
Journal of Cosmology and
Astroparticle Physics

     

Strong lensing time delay constraints on dark
energy: a forecast
To cite this article: Banafshe Shiralilou et al JCAP04(2020)057

 

View the article online for updates and enhancements.

Recent citations
Testing the equivalence principle with
strong lensing time delay variations
Leonardo Giani and Emmanuel Frion

-

H 0 Reconstruction with Type Ia
Supernovae, Baryon Acoustic Oscillation
and Gravitational Lensing Time Delay
Meng-Zhen Lyu et al.

-

This content was downloaded from IP address 132.229.39.92 on 17/12/2020 at 12:51

https://doi.org/10.1088/1475-7516/2020/04/057
http://iopscience.iop.org/1475-7516/2020/09/008
http://iopscience.iop.org/1475-7516/2020/09/008
http://iopscience.iop.org/0004-637X/900/2/160
http://iopscience.iop.org/0004-637X/900/2/160
http://iopscience.iop.org/0004-637X/900/2/160
http://iopscience.iop.org/0004-637X/900/2/160
http://iopscience.iop.org/0004-637X/900/2/160
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvwP-ZkNL3CGXDUgUjg6PQUncmqHwN5ZtczHfW8vSCayEnlmaAoCTXyeQakpFDNVt9OrVDGCF6zrVDelwxSkrLPGqP7oUxV40l7691sj1SX8fm9TdjAMAtYzdqKTeLpjcDzrhokfhH_-zXp0TBuoHShbJdkisfn_jsx0iRcHXNI5D2vYktEKPQX6U3v25bn99b68atLi0uYURc0nnTfTYla-vMXCf-vZBG36-k36xPZ_w--cNRu&sig=Cg0ArKJSzHChcEQWv-Ty&adurl=http://iopscience.org/books


J
C
A
P
0
4
(
2
0
2
0
)
0
5
7

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Strong lensing time delay constraints
on dark energy: a forecast

Banafshe Shiraliloua Matteo Martinellia,b

Georgios Papadomanolakis,a Simone Peirone,a Fabrizio Renzia,c

and Alessandra Silvestria
aInstitute Lorentz, Leiden University,
PO Box 9506, Leiden 2300 RA, The Netherlands
bInstituto de F́ısica Téorica UAM-CSIC,
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Abstract. Measurements of time delays between multiple quasar images produced by strong
lensing are reaching a sensitivity that makes them a promising cosmological probe. Fu-
ture surveys will provide significantly more measurements, reaching unprecedented depth
in redshift, making strong lensing time delay (SLTD) observations competitive with other
background probes. We forecast constraints on the nature of dark energy from upcoming
SLTD surveys, simulating future catalogues with different numbers of lenses distributed up
to redshift z ∼ 1 and focusing on cosmological parameters such as the Hubble constant H0

and parametrisations of the dark energy equation of state. We also explore the impact of
our ability to precisely model the lens mass profile and its environment, on the forecasted
constraints. We find that in the most optimistic cases, SLTD will constrain H0 at the level of
∼ 0.1%, while the CPL equation of state parameters, w0 and wa, can be determined with er-
rors σw0 ∼ 0.05 and σwa ∼ 0.3, respectively. Furthermore, we investigate the bias introduced
when a wrong cosmological model is assumed for the analysis. We find that the value of H0

could be biased up to 10σ, assuming a perfect knowledge of the lens profile, when a ΛCDM
model is used to analyse data that really belong to a wCDM cosmology with w = −0.9.
Based on these findings, we identify a consistency check of the assumed cosmological model
in future SLTD surveys, by splitting the dataset in several redshift bins. Depending on the
characteristics of the survey, this could provide a smoking gun for dark energy.
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1 Introduction

The phenomenon of cosmic acceleration, i.e. the late phase of accelerated expansion of the
Universe, has posed a major challenge for Cosmology since it was first established in 1998 [1].
The standard cosmological model ΛCDM, with a cosmological constant Λ as the candidate
mechanism responsible for cosmic acceleration, has so far been the most successful model in
describing both early Universe observations, such as Cosmic Microwave Background (CMB),
as well as the late time dynamics of the Universe, probed by observations of Baryon Acoustic
Oscillations (BAO), galaxy clustering and weak lensing.

Despite the successes of ΛCDM, recent observations highlighted a discrepancy between
the value of the Hubble constant today, H0, inferred from CMB observations and the local
measurements performed through the distance ladder technique. While the former estimate
of H0 depends on the assumed cosmological model, the latter does not depend strongly on
any cosmological assumption, as it relies on the observation of standard candles (type Ia
supernovae) whose absolute luminosity is calibrated using Cepheids as an anchor. Recent
estimates of H0 obtained using the latter technique have been provided by the SH0eS team [2],
with their latest value achieved exploiting observations of Cepheids in the Large Magellanic
Cloud from the Hubble Space Telescope, H0 = 74.03± 1.42 km/s/Mpc [3].

The CMB estimates of H0 rely instead on constraints of the size of the sound horizon
at the last scattering surface (θ∗) a measurement which allows to extrapolate bounds on the
current expansion rate. This extrapolation however implies an assumption for the expansion
history of the Universe. Assuming a ΛCDM background, measurements of the CMB from
the Planck collaboration provide H0 = 67.36±0.54 km/s/Mpc [4], a value which is in tension
with the local measurement of the SH0eS collaboration at 4.4σ.
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There is currently no consensus on what is causing the discrepancy in the measure of
the Hubble constant between low and high redshift data. One possibility is that the results
are biased by neglected systematic effects on observational data (see e.g. [5–9]), while, on the
other hand, this tension could indicate that we need to abandon the ΛCDM assumption when
extrapolating results to present time. Investigations of the latter possibility have highlighted
how early time deviations from standard physics have the potential to ease the tension (see
e.g. [10–16]), while other studies have tried to solve this issue allowing for non standard late
time evolution, which might be produced by dynamical Dark Energy (DE) models, modified
theories of gravity or interactions between DE and dark matter (such as [17–21]).

In order to shed light on this tension, the value ofH0 has been determined also with other
kind of observations. For example, the discovery of the first binary neutron stars merging
event, GW170817 [22–25] and the detection of an associated electromagnetic counterpart
have lead to the measurement H0 = 70+12

−8 . Even though this constraint is much weaker than
those obtained by SNe and CMB observations it is expected to significantly improve with
the discovery of new merging events with an associated counterpart [26–28].

