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1.1 Why metagenomics

METAGENOMICS is a new and rapidly developing branch of microbiology. In
this chapter we will explain its advantages, list its possible applications and

give an overview of the most valuable scientific findings in recent years that were
made using mainly metagenomics approaches. Please note that the terms "microbes"
and "microorganisms" in this chapter, as well as in the entire thesis, primarily refer
solely to bacteria and archaea (another domain of prokaryotes distinct from bacteria).

We have all been taught about the importance of frequently washing our hands based
on the unquestionable assurance stating that "microbes are everywhere". Though
we often do not see them, we are well aware of their presence and possible harmful
impact. However, not everyone can imagine that these little creatures, microbes, are
the cornerstones of our biosphere.
Microorganisms are involved in a vast number of processes on our planet, making
it a habitable and sustainable ecosystem [1, 2, 3, 4, 5]. They are key players in the
biochemical cycling of elements such as carbon, nitrogen, oxygen and sulfur [6, 7, 8,
9, 10]. Most importantly, microbes can turn compounds that contain these elements
into forms accessible by other organisms. Through billions of years of evolution,
microorganisms became absolutely necessary symbionts for the majority of multi-
cell life forms. Microbial communities are providing their hosts with the necessary
vitamins, metals and nutrients [11, 12, 13]. They maintain digestion, flush out toxins
and fight parasites (which are often microorganisms themselves) [14, 15, 16, 17, 18].
Besides being in a close symbiotic association with other life forms, microbes learned
how to live in extreme environments where no other organisms can survive. In
order to do so, microorganisms developed countless strategies allowing them to
maintain their metabolism in the presence of for example severe temperatures,
pressures, pH levels and combinations of these and other factors [19, 20, 21, 22]. The
description of the roles of microbes in our biosphere would not be complete without
mentioning their contribution to technology. Microorganisms are being utilized for
fast and cheap food, drugs and chemical production, food fermentation, agricultural
improvements, soil and water depollution, biological fuel and many other aspects
that improve the quality of life [23, 24, 25, 26, 27, 28, 29, 30].
Investigation of microbes is extremely beneficent for humanity; it contributes to un-
derstanding the biochemical landscape of the biosphere, medicine, food production,
farming, agriculture and many other fields.
Historically, microbiology - the study of microorganisms - was based on the descrip-
tion and comparison of organisms’ morphological features, growth, and biochemical
profiles [31, 32]. These techniques were applied to single organisms, grown sepa-
rately as a pure culture without any ecological context. The invention of automated
DNA sequencing in late 1970s allowed researchers to understand the genetic basis
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underlying previous microbiological discoveries [33, 34]. It also became clear that the
standard laboratory culture-based way of investigating microorganisms is restricted
because of two main reasons: only a very small fraction of microorganisms has been
found to be cultivable and functions performed by microorganisms are conducted
within complex communities.
In 1985 the "great plate count anomaly" was discovered, the absolute majority of
microorganisms that can be seen through the microscope cannot successfully be
taken from the environment to laboratory cultivation [35]. The estimate was that
only 0.1-1% of the total variability of microbiological species, habituating soil, can
be grown under laboratory conditions. The cultivable fraction from some other
environments can be thousands of times smaller. Furthermore, the organisms that
can be cultivated, are not necessarily the most dominant or influential for a particular
environment, but rather favoured by the cultivating conditions.
Metabolic functions performed by microorganisms are conducted within complex
communities - microbiomes. The compositions of those communities are tailored to
their particular environment and adapt swiftly to environmental change. Investigat-
ing the isolated separate members of such complicated entities as microbiomes often
lead to incomplete and sometimes even incorrect conclusions, as the organisms’
properties and behaviour within a community might differ drastically from those
in a pure laboratory culture. Thus, the pure culture paradigm limits not only the
number of organisms for studies, but also the understanding of microbes functioning
as a whole. The shift from pure cultures to the community, from the individual to
interaction, is the solution to the aforementioned problems.
Rapid improvements in sequencing techniques as well as deeper understanding
of the microbial genome led to the origin of metagenomics - the direct genetic
analysis of genomes contained within an environmental sample [36, 37, 38, 39, 40].
In pioneering metagenomics studies amplification of genes conserved among all
microorganisms was conducted directly from an environmental sample, followed
by cloning of the obtained amplicons into bacterial vectors and subsequent se-
quencing [41, 42]. The results were in agreement with the expectations: the reported
biodiversity was much higher than the estimation obtained using the culture-based
methods. These first revolutionary studies turned metagenomics into the most dy-
namic and quickly developing field within microbiology. Since then, the amount of
metagenomics projects targeted on different environments has grown extensively,
adapting different sequencing techniques, data types and bioinformatics algorithms
which will be discussed in detail in the following chapters of this thesis.
As previously mentioned, microbial communities can be found practically every-
where on our planet. This provides metagenomics with unlimited options for scien-
tific research. Metagenomics revolutionized the entire studies of microbial diversity
and evolution by providing access to the "hidden phylogenetic composition of com-
plex environmental microbial communities" [38]. The employment of metagenomics
also allows functional and metabolic potentials of a particular metagenome to be
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investigated. This all makes metagenomics a powerful tool, that can be used by
researchers in an extensive range of projects.
The most popular and developed area of metagenomic studies is the investigation
of microbiomes associated with other organisms, particularly human. The Human
Microbiome Project (HMP, launched in 2008) and Integrative Human Microbiome
Project (iHMP, launched in 2014) were announced as "a logical conceptual and ex-
perimental extension of the Human Genome Project", which stressed the importance
of understanding human-microbe interaction [43, 44]. These projects received more
than $170,000,000 in funding and contributed substantially to the understanding of
the human microbiome with regards to health and disease, as well as contributed
to developing diagnostics and treatment strategies based on metagenomics knowl-
edge, association of particular communities with individuals and populations and
correlations between the host genetics and microbiota [45, 46, 47, 48, 49, 50].
Studying microbial ecosystems in order to predict possible processes, changes and
sustainability of particular environments is another popular topic in metagenomics.
For example, various different studies contribute to understanding of how microor-
ganisms maintain the atmosphere. Notably, it was shown that - contrary to the
widely held belief - more than half of photosynthesis on our planet is performed by
bacteria [51, 52]. Marine metagenomic investigations have shown that viruses are by
far the most abundant group of marine life (both cellular and non-cellular), compris-
ing approximately 94% of the nucleic-acid-containing particles [53]. The discovery
of new microbial species and their functional and metabolic potential within a micro-
biome helps researchers to build better models for the microbiome-environment
interaction, thus contributing to the microbial ecology field.
Exploring new metabolic pathways and discovering functional genes is the most
important feature of metagenomics for technological uses. Genes isolated from soil
metagenomes are successfully being used for the production of biofuels and for
the tolerance of other microbiota to byproducts of biofuel production [30]. Various
newly discovered biosynthetic capacities of microbial communities benefit the pro-
duction of industrial, food and health products as well as contribute to the field of
bioremediation [54, 55, 56, 57].
Last but not least, metagenomic projects can be implemented in various fields such
as forensics [58, 59, 60, 61]. Mostly through skin microbiota, people leave marks
on objects they touch and on the surfaces of houses they live in. Several studies
have shown that human microbiota can be used to match touched subjects like
computer keyboards or mobile phones and their owners [62, 63]. Recent research has
shown a correlation between metagenomic DNA of household surfaces and the skin
microbiome of its inhabitants [64, 65, 66, 67]. A number of studies were conducted
for the identification of microbes associated with particular human cohorts, in order
to use those microbes as signatures when analysing forensic traces [68].

The application area of metagenomics keeps expanding, challenging the scientific
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community to try new sequencing techniques and to develop new bioinformatics
tools and approaches for metagenomic data interpretation.

1.2 Metagenomics sequencing data

In this chapter we will introduce the most common types of data used in metage-
nomics, their advantages and disadvantages and possible sequencing platforms to
acquire this data. This serves as a motivation behind the use of particular types of
metagenomic data for each of the studies included in this thesis.
Technological advances in high-throughput sequencing enabling culture- and clo-
ning-free microbiome analysis has led to a sharp growth of metagenomics studies in
last 20 years. However, the data types used for the microbiome investigation remain
quite conservative.

1.2.1 Amplicon sequencing data

The first datatype we will discuss is based on sequencing only one marker gene
from each organism in the microbiome and performing the phylogenetic reconstruc-
tion of the microbiome content using this data. The most common target for such
microbiome profiling is the 16S ribosomal (rRNA) gene. This approach was used in
the pioneer metagenomics studies as well as for the major metagenomics projects
such as Human Microbiome Project. The 16 rRNA gene is highly conserved among
bacteria and archaea. The entire locus, which is about 1500 nucleotides long, contains
conserved regions as well as 9 hypervariable regions (V1-V9) which are 30-100 base
pairs long. Hypervariable regions provide phylogenetic signatures on different taxo-
nomic levels. This important feature makes the 16S rRNA gene analysis prevalent
for the classification of bacteria without the need for costly and elaborate phenotypic
identification. Between the hypervariable regions of the 16S rRNA gene lie highly
conserved sequences, which can be targeted by universal primers that can reliably
produce the same sections of the 16S sequence across different taxa [69, 70, 71, 72].
Historically, both whole-locus and partial sequencing of the 16S rRNA gene was
performed using the Sanger platform. However, since this approach is laborious,
costly and has a low throughput, it was substituted first with 454-pyrosequencing
and later with Illumina sequencing platforms. Presently, Illumina MiSeq is the
most popular sequencing platform for 16S rRNA data due to its cost efficiency and
improved community coverage in comparison to the 454-pyrosequensing platform.
Recent studies suggest implementing full-length 16S rRNA gene sequencing by
using the PacBio single molecule, real-time (SMRT) technology [73]. This approach
is still questionable due to the high error rate of PacBio sequencing and requires
large amounts of DNA for conducting the experiment.
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The importance of the 16S rRNA gene for bacterial classification led to the exis-
tence of several curated databases designed to contain reference sequences and
taxonomical classification exclusively for the 16S gene or its parts. The most well-
known databases are the Ribosomal Database Project (RDB) [74, 75], SILVA [76] and
GreenGenes [77]. These databases contain minor variations.
While 16S sequencing remains the most popular and routine procedure for metage-
nomics analysis, it has become clear that the method contains several biases, which
might influence the final outcome of the analysis drastically. The level of conserva-
tion varies between different hypervariable regions [78]. Thus, the accuracy of the
analysis based on the 16S rRNA sequencing directly depends on the choice of the
hypervariable region or the combination of the regions. Various studies were done
in order to identify the best hypervariable region suitable for the deep taxonomical
analysis. However, their outcome was directly dependent on the type of microbiota
used for the analysis and even on the choice of the sequencing platform. Recent
studies [79, 80, 73] suggested using the sequence of the entire 16S rRNA molecule in
order to solve this problem. However, this method is much costlier in comparison
with the standard amplification of one or several variable regions. Whilst the 16S
rRNA gene was considered to be a perfect phylogenetic marker before, there have
recently been reports, showing that for certain taxa the 16S sequencing data analysis
fails to differentiate between closely related organisms [81, 82]. Consequently, the
search for and subsequent sequencing of other taxon-specific genes is required. Even
the most popular and universal PCR primers cover the variability of the microorgan-
isms unevenly and can lead to the incorrect analysis [83, 84]. Microorganisms might
contain different numbers copies of the 16S rRNA gene and as a result negatively
affects the abundance estimation within the metagenome [85]. Several tools [86, 87]
have been developed for correcting this by using phylogenetic methods. However,
the accuracy of its predictions have not been independently assessed [88]. Finally, the
analysis of only the 16S rRNA gene can only provide the phylogenetic fingerprint of
the microbial community, thus, missing its functional capacity. There are bioinfor-
matics approaches are used to predict the functional landscape of the metagenome
by using its phylogenetic fingerprint from 16S rRNA profiling (e.g. [89]). However,
results obtained using these approaches are highly unreliable.

1.2.2 Whole genome sequencing data

The growing amount of evidence compromising the liability of the results obtained
using only 16S rRNA data resulted in the popularity of whole genome shotgun
sequencing (WGS) of metagenomics data [90, 91]. Though it used to be technically
and computationally difficult, this technique is becoming more and more popular
due to the advances in sequencing technologies, bioinformatics tools and approaches
to deal with big data. The broad range of NGS platforms are available for WGS
metagenomics sequencing, amongst them the popular platforms Illumina MiSeq and
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HiSeq. The previously widely utilized the 454-pyrosequensing and the IonTorrent
platforms are no longer popular due to their high cost and biases introduced during
the sequencing process. Methods offering extremely long reads (PacBio and Ox-
ford Nanopore) can be used for the WGS metagenomics sequencing as well[92, 93].
However, the price and the high DNA amount limitation in conjunction with the
high error rate making these approaches available for only a limited number of
projects. Therefore, PacBio sequencing is widely used in combination with Illumina
sequencing to facilitate and improve the performance of the analysis for the most
abundant metagenome inhabitants. WGS metagenomics data easily bypasses the bi-
ases introduced when using the 16S data as copy number variation or amplification
of the marker gene. The obtained data allow a more detailed analysis of the studied
microbiome, including species identification, functionality profiling and more pre-
cise abundance estimation. To perform the analysis the use of different databases
or the combinations of databases can be utilized. However, it is important to note
that performing the WGS sequencing is considerably more expensive in comparison
with sequencing only the 16S rRNA. WGS data also require more extensive analysis.
The estimation of the community complexity prior to the development of the WGS
experiment is crucial, as the sufficient coverage of metagenome inhabitants is vital
for the quality of the analysis results.

The question about the areas of the implementation of 16S and WGS data is still a
topic of contention among researches. For each study it is important to find the data
type that provides a comprehensive yet not excessive amount of information. The
delicate balance between the analysis depth and the experiments costs is a direct
consequence of understanding the advantages and the limitations of the data type,
sequencing techniques and the properties of the metagenome.

1.3 Approaches used in metagenomics

Proper and accurate analysis of metagenomic data is crucial to reveal the information
that a metagenome potentially provides. Most of the times during such analysis,
researchers are trying to find an answer to three main questions "Who is in the
metagenome?", "What are they doing?" and "What is the difference between two
metagenomes?" In this chapter we will try to give an overview of common methods
and techniques used to answer those questions.
Usually the analysis of every metagenomic dataset begins with reads preprocessing,
which includes a quality check followed by identification and removing of low-
quality sequences and contaminants. Preprocessing is performed by a set of standard
tools such as FastQC [94], Cutadapt [95], BBDuk1 and Trimmomatic [96]. In some

1tool of BBMap package, https://sourceforge.net/projects/bbmap/
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cases, filtering against a host genome (e.g., human) is required, although many tools
for downstream analysis already include this step.
The core process for each analysis of metagenomic data - called profiling or bin-
ning - is sorting the sequencing reads into genetically/functionally homogeneous
groups. The key question is whether the profiling procedure should be performed by
homology-based methods (comparing metagenomics reads to the known sequences),
de novo (using DNA features alone), or as a combination of thereof. Let us review
each of these profiling approaches.

1.3.1 Homology-based profiling

The vast majority of existing metagenomics binning approaches are homology-
based and thus depend on the content of the sequences databases [97]. Using this
group of methods allows researchers to find answers to all three questions that we
listed above. Profiling is performed by comparison of sequencing reads to known
genomes to find out which organisms are present in a particular microbiome and/or
their possible functionalities. Comparison of profiles obtained for two different
metagenomes (which will be discussed in section 1.3.1.3) allows us to address the
level of their similarity.
The choice of homology-based metagenomics analysis workflow mainly depends on
the sequencing data type. While Amplicon data analysis steps are rather standard-
ized, the set of approaches designed for WGS metagenomic data analysis is much
broader.

1.3.1.1 Amplicon metagenomic data profiling

The analysis of Amplicon metagenomic data will be discussed in the context of
the most common marker gene - 16S rRNA (see section 1.2.1). 16S data can pro-
vide the researchers only with information regarding the metagenome taxonomical
context. Preprocessed reads (see the beginning of section 1.3) are usually clustered
into so-called ’Operational Taxonomic Units’ or OTUs [98], based on sequences
similarity. Each of the obtained clusters is intended to represent a taxonomic unit of
a bacterial/archaeal species or genus depending on the sequence similarity thresh-
old. Usually a similarity of 97% is utilized to distinguish bacteria and archaea at
the genus level. After that, a representative sequence for each OTU is annotated
using a 16S rRNA database, where OTU representative sequences without database
hits are classified as "unknown". OTUs of unknown origin are usually discarded
and the remaining OTUs are used to generate taxonomical and abundance profiles.
Currently, there are two commonly used pipelines - Morthur [99] and QIIME [100]
- that perform all of the steps listed above. Their main difference is the choice of
the clustering approach for OTU formation: hierarchical clustering for Morthur and
’greedy’ USEARCH [101] for QIIME (note that QIIME can be adjusted to work with
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other clustering approaches, including the Morthur-specific one). The two methods
also differ in the way they annotate OTU representative sequences, and they work
with different databases.

1.3.1.2 WGS metagenomic data profiling

We will now switch gears and consider whole genome sequencing (WGS) data
analysis. Preprocessed WGS reads can enter the binning procedure directly or be
preliminarily assembled into contigs (longer contiguous sequences). The choice of
assembly-based analyses versus direct binning of reads depends on the research
question. Binning the contigs instead of reads has several advantages: higher relia-
bility of the obtained classification and the possibility to correct profiles using the
contigs co-abundances. On the other hand, the algorithms performing the metage-
nomic data assembly are still far from ideal: they often report chimeric (combining
sequences from more than one genome) contigs and require information about the
metagenome complexity a priori. In this chapter we will not discuss metagenomic
data assembly methods, we assume that the downstream analysis is performed on
sequencing reads directly after preprocessing.
The large number of tools available for the homology-based WGS metagenomics
data analysis can be split into several groups using the following criteria: strategy
for reads binning, possible database against which the search is performed, and the
part of reads used for profiling (Table 1.1). Matching to the database (and thus bin-
ning) can be performed by various alignment tools (BLAST [102], DIAMOND [103],
LAST [104], BWA [105], Bowtie 2 [106], BLAT [107], etc.) as well as by using k-mers
(DNA sequences of length k). Alignment and k-mer searching can be performed on
full-genome databases as well as on databases containing marker genes or genetic
"signatures" (unique genomic regions) associated with different clades. While some
metagenomics tools use the entire dataset, other prefer to perform binning only
on reads with particular features (e.g., reads predicted to be part of 16S rRNA and
coding sequences, CDS). Finally, a number of methods return one best match for
every read, while others use the principle of Lowest Common Ancestor (LCA [108])
in situations when the same read got matches with a group of different references.
Despite the variety and broad use of homology-based metagenome profiling tools,
reads binning provided by such approaches suffer from database incompleteness,
since the majority of microbial species are still not sequenced.

1.3.1.3 Comparison of profiles obtained using homology-base techniques

Similarity levels among different metagenomes, answering the third question men-
tioned in the beginning of this chapter, can be retrieved using the profiles obtained
during the homology-based analysis. Results of taxonomical binning can be used to
compute two important quantities widely applied in environmental microbiology:
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alpha and beta diversity. Alpha diversity represents taxonomical richness within
a single microbiome and is often quantified by the Shannon Index [136] or the
Simpson Index [137]. Beta diversity measures a similarity score between different
microbiomes and can be calculated using simple taxa overlap or Bray-Curtis dissim-
ilarity [138]. Phylogenetic distribution of taxa in metagenomics profiles also can be
used to describe the diversity within and between communities. This method com-
putes the alpha diversity as the cover of a phylogenetic tree by the taxa present in
microbiome. Beta diversity is calculated as a proportion of phylogenetic tree shared
between two microbiome profiles. The standard metric for the phylogeny-based
measurements is UniFrac [139], which can be performed with the abundances of
taxa considered (weighted UniFrac).

Method Binning
tool

Binning technique Database

Kraken
[110]

k-mer
matching

All reads are classified. Each
read is split into k-mers that
are assigned to the database
tree nodes using LCA prin-
ciple. Each node is weighted
by the number of k-mers
mapped to the node. Leaf
with the highest sum of
weights on the path from
root to leaf is used to classify
the read.

Suitable for any
database as long
as the phylogeny
within database is
provided. Constructs
a database that stores
every k-mer for each
reference genome.

MetaPhlAn
[117]

Bowtie2 All reads are classified, but
majority of them do not get
any hits due to the database
bias. Each read is assigned
to the best hit.

Uses the database of
clade-specific marker
genes.

CLARK
[115]

k-mer
matching

All reads are classified. Read
is assigned to the node with
which it shares most of the
k-mers.

Suitable for any
database. Creates
k-mer based database
with all non-unique
k-mers removed.

Table 1.1: To be continued on the next page
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Method Binning
tool

Binning technique Database

Centrifuge
[111]

Comparison
with FM-
indexed
genomes

All reads are classified. Each
read is compared to all
indexed genomes in the
database.

Suitable for any
database as long
as the phylogeny
within database is
provided. Uses the
Burrows-Wheeler
transform [112] and
an FM-index [113]
to store and in-
dex the genome
database. Combines
shared sequences
from closely related
genomes using
MUMmer [114].

GOTTCHA
[116]

BWA mem All reads are classified.
Reads are split into non-
overlapping 30-mers, that
are used for the alignment.

Each 30-mer is as-
signed to the best
hit. Suitable for any
database. Preprocess
the database, keep-
ing only the genomic
regions (signatures)
that are unique to
each reference.

MEGAN6
[109]

Alignment
(BLASTX,
DIA-
MOND,
LAST)

All reads are classified.
Reads are aligned to each
sequence in the reference
database. LCA principle is
used to assign reads with
multiple hits.

Suitable for any
database as long
as the phylogeny
within the database is
provided.

Kaiju [125] BWT
(modified)
to the FM-
indexed
reference

Predicted protein-coding
reads are classified. LCA
principle is used to assign
reads with multiple hits.

Uses NCBI BLAST
non-redundant pro-
tein database

Table 1.1: To be continued on the next page
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Method Binning
tool

Binning technique Database

mOTU
[122]

BWA All reads are classified
based on the results of
comparison with 40 marker
genes

Uses the database
of 40 prokaryotic
marker genes

MG-RAST
[118]

BLAT Only reads predicted (using
FragGeneScan [119]) to be
part of 16S rRNA or CDS are
used for the analysis.

Bond to the set of cus-
tom databases (M5nr
and M5nra)

EBI Meta-
genomics
[128]

QIIME
for 16S
predicted
reads, In-
terProScan
[129] for
predicted
CDS

Only reads predicted (us-
ing rRNAselector [130] and
FragGeneScan) to be part of
16S rRNA or CDS are used
for the analysis.

