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1
Introduction

1.1 The Historical Link between Taxes and Data

Taxes and data have a close bond for centuries. The linking pin is called ‘administra-
tion’, see the relation below.

taxes←− administration←− data

To levy taxes an administration is required, for instance an administration of prop-
erties, transactions, or income. These administrations are basically just collections of
data.

The link between taxes and data has emerged already at the start of civilization.
Figure 1.1 displays an example of a Mesopotamian clay tablet. These tablets show
commodities, like jars, cattle, and grain. Scholars now know that these tablets were
mainly used for tax and administration purposes [12].

Also in the Roman times, the link between taxes and data is present. Most readers
will recall the story about the birth of Jesus Christ, see Figure 1.2. At the time of Jesus’
birth, Joseph and Maria had to travel from Nazareth to Bethlehem. Why? A census
had been demanded by the Romans. And why did the Romans do all the efforts to
organize a census in their great empire? Because of tax purposes. Jesus was born in
the time that Augustus was the first emperor of Rome (reigning from 27 BC until
his death in AD 14). Augustus changed the tax system such that each province was
required to pay a flat poll tax on each adult [106]. For this reason it was important
to know the exact number of adults. So also in the Roman times, one of the best
examples of data collection, a census, is closely related to taxation.

In later times, data analysis emerged. If data has been gathered consistently for
some time, it gives us the possibility to analyze the data and try to see patterns and
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Figure 1.1: Clay tablet from Uruk in cuneiform writing describing commodities source:
Metropolitan Museum of Art, accession number 1988.433.3.

learn things about the world around us. Much of human knowledge has been collected
in this way.

Governments are among the early adopters of analyzing data to gain insights. An
early example of statistical inference is the Trial of the Pyx [112], an annual procedure
that is held in the United Kingdom since 1282 AD, see Figure 1.3. The procedure is
held by Her Majesty’s Treasury, the governmental department whose minister is also
responsible for the British tax authority. The goal of the procedure, that still exists
today, is to ensure that newly minted coins conform to the required standards, in
particular whether the required amount of precious metals are used. The procedure
is among the oldest statistical sampling methods.

Another example of the early involvement of governments in data analysis can
still be seen in the origins of the word ‘Statistics’. The word derives ultimately from
the Latin statisticum collegium (‘council of state’) [81]. The German word ‘Statistik’,
first introduced by Gottfried Achenwall in the mid eighteenth century, originally des-
ignated the analysis of data about the state. It acquired the meaning of the collection
and analysis of data in the early 19th century [111]. According to the online encyc-
lopedia Wikipedia, Thus, the original principal purpose of Statistik was data to be used
by governmental and (often centralized) administrative bodies.

The link between taxes, administration, and data has stood the test of time as
tax administrations are today still large, data processing organizations. Moreover it is
inspiring to see that also today, governments, and in particular tax administrations,
are heavily interested in the fruits that data science can bring, see section 1.3 for the
motivation of the Netherlands Tax and Customs Authority (NTCA) [79] for doing so.
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Figure 1.2: Maria and Joseph on their way to Bethlehem. Unknown Artist

1.2 Tax Administrations in the Computer Age

A major task of tax administrations is to make it possible for the people to pay taxes
and to check whether they do. To fulfill this task, many processes have to be organ-
ized, like receiving and processing tax returns. The processes themselves generate
data (incoming tax returns for example) or need data (banking data for instance).
It is thus logical that an organization that processes so much data can be helped
enormously by computer power.

The arrival of computers, at the end of the twentieth century, has revolutionized
data processing, also in the field of public administration and taxes. Computers allow
for the storage of massive data sets and have replaced extensive paper archives. The
new computing power has replaced the manual calculations of taxes and workflow
management software has digitized processes within modern tax administrations.

The early applications of computers in tax administrations have been to store data
and automate transaction processes. However, in the last decade tax administrations
started to realize that data may provide valuable information about the efficiency of
processes and interesting insights about the behavior and needs of taxpayers. Inform-
ation that can be used for instance to cut inefficiencies or increase services.

Tax administrations are in fact natural places to exploit the benefits of data ana-
lysis. Tax administrations have access to a lot of relevant data. To give an impression,
the Netherlands Tax and Customs Administration has access to, among others,

• Information about incomes,

• Financial information about companies like profits, costs, and turnover,
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Figure 1.3: Trial of the Pix. By Matt Brown - https://www.flickr.com/photos/

londonmatt/3269860504, CC BY 2.0, https://commons.wikimedia.org/w/index.
php?curid=52049921.

• Real estate information,

• Municipal data, like addresses, and (family) relations,

• Chamber of Commerce data,

• Counter-information from abroad,

• Some bank details.

See the information brochure [13] for a complete overview. Of course, this data can
only be used for data analysis if there exists a legal basis.

Tax administration are also suitable places for data analysis, since a tax admin-
istration can make the required investments. Moreover, a tax authority may benefit
from even a small increment in efficiency due to the vast sums of money that are
processed. Besides, most tax administrations have a large, in-house ICT department,
facilitating access to the required technical facilities. Tax administrations also fit with
the required fact-driven culture, stemming in part from the nature of the business and
the presence of many accountants.

https://www.flickr.com/photos/londonmatt/3269860504
https://www.flickr.com/photos/londonmatt/3269860504
https://commons.wikimedia.org/w/index.php?curid=52049921
https://commons.wikimedia.org/w/index.php?curid=52049921
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1.3 Analytics at the Netherlands Tax and Customs Ad-
ministration

The Netherlands Tax and Customs Administration (NTCA, or ‘Belastingdienst’ in Dutch)
is the Dutch governmental organization responsible for collecting the main taxes in
the Netherlands [79]. The organization falls under the responsibility of the Ministry
of Finance. Its main tasks are to make it possible for taxpayers to pay taxes and to
check whether this is done. Customs has been part of the NTCA since its founding in
1806 by finance minister Alexander Gogel, see Figure 1.4.

Figure 1.4: Portrait of Alexander Gogel, Minister of Finance, who founded the Nether-
lands Tax and Customs Administration in 1806. Source: Belasting & Douane Museum

Today, the organization collects about e200 billion annually and employs slightly
less than 30,000 employees. It not only collects taxes but also hands out benefits. Be-
nefits are income-dependent allowances from the government in, for example, health-
care costs, childcare costs and housing costs (rent allowance). The NTCA is present
in most cities in the Netherlands, see Figure 1.5.

At least two major trends have contributed to the acceleration of analytics at the
NTCA, that has started at about 2013. The first trend has its origin in the financial
crisis of 2008. At that moment the Dutch government took a number of austerity
measures, including major budget cuts for the various departments. These budget
cuts were spread out over a five-year period, leading to ever severe budget cuts each
year, increasing the need for efficient operations. The second major trend has to do
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Figure 1.5: Locations of the NTCA in four major cities: Amsterdam (top left), Gronin-
gen (top right), Apeldoorn (bottom left), and Utrecht (bottom right).

with the age structure of the Tax and Customs Administration staff, which means that
since 2016 around 2000 employees retire yearly. This urged the top management to
invest in promising techniques that could increase effectiveness.

Another long term trend has been the steady increase of the workload for the
NTCA without a steady increase in the number of employees, see Figure 1.6. The fig-
ure shows that the number of entrepreneurs have tripled in the 27 year period from
1986 to 2013, a consequence of economic growth but also of a policy of stimulating
entrepreneurship by the government. Many of these entrepreneurs are self-employed
and take more effort to check for the tax administration compared to employees. The
figure also highlights the doubling of the number of income tax returns in this period.
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Figure 1.6: Trends related to the workload of the Netherlands Tax and Customs Ad-
ministration over a 27-year period (1988 - 2013). The colored lines (blue and pink)
depict trends that have a major influence on the workload. The scale belonging to
the colored lines is depicted on the left vertical axis. The black line represents the
number of Full Time Equivalent (FTE) employees. Its scale is depicted on the right
vertical axis.

This rise has partly to do with a rise in the general population, but also with the fact
that the lifestyle of citizens has become more dynamic and thus more citizens are
asked to send in a tax return with detailed information. Also visible in the figure is
the fact that since 2006 the NTCA was asked to take over the payment of several be-
nefits from other departments. Finally the figure shows that the number of containers
entering the Port of Rotterdam has more than tripled in this period, an indication of
growing internationalism, but also of a lot more work for Customs. The black line in
Figure 1.6 represents the number of employees in this time period, showing a con-
stant number near 30.000. Considering these numbers, the interest and support of
the NTCA for analytics is clear.

1.4 Analytics and Related Concepts

Analyzing data in the computer age comes down to extracting information from the
raw data stored in computer systems. The systematic retrieval of data and the trans-
formation of data into information and relevant knowledge is called data mining. Al-
though various tax administrations have reached different levels of maturity in data
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mining, it is safe to state that currently, no tax administration has fully exploited the
information embedded in the data.

Extracting insights from data does not yet create tangible business value. For in-
stance, insights should be ‘actionable’, i.e. management must be able to change cur-
rent practices based on the insights. To maximally reap the (business) benefits of data
mining, many activities have to be organized beyond the data mining itself, and stra-
tegic choices have to be made. Davenport and others [32, 33, 31] have studied data
mining in organizations from a business science perspective. They call the applica-
tion of techniques from statistics and machine learning on data in order to improve
business processes analytics.

Recently, the vocabulary around data analysis has expanding further with terms
as deep learning, big data, machine learning, advanced analytics, and predictive model-
ling. Figure 1.7 is an attempt to explain the term ‘Analytics’ in relation to ‘Statistics’,
‘Machine Learning’ and ‘Data Science’ as an understanding of these relations helps to
avoid confusion while reading this thesis.

Figure 1.7: Venn-diagram visualization of the concepts Analytics, Data Science, and
Machine Learning

The core of the diagram is formed by the components ‘Statistics’ and ‘Machine
learning’. These are fields of research that have produced a large collection of tech-
niques that are helpful in analyzing data. Statistics is the oldest discipline of the two
and has strong connections with mathematics, especially probability theory. Statistics
has introduced many important basic concepts in data analysis. It originated in the
pre-computer era, and presumably therefore its foundations and methods are more
inclined to rigorous, analytical (i.e. closed form) solutions over heuristic algorithms
that come to solutions by exploiting computing power. The connections with math-
ematics makes that statisticians are likely to think in probabilistic models underlying
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a data set.
Machine Learning is a younger scientific discipline and has close connections with

Computer Science and (Electrical) Engineering. Machine learning often puts em-
phasis on challenging practical problems that mimic human intelligence, like image
recognition, natural language processing, automatic translation, speech recognition
and learning strategies to play games. The connection with computer science makes
machine learning in general more ‘computation-intensive’. The influence of engin-
eering makes the discipline practical, preferring in general working solutions over
theoretical achievements. This said, the boundaries between the two disciplines in
modern research are often hard to distinguish.

Around the core in Figure 1.7 the large component called ‘Data Science’ is shown.
Data Science is a broad concept that roughly contains all activities that have to do with
the transformation of data to knowledge. It is broader than statistics and machine
learning as it does also include techniques to extract data and transform data. In that
sense it resembles Data Mining. However it also covers applications of the findings of
data analysis and as such has an overlap with many application domains, like geology,
medicine, biology, social sciences, and engineering. In fact, in a funny, extreme sense,
one could argue that all scientific disciplines are practising data science as long as
they infer conclusions from data.

The last component in Figure 1.7, Analytics, was mentioned above. Analytics is
understood to be the application of techniques from statistics and machine learning
to add value to organizations. Analytics pays attention to embed knowledge from data
in existing or new business processes. Analytics states that organizations can achieve
a strategic advantage by excelling in data analysis.

1.5 Research Questions

In this section we position the topics of this thesis in the wider field of scientific
research. This way it becomes clear where our results fit within the vast body of
knowledge already present. To achieve this, we first shortly sketch the research dis-
ciplines of the administration of taxes as well as data science. Subsequently, we will
formulate the research problem and the related research questions. Finally we will fit
the research questions into the framework provided by the Organization of Economic
Co-operation and Development (OECD).

Taxation is a large and flourishing research field as is evident from a long list of
specialized journals like Fiscal Studies, The National Tax Journal, Tax Law Review and
many, many more. Also the more practical side of taxation, namely the administration
of taxes, receives considerable attention, see for instance the many articles on the
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subject in the Journal of Public Economics and the Journal of Tax Administration. A
scientific conference on the administration of taxes exists as well: the International
Conference on Tax Administration.

Data Science is a flourishing research field as well. In the field of machine learn-
ing (a major sub-discipline of data science, see Figure 1.7), peer-reviewed confer-
ences play a fundamental role. Some well-known, large conferences are the Interna-
tional Conference on Machine Learning, the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases and the Conference
on Neural Information Processing Systems. Some well-known journals in the field are
the Journal of Machine Learning Research, Machine Learning, Statistical Modelling, and
others.

At the intersection of the two academic disciplines of the ’administration of taxes’
and ’data science’, surprisingly little research is available. Currently, there is no sci-
entific journal or conference specialized in this topic. A reason may be that tax data
is typically not made available publicly, which makes publication hard as scientific
results need to be reproducible. Although some journals publish articles on the ap-
plication of data science to tax administration (notably Expert Systems with Applica-
tions, and Electronic Journal on e-Government as well as some conferences in machine
learning), the application area of data science to tax administration is currently small.

This leads us to the research problem that underlies this thesis:

Research problem Expand our knowledge of the applications of
data science to improve the administration of taxes in terms of ef-
fectiveness, efficiency, or improved compliance.

The research problem is of interest as the potential of data science to the adminis-
tration of taxes looks promising (see sections 1.2, 1.3, as well as the general news
items on the potential of data science for data-rich domains), while many tax ad-
ministrations are still at the start or intermediate level of implementing data science
techniques [40] in their day-to-day business.

The research problem is too broad to answer in a single PhD-track. For this reason
we limited the scope of this thesis to the research questions below that are all directly
related to the research problem:
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Research Questions
1. What data science / analytical techniques can be used in taxpayer su-

pervision and what contributions may be expected from these techniques
(Chapter 2)?

2. Can we improve on current audit selection models by incorporating cat-
egorical variables with many values (like ‘industry sector’) that are valued
by experts doing manual audit selection (Chapter 3)?

3. Can we develop a new anomaly detection algorithm tailored to find the
outliers that are of interest to a tax administration (Chapter 4)?

4. Unsupervised anomaly detection algorithms play an important role in
(tax) fraud detection. What algorithms can be expected to work well un-
der what conditions (Chapter 6)?

5. Can we develop a data science technique that assists in testing similar
treatment of similar (tax) cases (Chapter 5)?

During the PhD track we have come across some smaller topics that are worth noting,
but are not directly related to the research questions formulated above. These topics
will be covered in Chapter 7.

A framework for the research at the intersection of data science and the admin-
istration of taxes, can be found in the OECD report Advanced Analytics for Better Tax
Administration; Putting Data to Work [40]. The OECD is an established intergovern-
mental organization that facilitates cooperation between 36 industrialized countries.
Its objective is to shape policies that foster prosperity, equality, opportunity and well-
being for all. This objective is achieved, among others, by setting standards and ex-
ploring new developments.

According to Chapter 2 of the OECD-report Advanced Analytics for Better Tax Ad-
ministration, analytics can be applied within the administration of taxes to the follow-
ing tasks:

a audit case selection,
b filing and payment compliance,
c debt management,
d taxpayer services,
e policy evaluation,
f taxpayer segmentation.
Some tasks above have a clear link to effectiveness (‘audit case selection’, ‘tax-

payer segmentation’, ’taxpayer segmentation’), while others are more focused on im-
proving taxpayer compliance (‘filing and payment compliance’, ‘taxpayer services’) or
efficiency (‘debt management’).

When considering these tasks in the light of the general distinction of analytical
tasks between internal and external processes (more details can be found in Chapter
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Task Links to Research Question
a. audit case selection effectiveness 2
b. filing and payment compliance compliance 5
c. debt management efficiency none, but small

contribution in section 7.2
d. taxpayer services compliance none
e. policy evaluation effectiveness 1
f. taxpayer segmentation effectiveness none, but small

contribution in section 7.4

Table 1.1: Relation of research question to OECD tax administration tasks suitable for
data science applications

2.1), made by Davenport and Harris [32], it might be said that items ‘b’ and ‘e’ belong
mainly to internal processes, while items ‘a’,‘c’, ‘d’, and ‘f’ are more directed to external
processes of a tax administration.

The relation between the research questions and the six main tasks of tax admin-
istrations above, is shown in Table 1.1. The table reveals that most tasks have been
touched in this thesis. It also becomes clear that research questions 3 and 4, that deal
with fraud detection, do not fit in the table. One could argue that fraud detection is
part of audit case selection, or one could add fraud detection as an additional task of
tax administrations suitable for improvement by data science.

1.6 Outline of Thesis

As explained in the previous section, four main topics have been studied:

• The role of analytics in taxpayer supervision (Chapter 2),

• Categorical features with many levels in risk models (Chapter 3),

• Anomaly detection (Chapters 4 and 6), with possible applications for fraud de-
tection or data quality,

• Process mining to test the similar treatment of similar cases (Chapter 5).

The first topic, the role of analytics in taxpayer supervision, is at the intersection
of computer science and business administration. The chapter addresses the first re-
search question. The interest in the subject stems from two opposite opinions with
respect to data science and tax administrations that could be heard some years ago at
different tax administrations. One opinion put analytics away as ‘another hype’. The
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other put analytics on a pedestal and expected great results. By looking more closely
at analytics techniques and comparing these with the activities associated with tax-
payer supervision, a clearer picture has been created of what one can realistically
expect from analytics.

The second topic combines the recently developed technique of Factorization Ma-
chines with the classical classification algorithm of logistic regression and thereby
answers the second research question. The combination allows logistic regression
models to incorporate interactions of categorical features with many levels, without
the need for an excessive amount of data. When developing risk models at the NTCA,
these categorical variables appeared, but could not be handled with classical tech-
niques.

The third topic contains two contributions to the field of anomaly detection. The
first contribution, in Chapter 4, answers research question 3. In this chapter a partic-
ular class of anomalies, called singular anomalies, are put forward. This type of an-
omalies are typical encountered when dealing with tax evasion. These anomalies are
observations characterized by a single or a few anomalous features, while the other
features display regular values. An algorithm is presented for finding these anomalies.
The second contribution, in Chapter 6, adds knowledge to the anomaly detection do-
main by testing three anomaly detection algorithms on the recently published bench-
mark of Goldstein and Uchida [43]. This chapter answers research question number
4.

The fourth topic (see Chapter 5) answers the last research question. The topic is
in the field of process mining, a relatively young branch of data science that takes
process logs as input and tries to describe and optimize (business) processes. We
contributed a test procedure to verify, based on event logs, whether two groups of
process workers treat similar cases similarly. Treating similar cases in a similar way is
part of the permanent task of the NTCA.

Besides the four main topics mentioned above, we have touched some others as
well. The contributions to these topics are limited, so none of them deserves a chapter
of its own. Nevertheless we felt that we had to include these topics, mainly to show the
reader the broadness of the field of applications of data science to tax administration.
We have collected these topics in a final chapter, Chapter 7. These side-topics are:

• application of analytics within Human Resources,

• reinforcement learning applied to tax debt collection,

• explaining risk models to non-experts, and

• recommendations based on fuzzy sets.
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1.7 Publications Related to Thesis

The content of this thesis is based on the following, previously published articles (in
chronological order).

• C. Boon, F. D. Belschak, D. N. Den Hartog, and M. Pijnenburg. Perceived human
resource management practices. Journal of Personnel Psychology, 2014

• M. Pijnenburg and W. Kowalczyk. Applying analytics for improved taxpayer
supervision. In Proceedings of 16th European Conference on e-Government ECEG
2016, pages 145–153. Academic Conferences and publishing limited, 2016

• M. Pijnenburg, W. Kowalczyk, E. van der Hel-van Dijk, et al. A roadmap for
analytics in taxpayer supervision. Electronic Journal of e-Government, 15:19–32,
2017

• M. Pijnenburg and W. Kowalczyk. Extending logistic regression models with fac-
torization machines. In International Symposium on Methodologies for Intelligent
Systems, pages 323–332. Springer, 2017

• M. Pijnenburg and W. Kowalczyk. Singular outliers: Finding common observa-
tions with an uncommon feature. In International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems, pages
492–503. Springer, 2018

• M. Pijnenburg and W. Kowalczyk. Are similar cases treated similarly? a compar-
ison between process workers. In International Conference on Business Informa-
tion Systems, pages 1–15. Springer, 2019

• M. Pijnenburg and W. Kowalczyk. Extending an anomaly detection benchmark
with auto-encoders, isolation forests, and rbms. In International Conference on
Information and Software Technologies. Springer, 2019. Best Paper Award

The side-topic of applying reinforcement learning to the collection of taxes has led to
the master thesis ‘Tax data and reinforcement learning’, written by Martijn Post under
the author’s supervision. The side-topic of explaining risk models to non-experts has
led to a non-scientific publication,

• M. Pijnenburg and K. Kuijpers. Explaining risk models to the business. Tax
Tribune, 35:57–62, 2016.

A full list of publications of the author can be found at page 141 of this thesis.



2
Analytics in Taxpayer Supervision

In this chapter opportunities for applying analytics within taxpayer supervision (also
known as ‘compliance risk management for tax administrations’) are explored. The
research in this chapter is guided by the research question:

Research Question What data science / analytical techniques can be used in
taxpayer supervision and what contributions may be expected from these tech-
niques?

The general idea of applying analytics is made more concrete for taxpayer super-
vision by explicitly writing down the tasks of taxpayer supervision and the techniques
known from analytics and data science. This will lead to more insight into what we
may expect from analytics and will assist tax administrations that want to improve
their analytical capabilities. Also, an overview is given of the current state of analytics
in tax administrations. Attention is paid as well to the limitations of analytics. Find-
ings include that over half of the activities in taxpayer supervision can be supported
by analytics. Additionally, a match is presented between supervision activities and
specific analytical techniques that can be applied for these activities. The chapter also
presents a short case study of the Netherlands Tax and Customs Administration on
the selection of VAT refunds. The chapter is based on the following articles:

• M. Pijnenburg and W. Kowalczyk. Applying analytics for improved taxpayer
supervision. In Proceedings of 16th European Conference on e-Government ECEG
2016, pages 145–153. Academic Conferences and publishing limited, 2016

• M. Pijnenburg, W. Kowalczyk, E. van der Hel-van Dijk, et al. A roadmap for
analytics in taxpayer supervision. Electronic Journal of e-Government, 15:19–32,
2017
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2.1 Introduction

2.1.1 Research objective

In this chapter we investigate what analytical / data science techniques can be used in
taxpayer supervision and what contribution may be expected from these techniques.
Several theories exist on how to effectively supervise taxpayers, see Section 2.2.1. In
this chapter we will focus on compliance risk management, a modern theory about
taxpayer supervision that is adopted by many western tax authorities.

The investigation will give directions to tax administrations willing to improve
their analytical capabilities in taxpayer supervision. It also offers some insights to re-
searchers in e-Government with interest in the potential of analytics for governmental
organizations.

To reach the research objective, the terms ‘analytics’ and ‘taxpayer supervision’ are
decomposed into underlying techniques and activities, based on the available literat-
ure. Subsequently, the techniques are mapped to supervision activities, according to
their relevance and suitability. To illustrate the practical side of analytics, a short case
study is included.

2.1.2 Need for more effective taxpayer supervision

Taxpayer supervision needs to become more effective due to an expanding work-
load often combined with staff reduction and budget cuts. Workload increases by a
growing number of taxpayers – both private individuals and businesses – and a rise in
dynamics of the taxpayer population (e.g. shifting from employment to self-employed
and vice versa). Moreover, the workload of taxpayer supervision expands by growing
international trade, partly due to new developments in e-commerce [62, 41]. Another
reason to improve the effectiveness of taxpayer supervision is the rising expectations
of citizens that want cheap, high-quality government agencies. Rising expectations of
citizens are partly due to higher education levels [41] combined with the experience
of smoothly operating non-governmental organizations and businesses.

‘Analytics’ is a promising candidate for improving the effectiveness in taxpayer
supervision. Davenport and Harris [32] define ‘analytics’ as extensive use of data, stat-
istical and quantitative analysis, explanatory and predictive models, and fact-based man-
agement to drive decisions and actions, and we will follow this definition in this chapter.
Decisions and actions that result from an analytical approach have often led to more
effective processes [32] in organizations, that are similar to tax administrations con-
cerning their size and activities. Moreover, tax administrations meet an essential con-
dition for starting with analytics, namely the availability of data: tax administrations
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generate many transaction data and have access to much third-party data. As a side
effect, analytics may increase objectivity of the treatment of taxpayers.

The interest of tax administrations in ‘analytics’ or ‘data exploitation’ is therefore
evident. International bodies like the Organisation for Economic Co-operation and
Development (OECD), the European Commission (EC), and the Intra-European Or-
ganisation of Tax Administrations (IOTA) have put analytics on their agenda. Moreover,
several tax administrations (among others the tax administrations of The Netherlands
and the United Kingdom) are investing considerably to reap the benefits of analytics.

