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ios in which the curvature and geodesics of the scalar manifold play a crucial role. We outline
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of the hyperbolic manifold. We provide the explicit coordinate transformation that maps the
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geodesic and use them to discuss stability criteria.
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1 Introduction

Inflation, the hypothesis of rapid accelerated expansion in the primordial Universe, provides
an elegant solution to the flatness and horizon problems [1, 2], and seeds the primordial
Universe with quantum fluctuations whose predictions are in excellent agreement with the
latest CMB observations [3]. Inflation requires ε < 1, where ε = −d(logH)/ dN is the
first Hubble flow (or slow roll) parameter and N is the number of e-folds. Quasi-De Sitter
expansion requires ε � 1, and hence requires a small deviation from the scale invariant De
Sitter space-time for a prolonged period of time. Prolonged inflation imposes restrictions on
the evolution of ε, as a function of e-folds ε′ � 1, where ′ ≡ d/dN , independently of the
requirement that ε should be small. Note that this condition is weaker (and more general)
than the one usually used, namely η ≡ ε′/ε being small, since ε < 1 during inflation.

We consider a model consisting of multiple scalar fields ΦI , I ∈ [1,N ], and non-canonical
kinetic terms

L =
√
−g
(

1

2
R− 1

2
GIJ(ΦK)∂µΦI∂µΦJ − V

)
, (1.1)

(we use units of MPl = 1) where µ, ν are spacetime indices and the matrix GIJ can be
interpreted as a field-space metric.1 The first slow-roll parameter can be written as ε =
vIv

I/2, where vI ≡ dΦI/ dN is velocity of the scalar fields with respect to the e-folding

1Our subsequent analysis can be applied in other types of multi-scalar systems, such as the holographic
RG flow of domain walls, under an appropriate mapping (see e.g. refs. [4, 5]).
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number, N . The latter is related to cosmic time via the Hubble parameter dN = H dt
defined as

3H2 = 1
2GIJ∂tΦ

I∂tΦ
J + V . (1.2)

The variation of ε reads

ε′ = vIa
I , aI ≡ DNv

I =
dvI

dN
+ ΓIJKv

JvK , (1.3)

where aI is the covariant (or generalised) acceleration and ΓIJK the Christoffel symbols asso-
ciated with GIJ . We express the scalar field equations of motion as

aI = −(3− ε)vI − V ,I

H2
, (1.4)

where the r.h.s. consists of the Hubble friction and the potential gradient terms V ,I =
GIJ∂V/∂ΦJ .

Prolonged inflation requires ε to be approximately constant, translating into the (ap-
proximate) vanishing of ε′, the inner product between the velocity and covariant acceleration
of the fields (1.3). For a single field, this implies that the acceleration must be very small
and that it is necessary for prolonged single-field inflation to impose the slow-roll condition
φ̈ ≈ 0, given by the separate vanishing of the two sides of the scalar field equation (1.4).
Fast-roll inflation can be achieved by including higher-order derivative terms as in e.g. DBI
inflation [6].

A simple generalization in multi-field inflation is the slow-roll slow-turn condition, re-
stricted to potential gradient flow (see e.g. refs. [7–11]), where ε and the covariant acceleration
vector aI are both small. However, ε′ can be vanishing while some of the components aI are
large, as long as the acceleration is perpendicular to vI . This requires an interplay between
gradient terms ∝ V ,I and (generalised) centrifugal forces ∝ ΓIJKv

JvK . We will explicitly
demonstrate this by constructing an effective potential, that can be linked to the Hubble
parameter, and show that it can describe dynamics shared by all recent models that ex-
hibit a novel inflationary attractor [12–16]. While hyperinflation [17, 18] might appear to
be of a different nature, it is also captured by our effective potential formalism. We show
that hyperinflation is a special case of sidetracked inflation, going beyond recent investiga-
tions that have pointed out similarities between them [19–21] in the context of geometrical
destabilization [22–25].

