# $86-\mathrm{GHz} \mathrm{SiO}$ masers in Galactic centre $\mathrm{OH} / \mathrm{IR}$ stars 

Maria Messineo, ${ }^{1,3, *}$ Lorant O. Sjouwerman, ${ }^{2}$ Harm J. Habing, ${ }^{3}$ and Alain Omont ${ }^{4}$

${ }^{1}$ Key Laboratory for Researches in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui, 230026, China
${ }^{2}$ National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA
${ }^{3}$ Leiden Observatory, PO Box 9513, 2300 RA Leiden, the Netherlands
${ }^{4}$ Institut d'Astrophysique de Paris, CNRS, 98 bis boulevard Arago, 75014 Paris, France
*E-mail: maria.messineo@hotmail.com
Received 2019 October 24; Accepted 2020 April 12


#### Abstract

We present results on a search for $86.243-\mathrm{GHz} \mathrm{SiO}(J=2 \rightarrow 1, v=1)$ maser emission toward $67 \mathrm{OH} / \mathrm{IR}$ stars located near the Galactic centre. We detected 32 spectral peaks, of which 28 correspond to SiO maser lines arising from the envelopes of these $\mathrm{OH} / \mathrm{R}$ stars. In $\mathrm{OH} / \mathrm{IR}$ stars, we obtained an SiO maser detection rate of about $40 \%$. We serendipitously detected two other lines from $\mathrm{OH} / \mathrm{IR}$ stars at $\approx 86.18 \mathrm{GHz}$, which could be due to a CCS-molecule transition at 86.181 GHz or probably to an highly excited OH molecular transition at 86.178 GHz . The detection rate of $86-\mathrm{GHz}$ maser emission is found to be about $60 \%$ for sources with the Midcourse Space Experiment (MSX) $A-E<2.5 \mathrm{mag}$; but it drops to $25 \%$ for the reddest OH/R stars with MSX $A-E$ $>2.5$ mag. This supports the hypothesis by Messineo (2002, A\&A, 393, 115) that the SiO masers are primarily found in relatively thinner circumstellar material.


Key words: circumstellar matter — Galaxy: stellar content —infrared: stars — masers — stars: late-type

## 1 Introduction

At the end of their life, asymptotic giant branch (AGB) stars $\left(\approx 1<M_{*}<\approx 8 M_{\odot}\right)$ enter a phase of intense mass loss at rates of typically $10^{-7}$ to $10^{-4} M_{\odot} \mathrm{yr}^{-1}$ (Herwig 2005). A variety of names are used in literature to indicate thermal pulsing AGB stars, either referring to their pulsation properties (e.g., semiregular, Miras, long-period variables), or to their envelope properties (optically thick or thin envelopes), or masers. Indeed, their circumstellar envelopes can exhibit maser emission (e.g., from $\mathrm{SiO}, \mathrm{H}_{2} \mathrm{O}$, and OH molecules; Habing 1996). SiO maser emission originates close to the stellar photosphere, inside the dust formation zone. $\mathrm{H}_{2} \mathrm{O}$ maser spots form further out, in the
acceleration region, and $1612-\mathrm{MHz} \mathrm{OH}$ masers originate in the cooler part of the envelope where the expanding shell has reached a terminal velocity (known as $V_{\exp }$ ). van der Veen and Habing (1988) and Lewis (1989) analyzed the colors of IRAS sources, and suggested an evolutionary sequence of increasing mass-loss rate and maser occurrence (from SiO , via $\mathrm{H}_{2} \mathrm{O}$, to OH masers) with redder colors. More recently, instead of a sequence of mass-loss rate, Sjouwerman et al. (2009) interprets this sequence to be more likely a shell thickness or shell density estimator. Regardless, the observed sequence indicates an empirical stellar type; it goes from shell-less evolved late-type stars, Mira-type stars with thin shells and silicate features in emission, through optically obscured thick-shell OH/IR stars
with silicate features in absorption, and ends in planetary nebulae. SiO maser transitions are easily detected at 43 GHz $(J=1 \rightarrow 0, v=1$ and $v=2)$ and at $86 \mathrm{GHz}(J=2 \rightarrow 1, v=1)$ toward oxygen-rich AGBs, typically in objects with the silicate feature in emission. The relative strength of the SiO maser lines varies with source type (Mira versus $\mathrm{OH} / \mathrm{IR}$; Lane 1982; Nyman et al. 1986, 1993), suggesting that the SiO maser pumping mechanism strongly depends on massloss rate (shell thickness) and luminosity; individually, line ratios also vary with stellar pulsation phase (Stroh et al. 2018). Note that the classic term "Mira" indicates optically visible long-period variables ( $>\approx 100 \mathrm{~d}$ ) with large amplitudes, while, today, the term "OH/IR star" is often used to indicate optically thick long-period variables (LPVs) with mass-loss rates above $10^{-5} M_{\odot} \mathrm{yr}^{-1}$, independently of masers (e.g., Blommaert et al. 2018; Habing 1996) even though they were discovered and classified because of OH maser emission.

Here, we present spectra of $86-\mathrm{GHz} \mathrm{SiO}$ maser lines of a sample of $67 \mathrm{OH} / \mathrm{IR}$ stars with OH maser emission. The data set was obtained using the IRAM $30-\mathrm{m}$ telescope and the data analysis was carried out in the year 2002. Since the strength and occurrence of masers vary in phase with the infrared stellar pulsation cycle of these longperiod variables, it is valuable to perform and keep track of repeated observations. The main purpose of this communication is to provide an historical record for these detections, as the raw data are not stored in any archive. This dataset was taken to verify the hypothesis made by Messineo et al. (2002) on their color selection of targets for the $86-\mathrm{GHz}$ SiO maser search. The authors selected Mira-like stars with bluer color to avoid genuine OH/IR stars, and any known OH emitter was removed from their list. This avoidance was based on the idea that SiO maser emission was more likely to occur (and perhaps more strongly) in relatively thin-shell Miras than in thick-shell OH/IR stars. Evidence was based, though, on few observations (Messineo et al. 2002 and references therein).

Along with the SiO masers towards $\mathrm{OH} / \mathrm{IR}$ stars, a few other serendipitously detected lines are reported. In section 2 we describe the sample and observations. In section 3, the $86-\mathrm{GHz}$ detections are presented and commented on where appropriate.

## 2 The sample and $\mathbf{8 6 - G H z}$ observations

The list of $67 \mathrm{AGB} \mathrm{OH} / \mathrm{IR}$ stars observed is presented in tables 1 (detections) and 2 (non-detections). This sample of sources comes from the catalogues of OH/IR stars near the Galactic centre (GC) from Lindqvist et al. (1992) (comprising 134 sources), with additional sources from Sjouwerman et al. (1998). These OH/IR stars are among
the brightest and reddest infrared sources and had already been detected with the IRAS mid-infrared satellite (Habing 1996). The targeted $\mathrm{OH} / \mathrm{IR}$ stars were selected on the basis of having ISOGAL measurements at 7 and $15 \mu \mathrm{~m}$ (Ortiz et al. 2002), i.e., they are located in fields observed with ISOCAM on board the ESA/ISO satellite (Omont et al. 2003; Schuller et al. 2003).

At the time of these observations, the sample of $\mathrm{OH} / \mathrm{IR}$ stars by Lindqvist comprised 134 stars concentrated in the central one degree. The sample of bulge + disk $\mathrm{OH} / \mathrm{IR}$ stars from the blind survey of Sevenster et al. (1997, 2001) comprised only about 700 sources $^{1}$. Furthermore, the Lindqvist sample had been re-identified with ISOGAL data. Therefore, due to the stellar density distribution and available data, it was straightforward to compare our comprehensive Mira-like sample towards the inner Galaxy, with a sample of $\mathrm{OH} / \mathrm{IR}$ stars on the Galactic centre.

The observations were carried out with the IRAM $30-\mathrm{m}$ telescope (Pico Veleta, Spain) between 2001 December and 2002 April ( 15 hr awarded to IRAM program 144-01, P.I. Messineo). The observing technique and setup as well as the data reduction and analysis were identical to those described by Messineo et al. (2002). The IRAM pointing coordinates were based on the Deep Near Infrared Survey of the southern sky (DENIS) and typically accurate within $1^{\prime \prime}$ (Epchtein et al. 1994). IRAM telescope pointing errors are typically within $2^{\prime \prime}-4^{\prime \prime}$, while the $86-\mathrm{GHz}$ beam full-width at half-maximum (FWHM) is $29^{\prime \prime}$. Two orthogonal linear polarized receivers were tuned to simultaneously observe the SiO maser line at a rest frequency of 86.24335 GHz $(J=2 \rightarrow 1, v=1)$. The receiver output was combined to obtain total intensity spectra. For each receiver, we used in parallel the low-resolution filter bank ( $3.5 \mathrm{~km} \mathrm{~s}^{-1}$ spectral resolution and $890 \mathrm{~km} \mathrm{~s}^{-1}$ total velocity coverage) and the autocorrelator ( $1.1 \mathrm{~km} \mathrm{~s}^{-1}$ of resolution and $973 \mathrm{~km} \mathrm{~s}^{-1}$ of coverage). Observations were made in wobbler switching mode with a wobbler throw of $100^{\prime \prime}-200^{\prime \prime}$. The individual on-source integration time was set between 12 and 24 minutes per source, depending on the system temperature ( $110-250 \mathrm{~K}$ ). The conversion factor from antenna temperature to flux density is $6.2 \mathrm{Jy} \mathrm{K}^{-1}$.