2.1.3 Scope of the research

In this chapter, applications of analytics are restricted to taxpayer supervision. We
may position taxpayer supervision among other activities of a tax administration by
considering the following dichotomy. In general, a tax administration has the follow-
ing two tasks: (1) to make it possible for taxpayers to pay taxes, and (2) to examine
whether taxpayers paid them. The first task requires a proper organization of internal
processes like a tax return filing process and a payment process. The second task
requires an adequate supervision process. These two main tasks of a tax adminis-
tration coincide largely with a distinction made by Davenport and Harris [32]. They
distinguish between applications of analytics to improve internal processes (finan-
cial, manufacturing, Research & Development, and Human Resources) and external
processes (customer and supplier processes). As taxpayer supervision is an external
process, we will leave out internal processes in this chapter.

Note that the term ‘taxpayer’ is used broadly in this chapter, as a term for a private
individual, a business, a corporation, or any other legal entity that is taxable.

2.1.4 Organization of this chapter

The chapter is organized as follows. Section 2.2 explores related research. Section 2.3
sketches current developments in analytics in tax administrations and the insurance
and banking sector. Section 2.4 describes everyday activities in taxpayer supervision
and regular classes of analytical techniques. The techniques are subsequently mapped
onto the activities and a roadmap for analytics in taxpayer supervision is sketched.
Section 2.5 presents a case study of the Netherlands Tax and Customs Administration
(NTCA) aimed at detecting erroneous VAT refunds [14]. Section 2.6 contains conclu-
sions, and Section 2.7 provides a discussion on analytics in taxpayer supervision.
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2.2 Related Research

2.2.1 Theories about modern supervision

There exists a rich literature about tax compliance, starting with the seminal paper
of Allingham and Sandmo (1972) [5] in which the authors discuss the economics-
of-crime theory. This theory looks at a taxpayer as a ‘homo economicus’, deliberately
weighing the expected utility before deciding to comply with the tax laws (or not).
Therefore, tax administrations use so-called ‘deterrence’ strategies, based upon the
assumption that the threat of detection and punishment enforces compliance. In
this view, the frequency of audits and the size of fines are tools for treating non-
compliance. Analytics might contribute to such a strategy, by optimizing the selection
of taxpayers for audits, detecting fraud, and calculating optimal values of fines.

However, in practice, observed compliance levels proved to be higher than pre-
dicted by this early theory. This empirical fact gave rise to new theories about influ-
encing tax compliance behavior. These new theories have identified many factors that
play a role in the actual behavior of taxpayers (Andeoni, Erard and Feinstein, 1998
[7]), such as psychological factors, personal norms, social norms, tax morale, and
opportunities for tax evasion. A review paper of Jackson and Milliron (1986) [55]
summarizes tax compliance research in the period 1970 - 1985, while a review paper
of Richardson and Sawyer (2001) [99] extends this period towards 2001. Alm (2012)
[6] gives a more recent overview. Research showed that ‘deterrence strategies’ alone
are unable to efficiently attain or maintain desired compliance levels (especially given
a finite level of resources).

New insights in behavior generated new ideas about ‘advice and persuade’ strategies.
Several scholars from Public Administration have suggested policies for adequate su-
pervision, such as the theory of responsive regulation of Braithwaite (2007) [20] and
the psychology of persuasion of Cialdini (2004) [27]. These policies suggest new in-
struments for treating non-compliance, like limiting opportunities to make errors or
reducing unintentional errors by improving services. Analytics might contribute to
such a strategy, for example, by providing a more accurate description of taxpayer be-
havior, investigating areas of frequent unintentional errors, and improving taxpayer
services.

The OECD [41] and the EC [38] both encourage tax administrations to use both
these strategies within a so-called Compliance Risk Management approach, in which
a tax administration attunes its strategy to the taxpayer’s behavior. In this paper we
will discuss taxpayer supervision from the perspective of tax administrations applying
a Compliance Risk Management approach.
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2.2.2 Analytical applications within tax administrations

A literature search by the author at the beginning of 2017 has identified fourteen
published articles in scientific journals aiming at improving the effectiveness of tax-
payer supervision with analytical techniques. These articles focus on applying specific
techniques. Articles treating analytics as a general concept within tax administrations
were not found.

Eleven publications treat audit selection. The techniques follow developments in
computer science and statistics. Publications from the 1980s treat predominantly
techniques from statistics and econometrics that require limited computations. The
rise of computer power in the 1990s attracted computer scientists to the topic of
extracting knowledge from data. Publications on audit selection from that period on-
ward, focus on these newer, computation-intensive techniques.

Several studies report an increasing yield of audits by using analytics in the selec-
tion process. Hsu et al. [54] report a significant increase in efficiency (63%) compared
to the manual selection of audits in Minnesota (USA). Gupta and Nagadevara [45]
report an increase of the ‘hit rate’ of up to 3.5 times compared to random audit se-
lection of VAT returns in India. Wu et al. [113] claim an improved accuracy (i.e. less
false negatives and / or less false positives) compared to a manual process in Taiwan.
Da Silva, Carvalho, and Souza [30] conclude that results are auspicious for the tax
administration when studying audit selection for tax refunds in Brazil.

2.2.3 Managerial literature on analytics

Analytics has received much attention in the managerial literature since the appear-
ance of the book ‘Competing on Analytics’ by Davenport and Harris in 2007 [32]. In
the book, Davenport and Harris point out that analytics is more than a mere collection
of techniques; by adopting a strategy of incorporating these techniques consistently
in decision-making processes, a competitive advantage can be created. Since then,
the managerial aspect of analytics has been the subject of many articles. Many of
the findings and developments on the managerial aspect, along with some concrete
examples, can be found in the subsequent books of Davenport [33], [31]. Recently,
review articles have been appearing, reviewing the managerial literature on analytics
for sectors like Supply Chain Management [109] or E-commerce [4]. The coverage of
analytics in government has been relatively weak.
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2.3 Practical Experiences with Analytics

2.3.1 General experiences of tax administrations

In 2016 the OECD, Forum on Tax Administration (FTA) issued the report ‘Advanced
Analytics for Better Tax Administration’ [40], which provides practical examples of
how tax administrations are currently using advanced analytics, see also section 1.5.
OECD describes ‘Advanced analytics’ as ‘the process of applying statistical and machine-
learning techniques to uncover insight from data, and ultimately to make better de-
cisions about how to deploy resources to the best possible effect.’ Especially the use of
statistical techniques to make inferences about cause and effect is interesting for those
tax administrations that apply a compliance risk management strategy in which they
try to influence taxpayer behavior to comply with fiscal rules. The report states that
advanced analytics is proving a precious tool in improving tax administration effect-
iveness, meaning that it allows tax administrations to achieve its goals in a better way
compared to the situation not using advanced analytics. The report, however, does
not make any assessment, and practical examples only limitedly support the proof of
this statement.

This OECD report [40] is based upon a survey, which is completed by 16 FTA
members, one of which is the Netherlands. In chapter two of the report, six areas are
identified that apply analytics: audit case selection, filing and payment compliance,
taxpayer’s services, debt management, policy evaluation and taxpayer segmentation.
According to the survey, Australia, Ireland, New Zealand, Singapore, the United King-
dom, and the United States use advanced analytics in all areas mentioned. The Neth-
erlands uses advanced analytics in audit case selection and debt management. Almost
all respondents appear to use advanced analytics to improve audit case selection. In
the other areas, the use of advanced analytics seems to be less (structurally) used. Un-
fortunately, the survey is less specific about the extent of applying analytical activities;
are we observing isolated analytical applications or is analytics fully embedded in the
culture of the organization? If the latter is the case, one expects: fact-based decision
making even at the strategic level, analytics that is highly integrated in the business
processes, CEO passion about analytics, and broad management commitment.

The OECD report [40] concludes that in the day-to-day work, tax administrations
are always making predictions and coming to conclusions about the likely impact of
their activities. Advanced analytics — in the opinion of the OECD — does not aim to
achieve anything fundamentally new, but it seeks to carry out these same tasks with
more reliance on data and less on human judgment.

If one looks at the current situation, most tax administrations that use advanced
analytics for audit case selection seem to aim to improve the identification of tax
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returns or refunds/claims that might contain errors or be fraudulent. In terms of using
‘predictive’ analytics the current way of working does, therefore, seems to ‘predict’
that a tax return contains a problem, but not (yet) seems to be able to anticipate
likely problems.

2.3.2 Practical experiences in banking and insurance

Banks and insurance companies are in many aspects similar to tax administrations.
Banks and insurance companies are mostly large organizations, process large sums
of money, have often an extensive IT department, and employ many employees with
an accountancy or legal background. For this reason it is interesting to look at these
sectors as well.

Analytical techniques entered the banking and insurance sectors relatively early
- in the late 90’s. Simple predictive models like logistic regression or decision trees
were used to address marketing problems like mailing selection, cross- and up-selling,
credit scoring, improving customer retention [67]. Simple cluster analysis techniques
were used to partition clients into homogeneous groups. Also in this period, the first
successful application of neural networks in the banking sector took place: the Hecht
Nielsen Company developed a system for detecting fraud with credit card transactions
[49].

Over time the usage of analytics in banking and insurance has been expanding,
resulting in better management of data, more robust data analysis tools, and auto-
mation of typical analytical tasks like data pre-processing, model building, and model
maintenance. However, the main areas of application of analytical techniques have
not changed: marketing, fraud detection, and risk management. It is estimated that
currently in the banking sector the ratio of advanced analytics to basic business in-
telligence, meant as analyzing historical data with data warehousing methods, is like
72% to 28% [59].

More recently, banking and insurance sectors have been applying analytics to risk-
adjusted pricing, where the objective is to determine the price of a loan or an insur-
ance policy according to the estimated risk of the individual client. This approach, due
to some controversies around it, like privacy issues, is still not very popular, according
to Acebedo and Durnall [2]. For example, some insurance companies offer so-called
‘user-based’ car insurance, where the insurance fee is determined by the driving style
that is measured by dedicated devices installed in a car [66]. Insurance companies
also use more and more social media like Facebook or Twitter to detect fraud by
comparing the client’s claims to the information (s)he made publicly available [104].
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2.4 Analytics for Taxpayer Supervision

In this section, we look more closely how analytics can contribute to taxpayer su-
pervision when tax administrations are applying a Compliance Risk Management ap-
proach. Firstly — in 2.4.1 — a brief explanation is given of various activities that
tax administrations apply in taxpayer supervision when adopting Compliance Risk
Management. Subsequently, the technical side of analytics is unraveled in 2.4.2 by
providing an overview of modern analytical techniques. Next, in 2.4.3, activities and
techniques are mapped onto each other, leading to the first findings. Finally, in 2.4.4,
a roadmap for applying analytics in taxpayer supervision is sketched.

2.4.1 Activities in taxpayer supervision

Many western tax authorities have designed their taxpayer supervision according to
a so-called Compliance Risk Management approach. The objective of applying Com-
pliance Risk Management is to facilitate the management of the tax administration
to make better decisions. The Compliance Risk Management process helps to identify
the different steps in the decision-making process. The five major steps are [38]: risk
identification, risk analysis, prioritization, treatment, and evaluation. The first step,
risk identification, aims to identify specific compliance risks that a tax administration
encounters. Compliance risk is here understood as a risk of a taxpayer failing to com-
ply with the obligations of the tax law. In the second step, risk analysis, the impact
of the identified risks are assessed. Moreover, the causes of the risks are examined.
In the third step, prioritization, decisions are made about supervision activities that
match the causes of the identified risks/taxpayer behavior. Prioritization is needed
since resources for treating risks are scarce. In step four, treatment, execution of an
agreed supervision strategy takes place. In step five, the effects of the treatments (and
policies) are evaluated to improve future decisions.

In general, different organizational units within a tax administration perform the
activities related to these five steps. Table 2.1 shows the steps and the organizational
unit that could perform the related activities. If each of the five steps contains activ-
ities that can be supported by analytics — to a varying degree — a comprehensive,
analytical approach to taxpayer supervision will not be restricted to one particular
organizational unit within a tax administration. In Table 2.2 we will have a more
detailed look at the activities in the various stages.

Table 2.2 lists the main activities for each step following the EU and OECD guides
on Compliance Risk Management (EU, 2010) and (OECD, 2004a), and classifies the
activities according to the value of analytics to them. The classification is based upon
a) tax literature research (an article mentions the use of analytics for this activity)
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Steps in Compliance Risk Management Department involved
Risk identification Staff
Risk Analysis Staff
Prioritization Management
Treatment Operations
Evaluation Staff

Table 2.1: Main steps in compliance risk management and typical departments in-
volved

b) international conferences and workshops attended by the author where various
tax administrations share best practices and c) desk research for similar sectors, like
banking and insurance, that mention the application of certain technique in a very
similar problem. The classification in the next column in ‘Low’, ‘Medium’, ‘High’ is
based on counting the elements in two columns ‘Activities supported by analytics’ and
’Activities with no role for analytics’. The classification only could be done roughly
because a complete overview of activities is not available and only a limited number
of workshops / conferences has been attended by the author. Limitations also arise as
some activities require more time than others or are considered more important than
others. These two aspects have not been taken into account.
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Table 2.2: Activities in taxpayer supervision that can be supported
with analytics (H = High, M = Medium, L = Low)

Looking at Table 2.2, it seems safe to state that analytics can play a role in all stages
of the Compliance Risk Management approach. Analytics may support a substantial
number of activities, especially in risk identification, risk analysis, and evaluation. It is
also noteworthy to observe that for a substantial number of activities, analytics does
not seem to have an added value (see column ‘Activities with no role for analytics’ in
Table 2.2).

According to the experience of the author, cooperation is necessary between ana-
lysts, people from the shop floor, process experts, and experts in supervision, to max-
imally improve the positive effect of analytics. Analysts need to understand the data
and processes by talking with domain experts to avoid severe mistakes. Moreover,
experts are needed to judge the (initial) analytical results. The intense cooperation
between analysts and experts is crucial in the initial, developmental stage.
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2.4.2 Classes of analytical techniques

In this section, analytical techniques are grouped by the task they perform. The group-
ing is a result of comparing several categorizations found within textbooks covering
applications of analytics (Federer, 1991 [36]; Cramer, 2003 [29]; Linoff and Berry,
2011 [67]; Larose, 2005 [61]; Liu, 2007 [69]; Leskovec, Rajaraman and Ullman,
2014 [63]). In order not to get lost in details, we have merged some classes of ana-
lytical techniques. The merging holds especially for ‘descriptive statistics’ and ‘mining
new data sources’. As a result, we distinguish the following ten major classes of ana-
lytical techniques that are seen frequently in taxpayer supervision (see Table 2.3):

Classes of analytical techniques
1. Descriptive statistics 6. Time series analysis
2. Experimental design 7. Anomaly detection
3. Hypothesis testing 8. Recommendation systems
4. Predictive modeling 9. (social) Network analysis
5. Cluster analysis 10. Mining new data sources

Table 2.3: Overview of classes of Analytical techniques

(1) Descriptive statistics. Techniques from descriptive statistics provide funda-
mental insights by calculating simple summary statistics, visualizing data, or elim-
inating non-informative data. The latter is often called ‘data reduction’, or ‘feature
selection’. Techniques from descriptive statistics can be highly effective, despite their
simplicity, and are broadly applicable. Typical techniques in this class are the construc-
tion of frequency tables or computing means and standard deviations. Also plotting
histograms, bar charts and scatterplots are frequently employed. Factor analysis is a
popular technique for data reduction; see [36, 29]. In taxpayer supervision, descript-
ive statistics are used for instance, for determining the number of offenders and the
amount of lost money of a (compliance) risk.

(2) Experimental design. Surveys and experiments are often needed to gain spe-
cialized knowledge. Techniques from experimental design assist in setting up exper-
iments that gain maximal knowledge while limiting the number of observations to
be examined. Typical techniques include sampling designs and designs for controlled
experiments, such as block designs, see [36]. In taxpayer supervision, experimental
design can help, for instance to design random audit programs that provide more
information on risks by sampling the same number of taxpayers. Another application
is to design an experiment in which taxpayers are exposed to different treatments to
find the most effective treatment.

(3) Hypothesis testing. Hypothesis testing is used to test whether the data supports
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an assumption (for instance about the behavior of a group of taxpayers). In taxpayer
supervision, this often means checking prior assumptions of experts concerning risks.
Typical techniques include statistical tests like the Chi-square test (see also Chapter
5), the F-test (implicitly used in ANOVA), or some non-parametric tests. Introductory
textbooks on statistics contain more information on hypothesis testing.

(4) Predictive modeling. With predictive modeling, one tries to predict a charac-
teristic (called ‘target’) of a taxpayer or a tax return statement, with the help of a
model. For example, in the case of tax returns, this characteristic is often defined as
true or false, depending on whether the tax return contains a particular error or not.
A computer algorithm automatically generates a model based on a systematic exam-
ination of historical cases with a known target. An analyst selects a suitable algorithm
and sets the parameters of the algorithm. Some popular modeling techniques are
decision trees, logistic regression, discriminant analysis, k-nearest neighbors, neural
networks, support vector machines, and random forests. See for instance [50] for
some frequently used techniques.

(5) Cluster analysis. Techniques from cluster analysis are used to group similar
taxpayers or tax returns. This grouping gives more insight and allows tailored super-
vision approaches. Frequently used clustering techniques include K-means, BIRCH,
and DBSCAN , see [29, 69].

(6) Time series analysis. Techniques from time series analysis are applied to find
patterns in measurements that are registered periodically. For instance, these tech-
niques can be applied to find a trend or a seasonality impact within monthly sales
reported in tax returns. Popular techniques are ARMA, ARIMA, or Kalman filters.

(7) Anomaly detection. Anomaly detection aims to find unexpected observations
or events that deviate significantly from normal patterns, see also chapters 4 and 6.
In taxpayer supervision, these unusual patterns can lead to the detection of fraud,
but anomaly detection can also be used to find unknown risks. Often anomaly de-
tection proceeds by first modeling normal behavior (by applying predictive modeling
techniques or cluster analysis) and subsequently defining a measure (‘distance’) of
abnormality to identify anomalous observations. A classical technique in tax admin-
istrations and accounting is Benford’s law.

(8) Recommendation systems. Recommendation systems recommend new products
to customers based on the analysis of implicit or explicit preferences of these custom-
ers, reflected in their buying behavior or the ratings they give to products. This field
has grown substantially with the rise of e-commerce. Novel techniques that can con-
struct recommendation systems are collaborative filtering and matrix factorization
[67, 63]. Another popular technique for constructing simple recommendation sys-
tems is the A-Priori algorithm [63]. Techniques from recommendation systems are
not yet applied much in taxpayer supervision but could help improve taxpayer ser-
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vices or gain insight in the combinations of risks.
(9) (social) Network analysis. Techniques from network analysis can be applied to

extract information or risks from the (social) network of a taxpayer. In fraud detection
these techniques are applied to the network of a fraudster, thus revealing new fraud-
sters. Network analysis is also applicable for analyzing social media or visualizing
complicated legal structures [69, 63].

(10) Mining new data sources. Last decade, the machine learning community put
considerable effort into extracting information from data sources that are coming
from other sources then relation databases or surveys. Examples are collections of
documents, images, webpages, twitter accounts, and recorded speech. Special tech-
niques have been developed to tackle these new data sources [69, 63]. In taxpayer
supervision, these techniques may be used for instance to find unregistered Internet
companies.

Note that the (classes of) techniques above often require data pre-processing tech-
niques, like data warehouse technology.

2.4.3 Matching supervision activities and analytical techniques

The classes of analytical techniques from section 2.4.2 can be mapped onto super-
vision activities of section 2.4.1, resulting in Table 2.4. The table is constructed by
carefully questioning whether a class of analytical techniques can contribute to each
supervision activity. This mapping is constructed based on practical experiences from
the NTCA or known applications in related fields such as marketing or fraud detec-
tion.
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1. Risk Identification
Horizon scans X X X X X
Random audits X X X
Identify new risks from data X X X X
Segmentation of taxpayers X X X
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Detecting fraud X X X
2. Risk Analysis
Quantify risks with help of

in-house or external data X
Hit rate scoring X X
Random audits X X X
Tax gap estimations X X X X
Trend analysis X
Root-cause analysis X X X
Estimating costs of treatment X
3. Prioritization
Calculating human and

other resources X
Optimizing Resource allocation X X
4. Treatment
Easy contacts X X X X X
Desk audits X X X
Field Audits X X X X
Real-time checking of

tax returns X X X X X X
Pre-filled tax returns X
Administrating in the cloud X X X
5. Evaluation
Evaluation analysis X X
Experimental design

of evaluation X
Table 2.4: Mapping of (classes of) analytical techniques onto tasks
of taxpayer supervision.

Descriptive Statistics is the most applicable class of techniques in taxpayer su-
pervision, according to Table 2.4. The prominent role of descriptive statistics cor-
responds with practical experience where an initial, simple summary of raw data
may already reveal significant insights. Predictive modeling ranks second. Predictive
modeling techniques derive their strength in tax administrations from generalizing
valuable information, available for a small group, to a much wider group. Think for
instance about non-compliance information that is only known for a small number of
audited taxpayers. A risk model may, based on this sample, predict the compliance of
a much larger group of taxpayers.
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2.4.4 A roadmap for analytics in compliance risk management

Davenport and Harris sketch five developmental stages of an analytical business: ana-
lytical impaired, localized analytics, analytical aspirations, analytical companies, and
analytical competitors [32]. These stages are in no small degree recognizable for
tax administrations, although tax administrations lack the competitive framework of
businesses.

The first stage, ‘analytically impaired’, is characterized by businesses making de-
cisions based on intuition only. Data is generally missing or of poor quality and
not integrated. Analytical processes are lacking. Stage one is recognizable for some
tax administrations where basic administrative processes of the government (com-
pany/citizen/property administration) are not in place yet, or data is not available in
digital form. According to Davenport, Harris, and Morison [33] a business can over-
come stage one by targeting ‘low hanging fruit’, i.e., identifying small-scale projects
that show business potential. In taxpayer supervision, one may think about finding
and testing basic audit selection rules for a risk for which data can be made avail-
able. Another possibility is acquiring and matching third-party data with data of the
tax administration. At the taxpayer service side, one may start with registering and
analyzing the type of questions that arise by taxpayers to get a better understanding
of bottlenecks they experience.

The second stage, ‘localized analytics’, is characterized by autonomous analytical
activity by individuals or disconnected teams within a business. Business-wide agree-
ment on definitions is generally lacking, so ‘multiple versions of the truth’ may exist.
In niches, however, isolated analysts might have achieved some excellent, tactical res-
ults. In tax administrations, that have many employees, many niches exist and setting
up centralized policies takes time. This may be one of the reasons for the frequent oc-
currence of this stage among tax administrations nowadays. To overcome this stage, a
strong effort from senior executives is needed to create a cohesive system of analytical
activities [32].

The third stage, ‘analytical aspirations’, can be achieved by building business con-
sensus around analytical targets, starting to build a business analytical infrastructure,
create a business vision on analytics, target business processes that cross departments,
and recruit analysts [33]. In the United Kingdom, The Netherlands, and some other
countries, these transitional activities could be observed in 2016. The third stage is
characterized by coordinated analytical objectives, separate analytical processes, ana-
lysts in multiple areas of business, early awareness, support of analytical possibilities
among executives, and a proliferation of BI-tools. For taxpayer supervision, at least
some activities mentioned in Table 2.4 have to be supported by analytics. By integ-
rating external data, establishing business governance of technology and an analyt-
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ical architecture, engaging senior leaders, working with main business processes, and
developing relationships with universities and associations, the fourth stage can be
reached.

The fourth stage is characterized by high-quality data, the presence of a Business
Information plan, and the incorporation of analytical solutions in some business pro-
cesses. Full executive support is in place, and change management is applied to build
a fact-based culture. Most of the supervision activities of Table 2.4 are supported by
analytics. Analytics brings insights to taxpayer supervision, and is structurally em-
bedded in the compliance risk management strategy. In this stage, identification of
compliance risks, analysis of trends, and root-cause analyses take place structurally,
per segment of taxpayers, enabling a tax administration to match the results with the
appropriate treatment.

The fifth stage is characterized by deep strategic insights, fully embedded analyt-
ical applications, highly professional analysts, a CEO with a passion for analytics, a
broadly supported fact-based and learning culture, and a business-wide architecture.
No tax administration has yet reached this stage, and it might not be the ambition of
all tax administration to develop analytics to this extent.

The transition from the second stage to the third stage is relevant for most tax
administrations. The Case Study below presents an initiative from 2014–2017, taken
from the Netherlands Tax and Customs Administration.

2.5 Case Study: VAT refund risk model

The Netherlands Tax and Customs Administration (NTCA) receives numerous VAT
refunds requests [14]. These requests, if approved, result in a payment of the NTCA
to a taxpayer. All VAT refunds are automatically checked against risk rules to select
risky VAT refund requests. If a VAT refund is risky, a manual inspection follows.

In 2014, the NTCA started a project aiming at replacing current risk rules — de-
signed by domain experts — by a risk model, constructed by applying predictive mod-
eling techniques. Both the old risk rules and the new risk model take advantage of
domain knowledge and available data. The main difference is that with the old risk
rules, hypotheses about risky features emerged in the minds of domain experts, and in
the new risk model, a computer algorithm generates the hypotheses and subsequently
tests them on historical data. The strength of the computer algorithm lies in its power
to generate and check a vast amount of hypotheses on the historical data. Although
many of the hypotheses generated by the computer algorithm may be of inferior qual-
ity compared to the hypotheses brought forward by domain experts, some hypotheses
may outperform the old risk rules and only these are kept.
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Before the project started, some significant developments had taken place at the
NTCA. The government of the Netherlands approved a program to address structural
issues in the operating model of the NTCA, called Investment Agenda (IA, [110]).
The aim of the IA is providing the necessary response to changing taxpayer’s expecta-
tions and significant technological developments. Within this context, a general trend
towards centralization had started. Moreover, an awareness of the potential of ana-
lytics has spread among a small group of senior and middle management. The IA
made it possible to invest in analytics in a time of budget cuts. Management created
a small department (‘Data & Analytics’, now called ‘Datafundamenten & Analytics’)
that started to realize ‘data foundations’ and initiated several projects, including the
VAT refund project.