The paper is organized as follows: in section 2 we demonstrate how all recent novel
attractor solutions can collectively be described as the late-time evolution in a special coor-
dinate system, where all fields but one are non-dynamical. This coordinate choice will allow
us to express the attractor solution in a coordinate invariant form. In section 3 we derive
the stability conditions for the background solution and then focus on bifurcations between
different solutions. Analyzing the bifurcation structure of hyperinflation we show that it
belongs to the sidetracked family of models. In section 4 we contrast our stability criteria
with previous conditions found in the literature and briefly discuss quantum fluctuations of
the novel attractor models. We offer our conclusions in section 5.

2 Background evolution

2.1 Late-time dynamics

The ‘typical’ evolution of many multi-field inflationary models consists of an early period of
multi-field behavior and a late period of single-clock inflation. Depending on the duration
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of each phase, the relevant part of the evolution (last 50–60 e-folds) is described by an
N -dimensional hypersurface, where N is the number of evolving degrees of freedom, or a
single trajectory if all other “orthogonal” fields have relaxed to their minimum. In this
letter we mainly focus on the last phase and so we decompose the scalar fields ΦI = (φ, χi),
where φ is defined as the (light) inflationary direction and χi are the orthogonal fields that
are (approximately) constant during inflation. This split is manifested in an appropriate
coordinate system where (χi)′ ≈ 0 will hold as an (approximate) solution.

Specializing to N = 2 (though this argument also holds for an arbitrary number of
fields) a given solution {(ψ1

sol)
′, (ψ2

sol)
′}, where the velocity components can be non-zero in

general, can be mapped to {(φ1
sol)
′, 0} under the coordinate transformation which as usual

transforms the components as

(φIsol)
′ =

∂φI

∂ψK
(ψKsol)

′ . (2.1)

Since the existence of an attractor is assumed, velocities are given as functions of the fields,
and the partial differential equation for the unknown function φ2

∂φ2

∂ψ1
(ψ1

sol)
′ +

∂φ2

∂ψ2
(ψ2

sol)
′ = 0 , (2.2)

has the form of the advection equation with variable coefficients. This can always be solved
(for instance with the method of characteristics) and this proves the existence of our coordi-
nate construction.

This coordinate choice leads to2

vI ≈ (v, 0, . . .) , aI ≈
(

dv

dN
+ Γφφφv

2,Γiφφv
2

)
, (2.3)

evaluated on that particular inflationary solution. While field-space manifolds with isome-
tries provide natural choices for this parametrization [16], we show that the presence of an
isometry is not necessary. Also, the isometry structure of hyperbolic space allows for different
equivalent parametrizations.

We observe a particularly striking separation of the consequences of prolonged inflation
(ε′ � 1). Along the inflationary direction vDNv � 1, which through the equation of
motion (1.4) yields v ≈ −V ,φ/V . This implies that the inflationary direction is subject
to the usual slow-roll condition, where Hubble friction is balanced by the potential gradient.
For generic potentials consistency of this solution requires the smallness of first and second
slow-roll parameters in the inflationary direction. In our coordinate system the two conditions
read (see appendix A.1):

1

2
Gφφ

(
V,φ
V

)2

� 1 , Gφφ
V,φφ
V
� 1 . (2.4)

The situation is radically different for the orthogonal field directions. By adapting our
coordinates, we have defined these as stationary that can have a non-vanishing covariant

2Note that the present construction differs from the adiabatic/entropic decomposition [9, 22, 27–29] since
the latter does not introduce a new coordinate system. Instead, the adiabatic direction is related to our
inflationary direction as σ̇2 = Gφφφ̇2.
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acceleration only when deviating away from a geodesic. This introduces a (generalized) cen-
trifugal force that is balanced by a potential gradient: for the stationary directions eqs. (1.4)
become

V ,i
eff ≡ V

,i + Γiφφv
2H2 ≈ 0 . (2.5)

We call this the effective gradient along the i’th direction in field space. Note that contrary
to the inflationary direction, consistency of these conditions imposes no restrictions on V ,i

(apart from having different signs with respect to Γiφφ). This decouples the potential gradient
from the inflationary trajectory, providing the means to evade the refined de Sitter conjecture
of ref. [30].

