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1 Introduction

Quantum features of the macroscopic systems always attract a lot of interest and give rise

to new unexpected phenomena which can in many cases lead to the development of use-

ful quantum devices. The examples are superconductors, light-emitting diodes, quantum

computers, etc. The development of the latter ones addresses among others the interest-

ing problem of quantum non-equilibrium dynamics, which can demonstrate quite unusual

features.

The prominent example of the substantially quantum non-equilibrium behavior is the

effect called orthogonality catastrophe (OC). Using the fundamental features of the weakly

coupled quantum many-electron systems one can show that the response of such a system

to the sudden introduction of the local impurity behave as a power law in time, which

furthermore leads to the appearance of the power-law edge singularities in the X-ray ab-

sorption spectra [1]. This particular problem has recently gained more interest since the

corresponding weakly interacting fermionic systems can now be realized with the cold atoms

setups [2, 3].

The standard treatment of the orthogonality catastrophe relies on the assumption that

the fermionic degrees of freedom of the system (quasiparticles) can be described as a nearly

free Fermi gas. The natural question arises therefore whether the similar phenomenon can

be seen in the strongly correlated electronic systems, where the quasiparticle description

in unavailable. A particular examples of such systems are srange metallic state of high

temperature superconductors, or, as we focus on in this paper, the half filled state of

graphene, which can be viewed as a system of strongly interacting Dirac fermions at charge
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neutrality point [4]. In order to address this question we invoke the AdS/CFT duality [5–7]

(holography) which fundamentally relates the strongly coupled quantum field theory (an

exact opposite to the nearly-free Fermi gas) to the classical gravity in a curved spacetime

with one extra dimension. In holographic framework the system of strongly correlated

electrons at charge neutrality point in 2+1 dimensions at finite temperature is equivalent to

the Schwarzschild black hole the 3+1 dimensional Anti-de-Sitter spacetime.1 The horizon

radius of the black hole is controlled by the temperature of the strongly correlated theory.

In this work we start the investigation of the orthogonality catastrophe in strongly

correlated quantum systems by first addressing the basic problem of the non-equilibrium

evolution of the charge neutral model after a local quench in the chemical potential. At time

t = 0 the local deformation in the spatial profile of the chemical potential is created. This

corresponds roughly to the X-ray absorption experiment, when the core hole is created and

therefore the electrons in the conduction band feel the defect in the background potential.

The present work, while being focused on a quite simple holographic setup, is relevant to

the existing studies of X-ray anomaly in charge neutral graphene [8].

The non-equilibrium dynamics in the holographic framework is a well developed sub-

ject (see [9] for a recent review). Unlike quantum systems, the real time evolution of the

dual gravitational model is relatively easy to address and some important results can be

even obtained in exact analytic form. The global homogeneous quenches in the context of

condensed matter applications have been studied in [10] and the non-homogeneous stochas-

tic deformations were addressed in [11]. The evolution due to global quench of the chemical

potential has been studied in [12, 13]. The static configurations with a point-like defor-

mation of the chemical potential have been constructed in [14]. The holographic models

for the pump-probe experiments, closely related to the OC, have been explored in [15–17].

Clearly the holographic technology provides all the tools to address our problem. The extra

technical novelty in our work in particular is the usage of the spherical coordinates on the

boundary, which proves to be especially convenient in case of point-like excitation.

We will focus on the simplest case when the perturbation of the chemical potential is

small to the extent that the backreaction on the metric can be neglected and the problem

reduces to the study of non-equilibrium dynamics of the U(1) gauge field in the background

of AdS-Schwarzschild black hole. The convenient advantage of the holographic framework

is that one can study the time evolution problems at finite temperature by directly solving

the classical hyperbolic equations of motion.

As mentioned above the characteristic feature of the OC is the power law approach

to equilibrium state at late times after the quench. We study the different cases, changing

the timescale at which the defect in the chemical potential develops. We observe that

the adiabatic evolution, when the system follows the slow development of the defect, gets

substituted by the exponential relaxation, in case of the fast quench, when the quasinormal

modes (QNMs) of the system get excited. The transition between the two regimes happens

roughly at the scale of the lowest QNM frequency, which is controlled by the temperature.