Along with standard sirens (as gravitational wave events are called nowadays because
of their analogy with standard candles), observations of the time delay between multiply im-
aged strongly lensed system has become a compelling method to obtain measurements of H0

together with other cosmological parameters. The observational method of SLTD was first
proposed in 1964 and it can now produce precise, although cosmology dependent, estimations
of the Hubble constant thanks to accurate measurements of the time delays between multiple
images of specific lensed quasar [29]. The analysis of four well-measured systems from the
H0LiCOW lensing program [30] has recently provided a bound on the Hubble constant of
H0 = 72.5 ± 2.1 assuming a flat ΛCDM cosmology [31]. While the H0LiCOW program is
ambitiously aiming to bring the SLTD estimates of H0 to the 1% precision (see e.g. [30]
and [32] where a 2.4% constraints on H0 is obtained combining six well-measured lensing
systems), observations of lensed system from future surveys, such as the Large Synoptic
survey Telescope (LSST) which should start taking data in 2023 [33], are expected to signifi-
cantly improve the number of well-measured strongly lensed systems [34]. The increase in the
number of observed lensed sources will also open the possibility to constrain non standard
cosmologies, e.g. extensions in the dark and neutrino sector (see [32] for recent constraints
on these extended parameter space from SLTD). SLTD is sensitive to the cosmological model
through a combination of distances, but unlike Type Ia SNe, SLTD measurements do not
require any anchoring to known absolute distances. Typically however, obtaining cosmologi-
cal constraints with SLTD systems requires precise measurements and modeling of the mass
profile and of the environment of the lens system in order to have systematics reasonably
under control. Future surveys, like LSST, are also expected to provide enough well-measured
systems to allow sufficient statistics with a selected subset of lenses for which a precise mod-
elling of the lens properties can be obtained. This will certainly limit the impact on the
cosmological constraints of the uncertainties in the modeling of lens mass and environment.
LSST, for instance, has the advantage of having both the wide field-of-view to detect many
quasars, and the frequent time sampling to monitor the lens systems for time delay mea-
surements. Several thousand lensed quasar systems should be detectable with LSST, and,
as shown in [34], around 400 of these should yield time delay measurements of high enough
quality to obtain constraints on cosmological models [35].

It is timely to investigate the constraints on cosmological parameters that can be ob-
tained from future observations of strongly lensed systems. In this paper we focus on simple
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extensions of the ΛCDM expansion history and forecast SLTD constraints on these, as well
as on the current expansion rate H0. We do so, by creating synthetic mock catalogues of
future survey with variable number of lenses up to 1000 and building a Gaussian likelihood
to compare data with theory. We also include estimates of the lens galaxy stellar velocity
dispersion in our analysis. A pioneering work in this direction [36] explored the comple-
mentarity of time delay measurements with other cosmological probes, such as Supernovae
and Cosmic Microwave Background, with special focus to well observed systems where the
lens properties can be well determined. In this paper we focus instead on the possibility to
use SLTD as a stand alone probe, quantifying its constraining power for different number
of observed lenses and investigating the possible constraints on DE brought by this probe
alone. With respect to [36] we also deal with nuisance effects due to the properties of the
lens environment, and include forecasted kinematic data of the lens system in order to break
the degeneracies between these and cosmological properties.

The paper is organized as follows. In section 2 we outline the connection between the
time delays and the cosmological model, describe the theoretical modeling of the lens velocity
dispersion and illustrate how it can improve the time delay constraints on DE parameters.
In section 3 we outline our analysis method, describing the likelihood expression used to
infer the posterior distributions of cosmological parameters, and explaining the procedure
used to generate mock datasets, which are used to forecast the constraints displayed in
section 4. In section 4.1 we discuss the constraining power of SLTD on the DE models of
interest, assessing at the same time how observational uncertainties on the lens model and
on line of sight effects impact the figure of Merit of future surveys. Section 5 contains our
investigation of the possible bias brought on the inferred parameters by a wrong assumption
of the underlying cosmological model. We also propose a consistency check that could be
performed on future SLTD datasets to verify this possibility. Finally, we summarize our
conclusions in section 6.

2 Cosmology with time delay measurements

We shall describe the connection between gravitational lensing time delay and the cosmo-
logical model, and how we account for the velocity dispersion of the lensing galaxy for our
cosmological inference. We also specify the lens and environment mass modeling used for our
analysis and include a description of the mass-sheet degeneracy, which provides a transfor-
mation of the lens mass profile that has no observable effect other than to rescale the time
delays [37].

2.1 Theory of gravitational lensing time delays

In strongly lensed systems, the time that light rays take to travel between the source and
the observer depends sensibly both on their path and on the gravitational potential of the
lens. For a given i -th light ray, the time delay with respect to its unperturbed path is given
by [38, 39]):

t(θi, β) = (1 + zl)
DlDs

cDls

[
(θi − β)2

2
− ψ⊥(θi)

]
, (2.1)

where, as shown in figure 1, β and θi stand, respectively, for the source and the image
position, zl is the redshift of the lens and ψ⊥(θi) is the projected gravitational potential
calculated on the lens plane. Dl, Ds and Dls are, respectively, the angular diameter distance
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Figure 1. The schematic view of a strongly lensed system. Dl, Ds and Dls are, respectively, the
angular diameter distance from the observer to the lens, from the observer to the source, and from
the lens to the source. The solid angles β and θi indicate the position of the source and the images,
with respect to the lens plane.

from the observer to the lens, from the observer to the source, and from the lens to the
source; they satisfy the relation

Dls =
(1 + zs)Ds− (1 + zl)Dl

1 + zs
, (2.2)

where zs is the redshift of the source. The Fermat principle provides us with a lens equation
for the relative angle between the true position of the source and each of the, possibly multiple,
images:

θi − β = ∇ψ⊥(θi), (2.3)

where ∇ is the transverse gradient computed on the plane orthogonal to the direction of
propagation of light. It can be shown [38, 39] that the combination (θi − β)2/2 − ψ⊥(θi)
in eq. (2.1) is only dependent on the geometry and mass distribution of the deflectors; it is
usually referred to as the Fermat potential φ(θi, β).

As eq. (2.1) shows, the background cosmological parameters impact the gravitational
lensing time delays through the ratios of angular diameter distances. In a flat Universe the
angular diameter distance can be written as

D(z) =
c

H0(1 + z)

∫ z

0

dz′

E(z′)
, (2.4)

where E(z) = H(z)/H0 is the dimensionless Hubble rate, and c is the speed of light.
The relative time delay between two images A and B of a lensed system is given by the

difference in the excess time of the two images, which can be rewritten in a simple form using
the Fermat potential

∆tAB = (1 + zl)
DlDs

cDls
[φ(θA, β)− φ(θB, β)] , (2.5)

where we can isolate the factor containing the dependence on cosmological parameters

D∆t = (1 + zl)
DlDs

cDls
, (2.6)

which is referred to as the time delay distance.
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2.2 Lens mass model and mass-sheet degeneracy

While assuming a cosmological model is enough to define D∆t through eq. (2.6), in order to be
able to obtain theoretical predictions for ∆tAB, the Fermat potential needs to be computed.
This requires an accurate modeling of the mass profile of the lens galaxy which is challenging
both experimentally and theoretically, and in fact has been proven to be the major source
of bias for cosmological inference [40, 41]. The complicating factor arises from the so-called
mass-sheet degeneracy (for a detailed discussion see e.g. [38, 39]). In fact, a transformation
of the lens convergence κ(θ) = ∇ψ⊥/2 of the form:

κ′(θ) = λκ(θ) + (1− λ) (2.7)

will result in the same dimensionless observables, e.g. image positions and shapes, but will
rescale the time delays by a factor λ. This effect, together with the lack of available data on
density distributions, implies that there is more than one density profile which can reproduce
the observed image positions.