## 3 Detected lines

In order to measure the emission from the maser lines, a linear baseline was subtracted from the spectra. This was a detection project and the typical signal-to-noise ratio threshold of detection for the expected velocity resolution

[^0]Table 1. Compilation of parameters and aliases of $\mathrm{OH} / \mathrm{IR}$ stars detected at 86 GHz .

|  |  |  |  |  |  |  |  |  |  | - Engels and Bunzel | (2015) - |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID ${ }^{\dagger}$ | $\begin{gathered} \mathrm{RA}^{\ddagger} \\ {[\mathrm{J} 2000.0]} \end{gathered}$ | $\begin{gathered} \text { Dec }^{\ddagger} \\ {[J 2000.0]} \end{gathered}$ | $\begin{gathered} V_{\mathrm{LSR}} \\ {\left[\mathrm{~km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | $\begin{gathered} T_{\mathrm{a}} \\ {[\mathrm{~K}]} \end{gathered}$ | $\begin{gathered} \mathrm{rms} \\ {[\mathrm{~K}]} \end{gathered}$ | $\begin{gathered} \mathrm{A} \\ {\left[\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | $\begin{aligned} & \text { FWHM } \\ & {\left[\mathrm{km} \mathrm{~s}^{-1}\right]} \end{aligned}$ | Obs. date [yymmdd] | Alias1+ | Alias2 | $\begin{gathered} V_{\mathrm{LSR}}{ }^{\\|} \\ {\left[\mathrm{km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | $\begin{gathered} V_{\exp } \\| \\ {\left[\mathrm{km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | Per <br> [d] | $\begin{gathered} \Delta \mathrm{K} \\ {[\mathrm{mag}]} \end{gathered}$ | References ${ }^{\#}$ | Note |
| 1 | 17:44:28.391 | -29:26:33.76 | (414.31) | 0.104 | 0.014 | $0.54 \pm 0.08$ | $11.15 \pm 2.41$ | $\begin{aligned} & 011214 / \\ & 020326 \end{aligned}$ | LI004 | OH359.437-0.051 | -138.20 | 15.30 | .. | .. | 1,3,4 | "SiO"(?) velocity differs from OH |
| 2 | 17:44:34.987 | -29:04:35.47 | $-6.08$ | 0.133 | 0.015 | $0.51 \pm 0.03$ | $3.46 \pm 0.27$ | 020326 | LI033 | OH359.762+00.12 | -5.55 | 14.73 | .. | .. | 1,5 |  |
| 3 | 17:44:39.721 | -29:16:45.88 | -73.43 | 0.085 | 0.021 | $0.23 \pm 0.06$ | $2.43 \pm 0.73$ | 011219 | LI014 | OH359.598+0.000 | -73.75 | 19.05 | 664 | 2.30 | 1,3,4,5 |  |
| 4 | 17:44:46.003 | -29:06:13.61 | -58.23 | 0.047 | 0.013 | $0.17 \pm 0.05$ | $3.75 \pm 1.20$ | 020319 | LI032 | OH359.760+0.072 | -54.90 | 20.60 | 676 | 2.09 | 1,3,4 |  |
| 5 | 17:44:51.262 | -29:09:45.58 | -103.85 | 0.089 | 0.022 | $0.51 \pm 0.12$ | $6.77 \pm 1.99$ | 020319 | LI027 | OH359.719+0.025 | -102.35 | 22.25 | 669 | 1.79 | 1,3,4 |  |
| 6 | 17:44:56.881 | -29:13:25.36 | -148.39 | 0.053 | 0.033 | $0.49 \pm 0.06$ | $7.17 \pm 1.00$ | 020326 | LI022 | OH359.68-0.02 | -149.97 | 21.63 | .. |  | 1,5 |  |
| 7 | 17:45:03.241 | -29:07:12.69 | -26.72 | 0.078 | 0.019 | $0.35 \pm 0.07$ | $5.33 \pm 1.08$ | 020319 | LI038 | OH359.778+0.010 | -27.95 | 21.05 | 572 | 1.19 | 1,3,4,6,7 |  |
| 8 | 17:45:05.333 | -29:17:13.31 | -140.78 | 0.077 | 0.013 | $0.45 \pm 0.10$ | $5.69 \pm 1.71$ | 011221 | LI018 | OH359.640-0.084 | -141.65 | 14.45 | 546 | 0.91 | 1,3,4 |  |
| 9 | 17:45:11.549 | -28:38:37.36 | (154.69) | 0.064 | 0.013 | $0.32 \pm 0.09$ | $3.60 \pm 1.15$ | 020319 | LI101 | OH0.200+0.233 | -67.05 | 15.85 | 825 | 2.43 | 1,3,4,5 | $\begin{gathered} 86.178-\mathrm{GHz} \mathrm{OH} \\ V_{\mathrm{LSR}} \sim-65 \mathrm{~km} \mathrm{~s}^{-1} \end{gathered}$ |
| 10 | 17:45:12.959 | -29:12:54.58 | 28.68 | 0.098 | 0.011 | $0.32 \pm 0.12$ | $3.54 \pm 2.35$ | 011229 | LI026 | OH359.716-0.070 | 29.40 | 22.25 | 691 | 1.94 | 1,3,4 |  |
| 11 | 17:45:13.942 | -28:47:43.22 | 21.07 | 0.055 | 0.009 | $0.20 \pm 0.03$ | $3.36 \pm 0.58$ | 020328 | LI086 | OH008+0.15 | 21.83 | 21.03 | 616 | 2.24 | 1,7 |  |
| 12 | 17:45:13.988 | -29:06:56.30 | -12.60 | 0.069 | 0.015 | $0.23 \pm 0.05$ | $2.98 \pm 0.79$ | 020319 | LI042 | OH359.803-0.021 | -13.45 | 22.40 | 838 | 0.90 | 1,3,4 |  |
| 13 | 17:45:14.303 | -29:07:20.78 | -72.35 | 0.027 | 0.005 | $0.28 \pm 0.05$ | $7.00 \pm 1.28$ | 020328 | Sj004 | OH359.797-0.025 | -71.20 | 19.30 | 547 | 2.01 | 2,5,6,7 |  |
| 14 | 17:45:17.870 | -29:05:53.63 | -53.88 | 0.065 | 0.023 | $0.24 \pm 0.04$ | $3.70 \pm 0.53$ | 020326 | LI047 | OH359.83-0.02 | -52.97 | 20.63 | 660 | 1.56 | 1,5,6,7 |  |
| 15 | 17:45:19.358 | -29:14:05.94 | -28.89 | 0.058 | 0.011 | $0.21 \pm 0.08$ | $3.35 \pm 1.45$ | 011229 | LI025 | OH359.711-0.100 | -32.10 | 19.45 | 686 | 1.38 | 1,3,4,5 |  |
| 16 | 17:45:29.397 | -28:39:35.03 | 62.35 | 0.036 | 0.013 | $0.16 \pm 0.04$ | $4.07 \pm 1.25$ | 020319 | LI104 | OH0.221+0.168 | 61.80 | 19.20 | 697 | 2.48 | 1,3,4,5 |  |
| 17 | 17:45:31.502 | -28:46:22.04 | -53.88 | 0.053 | 0.011 | $0.15 \pm 0.03$ | $2.66 \pm 0.67$ | 020326 | LI091 | OH0.13+0.10 | -52.37 | 11.40 | 458 | .. | 1 |  |
| 18 | 17:45:32.089 | -28:46:19.42 | 43.89 | 0.047 | 0.011 | $0.24 \pm 0.05$ | $5.75 \pm 1.73$ | 020326 | V*V4502Sgr | .. | .. | .. | .. | . |  | In beam of LI091 (\#17) |
| 19 | 17:45:34.833 | -29:06:02.45 | 3.69 | 0.076 | 0.020 | $0.49 \pm 0.08$ | $5.21 \pm 1.05$ | 020319 | LI050 | OH359.855-0.078 | 4.10 | 21.85 | 611 | 1.64 | 1,3,4,6 |  |
| 20 | 17:45:34.833 | -29:06:02.45 | (222.04) | 0.062 | 0.020 | $0.45 \pm 0.10$ | $7.77 \pm 2.13$ | 020319 |  |  | .. | .. | .. | .. | .. | $\begin{aligned} & 86.178-\mathrm{GHz} \mathrm{OH} \\ & V_{\mathrm{LSR}} \sim+2 \mathrm{~km} \mathrm{~s}^{-1} \end{aligned}$ |
| 21 | 17:45:48.497 | -29:10:45.01 | -31.07 | 0.068 | 0.017 | $0.20 \pm 0.05$ | $2.69 \pm 0.94$ | 020319 | LI045 | OH359.814-0.162 | -31.70 | 20.40 | 547 | 1.85 | 1,3,4,6,7 |  |
| 22 | 17:45:56.130 | -28:39:27.00 | 102.55 | 0.056 | 0.013 | $0.21 \pm 0.04$ | $3.56 \pm 0.75$ | 020319 | LI109 | OH0.274+0.086 | 103.00 | 24.40 | 706 | 2.13 | 1,3,4 |  |
| 23 | 17:46:15.001 | -28:44:17.31 | 37.37 | 0.043 | 0.013 | $0.16 \pm 0.19$ | $3.64 \pm 5.39$ | 020319 | LI106 | OH0.241-0.014 | 35.00 | 18.35 | 535 | 0.94 | 1,3,4 |  |
| 24 | 17:46:19.597 | -29:00:41.72 | 8.04 | 0.043 | 0.013 | $0.19 \pm 0.04$ | $4.01 \pm 0.69$ | 020331 | Sj073 | OH0.016-0.171 | 8.20 | 19.30 | 581 | 2.70 | 2,7 |  |
| 25 | 17:46:22.161 | -28:46:22.51 | -109.28 | 0.044 | 0.014 | $0.15 \pm 0.05$ | $4.78 \pm 1.27$ | 020319 | LI105 | OH0.225-0.055 | -106.15 | 16.60 | 525 | 1.52 | 1,3,4,7 |  |
| 26 | 17:46:28.757 | -28:53:19.54 | 41.71 | 0.054 | 0.014 | $0.27 \pm 0.12$ | $4.69 \pm 2.42$ | $\begin{gathered} 020319 / \\ 020328 \end{gathered}$ | LI094 | OH0.138-0.136 | 40.20 | 21.10 | 810 | 1.40 | 1,3,4,5 |  |