1In case of finite background chemical potential the corresponding black hole would be the charged

Reissner-Nordström one.
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In the particular example under consideration we do not observe the power law relaxation,

which is characteristic to the OC. Quite interestingly, this observation is in line of the

recent results of [18], where the exponential OC has been reported for quantum many-

body localized systems. In the case presented here we attribute the exponential behavior

to the effective linear structure of the equations of motion, which don’t include gravity.

However it is also especially interesting to figure out how this feature gets affected in the

holographic systems at finite chemical potential, where the backreaction can not be omitted

and the full nonlinear dynamics can be triggered.

The paper is organized as follows. In section 2 we outline the holographic setup, then

we discuss the non-equilibrium evolution after a local quench in section 3. In section 4

we compute the spectrum of cylindrical quasinormal modes, which govern the late time

evolution of the system in case of the fast quench. Finally, we conclude and discuss the

future directions in section 5. The two appendices are devoted to the details of the numer-

ical method of lines and the calculation of the quasinormal mode spectrum with numerical

shooting method.

2 Holographic model

In this work we focus on the simplest setup with the strongly interacting electrons in 2+1

dimensions at vanishing chemical potential. In the holographic framework this system is de-

scribed via the Schwarzschild black hole in 3+1 dimensional curved AdS spacetime. In what

follows we will adopt the polar coordinates on the boundary (ρ,φ) therefore the metric reads

ds2 =
L2

z2

(
−f(z)dt2 +

dz2

f(z)
+ dρ2 + ρ2dφ2

)
, (2.1)

f(z) =

(
1− z3

z3h

)
, Aµ(z) = 0. (2.2)

where Aµ is a gauge field dual to the U(1) conserved charge of the fermion particle number,

the AdS boundary is located at z = 0 and the black hole horizon is located at z = zh.

L is the AdS curvature radius which can be set to unity by means of conformal symme-

try. The above metric is a solution to the classical equations of motion following from the

Einstein-Maxwell action

S =

∫
√
g

[
R− 2Λ− 1

4
F 2

]
, (2.3)

where F = dA is the U(1) gauge field strength tensor, R — the Ricci scalar and Λ = −3/L2

— cosmological constant.

As usual in holography [19], the chemical potential µ and charge density ρ are related to

the leading and subleading terms of the temporal gauge field component near the boundary

of AdS (in what folows we denote the boundary field theory quantities with boldface):

At(z)
∣∣
z→0

= µ+ ρz. (2.4)

In the same fashion the radial current is related to the subleading term of the radial gauge

field component

Aρ(z)
∣∣
z→0

= Jρz. (2.5)
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Figure 1. The profile of the perturbation in the chemical potential (3.1). Left — radial profile

given the characteristic size ρ0 = 1 zh = 0.25T−1 (shown by a gridline). Right — temporal profile

of the fast quench τ0 = 0.5 zh = 0.12T−1 (shown by a gridline).

In what follows we will be studying the time- and space-resolved profiles of ρ(t, r) and

Jρ(t, r) when the local excitation in µ(t, r) is created. Finally, the temperature of the field

theory is controlled by the black hole horizon and is simply [20]:

T =
3

4πzh
. (2.6)

We will use the units of temperature in order to measure the dimensionful quantities.

3 Evolution after a local quench

We are mostly interested in studying the non-equilibrium dynamics of the system (2.1) after

a local quench in the profile of the chemical potential. We consider the local spherically-

symetric perturbation with the Gaussian profile of the characteristic size ρ0 which turns

on at the moment t = 0 and reaches the amplitude δµ at characteristic time τ0.

µ(t, ρ) = −δµ · e−
1
2

(
ρ
ρ0

)2

· θ(t) tanh

(
t

τ0

)
. (3.1)

In order to be able to treat this perturbation as local, but at the same time keeping it

accessible to the numerical simulations, we chose the size to be reasonably small

ρ0 = 1zh ≈ 0.25T−1. (3.2)

We will keep τ0 as the tunable parameter and explore the behavior of the system in the

different regimes when the quench is “fast”, τ0 � 1 · zh or “slow”, τ0 � 1 · zh.

Our task therefore is to study the time-evolution of the system (2.3) with the gauge field

subject to the boundary condition (3.1) according to (2.4). In order to describe the causal

time-evolution we have to keep the infalling boundary condition at the black hole horizon.