The additional mass term can be due to perturbers that are very massive or close to the
lens galaxy (which may need to be included explicitly into the lens mass model and affects
stellar kinematics) or to the structures that lie along the LOS (see e.g. [42–45]). Both effects
can effectively be summed up into a constant external convergence term, κext = 1−λ, due to
the mass sheet transformation described by eq. (2.7). The overall effect of this degeneracy,
as stated above, is a rescaling of the value of the observed time delay distance and thus, the
cosmological parameters [46, 47]:

D′∆t =
D∆t

1− κext
(2.8)

Such an effect can be reduced by the combination of lensing data with stellar kinematics
measurements, tracing the internal mass distribution of the lens galaxy [48–50].

Considering simple parameterized mass models, it has been shown that the profiles of
most discovered lens galaxies are well fitted by a nearly elliptical power-law mass distribu-
tion [51]. We will follow the same assumption through this paper (see eq. 2.11), and when
describing our lens systems, we will use a projected potential on the lens plane ψ⊥ obtained
assuming the Softened Power-law Elliptical Potential (SPEP) for the main lens [52]:

ψSPEP(θ) =
2A2

(3− γ′)2

[
θ2

1 + θ2
2/q

2

A2

](3−γ′)/2
, (2.9)

where q is the galaxy axis ratio, A = θE/[
√
q(3−γ′

2 )1/(1−γ′)] is an overall normalization factor
depending on the Einstein radius θE and γ′ ≈ 2 being the slope of the mass profile [which we
define in eq. (2.11)]. θ1 and θ2 are the projections on the lens plane of the two dimensional
image position θ.

Additionally, as common in the modeling of the mass profile of quadruple lenses (see
e.g. [38, 39]), we include in our modeling of the lens mass profile a constant external shear
yielding a potential in polar coordinates of the form:

ψp(θ, φ) ≡ 1

2
θ2γext cos 2(φ− φext). (2.10)

where γext and φext are the shear strength and angle. It is worth stressing that both ψp and
ψSPEP contribute to the projected potential ψ⊥.

– 5 –
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We conclude this section noting that a power-law density profile may not be an accurate
description of the true profile of a galaxy and that this can induce a large bias in the cosmo-
logical bound derived with SLTD (see e.g. [40, 53]). The problem can be partially mitigated
including measurements of the stellar kinematic, which allow to reduce the number of models
reproducing the data. However, still more than one class of model would be in agreement
with observations even since lensing observables can only probe the density profile in a region
close to the Einstein ring. As the true density profile of galaxies is not known, one has to rely
on a large set of radial density profile with sufficient degree of freedom in order to minimise
the systematic error associated with an erroneous description of lens mass profile [50]. In
this paper, however, we do not intend to study the bias coming from wrong assumptions in
the description of density profile and we stick therefore to the most common assumption of
a power law profile for the lensing galaxy.

2.3 Stellar dynamics modeling

In order to model the measurable stellar velocity dispersion σv we need to model the 3D
gravitational potential of the lens galaxy Φ, in which stars are orbiting. This potential will
have contributions from the mass distributions of both the lens and the nearby galaxies
physically associated with the lens. To model the stellar velocity dispersion we follow the
analysis of [44, 45]. As previously mentioned, we approximate the overall mass density
associated to Φ as a spherically symmetric power law profile:

ρlocal = ρ0

(r0

r

)γ′
(2.11)

the overall normalization ρ0r
γ′

0 can be determined quite well by lensing measurements, since
it is a function of the lens profile characteristic only, and can be written as [44]:

ρlocal(r) = π−1/2 (κext − 1) Σcr R
γ′−1
E

Γ(γ′/2)

Γ
(
γ′−3

2

) r−γ′ , (2.12)

where RE is the Einstein radius and Σcr is the critical surface density. As in [44], to calculate
the LOS velocity dispersion we follow [54]. The three-dimensional radial velocity dispersion
σr is then found solving a spherical Jeans equation:

∂(ρ∗σ2
r )

∂r
+

2βani(r)ρ
∗σ2
r

r
+ ρ∗

∂Φ

∂r
= 0 , (2.13)

where, Φ is the galaxy gravitational potential generated by the density of eq. (2.11). Fur-
thermore, we assume the Osipkov-Merritt model for the stellar anisotropy profile in the lens
galaxy βani = r2/(r2 +r2

ani). For the modeling of the stellar distribution ρ∗, we have assumed
the Hernquist profile [55]

ρ∗(r) =
I0a

2πr(r + a)3
, (2.14)

with I0 being a normalization factor, a = 0.551reff and reff being the effective radius of the
lensing galaxy. The luminosity-weighted velocity dispersion σs is then given by:

I(R)σ2
s = 2

∫ ∞
R

(
1− βani

(
R

r

)2
)

ρ∗σ2
rr dr√

r2 −R2
. (2.15)
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Here R is the projected radius and I(R) is the projected Hernquist profile. Finally, the
luminosity-weighted LOS velocity dispersion within a measuring device aperture A is:

(σv)
2 =

∫
A[I(R)σ2

s ∗ P]RdRdθ∫
A[I(R) ∗ P]RdRdθ

. (2.16)

where ∗P indicate convolution with the seeing (see also [44, 45]). A prediction of the mea-
surable velocity dispersion σv is therefore obtained accounting for the observational charac-
teristics of the survey, i.e. through the convolution, over A, of the product I(R)σ2

s with the
seeing P. Note that the cosmological dependence of σv is contained only in the combination

ΣcrR
γ′−1
E , therefore separate σv as:

(σv)
2 = (1− κext)

Ds

Dls
F(γ′, θE , βani, reff) (2.17)

where the terms F accounts for the computation of the integral in eq. (2.16) without the cos-
mological terms, θE is the angle associated with the Einstein radius, and all the cosmological
information is contained in the ratio Ds/Dls. In this work, we follow the spectral rendering
approach of [45] to compute the luminosity-weighted LOS velocity dispersion from eq. (2.16).