Bond to the set of
custom databases
(GreenGenes, Pfam
[131], TIGRFAMs
[132], PRINTS [133],
PROSITE patterns
[134], Gene3d [135])

Quikr [123]
and
WGSQuikr
[124]

k-mer
matching
(complete
sequenc-
ing data
profile
to the
database
k-mer
matrix)

All reads are classified. Solv-
ing the NNLS problem with
variant of basis-pursuit de-
noising

Suitable for any
database. Creates
one k-mer-based
matrix for the entire
reference database

FOCUS
[127]

k-mer
matching
(complete
sequenc-
ing data
profile
to the
database
k-mer
matrix)

All reads are classified. Uses
non-negative least squares
to compute the set of k-mer
frequencies that explains the
optimal possible abundance
of k-mers in the analysed
metagenome by selecting
the optimal number of fre-
quencies from the reference
k-mer matrix

Suitable for any
database. Creates
one k-mer-based
matrix for the entire
reference database

Table 1.1: To be continued on the next page
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Method Binning
tool

Binning technique Database

Taxator-tk
[120]

Local
BLAST or
LAST

All reads are classified. Lo-
cal alignment for each read
against the database is used
to split the read into distinct
segments and to determine
a taxon for each segment.
Taxon for the entire read is
determined by the taxa as-
signed to its segments. All
taxon assignments are per-
formed using LCA princi-
ple.

Suitable for any
database.

MetaPhyler
[121]

BLASTX All reads are classified, but
majority of them do not get
any hits due to the database
bias. Each read is assigned
to the best hit.

Uses the database of
31 marker genes.

TIPP [126] All reads
are clas-
sified.
HMMER
mapping

Mapping to the marking
genes. SEPP phylogenetic
placement

Using the database
of 30 phylogenetic
marker genes that
span the Bacteria and
Archaea domains

Table 1.1: The overview of popular metods for the homology-based analysis of metagenomic data

1.3.2 De novo profiling

De novo approaches for metagenomics binning try to solve the problem of missing
taxonomic content: they are designed to classify reads into genetically homogeneous
groups without utilizing any information from known genomes. Instead, they use
only the features of the sequencing data (usually reads similarities or k-mer distri-
butions) for classification. For example, the first step of homology-based profiling
for 16S data, namely clustering sequences into OTUs, is nothing else but de novo
profiling of a metagenomics dataset.
Due to their nature, de novo binning techniques cannot give an answer to the ques-
tions "Who is in metagenome?" and "What are they doing?". However, they can be
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used for a metagenome complexity estimation, revealing the true composition diver-
sity of a metagenome, which is usually underestimated during classical homology-
based analyses.
There are several tools designed for de novo binning of WGS metagenomics data,
which we will discuss in this section. One of them, LiklyBin [140], follows a Markov
Chain Monte Carlo approach based on the assumption that the k-mer frequency
distribution is homogeneous within a bacterial genome. This approach works well
for very simple metagenomes with a significant phylogenetic diversity within the
metagenome, but it cannot handle genomes with more complicated structures such
as those resulting from horizontal gene transfer [141]. Another approach, Abun-
danceBin [142], works under the assumption that the abundances of species in
metagenome reads are following a Poisson distribution, and thus struggles when
analysing datasets where some species have similar abundance ratios. MetaClus-
ter [143] and BiMeta [144] address the problem of non-Poissonian species distribu-
tion. However, for these tools it is necessary to provide an estimation of the final
number of bins which cannot be done for many metagenomes without any a priori
knowledge. Also, both MetaCluster and BiMeta use the Euclidian metric to compute
the dissimilarity between k-mer profiles, which was shown to be easily influenced
by stochastic noise in analysanalysed sequences [145]. Finally, one of the most recent
approaches - MetaProb [146] - implements a more advanced similarity measure
technique and can automatically estimate the number of read clusters. This tool
classifies metagenomic datasets in two steps: first, reads are grouped based on the
extent of their overlap. After that, a set of representing reads is being chosen for each
group. Based on the comparison of the de novo distributions for those sets, groups
are merged together into final clusters. Even though MetaProb outperformed other
de novo binning approaches during the analysis of simulated data, it did not provide
solid results when testing on real metagenomics data.
To conclude, de novo metagenomics binning remains a challenging task. However, a
successful de novo technique would open up countless opportunities for the future
of microbiology, due to the complete independence from reference databases.

1.3.3 Mixed profiling

After describing the set of homology-based and de novo approaches we would like
to continue with the group of methods combining the features of reference-based
and de novo profiling tools. Such approaches are recently gaining interest due to
their indirect reliance on a reference database. These approaches use supervised
training on known databases, to learn about differentiating sequence features in
order to perform de novo reads binning. This enables metagenomics profiling for
the reads that would not have any match with any known references. Supervised
approaches can be trained using a various set of techniques, such as Interpolated
Markov Models, Gaussian Mixture Models, Hidden Markov Models, mixtures of
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variable-order Markov chains, naive Bayes classifier, Support Vector Machine and
many others [147, 148, 149, 150, 151, 152, 153]. The training database can, as well as
in case of classical homology-based techniques, consist of a complete genome or a set
of marker genes. Features used for training are in most cases k-mers of a particular
length, or a mixture of k-mers of different length. Sometimes species "signature"
sequences and reads co-assurances can be used for model training.
The results of supervised classification techniques are still doubtful, since the content
of the current reference databases utilized for the training differs from the true
distribution of microbial species on our planet.

1.3.4 Reference-free comparison of metagenomics data
As was mentioned at the beginning of this section, there are three main questions
the metagenomics studies. The first two can be answered only by using a reference-
dependent analysis, whereas the third one, "What is the difference between two
different metagenomes?" does not necessarily require any reference database. The
group of methods allowing to determine the difference between two genetic datasets
without comparing them to a known genetic reference are mostly based on reads
overlapping between different samples, k-mer-mer counts and a comparison of
the obtained profiles using various different metrics [154, 155, 156, 127, 157, 149,
158, 159, 160]. Some approaches for the reference-free comparison of metagenomics
data work with results of mixed and de novo profiling, comparing the binning
results obtained for the different metagenomes using the different variations of
Bray-Curtis dissimilarity. For example, such analysis can be performed on 16S data
by simple overlapping of OTUs derived from the different samples prior to the
OTU annotation. This allows to preserve the data, that would be lost for the OTUs
marked as ’unknown’ during the annotation procedure. This dissimilarity measure,
however, does not take into account the phylogeny of compared OTUs, which is
provided, for example, by UniFrac (see section 1.3.1.1).
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1.4 The outline of this thesis

As mentioned in the previous sections, the current field of metagenomics can be
summarised by:

• Three main questions: "Who is in metagenome?" (or "How complex the meta-
genome is?"), "What are they doing?" and "What is the difference between two
metagenomes?";

• Two popular techniques to generate metagenomic sequencing libraries: 16S
and WGS;

• Two general approaches to analyse metagenomic data: reference-dependent
and reference-free.

This research was dedicated to a better understanding of the limits of each of the
analysis methods regarding different types of sequencing data. We also tried to
perform the sequencing experiments using distinct sequencing platforms and proto-
cols. To understand how far the boundaries of most popular analysis techniques, in
combination with various data types, can be set we performed a number of studies.
In Chapter 2 we discuss the taxonomic profiling quality obtained using 16S and WGS
metagenomic data. During that research, we created a series of artificial bacterial
mixes, each with a different distribution of species. These mixes were used to
estimate the resolution of two different metagenomic experiments - 16S and WGS
- and to evaluate several different bioinformatics approaches for taxonomic read
classification.
We also tried to improve the analysis of metagenomics data in both directions: with
and without using reference databases using both 16S rRNA and WGS data.
For the reference-free analysis of different NGS datasets, we developed a k-mer
based method (kPal). We have shown that our approach can be used for two types
of metagenomics analysis: to perform de novo reads binning within a single meta-
genome (Chapter 3) and to resolve the level of relatedness between microbiomes
(Chapter 4).
Our approach in reference-based metagenomics was targeted to perform fast and
accurate analysis for clinical samples that might contain more than one pathogen.
We developed BacTag, a distributed bioinformatics pipeline for fast and accurate
bacterial gene and allele typing using clinical WGS sequencing data. The reader
can find more details about the algorithm behind this tool and its testing results in
Chapter 5.
A general discussion, including a review on future perspectives in the field of
metagenomics, can be found in Chapter 6.
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2.1 Background

IN recent years, metagenomics - the genomic analysis of microorganisms by direct
extraction of DNA from an environmental sample - has become the most rapidly

developing branch of microbiology [161, 162, 163]. The interest in metagenomics
has grown drastically due to the expanding number of studies showing that the
vast majority of microorganisms cannot be grown under laboratory conditions [35,
164, 165, 166]. The possibility of culture-free investigation of microbial biodiversity
directly from an environmental habitat led to many amount of studies benefiting a
wide range of fields such as human health [167, 168, 169, 170, 171], ecology [172, 173],
agriculture [174, 175, 176], forensics [177, 178], food and drugs production [54, 55,
179]. Taxonomic profiling of metagenomic data is the key step during the data
analysis, allowing researchers to understand the structure of a microbiome and
to estimate the abundances of the organisms living in it. The main goal of this
study is to compare different data types and methods for taxonomic profiling of
metagenomic data sets with known abundance distributions of inhabitants.

The most common technique to investigate microbiome composition is amplicon-
based sequencing of the 16S rRNA gene [180, 181]. This relatively short (~1500
bp) gene is universal among bacteria and archaea [70, 71]. There are in total nine
hypervariable regions in the 16S rRNA gene that provide phylogenetic signatures
on different taxonomic levels. Hypervariable regions are surrounded by highly
conserved sequences, which are used for primer design. The analysis of 16S meta-
genomic datasets is usually performed in combination with one of several curated
databases that contain annotated sequences of the 16S rRNA gene or its parts [182].
The most commonly used 16S-specific databases are RDB [74, 75], GreenGenes [77]
and SILVA [76]. Analysis of 16S data is now routine for metagenomic-associated
projects, though many studies demonstrated a number of biases associated with this
type of data that make the validity of this approach questionable. Several reports
stressed uneven coverage of microorganisms’ diversity spectrum by common PCR
primers for the 16S rRNA gene amplification [183, 184, 185, 186, 83, 84]. Second, the
16S rRNA gene does not have a correct phylogenetic relationship within particular
taxa [81, 82]. The fact that bacteria and archaea might carry different copy numbers
of the 16S rRNA gene in their genomes seriously influences a reliable abundance
estimation after analysis of 16S data [187]. Additionally, the choice of a specific
hypervariable region and the reference database for the subsequent analysis requires
a priori knowledge about the investigated metagenome. Lastly, 16S data cannot
be used to investigate the metagenome functional profile, nor does it provide any
information about eukaryotic or viral members of the microbial community. The
applicability of 16S data was shown for a set of forensic studies. For example, 16S
data was successfully used for body fluid recognition [188] or matching between
individuals’ skin datasets and touched objects [62, 63]. The success of such analyses,
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however, does not imply that a 16S-based analysis of all metagenomic data is reliable
(or possible).
Apart from 16S, there are other methods that use rRNA genes to investigate microbial
diversity. Among them are 23S, 5S, 12S and various combinations [189, 190, 191].
Other methods like the IS-pro approach use 16S-23S ribosomal interspace fragment
lengths to analyse microbial communities [192]. Although these methods are very
suitable for some specific tasks, they are not as widely applied as 16S. Several recent
studies are based on targeting other genes in addition to 16S in order to determine
the cell type of the forensic traces [193] or to perform skin sample identification using
only microbial targeting genes [59, 194]. These studies also suggest that traditional
16S data is not always sufficient for a meaningful metagenomic analysis of forensic
traces.
In recent years, the number of metagenomic studies based on the whole genome
shotgun (WGS) sequencing data type has grown [90, 195, 196, 197, 198]. Among
the main reasons for this are advantages in sequencing techniques allowing for the
generation of sufficient number of high-quality reads for the WGS datasets, and
bioinformatics algorithms to perform subsequent analysis of the big data. Though us-
ing WGS data avoids the biases introduced by 16S, it requires more computationally
intense analysis, as well as higher sequencing costs.
While many studies in the field of forensics are based on the analysis of 16S data [199],
"the capacity of WGS data of microbiomes to aid in forensic investigations by con-
necting objects and environments to individuals has been poorly investigated" [200].
Presently, WGS experiments are reserved for those studies for which analysis beyond
the taxonomical assignment is required: investigating the microbiomes’ functional
profile, correlation between metagenome and host genome, search for the possible
virulent genes, etc. The vast majority of taxonomical annotations is still performed
by using only 16S data, despite all known disadvantages of the method [90]. One of
the reasons for that is the lack of a well-performed benchmark study, comparing 16S
and WGS data types. The vast majority of existing metagenomics benchmarks are
created in order to evaluate the accuracy of various metagenomic profiles and com-
prise either only 16S [201] or only WGSdata [202, 203, 204, 205, 206, 117, 207, 208].
Existing benchmarks that can be used to compare 16S and WGS data types are in-
silico created and based on a random set of bacterial species, lacking the information
about whether or not the selected set of organisms might live together in the same
environment [97]. One of the main goals of this study is the creation of a set of
benchmarks allowing to compare the 16S and WGS data types using a set of in-vitro
DNA mixes of bacteria species inhabiting skin.
Over the last decade, the number of different techniques for metagenomics data
analysis has grown remarkably. The tools used for performing the taxonomical
annotation, can be split into several groups based on the following criteria: strategy
for reads assignment (alignment or matching based on the k-mers or sequences
signatures); the database against which the search is performed; the proportion of
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reads participating in the profiling (all reads, only one read per read group, only
reads with particular features).
To investigate which type of metagenomic data is preferable for accurate taxonomic
annotation, as well as to test which method of reads assignment yields more precise
output, we created a series of bacterial mixes with known content. Each metagenomic
mix incorporated 14 to 15 bacterial species belonging to 7 distinct bacterial genera.
Each mix had a distinct distribution of the species abundances. For the analysis
we selected two popular tools: Centrifuge [111] and MG-RAST [118]. These allow
analysis of amplicon and WGS sequencing data and both perform the metagenome
profiling by a comparison of sequencing data to a reference database. However, the
strategies for metagenome profiling they exploit are different.
We did not include other popular tools for metagenomic analysis in this study as they
either have a similar analysis strategy as the tools described above or are designed
only for WGS or amplicon data analysis. In many studies, QIIME [100], objectively
the most popular tool for amplicon data analysis, was shown to perform with the
same accuracy as the MG-RAST pipeline for 16S rRNA sequencing data [209].

2.2 Materials and Methods

2.2.1 DNA extraction and concentration measurement

Laboratory pure cultures of 15 bacterial species that frequently inhabit human
skin (Table 2.2) were grown with gentle shaking overnight at 37°C. Genomic DNA
was isolated with the Easy-DNA™ gDNA Purification Kit (Invitrogen™ Thermo
Fisher Scientific) using the standard protocol with ethanol precipitation [210]. RNA
contamination was removed using RNase A (Roche) and the DNA was stored at 4°C.
DNA concentrations were measured with the Qubit 3.1 Fluorometer (Invitrogen™).

2.2.2 Metagenomic mixes creation

Four bacterial mixes with known genome abundances were created for this research.
In order to achieve the desired species abundances, the estimated genome size
and the measured DNA concentration for each bacteria were used. One mix was
created to have a uniform- and other three mixes an exponential (λ = 1/6, λ = 1/2
and λ = 5/6) distribution of species abundances. From here on, these mixes are
referred to as EQ, EXP16, EXP12 and EXP56 respectively. Due to technical reasons,
Corynebacterium jeikeium was included only in EQ. The remaining 14 species were
used in all mixes.
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Step Temperature, °C Duration, min Cycles
Initial denaturation 95 3 1, hold
Denaturation 98 0.25 Ranged from 3 to 8

depending on
sample

Annealing 59 0.5
Extension 72 1.5
Final extension 72 5 1, hold

Table 2.1: PCR protocol for the WGS library preparation.

2.2.3 WGS sequencing library creation

DNA shearing was performed using the Covaris S2 sonicator (Covaris®) with the
following settings: duty factor = 10%, intensity = 2.5, cycles/burst = 200, temperature
= 6°C, total time, sec = 45. Size selection was performed on the sheared products
with Ampure XP beads (Agencourt) to maintain insert size around 450 base pairs.
Illumina sequencing libraries were prepared by ligating custom Illumina Truseq
adapters with dual barcoding (10 base pairs) using the KAPA Hyper Prep Library
Preparation kit (KAPA Biosystems, Inc.). To increase library yield, additional library
amplification was performed with KAPA HIFI HotStart ReadyMix using the PCR
protocol described in Table 2.1. To enable balanced pooling, sequencing libraries
were quantified in duplicate by real time PCR using the KAPA SYBR®FAST qPCR
kit. Quantification reactions were performed on a LightCycler®480 (Roche) using
a dilution series of PhiX control library (Illumina) as standard [210]. After pooling
the libraries, the final pool was quantified again using the same method to enable
optimal loading of the flow cell.

2.2.4 16S sequencing library creation

Previously published [211] Primers and PCR-protocol for the amplification of V3-V4
region of the 16S rRNA were used. Illumina sequencing libraries were prepared by
ligating custom Illumina Truseq adapters with dual barcoding (10 base pairs) using
the KAPA Hyper Prep Library Preparation kit (KAPA Biosystems, Inc.).

2.2.5 DNA sequencing

Sequencing of WGS and 16S libraries was performed on the MiSeq®sequencer
(Illumina) using v3 sequencing reagents according to the manufacturers’ protocol
with approximately 5% of PhiX control. This yielded one paired-end dataset with a
read length of 299 bp per sample.
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2.2.6 Bacterial genomes assembly

Sequencing reads for each bacterium were preprocessed using the Flexiprep qual-
ity control pipeline1. Post-QC reads were assembled by SPAdes Genome Assem-
bler [212] with default settings.

2.2.7 Regression analysis

k-mer counting was performed using command count of the kPAL toolkit [213] with
k set to 11. In case of the absence of the alternative DNA stand, k-mer profiles were
balanced with balance command of the kPAL toolkit. Linear regression was done
using the scikit-learn package for Python [214] with the fit_intercept parameter set
to "False". The model training and prediction was performed using 5-fold Cross
Validation.

2.2.8 Analysis using Centrifuge

Centrifuge is a popular tool that allows for fast classification of reads in a metage-
nomic sample using comparison of k-mers derived from each read to an indexed
database. Centrifuge performs classification for all reads in a metagenomic sample
independently using the following algorithm. For each read it creates a classifica-
tion tree by pruning the taxonomy and only retaining taxa (including ancestors)
associated with k-mers found in that read. Each node is weighted by the number
of k-mers mapped to the node, and the path from root to leaf with the highest sum
of weights is used to classify the read. A fast and effective comparison is achieved
using the genome indexing technique, which is based on the Burrows-Wheeler
transform [112] and the Ferragina-Manzini index [113]. To perform taxonomy as-
signment, Centrifuge requires an indexed database which is based on the reference
database and its associated phylogenetic tree. A number of popular and regularly
updated premade indexed databases are available on the Centrifuge website2. It is
also possible to create a custom Centrifuge indexed database.
Metagenomic mixes samples were subjected to a QC-check using FastQC3 (version
0.11.7). Leftover adapter removal and quality trimming of the reads was performed
with cutadapt [95] (version 1.16, using options --trim-n, --minimum-length = 50 and
--quality-cutoff = 20). The number of reads before and after each aforementioned step
can be found in supplementary Table S1. High quality pairs of overlapping reads
were merged with FLASH [215] (version 1.2.11, using option --max-overlap=300). For
the subsequent taxonomic classification with Centrifuge, both merged reads and
pairs of non-merged reads were used.

1Available online at http://biopet-docs.readthedocs.io/en/latest/pipelines/flexiprep/
2ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data
3Available online at:http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Post-QC reads were analysed with Centrifuge (version 1-0-2-beta, default settings).
Three different reference databases were used for the analysis: RefSeq database of
complete genomes of bacteria and archaea [216] (downloaded as premade in April
2018 Centrifuge index); GreenGenes 16S sequences database (downloaded in June
2018) and SILVA 16S sequences database (downloaded June 2018). In order to make
the content of reference databases comparable, sequences marked as eukaryotic
were removed from SILVA database. Results obtained by Centrifuge were analysed
using the Pavian interactive browser application [217].

2.2.9 Analysis using MG-RAST

MG-RAST is a web-based tool that allows the user to upload sequences and their
metadata and download the analysis results. The MG-RAST pipeline creates a meta-
genomic profile by extracting rRNA and protein coding sequences. Gene calling is
performed by the FragGenescan [119] algorithm, predicted protein sequences are
clustered using UCLUST [101]. Potential rRNA genes are identified using BLAT [107]
against a reduced version of the SILVA database and clustered with UCLUST. From
each obtained cluster one representative sequence (the longest one) is chosen for the
comparison with a reference database (M5nr58 [218] for proteins and combination of
SILVA59, GreenGenes42 and RDP41 for rRNA analysis) using BLAT. All sequences
from a particular cluster are assigned to the same taxonomic group as the clusters’
representative. Thus, only rRNA genes and functional genes are used for the analysis
of the metagenome, and the reads assignments are not independent. This strategy
allows MG-RAST to perform taxonomic and functional profiling of metagenomic
data. Finally, MG-RAST supports different metagenomic datatypes: genomic (in-
cluding WGS and 16S) and transcriptomic. It also considers the metagenome origin,
sequencing platform and many other features to tune the pipeline for a specific task.
Raw reads of bacterial mixes samples were submitted to the MG-RAST Metageno-
mics analysis server under project number 85582. Paired reads merging and quality
control was performed as part of the standard MG-RAST pipeline.

2.2.10 Taxa abundance estimation and results evaluation

Since the 16S amplification product has the same length among all bacterial taxa,
no correction for genome length is needed when estimating relative abundances of
the taxa. For the WGS samples however, normalization of read counts is required
because of the differences in genome lengths. In order to perform correct taxa
abundance estimations for taxonomic ranks higher than species, it is important
to know how many reads assigned to that taxon belong to each species within
the taxon. Both tools, Centrifuge and MG-RAST, assign reads to a node in the
phylogenetic tree. Thus, reads assigned to a particular genus, for example, might
belong to each of the species included to that genus as well as to the genus itself,
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without species annotation. The main assumption of our approach for the estimation
of taxa abundances is the following: all reads, assigned to the node higher than
species level (regardless of whether or not they have species annotation), will be
distributed among the species belonging to that node the same way as the reads
with known species annotation. If the estimated abundances for species were known
(in case of taxonomic annotation with Centrifuge), the procedure is trivial. When
performing the analysis with MG-RAST the reads are classified only up to the genus
level. In that case an equal distribution of reads among the species belonging to the
particular genus was assumed.