This is most straightforwardly done by choosing the generalized Eddington-Finkelshtein

(EF) coordinates [21]: {v, z, r, φ}, where the time coordinate is replaced by

v = t− z∗, dz∗ = dzf(z)−1. (3.3)
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In these coordinates the geodesics with constant v correspond to the infalling waves,

therefore the necessary horizon boundary condition reduces to the requirement of the reg-

ularity of solution in the EF coordinates (3.3). The metric takes the form

ds2 =
1

z2
(
−f(z)dv2 − 2dvdz + dρ2 + ρ2dφ2

)
, (3.4)

Given that at z → 0 it follows from (3.3) that z∗ ∼ z, at the AdS boundary the new

coordinate v equals boundary time-coordinate

v
∣∣
z→0

= t, (3.5)

Therefore in the EF coordinates (3.3) one can directly use the boundary condition for

At (3.1) replacing t by v. The z-derivative of fields depending on coordinate v(t, z) is,

however, modified (see appendix C).

In this work we assume the amplitude of the perturbation to be small δµ � z−1h .

This allows us to linearize the equations of motion coming from (2.3) and neglect the

backreaction of the gauge field to the metric. Let’s study the spherically symmetric and

time-dependent ansatz for the perturbed fields:

A = At(v, ρ, z)dt+Aρ(v, ρ, z)dρ+Az(v, ρ, z) (3.6)

Keeping the arbitrary gauge we can recast the equations of motion in terms of the gauge

invariant variables (these are just the components of fields strength Fµν(t, ρ, z) in the

original coordinates with extra normalization, which we will comment below)

Fρt ≡ ∂ρAt − ∂vAρ, Fzt ≡ ∂zAt − f(z)−1∂vAt − ∂vAz, (3.7)

Fzρ ≡
1

f(z)

(
∂zAρ − f(z)−1∂vAρ − ∂ρAz

)
(3.8)

Note that the identity holds

∂v∂ρFzt = f(z)−1∂2vFzρ +
(
∂z − f(z)−1∂v

)
∂vFρt. (3.9)

The equations of motion on the background of the metric (2.1) in EF coordinates read

f(z)
(
∂z − f(z)−1∂v

)
Fzt +

(
∂ρ +

1

ρ

)
Fρt = 0 (3.10)

f(z)
(
∂z − f(z)−1∂v

)
Fzρ + ∂vFρt = 0 (3.11)(

∂ρ +
1

ρ

)
Fzρ − ∂vFzt = 0 (3.12)

The ∂v derivative of the (3.10) is a linear combination of the derivatives of the other

two equations, so provided (3.10) is satisfied at t = 0, it is enough for us to solve (3.11)

and (3.12).

We can act with
(
∂z − f(z)−1∂v

)
on (3.11) and with ∂ρ on (3.12). Then after taking

into account the identity (3.9), we can eliminate the second derivatives in v. This allows

us to derive a single evolution equation on Fzρ.(
∂2ρ +

1

ρ
∂ρ −

1

ρ2

)
Fzρ + f(z)∂2zFzρ + f ′(z)∂zFzρ − 2∂v∂zFzρ = 0 (3.13)
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In what follows we solve the evolution equation (3.13) subject to the time-dependent

boundary condition for At, which is set by the perturbation of the chemical potential (3.1).

First of all, we figure out how this boundary condition translates to Fzρ. For this purpose

it is most convenient to use equation (3.11), which, given the definition of Fρt (3.7) reduces

to the Robin boundary condition on Fzρ at z = 0

z = 0 : (∂z − ∂v)Fzρ = −∂v∂ρµ(v, ρ) (3.14)

The boundary conditions at ρ = 0 and ρ → ∞ are set by the generic symmetry structure

of the polar coordinates and the requirement that the solution should approach the profile

of the neutral Schwarzschild black hole (2.1) at infinity

ρ = 0 : Fzρ(v, 0, z) = 0, ρ→∞ : Fzρ(v, ρ, z)→ 0. (3.15)

In the end of the day, as discussed above, we require regularity of solution at the horizon.