Eq. (2.5) should be seen as algebraic relations for the stationary fields χi, in terms of
the inflaton field φ and its velocity v. The stationary fields will adapt their values to balance
the centrifugal and potential forces acting on them, as in the gelaton model [33]. Therefore,
at a given moment during inflation, i.e. for a particular value of φ, one can view eq. (2.5)
as the gradient of an effective potential, whose extrema fix the values of these fields, akin to
moduli stabilisation in string theory. When both terms in the right hand side of eq. (2.5)
vanish separately, one has slow-roll slow-turn conditions for potential gradient flow, which is
by no means necessary in the multi-field case. In general, negative curvature tends to induce
non-geodesic motion.

There is an attractive interpretation of the above condition when formulated in phase
space. The effective potential (2.5) coincides with the total energy (and the Hubble param-
eter) as a function of the orthogonal field values χi, for a given value of the inflaton φ and
its conjugate momentum πφ = Gφφφ̇. In other words, the space-time metric and the inflaton
field are assumed as a fixed time-dependent background, and the orthogonal fields are subject
to the energy extremization condition

∂i

(
1

2
Gφφ(φ, χi)π2

φ + V (φ, χi)

)
= 0 . (2.6)

The orthogonal field dependence of the first term comes in via Gφφ which, for negative
curvature manifolds, decreases as one moves away from the geodesic solution with ∂iGφφ = 0.
This allows for a competition between an increase in potential and a decrease in kinetic
energies, providing an intuitive interpretation of geometric destabilization [22–25] as a simple
competition of energy contributions.

2.2 Conditions and examples

We now derive a coordinate independent expression for the attractor solution in the case
of two fields. For any two-dimensional metric, off-diagonal componentis can be set to zero
with an appropriate redefinition of either χ or φ. By redefining φ, the solution χ′ ≈ 0
carries over in the new system and so without loss of generality we can assume the following
diagonal metric

ds2 = Gφφ(φ, χ) dφ2 + Gχχ(φ, χ) dχ2 . (2.7)

The solution for the slow-turn limit is already in covariant form, ε ≈ εV , thus we will focus
on the case when ω/H ≡ Ω is non-negligible. Simple and manifestly invariant expressions,
including only covariant derivatives of the potential, are the norm of the potential gradient,
the trace of the Hessian and the projection of the Hessian along the potential gradient. As
we will show shortly the previous three quantities suffice to derive a coordinate independent
expression for the attractor solution. Our calclulations will drastically simplify using the
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coordinate system we defined earlier and we will further assume the slow-roll conditions for
prolonged inflation ε, |η| � 1.

1. The norm of the potential gradient is

GIJV,IV,J
V 2

≡ 2εV ≈ 2ε+
2εH2ω2

V 2
⇒ εV ≈ ε

(
1 +

Ω2

9

)
, (2.8)

where the latter was first derived in ref. [26]. As a side-note, the Swampland conjectures
constrain the norm of the potential gradient and thus the above equation shows how
one can have slow roll inflation with ε� 1 on a steep potential with εv ≥ O(1).

2. The trace of the Hessian is

C2 ≡
GIJV;IJ

V
=
V;σσ

V
+
V;ss

V
. (2.9)

where we used the relation GIJ = σ̂I σ̂J + ŝI ŝJ , which holds for two fields [29], along
with the definitions V;σσ = σ̂I σ̂JV;IJ and V;ss = ŝI ŝJV;IJ . Note that neither V;ss/V nor
V;σσ/V need be small in order to get successful slow-roll inflation.