The VAT refund project consists of four stages; exploration phase, lab phase, pilot
phase, and full implementation phase. A go/no go decision separates each phase. The
project finished its full implementation phase successfully in 2017.

The ‘exploration phase’ aimed at estimating the financial benefits, the impact on
processes, and the required changes in ICT. This phase was followed by the ‘lab phase’,
that developed an operating risk model within three months. This first risk model
showed promising results on historical data, but was not yet suitable to be applied in
operations. In the ‘exploration’ and in the ‘lab phase’ approximately three analysts of
the NTCA were involved.

After the ‘lab phase’, the ‘pilot phase’ followed, aimed at testing the risk model in
practice. Two local tax offices were appointed as pilot-location. In the pilot phase, the
development team was extended with VAT domain experts. Moreover, a small team of
two professional programmers had been formed to streamline the initial code and to
make it ‘production-ready’. Finally, a pilot-support team of two employees was created
to support the two pilot locations on the job floor.

It took three pilots, of three months each, to come to a final risk model delivering
expected results. Each pilot refined the model further. For instance, after the first pilot
it was noted that the selected tax returns had a high probability of containing an error,
but on average a (too) low monetary value. At the end of the ‘pilot phase’, the regular
ICT department became involved to develop a Workflow Management application,
that is able to distribute the new risk signals efficiently to the desk auditors who
handle the new signals.

As with most analytic projects, some unexpected side results were obtained. For
instance, the riskiness of VAT refunds appeared to deviate substantially between the
two pilot locations. This suggested shifting part of the workload from one location to
the other.
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2.6 Conclusions

Analytics seems to be a serious candidate for making taxpayer supervision more ef-
fective. Mapping the analytical techniques to the activities in the various stages of a
Compliance Risk Management strategy shows the potential for taxpayer supervision
in more detail. Nevertheless, analytics cannot support all activities, see Table 2.2. This
observation leads to a hypothesis that supervision activities can be split into those that
analytics can be improved with analytics and those that cannot. Our inventory Table
2.2 suggests that for taxpayer supervision, about half of the activities can be suppor-
ted by analytics.

Although the OECD survey [40] gives practical examples of applying analytics for
audit case selection, filing and payment compliance, taxpayer’s services, debt manage-
ment, and policy evaluation, the focus currently seems to lie on improving selection
for tax auditing (higher hit rate, more revenue). The case study of Section 2.5 sup-
ports the idea that analytics can improve audit selection. However, there is a risk in
paying too much attention to audit selection with analytics. Increasing attention for
audit selection may implicitly shift the balance (between prevention and repression)
needed in Compliance Risk Management from prevention to repression. This effect
may in general occur since applications of analytics on the repressive side (e.g., audit
selection) currently are more mature compared to applications on the preventive side
(e.g., improving services). The effect may be canceled by putting more effort in de-
veloping preventive applications.

If we combine the five developmental stages of an analytical business: analytical
impaired, localized analytics, analytical aspirations, analytical companies, and ana-
lytical competitors with the results of the OECD survey, it seems that most tax admin-
istrations are still in an early stage of development of applying advanced analytics for
taxpayer supervision. The fact that some tax administrations state to apply analytics
broadly, can probably be explained since the OECD survey did not make clear to what
depth analytics are applied.

Analytics, in our opinion, does not achieve anything fundamentally new when it
comes to the type of activities carried out by a tax administration. However, analytics
could improve the foundation for a Compliance Risk Management strategy, leading to
more rational decisions made by the management of a tax administration. Analytics,
from that perspective, complements Compliance Risk Management. Especially when
tax administrations succeed in using statistical techniques to draw predictions and
make inferences about cause and effect, analytics will have an added value for Com-
pliance Risk Management – influencing taxpayer behavior to comply with the rules.
Before really confirming that analytics is more efficient and effective for taxpayer
supervision, more proof is needed, and therefore, tax administrations are urged to
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measure the impact of their (analytical) activities.

2.7 Discussion

A common misunderstanding is that analytical algorithms can solve business prob-
lems autonomously. According to Daniel Larose (2005: 4), this misunderstanding is
partly caused by software vendors that, ‘. . . market their analytical software as being
plug-and-play out-of-the-box applications that will provide solutions to otherwise in-
tractable problems without the need for human supervision or interaction’. In reality,
analytical experts are needed to guide the computer algorithms. Moreover, domain
experts are crucial for drawing the right conclusions from the output of the tech-
niques and to prevent automatic decision-making with far-reaching consequences for
taxpayers. For instance, in risk identification, analytics does not come up with a fiscal
risk directly. It mostly points to irregularities that might lead to a fiscal correction
when studied by a domain expert. Therefore, it is essential to realize that analytics
must support human experts and not vice versa.

An obvious limitation of analytical techniques is that one cannot get insights out of
data that are not present in the data. For instance, insights cannot be extracted from
data for new risks (e.g. risks related to new legislation). Moreover, available data may
contain insufficient information to be 100% confident on a risk. More likely, the data
contains clues, leading to an increased risk level, without providing certainty.

Privacy issues (as well as ethical issues) are of primal concern when applying
analytics. At present, research is done to analyze data while preserving the privacy of
individuals. This field is known as ‘privacy preserving data mining’. Although some
algorithms have been proved to preserve privacy, care should still be taken to manage
the whole process adequately. More on privacy issues and analytics can be found in
Haddadi et al [46].
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Extending Logistic Regression Models

with Factorization Machines

In this section we address the following research question:

Research Question Can we improve on current audit selection models by incor-
porating categorical variables with many values (like ‘industry sector’) that are
valued by experts doing manual audit selection?

Interest in including categorical variables with many levels was raised by a practical
problem at the NTCA: a much used risk model did not contain these variables because
they were rejected in a feature selection step. Nevertheless, experienced auditors used
these variables successfully in the manual selection of audits. The idea originated that
complementary techniques must be used to exploit the information hidden in these
variables.

The research has value outside the realm of taxes as many data scientists en-
counter categorical features with many levels and are looking for the right way to
incorporate them in risk models or other applications, as is evident from the ques-
tions on the subject on www.stackoverflow.com.

We focus on logistic regression models, a technique frequently used for risk mod-
eling within tax administrations. Including categorical variables with many levels in
a logistic regression model easily leads to a sparse design matrix. This can result in a
big, ill-conditioned optimization problem causing overfitting, extreme coefficient val-
ues and long run times. Inspired by recent developments in matrix factorization, we
propose four new strategies to overcome this problem. Each strategy uses a Factoriz-
ation Machine that transforms the categorical variables with many levels into a few
numeric variables that are subsequently used in the logistic regression model. The
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application of Factorization Machines allows to include interactions between the cat-
egorical variables, often substantially increasing model accuracy. The four strategies
have been tested on a data set of the NTCA and three public data sets, demonstrating
superiority of the approach over other methods of handling categorical variables with
many levels. The chapter is based on the following article:

• M. Pijnenburg and W. Kowalczyk. Extending logistic regression models with fac-
torization machines. In International Symposium on Methodologies for Intelligent
Systems, pages 323–332. Springer, 2017
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3.1 Introduction

Logistic regression is a well-known classification algorithm that is frequently used
by businesses and governments to model risks. However, logistic regression will run
into problems when one tries to include categorical variables with many levels. The
standard approach will transform each level of each categorical variable into a binary
(‘dummy’) variable (see, e.g., [42]), resulting in a large, sparse design matrix. The
sparsity usually leads to an ill-conditioned optimization problem, resulting in over-
fitting, extremely large values of model coefficients and long run times or even lack
of convergence. The size and sparsity of the design matrix will increase even more if
interactions are included between categorical variables with many levels or interac-
tions between these categorical variables and some numeric variables. Finally, a large
design matrix leads to a model with many coefficients, making it difficult to interpret.

Existing approaches for incorporating multi-level categorical variables into logistic
regression reduce the problem of sparsity at the price of losing some information from
data and consequently leading to models of inferior quality, see section 3.2.1 for an
overview. This became clear to the authors when working on a risk model for selecting
risky VAT tax returns for the Netherlands Tax and Customs Administration (NTCA),
see also Section 2.5. Although the risk model performed pretty well, one experienced
auditor was able to outperform the model by manually extracting information from
categorical variables with many levels such as industry sector code and zip code.
This information was clearly not picked up by the model, where standard approaches
had been followed to include these categorical variables. The real-life example of the
NTCA will be referred to in this chapter several times.

Logistic regression is traditionally used at the NTCA since it is a standard tool in
the industry and the role of various features can be easily interpreted. Moreover, it
performs well and its output can be interpreted as probabilities. This latter fact is
important since it allows a decoupling of two key components of a tax return risk
model: the probability of an erroneous tax return and the size of the financial loss
connected to the error in the tax return, see [11].

In this chapter we propose four strategies for including categorical variables with
many levels into a logistic regression model, by making use of Factorization Machines,
[97]. Factorization Machines transform the categorical variables into vectors of nu-
merical ones, taking interactions of the categorical variables into account. Factoriza-
tion Machines can be viewed as an extension of matrix factorization methods, [58],
that in turn have been developed in the context of recommendation systems, stimu-
lated by the Netflix Challenge.

The chapter is organized as follows. Section 3.2 reviews the related literature.
Section 3.3 introduces the four strategies of combining Factorization Machines and
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Logistic Regression. Section 3.4 describes the experiments on four data sets. Section
3.5 contains conclusions and a discussion of the results.

3.2 Related Research

3.2.1 Existing Methods for Many Levels

A number of approaches have been suggested to deal with categorical variables with
many levels. Many approaches focus on grouping levels of categorical variables into
a smaller number of levels. This grouping can be done in a supervised manner (i.e.
involving the target) or in an unsupervised way.

A well-known supervised way of grouping levels comes from the decision tree
algorithm CART [21]. Here, levels are ordered by the percentage of cases in the target
class. Subsequently, all levels with the percentage above a certain threshold value are
grouped into one new level, and the remaining levels into another one. Breiman et al.
[21] proved that this approach will find the optimal partitioning of a train set under
the conditions that the target is binary, the new categorical variable has two levels,
and a convex criterion (like Gini) is used to measure the quality of the partition.
Several extensions of this approach have been developed, e.g. [24, 26], but they
either lack the guarantee of finding the optimal partitioning, or have a substantially
higher order of complexity.

Other, frequently employed, supervised ways of grouping levels include search
methods, like forward or stepwise search [16]. Typically one starts with each level
forming a group of its own. Then groups are merged one at a time based on various
criteria, leading to fewer groups. This approach is used, for instance, in the CHAID
algorithm [57].

A simple, but often effective, unsupervised way of grouping levels has been pro-
posed by Hosmer and Lemeshow [53]. They suggest to group levels that occur infre-
quently. This approach gave the best results on our data sets from all supervised and
unsupervised groupings tried. Another frequently used unsupervised approach is to
let experts group the levels.

Other methods than grouping levels have been put forward. For example, in a data
pre-processing step the categorical variable with many levels can be transformed into
a numeric variable with help of an Empirical Bayes criterion, [77]. Another approach,
see [10], is to find additional numeric predictors. For instance, if the categorical vari-
able is “city”, the number of inhabitants of the city could be added to the data set as
a predictor.

Although all these approaches for dealing with categorical variables with many
levels have their merits, none of them was able to improve the current risk model at
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the NTCA. So other approaches need to be considered.

3.2.2 Factorization Machines

Factorization Machines are introduced in a seminal paper of Rendle [97]. This class of
models is often employed for recommendation systems, where categorical variables
with many levels occur frequently. The model equation of a Factorization Machine is
given by:

ŷ = w0 +

s∑
j=1

wjxj +

s∑
j=1

s∑
k=j+1

〈vj ,vk〉xjxk (3.1)

where ŷ is the predicted value for an observation with variables x1, . . . , xs. The w’s
are numeric coefficients to be fitted and the v’s are vectors to be fitted (one for each
variable). All vectors v have the same (usually small) length r, which is an input para-
meter. These vectors can be interpreted as low dimensional numeric representations
of levels.

The interesting part of equation (3.1) are the interaction terms. Instead of assign-
ing a new coefficient wjk to each interaction term, a Factorization Machine models
the interaction coefficients as an inner product between the vectors vj and vk. The in-
troduction of such a vector for each variable reduces the number of interactions from
O(s2) toO(rs), so from quadratic to linear in the number of variables s. Typically, vari-
ables xj in a Factorization Machine are binary variables resulting from transforming a
categorical variable with many levels in dummy variables. In this case the number of
coefficients is thus not quadratic in the number of levels, but linear. Note that when s
is small (e.g., s ≤ 2r + 1) there is no reduction in the number of coefficients.

The loss function that is used to find the optimal values of parameters in (3.1)
usually involves a regularization term which controls the L2 norm of model paramet-
ers. To find an optimum of the loss function several techniques can be used, among
them Markov Chain Monte Carlo, Alternating Least Squares and Stochastic Gradient
Descent [98].

3.3 Combining Logistic Regression with Factorization
Machines

In this section we propose four new strategies for extending Logistic Regression with
Factorization Machines. The key idea of these new approaches is the usage of Fac-
torization Machines for squeezing relevant information from many-level categorical
variables and their interactions into numeric variables and incorporating these latter
in a logistic regression model. In this way, potential problems with large and sparse
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design matrix are handled by Factorization Machines, while Logistic Regression takes
care of combining “non-sparse” variables in a standard way.

Notation. We model a binary target y with help of p numeric variables x1, . . . , xp,
and q categorical variables d1, . . . , dq with l1, . . . , lq levels.

We will compare the performance of our four strategies with two benchmarks: (1)
a logistic regression model without categorical variables, and (2) a logistic regression
model where infrequent levels have been grouped as suggested by [53], see section
3.2.1. We start by introducing these latter methods in more detail.

3.3.1 Plain Logistic Regression (PLM)

The PLM model consists of a standard logistic regression model of the numeric vari-
ables x1, . . . , xp. The model equation is:

ŷ =
1

1 + e−z
, where z = α0 + α1x1 + . . .+ αpxp. (3.2)

The coefficients αi are estimated by finding the unique maximum of the log-
likelihood function over the train set.

3.3.2 Logistic Regression with Grouping (LRG)

This model groups infrequent levels of the categorical variables with many levels
d1, . . . , dq into a default level for each dj . The actual threshold for calling a level
‘infrequent’ depends on the size of the data set and can be found in Table 3.1. The
grouping of infrequent levels leads to a new set of categorical variables d̃1, . . . , d̃q with
less levels. Next, a standard approach is followed to replace categorical variables by
dummy variables, i.e. each d̃j is transformed into lj−1 binary variables. Subsequently,
PLM is applied on these binary variables and the numeric predictors.

In mathematical terms, the LRG model is given by:

ŷ =
1

1 + e−z
, where z = α0 + α1x1 + . . . αpxp+

α11b11 + . . .+ α1l1−1b1l1−1 + . . .+ αqlq−1bqlq−1, (3.3)

where b’s are binary variables. Note that in order to limit notation, we denote the
coefficients of the logistic regression in all model equations ((3.2), (3.3), (3.4), (3.5),
(3.6), and (3.7)) with α0, α1, . . ., despite the fact that the values of these coefficients
differ.
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3.3.3 LRFM1

The model LRFM1 (Logistic Regression with Factorization Machines 1) is the first
model showing our new approach. The categorical variables with many levels d1, . . . , dq
are first put into a Factorization Machine f0 whose coefficients are estimated from a
train set with the target variable y. The output of f0 — denoted by g0 — is then added
to the model equation of the logistic regression. Therefore,

g0 = f0(d1, . . . , dq) and

ŷ = 1
1+e−z , where z = α0 + α1x1 + . . . αpxp + αg0g0. (3.4)

3.3.4 LRFM2

Although LRFM1 is able to model interactions between categorical variables with
many levels, it does not model interactions between the variables d1, . . . , dq and one
or more numeric variables xj . For this reason we allow the model equation (3.4) to
be extended with additional variables g1, . . . gt, where t ≤ p. Each gj is a prediction
from a Factorization Machine fj that takes as input the categorical variables d1, . . . , dq
and a variable x̄j . The variable x̄j is a discretized version of xj , obtained by an equal
frequency binning with 5 bins.

The coefficients of the Factorization Machine fj are learned from a train set that
contains the target y. Only variables gj that significantly improve the results on the
train set (compared to the model with only g0, significance level α = 0.05) will enter
the model equation. Therefore, the model equation for LRFM2 is:

gj = fj(x̄j , d1, . . . , dq) and ŷ =
1

1 + e−z
, where

z = α0 + α1x1 + . . . αpxp + αg0g0 + αg1g1 + . . .+ αgtgt. (3.5)

3.3.5 LRFM3

Instead of learning the coefficients of a Factorization Machine f on a train set with
known binary target y, we can do an intermediate step. We first fit a logistic regression
model with the numeric variables x1, . . . , xp on the train set (so without d1, . . . , dq),
and then compute the deviance residuals ri (see [53]):

ri = ±

√
2

[
yi log

yi
ŷi

+ (1− yi) log
1− yi
1− ŷi

]
,

where ŷi denotes the predicted probability that yi = 1 and the sign is + iff yi = 1.
The residual vector r can then be used to train the coefficients of the Factorization
Machine instead of the original target y. This will give a Factorization Machine f̃ .
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Note that the Factorization Machine is now performing a regression task, instead of
classification. LRFM3 is described by the equations:

h0 = f̃(d1, . . . , dq) and

ŷ = 1
1+e−z , where z = α0 + α1x1 + . . . αpxp + αh0

h0. (3.6)

3.3.6 LRFM4

Similarly as LRFM1 was extended to LRFM2, we can extend LRFM3 to LRFM4. More
specifically, we form additional variables hj by including a discretized numeric vari-
able x̄j in the Factorization Machine that is trained on residuals. Only variables hj
that significantly (α = 0.05) improve the result on the train set will enter the model
equation. This provides our last strategy:

hj = f̃(x̄j , d1, . . . , dq) and ŷ = 1
1+e−z , where

z = α0 + α1x1 + . . . αpxp + αh0
h0 + αh1

h1 + . . .+ αhr
hr. (3.7)

3.4 Experiments

Interest in including categorical variables with many levels was raised by a practical
problem at the NTCA. Most research has been focused on this data set. However, in
order for the research to be reproducible, we also applied our approach to three public
data sets in the UCI Repository [65] that contain categorical variables with many
values. See Table 3.1 for some key characteristics of the four data sets. We considered
a variable to have ‘many levels’ if the number of levels exceeded 30. This number
corresponds roughly with the situation where the design matrix becomes sparse in
our four data sets. Below we will describe the data sets, the exact parameters of the
experiments, and the results.

3.4.1 Data Sets

3.4.1.1 Tax Administration

This data set consists of approximately 80,000 audited VAT tax returns. A small part
of these tax returns (17.5%) were found to contain one or more erroneous statements
when audited. The data set has 33 numeric variables that are the result of a stepwise
feature selection process that started with over 500 variables.
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Data Set
tax kdd98 retail census

# observations 86,235 95,412 532,621 199,523
# numeric vars 33 18 3 23
% target = 1 17.5% 5.0% 29.1% 6.2%
% target = 0 82.5% 95.0% 70.9% 93.8%
threshold infreq.
level (LRG meth.) 100 100 1000 100
cat. features zipcode DMA (207) InvoiceNo ind. code (52)
(# levels) (1,027) RFA 11 (101) (25,900) occ. code (47)

industry RFA 14 (95) Description prev. state (51)
sector RFA 23 (87) (4148) hh. stat (38)

(3,747) OSOURCE (869) CustomerID cntr fthr (43)
ZIP (19,938) (4,373) cntr mthr (43)

Cntr (38) cntr birth (43)

Table 3.1: Summary of data sets used in the logistic regression / Factorization Ma-
chine experiments

3.4.1.2 KDD 98 cup

This data set comes with a binary target and a numeric target. We only use the former
as we focus on classification. Additionally, we only used the ‘learning’ data set and not
the ‘validation’ data set. The original data set contains 480 variables. We selected 22
variables to get a data set similar to the tax data. The variable selection has been
done by keeping the variables reported in [44] (page 147, Table 6) and adding the
two variables with many levels: OSOURCE and ZIP. Missing values have been replaced
by 0, except for WEALTH where the median has been inserted.

3.4.1.3 Online Retail

The following data processing steps have been performed: (1) canceled transactions
have been removed, (2) InvoiceDate has been split in a date part and a time part, (3)
StockCode has been removed since its values can be mapped almost one-to-one to
the values of Description. The data set does not contain a target. We created a binary
target by defining the target to be 1 if the variable Quantity is larger or equal to 10,
and 0 otherwise. After this, Quantity has been removed from the data set.
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3.4.1.4 Census

The following data processing steps have been taken: (1) Weight has been discarded
as is advised in the data description, (2) variables that are aggregates of other vari-
ables have been removed. For instance, Major Industry Code aggregates the levels of
Industry Code. For this reason the variables: Major Industry Code, Major Occupation
Code, Previous Region, Household Summary, Migration Code Reg, Migration Sunbelt,
and Live1year House have been removed. Similarly, (3) Veteran Questionnaire is re-
moved since most relevant information is in Veteran Benefits. Finally, (4) Migration
Code MSA has been removed since it is highly collinear with Previous State.

3.4.2 Model Quality Measures

Various performance measures can be used to assess the results of a classification
algorithm (e.g. accuracy, precision, area under the curve, recall). At the NTCA audit
capacity is limited and rather fixed. For this reason, one is more interested in using
the available capacity to the best (so avoiding false positives), than trying to find
all taxpayers that make an error (avoiding false negatives). Precision (i.e. the true
positives divided by the sum of true positives and false positives) is therefore a natural
measure, and more useful than accuracy (the sum of true positives and true negatives
divided by all cases). We applied precision at a ‘10% cut-off level’, measured on a
test set (i.e., we select the 10% highest scoring observations of a test set and then
compute the precision), in similar fashion as is done at the NTCA.

For reference, we have also provided the frequently used Area Under the Curve
(AUC) characteristic. For confidentiality reasons the precision and AUC could not be
reported for the tax data set (although tested in practise). Instead we have provided
the increase in precision, measured using the Plain Logistic Regression as a baseline.
For instance, if the precision of Plain Logistic Regression is 60%, and the precision
with the new technique is 66%, then the increase in precision is 100% · (66− 60)/60 =

10%.
In our experiments we used 5-fold cross validation to get reliable estimates of all

quality measures listed above.

3.4.3 Settings Factorization Machines

In our experiments Factorization Machines were constructed with libFM software [98]
with the following settings: number of iterations: 25, lengths of the parameter vec-
tors v: 16 (see equation (3.1)), and the optimization technique is set to ‘MCMC’. The
standard deviation of the normal distribution that is used for initializing the para-
meter vectors v in MCMC is set to 0.1. When building the Factorization Machines in
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Precision (%) Precision AUC
(% increase w.r.t. PLR)

kdd98 retail cens. tax kdd98 retail cens. kdd98 retail cens.

PLR 6.05 69.3 42.7 0.0% 0.0% 0.0% 0.0% .5348 .7845 .9358
LRG 7.88 80.7 44.7 2.7% 30.3% 16.4% 4.6% .5748 .8442 .9439
LRFM1 7.92 99.6 44.5 3.9% 31.0% 43.7% 4.2% .5775 .9634 .9426
LRFM2 7.92 99.8 44.5 5.1% 31.0% 44.1% 4.2% .5775 .9689 .9426
LRFM3 6.93 99.5 44.3 6.1% 14.6% 43.6% 3.7% .5502 .9710 .9410
LRFM4 6.79 99.5 44.3 9.6% 12.3% 43.6% 3.7% .5553 .9713 .9410

Table 3.2: Performance (measured in precision, increase of precision with relation
to Plain Logistic Regression, and Area Under Curve) for each strategy on all data
sets using five-fold cross-validation. Absolute values for the tax data set have been
deliberately omitted for confidentiality reasons.

approaches LRFM1 and LRFM2 we set the ‘task’ to ‘classification’, and in the remain-
ing two cases to ‘regression’.

3.4.4 Results

The results of applying two benchmark methods Plain Logistic Regression (PLR) and
Logistic Regression with Grouping (LRG), as well as our four strategies are summar-
ized in Table 3.2. The columns precision and AUC are not filled for the tax administra-
tion data set, because of confidentiality reasons.