3 Analysis method and mock datasets

The final goal of this paper is to assess how well future surveys of strongly lensed systems
will constrain cosmological parameters, with a particular focus on simple extensions to the
ΛCDM model. We do so by comparing the theoretical predictions of different cosmological
models with forecasted datasets, based on mock catalogues. In practice we aim at calculating
the posterior distribution P (~π|~d) for a set of cosmological parameters ~π given the set of
(forecasted) data ~d. Using the Bayes’ theorem, this can be written as

P (~π|~d) ∝ P (~d|~π)P (~π), (3.1)

where P (~d|~π) is the likelihood of ~d given ~π, and P (~π) is the prior distribution.

This expression for the posterior distribution does not include possible nuisance pa-
rameters which would account for uncertainties in the modeling of the lensed system, its
environment and LOS effects. We will first generalize it to include these parameters and
then marginalize over them in order to obtain the final distribution only for the cosmological
parameters. We consider the following nuisance parameters ~πnuis = (rani, κext). The final
posterior can be obtained as [44]

P (~π|~d) ∝
∫
dranidκextP (~d|~π, ~πnuis)P (~π)P (rani)P (κext) , (3.2)

where P (rani) and P (κext) are the prior distributions on each nuisance parameter. Notice
that in this work we do not include as nuisance parameters the other terms that enter in the
lens model, e.g. the Einstein radius θE , the external shear γext and the slope of the density
profile power law γ′. In this paper we assume these to be perfectly known, and we focus
instead mainly on the degeneracy between H0 and κext which may, in turn, also affect the
constraints on DE equation of state through the well-known degeneracy between H0 and DE
parameters. It is important to stress that also the lens modeling has an impact on parameter

– 7 –
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estimation; in particular, it has been shown how assumptions on the lens density profile
significantly affect the measurement of H0 [53]. We leave however the study of the impact on
our results of the inclusion of the whole parameter space of the lens model for a future work.

As discussed in section 2, in order to break the mass-sheet degeneracy SLTD surveys
combine measurements of the time delay between different images (∆t) and of the projected
velocity dispersion within the lens (σv). The latter contains also a dependence on the cos-
mological parameters. Hence, our data vector will be therefore composed of this pair of
measurements for each lensed system included in the dataset, with ~d = ( ~∆t, ~σv). In or-
der to constrain our cosmological models, these measurements need to be compared with

the theoretical predictions ~∆t
th

and ~σth. Assuming that a Gaussian likelihood this can be
written as

P (~d|~π) = exp

−1

2

∑
i,j

(∆tthi,j(~π, ~πnuis)−∆ti,j)
2

σ2
∆ti,j

+
∑
i

(σth
i (~π, ~πnuis)− σv,i)2

σ2
σv,i

, (3.3)

where the index i runs over all the lensed systems in the dataset, j runs over the image pairs
for each of the systems and we assume there is no correlation between the measurements of
different systems. For a given set of cosmological (~π) and lens model (~πnuis) parameters, the
theoretical predictions ∆tthi,j and σth

v,i can be obtained from eq. (2.1) and eq. (2.16) respectively.
We compute the angular diameter distances that appear in these equations using EFTCAMB [56,
57], a public patch to CAMB [58, 59].

With these predictions we can then reconstruct the posterior distribution P (~π|~d) sam-
pling the parameter space and computing the likelihood of eq. (3.3) for each sampled point.
The parameter space is sampled through the public Monte-Carlo Markov-Chain (MCMC)
code CosmoMC [60], with the parameter vector ~π including the total matter density Ωm, the
Hubble constant H0 and w0 and wa, which parameterize the DE equation of state via the
CPL form [61, 62]

w(z) = w0 + wa
z

1 + z
. (3.4)

Using this parameterization, the dimensionless Hubble rate E(z) appearing in eq. (2.4) can
be written as

E(z) =

√
Ωm(1 + z)3 + ΩDE(1 + z)3(1+w0+wa) exp

[
−wa

z

1 + z

]
. (3.5)

In the following, we will explore three different DE models and this will determine
whether or not we sample w0 and wa. The cases we investigate are:

• ΛCDM, where both parameters are fixed to w0 = −1 and wa = 0, recovering the
standard cosmological constant equation of state w(z) = −1;

• wCDM, where wa = 0, but we keep w0 free to vary, obtaining a constant equation of
state which might however deviate from −1;

• w0waCDM, where both w0 and wa are free to vary and we explore the possibility of a
DE with a time dependent equation of state.

We always assume a flat Universe, with the DE density set by the relation ΩDE = 1− Ωm.
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Parameter Ideal case Realistic case

Ωm [0, 1] [0, 1]

H0 [40, 140] [40, 140]

w0 [−3, 0] [−3, 0]

wa [−4, 4] [−4, 4]

κext δD(−0.003) G(−0.003, 0.05)

rani (′′) δD(3.5) [0.665, 6.65]

Table 1. Prior ranges on the cosmological and nuisance parameters sampled in our analysis.

θE (′′) q θq (◦) γ′ γext φext (◦) κext reff (′′) rani (′′) β1 β2

1.18 0.8 −16.8 1.93 0.03 63.7 −0.003 1.33 3.5 0.03 −0.03

Table 2. Fiducial values for the mock lens parameters.

As stated above, sampling only over the parameters ~π, while keeping the nuisance
parameters ~πnuis fixed to their fiducial values, implicitly assumes that the lensed system is
perfectly known: we label such cases as ideal. We consider also a realistic cases, where we
also include two of the important nuisance parameters to the free parameter set (κext and
rani). In table 1 we show the prior distributions assumed for all the parameters, with the
cosmological ones always sampled using a uniform prior [πimin, π

i
max]. In the wCDM and

w0waCDM cases, we additionally impose an acceleration prior, which limits the DE equation
of state to w(z) < −1/3. In the realistic case, we additionally sample the nuisance parameters
using Gaussian prior G for κext and a uniform prior for rani. As stated by [44], we stress that
the uncertainty in reff has a negligible effect on the velocity dispersion modeling.

3.1 Mock catalogues

The last ingredient that we need in order to compute the likelihood, is the data vector ~d.
We generate three mock catalogues containing different numbers of observed systems, i.e.
with Nlenses = 10, 100, 1000 lenses, uniformly distributed in the redshift range 0 < z ≤ 1.
Furthermore, we assume the mass profile of the lenses to be given by eq. (2.9), choosing
identical θE and γ for all the systems. The fiducial values of the mass model parameters
are set to those of the H0LiCOW resolved quadruply lensed system HE0435-1223 [63], listed
in table 2. For simplicity, we assume that the redshift difference between the lens and the
background source is the same for all the systems, with ∆z = 1.239.

In order to calculate the image positions we assume that the source position β = (β1, β2)
is known and is the same for all the systems, with the value given in table 2. We then solve
eq. (2.3) analytically to find the image positions for each system, assuming that all the
systems in our dataset produce quadruple images of the background source.