We can trade V;σσ for the turn rate using the definition of the slow-roll parameter in

the adiabatic direction ησσ =
V;σσ
V − 1

3Ω2 (see appendix A.1), and neglecting ησσ

C2 ≡
GIJV;IJ

V
≈ 1

3
Ω2 +

V;ss

V
. (2.10)

However, for certain models (e.g. the multi-field alpha attractors) V;ss is negative and
the two projections of the potential almost cancel each other. Hence, the previous
substitution is invalid as their difference is of the same order as ησσ. To include these
cases as well we will use V;σσ instead of the turn rate and rewrite eq. (2.8) as

εV ≈ ε
(

1 +
1

3

V;σσ

V

)
, (2.11)

assuming Ω2 � |ησσ|.

3. The third curvature invariant is

C3 ≡
V ,IV ,JV;IJ

V 3
=

2ε

9
Ω2V;ss

V
+ 2ε

V;σσ

V
+ 2

V ,χV ,φV;χφ

V 3
≈ 2ε

V;σσ

V

(
1

3

V;ss

V
− 1

)
(2.12)

where we related the time derivative of the turn rate with the mixed derivatives through

1

9
ε(Ω2)′ = −

V ,χV ,φV,χφ
V 3

+
V ,χV ,φΓχφχV,χ

V 3
+

1

9
εΩ2 (4ε− η) , (2.13)

and is thus suppressed.

Eliminating V;ss/V and V;σσ/V in the system of eqs. (2.9)–(2.12) yields a quadratic equa-
tion for ε

2C2ε
2 + (C3 − 6εV − 2C2εV )ε+ 6ε2V = 0 , (2.14)

– 5 –
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which in general has two solutions. We can further simplify the solution by noticing that the
relations ε < εV and ε� 1, with no such restrictions on the other curvature invariants, allow
us to neglect the quadratic term in eq. (2.14) and obtain instead

ε ≈
6ε2V

6εV + 2C2εV − C3
. (2.15)

It is worth mentioning the two sets of assumptions we made to derive the previous formula.
Firstly, we assumed that the magnitude of the tangential and orthogonal directions of the
potential (V;σσ/V , or equivalently Ω2, and V;ss/V ) are free parameters, but non-negligible
compared to ε and η; otherwise one recovers the traditional slow-roll slow-turn approximation.
Secondly, we neglected logarithmic prime derivatives of various quantities (e.g. ε and Ω),
as it allows us to neglect second order time derivatives and subsequently make analytical
approximations possible. The latter was assumed in the early works, such as ref. [31], as a
definition of slow-roll, as well as in the derivation of the rapid-turn solution in ref. [21]. A
discussion of the validity of this assumption was presented in ref. [32], where various two-field
models have been shown to be approximated by scaling solutions with adiabatically changing
parameters, for which logarithmic time derivatives are identical zero. Therefore, eq. (2.15)
may hold even at the slow-turn limit and describes every possible late-time evolution with the
previous assumptions satisfied. Note though, that the slow-turn limit might be different from
the gradient-flow approximation, where the covariant acceleration becomes subdominant;
here instead motion can be non-geodesic and yet the turning rate might be small (we will
illustrate this point using the angular inflation model).

Now we can show that the novel slow-roll behaviour found in recent models [12–18] are
all captured by the previous solution. Our first example is hyperinflation, formulated on the
Poincaré disc with a spherically symmetric potential [17, 18]

ds2 = L2 sinh2
( ρ
L

)
dθ2 + dρ2 , V = V (ρ) . (2.16)

The solution for ρ� L and V,ρ � 3LV is

ε ≈ 3

2
L
V,ρ
V
, (2.17)

recovering the usual hyperinflation result. This was first derived in ref. [17] and subsequently
extended in refs. [18, 19, 32]. In the opposite limit of shallow potentials and / or mildly
curved manifolds we get simple gradient flow evolution wilh ε = εV (the precise stability
criteria are explained in section 3.1).