3.5 Conclusion and Discussion

Looking at Table 3.2, some conclusions can be drawn. First, our proposed strategies
give better results than plain logistic regression for all data sets. Second, when com-
paring with LRG (the strategy that gave the best results from the methods of section
3.2.1), we see a subtler picture. Our methods outperform LRG clearly on the tax data
and the retail data. For the tax data we see that taking interactions of the categor-
ical variables with numeric variables into account, while training on residuals (i.e.
LRFM4), can substantially improve the result. When looking at the data set kdd98,
the approaches that train directly on the target y (LRFM1 and LRFM2) are able to give
slightly better results compared to LRG. However, LRG gives a slightly better result
for the census data set. The latter might be caused by the relatively small number of
levels of the categorical variables (maximum 52). Finally, our four strategies LRFM1,
LRFM2, LRFM3, LRFM4 lead to different results on different data sets, without one
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strategy being the best for all data sets. The only exception is that in some cases the
result of LRFM2 equals LRFM1 or the result of LRFM4 equals LRFM3. This is the case
when no interaction term exceeded the significance level for entering the modeling
equation. Therefore, we suggest to explore all four strategies in a practical problem
setting.

The results of this chapter show that Factorization Machines can be successfully
combined with Logistic Regression to overcome problems with categorical variables
with many levels. This will lead to better performing (risk) models. We think that
our methods can be adjusted without much effort to allow inclusion of categorical
variables with many levels in other classification algorithms that suffer from a sparse,
ill-conditioned model matrix, like other Generalized Linear Models or Support Vector
Machines. Also a generalization to a multinomial logistic regression is straightfor-
ward. Note that some well-known classification algorithms have problems with cat-
egorical variables with many levels. For example, the standard implementation in R
of RandomForest [64] accepts only categorical variables with at most 53 levels.

Further research can address the issue of explainability of a Factorization Machine.
Although our strategies lead to relatively simple logistic regression models, the intro-
duction of the Factorization Machines worsens the explainability for that part of the
model. We think that this problem can be solved by applying various dimensionality
reduction and visualization techniques to the matrix V that consists of vectors v that
represent levels of categorical variables, [107]. One could experiment as well with
using an L1 norm as a regularization term in the Factorization Machine.

Finally, we mention that some categorical variables with many values, like zip
codes, may have a relation with ethnicity. For example people with the same ethnic
background might be clustered in certain zip codes. Since the NTCA wants to avoid
ethnic profiling, it wants to investigate this issue prior to including zip codes in a risk
model.



4
Singular Outliers: Finding Common

Observations with an Uncommon
Feature

In this chapter we focus on the research question:

Research Question Can we develop a new anomaly detection algorithm tailored
to find the outliers that are of interest to a tax administration?

Firstly, we looked carefully at the types of outliers that are of interest for tax admin-
istrations. This leads us to define the concept of singular outliers. Singular outliers
are multivariate outliers that differ from conventional outliers by the fact that the an-
omalous values occur for only one feature (or a relatively small number of features).
Subsequently, we developed a new algorithm (Singular Outlier Detection Algorithm
– SODA) for detecting these outliers. The SODA algorithm is applied successfully to
tax data. In order to obtain reproducible findings, the algorithm is applied as well
to five public, real-world data sets and the outliers found by it are qualitatively and
quantitatively compared to outliers found by three conventional outlier detection al-
gorithms, showing the different nature of singular outliers. The chapter is based on
the following article:

• M. Pijnenburg and W. Kowalczyk. Singular outliers: Finding common observa-
tions with an uncommon feature. In International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems, pages
492–503. Springer, 2018
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4.1 Singular Outliers

Currently, many outlier detection algorithms exist [25]. However, when trying to find
tax fraud, we found that hardly any of these is able to detect a particular type of
outliers, which we will call singular outliers. In this chapter we will describe these
singular outliers and present a newly developed algorithm (Singular Outlier Detection
Algorithm – SODA) that can find these anomalies.

Roughly speaking, singular outliers are observations that show an anomalous
value for one feature (or a relatively small set of features), while displaying com-
mon behavior on all other features. This feature with the anomalous value will be
called the discriminating feature. The discriminating feature may be different for each
outlier and finding the discriminating feature is part of the learning process. Singular
outliers are typically overlooked by current outlier detection algorithms that prefer
observations with anomalous values on as many features as possible.

To explain the concept of singular outliers more clearly, suppose we have a set of
points X in a 5-dimensional vector space (with the standard metric) and a particular
point x ∈ X, surrounded by its 20 nearest neighbors. Denote the mean vector of
the 20 neighbors with m, i.e., m = 1/20

∑20
1 ni. This allows calculating the absolute

distances between x and m for each dimension. When visualized in a needle plot, the
result may look as one of subplots of Figure 4.1. The subplot in the left shows large
deviation from m in all dimensions. This observation can be labeled a conventional
outlier. However, the right subplot shows an observation with small deviations to m

on all but one dimension (dimension 4). This is what we will call a singular outlier.

0.0
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Figure 4.1: Needle plots of the absolute differences |xi −mi| (i ∈ 1, . . . , 5) of a point
x and the center m of its 20 nearest neighbors.

Singular outliers can provide interesting insights in the field of fraud detection
or data quality. We will illustrate this by our experiences at the Netherlands Tax and
Customs Authority (NTCA), where we were asked to contribute to the selection of
erroneous VAT tax returns for field audits. It turned out that tax returns containing
many unusual values, are often less risky than tax returns containing only one (or
two) anomalous fields. This apparent contradiction can be explained partly by efforts
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of taxpayers to conceal tax evasion. But also by the existence of unconventional busi-
nesses with non-standard business models, that produce uncommon values on many
fields of a tax declaration, without any increased risk of tax evasion. Moreover, it
was noted at the NTCA that taxpayers sometimes unintentionally change two adja-
cent fields, leading to an example of singular outliers in the field of data quality. The
examples in section 4.4 point to other application areas.

Singular outliers usually differ from those found by conventional outlier detection
algorithms. Let us consider a real life example that will be more elaborate treated
in section 4.4. In the example two algorithms, the newly developed SODA-algorithm
and the popular LOF algorithm, [22] are used to find outliers in a data set containing
the marks on 5 courses of 88 students[74]. Figure 4.2 shows two identical parallel
coordinates plots (for more information on parallel coordinates plots see e.g., [23]) of
this data set, but each plot highlights different outliers. The left plot highlights three
singular outliers. We see that the singular outliers are students that have common
marks on at least three subjects, but one or two exceptional marks. In contrast, the
right subplot shows the same parallel coordinates plot but with three conventional
outliers highlighted. These students have exceptional marks on all subjects (in this
case exceptionally high). The singular outliers are interesting, since valuable insight
might be gained in exploring the cause of the one (or two) exceptional mark(s) of the
students.

Outliers found by SODA

Min

Max

MECH VECT ALG ANL STAT

Outliers found by LOF algorithm

Min

Max

MECH VECT ALG ANL STAT

Figure 4.2: Two identical parallel coordinates plot of the Marks data set. The left
plot highlights three observations that are singular outliers (detected by the SODA
algorithm). The right plot highlights three conventional outliers (detected by the LOF
algorithm). We see that the singular outliers have one or two features with exceptional
values, whereas the conventional outliers show exceptional values on all features.

We will now define formally a singular outlier.

Definition 1 An observation is called a singular outlier if there exits one feature (or a
relatively small number of features), called the discriminating feature(s) such that the
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observation is an outlier when the discriminating feature is taken into account, but no
outlier when the features are restricted to the non-discriminating features.

The purpose of this chapter is to point to the class of singular outliers and present
an algorithm for finding them. The chapter is organized as follows. Section 4.2 gives
a short overview of classes of outlier detection algorithms. Subsequently Section 4.3
describes the SODA algorithm for finding singular outliers and explains the experi-
mental setup to test the algorithm on five public data sets. Section 4.4 contains the
results of the experiments. Finally, Section 4.5 contains the conclusions of the chapter
and a discussion of the results.

4.2 Related Work

Chandola, Banerjee, and Kumar [25] present an overview of commonly used outlier
detection techniques. They distinguish five classes of unsupervised outlier detection
algorithms: nearest neighbor-based algorithms (including density based approaches),
clustering-based algorithms, statistical algorithms, information theoretic algorithms,
and spectral algorithms. Goldstein and Uchida [43] present a similar categorization.

Nearest neighbor and clustering-based outlier detection are the most used categor-
ies in practice, according to Goldstein and Uchida. Of these two categories, nearest-
neighbor based algorithms perform better in most cases [43]. Moreover it is useful to
split the class of nearest neighbor algorithms in two subclasses: local algorithms and
global algorithms. In the remaining categories outlier detection algorithms, the stat-
istical algorithm HBOS (Histogram-based Outlier Score) performs remarkably well in
experiments [43].

We will briefly describe three algorithms that we will compare with SODA: Local
Outlier Factor, kth-Nearest Neighbor and HBOS.

The Local Outlier Factor (LOF) is introduced by Breunig et al. [22]. The basic
idea is to compare the density of an observation x with the density of its k closest
neighbors Nk(x). If we ignore a small subtlety that may arise if the kth-neighbor of a
point is not unique, the LOF score can be calculated simply by,

LOFk(x) =
1

k

∑
o∈Nk(x)

dEucl(x,x(k))

dEucl(o,o(k))
, (4.1)

where dEucl(x,y) = ‖x− y‖ is the Euclidean distance.
The kth nearest neighbors outlier detection algorithm is straightforward: the dis-

tance to the kth neighbor is used as an anomaly score [96]. By taking the distance
to the kth neighbor instead of the average distance to the kth nearest neighbors, the
algorithm is better able to detect a small cluster of outliers.
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The Histogram Based Outlier Score [43] starts with making a histogram for each
feature in the data set. Then, for each observation, the height of the bins it resides
are multiplied. This will result in a positive number. Subsequently the negative of this
number is taken as an outlier score. In the experiments, the frequently used Sturges’
formula is applied to compute the number of bins.

4.3 Singular Outlier Detection Algorithm

4.3.1 The Algorithm

We propose an algorithm called SODA (Singular Outlier Detection Algorithm) to
find singular outliers. The algorithm involves several steps which are specified in Al-
gorithm 1. The input of the algorithm is a data set with n observations and p numeric
features as well as a parameter k that specifies the number of nearest neighbors. The
output of the algorithm is an outlier score for each observation; large scores repres-
ent outliers. Additionally, the discriminating feature for each observation is given as
output. The latter is a convenient starting point when manual inspection of outliers is
required.

In the first step, for each observation xi, i = 1, . . . , n, its k neighbors Nk
i are

found using the Manhattan metric (also called the ‘distance based on the L1 norm’).
Subsequently, the center of these neighbors, mi, is determined as the trimmed mean,
i.e., the mean calculated after removing the largest value and the smallest value along
each dimension. These extreme values are ignored to limit their impact on mi.

As a next step, the Euclidean distance dEucl(xi,mi) as well as the Manhattan
distance dManh(xi,mi) are calculated. We will call the ratio of these two distances
LEMR (Local Euclidean Manhattan Ratio), i.e.:

LEMR(xi) =
dEucl(xi,mi)

dManh(xi,mi)
. (4.2)

This ratio is the ‘singular outlier score’ for observation xi. It is an indicator of the
‘spread’ of the values of the vector vi = ‖xi −mi‖. The left subplot of Figure 4.3
displays a 2-dimensional example with the Euclidean unit sphere (i.e., the circle) as
well as the Manhattan unit sphere (the square: all points with a Manhattan distance
1 to the origin). It is clear from the figure that points on the coordinate axes (i.e.,
singular outliers) are in both spheres, so the ratio of the Euclidean to the Manhattan
distance is 1. On the other hand, points that are on the diagonals (the opposite of
singular outliers) have the largest difference in Euclidean and Manhattan distance to
the origin and consequently have a low LEMR value. The right subplot of Figure 4.3
shows the LEMR value in this 2-dimensional example.
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Figure 4.3: Left: the Euclidean unit sphere and the Manhattan unit sphere in 2 dimen-
sions. Points on coordinate axes (singular outliers) have a maximal value of the Local
Euclidean Manhattan Ratio (LEMR = 1). Points on the diagonals (i.e., conventional
outliers) have a minimal LEMR value (LEMR =1/

√
2), see subplot right. In more di-

mensions the difference between the Euclidean and the Manhattan distance is more
pronounced.

The value of LEMR cannot exceed 1 since the Euclidean length of a vector ‖v‖ is
always smaller or equal to the L1-norm ‖v‖1 =

∑
|vj |. The LERM value of 1 occurs

when all but one components of v equal 0. The value of LEMR is a minimum in case
the elements of v are all of equal length (and unequal 0). The minimal value depends
on the number of features p and is given by 1/

√
p.

The calculation of the nearest neighbors in the first step of the algorithm is per-
formed using the Manhattan distance in contrast to the more frequently used Eu-
clidean distance. The reason is that the discriminating feature of a singular outlier
ideally deviates strongly from other observations. This deviation may however be so
large that it can have too big influence on the determination of the nearest neighbors.
In the worst case, this would lead to neighbors that only share a similar value for the
discriminating feature. To diminish the effect, we prefer the Manhattan distance that
is less influenced by extreme values in one feature.

The algorithm has one parameter k. A (too) small value of k will lead to obser-
vations x with very few neighbors. Consequently, it might result in outliers whose
non-discriminating features have a risk of being not so common. A (too) large value
of k usually has less severe consequences. However, in theory it can lead to bad results
if the data points are gathered in many small clusters and k exceeds the cluster size.
For instance this may happen if the data contains binary features. In our experiments
we used k = n/5.

The time complexity of the singular outlier detection algorithm is O(n2pk).
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Algorithm 1: singular Outlier Detection Algorithm (SODA)
Input : A data set X = {x1,x2, . . .} with p (numeric) features,

k the number of nearest neighbors
Output: 1) outlier score. The observations with the largest scores represent the

singular outliers,
2) discriminating feature for each xi. This indicates the feature that

contains the anomalous value.
1 Find the k nearest neighbors Nk

i for each observation xi in X based on the
Manhattan distance dManh.

2 for each observation (row) xi in X do
3 Compute the vector of trimmed means mi of the neighbors Nk

i :
mi = meantrimmed

xj∈Nk
i

{xj}

4 Compute
5 dEucl(xi,mi) =

√∑p
s=1(xs −ms)2

6 dManh(xi,mi) =
∑p

s=1 |xs −ms|
7 outlier score(xi) = LEMR(xi) = dEucl(xi,mi)

dManh(xi,mi)

8 discriminating feature(xi) = argmax
s∈{1,...,p}

|xs −ms|

9 end

4.3.2 Measurement of Characteristics of Singular Outliers

To determine whether an outlier can be called singular, two characteristics must hold.
These two characteristics follow from definition 1 and are listed below.

No outlier with respect to non-discriminating features When the discriminating fea-
ture is removed, the observation stops to be an outlier.

Outlier with the discriminating feature The observation must become an outlier
when the discriminating feature(s) is taken into account.

To quantify these two qualitative characteristics, we will formulate two measures.
These measures will be applied in section 4.4, Table 4.2 to see whether the outliers
found by SODA can be called singular outliers.

The first characteristic is measured for an outlier by removing the discriminating
feature from the data set and then calculate an outlier score. This outlier score must
be low for the characteristic to be valid. In principle any outlier score can be used. In
this chapter the LOF score is chosen, since it is a well established outlier score that
performs well on a broad variety of data sets [43]. A LOF score around 1 will be
accepted as a sign that the first characteristic is applicable.
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The second characteristic is measured for an outlier by computing an outlier score
with and without the discriminating feature. Subsequently the ratio of the outlier
scores is taken as a measure. Again, in principle any outlier score can be taken, but in
this chapter we choose the LOF score. Hence, the measure of the second characteristic
becomes LOFall(x)

LOFw.o.discr(x)
. A large ratio signifies that the addition of the discriminating

feature has substantially increased the outlier score (LOF) and is taken as a sign that
the second characteristic is applicable.

In section 4.4 the outliers found by SODA will be compared with outliers of the
three conventional outlier algorithms mentioned in section 4.2. In order to apply the
two measurements above, we have to determine the discriminating feature for out-
liers found by these algorithms as well. For the algorithms based on nearest neighbors
(LOF and kthNN) a natural choice is to take:

discriminating feature(x) = argmax
s∈{1,...,p}

|xs − xs(k)|, (4.3)

where xs(k) is the sth feature of the k-nearest neighbor of x. For the HBOS algorithm
we take the feature with the lowest bin height as the most discriminating feature.

4.4 Comparison

This section compares the outliers found by SODA with outliers detected by three con-
ventional outlier detection algorithms (mentioned in section 4.2) to five real world
data sets, that will be described shortly. The comparison consists of parallel coordin-
ates plots and the two measurements described in section 4.3.2.

The selected data sets are listed in Table 4.1, along with some key properties.
One of these properties is the value k that is used in the SODA algorithm and the
two conventional outlier detection algorithms based on nearest neighbors (LOF and
kthNN). In the experiments, k is set to (approximately) one-fifth of the number of
observations, see section 4.3.1.

data set name # rows # columns k

Marks 88 5 20
Istanbul Stock Exchange 536 9 100
Wholesale Customers 440 6 80
Polish Bankruptcy 5,907 5 1,000
Algae 306 8 60

Table 4.1: Data sets used in the singular outlier experiments with key indicators.
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Measurement 1 - no outlier without discriminating feature: LOF−d
data sets

Marks Istanbul Wholesale Polish Algae
algorithm
SODA 1.02 0.99 1.16 1.01 1.01
LOF 1.45 2.57 2.98 147.7 3.84
kthNN 1.42 2.56 3.69 147.7 4.20
HBOS 1.39 2.57 4.02 122.0 3.28
Measurement 2 - outlier with discriminating feature: LOFall

LOF−d

data sets
Marks Istanbul Wholesale Polish Algae

algorithm
SODA 1.09 1.28 2.31 5.75 1.99
LOF 1.04 1.08 2.11 1.46 1.73
kthNN 1.02 1.04 1.60 1.46 1.27
HBOS 1.06 1.06 1.06 1.13 1.08

Table 4.2: Measurements of the two characteristics of singular outliers (see section
4.3.2) for the outliers selected by SODA, LOF, kthNN and HBOS on five data sets.
Each algorithm is allowed to pick 3 outliers and the values reported are averages over
these three outliers. The first measurement computes an outlier score (LOF) without
the discriminating feature. The second measurement computes the ratio of the LOF
score with all features and the LOF score without the discriminating feature. Singular
outliers are characterized by a value close to 1 for measurement 1 and a large value
for measurement 2. We see that the outliers selected by SODA can be termed ‘singular
outliers’ and differ on these characteristics from the outliers found by conventional
outlier detection algorithms.

4.4.1 Marks Data

The first data set, Marks, comes from Mardia, Kent and Bibby [74] and consists of
the examination marks of 88 students in the five subjects mechanics, vectors, algebra,
analysis and statistics. We used these unstandardized marks.

The parallel coordinates plot of this data set is displayed in the introduction, see
Figure 4.2. Clearly, the SODA algorithm picks up students that perform around aver-
age for most subjects, except for one subject. In contrast, the LOF algorithm selects
students that perform exceptionally well on all subjects. The measurements of Table
4.2 confirm that the SODA outliers can be called singular outliers: the average value
for the SODA outliers on measurement 1 equals 1.02, which is close to 1 and much
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Figure 4.4: Parallel coordinates plot for the Istanbul Stock Exchange data set with the
three largest outliers highlighted.

lower compared to the values of other algorithms. The average value on the second
measurement (1.09) is not very large, but at least larger than the values for the out-
liers found by the other algorithms.

4.4.2 Istanbul Stock Exchange Data

The Istanbul Stock Exchange data set [3] displays the daily increase in eight major
stock exchange indices for the period January 5 2009 to February 22, 2011. The data
are already standardized.

The parallel coordinates plots of Figure 4.4 show that the SODA algorithm has
picked three days where the average stock return is common (0.3 %), but the Istanbul
stock exchange performed deviantly. In contrast, the LOF algorithm has selected three
days on which most stock indices got exceptional good returns (average return of
these days was 4.1 %, average of all days is less than 0.1 %). Table 4.2 confirms the
differences of the outliers found by SODA and the three conventional algorithms.

4.4.3 Wholesale Customers Data

The Wholesale Customers data set [1] contains the annual spending on six product
categories for 440 customers of a wholesaler in Portugal. These not standardized
spending amounts were input for the algorithms. It is clear from the parallel coordin-
ates plots in Figure 4.5 that the SODA algorithm selects customers with average sales
on all product categories, but one. The LOF algorithm selects customers with excep-
tional high purchases on at least three product categories.

The statement that SODA picks out singular outliers is confirmed by looking at the
measurements of Table 4.2. However, some experts might be inclined to call the red
and / or pink line of the LOF algorithm singular outliers as well. See Section 4.5 for
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Outliers found by SODA
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Outliers found by LOF algorithm
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Figure 4.5: Parallel coordinates plot for the Wholesale Customers data set with the
three largest outliers highlighted.

Outliers found by SODA
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Figure 4.6: Parallel coordinates plot for the Polish Bankruptcy data set with the three
largest outliers highlighted.

a discussion of this aspect.

4.4.4 Polish Bankruptcy Data

The Polish Bankruptcy data contains financial information of Polish companies and
was originally used to model the probability of a bankruptcy [117]. We took the ‘five
year set’ and standardized the ratios. We selected five financial ratios that correspond
to major economic indicators of the company: X2 (total liabilities / total assets), X3
(working capital / total assets), X7 (Earnings Before Interest and Taxes / total assets),
X9 (sales / total assets), and X10 (equity / total assets). After removing observations
with missing values, 5,907 observations remain.

Comparing the outliers found by SODA and LOF in the parallel coordinates plots of
Figure 4.6, we see that the SODA outliers show more common behavior than the LOF
outliers. It is not clear from the figure whether the SODA outliers have at least one
anomalous value. The latter is confirmed by Table 4.2. The first measurement shows
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an average LOF value of 1.01 for the SODA outliers, indicating that the observations
are not considered outliers without the discriminating feature. Simultaneously, meas-
urement 2 shows that the average LOF score increases by a factor of over 5 when the
discriminating feature is added. However, if one is interested in two-feature singular
outliers, one may find the blue and pink line of the LOF plot interesting. See Section
4.5 for a discussion on this aspect.

4.4.5 Algae Data

The data set Algae, available via the UCI repository [65], comes from a water quality
study where samples were taken from sites on different European rivers of a period
of approximately one year. We used the (standardized) concentrations of 8 chemical
substances from these samples as features. We exclude the additional measures on
different algae populations. After removing rows with missing data, 306 observations
and 8 features remain.

The parallel coordinates plots of Figure 4.7 show that the SODA outliers have
one chemical substance that has an unusual value. One of these outliers is picked up
by the LOF algorithm as well. The other two LOF outliers show unusual values for
three chemical characteristics. Table 4.2 confirms the on average different nature of
the outliers selected by SODA and the three conventional algorithms. If one is inter-
ested in three-feature outliers, the blue and pink lines of the LOF plot are interesting
observations as well. See Section 4.5 for a discussion on this aspect.

Outliers found by SODA

Min

Max

mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla

Outliers found by LOF algorithm

Min

Max

mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla

Figure 4.7: Parallel coordinates plot for the Algae Data with the three largest outliers
highlighted.

4.5 Conclusion and Discussion

In this chapter, we introduced the concept of a singular outlier and pointed to its use-
fulness in the contexts of fraud detection, data quality and other areas. We introduced
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an algorithm (SODA) to detect these outliers, based on the Local Euclidean Manhat-
tan Ratio (LEMR). The algorithm has been applied to five publicly available data sets.
The parallel coordinates plots, as well as the the results shown in Table 4.2, confirm
that the SODA algorithm is suited for finding singular outliers.

Although Table 4.2 points out that the SODA algorithm finds observations that bet-
ter match the definition of singular outliers when one restricts oneself to one discrim-
inating feature, the parallel plots of the latter three data sets show that there might
be interesting outliers that have two discriminating features. These observations may
not get the highest outlier scores for SODA, despite the fact that the deviations in the
discriminating features may be large. In such a situation, the SODA algorithm may be
adapted to focus more on two-feature singular outliers or to take the absolute value
of the deviations into account. This might be a fruitful aspect for further research.
Part of such research can be to adjust the Local Euclidean Manhattan Ratio. The Eu-
clidean and the Manhattan distances are based on the Lp norm. Other ratios can be
constructed by taking other values for p instead of 2 and 1.

Another interesting path for further research might be to view the detection of
singular outliers as an optimization problem where simultaneously attention is given
to maximize dissimilarity (discriminating feature) as well as maximizing similarity
(non-discriminating features).

Finally, singular outliers might be found with an algorithm with a lower time
complexity than SODA. The time complexity of the SODA algorithm is dominated by
finding the nearest neighbors of each observation. The nearest neighbors component
gives a local flavor to SODA that might be beneficial for data sets that possess local
structures (like separate clusters). However, for data sets that do not display this
property, comparison of an observation x to the global center mglobal might be used.
This reduces computational time considerably.





5
Are Similar Cases Treated Similarly? A
comparison between process workers

For tax administrations similar treatment of similar cases is demanded by law. Nev-
ertheless, in practice it is not always easy to achieve this. Especially in processes in-
volving human professional judgment (e.g., in Knowledge Intensive processes), such
as audit selection, debt management and the processing of disputes, it is not even
easy to verify if similar cases receive similar treatment. In these processes there is a
risk of dissimilar treatment as human process workers may develop their individual
experiences and convictions or change their behavior due to changes in workload
or season. Awareness of dissimilar treatment of similar cases may prevent disputes,
inefficiencies, or non-compliance with regulations that require similar treatment of
similar cases. Therefore, in this chapter, we address the research question:

Research Question Can we develop a data science technique that assists in
testing similar treatment of similar (tax) cases?