Notice that our modeling of the mock catalogue implies also that we assume the same
external convergence κext for all systems. We fix the value of the external convergence on the
best fit value of the distribution of κext estimated by the analysis of the environment of the lens
HE0435-1223 [64]. The assumption of a constant κext should be seen as a first approximation,
as this parameter encompasses effects due both to the local environment of the lens systems
and to the presence of structures along the LOS, and therefore can significantly vary between
different systems. In appendix A we investigate the possible impact of this oversimplification
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of our mock dataset, finding an overall induced bias on Ωm of ≈ 2σ. We leave a more
extensive study of possible solutions to a dedicated work. The external convergence might
also carry cosmological information, in particular if one wants to explore deviations from
General Relativity; the different evolution of Large Scale Structures in modified gravity
theories might indeed imprint characteristic features in the effect that these structures have
on SLTD measurements, which can in principle be exploited to constrain departure from the
standard General Relativity description [65].

In addition to the lens parameters, in order to generate our mock datasets we also need
to assume a fiducial cosmology. We choose two different fiducials, thus creating two classes
of mock data:

• Λ-mock, where the DE equation of state parameter is constant in time and equal to
w(z) = −1 (thus assuming w0 = −1 and wa = 0), and the cosmological parameters
are chosen to be in agreement with the constraints obtained by the Planck collabora-
tion [66], i.e. Ωm = 0.295, H0 = 67.3 Km/s/Mpc.

• w-mock, which differs from the Λ-mock only in the value of the DE equation of state
parameter, which is again constant but set to w(z) = −0.9.

In both cases, we assume a flat Universe, with ΩDE = 1− Ωm.

Once the lens and fiducial cosmological parameters are assumed, the relative time delays
and the velocity dispersion can be computed following eq. (2.5) and eq. (2.16). Computing
these for each of the Nlens lensed system contained in our dataset allows us to create our
simulated data points; for each of these we assume that the time delays are observed with
an error of σ∆t = 0.8 days,1 while for the velocity dispersion measurements we assume a
constant error σσv = 15 km/s. As an example, we show in figure 2 the Λ-mock obtained for
a forecasted survey of Nlens = 10 lensed systems.

4 Forecasts for cosmological parameters

In this section we present the forecasted bounds on cosmological parameters obtained follow-
ing the analysis procedure and the mock datasets described in section 3. We focus on the
Λ-mocks, containing Nlens = 10, 100, 1000 lensed systems, and we analyse them, both in
the ideal and realistic cases, using the three DE models we introduced: ΛCDM, wCDM and
w0waCDM.

ΛCDM. In a standard ΛCDM scenario, we find that future strong lensing surveys will be
able to constrain H0 at the same level of Planck [66], σH0 ∼ 1%, already with Nlens = 10
in the ideal case; this result is consistent with what was found in [68] for a catalogue of 55
lenses. Increasing the number of systems to Nlens = 100, improves the bound on H0 by a
factor of ∼ 3, while with our most optimistic dataset (Nlens = 1000) we find that H0 could
be constrained with an error of ∼ 0.1%. These results are shown in the left panel of figure 3
and in the ΛCDM entries of table 3 shown in appendix B.

In the realistic cases, where the nuisance parameters are let free to vary, the constraints
on the Hubble rate are worsened by a factor of ∼ 4 for Nlens = 10. This worsening is mainly
due to the strong degeneracy between H0 and κext described by eq. (2.8), which is clearly
visible in the right panel of figure 3. Increasing the number of lenses improves the bounds on

1Based on our generated time delay values, this estimate fulfills the requirement of 0.2% level time delay
accuracy which, as pointed out by [67], is needed for a low biased cosmological inference.
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Figure 2. ΛCDM mock for a survey with Nlens = 10. The upper panel shows the velocity dispersion
of the lens galaxies projected along the line of sight. The bottom panel shows the absolute time delay
differences between image A and the other three images.

both parameters, and we reach a ∼ 2% constraint on H0 when Nlens = 1000. All the results
for the realistic cases are shown in table 4 in appendix B.

wCDM. Using the mock datasets to constrain this simple extended DE model, we find
that in the ideal case with Nlens = 10, H0 can now be measured with an error of ∼ 4%,
which is improved to ∼ 1% and ∼ 0.3% for Nlens = 100 and Nlens = 1000 respectively.
The parameter determining the equation of state for DE, w0, is constrained at the level
of ∼ 34% for the 10 lenses case, while moving to the optimistic 1000 lenses configuration
boosts the constraining power on this parameter up to ∼ 2%, thanks to the breaking of the
degeneracy between H0 and w0. Such a result highlights how the improvement of SLTD
measurements will significantly impact the investigation of DE alternatives to ΛCDM. These
results are shown in figure 4, while the constraints on all the sampled parameters are included
in appendix B in table 3.

When considering the realistic case (see right panel of figure 4 and table 4), the worsening
of the constraints due to the nuisance parameters has a different trend with respect to the
ΛCDM model; in the 10 lenses case, the additional degeneracy introduced by κext worsen
the bounds on H0 only by a factor ∼ 2 (with respect to the factor ∼ 4 of the ΛCDM case),
due to the already existing degeneracy between H0 and w0, while in the 100 and 1000 lens
cases, when this degeneracy is broken, the constraints become looser by a factor ∼ 5 and ∼ 7
respectively.

As κext affects w0 only through its degeneracy with H0, moving from the ideal to the
realistic case does not have an extreme impact on the DE parameter, with the constraints
getting worse by a factor of ∼ 2 for Nlens = 10, 100, 1000
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Figure 3. Constraints on the ΛCDM cosmological model obtained using the Λ-mock datasets with
Nlens = 10 (red contours), 100 (yellow contours) and 1000 (blue contours). The left panel shows the
results for the ideal case, with nuisance parameters fixed to their fiducial values, while the right panel
refers to the realistic case where these parameters are free. We show here only κext as this is the only
nuisance parameter with a significant degeneracy with the cosmological ones.

Figure 4. Constraints on the wCDM cosmological model obtained using the Λ-mock datasets with
Nlens = 10 (red contours), 100 (yellow contours) and 1000 (blue contours). The left panel shows the
results for the ideal case, with nuisance parameters fixed to their fiducial values, while the right panel
refers to the realistic case where these parameters are free. We show here only κext as this is the only
nuisance parameter with a significant degeneracy with the cosmological ones.
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Figure 5. Constraints on the w0waCDM cosmological model obtained using the Λ-mock datasets
with Nlens = 10 (red contours), 100 (yellow contours) and 1000 (blue contours). The left panel shows
the results for the ideal case, with nuisance parameters fixed to their fiducial values, while the right
panel refers to the realistic case where these parameters are free. We show here only κext as this is
the only nuisance parameter with a significant degeneracy with the cosmological ones.

w0waCDM. In this case, we find that due to the degeneracies between H0 and the DE
parameters w0 and wa, the constraints on H0 are significantly worsened. We see that a
strong lensing survey could reach a ∼ 1% level bound on the Hubble parameter only with
the most optimistic configuration of this paper, i.e. Nlens = 1000 in the ideal case. Due to
their degeneracy, w0 and wa are not efficiently constrained solely with SLTD data; the best
constraint is of the order of ∼ 5% on w0 and σwa ∼ 0.3 on wa, in the most optimistic case.
Of course, possible synergies of future SLTD surveys with other background probes, such as
SNIa or BAO, would significantly improve this situation, breaking the degeneracy between
the DE parameters and allowing to obtain again a bound on H0 competitive with respect to
CMB or local measurements.