The second example is a two-field generalization of α-attractor models [34], where the
scalar potential takes a finite value at the boundary of the Poincaré disc3 and exhibits angular
dependence. The field metric and potential are

ds2 =
6α

(1− r2)2

(
dr2 + r2 dθ2

)
, V = 3αr2

(
m2

1 cos2 θ +m2
2 sin2 θ

)
. (2.18)

Such models proceed for a prolonged number of e-folds along a slow-roll, slow-turn tra-
jectory, giving rise to the universal predictions of α-attractors for intermediate field-space

3The Poincaré disk possesses unit radius and constant negative curvature. For α-attractors models the
curvature reads R = −8/α, where the parameter α is defined through the field-space metric given in eq. (2.18).
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curvature [35]. For large negative curvature (small values of α), trajectories collapse to a
particular late-time attractor, where motion proceeds predominately along the angular di-
rection. For values of the mass ratio Rm ≡ (m2/m1)2 & O(10) the duration of the angular
phase becomes inversely proportional to the α parameter [13]. Note that there are effectively
3 quantities in this model: the distance from the boundary of the Poincaré disc, parameter-
ized by 1−r2, the field-space curvature controlled by α and the mass ratio Rm, or equivalently
the potential steepness along the angular direction V,θ/V . Assuming moderate mass ratio
Rm . O(10), i.e. V,θ � V and V,θθ � V , then expanding eq. (2.15) around small angular
gradient we obtain

ε '
6
(
1− r2

)2
18α+ 4 (1− r2)

. (2.19)

To further simplify the previous we need to distinguish between two cases, depending on the
relative size of α to 1− r2. Hence, we obtain

ε ≈
(
1− r2

)2
3α

= εV (1− r2 � α) , (2.20)

ε ≈ 3

2

(
1− r2

)
(1− r2 � α) . (2.21)

The latter equations have a simple interpretation: for a given α two solutions are possible
depending on the distance relative to the boundary of the Poincaré disc. If fields start
very close to the boundary then they will first follow an almost radial evolution with a
small turn-rate, but as their distance from the origin decreases there will be a transition
towards a different solution, the novel angular attractor, in accordance with the findings of
refs. [13, 35]. Turning to the large mass ratio, i.e. V,θ � V only the slow-turn solution is
possible at 1− r2 � α with

ε =

(
1− r2

)2
12α

(
V,θ
V

)2

≈ εV . (2.22)

Despite being a slow-turn solution, motion does not proceed along the potential flow,
i.e. (φI)′ ∼ V ,I which results into boomerang-like curves, but along the angular direction
instead.4 Since we found two seemingly different solutions, both proceeding predominately
along the angular direction, we can try to unify their description. Equating eqs. (2.22)
and (2.21) provides the parametric relation between r and θ during angular inflation

1− r2 ≈ 18α

(
V,θ
V

)−2

=
9α

2

(cot θ +Rm tan θ)2

(Rm − 1)2
, (2.23)

where the last part of the equation refers to the particular potential choice given in eq. (2.18).
Of course, following either eq. (2.15) or the analysis of ref. [13], one can study angular inflation
solutions in potentials with arbitrary angular and radial dependence.

4This can be deduced as follows: the requirement of one frozen field and one field in slow roll combined
with the solution ε ≈ εθ (where the latter denotes the θ part in the definition of εV ), gives θ′ ≈ θ′SR and r′ ≈ 0.
Thus, this particular slow-turn solution belongs to the angular inflation regime.
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3 Stability and bifurcations

3.1 Stability conditions

The stability conditions for a general background solution are determined by the eigenvalues
of the full stability matrix spanned by the fields and their velocities. In the cases of interest
in this paper, with ε′ � 1 and χi ' constant, the stability criteria are given by the expansion
of the effective potential at quadratic order, i.e. ∂iV

,j
eff , and algebraic restrictions on ε (see

ref. [32] and appendix A.2 for more details). Since we substitute an approximate solution
the conditions listed below will be accurate to first order in the slow-roll parameters.

