
are less extreme but still significantly larger than the ≤ 1% found here [3,13]. While only a
few algorithms were tested, as discussed in Sect. 3.4, these results are representative for most
band-ratio algorithms. While many studies opt to use only the central band wavelength, not the
full SRF [3,19], in which case the convolution error does not occur, comparing narrow- and
wide-band data that way introduces similar problems, described in [29].

Prevention of the convolution error is straight-forward while post-hoc correction is not. As
explained in Sect. 2., simply convolving (ir)radiances instead of reflectance prevents the error
from occurring, and is the only mathematically correct procedure. Of course this requires the
original data to be available, which is not always true. Post-hoc correction is impossible since
the error is highly variable across different sensors and data sets. When lacking original data, the
reported uncertainty may simply be increased by a few percentage points [29] but this fails to
account for systematic biases. An estimate may be made, for example by reconstructing Lw from
a reported Rrs and simulated Ed, but this introduces further assumptions.
To this end, it is recommendable that published data sets, intended for satellite validation,

contain not only products such as reflectance but also the raw data,at-sensor (ir)radiance data, and
calibration data. This way, the convolution error can be avoided. Furthermore, it would greatly
increase the amount of data available for other studies requiring radiometric data, such as those
into glint removal [38]. Finally, publication of original data, as well as sensor characteristics,
allows for traceability, which is crucial for quality control [40].
While this work focused on the remote sensing reflectance Rrs using ocean color data, the

principles and conclusions are broadly applicable. A general rule of thumb on convolution
practice is given in Sect. 2.4. In short, the principles outlined in this work are relevant to the
simulation of low-resolution data from high-resolution data. This includes all types of reflectance,
as well as other divisional quantities such as attenuation coefficients and degree of polarization.
Furthermore, it includes all types of convolution, including spectral and spatial. In all cases, a
correct order of operations is crucial to prevent systematic errors. Any simplifications should be
justified mathematically, not made at whim.
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A. Validity of spectral convolution

Consider a source radiance spectrum Lsrc(λ), observed by a hyperspectral sensor with N bands.
The spectral radiance arriving at the sensor L(λ) is the product of the source spectrum and any
atmospheric effects. However, the data used in this work were recorded in or only a few meters
above the source, so atmospheric effects can safely be ignored:

L(λ) ≈ Lsrc(λ) (10)

The hyperspectral sensor records the radiance in bands h = 1, 2, . . . ,N, with central wavelengths
λh. Each band h has its own SRF Sh(λ), and the radiance recorded in band h, Lh, is the
spectral convolution of the at-sensor spectrum L(λ) with Sh(λ). The integral is evaluated over all
wavelengths; for clarity, this is not written explicitly in this section. The denominator in Eq. (11)
corrects for the spectral (or ‘quantum’) efficiency of the sensor in band h.

Lh =

∫
L(λ)Sh(λ)dλ∫
Sh(λ)dλ

(11)

The resulting spectrum measured by the hyperspectral sensor, LH(λ), consists of the individual
band spectra:

LH(λ) = L1,L2, . . . ,LN =

∫
L(λ)S1(λ)dλ∫
S1(λ)dλ

,

∫
L(λ)S2(λ)dλ∫
S2(λ)dλ

, . . . ,

∫
L(λ)SN(λ)dλ∫
SN(λ)dλ

(12)

Sh affects L(λ) in two ways. The first is to lower it due to the spectral efficiency of the sensor.
This is described by an overall SRF SH(λ); dividing the data by SH(λ) corrects for this. The
second effect is to smoothen the data: since in practice Sh is never a delta function, band h records
not only the radiance at its central wavelength λh but also at other wavelengths where Sh(λ)>0.
The smoothening can be described as a cross-correlation (?) between the observed radiance

SH(λ)L(λ) and a bandwidth function G. In reality, each band will have a slightly different Gh,
for example due to stray light; however, for simplicity, here G is assumed to be the same for all
bands. Then LH(λ) can be described as in Eq. (13).

LH(λ) =
(SHL)?G

SH
(λ) (13)

Now consider a multispectral band M with SRF SM(λ). Following the same logic, Eq. (11) gives
the radiance recorded in band M, LM , as in Eq. (14).

LM =

∫
L(λ)SM(λ)dλ∫
SM(λ)dλ

(14)

However, when simulating multispectral data from hyperspectral data, the original radiance L(λ)
is not available. Instead, the recorded hyperspectral radiance LH(λ) is used. This means that in
practice, one does not calculate LM as in Eq. (14) but an approximation LHM , as in Eq. (15).