The effect of nuisance parameters when considering the realistic case is similar to what
is found for the wCDM case, with the additional parameters affecting mainly the bounds on
H0, whose error reaches now ∼ 2% for Nlens = 1000, while not showing significant impact on
the DE parameters.

The results for the w0wa case are shown in figure 5, while numerical constraints are
reported in tables 3 and 4 shown in appendix B.

4.1 Figure of merit for strong lensing time delay

We would like to quantify the constraining power of SLTD surveys, and its improvement
with the number of observed systems, in a general way that allows to directly compare the
performance of different surveys. For this purpose, we rely on the commonly used Figure of
Merit (FoM) [69]. For two parameters α and β the FoM is

FoMαβ =

√
det F̃αβ, (4.1)
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Figure 6. FoM for the Ωm, H0 (left panel) and w0, wa (right panel) as a function of Nlens when
analysing ΛCDM (red lines), wCDM (yellow lines) and w0waCDM (black lines). The solid lines refer
to the ideal case, while the dashed lines account for free nuisance parameters (realistic case).

where F is the Fisher information matrix for a generic number of parameters and F̃αβ is the
Fisher matrix marginalized over all the parameters except for α and β. Given its definition,
the FoM gives an estimate of the area of the confidence contours for two parameters, thus
quantifying the constraining power of an experiments on them, taking also into account their
correlation. It is important to remember that such a definition implies approximating the
posterior distribution P (~π|~d) to a Gaussian.

From our MCMC analysis we derived a covariance matrix C = F−1, which contains all
the sampled parameters. Let us focus on two cosmological parameters of interest that are
common to all the models investigated in this work: Ωm and H0. We shall marginalize the
covariance matrices over all the other parameters and then compare the constraining power
of our mock datasets in each of the cases analysed, using the FoM for Ωm and H0:

FoMΩmH0 =
√

det C̃−1
ΩmH0

. (4.2)

The posterior for Ωm and H0 is very close to a Gaussian one when the parameters are tightly
constrained, e.g. in the ΛCDM case with Nlens = 1000; however, the gaussian approximation
becomes less and less efficient as the number of lenses in the dataset decreases. Hence, the
FoM values for the less constraining cases might be overestimated.

In the left panel of figure 6 we show the trend of the FoM for the ideal (solid lines)
and realistic (dashed lines) cases as a function of Nlens. Comparing these two cases, we can
notice how the improvement in constraining power brought by the number of lenses is less
significant when the nuisance parameters are let free to vary. We also notice that the FoM
for the ideal and realistic cases become more similar to each other as we go from ΛCDM to
the more general DE parametrized by CPL. This is consistent with the trends that we have
discussed in section 4.

In the right panel of figure 6 we also show the FoM for the w0 and wa parame-
ters, FoMw0wa . Such quantity is commonly used when quantifying the expected sensitivity
of future experiment to the DE sector. We find that SLTD surveys can reach values of
FoMw0wa ≈ 100 for Nlens = 1000 (in the ideal case), which is comparable with other future
surveys, such as Euclid, expected to reach FoMw0wa ≈ 400 with its primary probes, [70] or
the FoMw0wa ≈ 100 reached by the combination of Weak Lensing measurements from SKA1
and DES, together with Planck observations [71].
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Figure 7. Marginalized means and error estimates on the value of the Hubble constant using the
w-mocks (w0 6= −1) analysed keeping the w fixed to the ΛCDM value. The solid lines represent the
ideal cases, while the dashed lines show the results of the realistic cases. The numbers above each
line correspond to S(H0) computed following eq. (5.1).

5 A smoking gun for dark energy?

In section 4 we used the Λ-mock and constrained three DE models which contained the
assumed fiducial cosmology as a limiting case. However, when real data will be available, we
will have no a priori knowledge of the underlying cosmological model, and assumptions about
the latter might affect the results. In this section we test the impact of wrong assumptions
about the underlying cosmology on constraints from future surveys. To this extent, we
consider the w-mocks, generated with a fiducial w0 = −0.9, and fit the data assuming instead
a ΛCDM cosmology. Given that the latter does not contain the true fiducial as a limiting
case, we can quantify the sensitivity of future surveys on this assumption by computing the
shift of the mean values obtained for cosmological parameters. In particular, for H0 we have

S(H0) =
|H0 −Hfid

0 |
σH0

, (5.1)

where the fiducial value is the one used to generate the mock data, i.e. Hfid
0 = 67.3 km/s/Mpc,

and we assume that the H0 distributions obtained through our analysis can be approximated
by a Gaussian of width σH0 .

In figure 7 we show the bounds on H0 and the values of S(H0) changing the sample size,
both for the ideal and realistic cases, when fitting the w-mocks with a ΛCDM cosmology. In
the realistic case, the shift on this parameter is never statistically significant and reaches the
maximum of S(H0) = 1.4 for the 1000 lenses mock. However, in the ideal case the shift can
be as high as 10σ. This implies that, if mass modelling of lenses reaches extreme accuracy
with future surveys, the assumption of wrong cosmology could lead to significant tensions
on H0 value between SLTD observations and other independent cosmological measurements
(e.g. from SH0eS [3]).

– 15 –



J
C
A
P
0
4
(
2
0
2
0
)
0
5
7

Figure 8. Comparison of the constraints on H0 and Ωm from the analysis of the three datasets
obtained splitting the original mock data in three redshift bins. Top panels refer to the Nlens = 100
dataset, while the bottom panels to the Nlens = 1000. Left panels do not include nuisance parameters
(ideal case), while the right panels refer to the realistic case.