Table 1. (Continued)

| ID ${ }^{\dagger}$ | $\begin{gathered} \mathrm{RA}^{\ddagger} \\ {[\mathrm{J} 2000.0]} \end{gathered}$ | $\begin{gathered} \text { Dec }^{\ddagger} \\ {[J 2000.0]} \end{gathered}$ | $\begin{gathered} V_{\mathrm{LSR}} \\ {\left[\mathrm{~km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | $\begin{gathered} T_{\mathrm{a}} \\ {[\mathrm{~K}]} \end{gathered}$ | rms <br> [K] | $\begin{gathered} \mathrm{A} \\ {\left[\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | FWHM <br> $\left[\mathrm{km} \mathrm{s}^{-1}\right]$ | Obs. date [yymmdd] | Alias1+ | - Engels and Bunzel (2015) - |  | $\begin{gathered} V_{\exp ^{\\|}}^{\left[\mathrm{km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | Per <br> [d] | $\begin{gathered} \Delta \mathrm{K} \\ {[\mathrm{mag}]} \end{gathered}$ | References ${ }^{\#}$ | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | Alias2 | $\begin{gathered} V_{\mathrm{LSR}} \\| \\ {\left[\mathrm{km} \mathrm{~s}^{-1}\right]} \end{gathered}$ |  |  |  |  |  |
| 27 | 17:46:31.282 | -28:39:48.49 | 38.45 | 0.095 | 0.015 | $0.39 \pm 0.07$ | $3.89 \pm 0.81$ | 020319 | LI113 | OH0.336-0.027 | 38.00 | 17.00 | 514 | 1.01 | 1,3,4 |  |
| 28 | 17:46:33.150 | -28:45:00.61 | 13.47 | 0.110 | 0.020 | $0.53 \pm 0.08$ | $4.54 \pm 0.71$ | 020319 | LI108 | OH0.265-0.078 | 12.15 | 17.75 | 595 | 1.13 | 1,3,4 |  |
| 29 | 17:46:38.540 | -29:08:03.48 | 146.00 | 0.049 | 0.010 | $0.09 \pm 0.02$ | $1.74 \pm 0.55$ | 020331 | Sj041 | OH359.947-0.294 | 143.90 | 21.10 | .. | .. | 2 |  |
| 30 | 17:47:02.211 | -28:45:55.84 | -10.43 | 0.084 | 0.016 | $0.35 \pm 0.06$ | $4.32 \pm 0.89$ | 020319 | LI110 | OH0.307-0.176 | -8.50 | 20.40 | 657 | 1.56 | 1,3,4 |  |
| 31 | 17:47:21.298 | -28:39:23.26 | 92.77 | 0.038 | 0.014 | $0.23 \pm 0.05$ | $5.54 \pm 1.23$ | 020319 | LI119 | OH0.437-0.179 | 96.20 | 17.60 | 744 | 2.31 | 1,3,4 |  |
| 32 | 17:47:24.052 | -28:32:43.01 | 147.08 | 0.060 | 0.010 | $0.32 \pm 0.04$ | $4.76 \pm 0.68$ | $\begin{aligned} & 011219 / \\ & 020206 \end{aligned}$ | LI127 | OH0.536-0.130 | 146.20 | 23.30 | 669 | 1.48 | 1,3,4 |  |











 detemined at $V_{\mathrm{LSR}}=3.95 \mathrm{~km} \mathrm{~s}^{-1}$ (Lindqvist et al. 1992). In addition to SiO we think we also detect OH in this object; see the next note below.
§ Alias names are taken from Ortiz et al. (2002) and SIMBAD.
${ }^{\|} V_{\text {LSR }}$ and $V_{\exp }$ are from the $1612-\mathrm{MHz} \mathrm{OH}$ measurements and are the average of the measurements listed in the catalog of Engels and Bunzel (2015).

Table 2. Compilation of parameters and aliases of $\mathrm{OH} / \mathrm{IR}$ stars undetected at 86 GHz .

|  |  | - Engels and Bunzel (2015) - |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | $\begin{gathered} \text { RA }^{*} \\ {[J 2000.0]} \end{gathered}$ | $\begin{gathered} \text { Dec* }^{*} \\ {[J 2000.0]} \end{gathered}$ | $\begin{aligned} & \mathrm{rms} \\ & {[\mathrm{~K}]} \end{aligned}$ | Obs. date [yymmdd] | Alias1 ${ }^{\dagger}$ | Alias2 | $\begin{gathered} V_{\mathrm{LSR}}{ }^{\ddagger} \\ {\left[\mathrm{km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | $\begin{gathered} V_{\exp }^{\ddagger} \\ {\left[\mathrm{km} \mathrm{~s}^{-1}\right]} \end{gathered}$ | Per <br> [d] | $\begin{gathered} \Delta \mathrm{K} \\ {[\mathrm{mag}]} \end{gathered}$ | References ${ }^{\text {8 }}$ |
| 33 | 17:43:45.521 | -29:26:16.22 | 0.012 | 020326 | LI001 | OH359.360+00.08 | -211.50 | 12.33 | .. | . | 1 |
| 34 | 17:43:54.019 | -29:25:23.41 | 0.012 | 020326 | LI002 | OH359.388+0.066 | -129.10 | 17.60 | .. | .. | 1 |
| 35 | 17:44:14.988 | -28:45:05.98 | 0.018 | 020326 | LI076 | OH000.000+00.35 | 124.03 | 9.40 | 477 | 1.06 | 1,3,5 |
| 36 | 17:44:34.541 | -29:10:37.17 | 0.018 | 011221 | LI021 | OH359.68+0.07 | -24.50 | 18.67 | 698 | 2.05 | 1,3,4,5 |
| 37 | 17:44:44.462 | -29:05:38.29 | 0.013 | 020319 | LI035 | OH359.765 +0.082 | 110.95 | 17.60 | 552 | 2.22 | 1,3,4,5 |
| 38 | 17:44:47.983 | -29:06:49.82 | 0.014 | 020319 | LI031 | OH359.755+0.061 | 37.90 | 18.75 | .. |  | 1,3,4,5 |
| 39 | 17:44:54.199 | -29:13:44.94 | 0.018 | 011221 | LI020 | OH359.669-0.019 | -83.80 | 17.50 | 481 | 1.01 | 1,3,4,5 |
| 40 | 17:44:57.779 | -29:20:42.50 | 0.015 | 011219 | LI012 | OH359.576-0.091 | -55.50 | 18.60 | 672 | 2.94 | 1,3,4,5 |
| 41 | 17:45:01.740 | -29:02:49.99 | 0.022 | 020401 | Sj011 | OH359.838+0.052 | -68.20 | 12.30 | 444 | 0.85 | 2,5,6 |
| 42 | 17:45:06.992 | -29:03:34.16 | 0.014 | 020319 | LI048 | OH359.837+0.030 | -75.35 | 7.95 | 399 | 1.07 | 1,3,4,5,6,7 |
| 43 | 17:45:10.467 | -29:18:11.77 | 0.017 | 011219 | LI017 | OH359.636-0.108 | -138.05 | 22.30 | 847 | 2.73 | 1,3,4 |
| 44 | 17:45:12.480 | -28:40:44.11 | 0.014 | 020319 | LI096 | $\mathrm{OH} 0.173+0.211$ | 46.40 | 17.05 | 514 | 1.57 | 1,3,4,5 |
| 45 | 17:45:13.109 | -29:09:36.19 | 0.014 | 011214 | LI034 | OH359.763-0.042 | 120.30 | 13.90 | 457 | 1.24 | 1,3,4,6 |
| 46 | 17:45:13.890 | -29:15:28.55 | 0.017 | 020319 | LI023 | OH359.681-0.095 | -98.85 | 19.45 | 759 | 2.95 | 1,3,4 |
| 47 | 17:45:16.460 | -29:15:37.55 | 0.010 | 020206 | LI024 | OH359.684-0.104 | -59.35 | 16.85 | 535 | 1.26 | 1,3,4 |
| 48 | 17:45:18.119 | -29:18:04.03 | 0.017 | 011221 | LI019 | OH359.652-0.131 | -188.35 | 20.35 | 671 | 2.03 | 1,3,4 |
| 49 | 17:45:29.279 | -29:07:04.22 | 0.008 | 020331 | Sj008 | OH359.830-0.070 | -82.70 | 18.20 | 567 | 1.36 | 2,6,7 |
| 50 | 17:45:29.508 | -29:09:16.60 | 0.015 | 020328 | LI040 | OH359.80-0.09 | -3.90 | 17.97 | 626 | 2.40 | 1,5,7 |
| 51 | 17:45:33.331 | -29:11:23.17 | 0.029 | 020326 | LI037 | OH359.78-0.12 | 71.80 | 13.03 | 284 | 1.00 | 1,6 |
| 52 | 17:45:33.449 | -28:43:45.08 | 0.012 | 020331 | Sj001 | $\mathrm{OH} 0.170+0.119$ | 116.00 | 22.70 | 999 | 1.86 | 2,7 |
| 53 | 17:45:34.439 | -29:12:54.22 | 0.026 | 020401 | Sj002 | OH359.757-0.136 | -10.80 | 20.30 | .. | .. | 2,5 |
| 54 | 17:45:46.609 | -28:32:40.13 | 0.014 | 020319 | LI115 | OH0.352+0.175 | 10.80 | 18.20 | 661 | 2.24 | 1,3,4 |
| 55 | 17:45:54.228 | -28:31:46.74 | 0.014 | 020319 | LI116 | OH0.379+0.159 | 139.30 | 15.30 | 985 | 3.03 | 1,3,4 |
| 56 | 17:46:01.113 | -29:01:24.20 | 0.019 | 011214 | LI070 | OH359.97-0.12 | -8.37 | 19.30 | .. | .. | 1,3,4 |
| 57 | 17:46:11.722 | -28:59:32.10 | 0.014 | 020401 | Sj075 | OH0.017-0.137 | 108.30 | 18.90 | 396 | 1.19 | 2,6,7 |
| 58 | 17:46:14.529 | -28:36:39.49 | 0.014 | 020319 | LI114 | OH0.349+0.053 | 31.80 | 14.20 | 669 | 2.26 | 1,3,4 |
| 59 | 17:46:15.407 | -28:55:42.71 | 0.075 | 020326 | LI087 | OH0.08-0.12 | 50.83 | 14.20 | .. | .. | 1 |
| 60 | 17:46:15.840 | -28:56:32.39 | 0.025 | 020331 | SJ092 | OH0.067-0.123 | 35.70 | 17.40 | 534 | 1.30 | 2,6,7 |
| 61 | 17:46:24.790 | -29:00:02.38 | 0.014 | 020319 | LI080 | OH0.036-0.182 | 152.80 | 18.50 | 669 | 2.60 | 1,3,4,7 |
| 62 | 17:46:30.737 | -28:31:31.87 | 0.010 | 011229 | LI121 | OH0.452+0.046 | 87.70 | 10.20 | 339 | 0.94 | 1,3,4 |
| 63 | 17:46:31.780 | -28:35:40.81 | 0.014 | 020319 | LI117 | OH0.395+0.008 | 200.10 | 13.70 | 461 | 1.15 | 1,3,4 |
| 64 | 17:46:35.478 | -28:58:58.98 | 0.012 | 020328 | LI085 | OH000.071-00.20 | 112.98 | 13.55 | .. | .. | 1 |
| 65 | 17:46:42.330 | -28:33:26.14 | 0.018 | 020319 | LI120 | OH0.447-0.006 | -186.90 | 13.10 | 445 | 1.85 | 1,3,4 |
| 66 | 17:46:44.848 | -28:34:59.30 | 0.021 | 020401 | LI118 | OH0.430-0.027 | 31.80 | 18.70 | .. | .. | 1 |
| 67 | 17:46:47.871 | -28:47:15.04 | 0.017 | 020319 | LI107 | OH0.261-0.143 | 25.75 | 5.55 | .. | .. | 1,3,4 |
| 68 | 17:46:59.057 | -28:16:58.51 | 0.027 | 020328 | LI132 | OH0.713+0.084 | 96.80 | 20.50 | .. | .. | 1 |
| 69 | 17:47:39.822 | -28:35:48.69 | 0.013 | 020326 | LI126 | OH0.523-0.206 | 10.80 | 21.60 | 1050 | 2.14 | 1,3 |