In this article two procedures are presented for testing in an objective (statistical)
way if different groups of process workers treat similar cases in a similar way. The
testing is based on splitting the event log of a process in parts corresponding to the
different (groups of) process workers and analyzing the sequences of events in each
part. The two procedures are demonstrated on an example using synthetic data and
on a real life event log from tax data. The chapter is based on the following article:

• M. Pijnenburg and W. Kowalczyk. Are similar cases treated similarly? a compar-
ison between process workers. In International Conference on Business Informa-
tion Systems, pages 1–15. Springer, 2019
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5.1 Introduction

Knowledge Intensive (KI) processes present an expanding topic in the field of Busi-
ness Process Management (BPM), see for instance the paper of Marin et al. [75]. KI
processes differ from classical processes by the presence of human process workers
whose domain knowledge has an important influence on the next steps in the process.
KI processes occur typically in organizations that complete complex tasks.

The human component in KI processes makes the flow of activities less predictive
and raises the question whether similar cases are treated similarly. Differences in
treatment of similar cases may result from differences in the expertise, workload, and
opinions of the human process workers, especially when the same process is executed
at two or more different sites. For example, when similar cases are presented to two
process workers, they may process them in different ways.

Awareness of dissimilar treatment of similar cases by different groups of process
workers (e.g., at different locations) is important for businesses, not only because
a uniform treatment is usually preferred with a view on efficiency, but also since
the lack of uniformity may create disputes between customers and the company. For
governmental organizations similar treatment of similar cases is even more important,
as similar treatment is often demanded by law or policy. As such, the topic is of
interest for auditors as well. Auditors, besides the classical task of checking financial
statements, are also expected to check compliance with regulations and the law.

Verifying similarity of treatments for two or more (groups of) process workers is
complicated by two facts. First, the characteristics (‘attributes’) of cases presented to
process workers may differ from process worker to process worker. For instance, when
two process workers are employed in different regions, one should take into account
the regional differences of the cases presented to these process workers. Second, hu-
man professionals often have the possibility (and are expected) to gather additional
information about the cases they treat. Although this (unstructured) information may
be stored in a case management system, it is usually not registered in the event log of
the process. This ‘data incompleteness’ introduces an additional stochastic compon-
ent when modelling the decisions of a process worker. Hence statistical techniques are
required to make measure similarity of treatments, see Section 5.3 for more details.

A simple example may illustrate the issue of similar treatment. Consider a Know-
ledge Intensive service process of a manufacturer of laptops and printers, as shown in
Figure 5.1. The service process supports customers whose device breaks down within
the warranty period. A defect device that comes in, initially starts two activities that
are processed in parallel: registration (V1) and sending a confirmation (V2). Part of
the registration process is the recording of the device type (possible values: ‘laptop’
and ‘printer’) and the original purchase price (price). After registration and confirm-
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Figure 5.1: Simple process model of a service process of a laptop and printer manu-
facturer.

ation, a human process worker considers the defect device and has three options:
return the original purchase price (V3), send a new device (V4), or send the defect
device for repair (V5). The choice of option depends on an assessment of the actual
defect, the recorded values, and possibly additional information gathered by contact-
ing the customer. When the repair option is chosen (V5), the device will be send to
an external repair shop and the device will be tested (V6) afterwards. Depending on
these test results, a second process worker will decide on the next activity; a good
test result will lead to ship the repaired device back to the customer. Otherwise the
process worker may choose to send the device again for repair or to return the money
to the customer (V7).

Traces in the event log of this process may look like this:

• 244 Printer · Start V1 V2 XOR1 V5 V6 XOR2 V5 V6 XOR2 V7 End

• 69 Printer · Start V2 V1 XOR1 V3 End

• 224 Laptop · Start V1 V2 XOR1 V4 End

• 1082 Laptop · Start V1 V2 XOR1 V5 V6 XOR2 V7 End

• 67 Printer · Start V1 V2 XOR1 V4 End

where the first number is the purchase price of the device.
The service process is deployed at various regions. The manufacturer is interested

in knowing whether similar defects receive the same treatment at each region to
deal with a rise of complaints claiming that customers in region ‘A’ usually receive a
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new item quickly, while customers in region ‘B’ have to wait for a repair. The service
process of this manufacturer will serve as an example throughout this paper.

The research into similar treatment is motivated by two real-life examples where
knowledge of similar treatment of similar cases is found to be important. One is the
debt-collection process of a tax administration where it is expected that debtors in
various regions are treated in a uniform way, see Section 5.4.2 for more details. The
other is the treatment of patients in two wards of the same hospital according to the
same protocol.

The paper is organized as follows. Section 5.2 reviews related work. Section 5.3
describes two testing procedures. Section 5.4 demonstrates these procedures on the
‘warranty’-example and the tax data set. We end with conclusions and future research
in Section 5.5. The code used in Section 5.4.1 can be found on github: github.com/
PijnenburgMark/Similar_Cases_Treated_Similarly/.

5.2 Related Work

5.2.1 Process Drift

Detecting different variants of business processes is a topic that is receiving increasing
attention [19], [72], [17], [82]. Most works focus on detecting changes in a business
process over time, but some papers also mention differences by location (e.g., de-
partments), like the paper of Pauwels and Calders [83], or mention the more general
applicability of their method, like the paper of Bolt et al. [17].

One of the earliest papers in the field of process drift is the paper of Bose et al.
[19]. The method described in this paper extracts features from an event log and
compares the values of these features at two different points in time. The features
demonstrated in the paper only allow for finding ‘ structural changes’, i.e., changes in
the process model.

The paper of Ostovar et al. [82] differs from the paper of Bose et al. [19] by
using a technique for automated discovery of process trees and considering changes
in these trees instead of using features extracted from event logs. Moreover, root cause
analysis is supported by providing natural language statements to explain the change
behind the drift.

In the paper of Pauwels and Calders [83] the concept of process drift is applied to
the data set of the BPI challenge 2018 [108]. Besides showing concrete results, the
authors add a new model-based approach relying on Dynamical Bayesian Networks.
Their approach is strengthened by providing some nice aides for detecting process
drift visually.

The paper of Maaradji et al. [72] adds a formal statistical test to the comparison

github.com/PijnenburgMark/Similar_Cases_Treated_Similarly/
github.com/PijnenburgMark/Similar_Cases_Treated_Similarly/
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between different time points and thus adds objectivity. Moreover the detection of
process drift is determined by looking at the frequencies of sequences of activities,
and is thus capable of detecting structural changes as well as changes in frequencies
of process paths.

In our approach, similarly to Maaradji et al. ([72]), we also look at the activit-
ies themselves instead of derived features and we also apply a formal statistical test.
However, there are several differences. From the contextual viewpoint there are two
main differences. First, we consider differences in process execution between groups
of users instead of differences in time and second, we focus on the human decision
making in the process and thus leaving aside the activities that are triggered auto-
matically by the workflow management software. As a consequence of the latter, we
have to consider fewer differences, making the comparison simpler and the statistical
testing more powerful. From the technical point of view, there are two differences as
well. First we take into account the attributes of the cases that enter the process and
second, we consider the frequently occurring situation where some or all decisions
in the process are independent of each other. If this assumption holds, the χ2-test
becomes much more powerful and easy to use, because of the mathematical property
that the sum of independent χ2-distributions is again a χ2-distribution.

5.2.2 Sequence Analysis

Event logs form the basis of process mining and are in essence a number of sequences
of activities. For this reason it is not surprising that techniques from sequence analysis
(also known as ‘sequential pattern analysis’ or ‘sequential pattern mining’) are applic-
able in process mining. One of the techniques from sequence analysis that is applied
frequently in this paper, is Pearson’s χ2-test to test the probabilities of going from one
activity to the next against a theoretical model, see the book of Bakeman and Gottman
[9]. We apply this test repeatedly under the null hypothesis of no differences in treat-
ment between (groups of) process workers. As described by Bakeman and Gottman
[9], Pearson’s χ2-test can be also applied to sequences of events, although the num-
ber of possible sequences (and thus the number of observations needed to fulfill the
assumptions of the test) grows exponentially in the sequence length. We overcome
this problem by making an assumption of independence of decisions (Section 5.3.1)
or by focusing on the most frequent traces (Section 5.3.2).

5.3 Testing for similar treatment of similar cases

When testing similar treatment of similar cases for two groups of process workers, a
first step is finding the points in the process where human process workers decide on
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the next activity. We will call these points ‘decision points’. In a process model these
are ‘XOR-junctions’ (eXclusive OR-junctions), i.e., places where the flow of activities
can take two or more directions.

We define ‘similar treatment of similar cases’ as the situation where at each de-
cision point holds that two similar cases (measured by having the same attributes)
have the same probability distribution over all possible follow-up activities.

In case only one decision point is present, the situation is relatively simple and the
approach is described in Section 5.3.1. When multiple decision points are present,
two situations can occur: a) the decisions at the decision points can be considered
independent of each other (frequently called a ‘Markov assumption’ in sequence ana-
lysis). In this situation the comparing of two groups of process workers can be done
for each decision point individually and the results can later be combined. This case
is addresses in Section 5.3.1. b) the decisions cannot be considered independent, in
other words the decision at one decision point is influenced by the previous decisions
(i.e., it matters for the decision what path a case took through the process model to
reach the decision point). The problem that arises in this situation is that the number
of possible combinations of decisions increases exponentially in the number of de-
cision points and hence a lot of traces in the event log are needed if a naive approach
is taken. In Section 5.3.2 we present a heuristic that requires less data, by assuming
that a subset of possible traces accounts for most observed traces in the event log. An
assumption which is often reasonable in practice.

5.3.1 Approach 1: Independence of Decisions

5.3.1.1 A test for a single decision point

If we compare two groups of users, say from location L1 and L2, and we focus for
the moment on one decision point, a table like Table 5.1 forms the basis for analysis.
In the first column of Table 5.1 ‘Cluster of case’, we see that all cases are grouped
based on their attributes into K clusters. This clustering is done to make groups of
similar cases. Then in the next column we see the decision that was made at the
decision point, i.e., the next activity for the case. Then follow two columns indicating
the count data of cases for both groups of users (L1 and L2). See Table 5.7 for two
examples of filled out tables.

If we consider a subtable of Table 5.1 that belongs to one cluster, we can apply
the well known two sample χ2-test (see for instance the book by Kanji[56]) to test
whether the differences between the two user groups can be attributed to chance,
or that there is a reason to reject the hypothesis of similar treatment. If we want to
apply the χ2-test to the whole table (i.e., for all clusters simultaneously), we can take
the approach as described for instance by Hald [47] (page 746). Note that Table 5.1



Chapter 5. Are Similar Cases Treated Similarly? 67

group of process workers
Cluster
of case

output
activity

L1 L2

x = 1 V 1 n1,11 n1,12
...

...
...

V q n1,q1 n1,q2

x = 2 V 1 n2,11 n2,12
...

...
...

V q n2,q1 n2,q2
...

...
...

...

x = K V 1 nK,1
1 nK,1

2
...

...
...

V q nK,q
1 nK,q

2

Table 5.1: Three-way contingency table needed to ap-
ply the χ2-test for one decision point for two groups
of process workers.

Figure 5.2: Figure illustrating the ele-
ments of the table at the left
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contains only two locations. This is only for demonstrative purposes as the χ2-test
works equally well for any number of user groups.

Mathematically the test for one decision point comes down to the following.
To test the null hypothesis of similar treatment of similar cases, we apply the (two
sample) χ2-test. So we calculate,

χ2
XORj =

∑
i∈all cells

(Oi − Ei)
2

Ei
=
∑
x,V,L

(nx,VL − Ex,V
L )2

Ex,V
L

, (5.1)

where Ex,V
L denotes the expected number of counts. These expected numbers are

estimated assuming no differences between the groups of process workers (H0), so,

Ex,V
L =

nx,V• nx•L
nx••

, (5.2)

where,
nx,V• =

∑
L

nx,VL , nx,•L =
∑
V

nx,VL , nx•• =
∑
V,L

nx,VL . (5.3)

For one cluster (e.g., x = 1), the degrees of freedom are equal to (q − 1)(t − 1)

[47] (where t is the number of groups of process workers, and q the number of next
activities). Since there are K clusters, we have,

dfXORj = K(q − 1)(t− 1). (5.4)

The statistic (5.1) is χ2-distributed with degrees of freedom given in (5.4) if the
assumptions of the Pearson’s χ2-test are fulfilled.

Experiments have demonstrated that the assumptions of Pearson’s χ2-test are suf-
ficiently fulfilled if no more than 20% of the expected counts are less than 5 and all indi-
vidual expected counts are 1 or greater, see the book by Yates et al. [115]. One way of
meeting this condition is to find a balance in the number of clusters K, such that K is
small enough for each cluster to contain enough cases, while simultaneously keeping
K large enough to make sure that cases that are considered as dissimilar by experts
are in different clusters. See Section 5.4 for the values used in the experiments. If
after choosing an appropriate number of clusters the assumptions of Pearson’s test
are still violated, we propose to remove rows from Table 5.1 with infrequent row
sums (i.e., activities that are seldom chosen by any groups of process workers) and
apply equation (5.1) on the reduced table. Since the frequency of these activities is
low for all process workers, the effect of removing will be small in practice. Of course,
the degrees of freedom have to be adjusted. If l rows are omitted, then the number of
degrees of freedom is given by:

dfadjXORj = K(q − 1)(t− 1)− l(t− 1). (5.5)
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By introducing two groups of process workers L1 and L2 and comparing the model
of a decision point for these two groups, we must be cautious that possible differences
are only caused by differences in treatment of the groups of process workers L1 and
L2 and not by differences in the attributes of the cases that are presented to group
L1 and group L2. Otherwise we would erroneously conclude there is dissimilar treat-
ment of similar cases, while in reality there is dissimilar treatment of dissimilar cases.
In part, these differences in the cases of each group are prevented by the clustering
the cases into K clusters based on the known attributes. However, typically not all
attributes are recorded. If one suspects the existence of an attribute that has an in-
fluence on the decision taken by the process workers and this feature is also related
to the group of users a case is assigned to, one must, within each cluster of cases,
distribute cases randomly over the groups of process workers. This way one ensures
the same probability distribution for the groups and one can safely apply the tests.

5.3.1.2 Multiple decision points that are independent

If there are multiple decision points in the process and we can assume that the de-
cisions by the human process workers are independent from previous decisions in
the process, we can easily extend our χ2-test. When the statistics χ2

XORi have been
computed for the individual decision points, a test of similar treatment for the whole
process (i.e., all m decision points) can be constructed by adding the individual stat-
istics as well as the degrees of freedom:

χ2
overall = χ2

XOR1 + . . .+ χ2
XORm, (5.6)

with

dfoverall = dfadjXOR1 + . . .+ dfadjXORm. (5.7)

The final statistic χ2
overall is χ2-distributed with dfoverall degrees of freedom since the

sum of independent χ2-statistics is again χ2-distributed with the degrees of freedom
equal to the sum of the original ones. The independence of the individual statistics is
ensured by the Markov assumption.

The value of the statistic χ2
overall leads to a p-value indicating the probability that

the hypothesis H0 is due to the randomness in the sample. A value lower than 0.05 is
generally accepted as a rejection of H0 and is thus evident of dissimilar treatment of
similar cases.

The complete test procedure in case of independent decision points is summarized
in Test Procedure 1.
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Test Procedure 1: Procedure to test on similar treatment by two or more groups
of process workers when decision points are independent

Input : Event logs
Output: A p-value

1 Find the decision points in the process;
2 for each decision point do
3 Find relevant attributes;
4 Cluster the cases of all event logs into K clusters based on the attributes

(perform the clustering on the collective data of all user groups);
5 Construct a contingency table like Table 5.1;
6 Check the assumptions of Pearson’s χ2-test and possibly remove rows with

low row sums (adjust degrees of freedom accordingly);
7 Use equation (5.1) to compute the test statistic for this decision point, and

equation (5.5) for the degrees of freedom;
8 end
9 Apply equation (5.6) and (5.7) and read off the p-value from standard tables of

the χ2-distribution.

5.3.2 Approach 2: Frequent Paths

For some processes the Markov assumption will not hold. A straightforward general-
ization in this case is to cluster cases and consider for each cluster all possible traces
and test if some traces occur significantly more frequently for one group of process
workers. Although this approach is in line with the approach taken in the previous
section, it has the drawback that a lot of data is needed in order to satisfy the under-
lying assumptions of Pearson’s χ2-test. Namely, the number of possible traces grows
exponentially in the number of decision points. For this reason we will work out an
approach that does not take into account all traces, but only the most frequent ones
(i.e., ‘typical paths’) for each cluster of similar cases. Then the observed frequencies
of these traces for each group of process workers are compared with the expected
frequencies (based on the average frequencies over all process workers) using the
χ2-test.

Technically, the frequent paths approach comes down to first clustering cases
based on known features, and then finding the most frequent traces for each cluster.
If the event log contains many traces, special algorithms can be applied to find the
most frequent traces, like the SPADE algorithm described by Zaki [116].

Subsequently, a table like Table 5.2 is created that contains the frequencies of
these frequent paths for all groups of process workers. Then equation (5.8) can be
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group of process workers
Cluster of case frequent trace L1 L2

x = 1 V 1V 3V 5 n1,11 n1,12
...

...
...

V 2V 3V 4 n1,r1 n1,r2

x = 2
...

...
...

...
...

...
...

x = K V 1V 5 nK,1
1 nK,1

2
...

...
...

V 1V 2V 3V 5 nK,s
1 nK,s

2

Table 5.2: Three-way contingency table needed to apply the χ2-test for all decision
points for two groups of process workers when the assumption of independence of
decision points does not hold.

applied to each frequent trace s in cluster x,

χ2 =
∑

i∈all cells

(Oi − Ei)
2

Ei
=
∑
x,s,L

(nx,sL − Ex,s
L )2

Ex,s
L

, (5.8)

where Ex,s
L is estimated by,

Ex,s
L =

nx,s• nx•L
nx••

, (5.9)

and,

nx,s• =
∑
L

nx,sL , nx,•L =
∑
s

nx,sL , nx•• =
∑
s,L

nx,sL . (5.10)

The degrees of freedom of the statistic in equation (5.8) equals:

df = (N −K)(t− 1), (5.11)

where N is the number of rows in the contingency table (Table 5.2), K the number of
clusters and t the number of groups of process workers. This can be seen by realizing
that for each cluster i the degrees of freedom equals (si−1)(t−1) [47], where si is the
number of frequent paths for cases in cluster i. The Test Procedure for the Frequent
Path approach is presented in Test Procedure 2.
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Test Procedure 2: Procedure to test on similar treatment by two or more groups
of process workers when decision points are dependent and most traces belong
to a few frequently occurring traces

Input : Event log
Output: A p-value

1 Cluster all cases based on their features into K clusters;
2 Determine for each cluster the most frequent traces in the event log, for

instance by applying a frequent sequence algorithm like SPADE. Discard all
other traces;

3 Make a contingency table like Table 5.2;
4 Use equation (5.8) to compute the test statistic, and equation (5.11) for the

degrees of freedom;
5 Find the p-value from standard tables of the χ2-distribution.

XOR-junctions
behavior I behavior II

Fe
at

ur
es distribution I event log 1 event log 2

distribution II event log 3 event log 4

Table 5.3: Differences of the four generated event logs

5.4 Experiments

5.4.1 Synthetic data

In this section we will apply the test procedures to the example mentioned in the intro-
duction. The code used for this can be found on github: github.com/PijnenburgMark/
Similar_Cases_Treated_Similarly/.

We used the process model of Figure 5.1 to generate four event logs. Each event
log consists of 500 traces and the value of two meaningful features for each case
(price and type). The four event logs differ in the behavior of the two decision points
and in the distribution of the two features, see Table 5.3.

Table 5.6 specifies the behavior I and behavior II of the decision points as well
as the distributions of the input cases. For instance we see that under behavior I, a
printer that is returned with an original purchase price of 200 has the probability of
0.2 for being send for repair, while this probability under behavior II is 0.6. Moreover
we see that the behavior of decision point 2 (XOR 2) depends on the number of times

github.com/PijnenburgMark/Similar_Cases_Treated_Similarly/
github.com/PijnenburgMark/Similar_Cases_Treated_Similarly/
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2nd Event Log
1s

t
Ev

en
t

Lo
g event log 1 event log 2 event log 3 event log 4

event log 1 1.000000 0.000000 0.975989 0.000000
event log 2 0.000000 1.000000 0.000000 0.057141
event log 3 0.975989 0.000000 1.000000 0.000000
event log 4 0.000000 0.057141 0.000000 1.000000

Table 5.4: p-values resulting from applying Test Procedure 1 to all pairs of the four
event logs. We used 10 clusters.

the device has been send for repair before (with two options: one time or more than
one time) as well as the result of the test that is performed after the repair (activity V6
in Figure 5.1). Note that if the results of the test are positive, the device is ready and
thus there is a probability of one that the process trace will be ended. In our example
we set the probability that the test of V6 gives a positive result to 0.7.

Clearly, event logs 1 and 3 have the same process (i.e., no dissimilar treatment),
but differ in the input (event log 1 mainly cheap printers, event log 3 more laptops).
In contrast event logs 2 and 4 are generated with other process parameters. In these
latter two event logs the process workers have a preference for the repair option
instead of sending a new item or returning the money.

We will compare the four event logs pairwise. Large p-values (over 0.05) are ex-
pected when comparing event logs that have the same behavior (i.e., event log 1 with
event log 3, and event log 2 with event log 4), while low p-value are expected if we
compare event logs with different behavior such as event log 1 and event log 2.

The p-values resulting of applying Test Procedure 1 are shown in Table 5.4. The
application of this test procedure is justified because the decision points are independ-
ent. The results are as expected, i.e., the test procedure is able to clearly distinguish
dissimilar treatment from differences in the input. For feature selection we used a
standard feature selection method from python’s sci-kit learn package based on the
ANOVA F-value, and for the clustering we applied a standard Gaussian Mixture clus-
tering algorithm from the same package. The number of clusters was chosen K = #
cases /100, where ‘# cases’ are the number of cases that go through the decision point
in the event log (for both groups).

We also applied Test Procedure 2, resulting in the p-values of Table 5.5. These
values demonstrate that our algorithm properly captures relevant properties of this
synthetic data set. In applying Test Procedure 2 we used again Gaussian Mixture
clustering. The number of clusters was chosenK = # traces /250, where ‘# traces’ are
the number of traces of the combined event logs for both group of process workers.
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2nd Event Log
1s

t
Ev

en
t

Lo
g event log 1 event log 2 event log 3 event log 4

event log 1 1.000000 0.000000 0.982920 0.000000
event log 2 0.000000 1.000000 0.000000 0.662541
event log 3 0.982920 0.000000 1.000000 0.000000
event log 4 0.000000 0.662541 0.000000 1.000000

Table 5.5: p-values resulting from applying Test Procedure 2 to all pairs of the four
event logs. We used 4 clusters.

5.4.2 Tax Debt Collection data

For demonstration purposes, we applied Test Procedure 1 to real data of the Neth-
erlands Tax and Customs Administration (NTCA). In the year 2013 a debt collection
process was in place, a part of which is sketched in Figure 5.3. As soon as a debt is

Figure 5.3: Part of the debt collection process of the NTCA in 2013.

over its due date, automatically a reminder letter is sent. When no payment has taken
place, a legal notice (warrant) is sent that allows for legal actions afterwards. Usually,
there are several legal actions possible and the choice is determined by a human pro-
cess worker (XOR 1). The legal actions in this part of the process are: a special claim
procedure that allows to take money of a savings account (V3), wage garnishment
(V4), and distraint of property, e.g., a car (V5). When the special claim procedure V3
does not lead to payment of the debt, a second human process worker (XOR 2) can
decide for actions V4 or V5.

We have compared event logs from two locations. We took 1000 debts from each
location in the year 2013. We took into account two features of each debt: the debt
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behavior
Behavior I Behavior II

(preference for New Item) (preference for Repair)

XO
R

1
XO

R
2

Distribution input cases
Distribution I Distribution II

(mostly cheap printers) (mostly laptops)

Table 5.6: Worked out example: two types of behavior of the XOR junctions and two
distributions of the input cases.

value and the tax type and restricted ourselves to two tax types. The debt value has
been used for constructing the clusters for both decision points, while the tax type
played a role for the clustering of XOR 1 only. The contingency tables for both decision
points are displayed in Table 5.7.
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XOR 1 location
Cluster Activity A B
1 V3 16 14
1 V4 42 48
1 V5 21 17
2 V3 1 2
2 V4 16 39
2 V5 64 35
3 V3 381 379
3 V4 25 59
3 V5 80 90
4 V3 217 213
4 V4 8 47
4 V5 59 50

Total 930 993

XOR 2 location
Cluster Activity A B
1 V4 17 17
1 V5 64 53
2 V4 8 9
2 V5 42 24

Total 131 103

Table 5.7: Contingency tables belonging to the decision points XOR 1 and XOR 2 of
the tax collection data. Note we were not able to analyze 77 of the 2000 cases.

The value of the χ2-statistic for the first decision point is 59.247 (8 degrees of
freedom), while 1.785 (2 degrees of freedom) for the second decision point. For the
combination of the two decision point we find, under the assumption of independent
decisions, a value of 61.032 (10 degrees of freedom) which corresponds to a p-value
of 2.31 · 10−9. The low p-value indicates that, under this model, we should reject the
hypothesis of similar treatment of similar cases. Due to privacy reasons we did not
use some important features that could lead to different results.