The asymptotic analysis of the master equation (3.13) at z = 1 shows that, thanks to the

extra factor of f(z) introduced in (3.8), the function Fzρ(v, 0, z) is finite and satisfies the

Robin boundary condition in z:

z = zh : Fzρ(v, ρ, 1) = finite,

2 ∂v∂zFzρ + 3 ∂zFzρ =

(
∂2ρ +

1

ρ
∂ρ +

1

ρ2

)
Fzρ. (3.16)

The evolution equation (3.13) with the boundary conditions (3.14), (3.15), (3.16) can

be solved numerically by applying the “method of lines” (see appendix A).

Once we obtain the solution at all times, we can extract the time-dependent values

of the observables using the asymptotic formulae (2.4) and (2.5). Note that since the

time coordinates v and t are identical at the boundary, we directly get the observables in

terms of t. The appropriate z-derivatives are already incorporated in the gauge invariant

functions Fzρ and Fzt (3.8), (3.7), which we are solving for: the value of the observable

current is exactly the boundary value of the field Fzρ:

Jρ(t, ρ) = Fzρ(v, ρ, z)
∣∣
v=t,z=0

(3.17)

Similarly the value of the observable charge density is ρ(t, ρ) = Fzt(v, ρ, z)
∣∣
v=t,z=0

. It

can be obtained from the equation (3.12), which on the boundary simply turns into the

continuity equation:

∂tρ(t, ρ) =

(
∂ρ +

1

ρ

)
Jρ(t, ρ). (3.18)

In what follows we obtain the value of the charge density by integrating (3.18) along the

whole evolution.

If we consider the slow rise of the perturbation potential, ensuring that its characteristic

timescale τ is long enough for the system to assume the local equilibrium at any given

moment, we expect to observe the adiabatic evolution. Indeed, in case of the slow quench

τ = 10zh = 2.4T−1 we see that all the observables change with the same rate as the

– 6 –
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Figure 2. Slow quench τ0 = 10zh ≈ 2.4T−1. Left: the profile of the radial current depending on

time t. No propagating waves are seen. Right: the time-dependence of the local chemical potential

and charge density at ρ = 0 and the current density at ρ ∼ ρ0 ≈ 0.25T−1 (characteristic radius of

the initial quench, shown by red gridline on the left).

quench itself, see figure 2. And the timescale is set by τ0. The system undergoes a

sequence of quasi-equilibrium states with the constant ratio between the charge density

and the chemical potential (blue and yellow curves on the right panel of figure 2). The

slow quench truly realizes the adiabatic process.

In case of the fast quench (τ0 = 0.5zh = 0.12T−1), shown on figure 3, the situation is

substantially different. Now the timescale of the relaxation of the system is much larger

then τ0 and is set by the internal dynamics. The charge density now lags behind the

evolution of the chemical potential (see the time profiles on the right panel of figure 3),

while eventually arriving to the same static state at late times.2 Note also that the radial

current profile is order of magnitude larger then that in case of the slow quench. The

spatial spread of the excitation is also going beyond the size of the initial quench: the

expanding current density wave is visible on the left panel of figure 3, which was absent

in the case of the slow quench. All these features point out that the system is far from

equilibrium and the relaxation process is governed by the internal dynamics, independent

of the precise profile of the quench.

4 Spherical quasinormal modes

The internal time dynamics of the system, which governs the relaxation after the fast

quench on figure 3, can be studied by means of the quasinormal modes (QNM) spectrum

analysis. The QNMs have finite negative imaginary part due to the absorption by the

horizon, which is controlled by the temperature of the system. The spectrum of QNM can

2The match between the end values of the charge density in cases of slow and fast quenches serves as a

good check of our numerical procedure, since the value of charge density is obtained as an integral over the

whole evolution (3.18).
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Figure 3. Fast quench τ = 0.5zh = 0.12T−1. Left: the profile of the radial current depending

on time t. The expanding wave of the current at t � τ is visible. Right: the time-dependence of

the local chemical potential and charge density at ρ = 0 and the current density at ρ ≈ 0.25T−1

(shown by red gridline on the left).

be obtained as a solution to the Sturm-Liouville problem for the equations of motion with

trivial boundary condition for the oscillatory modes of the form Aµ ∼ e−iωt. The values of

ω, for which the equations have a nontrivial solution give the spectrum of QNMs [22].