[^1]is over 2.5-3 $\sigma$ across multiple channels near the centroid of the OH emission in the $\left(1.1 \mathrm{~km} \mathrm{~s}^{-1}\right)$ autocorrelator spectra. For each line, parameters for e.g., peak and FWHM were estimated using a simple Gaussian fit and are listed in tables 1 and 2.

We searched for $86-\mathrm{GHz} \mathrm{SiO}$ maser emission in 67 GC $\mathrm{OH} / \mathrm{IR}$ stars and detected 32 lines as presented in table 1
and figure 1. A total of $28 \mathrm{OH} / \mathrm{IR}$ stars were detected in the $\mathrm{SiO}(v=1, J=2 \rightarrow 1)$ transition at 86.24335 GHz .

SiO maser emission was serendipitously detected from the Mira-type star V4502Sgr (ID = 18 in table 1), which appeared in the beam of ID $=\# 17$, LI091. For three positions (ID $=1,9,20$; alias LI004, LI101, LI050), possible $86-\mathrm{GHz}$ lines are detected at velocities not coincident with


Fig. 1. IRAM spectra of the detected lines. The IDs and observed coordinates (in J2000.0, degrees) are taken from table 1 and printed at the top. In each panel, the spectrum from the auto-correlator ( $1.1 \mathrm{~km} \mathrm{~s}^{-1}$ channel separation) is plotted at the bottom, while the spectrum from the filterbank $\left(3.5 \mathrm{~km} \mathrm{~s}^{-1}\right.$ channel separation) is plotted at the top. The small black marker at the top shows the derived stellar velocity using the SiO transition rest frequency.

















$$
\mathrm{V}(\mathrm{LRS})[\mathrm{km} / \mathrm{s}]
$$

Fig. 1. (Continued)
those expected for the $\mathrm{OH} / \mathrm{IR}$ stars (figure 2). In these cases, we visually inspected the ISOGAL and GLIMPSE catalogs, but no other bright stars were seen at $8 \mu \mathrm{~m}$ (figure 3 ). As the offsets from the expected SiO maser velocities of LI101 and LI050 are very similar (i.e., 222 and $218 \mathrm{~km} \mathrm{~s}^{-1}$ ) we suggest that these indicate other line detections from the $\mathrm{OH} / \mathrm{IR}$ stars themselves at a frequency of about 86.18 GHz . A line at 86.181 GHz (a CCS-molecule transition, $J_{N}=6_{7}-5_{6}$ ) has been detected towards the carbon AGB star IRC +10216 that is also an OH masing star (Cernicharo et al. 1987;

Yamamoto et al. 1990). However, as one of these OH/IR stars has an SiO maser, the association with a carbon-rich star is unlikely (see also Stroh et al. 2018). Because detections of highly excited OH main-line transitions in AGB stars have recently been reported by Khouri et al. (2019), we suggest another highly excited OH transition [e.g., $J=17 / 2$ $(v=1) F=8^{+}-8^{-}$at 86.178 GHz$) .{ }^{2}$ At the location of LI004 $\left(V_{\mathrm{LSR}}=-138.20 \mathrm{~km} \mathrm{~s}^{-1}\right)$, a broad line (FWHM $\approx 11 \mathrm{~km} \mathrm{~s}^{-1}$ ) was detected at $V_{\mathrm{LSR}}=+414.3 \mathrm{~km} \mathrm{~s}^{-1}$ when assuming SiO

[^2]

Fig. 2. Left-hand panel: spectra of the high-velocity line in the beam of Li004. Two spectra obtained with the auto-correlator in two different epochs are plotted in black. By assuming it arises from the $\mathrm{OH} / \mathrm{IR}$ star ( $\mathrm{OH} V_{\mathrm{LSR}}=-138.2 \mathrm{~km} \mathrm{~s}^{-1}$ at 1612 MHz ), the line frequency is estimated on the top axis. Middle and right-hand panels: spectra of a second detection in the beams of Li101 and Li050. By assuming the SiO rest frequency, the new lines are shifted by $\Delta V_{\mathrm{LSR}}=220 \pm 2.8 \mathrm{~km} \mathrm{~s}^{-1}$ with respect to the OH lines at 1612 MHz . The exact frequencies obtained by assuming the velocities of the $\mathrm{OH} / \mathrm{IR}$ stars are given in the figure titles. When using the rest frequency of the CCS line ( 86.181 GHz ) we obtain $\Delta V_{\mathrm{LSR}}=217 \mathrm{~km} \mathrm{~s}{ }^{-1}$, and with the OH molecular transition at $86.178 \mathrm{GHz} \Delta V_{\mathrm{LSR}}=227 \mathrm{~km} \mathrm{~s}^{-1}$. (Color online)
emission (seen in both epochs). Detections of other transitions are needed to confirm the nature of this line that could arise from the envelope of the highest-velocity AGB star measured in the GC.

## 4 Available photometric magnitudes

$\mathrm{OH} / \mathrm{IR}$ stars are among the brightest mid-infrared sources; indeed, a large number of $\mathrm{OH} / \mathrm{IR}$ stars were already seen with the IRAS mid-infrared satellite. They are easily detected even in the crowded Galactic centre region (Ortiz et al. 2002). The observed $\mathrm{OH} / \mathrm{IR}$ stars are located within ISOGAL fields and coincide with bright $15-\mu \mathrm{m}$ point sources (Omont et al. 2003; Schuller et al. 2003; Ortiz et al. 2002). Wood, Habing, and McGregor (1998) was the first to monitor the Galactic centre OH/IR stars photometrically at near-infrared wavelengths and to discover that they mostly coincided with long-period variables. Wood, Habing, and McGregor (1998) provided nearinfrared magnitudes of the identified long-period variables (the CASPIR pixel scale was 0.!25). They were found within $2^{\prime \prime}$ from the radio positions of the OH masers. While the mid-infrared measurements of $\mathrm{OH} / \mathrm{IR}$ stars are unambiguously retrieved, by being the brightest sources of the field, near-infrared counterparts are often too faint to be detected.

In table 3, we revised the mid-infrared measurements of the stars by searching within the Midcourse Space Experiment (MSX) (with a sensitivity in $A$-band of 0.1 Jy and a maximum flux measured of $\approx 700$ Jy; Egan et al. 2003; Price et al. 2001), The Wide-field Infrared Survey Explorer (WISE) [with a sensitivity of $\approx 0.9 \mathrm{mJy}(3.8 \mathrm{mag})$ and a
saturation at $\approx 140 \mathrm{Jy}(-3.0 \mathrm{mag})$ at $11.6 \mu \mathrm{~m}$; Wright et al. (2010) and the WISE All-Sky online catalog], MIPS Galactic Plane Survey (MIPSGAL) (Gutermuth \& Heyer 2015), and Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogs (with fluxes from $\approx 10 \mathrm{mJy}$ to 1.6 Jy at at $8 \mu \mathrm{~m}$ in v2; Churchwell et al. 2009; Benjamin et al. 2003). Pointing positions were taken from a preliminary version of the ISOGAL catalog (within $1^{\prime \prime}$; Omont et al. 2003), and are listed in tables 1 and 2. For all pointing positions a unique MSX counterpart was found within a search radius of 14.15 (the IRAM half beam size). MSX has a spatial resolution of $18 . .3$ in the $A$ band; the average distances from our positions and the MSX centroids is of 3.10 with a $\sigma$ of $2 . \prime 2$. MSX point sources were not available in correspondence of four OH maser positions. The flux at $8 \mu \mathrm{~m}$ ( $A$ band) ranges from $\sim 0.15$ to $\sim 11.0 \mathrm{Jy}$, with a mean of 1.6 Jy ( $\sigma=1.4 \mathrm{Jy}$ ).