5.5 Conclusion and Future Research

The paper started by noting that the human factor in Knowledge Intensive processes
raises the question of similar treatment by several groups of process workers. The two
test procedures that are proposed in Section 5.3 are able to test similarly treatment
as is demonstrated in Section 5.4 on an artificial example of a service process of a
hardware manufacturer and a debt collection process of a tax administration.

Tax administrations may employ these tests to see in what processes the null hypo-
thesis of similar treatment of similar cases does not hold. The tests allow to pinpoint
at what step in the process this occurs and measures may be taken to restore the
similar treatment.

The two test procedures presented in this paper are based on rather element-
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ary statistical techniques. We choose deliberately to solve the problem with element-
ary techniques as simple methods display the nature of the problem most clearly.
Moreover an elementary approach allows to communicate clearly with business ex-
perts. Besides an elementary approach allows for easy extensions to meet more par-
ticular needs. For instance most organizations may tolerate a certain small level of
dissimilar treatment and the test may be extended to take this into account. However,
applying some recently developed algorithms may have some advantages as well.
In particular recurrent neural networks can be used successfully for modelling com-
plex sequential data [68]. Unfortunately these networks are ‘black-box models’ and
provide little insight into the nature of detected differences in the behaviour of groups
of process workers.

Finally note that other interpretations of ‘similar treatment’ are possible and might
be appropriate in some settings. In this paper similar treatment has been defined in
terms of probabilities of going to the next activity in the process model. However
similar treatment can also be defined for instance in terms of the amount of time that
is spend on each case, or as the level of expertise that is involved in each case. Tests
based on these metrics have not been explored yet, but may be the subject of further
research.





6
Extending an Anomaly Detection
Benchmark with Auto-encoders,

Isolation Forests, and RBMs

In tax administrations and other organizations that apply data science techniques, a
frequently heard question is What algorithm should I use? In this chapter we make a
contribution to answering this question by addressing a class of techniques, unsuper-
vised anomaly detection algorithms, that are frequently used in tax administrations.
The exact research question is:

Research Question Unsupervised anomaly detection algorithms play an import-
ant role in (tax) fraud detection. What algorithms can be expected to work well
under what conditions?

In this chapter, the recently published benchmark of Goldstein and Uchida [43] for
unsupervised anomaly detection is extended with three anomaly detection techniques:
Sparse Auto-Encoders, Isolation Forests, and Restricted Boltzmann Machines. The
underlying mechanisms of these algorithms differ substantially from the more tra-
ditional anomaly detection algorithms, currently present in the benchmark. Results
show that in three of the ten data sets, the new algorithms surpass the present col-
lection of 19 algorithms. Moreover, a relation is noted between the nature of the
outliers in a data set and the performance of specific (clusters of) anomaly detection
algorithms. The chapter is based on the following article:

• M. Pijnenburg and W. Kowalczyk. Extending an anomaly detection benchmark
with auto-encoders, isolation forests, and rbms. In International Conference on
Information and Software Technologies. Springer, 2019. Best Paper Award
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6.1 Introduction

The expanding number of anomaly detection algorithms creates the need to com-
pare algorithms objectively. Goldstein and Uchida [43] made a start by providing a
benchmark for unsupervised anomaly detection, consisting of 10 data sets and 19
algorithms. In this chapter, we extend the number of algorithms by adding three an-
omaly detection algorithms: Sparse Auto-encoders, Isolation Forests, and Restricted
Boltzmann Machines (RBMs).

The three algorithms are interesting since they have a different underlying mech-
anism compared to the current algorithms in the benchmark: two of the new al-
gorithms, Sparse Auto-encoders and RBMs, originate from the popular field of (deep)
neural networks. Within this field, they are among the simplest and best-known al-
gorithms for detecting anomalies [60]. The third algorithm is based on random trees.
The underlying mechanisms differ substantially from the more traditional algorithms
in the benchmark that are mostly distance-based, like the k-Nearest Neighbors al-
gorithm and the Local Outlier Factor. Moreover, when auto-encoders and RBMs are
applied to anomaly detection, it is usually on image data [103], [102] or sequen-
tial data [73], [114]. Hence it is of interest to see their performance on the (small)
classical tabular data used in the benchmark [43].

The chapter is organized as follows. In Section 6.2, the three anomaly detection
algorithms are described. Then, in Section 6.3, the actual experiments performed are
described as well as the data sets of the benchmark. In Section 6.4 we present the
results of the experiments and compare these with results mentioned in [43]. The
chapter ends with Conclusions and Discussion in Section 6.5. The code used in the
experiments is published at [86].

6.2 Theoretical Background

6.2.1 Sparse Auto-encoder

Standard auto-encoders are neural networks with architecture as depicted in Figure
6.1. Sometimes it is required that W1 = W t

2 , for regularization purposes. We will not
impose this restriction in this chapter. In its most basic form, as shown in the figure,
the network consists of one input layer, a hidden layer, and an output layer with
the same number of nodes as the input layer. The network is trained by providing the
same observation v as input and output, and requiring to minimize the reconstruction
error ‖auto(v)− v‖2. Essentially, the network must learn the identity function (‘auto’
means ‘self’ in Greek).

The number of nodes in the hidden layer is intentionally limited, such that the en-
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Figure 6.1: Architecture of the simplest form of a standard auto-encoder with one hid-
den layer. In general, the encoder and the decoder part may consist of more complex
neural networks.

coder has to extract the essential information from the input features in order for the
decoder to reconstruct the original input as closely as possible. The encoder part of an
auto-encoder can thus be seen as a dimensionality-reducing algorithm, reducing the
original dimensionality of the input space to the dimensionality of the space formed
by the hidden nodes.

Training an auto-encoder is usually done by gradient descent, in particular stochastic
gradient descent. The latter algorithm speeds up convergence in comparison with
standard gradient descent and also introduces some noise that helps to avoid local
minima. Backpropagation is generally used to compute the gradient by going back-
ward from the output layer to the input layer.

In the experiments, see Algorithm 1, we used the BFGS (Broyden Fletcher Gold-
farb Shanno) algorithm, a quasi-Newton optimization algorithm for minimizing the
target function. The BFGS algorithm works well for data sets with a small number of
features as are most data sets in the benchmark. The target function in the experi-
ments consists of the reconstruction error – equation (1) in Algorithm 1 –, a standard
L2 regularization term (2) that is added more routinely in training neural networks
nowadays, and a sparsity constraint term (3) that is typical for sparse auto-encoders.

Sparse auto-encoders are a variant on classical auto-encoders where the ‘bottle-
neck’ is not created by limiting the number of hidden nodes, but by requiring that only
a limited number of hidden nodes have a high activation value for each observation.

When applying auto-encoders to anomaly detection, at least two approaches may
be taken. The first approach uses the dimensionality-reduction characteristic of the
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Algorithm 1: Training and Scoring of an auto-encoder with one hidden layer.
Input : A data set V with p (numeric) features and n observations. We assume

each column to be scaled into the range [0,1] using min-max scaling.
h = {5, 10, bp/2c, p} the number of hidden nodes,
λ = 0.001 the learning rate,
ρ = 0.1 sparsity hyper-parameter,
β = 0.05 factor influencing the relative importance of the sparsity term

in the cost function,
Output: Reconstruction error of all observations v ∈ V.

1 Initialize weight matrix W with random number from a N (0, 0.01) distribution
2 Call a standard BFGS optimizer for minimizing the target function that consists

of the reconstruction error, a regularization term and the sparsity constraint:
3

J(W1,W2,a,b) =
1

n

n∑
i=1

1

2
‖auto(vi)− vi‖2 (6.1)

+
λ

2
(‖W1‖2 + ‖W2‖2) (6.2)

+β

n∑
i=1

[ρ log
ρ

ρ̂(vi)
+ (1− ρ) log

1− ρ
1− ρ̂(vi)

], (6.3)

where auto(v) is the output of the feedforward pass through the network:

auto(v) = 1/(1 + exp(−W2A(v)− b)), (6.4)

A(v) = 1/(1 + exp(−W1v − a)), (6.5)

and ρ̂(v)) is the average activation of the nodes in the hidden layer:

ρ̂(v)) =
1

h

h∑
i=1

Ai(v). (6.6)

4 After convergence, pass all observations v ∈ V through the trained
auto-encoder and compute the reconstruction error e(v) = ‖auto(vi)− vi‖2.

5 return the vector of reconstruction errors: e(v1), . . . , e(vn).
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auto-encoder part. Once trained, the auto-encoder will transform the original fea-
tures into a new low-dimensional feature space (i.e., the hidden layer). In the new
feature space, traditional distance-based anomaly detection techniques may be ap-
plied that would not work properly in the original, high-dimensional space due to
the ‘curse of dimensionality’. This first approach works in particular well for standard
auto-encoders. The second approach will work for standard auto-encoders as well
as sparse auto-encoders. The idea underlying this approach is that the network will
only achieve a low reconstruction error if it focuses on frequently occurring patterns.
As a result, observations belonging to infrequent patterns will receive a high recon-
struction error. Hence the reconstruction error can serve as an anomaly score. This
approach is adopted in this chapter.

6.2.2 Isolation Forest

Isolation forest [71], see Algorithm 5, is an algorithm specifically developed to find
anomalies. It resembles the random forest algorithm. As such it is a collection of many
trees. However these trees are no decision trees, but ‘random trees’. A ‘random tree’ is
a tree where each split involves a randomly selected feature, which is split based on a
random value. The underlying assumption of an isolation forest is that anomalies are
few and have different values from most observations. As a result, anomalies will of-
ten be isolated from the other observations in very few splits. Therefore, by observing
the leaf of an observation in many trees, and computing the average distance of these
leaves to the root of the trees, anomalies will have a small distance, while normal
observations will have a large distance. Hence, the average distance to the root can
be used as an anomaly score.

6.2.3 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is a stochastic neural network with two lay-
ers: a visible layer, and a hidden layer, see Figure 6.2. The network has no output
layer like auto-encoders, and signals in the network travel back and forth between
the two layers, starting at the visible layer. Both layers are fully connected, i.e., each
input node is connected to each hidden node, and vice versa. Moreover the weights
of the connections are symmetric Wij = Wji. No connections between nodes of the
same layer are allowed. All nodes in a classical RBM are binary, i.e. can take two val-
ues: 0 and 1. This in contrast to auto-encoders. Consequently, numerical inputs have
to be discretized and transformed to binary dummy variables. In our experiments,
the ‘thermometer encoding’ is used for the latter, as it preserves the ordering present
in numerical features. The difference between thermometer encoding and standard
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Algorithm 2: Training and Scoring of Isolation Forest
Input : A data set V with p (numeric) features. We assume each column to be

scaled into the range [0,1] using min-max scaling.
n tree = 100 the number of trees,
hlim = 8 the maximum depth of a single tree,
n samp = 256 number of observations used in the training sample,
min leaf = 1 minimum number of observations in a leaf.

Output: Scaled Version of the average path length of each observation v ∈ V.
1 Create n tree random trees:
2 for i in 1 . . .n tree do
3 Take a random sample X ⊂ V of size n samp
4 Initialize first node of tree
5 while there is a node N with depth < hlim and # observations > min leaf

do
6 randomly select an attribute q
7 randomly select a split point s ∈ [0, 1]

8 Split node N in 2: q <= p, q > p

9 end
10 end
11 Compute (scaled version of) Average Path Length, APL(v), for all observations

v ∈ V

12 return the vector of average path lengths: (APL(v1), . . . , APL(vn).

dummy encode can best be illustrated by the example of representing the value 0.45
of continuous feature with a range [0, 1] that is discretized in ten equal width bins
[0, 0.1), [0.1, 0.2), . . .. With standard encoding 0.45 falls in the bin [0.4, 0.5)] and will
be representated by the vector (0, 0, 0, 0, 1, 0, 0, 0, 0, 0). With thermometer encoding
0.45 would be represented by the vector (1, 1, 1, 1, 1, 0, 0, 0, 0, 0).

An RBM can be interpreted as a graphical model, or a ‘Markov Random Field’, see
[39]. Consequently, there is a model for the probability distribution over the feature
space:

p(v) =
1

Z

∑
all feasible h

e−E(v,h), (6.7)

where Z is a normalization constant (also known as the partition function) ensuring
that

∑
p(v) = 1,

Z =
∑

all feasible
v,h

e−E(v,h), (6.8)
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Figure 6.2: Architecture of a Restricted Boltzmann Machine.

and E is the so-called energy function,

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

wijvihj . (6.9)

This family of probability distributions is known as ‘Boltzmann distributions’ and has
been subject of study in statistical physics.

Training an RBM amounts to adjusting the parameters of the energy function (6.9)
such that the distribution fits the observations of the training data set, see Algorithm
6. Fitting the distribution to observations is done by maximizing the likelihood over
the the training set V ,

arg max
ai,bi,wij

∏
v∈V

p(v). (6.10)

The maximization is usually done by with the help of Contrastive Divergence, see
[39], a ‘stochastic gradient descent’-like algorithm, showing fast convergence at the
cost of approximating the gradient.

After training, the probability of each observation p(v) may be computed by equa-
tion (6.7). In practice, however, applying equation (6.7) requires computing the par-
tition function (6.8), which is computationally intractable. Instead, one may notice
that p(v) is proportional to,

p(v) ∝ e−F (v) =
∑
h

e−E(v,h). (6.11)

Here F (v) is the free energy of an observation v: the energy that a single configuration
would need to have in order to have the same probability as all of the configurations
that contain v [51].

The free energy of an observation can be calculated in linear time, due to the
special architecture of a Restricted Boltzmann Machine, which does not allow links
between hidden nodes, leading to an energy function (6.9) that involves no cross
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Algorithm 3: Training and Scoring of an RBM using CD-1
Input : A data set V with p numeric features, scaled into the range [0,1]

h = {5, 10, bp/2c, p} the number of hidden nodes,
b = {3, 5, 7, 10} the number of bins for each feature,
k = 10 batch size,
λ = 0.01 initial learning rate,
m = 0.95 momentum term (only used for bias vectors)

Output: for each v ∈ V: exp(−F (v)). This expression is proportional to p(v).
1 Discretize columns of V into b bins each, using equal width binning followed by

thermometer encoding. Denote the new data set with p · b binary columns V′.
2 Initialize values of matrix W and vectors a and b with small uniform random

numbers
3 while convergence = FALSE do
4 randomize order of rows and put rows in batches of size k
5 for each batch V0 do
6 sample binary values H0 based on values V0:

H0 = random{0,1}(1/(1 + exp(−WV t
0 − b)))

7 compute new values V1 based on H0: V1 = 1/(1 + exp(−(H0W )t − a))

8 Compute probabilities of hidden nodes H1 based on V1 (without
sampling): H1 = 1/(1 + exp(−WV t

1 − b))

9 Adjust weights:
10 W = W + λ · (Ht

0V0 −Ht
1V1)/k

11 da = da−1 ·m+ λ· column means (V0 − V1)

12 a = a + da

13 db = db−1 ·m+ λ· column means (H0 −H1)

14 b = b + db

15 end
16 compute the total free energy F (V′) =

∑
v∈V′ F (v), see equation (6.12)

17 Check on convergence:
18 if |(F (V′)− Fprevious(V

′))/Fprevious(V
′)| < 0.001 then

19 convergence = TRUE
20 end
21 Check on adjustment of λ:
22 if (F (V′)− Fprevious(V

′))/Fprevious(V
′) > 0.01 then

23 λ = 0.1 · λ
24 end
25 end
26 return for each v ∈ V′: exp(−F (v)), see equation (6.12).
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Figure 6.3: ‘Univariate’ outlier (left, U-index = 0.74) and ‘multivariate’ outlier (right,
U-index = 0.43).

terms like hjhk. Hence the sum over all possible values of h in equation (6.11), comes
down to summing over each element of h separately, essentially reducing the time to
compute the free energy of an observation from exponential to linear. The free energy
of an observation can be expressed most conveniently as,

F (v) = −
∑

i∈visible

viai −
∑

j∈hidden

log(1 + exj ), (6.12)

where xj = bj +
∑

i viwij is the input for the hidden node j, see equation (22) of [39]
for a derivation.

Applying the procedure above, we obtain for each observation the expression
exp(−F (v)), which is proportional to p(v). Now one may proceed along two lines:
(1) if interest lies only in obtaining the k most anomalous cases in a data set, one may
order the observations according to F (v) and report the k observations with largest
free energy. (2) otherwise, one may obtain a set of outliers by computing the me-
dian m and interquartile range IQR of exp(−F (v)) for all v ∈ V and set a threshold
θ = m− c · IQR below which observations are considered outliers.

6.2.4 Type of outliers

A distinction between type of outliers, that will prove fruitful in explaining differences
among algorithms in Section 6.4, is that some outliers are multivariate in nature while
others are univariate, compare Figure 6.3. In the left subplot a univariate outlier is
shown. This outlier can be detected by only looking at one feature (x), while the
multivariate outlier of the right subplot requires knowledge about both features.

In practice we do not know a priori the nature of the outliers, as we do not know
what observations are outliers. However, in a benchmark situation, we know what
observations are outliers. The outliers are indicated by a binary feature y taking the
value 1 for an outlier and 0 otherwise. In a benchmark situation we can thus quantify



88 6.3. Experimental Setup

the univariate nature of the outliers by defining a new concept, called the Univariate-
index, or U-index, as

U-index = max
i∈{1...p}

(|corr(xi, y)|), (6.13)

where corr is the correlation function, p is the number of features of the data set
(without the outlier label y). In words, equation (6.13) says to take the maximum of
the absolute value of the correlation coefficient of any feature with the binary label
indicating the outliers. The index is added to Table 6.1 and will prove useful in Section
6.4.

6.3 Experimental Setup

6.3.1 General

To test the effectiveness of the algorithms mentioned in the previous section, the
algorithms are applied to the benchmark data sets of Goldstein and Uchida [43].
The complete code of the experiments can be at [86]. In the experiments we used
implementations of the algorithms as can be found in the R-packages: ‘autoencoder’
(version 1.0) [34], ‘IsolationForest’ (version 0.0-26) [70], and ‘deepnet’ (version 0.2)
[100]. The latter package is used for the RBM and is adjusted slightly in order to
implement a dynamic stopping criterion and the automatic adjustment of the learning
rate, see Section 6.3.2.

The set of hyper-parameters that are tested for each algorithm will be explained
in Section 6.3.2. For each set of hyper-parameters we will run ten experiments, each
time with a different random seed. This will reduce the noise introduced by the ran-
dom component that is present in all three algorithms. Reported results are averages
over all runs. For instance, for an RBM we will test 16 different hyper-parameter set-
tings (4 different number of hidden nodes times 4 different settings for the number of
bins). A reported auc in Table 6.2 and Table 6.3 is thus an average over 4 ·4 ·10 = 160

experiments.
Results are measured using the ‘area under the curve’ statistic, in line with the

approach of Goldstein and Uchida [43].

6.3.2 Setting hyper-parameters

6.3.2.1 Sparse auto-encoder

In the experiments the most basic architecture of a sparse auto-encoder is tested,
i.e., with one hidden layer. Since this simple architecture already achieved good res-
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ults, see Section 6.4, we have not experimented with more complex variants of auto-
encoders.

The main architectural hyper-parameter is the number of hidden nodes h. We
choose h ∈ {5, 10, p/2, p}, where p is the number of features in the data set, excluding
the label indicating the outliers. If p/2 is not an integer, we rounded downwards.
An exception is made for the ‘speech’ data set that contains 400 features, requiring
an exceptional long run time. For ‘speech’ we take h ∈ {5, 10, 25, 50}. The numbers
5 and 10 hidden nodes have been chosen since some initial experiments indicated
that a reasonably low reconstruction error could be obtained with these numbers.
The numbers p/2 and p are added to ensure that data sets with more features (more
possible patterns) have a network with larger expressive power.

The learning rate λ is set to a value of 0.001 for all data sets, since this value
ensured a smooth decreasing target function for all data sets. The sparsity parameter
ρ is fixed to 0.1 as recommended by Ng in his lecture notes on auto-encoders [80].

6.3.2.2 Isolation forest

The isolation forest algorithm is robust concerning the values of its hyper-parameters.
For all hyper-parameters we choose the values as recommended by Liu et al. [71].

6.3.2.3 Restricted Boltzmann Machine

The number of hidden nodes for the RBM is set equal to the values chosen for the
sparse auto-encoder, i.e. h ∈ {5, 10, bp/2c, p} and h ∈ {5, 10, 25, 50} for the ‘speech’
data set.

A classical RBM needs binary input. For this reason we pre-processed the data
for RBM’s by discretizing each feature into b bins, using equal width binning. Sub-
sequently, a dummy variable is constructed for each bin, using thermometer encoding
as mentioned in Section 6.2.3. In the experiments we set b ∈ {3, 5, 7, 10}.

The learning rate λ and the stopping criterion of the RBM is set dynamically.
Initially λ = 0.01, subsequently λ is decreased by a factor 10 as soon as free energy of
all observations between two epochs rises with more than 1 per cent. The algorithm
is stopped as soon as the free energy of the data set changes less than 1 promille. The
free energy serves as a proxy for the (log-) likelihood (6.10). The log-likelihood can
be separated in two terms like,

log
∏
v∈V

p(v) = − logZ(W,a,b)−
∑
v∈V

F (v). (6.14)

The last term is the free energy of the data set.
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6.3.3 Data Sets

Table 6.1 provides a summary of the data sets of the benchmark of Goldstein and
Uchida. [43]. All features in the data sets are numeric. Most data sets are originally
posted for classification tasks. To make the data sets suitable for anomaly detection,
typically observations from one specific class are labeled anomalies, while all other
observations are considered normal cases.

As a data pre-processing step, a min-max scaling is applied to all features x of all
data sets, resulting in a range of [0, 1] for each feature,

xsc =
x− xmin

xmax − xmin
. (6.15)

Below we will give a short description of each data set.

data set name number number outliers percentage U-index
of rows of columns outliers

1 breast cancer 367 30 10 2.72 0.570
2 pen global 809 16 90 11.1 0.600
3 letter 1.600 32 100 6.25 0.193
4 speech 3.686 400 61 1.65 0.079
5 satellite 5.100 36 75 1.49 0.308
6 pen local 6.724 16 10 0.15 0.047
7 annthyroid 6.916 21 250 3.61 0.419
8 shuttle 46.464 9 878 1.89 0.675
9 aloi 50.000 27 1.508 3.02 0.029

10 kdd 1999 620.098 29 1.052 0.17 0.678

Table 6.1: Summary of the data sets used to compare the various anomaly detection
algorithms. See equation (6.13) for the definition of the U-index.

6.3.3.1 Breast Cancer

This data set is derived from the Wisconsin Breast Cancer data set that contains med-
ical data of 569 patients. The data consists of features derived from digitized images
of breast mass, obtained via a Fine Needle Aspirate. In the original data set there
are 357 patients with benign breast cancer and 212 patients with malignant breast
cancer. In the data set prepared for anomaly detection, all benign patients are kept,
while the first 10 patients with malignant breast cancer are labeled as anomalies.
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6.3.3.2 Pen Global

The observations in this data set are feature vectors derived from images of the di-
git ‘8’, handwritten several times by 44 different writers. The feature vectors have a
length of 16 and contain eight (x, y) pairs. These pairs are positions that are recorded
after fixed intervals when the digit is written. The anomalies are 10 observations from
the digits ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘9’ each, leading to 90 anomalies.

6.3.3.3 Letter

This data set consists of features extracted from 3 letters from the English alphabet.
The outliers consist of the same features but extracted from the other letters of the
alphabet. To make the anomaly detection task more challenging, the contributors
added randomly some features to each observation, coming from all letters of the
English alphabet.

6.3.3.4 Speech

This data set comes from the domain of speech recognition. Each observation is a
so-called ‘i-vector representation’ of a speech segment. The normal cases come from
persons with an American accent, while outliers consist of persons with other accents.

6.3.3.5 Satellite

This data set consists of features extracted from satellite images. These images are
used to determine the soil type. In this data set the soil types: ‘red soil’, ‘gray soil’,
‘damp gray soil’ and ‘very damp gray soil’ are normal instances. Anomalies were
sampled from the classes: ‘cotton crop’ and ‘soil with vegetation stubble’.

6.3.3.6 Pen Local

This data set has the same underlying data set as ’Pen Global’. However, instead of
focusing on the digit ‘8’, all digits are kept with the exception of the digit ‘4’. From the
latter digit only the first ten observations are included and these form the anomalies.

6.3.3.7 Annthyroid

This data set is derived from the annthyriod data set, also known as the Thyroid dis-
ease data set, and comes from the medical domain. It contains features from patients;
normal cases represent healthy patients, the outliers are sampled from the patients
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that suffer from hypothyroid cancer. The first fifteen features are binary features, the
next six features are continuous.

6.3.3.8 Shuttle

This data set is used in the Statlog project and contains features that are connected
to the normal and abnormal functioning of radiators in a NASA space shuttle. The
original data set is designed for supervised anomaly detection. The version used in
this chapter is adjusted by Goldstein and Uchida [43] mainly by reducing the number
of outliers.