When studying the oscillatory modes we can take advantage of the cylindrical sym-

metry of the problem and express the solution in terms of the Bessel functions. In other

words, we are looking for the spectrum of cylindrical quasinormal modes:

At(t, ρ, z) = at(z)e−iωtJ0(αρ), (4.1)

Aρ(t, ρ, z) = aρ(z)(−i)e−iωtJ1(αρ),

Az(t, ρ, z) = az(z)e−iωtJ0(αρ),

where the spatial scale α plays the role analogous to the wave-vector in plain wave exci-

tations. In this ansatz the radial and time dynamics of the problem decouple completely

and we are left with a system of ODEs:

∂2zat −
α2

f(z)
at + iω∂zaz +

αω

f(z)
aρ = 0, (4.2)

∂2zaρ +
f ′(z)

f(z)
∂zaρ +

ω2

f(z)2
aρ −

αω

f(z)2
at + iα∂zaz +

iαf ′(z)

f(z)
az = 0,(

ω2

f(z)
− α2

)
az + iα∂zaρ −

iω

f(z)
∂zat = 0.

Again, we can use the gauge invariant variables to further simplify the problem [22]:

eρ ≡ −ωaρ + iαat, ez = −iωaz − ∂zat. (4.3)

– 8 –
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The system (4.2) is therefore rewritten in terms of only two functions and decouples. We

end up with

∂2zeρ +
ω2

ω2 − α2f(z)

f ′(z)

f(z)
∂zeρ +

ω2 − α2f(z)

f(z)2
eρ = 0 (4.4)(

α2f(z)− ω2
)
ez + αf(z)∂zeρ = 0.

The first equation here is a master equation and we can extract the spectrum of QNMs from

there. Noteworthy, this equation is exactly the same as the one, which defines the spectrum

of plain wave QNMs of the 4D-AdS-Schwarschild background [23]. It is convenient to setup

the boundary conditions at z → 0 directly on eρ, since this object is related to the radial

component of the electric field and is completely set by the boundary data. Therefore we

simply look for solutions to (4.4) with

eρ|z→0 = 0. (4.5)

On the other hand, the analysis near horizon reveals that the solution is a superposition

of the infalling and outgoing waves, of which we take only the infalling component (note

that unlike previous section, we are not working in EF coordinates here):

eρ|z→zh ∼
(

1− z

zh

)−iωzh/3
. (4.6)

The Sturm-Liouville problem for the ordinary differential equation (4.4) subject to the

boundary conditions (4.5) and (4.6) can be easily analyzed by means of numerical shooting

method, as we describe in more details in appendix B.

For a given “wave-vector” α we obtain a set of values of ωi(α) in the imaginary plane,

for which the nontrivial solution exists. These are shown on figure 4. On the left panel

we show the evolution of the QNMs as α is increased up to 8T . In our scope we observe

the 4 purely imaginary modes, in “long-wavelength” regime, which collide pairwise and

form 2 pairs of oscillatory modes with finite real parts when α grows. This is exactly

the same behavior as the one observed for the plain-wave polar electromagnetic QNMs

in this background in [23]. The mode ω0, shown in green diamonds is associated to the

diffusion of the electric charge in the system and can be obtained from the hydrodynamic

analysis. However the higher modes are specific to the black hole and do not admit the

hydrodynamic description.

When the system undergoes a quench, the quasinormal modes are excited and further

relaxation is controlled by the decay of these modes (with the timescale set by their imag-

inary part). In case of the Gaussian spatial profile of the quench, the QNMs with different

α’s are excited, according to the spectral representation of the Gaussian with Bessel func-

tions, the more localized is the quench — the more modes are included. The distribution

of all possible excited modes is shown on the right panel of figure 4. We see two branches

of the oscillatory modes, with imaginary positions in intervals Im(ω) ∈ (−3T ,−1T ) for

ω̃0, ω̃1 and Im(ω) ∈ (−15T ,−8T ) for ω̃2, ω̃3, for a wide range of the radial scale parameter

α ∈ (0, 32T ). One can see, that apart from the diffusion mode (green), the slowest decay

– 9 –
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Figure 4. Cylindrical quasinormal modes of the Schwarzschild black hole (2.1). Left panel: real and

imaginary parts as functions of the radial scale parameter α, (4.1). Right panel: QNM positions on

the complex ω plane for all radial scale parameters α ∈ (0, 32)T overlaid. The evolution of 4 modes

is visible, going from purely decaying Re(ωi) = 0 to oscillatory pairs Re(ω̃i) 6= 0. The mode ω0 can

be identified with the hydrodynamic charge diffusion, while the others are non-hydrodynamical.