WISE imaged the sky with a spatial resolution of $6^{\prime \prime}$ and an astrometric accuracy within 0.14 (Wright et al. 2010). By using a search radius to $10^{\prime \prime}$, we found 64 WISE matches to our $67 \mathrm{OH} / \mathrm{IR}$ stars. We searched for the closest GLIMPSE counterparts by adopting a search radius of $10^{\prime \prime}$. To avoid false identifications, knowing that $\mathrm{OH} / \mathrm{IR}$ stars are among the brightest and reddest mid-infrared point sources (Ortiz et al. 2002), we first considered data points with [8.0] $<7.0$ mag. A total of 58 GLIMPSE valid matches to the $67 \mathrm{OH} / \mathrm{IR}$ stars were retrieved, plus a match for V4502 Sgr.

Average near-infrared magnitudes were provided by Wood, Habing, and McGregor (1998), Glass et al. (2001), and Matsunaga et al. (2009) for 57 targets and periods for 53 targets (see tables 1,2 , and 3 ).


Fig. 3. Composite image. Red shows the GLIMPSE $8 \mu \mathrm{~m}$ image, green the GLIMPSE $4.5 \mu \mathrm{~m}$, and blue the UKIDSS K-band image. Identification numbers are as in tables 1 and 2 of this paper. North is up and east to the left. The large black circle is centred on the IRAM pointing and has a diameter of $29^{\prime \prime}$. The red triangles mark the targeted $\mathrm{OH} / \mathrm{IR}$ stars and the V 4502 Sgr (ID $=18$ ) variable, clockwise from the upper left, respectively; source ID 1, source ID 9, source IDs 19/20, and source IDs 17/18. The red cross marks the location of 2MASS J17442823-2926357, which is near Li004 (ID $=1$ ) (not detected in the $K$ band).

As stated above, near-infrared counterparts have historically been found by detecting long-period variables, but coordinates with a subarcsec accuracy are often missing. Nowadays, with the availability of accurate astrometry from several near-infrared Galactic plane surveys, it is possible to retrieve them by positional coincidence. We retrieved the original near-infrared 2 MASS coordinates $\left(J H K_{s}\right.$; Skrutskie et al. 2006) of the matches provided by WISE and GLIMPSE. In highly-crowded regions at the resolution of GLIMPSE near-infrared misidentification are possible, especially for the faintest stars. We checked the 2MASS positions and GLIMPSE positions with the source centroids of the GLIMPSE $8-\mu \mathrm{m}$ and UKIDSS K-band charts. UKIDSS images have a spatial resolution of $0 .!2$ (Lucas et al. 2008). GLIMPSE coordinates had to be astrometrically improved only for stars \#33, \#46, \#55, \#66, \#68, by taking the UKIDSS data point
coinciding with the GLIMPSE centroid in order to avoid misidentification.

With the improved coordinates, we searched in the General Catalogue of Variable Stars (GCVS) (Samus' et al. 2017). 47 of the $67 \mathrm{OH} / \mathrm{IR}$ stars were identified within a search radius of $1^{\prime \prime}$, plus two other secure identifications were made at a larger separation (see table 3 footnotes). One of the near-infrared counterparts identified by Wood, Habing, and McGregor (1998) appeared incorrect (see the details on star \#1 in the subsection 4.1).

For most of these stars the stellar spectral energy distribution, based on average near-infrared magnitudes plus several mid-infrared bands, was analysed by Wood, Habing, and McGregor (1998) and Ortiz et al. (2002), and estimates of extinction and bolometric fluxes are provided in their works. Furthermore, the near-infrared spectra taken by Vanhollebeke et al. (2006) confirm strong water
Table 3. Infrared measurements of the targeted OH/IR stars and of the serendipitous detection of V4502 Sgr.*

Table 3. (Continued)

|  | NIR positions |  |  |  | Averages |  |  | GCVS* |  | ISOGAL |  | GLIMPSE ${ }^{\dagger}$ |  |  |  | MSX ${ }^{\dagger}$ |  |  |  | WISE ${ }^{\dagger}$ |  |  |  | MIPSGAL <br> $24 \mu \mathrm{~m}$ <br> [mag] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | RA | Dec | Survey | $\begin{gathered} 2 \text { MASS } K_{\mathrm{s}} \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{gathered} \langle J\rangle \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{gathered} \langle H\rangle \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{gathered} \langle K\rangle \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{aligned} & \text { Sep } \\ & {\left[^{\prime \prime}\right]} \end{aligned}$ | GCVS | $\begin{gathered} {[7]} \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{gathered} {[15]} \\ \left.{ }^{[\prime \prime}\right] \\ \hline \end{gathered}$ | $\begin{gathered} {[3.6]} \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{aligned} & {[4.5]} \\ & {[\mathrm{mag}]} \end{aligned}$ | $\begin{aligned} & {[5.8]} \\ & {[\mathrm{mag}]} \\ & \hline \end{aligned}$ | $\begin{gathered} {[8.0]} \\ {[\mathrm{mag}]} \\ \hline \end{gathered}$ | $\begin{gathered} A \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{gathered} C \\ {[\mathrm{mag}]} \\ \hline \end{gathered}$ | $\begin{gathered} D \\ {[\mathrm{mag}]} \\ \hline \end{gathered}$ | $\begin{gathered} E \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{gathered} \text { W1 } \\ {[\mathrm{mag}]} \\ \hline \end{gathered}$ | $\begin{gathered} \text { W2 } \\ {[\mathrm{mag}]} \\ \hline \end{gathered}$ | $\begin{gathered} \text { W3 } \\ {[\mathrm{mag}]} \end{gathered}$ | $\begin{gathered} \text { W4 } \\ {[\mathrm{mag}]} \\ \hline \end{gathered}$ |  |
| 46 | 174513.86 | -29 1528.73 | UKIDSS | 95.95 | .. | .. | 11.25 | 2.1 | $\mathrm{V} 4485 \mathrm{Sgr}^{\text {a }}$ | 3.47 | 1.59 |  |  |  |  | 3.24 | 2.11 | 1.50 | 0.33 | 6.65 | 3.97 | 2.52 | -0.68 | .. |
| 47 | 174516.43 | -29 1537.61 | 2MASS | 7.66 | 14.26 | 10.54 | 8.42 | 0.0 | V4490 Sgr | 4.60 | 3.48 | 6.68 | 6.13 | 5.06 | 4.74 | 3.79 | 2.61 | 2.44 | 1.00 | 6.33 | 5.18 | 3.27 | 0.63 |  |
| 48 | 174518.04 | -291803.91 | GLIMPSE | 95.95 | .. | .. | 13.67 | 0.5 | V4491 Sgr | 5.91 | 4.32 | 8.67 | 6.46 | 5.41 | 4.99 | 6.61 | 98.98 | 4.73 | 98.98 | 10.47 | 6.54 | 5.61 | 3.14 | 3.50 |
| 49 | 174529.24 | -29 0704.25 | 2MASS | 9.54 | . | 12.70 | 10.09 | 0.1 | V4875 Sgr | 4.40 | 2.96 | 7.32 | 6.55 | 5.65 | 5.20 | 4.67 | 3.33 | 2.96 | 2.13 | 6.84 | 5.79 | 4.19 | 1.64 | 1.96 |
| 50 | 174529.46 | -29 0916.42 | GLIMPSE | .. | . | .. | 11.41 |  | none | 4.87 | 3.06 | 7.82 | 6.67 | 5.49 | 4.95 | 4.78 | 3.90 | 3.22 | 2.57 | 8.46 | 6.27 | 4.41 | 1.61 | 1.44 |
| 51 | 174533.26 | -29 1123.20 | GLIMPSE | .. | .. | . | 12.54 | .. | none | 5.34 | 3.81 | 9.75 | 7.58 | 6.22 | 5.54 | . | .. | .. | .. | 98.98 | 6.81 | 4.87 | 2.53 | 3.24 |
| 52 | 174533.44 | -28 4345.00 | 2MASS | 10.83 | . | .. | 10.78 | . | none | 4.00 | 2.07 | 6.88 | 5.82 | 4.26 | 4.05 | 3.79 | 2.52 | 2.18 | 1.54 | 6.67 | 5.17 | 2.64 | 0.68 | 1.83 |
| 53 | 174534.41 | -29 1254.12 | 2MASS | 9.93 | .. | .. | .. | .. | none | 4.30 | 2.71 | 6.85 | 6.38 | 4.87 | 4.43 | 5.30 | 3.79 | 3.08 | 2.42 | 6.23 | 4.49 | 3.09 | 1.30 | 2.06 |
| 54 | 174546.57 | -283239.50 | 2MASS | 10.35 | . | 13.43 | 9.36 | 0.0 | V4518 Sgr | 3.36 | 1.73 | .. | .. | .. | .. | 3.64 | 2.50 | 2.00 | 1.37 | 7.32 | 5.32 | 3.47 | 1.29 | 1.33 |
| 55 | 174554.21 | -283147.06 | UKIDSS | 11.49 | .. | . | 9.62 | 1.1 | $\mathrm{V} 4529 \mathrm{Sgr}{ }^{\text {b }}$ | 3.85 | 1.66 | 88.88 | 88.88 | 88.88 | 88.88 | 3.25 | 2.04 | 1.25 | 0.92 | 7.48 | 5.11 | 2.97 | 0.84 | .. |
| 56 | 174600.92 | -29 0123.24 | GLIMPSE | .. | . | . | 14.79 | 0.3 | V4538 Sgr | 2.30 | 0.59 | 7.00 | 4.59 | 2.63 | .. | 3.75 | 2.50 | 1.63 | 1.08 | 9.04 | 5.44 | 2.17 | 0.11 |  |
| 57 | 174611.68 | -28 5932.44 | 2MASS | 9.40 | . | 13.20 | 9.58 | 0.0 | V5020 Sgr | 5.23 | 3.87 | 7.16 | 6.37 | 5.42 | 4.89 | 4.93 | 3.92 | 3.12 | 2.22 | 7.56 | 5.87 | 3.72 | 0.37 | 2.53 |
| 58 | 174614.48 | -28 3639.54 | 2MASS | 12.02 | . | .. | 12.62 | 0.1 | V4548 Sgr | 4.28 | 3.29 | 8.81 | 7.16 | 5.90 | 5.24 | 4.40 | 3.38 | 2.90 | 2.53 | 7.94 | 5.72 | 4.18 | 2.13 | 2.29 |
| 59 | 174615.25 | -28 5542.36 | GLIMPSE | .. | . | . | .. | 0.1 | V4550 Sgr | 3.24 | 1.55 | 9.20 | 6.98 | 5.31 | 4.42 | 3.67 | 2.52 | 1.65 | 1.16 | 8.55 | 5.49 | 3.01 | 0.14 | .. |
| 60 | 174615.74 | -28 5632.27 | 2MASS | 10.09 | .. | 14.03 | 10.05 | 0.0 | V5039 Sgr | 5.30 | 3.31 | 7.15 | 6.04 | 4.87 | 4.33 | 4.99 | 3.61 | 2.68 | 1.46 | 7.81 | 5.93 | 3.97 | 0.64 | .. |
| 61 | 174624.87 | -29 0001.41 | 2MASS | 10.97 | . | 15.22 | 11.21 | 0.0 | V4552 Sgr | 4.72 | 2.80 | 7.70 | 6.40 | 5.27 | 4.70 | 4.62 | 3.40 | 2.59 | 2.02 | 7.00 | 4.84 | 3.42 | 0.63 | 1.25 |
| 62 | 174630.71 | -283132.81 | GLIMPSE | 95.95 | . | 12.47 | 9.65 | .. | none | 7.03 | 5.77 | 8.22 | 7.13 | 6.79 | 6.70 | .. | .. | .. | .. | 8.25 | 7.20 | 6.37 | 3.48 | 4.16 |
| 63 | 174631.68 | -28 3541.05 | GLIMPSE | 95.95 | . | 14.83 | 11.60 | 0.3 | V4559 Sgr | 4.56 | 3.11 | 7.90 | 6.39 | 5.35 | 4.86 | 4.84 | 3.73 | 3.28 | 98.98 | 6.47 | 5.97 | 5.19 | 1.73 | 2.33 |
| 64 | 174635.31 | -28 5857.05 | GLIMPSE | .. | .. | .. | .. | 0.2 | V 4562 Sgr | 4.26 | 2.26 | 8.16 | 6.18 | 4.13 | 3.11 | 3.43 | 2.24 | 1.50 | 0.74 | 9.10 | 6.47 | 2.90 | 0.31 | 1.45 |
| 65 | 174642.29 | -28 3326.13 | 2MASS | 11.41 | .. | 14.97 | 11.18 | 0.0 | V4567 Sgr | 4.74 | 3.98 | 7.91 | 6.39 | 5.42 | 5.03 | 5.15 | 98.98 | 4.14 | 98.98 | 8.66 | 6.73 | 5.00 | 1.68 | 3.42 |
| 66 | 174644.84 | -28 3459.66 | UKIDSS | 95.95 | .. | .. | .. | .. | none | 4.70 | 2.49 | 8.08 | 6.35 | 4.89 | 4.22 | 4.54 | 3.34 | 2.87 | 2.87 | 7.83 | 5.09 | 3.21 | 1.38 | 1.20 |
| 67 | 174647.81 | -28 4715.16 | GLIMPSE | .. | .. | .. | 13.62 | 0.3 | V4568 Sgr | 5.72 | 3.50 | 9.90 | 8.14 | 6.59 | 5.55 | 5.49 | 3.95 | 3.42 | 3.07 | 10.60 | 7.95 | 4.52 | 1.25 | 2.61 |
| 68 | 174658.95 | -28 1700.56 | UKIDSS | 95.95 | .. | . | .. | .. | none | 4.06 | 1.67 | 8.37 | 6.27 | 4.77 | 4.03 | 3.65 | 2.29 | 1.75 | 0.99 | 8.27 | 5.14 | 2.87 | 0.66 | .. |
| 69 | 174739.65 | -28 3546.78 | GLIMPSE | .. | .. | .. | 13.47 | 0.8 | V 4575 Sgr | .. | 2.20 | 6.71 | 4.76 | 3.65 | .. | 2.86 | 1.86 | 1.13 | 0.54 | 6.95 | 3.69 | 1.98 | 0.18 | 0.99 |