6.3.3.9 ALOI

The aloi data set originates from a data set provided by the Amsterdam Library of
Object Images (ALOI). This library contains images of objects. This particular data
set contains a feature vector of length 27 for each image, derived by apply a HSB
color histogram. Such a histogram gives the distribution of colors in an image. Each
object is photographed many times under different angles and lighting conditions.
The 1.508 observations labeled as anomalies correspond to a few objects selected as
anomalies.

6.3.3.10 KDD Challenge 1999

This data set comes from a challenge presented at the Knowledge Discovery and Data
Mining conference of 1999. The data set contains artificially created observations
that represent HTTP traffic in a computer network. The data set is enriched with
observations representing observations typically seen in attacks. The current data set
has undergone some data preparations to make it more suitable for testing various
anomaly detection algorithms, see [43] for details.

6.4 Results

Table 6.2 summarizes the findings of the experiments. The isolation forest algorithm
realizes the highest area under the curve on the ‘shuttle’ data. The RBM reaches first
place for ‘breast cancer’ and ‘kdd 1999’, although the first position is shared with
HBOS (Histogram-Based Outlier Score) for the latter data set. The auc-values for all
algorithms in the benchmark can be found in Table 6.3.

Figure 6.4 displays the overall performance of the algorithms on all data sets. The
k-NN and kth-NN algorithms perform the best in general. Only on the ‘annthyroid’
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data set auto- isolation RBM mean best best alg.
encoder forest bench- bench- bench-

mark mark mark
1 breast 0.9091 0.9810 0.9858 0.9067 0.9827 HBOS

cancer ± 0.0040 ± 0.0014 ±0.00005 ± 0.0016
2 pen 0.9420 0.9304 0.8282 0.7836 0.9872 k-NN

global ± 0.0008 ±0.0016 ±0.0014 ± 0.0055
3 letter 0.7667 0.6337 0.5794 0.7850 0.9068 LoOP

± 0.0042 ±0.0052 ±0.0026 ± 0.0078
4 speech 0.4716 0.4699 0.4715 0.4936 0.5347 LoOP

± 0.0002 ±0.0052 ± 0.0002 ± 0.0343
5 satellite 0.9057 0.9479 0.9060 0.8734 0.9701 k-NN

± 0.0017 ±0.0018 ±0.0018 ± 0.0007
6 pen 0.8346 0.7828 0.8220 0.9129 0.9816 LOF

local ± 0.0039 ±0.0064 ±0.0036 ± 0.0024
7 ann- 0.5657 0.6456 0.5089 0.6312 0.9150 HBOS

thyroid ± 0.0010 ±0.0058 ±0.0026 ± 0.0123
8 shuttle 0.9881 0.9973 0.9832 0.7684 0.9925 rPCA

± 0.0000 ±0.0002 ± 0.0004 ± 0.0039
9 aloi 0.5415 0.5408 0.5311 0.6229 0.7899 LoOP

± 0.0004 ±0.0003 ±0.0006 ± 0.0093
10 kdd 1999 0.9718 0.9656 0.9990 0.7926 0.9990 HBOS

± 0.0001 ±0.0017 ±0.00004 ± 0.0007

Table 6.2: Mean Area Under the Curve (AUC) and standard deviation when applying
the anomaly detection algorithms with various settings on the benchmark data sets.

data, these algorithms perform below average. The main characteristic of the ‘an-
nthyroid’ data are its binary features. These binary features have almost no relation
with the outlierness of an observation, but do have a large influence on the distance-
based k-NN and kth-NN algorithms. Hence we may say that for distance based meth-
ods, scaling is important and may give problems when combining binary (or categor-
ical) features with continuous ones.

The Cluster-Based Local Outlier Factor (CBLOF) is clearly the worst algorithm, al-
though variants of this algorithm (uCBLOF and LDCOF) clearly improve performance
considerably. The uCBLOF algorithm even reaches the third place in the ranking of
algorithms in Figure 6.4. However it performs always worse than the simpler k-NN
and kth-NN algorithms, except for data sets with a large U-index (shuttle, kdd 1999).
Here the underlying clustering approach may have its advantages.

The Histogram-Based Outlier Score (HBOS) algorithm and the Local Outlier Prob-
ability (LoOP) algorithm deserve attention as well, since they are the top performers
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Figure 6.4: Average Area Under the Curve of all algorithms of the benchmark and
the three newly added algorithms. The average is taken over all data sets in the
benchmark.

for 6 of the 10 data sets among the original 19 algorithms of the benchmark. The
simple HBOS algorithm is clearly strong on data sets with a large U-index (an indic-
ation for univariate outliers) like breast cancer, shuttle and kdd 1999, while weak
on data sets with a small U-index (aloi, letter). It performs also well on annthyroid,
where it does not get distracted by the binary features that have almost no correl-
ation with the outliers. In contrast to HBOS, the LoOP algorithm performs well for
data sets with a small U-index (letter, pen local, speech, aloi), but badly on data sets
with a large U-index (shuttle, kdd 1999).

If we now turn our attention to the newly added algorithms, then we see that all
three algorithms are good in finding outliers in data sets with a large U-index (shuttle,
kdd 1999, breast cancer, pen global and satellite), often surpassing the currently best
algorithm. However the new algorithms perform badly on data sets with a small U-
index (letter, speech, aloi). The isolation forest algorithm can best handle the binary
features that are present in annthyroid. Because of this property and the fact that
isolation forest has the shortest run times and requires almost no tuning of hyper-
parameters, this algorithm could be labeled as the preferred choice between the three
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new algorithms.
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Figure 6.5: Value of the Area Under the Curve for the auto-encoder on the ‘Satellite’
data.

The time complexity for training one epoch and scoring the data is linear in the
number of observations n, the number of features p and the number of hidden nodes
h (O(nph)) for standard sparse auto-encoders and RBMs. The time to train and score
an isolation forest is linear in the number of observations and independent of the
number of features (O(n)). In practice, the run time of the algorithms is to a large
extent dependent on the number of epochs needed before reaching convergence dur-
ing training. With respect to this, isolation forest is the fastest algorithm. From the
remaining two, RBMs reached convergence sooner than auto-encoders in our exper-
iments. However this may be caused to a large extent by the use of the BGFS al-
gorithm to optimize the target function for auto-encoders instead of the generally
faster stochastic gradient descent method.

After running the experiments for auto-encoders, we have plotted the number of
hidden nodes against the auc in order to get more insight in the number of hidden
nodes needed in the context of anomaly detection. One of these plots is displayed
in Figure 6.5. Observations with index 1 to 10 in this plot are coming from auto-
encoders with 5 hidden nodes, index 11 to 20 with 10 hidden nodes, index 21 to 30
with 18 hidden nodes, and finally, index 31 to 40 with 36 hidden nodes. All other
hyper-parameters are fixed (except for the random seed that changes for each run). It
is clear from the graph that auto-encoders with a small number of hidden nodes are
better able to find the outliers (larger auc value). Also for the plots of the other data
sets, it is clear that for most data sets 5 or 10 hidden nodes are sufficient.
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6.5 Conclusions and Discussion

Table 6.3 shows the performance of all algorithms on the benchmark of Goldstein
and Uchide [43], including the three newly added algorithms. A main observation is
that the three algorithms are able to meet or beat the current best algorithm in the
benchmark several times: isolation forest is superior on the ‘shuttle’ data set, while
the RBM outperforms all current algorithms on ‘breast cancer’ and matches the best
performance on the ‘kdd 1999’ data set, see Table 6.2.

Isolation Forest seems to be the preferred choice of the three algorithms that
are newly added to the benchmark; the area under the curve on the benchmark is
rather similar to the other two algorithms, but it has shorter run times and its hyper-
parameters are easy to set. Moreover it handles the binary features in the ‘annthyroid’
data set well.

Another observation is that there are (at least) two types of data sets with outliers:
in the first type of data sets there is at least one feature that has a correlation with
the label indicating an outlier. Anomaly detection algorithms that perform well on
these data sets are: HBOS, rPCA, oc-SVM, η-oc-SVM, auto-encoder, isolation forest,
RBM, and uCBLOF. We see that all three new algorithms fall in this category. The
second type of data sets lack such a univariate feature. On these data sets LOF-like
(Local Outlier Factor) algorithms perform well: LOF, LOF-UB, COF, INFLO, and LoOP.
The U-index, as introduced by equation (6.13), helps to classify the data sets in the
benchmark in these two groups, see Table 6.1.

Further, it is noteworthy that simplicity seems to go hand in hand with power at
several places. This is evident in Figure 6.4, where it becomes clear that the simple
algorithms of k-NN and kth-NN perform the best when considering the average per-
formance on all data sets. Also, Table 6.2 shows that the relatively simple HBOS
algorithm belongs to the top performers for data sets with a large U-index. Finally, we
note that simplicity in the number of nodes (i.e. a small number) for auto-encoders
and RBMs does not decrease performance, see for instance Figure 6.5.

When reflecting on the results, then some reservations are in order. First, the
benchmark contains a limited number of data sets (ten), and a disproportional large
number of these data sets are features extracted from images (‘breast cancer’, ‘pen
global’, ‘pen local’, ‘letter’, ‘satellite’, ‘aloi’). Moreover all data sets are tabular data and
contain no categorical features. Second, in this chapter only the most common imple-
mentations of the three newly added algorithms are tested. Each algorithm knows
extensions that are worth further investigation in the future: the isolation forest al-
gorithm has recently been extended by allowing splits in the feature space that are
not parallel to coordinate axes, see the paper of Hariri et al. [48]. Auto-encoders can
be extended by allowing more hidden layers, while also interesting variants exist that
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are mainly developed for large data sets (variational auto-encoders, GAN-networks
[103]). RBMs can be stacked, leading to deep belief networks. Also a combination
of auto-encoders and RBMs exists, see the paper of Hinton and Salakhutdinov [52].
Here RBMs initialize the weights in deep auto-encoders, making it feasible to train
these networks with gradient descent.

For further research we also want to mention the ‘speech’ data set. None of the
current algorithms performs well on this data set due to the combination of many
features (400) and a low U-index.



7
Various Topics

Besides the four main topics treated in the previous chapters, we have touched four
others as well. We have included these contributions in a separate chapter. We hope
that by seeing these various topics, the reader gets an impression of the broadness of
the application field of data science to the administration of taxes.

We start with an application of analytics to Human Resources. This application
area is also known as HR Analytics. In the section, a model will be constructed to
explain differences in time allocation of employees. Then we will look at the con-
nection between reinforcement learning and tax collection. Reinforcement learning
forms a large domain of machine learning, next to supervised learning and unsuper-
vised learning. Reinforcement learning has attracted a lot of attention lately, when the
combination of deep learning and reinforcement learning proved to be able to beat
the world champion of the board game Go. In the section we look at its potential to
improve choices in the the collection of tax debts. In the third section, the focus is on
a way to explain risk models to non-experts. Explaining complex algorithms from ma-
chine learning is often essential to introduce these techniques in a tax administration.
Finally, we look at some ideas from Fuzzy Sets, and apply these on tax data, in line
with the approach of Meza et al. [76]. The application on real data gives evidence of
the predictive power of this approach.

Some parts of the chapter have been published in the following articles:

• C. Boon, F. D. Belschak, D. N. Den Hartog, and M. Pijnenburg. Perceived human
resource management practices. Journal of Personnel Psychology, 2014

• M. Pijnenburg and K. Kuijpers. Explaining risk models to the business. Tax
Tribune, 35:57–62, 2016
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Besides, the idea about applying reinforcement learning has been worked out in the
following Master Thesis, supervised by the author,

• M. Post. Tax data and reinforcement learning. Master’s thesis, Leiden University,
2 2019. Under supervision of Mark Pijnenburg, Wojtek Kowalczyk, and Kaifeng
Yang.
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Figure 7.1: Model for the relation between (perceived) HR practices and time alloca-
tion

7.1 Perceived Human Resources Practices and Time Al-
location

In a company, a difference can be made between ‘core processes’ and ‘support pro-
cesses’. Core processes deliver the products or services that are sold by the company.
Support processes assist these core processes. Examples of support processes are fin-
ancial processes and human resource (HR) processes.

Analytics can be applied to support processes as well. Applications of analytics
to HR are frequently called HR Analytics. As an illustration of HR Analytics at the
Netherlands Tax and Customs Administration, we present the use of confirmatory
factor analysis to verify a hypothesized model. This model establishes a relationship
between the time spent by employees and the (perceived) quality of HR practises. A
full description of this research can be found in [18].

In short, based on available knowledge in the HR literature, a relation between
perceived HR practices and time allocation of employees is hypothesized, as depicted
in Figure 7.1. At the right side of the figure, three ‘HR bundles’ are shown, people
flow, appraisal and reward, and employment relation. These three bundles, that relate
to different HR aspects, can be seen as the components of a High-Performance Work
System (HPWS). The three HR bundles are expected to influence the time alloca-
tion of employees. As can be seen from the Figure (left side), the time allocation is
split into three components: time spend on task activities, time spend on contextual
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Figure 7.2: Result after applying confirmatory factor analysis

activities, and absence (mainly due to illness). Task activities are tasks mentioned in
the job description and related to an internal or external client. Contextual activities
are other activities like networking and training, that are necessary to guarantee fu-
ture production. The influence of the HR bundles can be directly, or indirectly by the
concepts of extra effort and job satisfaction.

The hypothesized relation can be tested by applying confirmatory factor analysis, a
standard technique from statistics. Figure 7.2 shows the significance of the hypothes-
ised relations after testing. Clearly, three hypothesised relations are not significant,
while the others are. These insights may be used to optimize the HR practices at the
NTCA or other organizations, in order to diminish unwanted absence or the increase
employee satisfaction or time spent on task activities or contextual activities.

7.2 Reinforcement learning applied to tax debt collec-
tion

Reinforcement Learning is sometimes described as the third central pillar of learning
from data, next to supervised learning and unsupervised learning [78]. Supervised
learning is characterized by the presence of a sample of data for which we have addi-
tional information. Usually, the task of supervised learning is to learn the additional
information for cases outside the sample. With unsupervised learning such additional
information is lacking, and the task is usually to find structure in the data set, like
the probability distribution of observations, or the location of clusters or anomalous
observations.
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Reinforcement learning is different from the previous two concepts, since there is
no classical tabular data set with observations and features. Instead, in reinforcement
learning, there is a player that is in a certain state (of an environment) who can
take a limited number of actions. By taking an action, the state changes and there
may occasionally follow a reward or punishment. By taking actions and observing
the change of the states the player tries to understand the environment and to find a
sequence of actions that will optimize his rewards.

Although the description of reinforcement learning may sound overwhelmingly
at first, it is really close to human learning. Consider an example: when a child (the
player) learns to walk, it is at a certain position (state) in a room (the environment).
When it does some muscle movements (actions) it may change position and get some
reward; a positive reward if it experiences that it has walked some distance, and a
negative if it bumps against an object or falls. By reflecting on the muscle movements
and the change in the state that followed these movements, the child slowly starts
to understand how to interact with the environment it is in. Moreover, eventually it
will learn what muscle movement will give good rewards: it has learned to walk!
Another example is chess play; when a player has done an action (moved a piece),
the state of the environment (the positions on the chessboard) has changed and at
the end a positive (win) or negative (loss) reward occurs. By observing the effects of
his actions, the player may learn how to play chess. A comprehensive introduction to
reinforcement learning is the book of Sutton [105].

Reinforcement learning obtained some spectacular results recently. Supported by
deep learning technologies, a reinforcement learning algorithm called AlphaGo was
able to defeat the world champion ‘Go’ in March 2016. AlphaGo’s successor AlphaZero
is able to learn the games of chess, shogi, and go from scratch within a day and
reach a superhuman level. In December 2017 AlphaZero defeated the best computer
programs for these three games.

The debt collection process of a tax administration resembles the basic set-up of
reinforcement learning: open tax debts may follow a sequence of actions taken by
the tax administration (the player) starting with a reminder and usually ending with
payment. Each action of the tax administration may lead to another action of the
debtor, for instance a phone call of the tax administration may lead to a formal request
for deferment from the debtor. As a result, a sequence of actions occurs, where each
time the state of the debt may change. Rewards occur when the debt is (partially)
paid, while a loss occurs (for the tax administration) when the debt is written off.
Hence the idea of applying reinforcement learning to learn an optimal strategy for
the tax administration to collect unsettled debts.

Actions that the tax administration can take include calling the taxpayer, offering
a payment plan, initiating a pay claim, and allow a delay of payment. Currently, at
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the NTCA, the tax administration usually starts with mild measures that are getting
harsher if it becomes clear that the taxpayer is unwilling to pay. If the taxpayer is
unable to pay, the tax administration tries to take a more supportive position.

More on applying reinforcement learning on the collection process of a tax ad-
ministration can be found in the master thesis of Martijn Post [95], written under
the author’s supervision. In summary, Post implemented several variants of a simple
reinforcement algorithm to an anonymous data set of the NTCA (Dutch tax admin-
istration). The algorithm produces a value function for the current policy that gives
sensible values for possible next actions. To improve on these initial results, more data
of the taxpayers has to be added, like their ability to pay. Moreover, the algorithm must
be able to explore the environment by taking some unconventional actions from time
to time. Both these extensions were thought to be undesirable with a view on (the
privacy of) the taxpayers and out of proportion. Especially since the current collection
process can probably be improved with less far-reaching analyses. For these reasons
we have not continued this line of research.

7.3 Explaining risk models to non-experts

Risk models are becoming more popular in tax administrations for audit selection.
Although risk models are not new to tax administrations, only recently they are be-
coming mainstream and are embedded in central business processes. The fact that
an, often complex, computer algorithm is at the heart of a risk model makes it harder
to explain to auditors and managers, who use or are responsible for the model. A
good explanation is an integral part of getting these new, often efficient, techniques
accepted.

Tax administrations are most familiar with risk rules, like “if this year’s amount
differs more than 20% from previous year’s amount, then select for audit”. Domain
experts construct these rules. In contrast, risk models are created by applying a com-
puter algorithm to historical data. Note that in practice, often, a combination of risk
rules and risk models is applied.

An analogy can help explain a risk model. Below we present an analogy that
has been tested by the Netherlands Tax and Customs Administration. The analogy
explains as well some essential concepts such as ‘Analytical Base Table’ and ‘target’.

To begin with, auditors and managers are asked to imagine that they are teachers
in a class of students. As a teacher they are interested in knowing what students failed
to complete their homework. Of course, they can check every student, but this will
consume most of the lesson, leaving no time to teach. Just like auditors who only
have limited capacity to control a large number of companies.
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The analogy is continued by assuming that the teacher decides to choose three
students for each lesson to be checked for their homework. The teacher wants to check
the three students with the largest chance of not having completed their homework.
To select these students, the teacher uses different features of his students, see Figure
7.3. These features can be any characteristic of a student, such as sitting in the back of
the classroom, gender, results of previous homework checks, and perceived kindness.
In the context of taxation, features are usually characteristics of taxpayers or tax
returns and we want to check the correctness of tax returns.

Figure 7.3: Explaining a risk model by analogy of a classroom.

Then it is explained that not all features are suitable for the selection of students.
Some features might be in conflict with the way we want to treat students; it is usually
not desired to discriminate between students (or taxpayers) based on features like
race or gender. Moreover, some features cannot be determined objectively; a feature
like ‘annoying’ is not objective since a student might be annoying for one teacher,
but not for another. Such a feature can thus only be used for a risk model for that
teacher, not for all teachers. A third class of features that are not suitable for selection
are features whose value is unknown at the time we want to apply the model. This
may seem obvious, but a risk model is usually build on historical data. We are thus
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in the future with respect to the date the data was created. Therefore, we may have
information that was unknown at the time the data was created (e.g. the taxpayer
has raised a dispute). In our student example, the fact that a student is expelled from
the class is an example of such a feature.

After selecting suitable features, the teacher can start building a data set, called
Analytical Base Table (ABT), see Figure 7.4. This means that for a while, the teacher

Figure 7.4: Building an Analytical Base Table for the student analogy of a risk model.

registers features of each student who has been checked. Each student receives a row
in the Analytical Base Table and each column contains a feature of the students. The
last column indicates whether or not the student has completed the homework. This
column, often called the target, contains the information that we want to learn to
predict. The Analytical Base Table is the starting point for creating a risk model.

The next step is to construct a model. Although in a previous step we have selec-
ted a set of suitable features, not all features will have predictive power. So the model
building process is started with feature selection, i.e. selecting the most promising fea-
tures. In the class example, a teacher may start looking at the values of the individual
features in the Analytical Base Table and compare them with the target. The teacher
can note that the feature of low average grades often goes together with the fact that
the homework has not been completed. There might be no such relation between the
target and a feature like ‘wearing a hat’. This way, the teacher comes to a shortlist of
features that are thought to be promising for selecting risky students.
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Now, selected features have to be combined to come to a final risk score for each
student. Although many ways exist to do this, in the analogy we take the approach
of assigning individual risk points to each feature and then compute the final score
by adding up these risk points. In the student’s example we can, for instance, assign
two risk points to the student if the homework was not completed the last time and
one risk point when the average grade is low. The total risk score is then 3. The
determination of the right risk points for each feature is an essential part for obtaining
a good model. We then demonstrate a brute force way that tries a large collection
of different risk points and finally selects the one that gives the best result on the
Analytical Base Table.

Finally the scoring of new students with the help of this risk model is demon-
strated, visually. Here the model is represented as a machine that gets as input the
features of a new student and returns a risk score This then enables to rank the stu-
dents based on risk. The three students with the highest scores are eventually checked
by the teacher.

7.4 Recommendations based on fuzzy sets

Recently, Meza et al. [76] propose to use fuzzy sets and recommendation systems
to improve taxation. Their idea is to represent some key concepts for taxation, in
particular the compliance of a taxpayer and the riskiness of tax debt, as fuzzy sets.
Subsequently, a tax administration may adapt its approach based on the member-
ship degrees to these fuzzy sets. The approach has been tested on small scale by the
authors for the municipal taxation of the city of Quite (Ecuador).

Although the ideas about the applicability of fuzzy sets for tax administrations
are still developing, we have tested some aspects of it at the Netherlands Tax and
Customs Administration, in cooperation with the authors of [76]. Two aspects have
been investigated: first the applicability of the fuzzy sets approach. This resulted in
Figure 7.9. Second, the predictive power of the approach, resulting in Table 7.1. Both
investigations are explained below.

To test the framework, we selected 100,000 Dutch tax debts that were open on
1 July 2015 and were fully completed by 1 August 2018. We have ensured that all
selected debts were before the phase that a judicial notice had to be sent. We selected
these 100,000 debts in such a way that 50,000 were paid before the payment deadline
(or a payment arrangement was requested), and 50,000 at least 10 days after the
deadline. In all other respects, the debts are selected at random.

For each debt, we looked at the citizen involved and constructed a Citizen Beha-
vior Ranking. We looked at historic payment data of the citizen in the period from 1
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July 2013 to 1 July 2015. For each debt of the citizen that was closed in that two-year
period, we recorded whether the debt was paid before the payment deadline or not.
Then we calculated the ratio of the number of debts that were paid in time to all
debts. Figure 7.5 shows a histogram of the CBR for our population belonging to the
100,000 debts.
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Figure 7.5: Citizen Behavior Ranking for the 100,000 citizens belonging to the
100,000 debts

Based on the Citizen Behavior Ranking, fuzzy sets for Citizen Behavior can be
easily created. For instance by using Figure 7.6. Applying the membership functions
of Figure 7.6, we find that a citizen with a Citizen Behavior Ranking of, say, 0.85 has
a membership degree to the fuzzy set ‘Excellent’ of 0.4, a membership degree of 0.6

to the fuzzy set ‘Good’ and 0 for all other fuzzy sets.
Note that to calculate the Citizen Behavior Ranking we made use of a Central Data

Repository that is daily refreshed using ETL processes. To respect the privacy of the
taxpayers involved, the analysis has been performed using data where all identifying
records have been removed.

For the 100,000 debts mentioned before, we calculated the days till the payment
deadline. In some cases this number was negative, which means that the payment
deadline had been passed already. Inspired on Figure 3 of [76], here reproduced for
reference as Figure 7.7, we come to a membership degree for the fuzzy set ‘Payment
Deadline’. A membership degree of 1 is given to debts that were over the payment
deadline and for debts that were before the deadline a linear relation was used, start-
ing with a membership degree of 0 on the day the debt was communicated to the
citizen.

Similarly, a membership degree for the fuzzy set ‘risk of debt’ is computed. We
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Figure 7.6: Fuzzy sets for Citizen Behavior for the Dutch Citizens belonging to the
100,000 selected debts.
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Figure 7.7: Reproduction of Figure 3 of [76], showing the relation between the pay-
ment deadline of a tax debt and the membership function of a fuzzy set related to
late payment.
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ordered the amounts of the 100,000 debts and took the rank number and divided
that by 20,000 in order to get a risk relevance scale between 0 and 5. Subsequently,
we applied the curve shown in Figure 4 of [76], here reproduced for reference as
Figure 7.8, to come to a membership degree to the fuzzy set ‘risk of debt’.
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Figure 7.8: Reproduction of Figure 4 of [76], showing the relation between the risk
relevance and the membership function of a fuzzy set related to extreme riskiness
payment.