2.2.11 Statistical and correlation analysis
Correlation analysis was performed using the Pearson correlation coefficient, pair
wise comparisons were performed using the two-sided Mann-Whitney U test [219]
and False Discovery Rate (FDR, a statistical approach used in multiple hypothe-
sisto correct for multiple comparisons) control was performed using the Benjamini-
Hochberg procedure [220]. We used the ratio of properly predicted taxa to all taxa
predicted at that rank as a measure for the precision. Sensitivity was calculated as
the ratio of properly predicted taxa to all taxa that were supposed to be present in
the sample at that rank. F-scores (a measure of accuracy that considers both precision
and sensitivity) were calculated as described in [221].
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2.3 Results and Discussions

2.3.1 Individual bacterial genomes assembly

We sequenced and assembled the genomes of all 15 selected skin-associated bacteria
individually. The total length of the assembly for each species was comparable to
the length of the species references (Table 2.2 and section S1 of the Supplementary
materials). For one species ( A. lwoffii) there was no reference sequence available.
Obtained assembly lengths as well as the DNA concentration measured for each
bacterium were used to create four metagenomic mixes: one with equal and three
with exponential (λ = 1/6, λ = 1/2 and λ = 5/6) distribution of bacterial species
abundances. Taxa abundances were ordered from high to low as shown in Fig. 2.1.

2.3.2 Estimation of reference abundances

In order to estimate an abundance of an organism in terms of genome copies, the
length of the genome and the lengths and (relative) copy numbers of any plasmids
needs to be known. In the absence of a strain-specific reference sequence, de novo
assembly of a single organism can be used to obtain these data [222]. In most
common approaches [223], the coverage (and thereby the copy number) of contigs
(see Supplementary Fig. S1) is not considered when estimating an assembly length,
which leads to an inaccurate estimation of the organisms’ genome length and thus
influence the accuracy when creating bacterial mixes (see Supplementary Fig. S2 for
a step-by-step explanation). Other factors, such as inaccuracy in DNA concentration
measurement or mixing, can also lead to different abundances in the final bacterial
mixes from those intended.
Since the content of all our metagenomic mixes is known and individual assemblies
of all bacterial species were available, the intended distribution of bacterial abun-
dances in the metagenomic mixes could be verified using the following approach.
We used k-mer counts as a proxy for the number of genomes present in a pure
(unmixed) sample. Using these counts, we are able to infer the relative contributions
to a mixture. We use randomly chosen k-mers from the pure samples as profiles for
the organisms, the same k-mers are used to make a profile of the mix and by linear
regression, we estimate the contribution of each profile and thereby the contribution
of each organism to the mix. For a more detailed description and a motivational
example, see Section S1 and Figure S2 of the Supplementary materials. We calcu-
lated the 11-mer profiles for each bacteria using the contigs obtained after individual
genome sequencing and assembly. Since profiles were calculated using contigs, we
compensated for the absence of the reverse-complement DNA strand. We also cal-
culated the 11-mer profiles of the WGS datasets of each of the metagenomic mixes,
in these cases strand balancing was not applied. The 11-mer profiles were used to
build a linear regression model in which the individual bacterial k-mer counts were
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treated as independent variables and the k-mer counts of the metagenomic mix
served as dependent variable.

Bacteria Number
of

contigs

Accession
number

Reference
length,
Mb

Assembly
length,
Mb

Acinetobacter johnsonii ATCC
17969

206 NZ_CP010350.1 3.51 3.88

Acinetobacter lwoffii ATCC
15309

180 NA NA 3.44

Corynebacterium jeikeium
ATCC 43734

234 NC_007164.1 2.46 2.6

Corynebacterium urealyticum
ATCC 43042

99 NC_010545.1 2.37 2.35

Moraxella osloensis NCTC
10145

89 CP014234.1 2.43 2.58

Propionibacterium acnes ATCC
6919

26 NC_017550.1 2.49 2.55

Pseudomonas aeruginosa ATCC
10145

99 NC_002516.2 6.26 6.35

Staphylococcus aureus ATCC
29213

45 NZ_CP009361.1 2.78 2.72

Staphylococcus capitis ATCC
27840

52 NZ_CP007601.1 2.44 2.6

Staphylococcus epidermidis
ATCC 12228

142 NC_00446 2.5 3.3

Staphylococcus haemolyticus
ATCC 29970

770 NC_007168.1 2.69 2.86

Staphylococcus saprophyticus
ATCC 15305

351 NC_007350.1 2.15 1.89

Streptococcus piogenes ATCC
19615

65 NZ_CP008926.1 1.84 1.82

Staphylococcus xylosus ATCC
29971

97 NZ_CP008724.1 2.52 2.74

Streptococcus mitis LMG 14552 49 NC_013853.1 2.76 2.83

Table 2.2: Bacterial species used for metagenomics mixes.

To verify the intended distribution of bacterial abundances in the metagenomic
mixes, we use k-mer counts as a proxy for the number of genomes present in a pure
(unmixed) sample. Using these counts, we are able to deconvolute a mixture. We
use randomly chosen k-mers from the pure samples as profiles for the organisms,
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the same k-mers are used to make a profile of the mix and by linear regression,
we estimate the contribution of each profile and thereby the contribution of each
organism to the mix. For a more detailed description and a motivational example,
see section S1 and Figure S2 of the Supplementary materials. We calculated the 11-
mer profiles for each bacterum using the contigs obtained after individual genome
sequencing and assembly. Since profiles were calculated using contigs, we compen-
sated for the absence of the reverse-complement DNA strand. We also calculated
the 11-mer profiles of the WGS datasets of each of the metagenomic mixes, in these
cases strand balancing was not applied. The 11-mer profiles were used to build a
linear regression model in which the individual bacterial k-mer counts were treated
as independent variables and the k-mer counts of the metagenomic mix served as
dependent variable.
Since k-mer counts within one profile might be correlated, which violates the con-
dition for using the regression analysis, we did not analyse the complete profile of
4,194,304 possible 11-mers. Instead we performed 1,000 iterations, in each iteration
choosing 10,000 random k-mers and performing the regression analysis on that
subset of k-mers. Thus, for each organism we got 1,000 estimations of its abundance
in each mix. The result of this analysis is presented in Figure 2.1. Each boxplot
shows the distribution of the organisms’ abundances obtained from the regression
analysis. The median model fit of the cross-validated models (measured using the
R2 coefficient of determination) for each mix was larger than 0.95, accuracy of the
prediction (also measures using the R2 but on the data that did not participate in the
model training) ranged from 0.80 to 0.92 depending on the mix.
The regression analysis confirmed the distribution of bacterial abundances we aimed
for (uniform distribution turning into the exponential one), though for some species
(e.g., S. haemoliticus and P. aeruginosa), slight positive or negative deviations from
the anticipated values were found. This can be caused by a number of factors such
as inaccuracy in the DNA concentration measurement or DNA mixing, presence of
large amounts of non-chromosomal DNA (e.g., plasmids) in the pool of bacterial
DNA or inaccuracy in bacterial genome size estimation.
We use the results of this analysis as reference abundances for the experiments done
in section 2.3.5.

2.3.3 Analysis of bacterial mixes using Centrifuge and MG-RAST

The mixes were sequenced on the Illumina MiSeq using WGS (samples EQ_WGS,
EXP16_WGS, EXP12_WGS and EXP56_WGS) and 16S for V3-V4 region (samples
EQ_16S, EXP16_16S, EXP12_16S and EXP56_16S) protocols. Information about read
counts and QC statistics for each obtained dataset can be found in Supplementary
table S1.
WGS and 16S samples obtained from our four metagenomic mixes were analysed
with Centrifuge using the RefSeq complete bacterial genomes database. We per-
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Figure 2.1: Regression analysis performed for metagenomic mixes to estimate relative abundances. Results for each mix
are shown on a separate plot. Each boxplot represents the distribution of regression coefficients (vertical axes) obtained
for the particular organism (horizontal axes), thus representing the distribution of bacterial abundances within that
particular mix.

formed additional analysis for 16S samples using Centrifuge with the GreenGenes
and SILVA reference databases.

All eight datasets (four WGS and four 16S) were submitted to the MG-RAST Meta-
genomics analysis server under project number 85582. RefSeq and GreenGenes
databases provide taxonomic annotation down to the species level, while SILVA
database as well as the databases used by MG-RAST are restricted to the genus level.
Since the NCBI taxonomy and the taxonomy used by MG-RAST were different at
the order level for our set of bacteria, we excluded annotation at the order level from
further analysis.
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2.3.4 Profiling accuracy without considering relative abundances

Because the content of the metagenomic mixes is known, we can verify how many
of the reported taxa on each taxonomic rank are correct (true positive counts), how
many are incorrect (false positive counts) and how many are missed (false negative
counts).
Using these counts, both precision and sensitivity can be calculated. A perfect predic-
tion is made if both precision and sensitivity equal one. As can be seen in Figure 2.2,
both precision and sensitivity tend to increase in all cases with increasing taxonomic
rank. For all 16S datasets analysed with Centrifuge, we observe that precision never
reaches its maximum value, while for WGS datasets analysed with Centrifuge preci-
sion reaches its maximum already at the genus level. Interestingly, for 16S datasets
analysed with MG-RAST, precision reaches its maximum at the genus level, but the
sensitivity does not increase any further. For WGS datasets analysed with MG-RAST,
sensitivity reaches its maximum already at the family level.
The accuracy of the classifications can be expressed using the F-score, which is
calculated using precision and sensitivity. We tested whether the F-scores differed
significantly for each pair-wise comparison using the Mann-Whitney U test and the
Benjamini-Hochberg procedure for FDR control. The full table of p-values can be
found in Supplementary Table S2, a summary of the results is shown in Figure 2.3.
In most cases, the F-scores differ significantly when comparing WGS to 16S. At
the same time, when comparing WGS datasets with different tools, a significant
difference was observed only at the genus level.

2.3.5 Abundance assignment accuracy

Both Centrifuge and MG-RAST provide read counts for each reported taxon. We
considered only reads that were assigned to the expected taxa and compared their
relative abundances to the reference abundances.
Only Centrifuge, when using either the RefSeq or GreenGenes database, reported the
taxonomic assignment down to the species level. In Figure 2.4, each metagenomic
mix is shown as a separate graph with species listed on the horizontal axes and
their relative abundances shown on the vertical axes. The black line represents
the intended distribution of species abundances. The dark green line shows the
mean reference abundances with the light green area representing ±3 standard
deviation around those means. The blue and red lines show the relative abundances
obtained for 16S and WGS datasets respectively, with the solid blue line for the
16S analysis done using the RefSeq database and the dashed blue line using the
GreenGenes database. As can be seen in Figure 2.4, the analysis of 16S data results
in a considerable overestimation of abundance of A. johnsonii. Centrifuge failed
to identify A. lwoffii, since there is no complete genome of that bacterium in the
RefSeq database and it did not report any significant presence of C. jeikeium in
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Figure 2.2: Precision vs. sensitivity of different profiling approaches. Results for each mix and taxonomic rank are
shown separately, with sensitivity on the horizontal axes and the precision on the vertical axes. Each shape represents
a combination of method, data type and reference database. RS - RefSeq database, GG - Greengenes database, S - SILVA
database.

the exponentially distributed metagenomic mixes. Analysis of the 16S datasets
using the GreenGenes database reported overestimated values for S. epidermidis and
A. johnsonii and did not report the presence of nine out of fifteen bacteria because of
their absence in the GreenGenes database.
We repeated the same analysis on three higher taxonomic ranks: genera, families
and phyla. For all these three taxonomic levels we analysed the results of Centrifuge
(Figure 2.5) and MG-RAST (Figure 2.6). As can be seen in Figure 2.5, the Centrifuge
analysis of 16S datasets using different reference databases provided a similar biased
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output, mostly due to an overestimation of the abundance of the Acinetobacter
genus, Moraxelaceae family and Proteobacteria phylum. The dissimilarity with
the reference abundances is especially pronounced at the phylum level. Results
obtained for the WGS datasets with Centrifuge were concordant with the reference
abundances with slight deviation for Acinetobacter genus, Moraxelaceae family and
Proteobacteria phylum (Figure 2.5). It is interesting to note, that these taxa were also
the major reason for disagreement between results obtained by Centrifuge for 16S
datasets and reference abundances.
The results obtained for different 16S datasets by MG-RAST were not consistent
(as is the case for Centrifuge) up to the phylum level. As can be seen in Figure 2.6,
analysis of 16S datasets with MG-RAST reported many disagreements with reference
abundances. The reasons of those disagreements are dataset- and taxonomy rank-
specific. Results reported by MG-RAST became more or less consistent only at the
phylum level, where they followed the same trend: overestimating the abundance
of Firmicutes relative to that of Proteobacteria.
Abundances obtained after analysis with MG-RAST of WGS datasets were also
following the reference results closely. There were, however, slight deviations from
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Figure 2.4: Comparison of relative abundances reported by Centrifuge (using two different reference databases) for
WGS and 16S with relative abundances obtained from the regression analysis. Results for each mix are shown sepa-
rately with the species’ names on the horizontal axes and the relative abundance on the vertical axes. Ref - reference
abundances, RS - RefSeq database, GG - GreenGenes database. Please note that data points are connected only to
visualise the various types of distributions.

the reference abundances. These deviations were, like the results for 16S datasets,
specific to taxonomy-rank and dataset.
In order to quantify the dissimilarity among the abundances provided by the differ-
ent methods, datasets, reference databases and the results of regression analysis we
calculated the absolute differences in abundances for each particular dataset and
taxonomic rank. The averages of these values (from here on called the error rate)
are reported in Figure 2.7. For the analyses of 16S datasets it is interesting to note
that for Centrifuge the average error rate grew with the increase of the taxonomic
rank in general. This was not the case for the error rate obtained for the 16S datasets
using MG-RAST. We tested whether the average errors differed significantly for each
pair-wise comparison using the Mann-Whitney U test and the Benjamini-Hochberg
procedure for FDR control. The full table of p-values can be found in Supplementary
Table S3, a summary of the results is shown in Figure 2.8. This analysis demonstrates
that for all taxonomic levels the error rates in the abundance estimations provided
by the analysis of 16S datasets (regardless of the method or reference database)
are significantly different (higher) compared to the abundances reported for WGS
datasets. We did not observe any significant difference in average error rate between
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Figure 2.5: Comparison of relative abundances reported by Centrifuge (using three different reference databases) for
WGS and 16S datasets on genera, orders and phyla levels with relative reference abundances. In the above grid of
figures each row indicates the mix and each column indicates the taxonomic level. In each figure, the taxa are shown
on the horizontal axes and the relative abundances are shown on the vertical axes. Ref - reference abundances, RS -
RefSeq database, GG - GreenGenes database, S - SILVA database.

WGS datasets analysed with Centrifule and MG-RAST.
We compared the error rates reported by Centrifuge when using the three different
16S reference databases. Error rates observed in the analysis with RefSeq and Green-
Genes databases were similar. Running the Centrifuge analysis using the SILVA
database reported a much higher error rate. That might be a direct consequence of



44 Sec. 2.3. Results and Discussions

0

10

20

30

40

50

60

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S

WGS

0

10

20

30

40

50

60

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S

WGS

0

20

40

60

80

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S

WGS

S
ta
p
h
y
lo
c
o
c
c
u
s

S
tr
e
p
to
c
o
c
c
u
s

A
c
in
e
to
b
a
c
te
r

M
o
ra
x
e
ll
a

P
s
e
u
d
o
m
o
n
a
s

C
u
lt
ib
a
c
te
ri
u
m

C
o
ry
n
e
b
a
c
te
ri
u
m

GENERA

0

10

20

30

40

50

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S

WGS

0

10

20

30

40

50

60

A
b
u
n
d
a
n
c
e
,
%

Equal distribution

Expected

Ref

16S

WGS

0

10

20

30

40

50

60
A
b
u
n
d
a
n
c
e
,
%

Exponential distribution, lambda = 1/6

Expected

Ref

16S

WGS

0

20

40

60

80

A
b
u
n
d
a
n
c
e
,
%

Exponential distribution, lambda = 1/2

Expected

Ref

16S

WGS

S
ta
p
h
y
lo
c
o
c
c
a
c
e
a
e

S
tr
e
p
to
c
o
c
c
a
c
e
a
e

M
o
ra
x
e
ll
a
c
e
a
e

P
s
e
u
d
o
m
o
n
a
d
a
c
e
a
e

P
ro
p
io
n
ib
a
c
te
ri
a
c
e
a
e

C
o
ry
n
e
b
a
c
te
ri
a
c
e
a
e

FAMILIES

0

10

20

30

40

50

A
b
u
n
d
a
n
c
e
,
%

Exponential distribution, lambda = 5/6

Expected

Ref

16S

WGS

0

20

40

60

80

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S

WGS

0

20

40

60

80

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S

WGS

0

20

40

60

80

100

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S

WGS

F
ir
m
ic
u
te
s

P
ro
te
o
b
a
c
te
ri
a

A
c
ti
n
o
b
a
c
te
ri
a

PHYLA

0

20

40

60

80

100

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S

WGS

Figure 2.6: Comparison of relative abundances on reported by MG-RAST for WGS and 16S datasets on genera, orders
and phyla levels with relative reference abundances. In the above grid of figures each row indicates the mix and
each column indicates the taxonomic level. In each figure, the taxa are shown on the horizontal axes and the relative
abundances are shown on the vertical axes. Ref - reference abundances

taxonomic annotation done using the SILVA database where a smaller proportion of
reads was assigned to the expected taxa in comparison to other reference databases
(see the section 2.3.4).
We also evaluated the similarity among the abundances obtained by employing
distinct methods and databases using a correlation analysis. In Figure 2.9 the results
of these comparisons are presented as a series of heatmaps.
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As can be seen from Figure 2.9, abundances obtained by the analysis of WGS data
(Centrifuge and MG-RAST) for all datasets at all taxonomic levels positively correlate
with reference abundances. Correlation of 16S analysis obtained using Centrifuge
with the reference abundances becomes worse at higher taxonomic levels, which is
the opposite for the 16S data results obtained using MG-RAST. The 16S data analyses
obtained for Centrifuge and MG-RAST do not demonstrate positive correlation with
each other.

2.4 Conclusions

In this study we created a series of bacterial mixes with known content in order
to investigate which type of metagenomics data and reads assignment strategy
yields better taxonomic classification. For each mix we generated WGS and 16S
sequencing datasets and analysed them using Centrifuge with RefSeq, GreenGenes
and SILVA reference databases and the MG-RAST metagenomics analysis server
with M5nr and M5nra reference databases. We compared the results of all analysis
done with Centrifuge and MG-RAST to the reference abundance profiles obtained
from a regression k-mer-based regression analysis.
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The results from both Centrifuge and MG-RAST show that WGS datasets provide
much more accurate results in comparison to 16S-based methods. The analysis of
WGS data displayed better coverage of all taxa expected to be present in the mixes
on all phylogenetic levels, reaching the maximum accuracy already at the genus
level for Centrifuge and at the family level for MG-RAST. On the other hand, results
obtained for 16S-based data were often missing several taxa and/or had very high
false-positive rate. Centrifuge analyses based on the 16S datasets were suffering
from low precision, while MG-RAST analysis of the 16S datasets had low sensitivity.
Abundance profiles obtained from WGS demonstrated much less disagreement with
the expected abundances in comparison to the abundance profiles based on 16S
data. This was shown using two different measurements: the average (per taxonomy
rank) absolute difference between abundance profiles and by a correlation analysis.
For 16S datasets analysed with Centrifuge, the deviation from the reference abun-
dances, introduced at the species/genus levels, propagated further up the taxonomy
which led to a greater difference with the expected outcome on the higher taxonomic
ranks as well. In contrast, the analysis of 16S datasets performed by the MG-RAST
pipeline demonstrated greater differences with the reference abundances on the
lower taxonomic ranks in comparison with the higher ones. Our correlation anal-
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Figure 2.9: Correlation between the abundance profiles obtained for different combinations of method, datasets and
reference database on distinct taxonomic levels. In the above grid of figures each row indicates the mix and each
column indicates the taxonomic level. The combination of analysis type, dataset and reference database are shown on
the main diagonal of the heatmap, with the lower triangle representing the correlation shown in colors and the upper
triangle demonstrating the same data in the numeric representation. Ref - reference abundances, * - Centrifuge, ** -
MG-RAST, RS - RefSeq database, GG 435 - GreenGenes database, S - SILVA database.

ysis shows that the agreement between the MG-RAST results of 16S datasets and
reference abundances was growing with increasing taxonomic level.
Both tailor-made 16S databases (GreenGenes and SILVA) did not perform better than
the RefSeq database when analysing 16S datasets using Centrifuge. The Centrifuge
results using RefSeq and GreenGenes databases were correlated with a correlation
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coefficient higher than 0.95 for all 16S datasets on each taxonomic rank starting with
genus.
We conclude that WGS data is preferable for the study of metagenomic data, espe-
cially when the correct inhabitant abundances are required. We could not determine
which of the explored methods for the taxonomic assignment of the WGS data
provides a more accurate outcome. Centrifuge, however, has minor advantages in
comparison to MG-RAST, such as a faster, deeper and slightly better reads classifi-
cation, the possibility of local installation and use of custom databases and a more
flexible tuning of the tools’ settings. Among the investigated techniques for 16S
metagenomic data analysis, MG-RAST demonstrated slightly better results in both
reads assignment and abundance estimation, albeit only at higher taxonomic ranks.
As previously quoted, "the capacity of WGS data of microbiomes to aid in foren-
sic investigations by connecting objects and environments to individuals has been
poorly investigated". In light of this, our results are especially important, as they
demonstrate the inefficiency of routine 16S data to produce the accurate taxonomical
profiling.
The synthetic metagenomes created in our study is restricted to DNA of bacteria
that inhabit skin surface - a logical target for forensics analysis. However, human
skin is also the environment with one of the most within- and between-individual
diverse microbiota on the human body. The benchmark we created is rather small
and simple as the diversity of microbial species living on the human skin surface
is much larger than only 15 species [224]. The significant inaccuracy of the results
obtained for 16S data in comparison with those for WGS data on a small and simple
set of benchmarks can possibly question the accuracy of the previous 16S-based
forensic studies, at least those done on skin-associated microbial communities.
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3.1 Background