 (2019) (note that the GCVS has the old coordinates, 2 ." 1 away). $b$-The 2MASS centroid of star \#55 was recentered. This star coincides with V4529 Sgr (note that the GCVS has the old coordinate, 1 ." 1 away).
 and removed. 97.97-Confusion. 98.98—Upper limit.
vapour absorption, which is the typical signature of largeamplitude AGB variables.

### 4.1 Serendipitous $86-\mathrm{GHz}$ detections: $\mathrm{ID}=\# 1$, \#9, \#18, and \#20

For positions with two $86-\mathrm{GHz}$ lines detected (Li091 and Li050) and with $86-\mathrm{GHz}$ lines at significantly different velocities than that of the known OH masers (Li004 and Li101), we carefully inspected the GLIMPSE and UKIDSS images. Maser emitters are usually associated with bright mid-infrared data points (see figure 3).

At the position of the $\mathrm{OH} / \mathrm{IR}$ star Li004 (ID = \#1), which is not seen at 86 GHz , a line is detected at $415 \mathrm{~km} \mathrm{~s}^{-1}$. Li004 is the brightest mid-infrared star with $[4.5]=10.4 \mathrm{mag},[5.8]=7.8 \mathrm{mag}$, and $[8.0]=6.11 \mathrm{mag}$, $[15.0]=4.24$ mag. At this location no UKIDSS data point is seen, and the GLIMPSE images show a nearby peak at a small separation of $\approx 2.15$ with $[3.6]=9.969 \mathrm{mag}$, $[4.5]=9.730 \mathrm{mag},[5.8]=9.444 \mathrm{mag}($ not detected at $8 \mu \mathrm{~m}$ ). The ISOGAL/DENIS ( $K_{\mathrm{s}}=11.5 \mathrm{mag}$ ) position coincides with this other source seen at $3.6 \mu \mathrm{~m}$ (which is not centred on the $8-\mu \mathrm{m}$ source) and with the 2MASS J17442823-2926357 ( $K_{\mathrm{s}}=11.5 \mathrm{mag}$ ), UKIDSS $K$-band data point (UGPS J174428.23-292635.7, $K=11.43 \mathrm{mag}$ ). Wood, Habing, and McGregor (1998) did not detect any variability and reported an average $K=11.48$ mag, i.e., they analysed 2MASS J17442823-2926357, a false counterpart to the $\mathrm{OH} / \mathrm{IR}$ stars. Only two other $8-\mu \mathrm{m}$ GLIMPSE stars fall within the IRAM beam. They are faint with $[8.0]=7.70$ and $7.80 \mathrm{mag}\left(K_{\mathrm{s}}=9.75\right.$ and 10.61 mag$)$.

With an 8."8 separation between Li091 ( $\mathrm{ID}=17$ ) and V4502Sgr ( $\mathrm{ID}=18$ ), both stars fall within the IRAM beam. Li091, which is the OH/IR star, coincides with the bright $15-\mu \mathrm{m}$ star detected by ISOGAL ( 3.6 mag ; Ortiz et al. 2002). Both variables are detected by GLIMPSE with $[8.0]=5.47$ and 6.65 mag , and $[3.6-8.0]=1.66$ and 0.63 mag, respectively.

A second $86-\mathrm{GHz}$ line is detected at the position of Li050 (lines ID = \#19 and \#20), and a line at an unexpected velocity is found in the direction of Li101 ( $\mathrm{ID}=\# 9$ ). There are no other bright mid-infrared stars ([8.0] < 8.9 mag ) in these positions. The sources were not observed by Stroh et al. (2019) (M. C. Stroh 2020 private communication). There are no other reports of these line detections towards these sources.

## 5 SiO masers and properties of the $\mathrm{OH} / \mathrm{IR}$ stars

A global detection rate of $42 \%$ is obtained for $86-\mathrm{GHz} \mathrm{SiO}$ masers in $\mathrm{OH} / \mathrm{IR}$ stars.

### 5.1 SiO maser detections and MSX colors: difference between Miras and $\mathrm{OH} / \mathrm{R}$ stars.

$\mathrm{OH} / \mathrm{IR}$ stars are the most obscured long-period variables, with optically thick envelopes, as already inferred from studies of the mid-infrared colors from IRAS (Habing 1996).

In our 2000-2003 search for $86-\mathrm{GHz}$ maser emission (Messineo 2004), we deliberately selected Mira-like stars and excluded $\mathrm{OH} / \mathrm{R}$-like stars by targeting bluer colors (Messineo et al. 2002). There were several reasons to do so; efficiency in increasing the number of stellar velocities in a manner complementary to OH surveys, and previous knowledge [at that time provided by, e.g., Haikala, Nyman, and Forsstroem (1994) and Bujarrabal (1994)] that $86-\mathrm{GHz}$ maser emission was more frequently detected in Mira stars than in thicker-shelled $\mathrm{OH} / \mathrm{IR}$ stars. With the presented dataset we can verify our hypothesis, which was based on a very small number of sources, and possibly even determine a change in the detection rate of SiO masers with stellar colors.