Purple diamonds on the left panel show the parameters of the modes extracted from late time

analysis, see table 1.

rate of the oscillating modes (yellow) saturates at around ≈ 2.T . Therefore one expects

most of the excited modes to decay at this rate and indeed this agrees with the observed

decay time of the peak on figure 3 is

τmain peak decay ≈ 0.5T−1 ≈ Im[ω̃1]
−1. (4.7)

The structure of the excited quasinormal modes also controls the expanding spread of the

current wave, which is seen for the fast quench: the spatial structure of the response, like

the temporal one, is not defined by the features of the quench, but rather by the radial

scale parameter α of the excited quasinormal mode.

We can capture the contribution of the quasinormal modes in the late time decay of

the signal more precisely by expanding the dynamical evolution after the fast quench of the

previous section in a spectrum of Bessel functions. In particular, at every given moment

t we perform a Hankel transform of the spatial profile of the current (note that according

to (4.1) the expansion the expansion goes in the Bessel functions of rank 1):

J(α, t) ≡
∞∫
0

dρρJ1(ρα)J(ρ, t). (4.8)

The resulting spectrum is depicted on the left panel of figure 5. First of all, we see that

the initial spectrum is precisely the one associated with the Gaussian quench profile (3.1)

with maximum at α = 1/ρ0 ≈ 4T . We also see that the modes with α > 2T decay

relatively quickly and oscillate around zero, as expected from the behavior of oscillating
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Figure 5. Late time relaxation analysis after the fast quench. Left panel: time evolution of the

Bessel spectrum. The modes with α > 2 decay faster and oscillate, while the modes with α < 2

decay slower in pure exponential fashion. This is in qualitative agreement with the spectrum of

QNMs, figure 4. Right panel: decay of the selected Bessel modes, shown by grid lines on the left

panel. The exponential slope and periodic oscillations are clearly visible on the logarithmic scale.

The fits listed in table 1 agree quantitatively with the spectrum of QNMs, figure 4.

Bessel mode (α) Exponential slope Half-Period extracted QNM

1.46 -0.586 ∞ 0.00 - I 0.59

4.19 -2.37 0.79 3.96 - I 2.37

6.91 -2.26 0.45 6.92 - I 2.26

Table 1. The parameters of the QNMs extracted from the late time analysis of the Bessel spectrum

after the fast quench. The imaginary part of the QNM is measured from the exponential slope

visible on the log-scale plot, figure 5, right panel. The real part is evaluated from the half period

of oscillations Re[ω] = π
λ/2 . All values in units of temperature T .

QNMs ω̃0, ω̃1. However at α < 2T the decay is much slower and no oscillations are present:

this is the part of the spectrum dominated by diffusion mode ω0. This result is in perfect

qualitative agreement with the spectrum of figure 4.

From the late time fall off of these Bessel spectral modes we can actually independently

extract the parameters of the lowest lying QNMs, which provides an excellent cross-check

of our analysis. Indeed, the evolution of the selected set of the Bessel modes with α =

{1.5, 4.2, 7}T is shown on the right panel of figure 5 in logarithmic scale. One can clearly see

the exponential fall off of the diffusion mode at α = 1.5T and the exponentially decaying

oscillations for the higher Bessel harmonics. From the slopes and the period of zeros of

these curves we can extract both real and imaginary parts of the corresponding QNMs, see

table 1, which turn out to be in excellent agreement with the computed QNM spectrum,

see purple diamonds on the left panel of figure 4.

In the end of the day the result of our analysis shows that the relaxation after the fast

local quench is indeed very well captured by the spherical quasinormal modes. Importantly,
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according to (4.1), the relaxation of these modes is always exponential. The modes with

finite real part correspond to the exponentially decaying oscillations. The quasinormal

modes do not lead to the power law time tails, which would be expected for the conventional

orthogonality catastrophe-like behavior.

5 Conclusion

In this work we consider the non-equilibrium evolution of the charge symmetric (chemical

potential is zero) system of strongly correlated electrons after the local change in the

chemical potential. This is a model problem for the X-ray spectrometry experiment, which

in case of the weakly coupled electrons demonstrates the interesting quantum phenomenon

of the X-ray edge anomaly. Our charge symmetric setup may correspond to the dynamics of

graphene at half filling, which can be understood as a strongly correlated liquid of emergent

relativistic degrees of freedom. We use the holographic duality to describe the system and

we work in the probe approximation, neglecting the backreaction of the gauge field profile

on the geometry.