The analysis of metagenomic data is becoming a routine for many different re-
search fields, since it serves scientific purposes as well as improves our life quality.
Particularly, with the use of metagenomics a large step was made towards the un-
derstanding of the human microbiome and uncovering its real composition and
diversity [225, 226, 227, 228, 229, 230]. The understanding of the human micro-
biome in health and disease contributed to the development of diagnostics and
treatment strategies based on metagenomics knowledge [231, 232, 233, 234, 235,
236, 237, 238]. The study of microbial ecosystems allows us to predict the possible
processes, changes and sustainability of particular environments [239, 240]. Genes
isolated from uncultivable inhabitants of soil metagenomes are being successfully
utilized, for example, in the biofuel industry for production and tolerance to byprod-
ucts [30, 241, 242]. Various newly discovered biosynthetic capacities of microbial
communities benefit the manufacturing of industrial, food, and health products, as
well as contribute into the field of bioremediation [54, 55, 56, 57].
Despite all the progress made in resolving genetic data derived from environmental
samples, it is still a challenging task. Reads binning is one of the most critical steps
in the analysis of metagenomic data. To estimate the composition of a particular
microbiome, it is important to ensure that sequencing reads derived from the same
organism are grouped together. Currently, alignment of DNA extracted from an
environmental sample to a set of known sequences remains the main strategy for
metagenomics binning [243, 244]. There is a full range of techniques allowing the
comparison of metagenomic reads to a reference database. It can be performed using
different metagenomic data types (16S or WGS) and various matching approaches
(classic alignment or matching performed using k-mers or taxonomic signatures).
Most of the time, the binning is performed for all reads in the database, but in some
cases only a particular subset of sequencing data is selected for binning. Lastly,
there is a wide spectrum of databases that can be used to perform the binning. The
database might contain all possible annotated nucleotide/protein sequences, marker
genes for distinct phylogenetic clades, sequencing signatures specific to particular
taxa, etc. (see more detailed explanation in Chapter 1). The obvious downside of
all listed strategies is the incapability to perform an accurate binning for the reads
derived from organisms that are not present in the reference database.
Metagenomics binning was improved by alignment-free approaches, which can be
split into two subgroups: reference-dependent and reference-independent methods.
The tools from the first subgroup utilize existing databases to train a supervised
classifier for the reads binning. Various techniques can be performed to achieve
this goal: Support Vector Machine, Interpolated Markov Models, Gaussian Mixture
Models, Hidden Markov Models [147, 148, 149, 151, 152, 153, 150]. Even though
these approaches are reference dependent, they can be used to classify reads derived
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from previously unknown species. However, the accuracy of reference-dependent
methods will be always limited by the content of reference databases. The content of
the current reference databases utilized for training differs from the true distribution
of microbial species on our planet[245, 246, 247, 248, 249, 250, 251]. For some meta-
genomic datasets the amount of unknown sequences might be quite high [252, 253],
thus using supervised classification tools based on known genetic sequences is
questionable if this is the case.
Reference-independent approaches for metagenomics binning try to solve the prob-
lem of missing taxonomic content: they are designed to classify reads into genetically
homogeneous groups without utilizing any information from known genomes. In-
stead, they use only the features of the sequencing data (usually k-mer distributions,
DNA segments of length k) for classification. One of those tools, LickelyBin, per-
forms a Markov Chain Monte Carlo approach based on the assumption that the
k-mer frequency distribution is homogeneous within a bacterial genome [140]. This
tool performs well for very simple metagenomes with significant phylogenetic diver-
sity within the metagenome, but it cannot handle genomes with more complicated
structure such as those resulting from horizontal gene transfer [141]. Another one,
AbundanceBin [142], works under the assumption that the abundances of species
in metagenome are following a Poisson distribution, and thus struggles analysing
datasets where some species have similar abundance ratios. MetaCluster [143] and
BiMeta [144] address this problem of non-Poisson species distribution. However, for
these tools it is necessary to provide an estimation of the final number of clusters,
which cannot be done for many metagenomes without any prior knowledge. Also,
both MetaCluster and BiMeta are using a Euclidian metric to compute the dissim-
ilarity between k-mer profiles, which was shown to be influenced by stochastic
noise in analysed sequences [145]. Another recent tool, MetaProb, implements a
more advanced similarity measure technique and can automatically estimate the
number of read clusters [146]. This tool classifies metagenomic datasets in two steps:
first, reads are grouped based on the extent of their overlap. After that, a set of
representing reads is chosen for each group. Based on the comparison of the k-mer
distributions for those sets, groups are merged together into final clusters. Even
though MetaProb outperformed other tools during the analysis of simulated data,
it was shown to perform not very well on the real metagenomicmetagenomic data
data.
In this article we present a new technique for alignment- and reference-free classifica-
tion of metagenomic data. Our approach is based on a pairwise comparison of k-mer
profiles calculated for each sequencing read in a long-read metagenomic dataset,
using the previously described kPAL toolkit [213]. It also performs unsupervised
clustering to facilitate the identification of genetically homogeneous groups of reads
present in a sample. The main assumption of our method is that after assigning the
pairwise distances for all reads in the dataset, those belonging to the same organism
will form dense groups, and thus the metagenome binning could be resolved using
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density-based clustering. We developed an algorithm which automatically detects
the regions with high density and hierarchically splits the dataset until there is one
dense region per cluster. The approach is designed to work with long reads (more
than 1,000 bp) since we calculate k-mer profiles for each read separately and shorter
reads would yield non-informative profiles. We performed our analysis on long
PacBio reads that were either simulated or generated from a real metagenomic sam-
ple. We have shown that despite the fact that PacBio data is known to have a high
error rate, the approach successfully performed read classification for simulated and
real metagenomic data.

3.2 Materials and Methods

3.2.1 Software

All analyses were done using publicly available tools (parameters used are listed
below for each specific case) along with custom Python scripts which are stored in a
Git repository1.

3.2.2 PacBio data simulation

Complete genomes of five common skin bacteria were used to generate artificial
PacBio metagenomes (see Table 3.1). The reads were simulated from reference
sequences using the PBSIM toolkit [254] with CLR as the output data type and a
final sequencing depth of 20. For the calibration of the read length distribution, a set
of previously sequenced C. difficile reads [255] was used as a model.

3.2.3 Bioreactor metagenome PacBio sequencing

Bioreactor metagenome coupling anaerobic ammonium oxidation (Annamox) to
Nitrite/Nitrate dependent Anaerobic Methane Oxidation (N-DAMO) processes
[256] was used to generate WGS PacBio sequencing data.
Metagenome contained the N-DAMO bacteria Methylomirabilis oxyfera (complete ge-
nome with GeneBank Acsession FP565575.1 was used as a reference), two Annamox
bacteria (Kuenenia stuttgartiensis, assembly contigs from the Bio Project PRJEB22746
were used as a reference and a member of Broccardia genus, assembly contigs of
Broccardia sinica from Bio Project PRJDB103 were used as reference) and an archaea
species Methanoperedens nitroreducens (assembly contigs from the Bio Project PR-
JNA242803 were used as a reference).
Bacterial cell pellets were disrupted with a Dounce homogenizer. DNA was isolated
using a Genomic Tip 500/G kit (Qiagen) and needle sheared with a 26G blunt end

1Available at https://git.lumc.nl/l.khachatryan/pacbio-meta
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needle (SAI Infusion). Pulsed-field Gel electrophoresis was performed to assess the
size distribution of the sheared DNA. A SMRTbell library was constructed using
5µg of DNA following the 20 kb template preparation protocol (Pacific Biosciences).
The SMRTbell library was size selected using the BluePippin system (SAGE Science)
with a 10 kb lower cut-off setting. The final library was sequenced with the P6-C4
chemistry with a movie time of 360 minutes.

3.2.4 Reads origin checking

Reads were corrected using the PacBio Hierarchical Genome Assembly Process algo-
rithm before being mapped to the genomes of the expected metagenome inhabitants
genomes using the BLASR aligner [257] with default settings. The alignments were
used to determine the origin of the reads. Reads that were not mapped during the
previous step were subjected to the BLASTn [102] search against the NCBI database.
The identity cut-off was set to 90, the (E)value was chosen to be 0.001.

3.2.5 Bioreactor metagenome PacBio reads assembly

The assembly of corrected PacBio reads was performed using the FALCON [258]
assembler. The resulting contigs were mapped to the candidate reference genomes
using LAST [104] with default settings. To determine the similarity cutoff for the
mapping procedure, the curve representing the number of contigs versus the simi-
larity to the reference genome was analysed. The first inflection point at (in case of
mapping contigs to the M. oxyfera genome 12%), dividing the fast-declining part of
the curve from the slow-declining part, was chosen as a threshold (See Supplemen-
tary materials for more details).

3.2.6 Binning procedure

For each read, the frequencies of all possible five-mers were calculated using the
count command of the kPAL toolkit. The resulting profiles were balanced (a pro-
cedure that compensates for differences that occur because of reading either the
forward or reverse complement strand) and compared in a pairwise manner by
using the balance and matrix commands of kPAL accordingly, yielding a pairwise
distance matrix. Normalization for differences in read length was dealt with by the
scaling option during the pairwise comparison.
The resulting distance matrix, hereafter called the original distance matrix, was
subjected to a multi-step clustering procedure. A schematic representation of this
procedure can be found in Figure 3.1. Due to practical limitations (runtime), this
analysis was restricted to a set of 10,000 randomly selected reads. This multi-step
clustering procedure works recursively: it starts with the analysis of a set of reads
and either reports the entire set as one cluster, or it splits the set into two subsets,
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which are each analysed using the same procedure. The decision whether to split the
set of reads into two subsets is made using the following approach. First, the pairwise
distances for all reads in the set are extracted from the original distance matrix in
order to construct the working distance matrix. After that, the dimensionality of the
analysed set is decreased to three using the t-SNE algorithm [259] in order to reduce
noise caused by outliers in the distance matrix. The reads, now represented by a
point in three-dimensional space, are subjected to density-based clustering using
the DBSCAN algorithm [260] with the default distance function.

Set of reads

Two new sets of 
reads

Three-
dimensional 

representation

Clustering results

Original distance 
matrix

Working distance 
matrix

>1000 
reads?

>1 
cluster?

Non-linear 
dimensional 

reduction

Density-
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clustering

Cut the set 
into two 

parts

Report 
cluster

Repeat 
with each 

set

YES

YES

NO

NO

Figure 3.1: Schematic representation of the clustering procedure.

We choose the MinPts parameter of DBSCAN (the minimal amounts of points in
the neighborhood to extend the cluster) to be either 1% of the size of the dataset
for sets larger than 2,000 reads, or 20 for sets smaller than 2,000 reads. The number
of clusters found by DBSCAN depends on the neighborhood diameter ε. When
ε is too small, no clusters are reported since all points are isolated. On the other
hand, when ε is too large all points are grouped into one cluster. Our algorithm
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Figure 3.2: Density-based clustering analysis example. The data is clustered with DBSCAN with ε ranging from 0 to
the value when 90% of the points are assigned to one cluster. When at least half of the data set is assigned to a dense
cluster, the number of clusters is used to determine whether subdivision of the data set is required. Only if more
than one cluster is identified at this point, the procedure is repeated recursively with two partitions of the data. The
partitions are determined by using the largest ε that clusters the data into two clusters. In this example two datasets
are shown: one that was further split into two partitions (A) and one that was reported as one dense cluster (B).

therefore performs a parameter sweep for ε, from the value providing zero clusters
to the value with which 99% of the reads are grouped in one cluster for the chosen
MinPts. The results of this parameter sweep are used to check the dependency of the
number of dense clusters on a particular ε (only clusters larger than 100 points are
considered) and how many points of the analysed set are included in the obtained
clusters (Figure 3.2). If for some ε there are two or more clusters that together cover
more than half of the total amount, the analysed set is divided into two new sets
(Figure 3.2A). The analysed set is reported as one cluster if the aforementioned
condition is not satisfied (Figure 3.2B), or when the size of the analysed set is smaller
than 1,000 points.

The division is done using the following strategy. DBSCAN is performed using the
optimal ε, yielding two dense clusters that serve as center points for two partitions.
Each of the remaining unclassified points is assigned to the cluster containing the
closest classified neighbor.

3.2.7 Classification for larger sets

Read classification for sets larger than 10,000 was performed in two steps. First,
10,000 reads (larger than 10 kb) were randomly chosen and classified using the
algorithm described in section 3.2.6. After that, the pairwise distances between every
unclassified read and every classified read were calculated using their 5-mer profiles.
These distances were used to assign the unclassified read to the cluster containing
the closest classified read.
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3.2.8 Data avaliability
Sequencing reads of bioreactor metagenome were submitted to SRA under the study
number SRP159147.
Supplementary materials were deposited on Figshare and available for downloading
using the following link: https://doi.org/10.6084/m9.figshare.c.4218857.v1
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3.3 Results

3.3.1 Reads classification in artificial PacBio metagenomes

To construct artificial metagenomes, we used simulated PacBio reads based on the ge-
nomes of five common skin flora bacteria together with so-called "noise" reads. These
are reads from a PacBio sequencing data of an environmental metagenome [261]
that were not assigned to the major inhabitant K. stuttgartiensis or other known
organisms. They were added to represent low abundant species that are present in
any typical metagenomic dataset.
We constructed four artificial PacBio datasets in this way, each containing 10,000
randomly selected reads (length > 9 kb) containing 0%, 5%, 10% and 15% noise
reads, respectively. For the simplicity the number of simulated reads was adjusted to
provide an equal abundance for each bacterium in the final metagenome (Table 3.1).

Reads origin RefSeq AC Genome
length, Mb

Number of reads per dataset

0% 5% 10% 15%
S. mitis NC_013853.1 2.1 1,246 1,183 1,121 1,059
P. acnes NC_017550.1 2.5 1,443 1,371 1,298 1,226
S. epidermidis NC_004461.1 2.6 1,448 1,376 1,304 1,231
A. calcoaceticus NC_016603.1 3.9 2,236 2,125 2,013 1,901
P. aeruginosa NC_002516.2 6.3 3,627 3,446 3,264 3,083

Table 3.1: Content of artificial metagenomics PacBio datasets.

We subjected each dataset to the classification procedure described in section 3.2.6.
The reads in the resulting clusters were then classified according to their origin
(See Supplementary Material for more data). In Figure 3.3, it can be seen that for
each experiment we obtained five large clusters (> 1,000 reads) consisting mainly of
reads belonging to the same species. For all three datasets containing noise reads
we see the tendency of noise reads to be clustered with some fraction of P. acnes and
P. aeruginosa reads. However, as can be seen from Figure 3.3 and Table 3.2, increasing
the noise content leads to better isolation of these reads. Indeed, for dataset B (5%
of the noise reads), the majority of noise reads were assigned to the cluster that is
primarily occupied by reads belonging to P. acnes and P. aeruginosa. Increasing the
noise content (dataset C and D in Fig. 4, 10% and 15% noise reads accordingly) led
to the appearance of two clusters which contain mostly noise reads (Table 3.2, A).
We also see that with the increase of noise content, the fractions of P. acnes and
P. aeruginosa reads included in the same clusters as the noise reads are dropping
(Table 3.2, B). In conclusion, the more noise reads were added to the dataset, the
better they were grouped together in one or two clusters (Table 3.2, A).
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Dataset 5% noise 10% noise 15% noise
Reads origin Cluster 2 Cluster 2 Cluster 8 Cluster 6 Cluster 7

A
noise 21.4 90.3 47.8 85.6 97.3
P. acnes 63.7 0.5 33.8 5.6 0
P. aeruginosa 10.4 1.3 19.1 8.9 0

B
noise 91.8 55.9 39.9 45.0 50.8
P. acnes 99.6 0.2 22.3 3.6 0
P. aeruginosa 6.4 0.2 5.3 2.3 0

Table 3.2: Composition of clusters containing the majority of noise reads after the classification procedure for three
artificial PacBio datasets. A - cluster composition; B - the percentage of reads with particular origin (noise, P. acnes or
P. aeruginosa) included to the cluster within all reads of the same origin in the dataset. Clusters are grouped per dataset.
Only organisms whose reads would occupy more than 90% of cluster content are shown.

3.3.2 PacBio sequencing of bioreactor metagenome

After sequencing and correction, we obtained 31,757 reads longer than 1kb for the
bioreactor metagenome. The read length distribution for this dataset can be found in
Figure 3.4. Reads were mapped to the genomes of the expected metagenome inhabi-
tants. Since the groups of reads that we could map to the genomes of K. stuttgartiensis
and B. sinica had a significant overlap (27%), we decided to combine reads mapped to
the reference genomes of these two organisms in one group. We detected almost no
(0.01%) reads that would map to the M. nitroreducens genome in the sequencing data,
suggesting that this organism was either not present in the metagenome sample, or
that its DNA could not be isolated reliably during the sample preparation.
Thus, we divided our reads into three groups: uniquely mapped on M. oxyfera
(4,903 reads), uniquely mapped on K. stuttgartiensis/B. sinica (2,973 reads), and all
remaining reads with unknown origin ( 75%, 23,881 reads). The reads with unknown
origin were checked with the BLASTn software against NCBI microbial database, to
find significant similarity to any known organism. However, only 334 reads (less
then 2% of total number of checked reads) got hits; there were no organisms among
the obtained hits reported more than 53 times.

3.3.3 Bioreactor metagenome PacBio read classification

For the reads originating from M. oxyfera and K. stuttgartiensis/B. sinica, we checked
whether the data was clustered by origin. Since roughly 75% of this sequencing data
is of unknown origin, we assessed whether the clustering results for reads with
unknown origin is robust. To do this, we created five subsets using the bioreactor
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Figure 3.3: Classification recall for artificial PacBio metagenomes. Subsets that were subjected to the partitioning are
shown as black circles, final clusters are represented as pie charts with the colour indicating the reads origin. The area
of the pie chart corresponds to the relative cluster size. The cluster number is shown next to each pie chart. The results
are shown for datasets with 0% (A), 5% (B), 10% (C) and 15% (D) of noise reads.

metagenome sequencing data. Each subset contains 10,000 randomly selected reads
with length > 10 kb. After subjecting each subset to the classification procedure, we
checked whether reads, shared by two subsets, are being clustered similarly. We
compared all clusters from different subsets in a pairwise manner and marked two
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Figure 3.4: Bioreactor metagenome reads length distribution.

clusters ’similar’ when they shared at least 25% of their content. On average, every
pair of subsets shared 34% of their content. Thus, in case of perfect matching of
clustering results, the pair of clusters from two different subsets should on average
share 34% of their content. The 25% cutoff value was chosen to compensate for
possible flaws introduced by clustering mis-assignments.
In Figure 3.5 this analysis is shown as a graph: each pie chart represents a cluster
obtained for one of the subsets (with a subset number marked next to the pie chart).
Clusters are connected if they were marked as similar and thus shared more then
25% of their content. We looked for sub-graphs, of size five for which all five nodes
would be mutually connected. That would mean that all five clusters are coming
from the different subsets and share a significant (at least 25% out of 34% possible)
number of reads. These groups of clusters (here and after called the stable groups)
represent reads that are clustered the same way regardless of the subset of reads
selected. Clusters belonging to the stable groups are called the stable clusters. The
proportion of reads in the stable clusters was comparable among datasets and
equaled on average 64%. As displayed in Figure 3.5, we found seven groups of
stable clusters. Four groups of stable clusters have clusters with more than 1,000
reads, and two of those four are represented by clusters enriched with M. oxyfera or
K. stuttgartiensis/B. sinica reads. In Table 3.3 we display the content and the number
of reported clusters after the classification procedure for each of the five subsets.
Once we estimated the robustness of the classification procedure, we selected the
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Subset 1 2 3 4 5
Number of M. oxyfera reads 1,499 1,563 1,528 1,544 1,529
Number of K. stuttgartiensis/B. sinica reads 949 918 981 935 906
Clusters after the classification procedure 14 11 13 13 12
Big (>1,000 reads) clusters 5 5 5 5 5
% of reads in stable clusters 65.96 64.12 61.98 64.46 64.16

Table 3.3: Subsets information and clustering results.

subset that yielded the lowest number of clusters (subset 2, 11 clusters) for down-
stream analysis. The content of all clusters that were not reported as stable were
merged into one cluster. Thus, the original 10,000 reads were spread among 8 clus-
ters. These clusters were used as a classifier for the remaining 21,757 reads in the
dataset (Table 3.4).

Cluster Stable Reads before extension Reads after extension
1 Yes 403 1,038
2 Yes 168 528
3 Yes 1,133 3,204
4 Yes 1,540 5,151
5 Yes 1,004 3,337
6 Yes 181 506
7 Yes 1,983 6,459
8 No 3,588 11,534

Table 3.4: Results of bioreactor metagenome reads classification

3.3.4 Assembly of the bioreactor metagenome before and after reads
binning

We assembled reads belonging to different clusters separately, and compared the
resulting contigs with the results of the assembly of the entire dataset. The total
number of contigs after assembly of the partitioned dataset was comparable to the
amount of contigs obtained from the assembly of the entire dataset (Table 3.5). The
same can be said about the total length of contigs and contigs length distributions
(see supplementary materials). These results, showing that the database partitioning
did not lead to the change of the contigs number or their lengths, can be seen as
indirect evidence proving that our k-mer based binning of metagenome reads results
in species-based clustering.
We compared the assembled contigs obtained for the entire and partitioned datasets
to the reference genomes of M. oxyfera, K. stuttgartiensis and B. sinica. Even though
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we could successfully map around 9% of the reads to the reference genomes of
K. stuttgartiensis and B. sinica, we did not get contigs that could be mapped to these
genomes. However, the contigs assembled from the entire and partitioned datasets
did map to M. oxyfera genome. Only 91 out of 196 contigs obtained from the entire
dataset assembly could be mapped back to the M. oxyfera genome covering 54% of
its length. For the assembly of the partitioned dataset, 85 contigs were mapped to
the genome of M. oxyfera in total, covering 52.65% of its length. The vast majority of
those contigs (79, covering 51% of the M. oxyfera genome length) derived from the
assembly of reads belonging to one cluster. Thus, our dataset partitioning binned
the majority of contigs according to their origin.

Dataset
assembled

Entire
dataset Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6 Cl 7 Cl 8

Assembly
length,
bp

3,251,357 5,438 10,747 380,905 377,792 601,065 0 1,602,878 41,310

Contigs 196 1 1 28 30 47 0 71 2

Contigs
mapped
on
M. oxyfera
genome

91 0 0 9 1 2 0 71 2

Length of
mapped
contigs

1,842,182 0 0 132,863 11,945 21,105 0 1,497,132 17,013

M. oxyfera
genome
covered, %

54 0 0 1.2 0.1 0.15 0 51 0

Table 3.5: Results of entire and partitioned bioreactor sequencing data assembly and comparison of obtained contigs to
the M. oxyfera genome. Cl - cluster.