Mira-like stars have a color distribution indistinguishable from that of the $\mathrm{OH} / \mathrm{IR}$ stars in the $(D-E)$ versus ( $A-C$ ) diagram (see figures in Messineo et al. 2018). This diagram is useful only to separate mass-loss AGB stars from post-AGBs (Sevenster 2002). There is another combination of MSX filters that allows us to separate Mira-like AGB stars with thinner envelopes from the thicker-envelope OH/IR stars (Messineo et al. 2004; Lumsden et al. 2002). In figure 4 , we show the MSX $C-D$ versus $A-E$ colors. ${ }^{3}$

The $\mathrm{OH} / \mathrm{IR}$ stars appear to have redder $C-D$ colors and $A-E$ colors than the comparison sample of Mira-like stars (without OH emission) from Messineo's thesis (Messineo et al. 2004, 2018). The colors are not corrected for interstellar extinction, however, for $A_{K_{\mathrm{s}}}=3 \mathrm{mag}$ the corrections to the $C-D$ colors are within $0.3-0.6 \mathrm{mag}$ and those made to the $A-E$ colors are within $0.3-0.4 \mathrm{mag}$ (Messineo et al. 2005). The bulk of Mira-like stars from Messineo et al. (2018) (see also Messineo et al. 2002) have $A-E$ colors from 1.0 to 2.5 mag , while the $\mathrm{OH} / \mathrm{R}$ stars studied here have redder $A-E$ colors from 1.5 to 4.0 mag . For the Mira-like stars of Messineo et al. (2018), the SiO detection rate is $66 \%$ ( 261 targets and 172 detections) for colors $A$ $-E<2.5 \mathrm{mag}$, but is equal to $43 \%$ when considering the remaining Mira-like stars ( 21 targets and nine detections) with $2.5<A-E<3.5 \mathrm{mag}$. For the $29 \mathrm{OH} / \mathrm{IR}$ stars with $A$ $-E<2.5 \mathrm{mag}$ (average $C-D=0.54 \mathrm{mag}, \sigma=0.16 \mathrm{mag}$ ), the $86-\mathrm{GHz} \mathrm{SiO}$ detection rate is $59 \%$, similar to that of the Mira-like stars. For the $28 \mathrm{OH} / \mathrm{IR}$ stars with

[^3]

Fig. 4. Left-hand panel: MSX $(C-D)$ versus $(A-E)$ colors. Black diamonds mark the $\mathrm{OH} / \mathrm{IR}$ stars analysed in this work (the locations of Li101 and Li050 are marked in green with two green labels), while red circles mark the Mira-like stars of Messineo et al. (2002). 86-GHz SiO maser detections are marked with filled symbols, non-detections with open symbols. Right-hand panel: MSX $C-D$ versus $A-E$ plot of O-rich Mira stars with ISO-SWS spectra. Red-filled circles mark those ISO-SWS spectra with $10-\mu \mathrm{m}$ silicate features in emission, while gray-filled squares indicate those with the silicate feature in absorption. For comparison, the seven bulge OH/IR stars modeled in Blommaert et al. (2018) (with silicate features in absorption) are plotted with black-filled triangles. (Color online)
$A-E>2.5 \mathrm{mag}$ (with average $C-D=0.70 \mathrm{mag}$, $\sigma=0.26 \mathrm{mag}$ ), the $86-\mathrm{GHz}$ detection rate is $25 \%$. The $86-\mathrm{GHz} \mathrm{SiO}$ detection rate drops for sources redder than $A-E=2.5$ mag. This is somewhat in line with the earlier findings of Haikala, Nyman, and Forsstroem (1994) and Bujarrabal (1994) that $86-\mathrm{GHz}$ maser emission occurs more frequently in Miras than in $\mathrm{OH} / \mathrm{IR}$ stars. They must have looked at the reddest $\mathrm{OH} / \mathrm{IR}$ stars.

The redder $C-D$ colors of the $\mathrm{OH} / \mathrm{IR}$ stars are most likely due to the broad $10 \mu \mathrm{~m}$ silicate features (in absorption from $\approx 8$ to $\approx 12.5 \mu \mathrm{~m}$ ) in combination with the MSX filter profiles (Messineo et al. 2004). In figure 4, we also plot the MSX colors of O-rich Miras and OH/IR stars with ISO-SWS spectra available from the library of Sloan et al. (2003). O-rich Miras with $10 \mu \mathrm{~m}$ silicate spectra in emission have $C-D$ colors located below the blackbody curve, as expected by Messineo et al. (2004). The $C-D$ colors of stars with a $10 \mu \mathrm{~m}$ feature in absorption fall above the curve. For comparison, the MSX colors of the bulge OH/IR stars modeled by Blommaert et al. (2018) are shown, and they also fall above the blackbody line.

Most of the sources here considered have $D-E$ $<1.38 \mathrm{mag}$, which delimits the color region dominated by SiO masers described in Stroh et al. (2019) (with an SiO detection rate of $80 \%$ at the high sensitivity of ALMA). Indeed, $99 \%$ of the Mira-like stars in Messineo et al. (2018) have colours $D-E<1.38$ mag and $91 \%$ of the $\mathrm{OH} /$ IR stars here studied (among the five redder $\mathrm{OH} / \mathrm{IR}$ stars there are three SiO maser detections).

The bluer Mira-like stars detected at 86 GHz have massloss rates from $10^{-7}$ to $2 \times 10^{-5} M_{\odot} \mathrm{yr}^{-1}$ with a peak at $10^{-6}-10^{-5} M_{\odot} \mathrm{yr}^{-1}$ (Messineo et al. 2004). For bulge OH/IR stars, Ortiz et al. (2002) estimate mass-loss rates
from $3 \times 10^{-6}$ to a few $10^{-5} M_{\odot} \mathrm{yr}^{-1}$. The rare (seven) CO line detections in bulge $\mathrm{OH} / \mathrm{IR}$ stars yield estimates of massloss rates from $2 \times 10^{-5}$ to $9.5 \times 10^{-5} M_{\odot} \mathrm{yr}^{-1}$ (Blommaert et al. 2018).

### 5.2 Line ratios

We searched the literature for previous detections of these SiO masers at 43 GHz (e.g., Deguchi et al. 2000a, 2000b, 2004; Li et al. 2010; Fujii et al. 2006; Sjouwerman et al. 2002; Izumiura et al. 1998; Shiki \& Deguchi 1997; Lindqvist et al. 1991). We found detections for only 22 of the $\mathrm{OH} / \mathrm{IR}$ stars and non-detections for four of the $\mathrm{OH} / \mathrm{IR}$ stars. There are 10 detections at both 86 and 43 GHz which yield these average ratios $I(43 \mathrm{GHz}, v=1) / I(86 \mathrm{GHz}, v=1)=1.09$ and $I(43 \mathrm{GHz}, v=2) / I(86 \mathrm{GHz}, v=1)=1.75$. Despite the non simultaneity of the data, taken at a random phase, the mean is meaningful because the photometric variations of the stars are not synchronised one to another. These values are similar to the quasi-simultaneous ratios analyzed by Stroh et al. (2018) for a selection of thinner-shell Miras.

### 5.3 SiO detection rates and periods, $V_{\exp }$, Mbol: difference between Miras and $\mathrm{OH} / \mathrm{IR}$ stars

We analyzed the $86-\mathrm{GHz}$ detections as a function of the stellar periods and amplitudes (see tables 1 and 2). Interestingly, it appears that $86-\mathrm{GHz} \mathrm{SiO}$ maser detections arise from $\mathrm{OH} / \mathrm{IR}$ stars with periods longer than 500 days. By restricting the analysis to periods $>500$ days, the $86-\mathrm{GHz}$ detection rate increases to $57 \%$ (the global detection rate is $42 \%$ ). That the SiO maser detection rate is a steep function of periods had already been concluded from the sample
of Galactic centre large-amplitude variables of Glass et al. (2001) and the $43-\mathrm{GHz} \mathrm{SiO}$ maser observations of Imai et al. (2002). Thereby, SiO maser emission traces AGB variables with periods longer than 500 days.

All but one of the $86-\mathrm{GHz} \mathrm{SiO}$ maser detections belong to $\mathrm{OH} / \mathrm{IR}$ stars with $V_{\exp }>14.5 \mathrm{~km} \mathrm{~s}^{-1}$. The $\mathrm{OH} / \mathrm{IR}$ stars $V_{\text {exp }}$ are known to increase with stellar periods (Lindqvist et al. 1992).

During their life, long-period variable stars lose mass at increasing rates, thicken their envelopes, and lengthen their periods (Vassiliadis \& Wood 1993). Periods depend on the stellar initial masses and ages of the variables. The bulk of the bulge $\mathrm{OH} / \mathrm{IR}$ stars is made of stars, with $M_{\text {bol }}$ from -4.5 to $-5.0 M_{\text {bol }}$ (Ortiz et al. 2002; Blommaert et al. 2018). This $M_{\mathrm{bol}}$ range suggests that most of the stars have initial masses between 1.5 and $2 M_{\odot}$. Because of this relatively narrow range in mass, the variety of observed stellar properties are dominated by evolution rather than initial masses (Ortiz et al. 2002; Blommaert et al. 2018; Qiao et al. 2018). Bulge $\mathrm{OH} / \mathrm{IR}$ stars do not follow the period-luminosity relation found for bulge Mira stars by Glass et al. (1995), but they are systematically located below it. The commonly accepted interpretation is that, during the pulsating phase, Miras enter a regime of high mass loss (superwind phase) where the AGBs significantly stretch their stellar periods at an almost constant bolometric magnitude (Vassiliadis \& Wood 1993), departing from the locus of the Mira periodluminosity relation. $\mathrm{OH} / \mathrm{IR}$ stars have longer periods for a given luminosity than those found in Mira stars. Of the sampled sources, 43 stars have $M_{\text {bol }}$ estimates from the works of Ortiz et al. (2002) and Wood, Habing, and McGregor (1998). They range from -1.99 to $-6.35 \mathrm{mag}, 20$ detections and 23 non-detections. SiO maser detections occur towards stars brighter than $M_{\mathrm{bol}}=-3.5 \mathrm{mag}$.