Interestingly, it might be possible to exploit this shift effect, to build a consistency check
of the assumed cosmological model. Using a dataset of Nlens observed systems, we can split it
in Nbin redshift bins and use the resulting datasets separately to constrain the parameters of
a given cosmological model, e.g. ΛCDM. Should this model differ from the “true” cosmology
(or the fiducial one in the case of forecasts), the results obtained analysing separately the
three datasets will be in tension with each other. As a test case, we split the w-mock,
both for Nlens = 100 and Nlens = 1000, in Nbin = 3 redshift bins and we fit these with a
ΛCDM cosmology. In figure 8 we show the constraints on H0 and Ωm obtained through this
analysis for Nlens = 100 (top panels) and Nlens = 1000 (bottom panels), with the left (right)
panels showing the results in the ideal (realistic) case. While for 100 overall lenses both the
ideal and realistic case show no tensions on the cosmological parameters, in the ideal case
with Nlens = 1000 a tension between the results on H0 appears, with a ∼ 2σ significance
between the first and the third bin. Such a result highlights how, with a sufficient number of
observed systems, the assumption of a ΛCDM cosmology could be checked internally using
only this observable; a statistically significant tension on the measured parameters in different
redshift bins would then provide a smoking gun for the breakdown of ΛCDM, after internal
systematics effect are excluded .
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6 Conclusions

In this paper we explored constraints on the nature of Dark Energy (DE) from future Strong
Lensing Time Delay (SLTD) measurements. We simulated SLTD datasets starting from a
fiducial cosmological model and a description of the lens profile. For the latter, we assumed
a common lens profile for all the systems. We distributed the lenses uniformly in the redshift
range 0 < zlens < 1, and we simulated the time delay that these would generate among
different images of a background source, always placed at a ∆z = 1.239 from the lens,
assuming different cosmologies.

In the ideal case, in which the lens profile and external environment parameters are
perfectly known, SLTD measurements can provide constraints that are competitive with
other upcoming cosmological observations; H0 can be constrained with an error as small as
∼ 0.1% assuming a ΛCDM model and an optimistic dataset of Nlens = 1000 observed systems,
while this error increases up to ∼ 1% when the DE equation of state is allowed to vary.

We also evaluated the figure of Merit (FoM) for the w0 and wa in the Chevallier-Polarski-
Linder parametrization of DE. We found that in our most optimistic case, the FoM can reach
a value of ∼ 100, which is competitive with what is expected from upcoming Large Scale
Structure surveys. When considering a more realistic case, with κext included as a nuisance
parameter, that encodes the external convergence brought by additional structures along
the line of sight between the observer and the lens. When we allow κext to vary (according
to a prior), we find that H0 can be constrained only up to ∼ 2% both in the ΛCDM and
w0waCDM cases. In the latter case, the FoM on w0, wa can reach only ∼ 60.

Furthermore we quantified the bias on cosmological parameters arising from a wrong
assumption on the cosmological model in the analysis of future data. We analysed the mock
dataset generated assuming w = −0.9 with a ΛCDM cosmology, i.e. with a fixed w = −1,
and computed the shift S(H0) on the Hubble constant with respect to the fiducial value
used to obtain the mock data. Interestingly, we found that in the ideal case this shift
can reach 10σ, highlighting how comparing the results obtained from SLTD observations
with other measurements of H0 could produce significant tensions on this parameter. Such
a shift is however almost completely washed out in the realistic case, where S(H0) never
exceeds ∼ 1.5σ.

The study of the shift in H0, suggested an interesting, and potentially powerful, con-
sistency check of the cosmological model, entirely based on SLTD data. We split our mock
datasets constructed with a wCDM cosmology, with w = −0.9, and analysed the three re-
sulting datasets separately, (wrongly) assuming ΛCDM cosmology. In the ideal case with
Nlens = 1000, we found that the measurements of H0 in the different bins would be in ten-
sion with each other up to ∼ 2σ. This result shows how, with an accurate modeling of the
observed lenses, future SLTD datasets can be used to internally test the assumptions on the
cosmological model.

The future of SLTD looks bright; measurements are reaching the same accuracy of other,
more traditional probes of background cosmology. As we have shown with our analysis, in
the upcoming years, SLTD will provide competitive and complementary constraints on dark
energy. It would be of great interest to not only further explore SLTD in the context of
extended theories of gravity [72–74], but also in combination with other cosmological probes.
This work represents a first step in all these directions. In particular, the likelihood pipeline
that we have built in CosmoMC will be of great use to explore complementarity of SLTD
with other cosmological probes.
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A Impact of κext on cosmological parameters

While producing our mock datasets, we made several assumptions which allowed us to sim-
plify the procedure of generating simulated data. As we are interested in cosmological pa-
rameter estimation, the assumption of having the same perfectly known lens system with
the same density and kinematic properties, repeated Nlens times over our redshift range,
coincides with the selection of well observed lenses only, out of a future SLTD survey.

There is one lens property however that escapes this logic, namely the external conver-
gence κext. Our assumption of it taking the same value for each lens system is clearly an
oversimplification. As κext traces the mass distribution along the LOS, each lens has its own
LOS mass distribution and in a realistic sample the value of κext will then differ from lens
to lens. For isolated lenses2 like the ones assumed in our mock, external convergence will be
dominated by the perturbations to the gravitational potential (i.e. perturbations of the mat-
ter density) along the LOS. In a homogeneous and isotropic Universe, density fluctuations
have zero mean but they do posses a non-zero variance, which will reflect in the distribution
of κext [44, 75]. Estimations show this variance to be O(10−2) , see e.g. [31, 76–78].

Fixing the value of the external convergence, can therefore have a significant impact on
parameter extraction due to κext being degenerate with the cosmological parameters as it
can be seen from eqs. (2.8)–(2.17).

In order to estimate the impact of this assumption we generate again our 100 lenses
ΛCDM fiducial mock data, assuming this time a different value of κext for each lens system.
We sample these values from a Gaussian distribution with mean zero and standard deviation
0.05, i.e. now our mock dataset accounts for a 5% spread in the value of 1− κext.

We analyze this dataset using the same pipeline described in section 3, in particular a
single, common nuisance parameter κext. As it can be seen in figure 9, this yields a posterior
distribution on Ωm shifted towards values higher than the fiducial cosmology, which is now
excluded at ≈ 2σ. In order to remove this problem and to still account for the external
convergence as a nuisance parameter, one would need to account for a different κext for each
lens system. This approach would be unfeasible to include in our MCMC analysis, given the
large number of extra parameters introduced.

One other possible approach is to include the dispersion of the κext values of our dataset
as an extra systematic error. As showed in [79], the lack of systematic error may in fact lead
to biased results in MCMC analysis, even when the data are fitted with the right cosmological
model. For this reason, we add to the observational errors σX discussed in section 3.1, with

2Here with isolated we mean galaxies whose potential is not significantly distorted by neighbouring galaxies.
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X being our observable ∆t and σv, the systematic error contribution σsys = 0.05, set to
coincide with the standard deviation of the κext distribution. We obtain therefore a total
error σX,tot

σ2
X,tot = σ2

X + σ2
sys. (A.1)

Figure 9 shows the results obtained using this updated dataset, highlighting how the
bias with respect to the fiducial cosmology is now removed, at the price of a reduced precision,
with the errors on Ωm and H0 increasing by a factor 2 and 1.5, respectively.

It is interesting to note that in this analysis the parameter suffering the largest shift is
Ωm, rather than H0 as one would expect from the interplay between the latter and κext (see
e.g. eq. 2.8).