3.4 Discussion

We described a new approach for efficient, alignment-free binning of metagenomic
sequencing reads based on k-mer frequencies. Our method successfully classifies
reads per organism of origin, for both simulated and real metagenomic data.
As shown in the results section, the approach was used to classify reads obtained by
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PacBio sequencing of a real bioreactor metagenome. The absolute majority of the
reads with known origin (M. oxyfera or K. stuttgartiensis/B. sinica) were clustered
together per origin after pairwise comparison of their k mer profiles and subsequent
density-based cluster detection. This result was robust, as we observed during the
analysis of five subsets of the original PacBio sequencing data with overlapping
content. The same experiment demonstrated that each subset provides a similar
number of clusters. Reads with unknown origin had a tendency to cluster similarly
among different subsets, again confirming the clustering consistency. Although the
majority of reads in the analysed metagenome was of unknown origin, the results
can be used to estimate the microbial community complexity for its most abundant
inhabitants.
The binning of the bio-reactor metagenomic dataset had almost no influence on
the results of the metagenome assembly. The number of contigs and their lengths
obtained for the entire and partitioned datasets were comparable. This indicates
that the k-mer based reads binning leads to the organism-based partitioning of
metagenomic data. Furthermore, contigs, belonging to the same organism, were
automatically grouped together when assembling the dataset subjected to the classi-
fication procedure. Thus, our k-mer based binning technique can be used to interpret
metagenomic assembly results.
Performing the binning procedure on an artificially generated PacBio datasets lead
to a reads classification per organism, even after adding reads with unknown origin
(noise reads). Moreover, increasing the proportion of noise reads leads to a better sep-
aration between them and the reads with known origin. This observation supports
the ck-merentral hypothesis of this research, namely that k-mer distances can be
used to cluster reads of the same origin together once those reads provide sufficient
coverage of the organisms’ genome.
The main disadvantages of the current implementation of our method is the limited
number of reads (10,000) that can be analysed. As mentioned before, reads, derived
from the same organism, will cluster together, but this is possible only under the
condition that the organisms’ genome is sufficiently covered. Thus, the described
technique is unsuitable for the analysis of metagenomes with a large number of
inhabitants or when the inhabitants have large genomes, as 10,000 reads will not be
enough to provide sufficient coverage. The depth of the classification that can be
performed by the suggested method is still to be discovered.
We believe that adapting our metagenomics reads binning technique for larger sets
of data and further investigation of its metagenome resolving capacity would allow
to expand the current limits of microbiology in the future.
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4.1 Background

DURING the past decade, DNA sequencing technologies have undergone notable
improvements with great impacts on molecular diagnostics and biomedical

and biological research. Today, next-generation sequencing (NGS) technologies
can provide insights into sequence and structural variations by achieving unprece-
dented genome and transcriptome coverage. Despite molecular and computational
advances, the fast growing developments in library preparation, sequencing chem-
istry and experimental settings are of concern as they can diversify the complexity
and quality of sequencing data [262, 263, 264]. To address data quality, most strate-
gies rely on basic statistics of the raw data, such as the quality scores associated
with base calling, the total number of reads and average GC content. Technical
artefacts are usually only spotted after mapping of reads to the reference genome.
However, such approaches are prone to alignment biases and the loss of potentially
valuable information due to the predisposed and incomplete reference genome
sequences [265, 266, 267]. These biases are considerably more problematic in studies
of microbiomes as the species diversity can be immense [268], whereas the evalua-
tion of data complexity and quality is limited to the analysis of species for which a
reference genome sequence is available.
Analysing the k-mer (DNA words of length k) frequency spectrum of the sequencing
data provides a unique perspective on the complexity of the sequenced genomes,
with more complex ones showing a greater diversity in unique sequences and
repeated structures. Over- and under-represented k-mers have been associated with
the presence of functional or structural elements (such as repetitive, mobile or
regulatory elements), negative selection, or the hypermutability of CpGs [269, 270,
271, 272, 273]. Notably, the prevalence of functional elements and those caused by
neutrally evolving DNA (including duplications, insertions, deletions and point
mutations) is reflected in the modality (number of peaks) of the k-mer frequency
spectrum [274, 275]. The modality of the human genome is also subjected to its
function as all coding regions, including the 5’ untranslated regions (UTRs), exhibit
a unimodal k-mer spectrum, while the introns, 3’ UTRs and other intergenic regions
have a multimodal distribution [274, 275].
In recent years, k-mers have been used in a wide range of applications from the
identification of regulatory elements to correction of sequencing errors, genome
assembly, phylogeny analysis and the search for homologous regions [276, 277,
278, 279, 280, 281, 282]. It has also been shown that the characterization and com-
parative analysis of the k-mer spectrum can provide an unbiased view of genome
size and structure, but it can also expose sequencing errors [283]. However, to our
knowledge, most tools fail to accommodate for differences in library size and do not
reliably expose problematic samples nor provide information on potential sources
of variation in series of sequencing data. Here, we present a method, k-mer Profile
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Analysis Library (kPAL), for assessing the quality and complexity of sequencing
data without requiring any prior information about the reference sequence or the
genetic makeup of the sample. The proposed method uses the distance between
k-mer frequencies to measure the level of dissimilarity within or between k-mer
profiles. Since most distance measures are susceptible to differences in library size,
we have implemented a series of functions that ensure a more reliable assessment of
the level of dissimilarity between k-mer profiles. Based on the same principle, kPAL
can identify problematic samples, as their level of similarity reduces in the absence
of a significant difference between the genome of the sequenced samples. In this
work, we apply kPAL to four types of NGS data: 665 RNA sequencing (RNA-Seq)
samples [284, 285], 49 whole genome sequencing (WGS) samples, 43 whole exome
sequencing (WES) samples, and a series of microbiomes. We report the sources
of technical and biological variation present in each set of NGS data, highlight a
series of artefacts that were missed by standard NGS quality control (QC) tools, and
demonstrate how the complexity of microbiomes is reflected in their k-mer profiles.

4.2 Materials and Methods

4.2.1 kPAL implementation
kPAL is a Python-based toolkit and programming library that provides various tools,
many of which are used in this study. kPAL is an open-source package and can be
downloaded 1 2 3. kPAL can also be installed (including all prerequisites) through
the command line using: pip install kPAL. Detailed documentation and tutorials are
available 4. For detailed a description of the kPAL methodology, refer to Additional
file 1: Notes. The performance of kPAL, in terms of speed and memory usage, for
generating and pairwise comparison of k-mer profiles is provided in Additional file
1: Figure S18.

4.2.2 Creating k-mer profiles
The k-mer profiles were generated using the index function built into kPAL. For
all analyses k was set to 12 except when otherwise stated. To accommodate for the
analysis of both sequencing reads and genome reference sequences, we have chosen
to use the FASTA format as an input to kPAL. However, we provide a command-line
tool to convert FASTQ files to the appropriate format 5. For paired-end data, the

1k-mer Profile Analysis Library at GitHub repository https://github.com/LUMC/kPAL
2k-mer Profile Analysis Library at LUMC repository http://www.lgtc.nl/kPAL]
3k-mer Profile Analysis Library at official Python repository for open-source packages

https://pypi.python.org/pypi/kPAL
4Online documentation for k-mer Profile Analysis Library http://kPAL.readthedocs.org
5Available from: https://git.lumc.nl/j.f.j.laros/fastools.
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profiles for both reads were merged into a single k-mer profile using the kPAL merge
function. For more information on performance, runtime and memory usage, see
Additional file 1: Notes.

4.2.3 Measuring pairwise distances

The matrix function was used in combination with the scale and/or smooth options
to measure the distance between two k-mer profiles. The pairwise distance between
profiles was calculated using the multiset distance measure [286]. This measure
was parameterized by a function that reflects the distance between two elements
in a multiset, in this case the difference between frequencies of specific k-mers. The
following function was used to calculate the distances after applying the scale and
smooth options.

f (x,y) =
|x− y|

(x + 1)(y + 1)

For further information about the procedure, refer to Additional file 1: Notes.

4.2.4 Calculating the k-mer balance

For all samples in this study, the balance between the frequencies of k-mers and
their reverse complement were found using the showbalance function in kPAL (see
Additional file 1: Notes). For all paired-end datasets, k-mer profiles were first merged
and then assessed for their balance.

4.2.5 Statistical analysis

The distance matrices produced by the pairwise comparison of all samples were
used to perform a hierarchical clustering and PCA in R and MATLAB, respectively.
The mRNA analysis pipeline, QC and exon quantification procedure are described
elsewhere [284, 285]. For the microbiomes, the hierarchical clustering was done
using the distance matrices provided by the k-mer profile or UniFrac [139] analyses.
Subsequently, the accuracy of the clustering arrangement was assessed based on the
silhouette [287] and weighted kappa [288] measures.

4.2.6 Library preparation and sequencing

For WGS datasets, two separate library preparation protocols were used. The gDNA
libraries for full genome libraries were prepared using the reagents from a True-Seq
DNA Sample Prep Kit according to the manufacturers’ instructions (TrueSeq DNA
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Sample Preparation Guide, revision C; Illumina Inc., San Diego, CA) with minor
modifications. After the ligation, the first protocol uses a gel-free method for samples
instead of a gel step that was used for the second protocol. Furthermore, the number
of PCR cycles in the PCR enrichment step differs between the two protocols (five
and ten cycles, respectively). A High Sensitivity DNA chip (Agilent Technologies
2100; Santa Clara, CA) was used for quantification and samples were subsequently
sequenced on an Illumina HiSeq 2000 sequencer at the same laboratory.
Libraries for the WES samples were prepared using the Agilent SureSelect Kit (Ag-
ilent Technologies, Santa Clara, CA), Nimblegen Capture Kit V2 or Nimblegen
Capture Kit V3 (Roche NimbleGen Inc., Madison, WI), according to the manufac-
turers’ instructions. A High Sensitivity DNA chip (Agilent Technologies 2100) was
used for the quantification and the samples were subsequently sequenced on an
Illumina HiSeq 2000 sequencer at the same laboratory.
The library preparation and sequencing of all RNA-Seq samples are described
elsewhere [284, 285].

4.2.7 Pre-processing

FastQC was run for all samples prior to analysis to assess the quality of the data.
However, none of the sequencing data was removed from the analysis as they all
passed the FastQC quality measures. Reads were trimmed for low quality bases
(Q < 20) using sickle6 and cleaned up for adapters.

4.2.8 Alignment

Alignment to the human reference genome was performed for WGS and WES using
Stampy [289], BWA [105] and Bowtie 2 [106] with default parameters. For the WES
samples, the number of on-target reads was calculated using the BEDTools [290]
intersect, BAM files and a BED track consisting of all targets according to the manu-
facturers’ guidelines. Reads with no overlapping base were considered as off target.
Basic alignment statistics (such as alignment rate, the fraction of properly paired
reads, etc.) were extracted using SAMtools [291] flagstat. For WGS samples, the insert
sizes were estimated using the Picard toolkit7. The number of base pairs that were
soft clipped during the alignment was extracted from the SAM files using a custom
script.

6Sickle: a windowed adaptive trimming tool for FASTQ files using quality
https://github.com/najoshi/sickle

7Picard: a set of tools for working with next-generation sequencing data in the BAM format
http://broadinstitute.github.io/picard/
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4.2.9 SGA
Comparison QC and exploration of data properties were performed using the
Preqc module of the SGA software. All analyses were performed according to SGA
guidelines [283].

4.2.10 Data availability
For the WGS and WES data, the FASTQ and BAM files have been deposited at the Eu-
ropean Genome-phenome Archive8, which is hosted by the European Bioinformatics
Institute, under the accession number [EGA:S00001000600]. In addition, all k-mer
profiles are available under the same accession. For the RNA-Seq data, the k-mer pro-
files can be found online9. The FASTQ files and BAM alignments as well as different
types of quantification are available in Array Express under accessions E-GEUV-1
(mRNA) and E-GEUV-2 (small RNA) for QC-passed samples and E-GEUV-3 for all
sequenced samples10 11 12. Microbiomes were obtained from the ’Moving Pictures
of the Human Microbiome’ project [MG-RAST:4457768.3-4459735.3] [292].

8http://www.ebi.ac.uk/ega/
9http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-3/files/profiles/?ref=E-GEUV-3

10http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/
11http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-2/
12http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-3/
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4.3 Results and Discussion

4.3.1 Principles of kPAL

We developed an open-source package kPAL, which provides a series of tools (such
as distance calculation, smoothing and balancing) to investigate the spectrum of
k-mers observed in a given NGS dataset (Figure 4.1 A and Additional file 1: Notes).
The resulting k-mer profile holds valuable information on the complexity of the
sequencing libraries and the sequenced genome(s). This is delineated in a graphical
representation of the k-mer profiles, which plots the number of k-mers observed
at each frequency. The complexity of genomic information is often reflected in the
modality of this distribution, mainly due to repetitive and structural elements, and
the context-specific composition of k-mers [271, 274, 275, 293]. First, k-mers are
processed using efficient binary codes that facilitate a rapid reverse complement
conversion and access to specific k-mers (Figure 4.1 B). Next, kPAL uses the distance
between k-mer frequencies as a measure of dissimilarity between two k-mer profiles.
In addition, calculating the correspondence between the frequencies of k-mers and
their reverse complements aids in assessing the coverage balance between two
strands of the sequenced library (Figure 4.1 C). Generally, k-mer profiles can be
shrunk to a smaller k size using the shrink function to enable access to smaller k-mer
profiles without the need to reprocess the sequencing data (Figure 4.1 D). However,
it is important to note that large deviations from the original k size may obscure
the true k-mer frequencies due to limited access to both ends of the sequencing
reads (i.e., the last 12 nucleotides can be processed only once in a 12-mer profile
whereas the same information is processed seven times in a 6-mer profile). To
facilitate pairwise comparison of k-mer profiles and account for differences in library
sizes, we have implemented complementary scaling and smoothing functions. Scaling
k-mer frequencies to match the area under the curve of two profiles is a global
normalization of the k-mer profiles. The smoothing function borrows the utility of
shrinking and applies it locally to k-mers that have a frequency lower than a user-
defined threshold, which results in local collapsing of those k-mers to a smaller size
(i.e., k-1) until the threshold condition is met (Figure 4.1 E). For more information
and a detailed explanation of kPAL features, see Additional file 1: Notes.

4.3.2 Setting k size

To identify which k provides the best specificity for a mixed sample of bacteria,
the k-mer profiles from three modelled metagenomes consisting of 30 bacterial ge-
nomes from the Firmicutes and Proteobacteria phyla (in 100:0, 50:50 and 0:100 ratios
from each phylum) were compared to ten randomly shuffled sequences (without
changing the overall nucleotide composition). The optimal value for k is the one that
best separates metagenomes from randomly permuted sets. The overall distance
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Figure 4.1: Schematic overview of main kPAL principles. (A) An overview of the procedure used by kPAL to assess
the frequency of all k-mers within sequencing data. k-mers are identified and counted by a sliding window of size k.
The k-mer spectrum can then be produced using the k-mer frequencies. The main functions of kPAL can be divided
by their application to single or multiple profiles. For single k-mer profiles, general information about the number of
nullomers, total number of counts, distribution of k-mer counts and balance between sequencing information from
the plus and minus strands can be obtained with dedicated functions. If needed, profiles can be manipulated by the
balance, shuffle and shrink functions. The balance function uses a sum of k-mers and their reverse complements to
enforce balance between sequence information from the minus or plus strand. The shuffle function is designed to
produce random k-mer profiles without changing the overall distribution of counts. (B) kPAL efficiently processes k-
mers, as it encodes the sequences with a binary code using specific keys that can also facilitate a quick conversion to the
reverse complement. Each nucleotide is represented by a binary code that is subsequently used to construct each k-mer.
(C) The strand balance of a given k-mer profile is the overall distance measure between the frequency of the unique
k-mer and its reverse complement. Thus, k-mer profiles are split into two sub-profiles that are reverse complements of
each other and these are used to calculate the strand balance. (D) By design, kPAL can shrink k-mer profiles of size k
to any smaller size. Counts from k-mers that share the first (n - 1) nucleotides are merged to collapse k-mer profiles to
a size k - 1. (E) The smoothing function borrows the utility of shrinking and applies it locally to only k-mers that have
lower counts than one defined by the user. Thus, for those affected, k-mer counts are merged and dropped to the size k
- 1. The smoothing function accepts thresholds for the minimum, maximum or average counts of k-mers that share the
first (n - 1) nucleotides but it also accepts user-defined functions. This process reiterates until the threshold condition
is met. Prof., profile.

between k-mer profiles of the metagenomes and the corresponding randomly per-
muted sets starts to level off once k exceeds 10 (Additional file 1: Figure S1). A low
amount of variation in distance between the k-mer profiles of metagenomes and
their permuted sets indicates that the distance measure is generally robust and only
changes according to k. Interestingly, the optimal separation coincides with the k for
which the complete unimodal spectrum of frequencies (from those that are too rare
to those that are highly recurrent) is observed (Additional file 1: Figure S2 A,B,C).

The human reference genome has a high complexity (described in Additional file
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1: Notes), based on the multimodality of the k-mer profiles, which ranges from 9
to 15 (Additional file 1: Figure S3 A). In humans, k = 11 is the smallest value for
which unique k-mers and nullomers (absent k-mers) are observed while genomic
spectra for k ≥ 13 start to lose their multimodality as they become too unique.
Thus, k = 12 was used to give a relatively balanced number of nullomers, and
unique and frequent k-mers. This allows for the identification of potential artefacts
(mainly reflected by rare k-mers) as well as biological and contextual variations.
Interestingly, the level of complexity varies between different types of genomic
information (WGS, WES and RNA-Seq; see Additional file 1: Figure S3 B). In contrast
to genomic sequences, the coding part of the human genome exhibits a unimodal
profile, as shown before [274, 275]. The minor differences between the k-mer profiles
of the exome and the transcriptome reference sequences are due to the number of
shared coding regions between different transcript variants of the same gene. The
transcriptome reference sequences generally exhibit higher counts for observed k-
mers and lower numbers of nullomers introduced by exon-exon junctions. Moreover,
the k-mer spectrum derived from sequencing data is in concordance with that of the
reference (Additional file 1: Figure S3 C). The minor deviations from the unimodality
of the exome and transcriptome data are mainly due to the capture performance
(off-target reads introduce low-count k-mers that represent intronic and intergenic
regions) and differences in the abundance of expressed mRNA.

In addition to the complexity of the genomic information, the sequencing depth
contributes to the modality and the resolution of the k-mer spectrum derived from
individual datasets. In RNA-Seq, we observed that the number of 12-nullomers
correlates with the total number of reads per dataset (R = -0.80; see Additional file
1: Figure S4 A,B). The variation in the total read counts per sample is partly due to
study design, as sequencing was performed in seven different laboratories [285].
Thus, the total number of 12-nullomers also varies between samples from different
laboratories (Additional file 1: Figure S4 C). It is crucial to account for bias introduced
by poor and variable coverage, as it may obscure the identification of factors that
determine the complexity of the k-mer spectrum. One obvious solution would be to
opt for lower k sizes (i.e., k = 9) at the expense of specificity. However, we propose
the dynamic smoothing function, which is resilient towards coverage bias and does
not sacrifice the specificity of the k-mer spectrum by choosing a smaller k (Additional
file 1: Notes). This function only shrinks the k-mer profile locally when the counts
do not pass predefined conditions (i.e., they fall below an acceptable threshold for
k-mer frequencies). In the next section, we show how kPAL can be used to assess the
quality of different types of sequencing data without relying on the availability of a
well-characterized reference genome.
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4.3.3 Evaluating data quality without a reference

Recently, we showed that performing a pairwise comparison of 9-mer (K9) profiles,
without alignment to the reference sequence, can expose quality issues in RNASeq
data [285]. The median of all pairwise distances for each sample correlated (R = -0.63)
with the correlation measures obtained after alignment and quantification of exon
expression levels, which are post-alignment measures often used for QC. Notably,
some of the problematic samples (due to a high duplication rate and/or high rRNA
content) could only be identified by an analysis of their k-mer profiles. However,
kPAL scores could not separate all problematic samples. Thus, we performed these
analyses for larger values of k to increase the specificity and investigate whether
smoothing can remove biases introduced by variable sequencing depth between
samples. For 12-mer (K12) profiles, the distance measures calculated after scaling
only showed a much weaker correlation (R = -0.34) with the correlation measures
obtained from the exon quantification of samples (Figure 4.2 A). They also displayed
a broad distribution with no apparent clustering of known outliers (Figure 4.2 B).
We also observed a variation between samples based on the laboratory in which the
sequencing was performed, mainly reflecting the library size differences (Figure 4.2
C and Additional file 1: Figure S5 A). After smoothing the k-mer profiles, the k-mer
pairwise distances were in good concordance (R = -0.62) with the correlation mea-
sures of the exon quantifications obtained after alignment (Figure 4.2 D). Smoothed
K12 profiles exhibited a narrow distribution, having known problematic samples
as only outliers (Figure 4.2 E). Importantly, the variation between laboratories was
significantly reduced as the dynamic smoothing function can accommodate differ-
ences in library size (Figure 4.2 F and Additional file 1: Figure S5 B). These median
pairwise distances were far less sensitive to differences in the total read counts per
sample than distances obtained from scaled 9-mer and 12-mer profiles (R = -0.33,
-0.67 and -0.83, respectively; Figure 4.2 G,H,I). Moreover, the number of known
problematic samples that fall outside the 95% prediction bounds is improved to
11 (out of 12) in smoothed K12 distances compared to that of K9 and K12 (eight
and five, respectively). The sample NA18861.4 has by far the highest distance to
other samples in both K9 and smoothed K12 analyses (Figure 4.2 G,I). We have
previously reported that this sample has a significant genomic DNA contamination
since only 4% of reads mapped to exons [285]. This contamination can affect the
complexity of the sequenced library as many reads represent the non-coding and
repetitive regions of the genome. Whereas samples that passed the QC measures
exhibited k-mer spectra that reflected the expected modality of the transcriptome
(Additional file 1: Figure S6 A), the distribution of k-mer frequencies in NA18861.4
clearly mimicked that of the full human reference genome (Additional file 1: Figure
S6 B).
We also addressed quality issues in WGS data. In our set of 49 WGS samples from
nine individuals, pairwise distances between smoothed 12-mers clustered samples
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Figure 4.2: See the figure on the previous page. Evaluating data quality for mRNA sequencing samples across different
laboratories. (A) Scatter plot showing for each sample the median pairwise Spearman correlation for exon quantifi-
cation and the median k-mer distance measures (K distance) after scaling. Problematic samples are highlighted in
different colours. (B) Histogram of median K distance (scaled) for each individual sample. (C) Distribution of median
K distance (scaled) for each sequencing laboratory (indicated by different colours). (D) Scatter plot of median pairwise
Spearman correlation between exon quantification and K distance (smoothed and scaled). (E) Histogram of median
K distance (smoothed and scaled) for each individual sample. (F) Distribution of median K distance (smoothed and
scaled) for each sequencing laboratory (indicated by different colours). (G) Scatter plot of the total number of reads per
sample versus the K distance of 9-mers (scaled). The poly2 fitted line and the 95% confidence intervals are indicated.
(H) Scatter plot of the total number of reads per sample versus the K distance of 12-mers (scaled). (I) Scatter plot of the
total number of reads per sample versus the K distance of 12-mers (smoothed and scaled). Lab, laboratory; QC, quality
control.

into two main groups that represent the choice of the library preparation protocol
(Figure 4.3 A). Within the cluster representing the first protocol, most datasets were
further clustered on the individuals from whom the samples were obtained. Impor-
tantly, all datasets passed all the quality measures in the commonly used QC pipeline
for NGS data, FastQC13 . The alignment (99.7%), duplication rates (2.0%) and the
overall GC content did not differ significantly between datasets (Figure 4.3 B,C,F).
However, datasets differed in the percentage of properly paired reads (86.7% and
95.8%) and pairs mapping to different chromosomes (10.6% and 2.1% for protocol
1 and protocol 2, respectively) based on the choice of library preparation protocol
(Figure 4.3 D,E). Pairs that mapped to different chromosomes did not cluster at
specific loci but were distributed across the entire genome (Additional file 1: Figure
S7). Moreover, the sequencing reads from the first protocol exhibited a bimodal and
broader insert size distribution (Figure 4.3 G and Additional file 1: Figure S8 B). The
enrichment of pairs that map to different chromosomes and the widening of the
insert size distribution could indicate the presence of library chimeras (sequences
derived from two or more different fragments). The number of soft clipping events
(unmatched region of a partially aligned read, up to 80 base pairs long) during
the alignment confirms the enrichment of library chimeras in samples that were
prepared using the first protocol (Figure 4.3 H). We ruled out the influence of aligner
as the results obtained from three different aligners (Stampy, BWA and Bowtie2)
were in concordance (Additional file 1: Figure S9 A,B).
Library chimeras and erroneous bases can potentially introduce artificial k-mers and
therefore enrich for rare features in the k-mer spectrum. This is supported by the
k-mer profiles of the samples from the two library preparation protocols (Additional
file 1: Figure S10). These artefacts can be detrimental to downstream analysis as the
sequencing library partially represents artificial fragments.
In WES datasets, we identified four clusters after applying principal component
analysis (PCA) on the distances obtained from a pairwise comparison of smoothed
12-mers (Figure 4.4 A). Principal component 1 (PC1) separated samples based on the
rate of on-target reads (reads that map to the exons for which probes were designed).