The Citizen Behavior Ranking, membership functions of ‘payment deadline’, and
‘risk of debt’ can be plotted in two two-dimensional Figures as shown in Figure 7.9.
Note that we have plotted a random sample of size 200 of all 100,000 debts. The
dashed line separates the risky debts from the less risky debts. It is up to the manage-
ment of the tax authority to define this line. After the separation, different treatments
(recommendations) for the risky and non-risky debts can be considered. For instance,
it can be decided to do nothing for the non-risky debts, while the risky debts for pay-
ment deadline are sent a reminder letter, while the risky debts for risk relevance are
receiving additional monitoring.

To assess the predictability of the separations in Figure 7.9, we focused on the
plot at the top of Figure 7.9, i.e. on the risk of non-payment before the payment
deadline. The 100,000 debts are separated a priori according to the separation line.
Subsequently, it was checked a posteriori whether the debts were actually paid before
the payment deadline. This gives the confusion matrix shownn as Table 7.1. The Chi
square test for independence has been applied to the confusion matrix, resulting in a
value of 9, 104.6 for the chi square statistic. Since the degrees of freedom is equal to
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Figure 7.9: Citizen Behavior Ranking versus Payment Deadline and Risk Relevance for
a random sample of 200 debts. The dotted lines separate risky debts from non-risky
debts.

A Priori Risk Paid Not Paid

Not Risky 38,830 24,269
Risky 11,170 25,731
Total 50,000 50,000

Table 7.1: Confusion matrix. Riskiness versus Paid on time
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1, this leads to a p-value of 2.2 ·10−16, signifying a clear dependence between a priori
risk predictions and actual payment problems.



8
Conclusion

In previous chapters, some selected topics in the field of data science and taxation
have been treated in detail. These selected topics are limited in their scope, but can
be considered as small bricks, that will allow science eventually to construct a solid
building. In this chapter, we will look again at the conclusions of the various chapters,
and try to place them in a wider context. To do so, we will look at each chapter
individually and pay special attention to the research question underlying the chapter.
After that, we will take a step back and reflect shortly on the future perspective of data
science and taxation.

8.1 Analytics in Taxpayer Supervision

The research of this chapter started with the research question

Research Question What data science / analytical techniques can be used in
taxpayer supervision and what contributions may be expected from these tech-
niques?

A list of the techniques that can be used can be found in Table 2.4. Concerning
the expectations, the main contribution of the chapter is to bring realism in the ac-
complishments that can be expected from applying analytics to taxpayer supervision.
Analytics will not replace the paradigm of Compliance Risk Management in taxpayer
supervision, but has potential to support many current supervision activities within
that framework. So, neither the claim that analytics is just a hype and will hardly
contribute to taxpayer supervision, nor the claim that analytics will fundamentally
change taxpayer supervision is supported.
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The conclusion that analytics complements current activities, instead of replacing
them, seems to have plausibility for other domains as well. Think for example about
internal processes of tax administrations or other supervision tasks of governments.

At the same time, it is essential not to generalize this conclusion outside the realm
of analytics. If we think of data science in general (recall Figure 1.7 for the differ-
ence between analytics and data science in this thesis), this also contains the field of
Artificial Intelligence (AI) that is currently making fast progress towards reproducing
certain aspects of human intelligence. Technologies developed in AI have potential
for changing essential aspects of our society. And if society will change, taxation will
be adjusted to it as well.

Figure 8.1 reflects our believes about the direct and indirect influence of devel-
opments in data science on taxation. We believe that the direct application of data
science by tax administrations to improve its processes will most likely lead to more
effectiveness (and some gain in efficiency), without changing fundamental paradigms
(blue line in Figure 8.1). This is in line with the conclusions of chapter 2. In con-
trast, applications of data science in the wider society may change some fundamental
aspects of society, and thereby indirectly changing fundamental aspects of taxation
(brown dotted line in Figure 8.1).

Figure 8.1: Two ways that data science influences a tax administration

8.2 Logistic Regression and Factorization Machines

The research question that was addressed in this chapter was:

Research Question Can we improve on current audit selection models by incor-
porating categorical variables with many values (like ‘industry sector’) that are
valued by experts doing manual audit selection?
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The reason to address this question was the (at that time) surprising observation that
in the manual selection of audits, categorical variables with many values were highly
valued, while they were not incorporated in standard risk models at the NTCA.

After completing the research, it can be said that current audit selection models
can be improved by including categorical variables with many values. The risk model
that had started the research (a standard VAT audit selection model) could be im-
proved by nearly 10%. We developed a technique that uses the recently developed
Factorization Machines to achieve this goal.

The contribution is important beyond the actual problem at the NTCA. Many data
scientists encounter categorical features with many levels and are looking for the
right way to incorporate them in risk models or other applications. This is evident
when looking for instance at the questions posed on this topic at Stack Overflow
(www.stackoverflow.com), a main question and answer site in the domain of com-
puter science. The solution described in the chapter, solves the problem in a satis-
fying way. The solution described transforms the categorical features in a data pre-
processing step into numerical features. These numerical features can then be used
in any classification or regression algorithm.

Figure 8.2: Visualization of the relation between the real world and data, stressing
the importance of the way of representing the real world.

The idea of Factorization Machines to present categorical levels as vectors in a
multidimensional space is attractive by itself: a multidimensional space contains a
natural distance measure, allowing to quantify subtle differences between various
levels. A spectacular example of this kind is presented by word2vec [101], a group
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of models used in word embedding. These models are able to present each word as
a vector, such that differences between vectors have an intrinsic meaning, like the
famous example of king - man + woman = queen, where king is the vector belonging
to the word ‘king’, man the vector belonging to the word ‘man’, et cetera. The plus
and the minus sign in the equation are the usual addition and subtraction of vectors.

The representation of (interactions of) categorical features as numeric vectors is
an example of an unconventional way of presenting reality in data. In this thesis, we
met another example of the importance of a good data representation when discret-
izing numerical data to make it suitable as input for a Restricted Boltzmann Machine,
see ‘thermometer encoding’ in Chapter 6 on page 83. Figure 8.2 shows that in gen-
eral the representation of reality as input for an algorithm is an essential intermediate
step. Data representation is often given little attention, but is important. We expect
more good results in many application areas if more attention is paid to the repres-
entation of the data.

8.3 Singular Outliers

When applying standard anomaly detection algorithms to find tax fraud, we noticed
that most of the anomalies found were not related to fraud. This sparked the following
research question:

Research Question Can we develop a new anomaly detection algorithm tailored
to find the outliers that are of interest to a tax administration?

The answer is affirmative. In Chapter 4 we argue that interesting outliers do not ne-
cessarily have anomalous values for all features. Observations with anomalous values
for one or a few features might be even of more interest in the domain of tax fraud
detection or detecting data quality issues. The phenomenon of singular outliers is not
only restricted to the tax domain. Also in other fraud types, like credit card fraud,
clues are often derived from one or a few features.

The algorithm (SODA) that we developed is the first algorithm developed to detect
this type of outliers. We successfully applied a previous version of the algorithm to
select VAT field audits.

Since it is a first algorithm. we can imagine that other algorithms may be found
in the future that can perform even better. For instance, existing anomaly detection
algorithms may be adapted to find singular outliers. Also, the current algorithm may
be refined by by taking other values for p instead of 2 and 1 in the Local Euclidean
Manhattan Ratio, see Section 4.5.

At this place we want to point to a similarity between singular outlier detection
and sub-group discovery. Sub-group discovery can be seen as clustering observations
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on a subset of the features [8]. Before the arrival of sub-group discovery, many clus-
tering techniques existed that clustered observations taking into account all features.
Sub-group discovery became popular when it was realized that in some applications,
interest lies in observations that form clusters when restricted to a few features. This
is comparable with singular outlier detection where outliers are to be found for a few
features.

8.4 Are Similar Cases Treated Similarly?

‘Similar treatment of similar cases’ is important for tax administrations. The phrase
took a prominent place in the strategic five-year plan of the NTCA. Although it is
easy to state this principle theoretically, it is not easy to impose it in practice in a
large organization. Many factors may influence the treatment of taxpayers, especially
for Knowledge Intensive processes, that are abundant at tax administrations. For this
reason, we formulated our fifth research question as follows,

Research Question Can we develop a data science technique that assists in
testing similar treatment of similar (tax) cases?

The test procedures introduced in Chapter 5, see pages 70 and 72, give a tool
to test on similar treatment of similar cases. The procedures expect a process log
as input, extract features and frequencies, and then apply a sequence of χ2-tests. In
case the Null hypothesis of similar treatment is rejected, the values of the individual
χ2-statistics allow to pinpoint the places in the process that most contributed to the
rejection. The test procedures that are developed belong to process mining.

Process mining is still a relatively young field of research, but has a lot of potential
for tax administrations and other organizations. Since processes are more and more
controlled by state of the art case management systems that record valuable data,
the tools of process mining can be used to optimize these processes. However, almost
no tools exist yet for automatically checking constraints of processes, like the similar
treatment of similar cases. We think that the use of statistical techniques, as is done
in Chapter 5, can contribute further to process mining.

8.5 Extending an Anomaly Detection Benchmark

The topic of Chapter 6 is somewhat different compared to the other chapters. Its con-
tribution lies in comparing the performance of existing algorithms. The comparison
of algorithms contributes to the general body of knowledge, since science is not only
about discovering new facts, but also about placing these facts in an agreed, coherent
framework.
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Comparing different algorithms also has practical value. A frequently asked ques-
tion from data scientists is what algorithm should be used to solve a problem at hand.
We can answer such questions, as soon as we know the advantages and disadvantages
of various algorithms, and in what situations the strength of a particular algorithm
can be utilized. The formal research question underlying chapter 6 is:

Research Questions Unsupervised anomaly detection algorithms play an im-
portant role in (tax) fraud detection. What algorithms can be expected to work
well under what conditions?

The main finding of the chapter is that some exotic algorithms like Restricted
Boltzmann Machines, or some new algorithms like Isolation Forests perform well on
a range of data sets. For some data sets the investigated algorithms beat the current
best algorithm. The results of the chapter are summarized in Table 6.3.

An interesting finding of the chapter is that simple algorithms for detecting anom-
alies, such as k-nearest neighbors and Histogram Based Outlier Score, perform well
on a large number of data sets. This suggests a practical strategy to first try simple al-
gorithms for a problem and then to build further from these results with more specific
algorithms, like the ones tested in Chapter 6.

8.6 Outlook

Tax authorities around the world will continue to be large information processing
organizations. If current trends of an increasingly dynamic society, increasing cit-
izen expectations and internationalization continue, the tax administrations will face
enough challenges. Fortunately, the constant developments in computer science can
offer instruments to deal with an increasing workload. The application of data sci-
ence in the tax authorities has started, but has not yet reached the highest maturity
levels. In the near future, we expect progress in at least the following topics, that are
of interest for other organizations as well,

• automatically categorizing incoming documents,

• developing new algorithms for detecting (tax) fraud in networks of agents,

• privacy-preserving data mining.

Certainly, not all challenges of data science and taxation are of a technical nature.
When tax administrations are embracing data science, organizational and ethical
questions arise, like,

• How to position data science in relation to classical ICT?
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• How to organize teams of data scientist for optimal cooperation?

• How to organize a portfolio process?

• How to organize quality assurance and quality control?

The organizational questions may be of interest to Business Science.
Moreover ethical questions are playing an important role already, and will become

even more important in the coming years. These are questions like,

• How to preserve the privacy of citizens and how to conform to privacy guidelines?

• In what cases do we allow (semi-) automatic decision making and in what cases
do we want to avoid this?

• How can we develop effective controls that prevent the emergence of a police
state?

The right for the protection of privacy is stated in various legal documents, like the
Convention for the Protection of Human Rights and Fundamental Freedoms, article
8, see [28].

The question of automatic decision making is relevant since computer systems
may miss important information about the context, and may therefore take a wrong
decision. Moreover, it may be hard for a citizen to dispute such an automatic decision
once human process workers have been replaced by cheaper, more efficient machines.
Currently, the view is emerging that intelligent computer systems should support hu-
man decision making, and not take over complex decisions with a wide impact, see
for instance the European Union Communication on Building Trust in Human-Centric
Artificial Intelligence [35].

The power that data science and artificial intelligence may give to governments, is
subject to debate currently [37, 84]. Although this power may do much good, it may
be used by a future government to tightly control its citizens and to undermine demo-
cratic principles, like individual freedoms. Regulatory frameworks may be needed to
prevent if one wants to avoid this.





Summary

This dissertation is about applications of data science techniques to the administration
of taxes. These applications can provide effective and efficient processes within a tax
administration or improve the compliance of taxpayers. On the one hand, existing
techniques are assessed, and on the other, new techniques have been developed.

After an introductory chapter, the question is addressed which processes in the
tax domain are suitable for improvement with data science applications (Chapter 2).
Because the entire tax domain is extensive, we limit ourselves to an important sub-
domain: taxpayer supervision. A subtle picture of the (im-)possibilities of data science
is created by making an inventory of the supervisory activities and investigating for
each activity which data science techniques can add value. The chapter also provides
an overview of techniques that can be deployed. As such it is applicable for tax au-
thorities that want to improve their supervisory activities with data science.

In Chapter 3 an existing data science technique, logistic regression, is extended.
Logistic regression has difficulty in getting information efficiently from certain types
of data, the so-called ‘categorical variables with many levels’. Examples are ‘place of
residence’ or ‘occupation’. Because these variables occur regularly with tax author-
ities and because logistic regression is often used as well, this extension is a useful
addition. Categorical variables with many levels occur also outside the domain of tax-
ation, so this extension may add value there as well. Probably the same techniques of
incorporating categorical variables with many levels can also be applied to techniques
other than logistic regression, but this has not been investigated further.

In Chapter 4 we look at anomaly detection techniques (i.e. finding outliers in
data). Tax data often includes a typical type of anomalies (also called outliers) that
are not well detected by existing techniques. In the chapter this type of outliers is
described and a new technique has been developed that finds these anomalies. Within
tax administrations, the technique makes sense to detect tax fraud or to improve the
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data quality by detecting errors in data entry.
Chapter 5 is about similar treatment of similar cases. For large organizations, such

as tax authorities, it is not easy to ensure that equal cases always receive equal treat-
ment. In particular for those processes that require a human assessment (‘Knowledge
Intensive Processes’). A first step to arrive at similar treatment is to test whether sim-
ilar cases are treated similarly and, if not, where in the process the dissimilar treat-
ment occurs. For this purpose, two new procedures are introduced in Chapter 5. These
procedures belong to the domain of process mining.

Science consists of discovering new knowledge, but also organizing that know-
ledge in logical frameworks. In Chapter 6 the latter topic is looked at: three little-
used / new anomaly detection techniques are being tested on a benchmark, recently
published by Goldstein and Uchida [43]. This comparison helps in understanding the
strengths and weaknesses of various anomaly detection techniques. Surprisingly, the
three new techniques are able to match or improve the benchmark for 30% of the
data sets. In addition, attention is given to the relation between the new methods and
the more traditional anomaly detection methods. Moreover we look at what type of
anomalies are found.

In Chapter 7 four smaller topics are discussed. The chapter gives a good impres-
sion of the variety of data science topics within the tax domain. The first subsection
deals with a topic from HR Analytics, a sub-area within data science that focuses on
applications within the Human Resources (HR) domain. The next subsection looks
at an application of Reinforcement Learning techniques within the collection process
of a tax authority. Reinforcement Learning is the branch of Artificial Intelligence that
focuses on learning strategies for board games and computer games. The third topic
is about explaining data science models to end-users. The last topic concerns applying
ideas from the Fuzzy Set community in tax domain.

The dissertation ends with conclusions and a short outlook.



Samenvatting

Datawetenschap voor Belastingdiensten

Dit proefschrift gaat over toepassingen van technieken uit de datawetenschappen
(‘data science’) voor het verbeteren van heffings- en inningsprocessen binnen belas-
tingdiensten. De toepassing van data science technieken kan leiden tot effectievere
en/of efficiëntere processen of de compliantie (d.w.z. het vrijwillig naleven van regel-
geving) bij burgers en bedrijven verhogen. Enerzijds worden bestaande technieken
beoordeeld op hun toepasbaarheid in dit domein, anderzijds zijn nieuwe technieken
ontwikkeld.

Na een inleidend hoofdstuk, staat in Hoofdstuk 2 de vraag centraal welke fis-
cale processen zich lenen voor verbetering door middel van data science technieken.
Omdat het hele belastingdomein omvangrijk is, beperken we ons tot een belangrijk
deelgebied: het toezicht. Door de toezichtsactiviteiten te categoriseren en voor elke
categorie actviteiten na te gaan welke data science technieken waarde kunnen toe-
voegen, ontstaat een genuanceerd beeld van de (on-)mogelijkheden van data science.
Het hoofdstuk geeft ook een overzicht van technieken die ingezet kunnen worden en
is als zodanig bruikbaar voor belastingdiensten die verbeteringen willen realiseren in
hun toezichtsactiviteiten met behulp van data science.

In Hoofdstuk 3 wordt een bestaande data science techniek, logistische regressie,
uitgebreid. Logistische regressie heeft namelijk moeite met een bepaald type gege-
vens, de zogenaamde ‘categoriale variabelen met veel waarden’. Denk bijvoorbeeld
aan gegevens als ‘woonplaats’ of ‘beroep’. Omdat deze variabelen regelmatig voor-
komen bij belastingdiensten en omdat ook logistische regressie vaak wordt ingezet,
is deze uitbreiding een nuttige aanvulling. Ook buiten het domein van belastingen
komen categoriale variabelen met veel waarden voor en ook daar kan deze bijdrage
nuttig zijn. Waarschijnlijk zijn de technieken om categoriale variabelen in te bedden
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ook toe te passen bij andere voorspellende modellen dan logistische regressie, maar
dit is niet verder onderzocht.

In Hoofdstuk 4 wordt gekeken naar anomalie detectie technieken (d.w.z. tech-
nieken om uitschieters in de data te vinden). Binnen belastingdata komen vaak een
typische soort anomalieën voor die niet zo goed wordt gedetecteerd door bestaande
anomalie technieken. In het hoofdstuk worden deze soort uitschieters beschreven en
is er een nieuwe techniek ontwikkeld die deze anomalieën vindt. Binnen belasting-
diensten is de techniek zinvol om in te zetten om belastingfraude te ontdekken of
voor fouten in (handmatige) data-invoer op te sporen.

In Hoofdstuk 5 wordt ingegaan op een principe van rechtsgelijkheid: ‘vergelijk-
bare gevallen dienen vergelijkbaar behandeld te worden’. Voor processen binnen een
grote organisatie als een belastingdienst is het niet eenvoudig om te bewerkstelli-
gen dat vergelijkbare gevallen een vergelijkbare behandeling krijgen, met name voor
die processen die een menselijke beoordeling bevatten. Een eerste stap om te komen
tot een vergelijkbare behandeling is het meten of gevallen vergelijkbaar behandeld
worden en zo nee, waar in het proces deze ongelijkheid voorkomt. Hiervoor zijn in
Hoofdstuk 5 twee nieuwe procedures ontwikkeld en beschreven. Deze nieuwe tech-
nieken behoren bij het vakgebied process mining.

In Hoofdstuk 6 wordt een ander aspect van de informatica-wetenschap opgepakt.
Wetenschap bestaat niet enkel uit het ontdekken van nieuwe kennis, maar ook het
ordenen van die kennis in logische categorieën. In dit hoofdstuk worden drie weinig
gebruikte / nieuwe anomalie detectie technieken getest op een benchmark, recentelijk
gepubliceerd door Goldstein en Uchida [43]. De vergelijking helpt om de sterke en
zwakke punten van de verscheidene technieken te begrijpen. Verrassend blijkt dat
de drie nieuwe technieken in 30% van de datasets in staat zijn om de benchmark
te evenaren of te verbeteren. Daarnaast is het interessant om te zien hoe de nieuwe
methoden zich verhouden tot de meer klassieke anomalie detectie methoden en welk
soort anomalieën gevonden worden.

In Hoofdstuk 7 worden een viertal kleinere onderwerpen besproken. Dit hoofd-
stuk geeft een indruk van de verscheidenheid van data science toepassingen binnen
het belastingdomein. De eerste paragraaf behandelt een onderwerp uit HR Analytics,
een deelgebied binnen data science dat zich richt op toepassingen binnen Human
Resources (HR). In de volgende paragraaf komt een toepassing van Reinforcement
Learning technieken aan bod binnen het inningsproces van belastingdiensten. Rein-
forcement Learning is de tak van Artificiële Intelligentie die zich bezighoudt met het
leren van strategieën bij bordspelen en computer games. Het derde onderwerp gaat
over het uitleggen van risicomodellen aan eindgebruikers. Het laatste onderwerp be-
treft het toepassen van ideeën uit de Fuzzy Set gemeenschap op de belastingheffing.

Het proefschrift wordt afgesloten met conclusies en een korte vooruitblik.
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tem for public tax payment. In 2018 International Conference on eDemocracy &
eGovernment (ICEDEG), pages 235–240. IEEE, 2018.

[77] D. Micci-Barreca. A preprocessing scheme for high-cardinality categorical at-
tributes in classification and prediction problems. ACM SIGKDD Explorations
Newsletter, 3(1):27–32, 2001.

[78] K. P. Murphy. Machine Learning A Probabilistic Perspective. The MIT Press, 1
edition, 2012.

[79] Netherlands Tax and Customs Administration. download.belastingdienst.

nl/belastingdienst/docs/dutch_tax_customs_admin.pdf, May 2019.

[80] A. Ng. Lecture notes on sparse autoencoders. https://web.stanford.edu/

class/cs294a/sparseAutoencoder-2011.pdf, 2011.

[81] Online etymology dictionary, statistics. https://www.etymonline.com/word/
statistics.

[82] A. Ostovar, S. J. Leemans, and M. La Rosa. Robust drift characterization from
event streams of business processes. Internal Report, 2018.

[83] S. Pauwels and T. Calders. Detecting and explaining drifts in yearly grant
applications. arXiv preprint arXiv:1809.05650, 2018.

[84] N. Petit. Artificial intelligence and automated law enforcement: A review pa-
per. Available at SSRN 3145133, 2018.

[85] M. Pijnenburg. Simulation of rubber networks. Technical report, Stan Acker-
mans instituut, 2005. ISBN: 9044404784.

[86] M. Pijnenburg. Code used in experiments. https://github.com/

PijnenburgMark/anomaly_detection_benchmark, 2019. Accessed: 2019-06-
01.

download.belastingdienst.nl/belastingdienst/docs/dutch_tax_customs_admin.pdf
download.belastingdienst.nl/belastingdienst/docs/dutch_tax_customs_admin.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder-2011.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder-2011.pdf
https://www.etymonline.com/word/statistics
https://www.etymonline.com/word/statistics
https://github.com/PijnenburgMark/anomaly_detection_benchmark
https://github.com/PijnenburgMark/anomaly_detection_benchmark


138 Bibliography

[87] M. Pijnenburg, N. Kalosha, and M. C. van Zuijlen. Hoeffding-Bentkus bound
in statistical auditing. Technical report, Radboud University Nijmegen, 2006.

[88] M. Pijnenburg and W. Kowalczyk. Applying analytics for improved taxpayer
supervision. In Proceedings of 16th European Conference on e-Government ECEG
2016, pages 145–153. Academic Conferences and publishing limited, 2016.

[89] M. Pijnenburg and W. Kowalczyk. Extending logistic regression models with
factorization machines. In International Symposium on Methodologies for Intel-
ligent Systems, pages 323–332. Springer, 2017.

[90] M. Pijnenburg and W. Kowalczyk. Singular outliers: Finding common observa-
tions with an uncommon feature. In International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems, pages
492–503. Springer, 2018.

[91] M. Pijnenburg and W. Kowalczyk. Are similar cases treated similarly? a com-
parison between process workers. In International Conference on Business In-
formation Systems, pages 1–15. Springer, 2019.

[92] M. Pijnenburg and W. Kowalczyk. Extending an anomaly detection benchmark
with auto-encoders, isolation forests, and rbms. In International Conference on
Information and Software Technologies. Springer, 2019. Best Paper Award.

[93] M. Pijnenburg, W. Kowalczyk, E. van der Hel-van Dijk, et al. A roadmap for
analytics in taxpayer supervision. Electronic Journal of e-Government, 15:19–
32, 2017.

[94] M. Pijnenburg and K. Kuijpers. Explaining risk models to the business. Tax
Tribune, 35:57–62, 2016.

[95] M. Post. Tax data and reinforcement learning. Master’s thesis, Leiden Univer-
sity, 2 2019. Under supervision of Mark Pijnenburg, Wojtek Kowalczyk, and
Kaifeng Yang.

[96] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining out-
liers from large data sets. In ACM Sigmod Record, volume 29, pages 427–438.
ACM, 2000.

[97] S. Rendle. Factorization machines. In 2010 IEEE International Conference on
Data Mining, pages 995–1000. IEEE, 2010.

[98] S. Rendle. Factorization machines with libFM. ACM Trans. Intell. Syst. Technol.,
3(3):57:1–57:22, May 2012.



Bibliography 139

[99] M. Richardson and A. J. Sawyer. A taxonomy of the tax compliance literature:
further findings, problems and prospects. Austl. Tax F., 16:137–320, 2001.

[100] X. Rong. R package deepnet. https://CRAN.R-project.org/package=

deepnet, March 2014.

[101] X. Rong. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738, 2014.

[102] M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. Klette. Deep-anomaly:
Fully convolutional neural network for fast anomaly detection in crowded
scenes. Computer Vision and Image Understanding, 172:88–97, 2018.
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