Below we take a closer look into these results.
As discussed in section 2, the effect of κext on D∆t (containing all the cosmological

information) is to rescale its value at each point in redshift by a constant amount which may
be different from a lens to another. Since D∆t ∝ H−1

0 , the Hubble constant is also rescaled by
κext, therefore one would expect the bounds on H0 to be the most affected by the underlying
κext distribution.

However it must be noted that in our analysis we assume the distribution of κext to have
zero mean: therefore, on average, the overall value of the time delay distance is not affected
by the inclusion of a Gaussian-distributed κext and so is the average (i.e. the best-fit) value
of H0 for our mock. Our assumption about κext is merely adding an additional 5% variation
to the value of the time delay for each lens in the catalog. However the precision with which
we constrain H0 is strongly sensitive to κext since the two parameters are highly degenerate
as expected (see right panels of e.g. figure (3–5) and figure 9). The explanation for a biased
Ωm is also rather simple. The sensitivity of D∆t to a variation of Ωm grows with redshift (see
figure 10) where also the effect of κext becomes more relevant. These two trends combine
together and lead to a biased inference of the posterior of Ωm.

Finally, let us notice that the analysis performed in this appendix informs us on the
bias resulting from assuming the same κext when analyzing a (mock) data set where instead
κext is different for each lens. This is still not the most realistic scenario, since it implies
knowing the distribution of κext for the lenses considered. While the average of κext over
the whole sky must be zero by definition, observed lenses seem to be found preferentially in
overdense regions (see e.g. the discussion in [80] about the six H0LiCOW lenses). Therefore,
the observed κext distribution is not a Gaussian but is positive skewed (see e.g. [48, 75, 81] ).
Kinematic measurements of the lens can be used to reduce the number of possible mass models
for a specific system (as we discussed in section 2), but they carry almost no information
about lens environment: eq. (2.12) is in fact obtained integrating the mass profile up to the
Einstein radius RE [44], typically of the order of the galactic radius (few kpc), while the group
of galaxies interacting with the lens can be extended up to a scale an order of magnitude
greater than RE . Therefore, one has to rely on other methods for the estimation of κext such
as number counts [81] or weak lensing measurements [82] to trace the mass distribution of
the structures around a lens.

Furthermore, the distribution of κext is also related to the assumed lens mass profile i.e.
κext distributions estimated from different mass profiles may slightly differ from one another.
To avoid biased cosmological constraints one has then to average over several mass profiles
in order to obtain an effective distribution for κext (see e.g. [76]).
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Figure 9. Comparison of the constraints on H0, Ωm and κext obtained fitting the Nlens = 100
dataset where each lens system has a different value of κext drawn from a distribution G(0, 0.05).
Yellow contours are obtained using the same errors on time delay and velocity dispersion as in the
original analysis. Red contours use an error where the spread of the κext distribution is included in
the observations error as a systematic contribution. The gray dashed lines correspond to the fiducial
values of the parameters considered in this plot.
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Figure 10. Percentage differences in SLTD for different choices of the matter density Ωm with respect
to our fiducial cosmology. The black lines show the percentage error for the image with the smallest
error with (solid line) and without (dotted line) the inclusion of κext systematic error. As fiducial
here we use the mock dataset of our main analysis i.e. the one where all lenses have the same value
of the external convergence.
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B Constraints on cosmological parameters

In this appendix we show the constraints obtained on all free cosmological parameters when
the Λ-mock is analysed. In table 3 we show the results obtained in the ideal case, when the
nuisance parameters are assumed to be perfectly known, while table 4 shows the constraints
in the realistic case, where also the κext, rani and γ′ are free. In these tables, for each
parameter, we show the results obtained assuming different DE models, i.e. ΛCDM, wCDM
and w0waCDM.

Parameter DE model 10 lenses 100 lenses 1000 lenses

ΛCDM 0.304+0.069
−0.085 0.296± 0.027 0.2949± 0.0086

Ωm wCDM 0.37+0.12
−0.10 0.305+0.037

−0.042 0.296± 0.012

w0waCDM 0.425+0.12
−0.083 0.322± 0.053 0.294+0.022

−0.020

ΛCDM 67.16+0.70
−0.41 67.28+0.21

−0.17 67.299+0.063
−0.057

H0 wCDM 68.1+2.1
−4.0 67.42+0.51

−0.62 67.31± 0.18

w0waCDM 68.3+3.0
−3.8 66.9+1.4

−1.2 67.33+0.52
−0.47

ΛCDM − − −
w0 wCDM −1.30+0.47

−0.10 −1.021+0.073
−0.046 −1.002+0.020

−0.018

w0waCDM −1.19+0.74
−0.21 −0.94+0.15

−0.19 −1.001+0.045
−0.063

ΛCDM − − −
wa wCDM − − −

w0waCDM −1.1+1.8
−1.3 −0.43+1.0

−0.79 0.02± 0.34

Table 3. Mean marginalized values and their 68% confidence level bounds for the three DE model
considered. We show here the results for the ideal case for 10, 100 and 1000 lenses.
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Parameter DE model 10 lenses 100 lenses 1000 lenses

ΛCDM 0.292+0.11
−0.096 0.293± 0.035 0.295± 0.011

Ωm wCDM 0.401+0.15
−0.091 0.327± 0.075 0.299± 0.027

w0waCDM 0.460+0.13
−0.065 0.388+0.11

−0.084 0.304± 0.042

ΛCDM 67.3+2.3
−2.7 67.5+1.1

−2.1 67.26+0.43
−1.5

H0 wCDM 70.8+3.6
−5.4 68.3+2.1

−2.8 67.51+0.77
−1.9

w0waCDM 71.1+4.4
−5.8 68.2+2.2

−2.8 67.48+0.82
−1.8

ΛCDM − − −
w0 wCDM −1.44+0.62

−0.20 −1.07+0.15
−0.050 −1.007+0.036

−0.024

w0waCDM −1.41+0.89
−0.37 −0.96± 0.23 −0.997+0.050

−0.064

ΛCDM − − −
wa wCDM − − −

w0waCDM −1.2+1.9
−1.6 −0.93+1.7

−0.64 −0.07+0.46
−0.33

ΛCDM −0.001± 0.041 −0.001+0.023
−0.032 −0.0040+0.0092

−0.023

κext wCDM 0.017± 0.041 0.006± 0.034 −0.001+0.011
−0.027

w0waCDM 0.023± 0.040 0.011± 0.030 −0.001+0.013
−0.025

ΛCDM > 3.06 > 3.45 4.1± 1.5

rani wCDM > 3.46 > 3.33 4.2± 1.4

w0waCDM > 3.57 > 3.55 4.2+1.9
−1.3

Table 4. Mean marginalized values and their 68% confidence level bounds for the three DE model
considered. We show here the results for the realistic case for 10, 100 and 1000 lenses.
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