13Available online at:http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Figure 4.3: Data quality and the influence of library preparation protocol in whole genome sequencing data. (A) Hierar-
chical clustering of pairwise k-mer distance measures across WGS samples. Samples prepared using different protocols
are indicated in different colours. (B) Percentage of aligned reads per sample. Black and grey bars separate samples
from different individuals. Red and blue circles indicate the choice of library preparation protocol. (C) Percentage of
duplicated reads. (D) Percentage of properly paired reads. (E) Percentage of paired reads that map to different chro-
mosomes. (F) Distribution of average GC content per read. Samples prepared using different protocols are coloured
accordingly. (G) Distribution of estimated insert size. (H) Distribution of the number of base pairs that are soft clipped
from reads during the alignment. Diff, different; WGS, whole genome sequencing.
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The low level of reads on target is the result of poor capture performance and not of
low sequencing depth (Additional file 1: Figure S11 A,B). Interestingly, PC2 separates
the successful WES datasets (69.9% ontarget reads, on average) based on the type
of capture kit (Agilent or Nimblegen) that was used during the library preparation
(Figure 4.4 A). The third principal component separates out a single failed dataset,
WE10_F1L3_NIM. This dataset has multiple problems since the rate of ontarget
reads is only 3.7% and the duplication rate is as high as 80%. The extreme level
of duplication significantly affects the balance of coverage on the plus and minus
strands of the reference genome. Therefore, the k-mer profile remains imbalanced
since most k-mers and their reverse complements have different frequencies. While
the hierarchical clustering concords with that of PCA, we observed another sub-
clustering among failed samples in which samples with only 11.3% of reads on
target were separated from those that exhibit an on-target rate of 49.8% (Figure 4.4
B). The influence of poor capture performance on k-mer profiles is evident from
the k-mer frequency distributions, as those with poor capture performance begin to
mimic that of the full genome (Additional file 1: Figure S12 A,B), due to an increase
in the number of off-target reads. The multimodality of these spectra is the result
of off-target reads that map to noncoding and repetitive regions [274]. Notably,
samples that passed QC could be separated by the capture kit used during library
preparation as a result of differences between the targeted regions of capture kits
(Additional file 1: Figure S12 C).
The analysis of balance between the frequency of k-mers and their reverse comple-
ment can expose library biases and provide a measure for estimating an optimal
sequencing depth to ensurebioreac comparable and sufficient coverage on both
strands (Additional file 1: Notes). In human WGS datasets, the balance curve begins
to level off as datasets exceed 400 million reads, which represents an approximately
12-times coverage of an entire human genome (Figure 4.5 A). Although the balance
curve did not saturate in our WES set, we picked up WE10_F1L3_NIM as an outlier
since the expected balance distance is roughly 0.015 for datasets with a comparable
number of reads (Figure 4.5 B). This sample suffers from multiple problems. How-
ever, its extreme level of duplications (80%) contributes to the imbalanced coverage
on the plus and minus strands (Additional file 1: Figure S13). In the RNASeq set, the
change in balance begins to level off at the 140 million reads mark (Figure 4.5 C). Of
course, this approach will not hold for strand-specific RNA-Seq runs. These data
can now be used to assess whether an independent sequencing run has the expected
balance distance and, thus, whether sufficient sequencing depth has been achieved.

4.3.4 Comparative analysis of kPAL performance

We benchmarked the performance of kPAL in the identification of problematic
samples by comparing the QC analysis of kPAL on a subset of WGS, WES and
RNASeq samples with results from the Preqc function of the recently developed
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Figure 4.4: k-mer distances in whole exome sequencing data are associated with data quality and choice of capture
protocol. (A) PCA of pairwise distance measures. Blue circles indicate samples with poor capture performance. The
red circles highlight the WE10_F1L3_NIM sample, which suffers from multiple problems. Samples that passed the
QC measures are indicated by different types of black circle based on the choice of capture kit (Nimblegen or Agilent
SureSelect). (B) Hierarchical clustering of pairwise k-mer distance measures across WES samples. Different clusters
are indicated by colour. AGI, Agilent SureSelect; NIM, Nimblegen; PCA, principal component analysis; QC, quality
control; WES, whole exome sequencing.

k-mer based String Graph Assembler (SGA) [283]. SGA can estimate genome size,
insert size distribution, repeat content and heterozygosity of a sequenced genome as
well as the error rate and its potential consequence in de novo assembly. Unlike kPAL,
SGA does not perform a pairwise comparison between k-mer profiles obtained from
multiple datasets. Thus, we compared SGAs’ performance to that of kPAL based on
the identification of known problematic samples, using SGAs’ estimated genome
size, fragment size distribution and the overall error rate. A further evaluation of
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Figure 4.5: Detecting the balance in coverage depth of plus and minus strands in sequencing data. (A) Scatter plot of
distance between the frequencies of k-mers and their reverse complement (balance) versus the total number of reads in
WGS data. The poly2 fitted line and the 95% confidence intervals are indicated. (B) Scatter plot of balance versus the
total number of reads in WES data. The red circle indicates an outlier with an extreme duplication rate and imbalance of
coverage between the plus and minus strands. (C) Scatter plot of balance versus the total number of reads in RNA-Seq
data. RNA-Seq, RNA sequencing; WES, whole exome sequencing; WGS, whole genome sequencing.

SGA on the selected datasets is presented in Additional file 1: Figures S14-S17.
In WGS data from the first sample (FG1), SGA confirmed the bimodal insert size
distribution of libraries that were prepared based on the first protocol (Additional
file 1: Figure S15). Moreover, sequencing data from the two library preparation
protocols could be separated based on the position of the first occurring sequencing
errors (Additional file 1: Figure S14 A). This is in concordance with kPAL results
and the presence of a higher level of library chimeras that led to the introduction of
artificial and rare k-mers.
The selected WES data consists of two samples with failed capture (WE01_F1L1_NIM
and WE02_F1L1_NIM), one sample with multiple problems (WE10_F1L3_NIM),
and four samples with acceptable quality that were prepared using Agilen or Nim-
blegen capture kits (WE13_F2L2_AGI, WE14_F2L1_AGI, WE36_F4L1_NIM and
WE37_F4L1_NIM). SGA identified the problematic sample WE10_F1L1_NIM, which
suffers from an extremely high duplication rate and a very low number of on-target
reads (Additional file 1: Figure S14 B). The estimated genome size or duplication rate
did not further assist in identifying problematic samples and the position of the first
sequencing error seems to be obscured by the low coverage of off-target reads that
may resemble erroneous sequences. Together, identification of problematic samples
by SGA is less reliable for WES data than whole genome shotgun sequences.
For RNA-Seq data, we selected two samples that passed all quality measures
(HG00096.1 and HG00108.7) and four failed samples with different underlying
problems (HG00329.5: high duplication; NA12546.1: high rRNA; NA18858.1: poor
alignment and NA18861.4: high genomic DNA contamination). SGAs’ genome size



CHAPTER 4. DETERMINING THE QUALITY AND COMPLEXITY OF NEXT-GENERATION
SEQUENCING DATA WITHOUT A REFERENCE GENOME 85

estimation is designed for WGS data and, therefore, applying SGA on RNA-Seq data
should provide an estimate of the expressed part of the genome. Genomic DNA
contamination artificially increases the expressed part of the genome and allowed
SGA to identify NA18861.4 as a problematic sample (Additional file 1: Figure S14 C).
SGA could not reliably identify HG00329.5 as a sample with an exceptionally high
duplication rate (Additional file 1: Figure S14 C). Unlike kPAL, the SGA analysis
could not identify the other problematic RNA-Seq samples.

4.3.5 Detecting data complexity

The complexity of sequencing libraries is reflected in the k-mer spectrum as k fre-
quencies often represent functional or structural elements of the associated genome.
For metagenomes, the abundance of different bacteria diversifies the frequency of
k-mers, which can be used to differentiate microbiome communities. To investi-
gate the application of kPAL in the comparative analysis of microbiomes, we first
simulated a series of metagenomes with different copy number for three closely re-
lated bacterial genomes: Bifidobacterium animalis subspecies lactis (NC_017834.1),
Bifidobacterium animalis subspecies animalis (NC_017867.1) and Bifidobacterium ado-
lescentis (NC_008618.1). The selected genomes have a comparable genome size
of approximately 2 Mbp. The level of homology between Bifidobacterium animalis
subspecies lactis and Bifidobacterium animalis subspecies animalis is estimated to be
between 85% and 95% [294]. The genomes of these bacteria are represented in copies
of 6:0:0, 3:3:0 and 2:2:2. The distances from a pairwise comparison of 10-mer profiles
show an interesting pattern (Figure 6 A). Within the three-dimensional space of
individual species, datasets with six copies of a single genome lie within a main
triangular space bounded by the absolute minimum distance to their corresponding
species. The second triangular space holds datasets that have three copies of two
genomes while the dataset with two copies of all genomes sits in the middle of the
three-dimensional space (Figure 4.6 A). The relatedness of these datasets relies on
the number of rare k-mer s that could differentiate the abundance of different species
within each set.
Next, we explored the capability of kPAL in resolving the composition of a more
complex series of simulated metagenomes. Without considering the phylogeny, 30
bacterial genomes were selected from both the Firmicutes and Proteobacteria phyla
and used to construct 31 datasets where the first set comprises 30 genomes from the
Firmicutes phylum. The sequence content of each set was subsequently shifted to the
Proteobacteria phylum by single genome substitutions (Additional file 1: Table S2).
Thus, the 31st dataset consists of 30 genomes from only the Proteobacteria phylum.
After performing the pairwise distance comparison on 10-mer profiles, datasets were
plotted based on their distance to each phylum (Figure 4.6 B). Notably, the order of
the datasets concords with the number of genomes from each phylum. Although
the modelled metagenomes do not reflect the true relative abundance of



86 Sec. 4.3. Results and Discussion

C

A

16S rDNA
Full genome

0 0.2 0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

Distance to Bifidobacterium 

animalis subsp. animalis (A)

Distance to Bifidobacterium 

animalis subsp. lactis (B)

D
is

ta
nc

e 
to

 B
ifi

do
ba

ct
er

iu
m

 a
do

le
sc

en
tis

 (C
)

6A

6B

6C

3B3C

3A3B

2A2B2C
3A

3C

B

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance to Firmicutes Phylum
D

is
ta

nc
e 

to
 P

ro
te

ob
ac

te
ria

 P
hy

lu
m

 

5 10 15 20 25 300

25 20 15 10 5 030Firmicutes:

Proteobacteria:
Balance

−0.2 −0.1 0 0.1 0.2

−0.2
0

0.2
0.4

0.6
−0.2

−0.1

0

0.1

0.2

C
om

po
ne

nt
 3

Component 1

Component 2
−0.2 −0.1 0 0.1 0.2 0.3

−0.2
0

0.2
0.4

0.6
−0.2

−0.1

0

0.1

0.2

0.3

C
om

po
ne

nt
 3

Component 1

Component 2

D

E F

C
om

po
ne

nt
 3

Component 1

Component 2

C
om

po
ne

nt
 3

Component 1

Component 2

30 60 90 120 150 1800
Individual 1:

(male) 
Days of Sampling

30 60 90 120 150 1800
Individual 2:

(female) 
Days of Sampling

Gut Microbiome
kMer Distance

Right Palm Microbiome
kMer Distance

Gut Microbiome
UniFrac Distance

Right Palm Microbiome
UniFrac Distance

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2
0

0.2
0.4

0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.2
0

0.2
0.4

0.6
−0.2

−0.1

0

0.1

0.2

0.3

Figure 4.6: See the legend on the next page
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Figure 4.6: See the figure on the previous page. Resolving the level of relatedness between microbiomes. (A) Three-
dimensional scatter plot of the k-mer distance measures for a series of metagenomes with different copy number of
three closely related species. (B) Scatter plot k-merof the relative distance between Firmicutes and Proteobacteria phyla.
Each data point represents a metagenome with a differing number of species from each phylum. Data points are col-
ored according to the number of species from each phylum. (C) PCA plot of pairwise k distance measures for gut
microbiomes. Data points are colored based on the origin of the sample (male in blue and female in red) and time. (D)
PCA plot of pairwise k-mer distance measures for right-palm microbiomes. (E) PCA plot of pairwise UniFrac distance
measures for gut microbiomes. (F) PCA plot of pairwise UniFrac distance measures for right-palm microbiomes. PCA,
principal component analysis.

these bacteria, they allow us to assess whether kPAL can resolve the level of similar-
ity between a series of modelled metagenomes. Distances between k-mer profiles
generated on the 16S rDNA also confirm the relative similarity of datasets with a
slightly smoother transition. This is mainly due to the limited amount of genomic
information that is available in 16S rDNA and different rate of evolution compared
to the entire genome.

We used the previously pcolourublished data by Caporaso et al. [292] to evaluate
further the performance of kPAL in resolving microbiomes. The gut and right-palm
microbiomes of a male individual and a female individual were sequenced over a
period of 6 months. For this analysis, we only included samples that were collected
on the same day from both individuals (122 gut microbiomes and 128 right-palm
microbiomes). Furthermore, we also excluded 14 samples that were classified as
being mislabeled using a random forest classifier as described by Caporaso et al. [292].
Pairwise distances were calculated for samples from each body part using kPAL
(using 10- mer profiles) and UniFrac [139], which relies on the characterization of
operational taxonomical units and inferred phylogeny. UniFrac parameters were set
to those specified in the original paper [292]. The agreement between the expected
clusters (based on the origin of samples) and that obtained from distance matrices
was estimated using the weighted kappa index (Kw). PCA analysis of k-mer distance
matrices from gut (Figure 4.6 C) and right-palm (Figure 4.6 D) microbiomes revealed
that samples from each individual could be separated using the kPAL approach
(Kw = 0.95 and 0.82, respectively). In addition, PC2 and PC3 indicate that temporal
changes in the microbiomes of each individual influence the relative distances
between datasets. We also noticed that datasets from the first 12 days of right palm
microbiomes from the male individual cluster with female samples. This can be
caused by possible contamination or sample swapping. Gut microbiomes could also
be resolved using UniFrac (Figure 4.6 E), with Kw = 0.94. Concordant to the kPAL
results, PC2 and PC3 jointly order samples based on the sampling day. However,
UniFrac failed to differentiate right-palm microbiomes based on their origin (Kw =
0.47) with no apparent pattern corresponding to the day on which samples were
collected (Figure 4.6 F).
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4.4 Conclusions

The continued decrease in sequencing costs and technological development have
overtaken our ability to assess the quality of data and the complexity of sequencing
libraries robustly. For instance, many QC steps that are essential for accurate down-
stream analysis of NGS data are often neglected in the absence of a reliable reference
genome. In addition, NGS data are always subjected to some degree of technical and
run-to-run variation, which can hamper the interpretation of the genetic makeup of
the sequenced sample. As shown here, variations introduced during library prepara-
tion can have a significant influence on the complexity and quality of the sequencing
data.
So far, k-mer profiles have been used in a wide range of applications, such as the
identification of regulatory elements, error correction of sequencing reads, identifica-
tion of point mutations, whole genome assembly, searches for homologous regions
and phylogenetic analysis [276, 277, 278, 279, 280, 281, 282, 295, 296]. A number of
k-mer analysis tools are capable of efficiently generating k-mer profiles (such as
Jellyfish [297] and khmer [298]), and the recent work of Simpson [283] proposes a
novel method to estimate the repeat content, genome size, heterozygosity of the
sequenced genome, insert size distribution and estimated level of erroneous reads
in sequencing data using a k-mer approach.
Although SGA provides valuable information on the genetic makeup and quality
of sequencing data, it cannot reliably identify outliers from a series of NGS data or
provide information on potential sources of variation. Thus, in the absence of a well
characterized reference sequence, there is an urgent need for tools that can charac-
terize potential biases such as sample swapping, library chimeras, high duplication
rates and potential contamination.

In this work, we introduce a new strategy for determining the quality and complexity
of a variety of different NGS datasets without any prior information about the
reference sequence. The kPAL package consists of a variety of tools to generate
k-mer frequencies and enables pairwise comparisons. kPAL measures the level of
similarity between multiple NGS datasets, based on the genomic information that is
shared between them.
We show that kPAL outperforms pre-alignment QC tools (such as FastQC) in reli-
ably exposing samples that suffer from poor capture performance, contamination,
enrichment of library chimeras or other types of artefact. Even though the last step
in assessing data quality by FastQC involves the analysis of overrepresented 5-mers,
FastQC fails to identify problematic samples due to the low k-mer size and the way
k-mer profiles are processed. In contrast, tools that rely on aligned reads (such as
RNASeQC [299] and the Picard toolkit) can expose the majority of these technical
artefacts, though some of them still require a thorough and vigorous assessment
to be identified. The Preqc feature of SGA performs well on WGS data and can
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precisely estimate insert size distribution and expose erroneous reads. However, the
performance of SGA on other types of NGS data, such as WES and RNA-Seq, is less
reliable since it was originally developed for pre-processing, error correction and
de novo assembly of whole genome sequences. The lack of a pairwise comparison
and accommodation for differences in library size limits the application of SGA in
quality assessment and measuring the level of dissimilarity between k-mer profiles
of sequenced samples.
The unique feature of kPAL is its ability to account for biases introduced by dif-
ferences in sequencing depth between samples to expose outliers and problematic
samples and that, like SGA, it does not rely on prior information. Potential applica-
tions of this strategy are to determine the quality of sequencing data, estimate the
sequencing depth required for de novo assembly projects and identifying sequencing
reads that represent the uncharacterized regions of the genome of a given species.

Most microbiome studies have focused on phylogenetically informative markers
such as 16S rDNA to reveal the relative composition and diversity of the meta-
genome in question (reviewed in [268, 300]). Despite the efficiency of such ap-
proaches, amplicon-based studies lack the ability to provide a genome-wide charac-
terization of microbiomes. Moreover, sequencing errors and the presence of library
chimeras can hamper the analysis of microbiomes using conventional tools, as
only a handful of reads may be produced from any given fragment. This results
in unreliable operational taxonomical units, which are often used in microbiome
studies.
The advantage of our approach is that it can potentially discriminate between
different species of a common phylum by relying on sequence content beyond the
resolution of 16S rDNA sequences. We show that the similarity of microbiomes
based on their composition and diversity can be revealed using kPAL, which is
purely founded upon the sequencing data alone. In contrast, although UniFrac could
reliably resolve rather stable gut microbiomes, it struggled with resolving highly
diverse and dynamic microbiomes, such as those obtained from skin (i.e., the palm).
We show that kPAL is sensitive to temporal changes in microbiomes and can poten-
tially be used for a wide range of applications, such as forensic DNA fingerprinting.
It is important to note that further developments are required for reliable assessment
of temporal changes in a microbial community using the kPAL approach. Although
kPAL does not provide a biological reason for the sources of variation within and
between datasets, it opens the way to a more accurate and unbiased determination
of the quality and complexity of genomic sequences.
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4.5 Appendix

Supplementary file Additional file 1: Supplemental notes, figures and tables is
accessible online:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298064/bin/13059_2014_555_MOESM1_ESM.pdf
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• QC: Quality control;

• RNA-Seq:

• RNA sequencing;

• SGA: String Graph Assembler;

• UTR: Untranslated region;
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5.1 Background

In order to understand and predict the pathogenic impact and the outbreak potential
of a bacterial infection, knowing the species responsible for this infection is not
sufficient. Bacterial virulence is often controlled on the sub-species level by the set of
specific genes or sometimes even alleles, leading to the necessity of diverse treatment
strategies for infections induced by the same bacterial species [301, 302, 303, 304, 305].
For example, antibiotic resistance is one of the most well-known examples where
slight variations in a gene can lead to a vast collection of antibiotics resistance
profiles within one taxonomic group [306, 307]. Furthermore, different alleles of the
same gene can be responsible for distinct adhesion and invasion strategies, reactions
to the immune response of the infected organism and toxin production [308, 309].
Besides its relevance for understanding virulence, finding the alleles of specific genes
also contributes to a more accurate bacterial classification. One of the most popular
methods for subspecies bacterial typing, MultiLocus Sequence Typing (MLST), is
based on determination of the alleles of multiple housekeeping genes [310, 311].
Knowing the allele combination allows to identify so called Sequencing Type (ST) of
the organism, which is often associated with the important pathogens’ attributes
such as infection potential [312, 313, 314] or the ability to cause disease in human
by transmitting from their animal reservoirs [315, 316, 317]. MLST typing is crucial
for the epidemiological studies as it provides fast and accurate identification of
geographical dispersal of pathogens and even reveals the migration patterns of the
host organism [318, 319].

Despite the importance of the gene and allele typing in the bacterial genomes,
there is no "gold standard" method to perform it. For a long time, the presence of
particular virulent genes was detected using phenotypic markers such as serotyp-
ing [320]. Unfortunately, the set of genetic features that can be revealed using only
the phenotype is very limited. Among other restrictions of this group of methods
are the inability to grow certain fastidious pathogens in laboratory conditions as
well as the extensive delay in cultivation and identification for slowly growing
pathogens [321, 322, 323, 166, 324]. In particular cases, the gene and allele identifi-
cation problem can be solved by using PCR or microarrays with gene- and allele
specific primers or probes [325, 326, 327]. TThese types of methods are much faster
and more reliable in comparison to the phenotype-based approaches. However,
for the vast majority of genes it is impossible to generate primers or probes that
would perform the allele discrimination due to the high similarity among sequences
of alleles. Thus, PCR based typing often needs additional analysis, for example, a
restriction fragment length polymorphism typing [328, 329] which elaborates the
analysis process. PCR-based gene and allele typing most of the time has to be "tailor-
made" for the particular group of organisms and the gene of interest. The rapid
growth of newly discovered bacteria together with the high mutation rate of some
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genes causes the necessity of constant changes in the existing PCR-protocols.