LHM =

∫
LH(λ)SM(λ)dλ∫

SM(λ)dλ
=

∫
(SHL)?G

SH (λ)SM(λ)dλ∫
SM(λ)dλ

(15)

The approximation LHM ≈ LM holds in two cases. The first is if LH(λ) ≈ L(λ), that is if Eq. (16)
holds. From information theory it follows that this is true if G is significantly narrower than
typical features in L(λ).

(SHL)?G
SH

(λ) ≈ L(λ) (16)

The second case where LHM ≈ LM holds is when the multispectral bandM is significantly wider
than G and typical features in L(λ). Then, any radiance redistributed from λh to surrounding
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wavelengths in LH(λ) is still captured in the integral
∫
LH(λ)SM(λ)dλ, and the value of the

integral is the same.
Ed has narrow line features, as does Lw by extension. Hyperspectral (ir)radiance sensors

typically undersample these features [37,41], so Eq. (16) does not hold in practice.
However, the second case does hold, ifM is significantly wider than the hyperspectral band

(or G). The Nyquist-Shannon theorem provides, to first order, a requirement: LHM ≈ LM if the
FWHM of M is at least twice that of the hyperspectral data. Then, hyperspectral data LH(λ)
adequately approximate the original radiance L(λ) for spectral convolution purposes.

B. Radiometric data

Table 1 lists the radiometric data sets used in this work. Some of these contain unphysical data
due to measurement errors, environmental effects, and instrumental problems [30,38,43]. This
appendix describes how the data were filtered and homogenized before processing.
First, all spectra were converted to SI units. Second, negative Rrs values were clipped to 0 if
−10−4<Rrs(λ)<0 as this is within typical measurement errors; spectra with any Rrs(λ) ≤ −10−4
were removed wholly. For as11, 5 spectra with negative Rrs were removed. For cariaco, 230
spectra missing Rrs and 11 missing Ed values were removed, as were 64 spectra with negative and
1 spectrum with unphysically high (>0.8) Rrs. For clt-a, 6 spectra with negative Rrs were removed.
For clt-s, the spectra within 3-minute windows suggested in the accompanying documentation
were averaged and Lw was calculated from Lu and Lt following the Mobley protocol [39]; 19
spectra with missing and 36 with negative Rrs were removed. For gasex, wavelengths λ>710
nm were removed due to incomplete data. For he302, 3 spectra with Rrs(800 nm) ≥ 0.003 were
removed as outliers; the original authors noted the difficulty in normalizing these data [38].
For msm213-h, Lw was used to reconstruct Ed; 179 spectra with missing data were removed,
as were spectra with unphysically large jumps in Ed, namely 21 with |Ed(λ1) − Ed(λ2)| ≥ 0.2
and |Ed(λ2) − Ed(λ3)| ≥ 0.2 and 1 with |Ed(λ1) − Ed(λ2)| ≥ 0.35, with λ1, λ2, λ3 subsequent
wavelengths. For orinoco, 1 spectrum with negative Rrs was removed. For sabor-s, which
contains polarized and unpolarized spectra, only the latter were used and the wavelength range
was clipped to 358–749 nm because of incomplete and noisy data elsewhere. For seaswir-a, the
provided plaque radiance Ld was used to calculate Ed = πLd [39], assuming a plaque reflectance
of Rg ≈ 1 [30]; no units were given for these data, so the resulting Ed spectra were divided by 105
to be in line with the others. ‘Water reflectance’ Rw was provided instead of Rrs; comparing [30]
and [39] showed that Rrs = Rw/π. Finally, 35 spectra with missing Ed and 39 with negative Rrs
were removed. For seaswir-r, Rw was similarly converted to Rrs and 2 spectra with negative Rrs
were removed. For sop4, the provided Lu and Ls were used to calculate Rrs following the Mobley
protocol [39] for simplicity [38]. TheRrs spectra were then normalized by subtractingRrs(750 nm)
[39] and the results used to re-calculate Lw. Next, 885 spectra with unphysical max(Ed(λ))<0.01
were removed and the wavelength range cropped to 360–750 nm to remove noisy data. Spectra
with unphysical features were then removed, namely 23 with |Rrs(λ1) − Rrs(λ2)| ≥ 0.005 and
|Rrs(λ2) − Rrs(λ3)| ≥ 0.005 and 3 with Ed(400 nm) − Ed(405 nm)>0.01; finally, 289 spectra with
negative Rrs were removed. The remaining data sets (sabor-h, sfp, rsp, taram, and tarao) required
no post-processing. For sfp, only the mean Rrs spectra were used.
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