In the simple setup under consideration we observe that the dynamics of the system,

even far from equilibrium, is described by the linear equation of motion (3.13). In this

case the spectrum of quasinormal modes gives an exact representation of the possible non-

equilibrium solutions. The internal time-scale of the QNM relaxation τdecay, which is set

by the temperature, allows one to distinguish between the two characteristic types of the

evolution after a local quench. If the quench is slow and the defect develops at the time-

scales longer then the equilibration time τdecay, the dynamics is adiabatic. On the other

hand, when the quench is fast, the QNMs are excited and the relaxation dynamics has an

oscillatory behavior with expanding waves of current.

In the present study we develop several techniques and approaches which will be useful

in the future investigations: the evolution equation in terms of gauge invariant quantities,

the method of lines for the integration of the gauge field evolution equations and the spher-

ically symmetric setup suitable for treatment of the local defects and corresponding QNMs.

We do not find a regime with the power law relaxation pattern, which would be similar

to the pattern of the orthogonality catastrophe. This finding, although its nature its quite

easy to understand from the holographic standpoint, may serve as an indirect evidence

for the exponential orthogonality catastrophe in the charge neutral graphene and many

body localized systems, studied previously in [8, 18]. On the other hand, it certainly

calls for future investigations, including the systems at finite charge density. The obvious

next step is to consider the Reissner-Nordström background and include the coupling of

the perturbations to the metric fields. In this setup the zero temperature limit can also

be studied, where the branch cuts may appear in the QNM spectrum, breaking down the

exponential behavior. Further on, inclusion of the full backreaction will make the evolution

equations nonlinear and will allow for the solutions which are not representable by the linear

combination of the QNMs. The other possible generalization is to include the features of

the finite N by making use of the Gauss-Bonet gravitational setups.

– 12 –



J
H
E
P
0
6
(
2
0
2
0
)
0
5
1

This work serves as a proof of principle that the holographic duality provides an ad-

equate tool for treating the time-evolution problems in the system of strongly correlated

electrons and has its advantages as compared to the adiabatic perturbation theory and the

Schwinger-Keldysh approach.
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A Method of lines

The numerical “method of lines” allows one to solve the evolution differential equations with

partial derivatives (PDEs), which describe the non-equilibrium dynamics of the system with

a local defect (3.13). One introduces the calculation grid {ρi, zj} in the spatial part of the

integration region and represents the derivatives as finite differences of the functional values

on this grid. After the discretization of the spatial directions the differential equation (3.13)

is represented by the set of ×Nρ×Nz ordinary differential equations with only dependence

on the “temporal” coordinate v on the functions

F ijzρ(v) ≡ Fzρ(v, ρi, zj) (A.1)

and their derivatives in v. More concretely, the differential operators of (3.13) can now be

represented as the matrix operators acting on the fields F ijzρ(v) and their time derivatives

O1∂v ~Fzρ +O2
~Fzρ = 0 (A.2)

With ~Fzρ ≡ (F11
zρ . . .F

NρNz
zρ ) and the matrices O1 and O2 are the grid-discretized

versions of the differential operators

O1 ≡ [−2∂z] , O2 ≡
[
∂2ρ +

1

ρ
∂ρ −

1

ρ2
+ f(z)∂2z + f ′(z)∂z

]
(A.3)

In the end of the day one applies Runge-Kutta time evolution to system of equations (A.2)

in order to obtain the time dependent profile of the field at each point of the spatial grid.

Before we turn to the numerical solution of the equations of motion (3.13), we introduce

the compact spatial coordinate (see figure 6)

x ≡ 2

π
arctan

(
ρ

c

)
, (A.4)
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Figure 6. The relation between the radial coordinate ρ and the finite one x, which we use in the

numerical simulation (A.4), c = 0.95T−1.

with the arbitrary parameter c, for which we use the value c ≈ 0.95T−1, which allows us

to resolve the local quench profile (3.1) in what follows. This coordinate transformation

brings the infinite integration region in the radial coordinate ρ ∈ [0,∞) into the unit interval

x ∈ [0, 1). We also rescale the holographic coordinate z with horizon radius. Therefore, in

the new coordinates the full integration region for the numerical problem is a unit square:

[0, 1)x × (0, 1]z.