With the improvement of high throughput sequencing techniques and the devel-
opment of associated bioinformatics software, it became possible to identify the
allele variations directly from Whole Shotgun Genome Sequencing (WGS) data
by comparing sequencing reads to the reference sequences of the known alleles
of the gene of interest in the curated database. Currently, most of the curated and
publicly available databases suitable for the gene typing are designed for subspecies
classification using the MLST principle. These databases contain variable alleles
of housekeeping genes and MLST schemas, associated with those housekeeping
genes, for more than 60 bacterial species [330]. There are several tools that perform
MLST by aligning assembled WGS data to each sequence in the linked database
and reporting the alleles of housekeeping genes with the highest similarity to the
provided data [331, 332]. The most recent tools for automated MLST performs the
analysis on raw WGS data, as the assembly step is included in its pipeline ([333, 334]).
Finally, stringMLST software [335] performs allele identification by comparing the
k-mer profiles of raw sequencing data to the k-mer profiles of sequences in the MLST
database. This strategy allows to speed up the analysis process drastically, yet the
accuracy of the method is lower in comparison with alignment-based ones [336].

Though the WGS-based methods for gene and allele typing potentially requires
less effort than any laboratory technique, it has some disadvantages and room for
improvement. First of all, the time-consuming separate alignment of WGS data to
each sequence in the database can be substituted with a faster algorithm. Further-
more, most of the existing bioinformatics tools for MLST do not provide an option
to optimize the analysis settings, which means that the user cannot control, for
example, parameters of reads mapping. Finally, it is also not possible to perform the
analysis using a database or MLST schema that is not associated with the tool.

In this paper we present BacTag (Bacterial Typing of alleles and genes) - a new
pipeline, designed to rapidly and accurately detect genes and alleles in sequencing
data. Due to the database preprocessing prior to the analysis, BacTag providing
a solid and more detailed basis for downstream in comparison with similar tools
while retaining the same accuracy. Additionally, our method performs gene and
allele detection slightly faster than its current analogs. Our pipeline was successfully
tested on both artificial (E. coli, S. pseudintermedius, P. gingivalis, M. bovis, Borrelia spp.
and Streptomyces spp.) data and real (E. coli, K. pneumoniae) clinical WGS samples, by
preprocessing the corresponding MLST databases and by performing the subsequent
typing. This method is publicly available at https://git.lumc.nl/l.khachatryan/BacTag.
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5.2 Materials and Methods

5.2.1 Pipeline implementation
The user interface is implemented in Bash, the processing modules are written in
GNU Make. Bash allows for user interaction and files maintenance, while GNU
Make makes the pipeline suitable for parallel high-performance computing. The
pipeline consists of two parts: database preprocessing and sequencing data analysis.
Both parts contain modules that include published tools and the scripts from our
Python library. The pairwise sequence alignment is performed by the aln command
from fastools 1. Artificial paired end Illumina FASTQ formatted reads are created
by the make_fastq local command of sim-reads2. Reads are mapped to a reference
sequence with BWA mem [105]. Alignment sorting and indexing are performed by
SAMtools [291]. Potential PCR duplicates are removed using SAMtools rmdup com-
mand. The SAMtools mpileup utility is used to summarize the coverage of mapped
reads on a reference sequence at single base pair resolution. Variant calling is per-
formed by the call command of BCFtools [337]. To verify whether the called variants
for each allele really correspond to the allele sequence, the vcf-consensus command
of VCFtools [338] is used. Comparison of two VCF files boils down to reporting the
number of variants sites that are not equal for both files. Programming languages
and software versions used for pipeline construction can be found in Supplementary
Table S1. The user may specify parameters for artificial reads generation (by default
read length, insert size and coverage are equal 50 nucleotides, 100 nucleotides and
40 respectively), the BWA mem and SAMtools mpileup utilities for both database
preprocessing and sequencing data analysis parts separately. It is also possible to set
the ploidy (by default this is one) of the sequencing data, which will be concidered
during the variants calling in the analysis part of the pipeline.

5.2.1.1 Database preprocessing

The database preprocessing workflow is shown in Figure 5.1. We designed the
pipeline such that all independent processes are performed in parallel, which reduces
the calculation time.
The user provides the database that consists of alleles grouped by genes of interest.
Optionally, the user can provide the 5?- and 3?-flanking regions for each gene,
otherwise, every allele will be flanked on both sides with a fifty-nucleotide long
poly-N sequence. That is done in order to prevent the coverage drop at the end of
sequence during the sequencing data mapping. In the first step of the preprocessing
stage, the sequences of all alleles belonging to the same gene are aligned in a
pairwise manner, yielding the Levenshtein [339] distance for each pair of alleles.

1Available from: https://git.lumc.nl/j.f.j.laros/fastools. Accessed 27 Oct 2018.
2Available online at https://git.lumc.nl/j.f.j.laros/sim-reads
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These distances are used to select the allele with the smallest average distance to all
other sequences as the gene reference. In the same step the quality of the provided
database is checked: it is reported when the same sequence is provided for multiple
alleles or when one allele sequence is a subsequence of another. Once the quality
report is created, the user can fix the original database when needed. In the next
step, artificial Illumina paired end reads are created based on the sequence of each
allele.
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Figure 5.1: Schematic representation of the database preprocessing. All of the processes are illustrated for one gene.
Calculations for several genes are done independently in parallel.

Reads are mapped to the selected gene reference, the alignment map file is sorted
and indexed, after which the coverage of mapped reads on the reference sequence
at a single base pair resolution is summarized and stored in a BCF file, which is
used for variants calling. Variants are stored in a VCF file and further subjected
to a quality check to verify whether they really correspond to the allele sequence.
If variants defining alleles’ sequence were not properly called, allele is reported
and assigned to the so-called low similarity group of sequences. The low similarity
group contains sequences for which the variants were not called correctly during
the database preprocessing when using the centroid reference. I.e., for these alleles,
the centroid is not an appropriate reference and therefore these sequences should be
considered to be references themselves. In the final step the references of all genes
are concatenated into one FASTA file, which further serves as the database reference.
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5.2.1.2 Sequencing data analysis

The data analysis workflow can be found in Figure 5.2. To initiate the analysis,
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gene. Calculations for multiple genes are done independently in parallel. The analysis of the low homology group of
sequences is highlighted by the dashed box and can be manually turned off by the user for the time efficiency.

the user provides two paired FASTQ files. After analysis initialization an output
directory is created, which will serve to store the results of the analysis. The user
can choose the name of the output directory, otherwise it will have the same name
as the basename of the provided FASTQ files. The sequencing data analysis part of
the pipeline is comprised of two steps: the main analysis and the analysis of low
similarity group of sequences. If no sequences were assigned to the low similarity
group during the database preprocessing, only the first step will be performed. The
user can manually turn off the second step for time efficiency.

The main analysis
This part of the pipeline applies to the alleles that were not placed in the low ho-
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mology group of sequences during the database preprocessing. analysed reads are
mapped to the database reference, obtained after database preprocessing by con-
catenating all the gene reference sequences. The alignment map file is indexed and
sorted and substituted to the removal of potential PCR duplicates. If there are no
reads mapped to the gene reference, the gene is reported as not found in the anal-
ysed dataset. Otherwise, mapped reads are used to estimate the horizontal coverage
of a gene reference at base pair resolution. The obtained BCF coverage summary
is used for variant calling, the result of which is stored in VCF format. Variants
are compared with variants collected for each gene allele during the preprocessing
phase. Once the comparisons are done, the allele with the least difference from the
sequencing data will be reported. It is also reported, if heterozygous variants were
found in the sample, as that might indicate sequencing or mapping problems as well
as the presence of more than one gene allele in the sequencing data. Reports for all
genes are concatenated to a single result file, which is placed in the output directory.

Low homology group of sequences analysis
This part of the pipeline works with alleles that were placed in the low homology
group of sequences during the database preprocessing. Sequencing reads are sub-
jected to variant calling using each of the alleles from the low homology group as a
reference (the same routine with the same parameters as for the main analysis step).
If for the particular gene one of the alleles from the low homology group has fewer
differences with the sequencing data in comparison to the allele reported during the
main analysis, the allele from the low homology group will be reported as present
in the sequencing data.

5.2.2 Pipeline testing

All the computational benchmarking was done on chimerashark Blade Server of
SHARK computer cluster3 with the maximum of 24 CPUs used at the same time.

5.2.3 Database

5.2.3.1 Genes and alleles

The database preprocessing part of the pipeline was tested using seven curated
databases: E. coli Achtman MLST4 (downloaded January 2018), K. pneumoniae Pas-
teur MLST5 (downloaded October 2018), S. pseudintermedius MLST6 (downloaded

3https://git.lumc.nl/shark/SHARK/wikis/home
4https://enterobase.warwick.ac.uk/species/ecoli/download_7_gene
5https://bigsdb.pasteur.fr/klebsiella/
6https://pubmlst.org/spseudintermedius/
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February 2019), P. gingivalis MLST7 (downloaded February 2019), M. bovis MLST8

(downloaded February 2019), Borrelia spp. MLST9 ([downloaded February 2019)
and Streptomyces spp. MLST10 ([downloaded February 2019). Each database con-
tains sequences of variable regions of housekeeping genes: five for the Strepto-
myces spp. MLST, eight for the Borrelia spp. MLST and seven for all the remaining
schemas.(see Table 5.1).
MLST schemas were selected for organisms from six different bacterial phyla. These
organisms have a GC-content ranging between 29 and 73%. For the database pre-
processing the following parameters for BWA mem and SAMtools mpileup tools
were selected. Since the database consists of sequences of highly variable regions of
housekeeping genes, the alignment mismatch penalty was set to 2 (4 by default) in
order to provide the proper alignment for the regions where variants occur in close
proximity. The minimum seed length was changed to 15 (19 by default) due to the
short length of sequences in the selected database. Penalty for 5’- and 3’-end clipping
was set to 100 (5 by default), forcing alignment to detect the variants located at the
ends of the variable region. Single end mapped reads (anomalous read pairs, -A)
were counted in order to detect variants located at the ends of the variable region.
BAQ computation was disabled, as it is oversensitive to regions densely populated
with variants. Bases with baseQ/BAQ lower than 13 were not skipped, since the
database preprocessing is based on high quality artificial sequencing reads.

5.2.3.2 Flanking regions

The sequences of polymerase chain reaction (PCR) primers commonly applied to
amplify each of the housekeeping genes (E. coli [340], K. pneumoniae11, S. pseudinterme-
dius12, M. bovis13, P. gingivalis [341]) for the selected MLST schemas were used to
construct the flanking regions for this study. Each flanking region includes the
primer sequence as well as the genomic sequence between the primer and the vari-
able region of interest. The genomic sequence is extracted from the genome of one
of the target strains for the corresponding MLST schema (see Table 5.1). In case
low-sensitivity PCR primers are used (e.g., for Borrelia spp. MLST) or if no PCR
primer sequences are available (e.g., for Streptomyces spp. MLST), fifty nucleotides
before and after the variable regions were used as flanks. Flanking regions have the
same orientation as the allele sequences in the database (see section 5.7.3, Additional
file 2: Tables S2-S8).

7https://pubmlst.org/pgingivalis/
8https://pubmlst.org/mbovis/
9https://pubmlst.org/borrelia/

10https://pubmlst.org/streptomyces/
11Available from: http://bigsdb.pasteur.fr/klebsiella/primers_used.html. Accessed 16 Oct 2018.
12Available from: https://pubmlst.org/spseudintermedius/info/primers.pdf. Accessed 16 Feb 2019.
13Available from https://pubmlst.org/mbovis/info/M._bovis_MLST_targets_and_primers.pdf. Ac-

cessed 16 Feb 2019.
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MLST database Genes including
number of alleles per
gene

Number of alle-
les (per gene) in
the low similar-
ity group

Strain and refer-
ence sequence
used for flanking
region construc-
tion

E. coli adk (623), fumC (933),
gyrB (606), Icd (823),
mdh (614), purA (563),
recA (512)

fumC (11), gyrB
(3), mdh (8)

UMN026,
NC_011751.1

K. pneumoniae gapA (184), infB (141),
mdh (245), pgi (221),
phoE (365), rpoB (189),
tonB (472)

gapA (6), mdh
(3), tonB (29)

Kp52.145,
FO834906.1

S. pseudinterme-
dius

ack (46), cpn60 (96),
fdh (26), pta (70), purA
(77), sar (38), tuf (24)

- ED99,
NC_017568.1

M. bovis adh1 (15), gltX (17),
gpsA (14), gyrB (25),
pta2 (23), tdk (15), tkt
(26)

- PG45,
NC_014760.1

P. gingivalis ftsQ (40), gpdxJ (37),
hagB (37), mcmA (30),
pepO (37), pga (27),
recA (14)

- ATCC 33277,
NC_010729.1

Borrelia spp. clpA (296), clpX (258),
nifS (230), pepX (261),
pyrG (269), recG (285),
rplB (250), uvrA (261)

clpA (58), clpX
(51), nifS (54),
pepX (57), pyrG
(51), recG (55),
rplB (54), uvrA
(45)

B. hermsii DAH,
NC_010673.1

Streptomyces
spp.

atpD (183), gyrB (179),
recA (184), rpoB (183),
trpB (200)

atpD (72), gyrB
(147), recA (2),
rpoB (6), trpB
(69)

S. coelicolor A3(2),
NC_003888.3

Table 5.1: Preprocessed MLST databases
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5.2.3.3 Artificial test data

The sequencing data analysis part of the pipeline was validated by using artificial
Illumina reads, based on the complete genomes of 30 different bacterial strains
belonging to 13 different bacterial species (see Table 5.2), for which the alleles of
housekeeping genes associated with the corresponding MLST schema were previ-
ously reported. Paired end FASTQ formatted reads of 100 bp were generated with
an insert size of 100. For each genome, an average coverage of 80 was generated in
this way.

5.2.3.4 Real test data

The analysis part of the pipeline was tested on 185 paired end Illumina WGS sam-
ples belonging to 9 different previously reported sequencing types (ST) of E. coli
(section 5.7.3, Additional file 3: Table S9) and 98 paired end Illumina WGS samples
belonging to 43 different previously reported STs of K. pneumoniae (section 5.7.3, Ad-
ditional file 3: Table S10). Sequencing reads were downloaded from Sequence Read
Archive (SRA, [342]). Prior to the analysis, the data quality check and correction
(when necessary) was done for each sample using Flexiprep QC pipeline14.

5.2.3.5 Parameters used for sequencing data analysis

The analysis of both artificial and real samples was done with the same parameters
of BWA mem as during the database preprocessing. SAMtools mpileup parameters
were as follow: anomalous read pairs were counted; extended BAQs were calculated
for higher sensitivity but lower specificity.

14Available online at http://biopet-docs.readthedocs.io/en/latest/pipelines/flexiprep/
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5.3 Results

5.3.1 Building the preprocessed MLST databases

We used BacTag to preprocess seven publicly available MLST databases. During
this process we did not detect any duplications or partial sequences for any of the
preprocessed databases. When preprocessing E. coli Achtman seven genes MLST
database, 22 sequences (less than 0.5% of the total number of analysed sequences)
belonging to three different genes were assigned to the low similarity group of
sequences (see Table 5.1). The run time of the E. coli database preprocessing was
approximately 2h. The peak memory usage was 150Mb. During the preprocessing of
the K. pneumoniae database associated with the Pasteur seven genes MLST schema,
38 sequences (2.1% of the total number of analysed sequences) belonging to three
different genes were assigned to the low similarity group of sequences. Preprocess-
ing of databases associated with MLST schemas for S. pseudintermedius, M. bovis and
P. gingivalis reported no sequences placed in the low similarity group of sequences.
For the databases associated with the MLST schemas for Borrelia spp. and Strepto-
myces spp. 425 sequences (19.2% of the total number of analysed sequences) and
296 sequences (31.8% of the total number of analysed sequences) were placed in the
low similarity group respectively. This large number of low similarity sequences
indicates that the alleles in the analysed MLST databases are quite heterogeneous,
which can be expected, considering that both aforementioned MLST schemas are
genus-specific, not species-specific like other five analysed databases.
Since distance matrix is computed during the preprocessing, the expected CPU
time will scale quadratically with the size of the database. We indeed found this
behaviour as shown in Figure 5.3.

5.3.2 Testing BacTag on artificial data

We used the preprocessed MLST databases to reveal the presence of the correspond-
ing housekeeping genes and to predict the allele for each of these genes in artificial
sequencing data based on complete genomes of 30 different bacterial strains belong-
ing to 15 different species. All housekeeping genes associated with the corresponding
MLST schema were identified in each sample. The alleles found by the pipeline
matched with the previously reported ones for each but one of the analysed ge-
nomes (see Table 5.2). The genome of P. gingivalis AJW4 (GenBank accession number
NZ_CP011996.1) was previously reported [343] to have the allelic variants ftsQ-16,
gpdxJ-9, hagB-22, mcmA-17, pepO-22, pga-15 and recA-1. However, BacTag analysis
revealed the following set of alleles: ftsQ-21, gpdxJ-23, hagB-1, mcmA-3, pepO-20, pga-3
and recA-7. Manual inspection confirmed that alleles reported by BacTag are correct
in case of all aforementioned genes.
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Figure 5.3: The dependence of database preprocessing time from the amount of sequences in the database.

5.3.3 Testing BacTag on real E. coli and K. pneumoniae data

We tested BacTag on 185 E. coli and 97 K. pneumoniae clinical publicly accessible WGS
datasets, with each test yielding either one of nine E. coli or one of 44 K. pneumoniae
sequencing types (STs). E. coli samples were analysed using the preprocessed E. coli
Achtman seven genes MLST database, while K. pneumoniae samples were analysed
using the preprocessed K. pneumoniae Pasteur seven genes MLST database. Each
sample was shown to contain all expected seven housekeeping genes; alleles of those
genes identified using our method corresponded to the expected ones for all but
one sample (see Table 5.3). This sample was checked additionally using web-based
tools for the MLST [333, 334]. Results of this independent check were completely
identical to the ones obtained by our pipeline and suggest that the sample belongs to
E. coli ST95 instead of ST73. Furthermore, according to the original publication [344],
MLST was never done for this and 21 other samples analysed during the same study
in order to confirm their sequencing type. Thus, we conclude that in Ref. [344] one
of the samples was incorrectly assigned to E. coli ST73.

Our pipeline reported the presence of multiple variants at the same position for
eight E. coli samples belonging to three different STs and 55 samples of K. pneumoniae
belonging to 24 different STs (see Table 5.3)). This might suggest the presence of
contamination in the sequenced DNA samples or the existence of pseudogenes in
the genome of the sampled organisms.
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Species and strain GeneBank AC Identified alleles

E. coli 042 FN554766.1 adk-18, fumC-22, gyrB-20, Icd-23, mdh-5,
purA-15, recA-4

E. coli E2348/69 FM180568.1 adk-15, fumC-15, gyrB-11, Icd-15, mdh-18,
purA-11, recA-11

E. coli E24377A CP000800.1 adk-6, fumC-213, gyrB-33, Icd-1, mdh-24,
purA-8, recA-7

E. coli IHE3034 NC_017628.1 adk-37, fumC-38, gyrB-19, Icd-37, mdh-17,
purA-11, recA-26

E. coli IMT5155 CP005930.1 adk-55, fumC-38, gyrB-19, Icd-37, mdh-17,
purA-11, recA-26

E. coli RS218 NZ_CP007149.1 adk-37, fumC-38, gyrB-19, Icd-37, mdh-17,
purA-11, recA-26

E. coli UMN026 NC_011751.1 adk-21, fumC-35, gyrB-115, Icd-6, mdh-5,
purA-5, recA-4

S. pseudintermedius
NA45

NZ_CP016072.1 ack-2, cpn60-10, fdh-2, pta-1, purA-5, sar-
1, tuf-2

S. pseudintermedius
ED99

NC_017568.1 ack-3, cpn60-9, fdh-2, pta-1, purA-1, sar-1,
tuf-1

S. pseudintermedius
HKU10-03

NC_014925.1 ack-2, cpn60-55, fdh-3, pta-42, purA-14,
sar-2, tuf-1

M. bovis Ningxia-1 NZ_CP023663.1 adh1-4, gltX-3, gpsA-2, gyr-3, pta2-17, tdk-
3, tkt-4

M. bovis HB0801 NC_018077.1 adh1-4, gltX-3, gpsA-2, gyr-3, pta2-5, tdk-
3, tkt-4

M. bovis NM2012 NZ_CP011348.1 adh1-4, gltX-3, gpsA-2, gyr-3, pta2-5, tdk-
3, tkt-4

M. bovis CQ-W70 NC_015725.1 adh1-4, gltX-5, gpsA-2, gyr-3, pta2-5, tdk-
3, tkt-4

M. bovis PG45 NC_014760.1 adh1-3, gltX-2, gpsA-4, gyr-2, pta2-1, tdk-
3, tkt-2

M. bovis 08M NZ_CP019639.1 adh1-4, gltX-3, gpsA-2, gyr-3, pta2-5, tdk-
3, tkt-4

P. gingivalis ATCC
33277

NC_010729.1 ftsQ-5, gpdxJ-9, hagB-1, mcmA-1, pepO-1,
pga-5, recA-5

P. gingivalis AJW4 NZ_CP011996.1 ftsQ-21, gpdxJ-23, hagB-1, mcmA-3, pepO-
20, pga-3, recA-7

P. gingivalis
A7A1-28

CP013131.1 ftsQ-1, gpdxJ-12, hagB-1, mcmA-1, pepO-
1, pga-1, recA-1

Table 5.2: To be continued on the next page
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Species and strain GeneBank AC Identified alleles

Borrelia hermsii
DAH

NC_010673.1 clpA-68, clpX-165, nifS-149, pepX-171,
pyrG-179, recG-188, rplB-157, uvrA-175

Borrelia turicatae
91E135

NC_008710.1 clpA-71, clpX-166, nifS-150, pepX-172,
pyrG-180, recG-189, rplB-158, uvrA-176

Borrelia anserina
BA2

CP005829 clpA-212, clpX-179, nifS-161, pepX-186,
pyrG-196, recG-204, rplB-170, uvrA-188

Borrelia recurrentis
A1

NC_011244 clpA-213, clpX-164, nifS-162, pepX-187,
pyrG-197, recG-205, rplB-156, uvrA-189

Borrelia parkeri SLO CP005851 clpA-214, clpX-180, nifS-163, pepX-188,
pyrG-198, recG-206, rplB-171, uvrA-190