Alternatively, Urago et al. (2020) explains these deviations from the period-luminosity relation at $3 \mu \mathrm{~m}$ as attributed to circumstellar extinction. This strengthens the idea of Sjouwerman et al. (2009) that the optical thickness is the key parameter in studying $\mathrm{OH} / \mathrm{IR}$ stars.

## Acknowledgments

IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). MM carried part of this work at the Leiden University in 2001-2002. The work of MM from 2000 to 2004 was funded by the Netherlands Research School for Astronomy (NOVA) through a netwerk 2, Ph.D. stipend. This work was partially supported by the National Natural Science Foundation of China (NSFC-11421303, 11773025), and USTC grant KY2030000054. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis

Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The DENIS project was supported, in France by the Institut National des Sciences de l'Univers, the Education Ministry and the Centre National de la Recherche Scientifique, in Germany by the State of Baden-Wuertemberg, in Spain by the DGICYT, in Italy by the Consiglio Nazionale delle Ricerche, in Austria by the Fonds zur Foerderung der wissenschaftlichen Forschung and the Bundesministerium fuer Wissenschaft und Forschung. This research made use of data products from the Midcourse Space Experiment, the processing of which was funded by the Ballistic Missile Defence Organization with additional support from the NASA office of Space Science. This publication makes use of data products from WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This work is based on data obtained as part ofthe UKIRT Infrared Deep Sky Survey. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. This research has made use of the SIMBAD data base, operated at CDS, Strasbourg, France. This research made use of Montage, funded by the National Aeronautics and Space Administration's Earth Science Technology Office, Computational Technnologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology. The code is maintained by the NASA/IPAC Infrared Science Archive. This research hasmade use of NASAs Astrophysics Data System BibliographicServices. The author are grateful to the kind referee for his careful reading and constructive suggestions.

## References

Benjamin, R. A., et al. 2003, PASP, 115, 953
Blommaert, J. A. D. L., Groenewegen, M. A. T., Justtanont, K., \& Decin, L. 2018, MNRAS, 479, 3545
Braga, V. F., Contreras Ramos, R., Minniti, D., Ferreira Lopes, C. E., Catelan, M., Minniti, J. H., Nikzat, F., \& Zoccali, M. 2019, A\&A, 625, A151
Bujarrabal, V. 1994, A\&A, 285, 953
Cernicharo, J., Kahane, C., Guelin, M., \& Hein, H. 1987, A\&A, 181, L9
Churchwell, E., et al. 2009, PASP, 121, 213
Deguchi, S., et al. 2004, PASJ, 56, 261
Deguchi, S., Fujii, T., Izumiura, H., Kameya, O., Nakada, Y., \& Nakashima, J. 2000a, ApJS, 130, 351
Deguchi, S., Fujii, T., Izumiura, H., Kameya, O., Nakada, Y., Nakashima, J., Ootsubo, T., \& Ukita, N. 2000b, ApJS, 128, 571
Egan, M. P., et al. 2003, VizieR Online Data Catalog, V/114
Engels, D., \& Bunzel, F. 2015, A\&A, 582, A68
Epchtein, N., et al. 1994, Ap\&SS, 217, 3
Fujii, T., Deguchi, S., Ita, Y., Izumiura, H., Kameya, O., Miyazaki, A., \& Nakada, Y. 2006, PASJ, 58, 529
Glass, I. S., Matsumoto, S., Carter, B. S., \& Sekiguchi, K. 2001, MNRAS, 321, 77

Glass, I. S., Whitelock, P. A., Catchpole, R. M., \& Feast, M. W. 1995, MNRAS, 273, 383
Gutermuth, R. A., \& Heyer, M. 2015, AJ, 149, 64
Habing, H. J. 1996, A\&A Rev., 7, 97
Haikala, L. K., Nyman, L. A., \& Forsstroem, V. 1994, A\&AS, 103, 107
Herwig, F. 2005, ARA\&A, 43, 435
Imai, H., et al. 2002, PASJ, 54, L19
Izumiura, H., Deguchi, S., \& Fujii, T. 1998, ApJ, 494, L89
Khouri, T., Velilla-Prieto, L., De Beck, E., Vlemmings, W. H. T., Olofsson, H., Lankhaar, B., Black, J. H., \& Baudry, A. 2019, A\&A, 623, L1
Lane, A. P. 1982, PhD thesis, Massachusetts University
Lewis, B. M. 1989, ApJ, 338, 234
Li, J., An, T., Shen, Z.-Q., \& Miyazaki, A. 2010, ApJ, 720, L56
Lindqvist, M., Habing, H. J., \& Winnberg, A. 1992, A\&A, 259, 118
Lindqvist, M., Ukita, N., Winnberg, A., \& Johansson, L. E. B. 1991, A\&A, 250, 431
Lucas, P. W., et al. 2008, MNRAS, 391, 136
Lumsden, S. L., Hoare, M. G., Oudmaijer, R. D., \& Richards, D. 2002, MNRAS, 336, 621
Matsunaga, N., Kawadu, T., Nishiyama, S., Nagayama, T., Hatano, H., Tamura, M., Glass, I. S., \& Nagata, T. 2009, MNRAS, 399, 1709
Messineo, M. 2004, PhD thesis, Leiden University
Messineo, M., Habing, H. J., Menten, K. M., Omont, A., \& Sjouwerman, L. O. 2004, A\&A, 418, 103
Messineo, M., Habing, H. J., Menten, K. M., Omont, A., Sjouwerman, L. O., \& Bertoldi, F. 2005, A\&A, 435, 575
Messineo, M., Habing, H. J., Sjouwerman, L. O., Omont, A., \& Menten, K. M. 2002, A\&A, 393, 115
Messineo, M., Habing, H. J., Sjouwerman, L. O., Omont, A., \& Menten, K. M. 2018, A\&A, 619, A35
Nyman, L.-A., Hall, P. J., \& Le Bertre, T. 1993, A\&A, 280, 551
Nyman, L.-A., Johansson, L. E. B., \& Booth, R. S. 1986, A\&A, 160, 352
Omont, A., et al. 2003, A\&A, 403, 975
Ortiz, R., et al. 2002, A\&A, 388, 279

Price, S. D., Egan, M. P., Carey, S. J., Mizuno, D. R., \& Kuchar, T. A. 2001, AJ, 121, 2819

Qiao, H.-H., et al. 2018, ApJS, 239, 15
Samus', N. N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N., \& Pastukhova, E. N. 2017, Astron. Rep., 61, 80
Schuller, F., et al. 2003, A\&A, 403, 955
Sevenster, M. N. 2002, AJ, 123, 2772
Sevenster, M. N., Chapman, J. M., Habing, H. J., Killeen, N. E. B., \& Lindqvist, M. 1997, A\&AS, 122, 79
Sevenster, M. N., van Langevelde, H. J., Moody, R. A., Chapman, J. M., Habing, H. J., \& Killeen, N. E. B. 2001, A\&A, 366, 481

Shiki, S., \& Deguchi, S. 1997, ApJ, 478, 206
Sjouwerman, L. O., Capen, S. M., \& Claussen, M. J. 2009, ApJ, 705, 1554
Sjouwerman, L. O., Lindqvist, M., van Langevelde, H. J., \& Diamond, P. J. 2002, A\&A, 391, 967
Sjouwerman, L. O., van Langevelde, H. J., Winnberg, A., \& Habing, H. J. 1998, A\&AS, 128, 35

Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Sloan, G. C., Kraemer, K. E., Price, S. D., \& Shipman, R. F. 2003, ApJS, 147, 379
Stroh, M. C., Pihlström, Y. M., Sjouwerman, L. O., Claussen, M. J., Morris, M. R., \& Rich, M. R. 2018, ApJ, 862, 153
Stroh, M. C., Pihlström, Y. M., Sjouwerman, L. O., Lewis, M. O., Claussen, M. J., Morris, M. R., \& Rich, R. M. 2019, ApJS, 244, 25
Urago, R., Omodaka, T., Nagayama, T., Watabe, Y., Miyanosita, R., Matsunaga, N., \& Burns, R. A. 2020, ApJ, 891, 50
van der Veen, W. E. C. J., \& Habing, H. J. 1988, A\&A, 194, 125
Vanhollebeke, E., Blommaert, J. A. D. L., Schultheis, M., Aringer, B., \& Lançon, A. 2006, A\&A, 455, 645
Vassiliadis, E., \& Wood, P. R. 1993, ApJ, 413, 641
Wood, P. R., Habing, H. J., \& McGregor, P. J. 1998, A\&A, 336, 925
Wright, E. L., et al. 2010, AJ, 140, 1868
Yamamoto, S., Saito, S., Kawaguchi, K., Chikada, Y., Suzuki, H., Kaifu, N., Ishikawa, S.-I., \& Ohishi, M. 1990, ApJ, 361, 318


[^0]:    ${ }^{1}$ More recently, Engels and Bunzel (2015) reported on 2341 stars with OH masers. There is an ongoing new survey of the Galactic plane, and Qiao et al. (2018) reported on 161 new OH masers in the central $5^{\circ}$.

[^1]:    Alias names are taken from Ortiz et al. (2002) and SIMBAD.
    $\ddagger V_{\text {LSR }}$ and $V_{\text {exp }}$ are from the $1612-\mathrm{MHz} \mathrm{OH}$ measurements and are the average of the measurements listed in the catalog of Engels and Bunzel (2015).
    

[^2]:    ${ }^{2}$ See the online catalog of molecular lines at 〈https://spec.jpl.nasa.gov/〉.

[^3]:    ${ }^{3} C, D, A$, and $E$ indicated the MSX magnitudes. The $A$ band covers from 6 to $11 \mu \mathrm{~m}$, the $C$-band from 11 to $13 \mu \mathrm{~m}$, the $D$-band covers from 13.5 to $16 \mu \mathrm{~m}$, and the $E$-band covers from 18 to $25 \mu \mathrm{~m}$, as shown in figure 1 of Messineo et al. (2005).