In the problem under consideration we use the pseudospectral collocation method to

represent the partial derivatives on the 2-dimensional grid of the size 31x×24z. It is worth

mentioning here that unlike similar calculations which were done in periodic lattices, we set

4 boundary conditions at all 4 boundaries of the integration region. We also introduce the

Chebyshev descrete latices in both directions. We use the differentiation matrices in order

to create the matrix operators (A.3) discussed in i.e. [24, 25] and implement the boundary

conditions in the linear differential operators themselves, as discussed in [26]. We integrate

the resulting linear system of time dependent ODEs using the standard evolution solver

NDSolve in Wolfram Mathematica [27], the built in method "EquationSimplification"

-> "Residual" proves to be useful.

B Quasinormal modes

In order to study the spectrum of quasinormal modes, we need to find the values of ω, for

which the nontrivial solutions to the master equation (4.2) exist. Since it is a linear ordinary

differential equation, the shooting method used in [28–30] suits the problem very well.

We first factor out the oscillatory infalling wave (4.6)

ẽρ(z) ≡
(

1− z

zh

)iωzh/3
eρ(z). (B.1)

Then expand the solution near the boundary (at z = δzb) and the horizon (at z = zh−δzh)

up to the 10-th order in zh ∼ 10−2 and zb ∼ 10−2. The expansion on the boundary depends

on the two free parameters (a0, a1), of which the leading one, the source, we set to zero.

At the horizon there is only one free parameter b, since the linearly independent outgoing
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branch of the solution has been excluded by the choice of the near horizon scaling (4.6).

Using the obtained expansions we set the boundary conditions for the shooting procedure

at the boundary

ẽboundaryρ (δzb) = a1 δzb −
1

3
iωa1 δz

2
b + . . . ,

∂z ẽρ(δzb) = a1 −
2

3
iωa1 δzb + . . . .

and at the horizon

ẽhorizonρ (zh − δzh) = b+ b
(3− 2iω)ω2 + 2iα2(3i+ ω)

3ω(3i+ 2ω)
δzh + . . . ,

∂z ẽ
horizon
ρ (zh − δzh) = −b(3− 2iω)ω2 + 2iα2(3i+ ω)

3ω(3i+ 2ω)
+ . . . .

Since the boundary value problem is overdetermined, there will be only descrete set of

values ωi(α), for which the two solutions, originating from the boundary and the horizon

could be smoothly connected at arbitrary point inside the interval z0 ∈ (δzb, zh − δzh):

∂z ẽ
horizon
ρ (z0)

ẽhorizonρ (z0)
=
∂z ẽ

boundary
ρ (z0)

ẽboundaryρ (z0)
, ∀z0. (B.2)

In practice, for every value of α we check the matching relation (B.2) in the range of

complex values of ω and choose those were the relation holds for several values of z0 (there

are occasional cases when matching happens at particular value of z0 only, and these must

be excluded).

C Eddington-Finkelstein coordinates

In order to make a transition from initial coordinates (t, z) to Eddington-Finkelstein (v, z′)

we use the following rules.

v(t, z) = t−
∫
dzf(z)−1, (C.1)

z′(t, z) = z

We can now rewrite the equations and functions At, Aρ in terms of the new variables. Note

that we don’t perform a tensor transformation on the vector Aµ

∂tA(v, ρ, z′) =
∂v

∂t
∂vA(v, ρ, z′) +

∂z′

∂t
∂′zA(v, ρ, z′) = ∂vA(v, ρ, z′) (C.2)

∂zA(v, ρ, z′) =
∂v

∂z
∂vA(v, ρ, z′) +

∂z′

∂z
∂z′A(v, ρ, z′) = −f(z)−1∂vA(v, ρ, z′) + ∂z′A(v, ρ, z′)

Similarly

∂2zA(v, ρ, z′) = ∂2z′A(v, ρ, z′)− 2f(z)−1∂z′∂vA(v, ρ, z′) (C.3)

+ f(z)−2∂2vA(v, ρ, z′)− ∂z(f(z)−1)∂vA(v, ρ, z′).
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