Borrelia coriaceae
Co53

CP005745 clpA-215, clpX-181, nifS-164, pepX-189,
pyrG-199, recG-207, rplB-172, uvrA-191

Borrelia crocidurae
Achema

CP003426 clpA-216, clpX-164, nifS-165, pepX-190,
pyrG-200, recG-208, rplB-173, uvrA-192

Streptomyces coeli-
color A3(2)

NC_003888.3 atpD-127, gyrB-124, recA-131, rpoB-126,
trpB-142

Streptomyces fulvis-
simus DSM 40593

CP005080.1 atpD-133, gyrB-130, recA-13, rpoB-36,
trpB-147

Streptomyces griseus
NBRC 13350

NC_010572.1 atpD-6, gyrB-8, recA-8, rpoB-8, trpB-8

Streptomyces albid-
oflavus J1074

NC_020990.1 atpD-36, gyrB-5, recA-5, rpoB-36, trpB-39

Table 5.2: Testing the pipeline on artificial WGS data

5.3.4 Comparing BacTag with web-based tools for E. coli Achtman
MLST

We measured the time required for the analysis, using 30 samples belonging to the
ST131 with the dataset size varying from 0.2 to 3. Gb. We performed the MLST typ-
ing in two modes: with and without analysis of the low similarity sequences group.
As can be seen in Figure 5.4a and b, the processing time of BacTag depended on the
sequencing sample size and the analysis mode. The larger the input sequencing data
is, the more time is required for typing regardless of the analysis mode. Performing
the typing including the analysis of low similarity group (mode 2) increases the
processing time. Including low similarity sequences into the analysis did not affect
the final output, for all samples tested during this research.
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SRA Run AC Reported ST Expected ST Genes with multiple variants at
the same position

ERR966604 95 73 -
SRR2767732 16 16 Icd
SRR2767734 21 21 Icd, mdh
SRR2970643 131 131 fumC
SRR2970737 131 131 adk, fumC, gyrB, mdh, recA, purA
SRR2970742 131 131 fumC
SRR2970753 131 131 fumC
SRR2970774 131 131 fumC
SRR2970775 131 131 fumC
SRR5973405 1164 1164 phoE
SRR5973308 1180 1180 phoE
SRR5973303 13 13 phoE
SRR5973253 133 133 phoE
SRR5973334 133 133 phoE
SRR5973324 1373 1373 phoE
SRR5973251 1426 1426 gapA, phoE
SRR5973269 147 147 gapA
SRR5973320 1876 1876 phoE
SRR5973351 188 188 gapA
SRR5973329 20 20 phoE
SRR5973408 2267 2276 phoE
SRR5973397 25 25 phoE
SRR5973248 258 258 gapA
SRR5973283 258 258 gapA
SRR5973279 258 258 gapA
SRR5973271 258 258 gapA
SRR5973336 258 258 gapA
SRR5973319 258 258 gapA
SRR5973317 258 258 gapA
SRR5973294 258 258 gapA
SRR5973291 258 258 gapA
SRR5973289 258 258 gapA
SRR5973400 258 258 gapA
SRR5973382 258 258 gapA
SRR5973381 258 258 gapA
SRR5973287 258 258 gapA
SRR5973240 307 307 phoE

Table 5.3: To be continued on the next page
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SRA Run AC Reported ST Expected ST Genes with multiple variants at
the same position

SRR597324 307 307 phoE
SRR5973282 307 307 phoE
SRR5973280 307 307 phoE
SRR5973339 307 307 phoE
SRR5973322 307 307 phoE
SRR5973288 307 307 phoE
SRR5973396 307 307 phoE
SRR5973380 307 307 phoE
SRR5973379 307 307 phoE
SRR5973376 307 307 phoE
SRR5973373 307 307 phoE
SRR5973361 307 307 phoE
SRR5973355 307 307 phoE
SRR5973284 23 23 phoE
SRR5973332 35 35 phoE
SRR5973389 35 35 phoE
SRR5973368 35 35 phoE
SRR5973393 405 405 phoE
SRR5973311 412 412 phoE
SRR5973371 429 429 tonB
SRR5973327 466 466 phoE
SRR5973407 466 466 phoE
SRR5973239 492 492 phoE
SRR5973301 502 502 phoE
SRR5973348 753 753 phoE
SRR5973362 8 8 phoE

Table 5.3: Results of pipeline testing on real E. coli and K. pneumoniae data. Only samples with results different from
expected are shown.

The same 30 samples were submitted for analysis to web-based tools for MLST
typing: MLST1.8 [333] and Enterobase [334]. These methods perform the assembly of
submitted WGS data and use the obtained contigs for the BLAST-based comparison
with sequences in the MLST database. For both tools, the results of the WGS assembly
can be downloaded after the analysis is finished, MLST 1.8 also provides information
about BLAST alignments for the best matching alleles as an output. The analysis of
the 30 samples with MLST 1.8 took from 299 to 569 (median 454) minutes per job,
the processing time did not correlate with the input data size (Figure 5.4c). MLST
1.8 failed to perform the assembly (and thus to finish the MLST) for two samples.
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Long processing time can be explained by high load of the tool server. However, that
cannot be checked as it is only possible to track the time in between job submission
to the server and the time when job is finished. It is unfortunately not possible
to assess when the actual calculations for the particular sample started. Another
tool, Enterobase, failed to perform the analysis of one sample (due to the problems
with assembly) and did not define the correct ST for one other sample. However,
Enterobase shows when each part of the analysing pipeline is being launched,
which allowed us to determine the time required for the analysis of each sample
and compare it to our tool (Figure 5.5). The processing time for Enterobase was
comparable to our tool and also seems to be dependent on the size of the submitted
WGS data (Figure 5.4d).
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Figure 5.4: Time required for the analysis of 30 samples belonging to the ST131 by two modes of BacTag (a and b),
MLST 1.8 (c) and Enterobase (d)

5.4 Discussion

In this paper we described BacTag - a new pipeline designed to perform fast and
accurate gene and allele detection directly using WGS data. Our method was shown
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to work faster and more accurate than most popular current bioinformatics tools
due to the absence of the necessity to compare sequencing data with each sequence
in the database. Instead, we preprocess the reference database once prior to the
analysis in order to store all the mismatches between different alleles of the same
gene. Under the assumption that all alleles of the same gene are highly similar,
it is easy to check whether the gene of interest is present in the sequencing data
by mapping the reads to the most "average" gene allele. Variants detected after
such mapping can be compared with the information obtained during the database
preprocessing in order to retrieve the allele of the detected gene. Since the database
preprocessing needs to be done only once, this approach significantly reduces the
time required for the analysis of multiple samples. Additionally, the possibility of
parallel computation allows to speed up the database preprocessing significantly
since all of the independent computations can be done in parallel.
Most of the existing tools for automatic gene and allele detection are based on fixed
and rarely updated databases. The possibility to choose the database that will be
preprocessed as well as to check the quality of that database is another essential
feature of BacTag. It is important to note that the pipeline allows the user to set
the parameters for the database preprocessing and sequencing data analysis. The
same database, preprocessed with different parameters, allows the user to control
in which case the variants for some alleles are not properly called. Thus, the user
can determine the optimal parameters to detect as many of the alleles of interest as
possible and apply this knowledge to the experimental design. On the other hand,
preprocessing the database with the parameters of already existing sequencing data
provides an estimate of the alleles that likely will not be properly detected.
While the current tools for gene allele identification require assembly of the WGS
data prior to the comparison with the reference database, we chose to work directly
with raw sequencing data. This was done in order to preserve the information
about positions with multiple reported variants, which would be lost in case of
bacterial genome assembly. That information is crucial for the detection of possible
sample contaminations, presence of pseudogenes and, potentially, for extending our
pipeline to metagenomic datasets. Furthermore, BacTag can work with sequencing
data that for some reasons cannot be assembled.
Two main limitations of the pipeline need to be addressed. First, our approach
assumes that a considerable part of the same gene alleles is highly similar. The
more alleles of the same gene that do not fulfill this requirement, the slower the
pipeline will work: sequences for which the pipeline will not be able to call the
proper variants will be checked by direct read mapping. Second, the pipeline also
does not provide proper analysis results if several alleles of the same gene are present
in the sequencing data (this can be caused, among other reason, by the mixed-strain
infection of the same subject, see [345, 346, 347]). More detailed evaluation of the
horizontal coverage of the detected genes as well as the additional analysis of the
positions with multiple variants reported could potentially help to resolve this
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Figure 5.5: Comparing of the processing time required for the Achtman seven genes MLST analysis of 30 WGS E. coli
samples.
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problem and extend the approach in order to perform the analysis on complicated
metagenomic datasets.

5.5 Conclusions

We have introduced BacTag - a new pipeline for fast and accurate gene and allele
recognition based on database preprocessing and parallel computing. In contrast
to the majority of already existing methods, BacTag avoids the comparison of se-
quencing data to each allele sequence present in the database due to the database
preprocessing. While the database preprocessing provides analysis time reduction,
it also provides important information about database quality. Amongst other ad-
vantages of our method are the possibility to cope with any user-provided database,
and the absence of the assembly step that potentially may help extend our approach
to metagenomics datasets. We believe that our approach can be useful for a wide
range of projects, including bacterial subspecies classification, clinical diagnostics of
bacterial infections, and epidemiological studies.
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5.6 Abbreviations

• MLST - multi-locus sequence typing;

• NGS - next-generation sequencing;

• ST - sequence type;

• WGS - whole-genome shotgun sequencing.
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AS one can appreciate from this thesis, metagenomics analysis can be a relevant
and vital step for the improvement of many fields including human and animal

health, ecology, agriculture and forensics. This research was dedicated to a better un-
derstanding of the current situation in the field of metagenomics, and extending its
present application boundaries. At first, we described, classified and evaluated popu-
lar data types, sequencing platforms and algorithms aimed to collect the information
provided by microbial communities. We also improved the set of metagenomics data
analysis tools by developing and testing both reference-dependent and reference-
free algorithms. Below, we will summarize the most important conclusions of this
thesis as answers to four important questions in the field of metagenomics.

6.1 Who is inhabiting the microbiome?

So far, the only possibility to find the answer to this question is to perform so-called
reference-dependent analysis of metagenomic data, comparing the reads obtained
during the microbiome sequencing with a reference database. As described in
Chapter 2, we created a series of benchmark bacterial mixes with a different known
distribution of species. The obtained mixes were used to estimate the resolution
capacity of two different metagenomic datatypes - routine 16S and costlier WGS
- and to evaluate two different approaches for the taxonomic reads classification.
We have shown that the use of WGS data provides a much more accurate outcome
in comparison to 16S samples. This was true for expected taxa prediction, and
estimations of the abundances of the observed species. This conclusion was solid
across all mixes and analysis techniques. Furthermore, we demonstrated that the
same microbiome, analysed using 16S sampling by different pipelines and even
using different reference databases, can produce quite distinct results. Finally, it is
important to note that the constructed bacterial mixes can be utilized to evaluate
future algorithms for metagenomic taxonomic profiling.
The conclusions obtained during this research finalize and supplement a series of
previous reports [90, 348, 185, 349, 350, 351, 186, 352] addressing the incompetence
of 16S metagenomic data in accessing the true metagenome taxonomic composition,
and should be considered when planning microbiome sequencing experiments.
Since the cost of producing WGS metagenomic data remains rather high, it is worth
considering investigating comprehensive yet cost-effective sampling techniques for
taxonomic profiling. The search of new, distinct from 16S rRNA, marker genes could
be one of the possible solutions.
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6.2 How complex is the investigated microbiome?

Once microbiology switched from single-genome studies to the exploration of multi-
organism DNA samples, the question about the complexity of the investigated
sample became the most vital one. The classical routine approaches aim to answer it
by mapping the metagenome sequencing reads or assembly contigs to an annotated
sequence from a reference databases. The obvious weak spot of such method is
the incompleteness of current databases, as well as the discrepancy between their
content and the real distribution of microbial species on our planet. Another group
of techniques to estimate the metagenome complexity use the sequencing of multiple
samples of the same metagenome cultivated under different conditions, and analyse
the reads or contigs co-occurrences. The main weakness of such methods is their
technical and computational difficulty.
In Chapter 3 we proposed a reference-free method to estimate the complexity of
a metagenome. Our approach was designed to classify reads within a single long
read metagenomic dataset using only the sequencing information, particularly k-
mers. This so far unique approach featured an unsupervised machine learning
tSNE algorithm for non-linear dimensionality reduction, as well as a subsequent
density-based clustering technique. We have shown that k-mer profiles can reveal
relationships between reads within a single metagenome using a series of simu-
lated long read metagenomic datasets as well as the real PacBio RSII bioreactor
microbiome sequencing data.
The obtained results are highly important, as they prove the concept of substructures
detection within a single metagenome operating only with the information purely
found in the sequencing reads alone. The possibility of reference-free deconvolution
of metagenomic data benefits the field of metagenomics greatly, as it contributes
not only to the estimation of metagenome complexity, but also improves the meta-
genomic data assembly and enables the investigation of new bacterial species. The
main limitations of the described approach - restricted number of reads that can be
analysed - is caused by memory issues when calculating the dissimilarity matrix
between k-mer profiles. We believe that in the future, this issue can be solved by
calculating the distances between k-mer profiles "on the go", and storing only the
most informative ones. The constant improvement in quality and accessibility of
long-reads sequencing techniques provides a great perspective for this approach in
the future.
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6.3 How to compare different metagenomes?

As was mentioned in the introduction to this thesis, comparative metagenomics
strictly speaking does not necessarily require reference-based metagenome profiling.
However, most of the scientific research uses reference-based methods to address the
difference between two distinct metagenomes. In Chapter 4 we demonstrated that
the comparison of metagenomic data performed using a reference-free approach
provides much better resolution and allows to fetch the patterns lost during the
standard reference-dependent techniques. In this thesis we presented kPal - a k-mer
based method, that was used to resolve the level of relatedness between microbiomes.
We tested kPal on a series of simulated metagenomes with different copy number of
closely related bacterial genomes. Our method was sensitive to temporal changes
in microbiome composition. To check whether our reference-free approach could
distinguish between different human metagenomes, we tested it on a set of gut and
palm 16S metagenomes, collected from different people in a period of 6 months.
kPal could distinguish the datasets not only by the metagenome origin (gut or
skin), but also by person! This result was better than the one demonstrated by the
homology-based approach, which failed to cluster metagenomes per person in case
of skin samples. The obtained results are highly significant as they allow to look at
the comparative metagenomics under a different angle.
While the existing tools are following the "first annotate, then compare" model, we
proposed a contrasting "first compare, then annotate" algorithm, when the compar-
ison of the annotation-free profiles (in our case k-mer profiles) is followed by the
investigation of the k-mers that contribute the most to the observed dissimilarities.
The further investigation of the most informative k-mers and reads from which these
k-mers belong, could allow to fetch the DNA sequences that might possibly be lost
during the routine reference-based techniques. This idea can be developed further
as a base for many different projects, for example metagenomics-based disease diag-
nostics. Another possible application is the search for species specific to a particular
environment, body habitat, diet, or a person. This opens a set of new possibilities
for fields like forensics, where the resolution of reference-dependent techniques was
not enough to use metagenomic data in routine experiments.
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6.4 What is the possible pathogenic impact of the meta-
genome?

Many different strategies can be implemented to find the functional profile of a
metagenome. Among them are using a mapping to existing reference databases, and
predicting possible functional genes with supervised machine learning techniques.
Recently separated branch of metagenomics - meta-transcriptomics - provides re-
searchers with community-wide gene expression (RNA-seq) data, which can be
further utilized for metagenome functionality annotation. However, standard ap-
proaches for functional profiling fail to annotate the metagenomic data on the
"sub-gene" level, when the information about allele of the particular gene is desired.
In the meantime, it is known that different alleles are often responsible for distinct
types of virulence. Therefore, it is important to rapidly detect not only the gene of
interest, but also the relevant allele. Consequently, an approach that allows a "super-
zoom" to a gene sequence, as well as a database providing the user with sequences
of different alleles of the same gene, were required. Current methods are limited to
mapping reads to each of the known allele reference, which is a time-consuming pro-
cedure. The other strategy is the assembly of sequencing reads with the subsequent
mapping of the obtained contigs to the known allele references. The last algorithm
provides fast and accurate results, but cannot be extended to metagenomic samples,
since the assembly dismantles the possible variations in case of two different alleles
of the same gene in the sample.
We developed BacTag (see Chapter 5 ), a distributed bioinformatics pipeline for
fast and accurate bacterial gene and allele typing using clinical WGS sequencing
data. The major advantage of this approach is a preprocessing procedure in which
signatures of candidate alleles are identified and stored in a database. The sub-
sequent identification of alleles in clinical samples is done using these signatures
instead of using a traditional exhaustive search. This tool can be successfully used
for diagnostic purposes. Also, and because this particular approach can be applied
to uncultured samples, we expect to implement this method for cases in which time
is of the essence. BacTag currently is not designed to work with samples where
more than one allele of the same gene is present. However, unlike in case with
other similar tools, this issue can be fixed in the future by detailed evaluation of
the coverage depth, as well as the additional analysis of heterozygous variants
sites. The development of reference databases, containing the allelic sequences of
virulent genes, is another direction that still can be improved. Some progress in
this direction is done for antibiotic-resistance genes, however, the great number of
possibly virulent genes and their alleles is still not included in such databases. In the
era of rising antimicrobial resistance and the existence of so-called "super-bacteria",
a fast and accurate bioinformatic analysis providing the possible pathogenic impact
of a microbial sample can be crucial for human health.
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Dankzij de ontwikkelingen in sequentietechnieken zijn metagenomen een rijke bron
van informatie geworden voor vele wetenschappelijke disciplines zoals menselijke
en dierlijke gezondheidszorg, ecologie, forensisch onderzoek, landbouw en voedsel-
productie. Een gedetailleerde analyse van metagenomische data is daarom van groot
belang om alle aanwezige informatie te onthullen. Hierbij proberen wetenschappers
meestal het antwoord te vinden op drie hoofdvragen:

• Welke organismen zijn aanwezig in het metagenoom?

• Wat doen ze daar?

• Wat is het verschil tussen metagenomen?

Traditioneel worden de antwoorden op de eerste twee vragen verkregen door mid-
del van zogeheten "referentie-gebaseerde methoden", waarbij metagenomische data
eerst vergeleken wordt met bekende genomen, genen of reactieketens. Een duidelijk
nadeel van deze technieken is de onvolledigheid van bestaande databases: mi-
crobiële gemeenschappen bestaan veelal uit honderd tot duizenden onbekende
bacteriën, omdat informatie over deze bactieriën ontbreekt is de nauwkeurigheid
van referentie-afhankelijke methoden beperkt. Daarom worden referentie-vrije me-
thoden populairder in de vergelijkende metagenomica. In mijn onderzoek tracht
ik de metagenomische analyse te verbeteren in twee richtingen: mét en zonder
referentie-databases (zie hoofdstuk 3 en 4).

Voor de referentie-vrije analyse van verscheidene Next Generation Sequencing data-
sets ontwikkelden wij een methode gebaseed op k-meren (kPal). We laten zien dat
onze aanpak gebruikt kan worden voor twee soorten metagenomische analyse: om
het niveau van verwantschap tussen twee microbiomen te kwantificeren (hoofd-
stuk 3), en om de genetische informatie binnen één metagenoom te classificeren
(hoofdstuk 4). We hebben kPal getest op een reeks gesimuleerde metagenomen met
verschillende aantallen van nauw verwante bacteriële genomen. Onze methode
bleek in staat tijdelijke verandering in microbiotische compositie te detecteren. Om
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te controleren of deze referentie-vrije methode het verschil tussen menselijke metage-
nomen kan blootleggen, hebben we onze methode ook getest op 16S metagenomen
van ingewanden en de huid van verschillende testpersonen over een periode van
6 maanden. kPal kan niet alleen het verschil zien tussen de afkomst (ingewanden
of huid) van het metagenoom, het kan ook het onderscheid zien tussen de ver-
schillende testpersonen! Dit resultaat is beter dan referentie-afhankelijke methoden
laten zien, die namelijk niet de huid-monsters van verschillende personen kunnen
onderscheiden.
We hebben onze op k-meren gebaseerde methode ook toegepast om genetische
sequenties te classificeren in één metagenomische dataset. Naast een aantal ges-
imuleerde metagenomische datasets hebben we ook data verkregen van een biore-
actor microbioom met behulp van het PacBio RSII platform. We laten zien dat de
k-mer profielen relaties kunnen onthullen tussen genetische sequenties in een enkel
metagenoom, waarmee we de sequenties kunnen clusteren per soort. Deze resul-
taten zijn zeer belangrijk, omdat ze bewijzen dat het mogelijk is om structuren
te detecteren binnen een enkel metagenoom met slechts de informatie die in het
metagenoom zelf beschikbaar is. Onze referentie-vrije methode kan dus gebruikt
worden voor vergelijkende metagenomica. Bovendien kunnen we sequenties in
een enkel metagenoom classificeren, waardoor we de in een monster aanwezige
genomen kunnen ontwaren.

Daarnaast hebben we de grenzen van referentie-afhankelijke technieken onderzocht
in enkele studies (hoofdstuk 2 en 5).
Ons eerste doel was om de twee meest populaire datasoorten voor referentie-
afhankelijke taxonomische profilering te vergelijken: de amplicon-gebaseerde 16S
data versus de Whole Genome Sequencing (WGS; volledige genoom-sequentie) data
(hoofdstuk 2). Voor dit onderzoek creërden wij een reeks kunstmatige bacteriële
mengsels, elk met een andere verdeling van soorten. Deze mengsels werden gebruikt
om de nauwkeurigheid van de twee datasoorten te bepalen, en om verscheidene
methoden voor taxonomische classificatie te evalueren. Onze resultaten laten zien
dat WGS-data veel nauwkeurigere resultaten oplevert dan 16S data. Daarmee verw-
erpen we dat wijdverbreide mening dat 16S data toereikend is voor de analyse van
metagenomische monsters.
Tot slot hebben we de toepasbaarheid van referentie-afhankelijke methoden vergroot
door een pipeline te maken die klinische monsters kan analyseren met mogelijk
meer dan één pathogeen (hoofdstuk 5). Hiervoor ontwikkelden we BacTag, een
gedistribueerde bioinformatica pipeline voor een snelle en accurate typering van
bacteriële genen en allelen in klinische WGS-data. Het grote voordeel van onze
methode bestaat uit een voorbewerkingsprocedure waarin de signatuur van elk mo-
gelijk allel wordt geïdentificeerd en opgeslagen in een database. De daaropvolgende
identificatie van allelen in een klinisch monster wordt gedaan aan de hand van
deze signaturen in plaats van een traditionele uitputtende zoektocht. Omdat deze
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methode ook toegepast kan worden op ongecultiveerde monsters, kan de methode
goed gebruikt worden voor gevallen waar een snelle analyse van belang is.
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