For clarity we consider the two-field case, where any metric can be diagonalised. More-
over, we restrict ourselves to the following form for the field metric

ds2 = Gφφ(χ) dφ2 + Gχχ(φ) dχ2 . (3.1)

The expression for the Ricci scalar of this manifold splits in two parts, R = R(φ) + R(χ),
parametrizing the derivative dependence on the two fields (there are no mixed derivatives
∂φ∂χ). Motion along the φ direction is stable, as long as

3− ε+
(

log
√
G
)′
> 0 , (3.2)

where G ≡ det (GIJ). We will provide the physical interpretation later using hyperinfla-
tion [17] as an example. In addition, the effective mass (defined as the linearization of
V ,χ

eff ) reads

M2
eff = V,χ

χ + εH2R(χ) + 3
V,χV

,χ

2εH2
. (3.3)

Since multi-field trajectories can deviate from the gradient flow, one can define the turn
rate ω as the deviation of ε from εV ≡ 1

2(log V ),I(log V ),I . For our choice of coordinates
ω2 = V,χV

,χ/(2εH2).
An example with a single stable attractor is provided by two-field α-attractor models

modeled by eq. (2.18) and explored in detail in ref. [13]. It is straightforward to check that the
effective gradient V ,ρ

eff stabilizes the radius near the boundary of the Poincaré disc, leading to
a late-time attractor with non-vanishing turn rate, proceeding along a non-geodesic direction
in field space.

Turning to a second example, it was recently pointed out [16, 36] that neutral stability
can be achieved using the Hamilton-Jacobi formalism, where the scalar potential is given in
terms of the Hubble parameter by

V = 3H2 − 2H,IH
,I . (3.4)

This formalism has an exact first-order solution for the scalar velocities [39]5

vI = −2H ,I/H . (3.5)

Upon adapting coordinates such that H = H(φ), one has a natural distinction between
the inflationary and the stationary directions. Such trajectories may be (strongly) turning,
however, as the Hubble gradient may differ from the potential gradient. The latter will be

5This can be seen as the cosmological analogue of the first-order equation that governs AdS critical points
and BPS domain walls [37, 38].
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Figure 1. Various possible trajectories of the system evolving along φ at fixed values of χi. Dynamical
bifurcations during inflation correspond to transitions between different trajectories.

non-vanishing if the metric along the inflationary direction Gφφ depends on the stationary
directions, resulting in

V ,i = −2∂iGφφ(H ,φ)2 , (3.6)

which is equivalent to the vanishing of the effective gradient of eq. (2.5). The latter is
therefore identically satisfied, leading to neutrally stable stationary points and hence flat
directions in the effective potential and Hubble parameter, which are directly related to the
choice H = H(φ). This implies that the field space is spanned by adjacent trajectories.
One thus has a convergence of the 2n-dimensional phase space of initial conditions to the
n-dimensional hypersurface that fixes the fields’ velocity but not their positions.

For more general scalar potentials, the orthogonal directions will settle at (one or more)
extrema of Veff (see figure 1). The number and stability properties of these extrema can
change during inflation, a phenomenon known in dynamical systems as bifurcations [42].
These bifurcations are elegantly captured by Veff . We will illustrate this using two charac-
teristic examples from the recent literature.

3.2 Sidetracked inflation

Arguably the simplest setting that displays the bifurcation phenomenon is sidetracked infla-
tion [15], originally formulated on a negatively curved space and a sum separable potential
V = U(φ) + 1

2m
2
hχ

2, where U is a single field potential corresponding to a variety of small-
field inflationary models, including Starobinsky and natural inflation. The sidetracked phase
succeeds the traditional slow-roll solution, after geometrical destabilization occurs, and so
there is a transition from gradient flow slow-roll to a non-geodesic solution. Using a model
with quadratic potentials and negative curvature:

ds2 =

(
1 +

χ2

L2

)
dφ2 + dχ2 , V = 1

2m
2φ2 + 1

2M
2χ2 , (3.7)

we will display the opposite phenomenon, i.e. transition from non-geodesic to geodesic motion.
As we will see, inflation takes place along φ and is thus perfectly suited to the effective
potential framework.

Let us first investigate the stability of the geodesic trajectory with χ = 0. Particu-
larly for quadratic potentials, both contributions to the isocurvature mass are approximately
constant and read

µ2 = M2 − 2m2

3L2
. (3.8)
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Thus the curvature destabilizes the geodesic solution for

L <

√
2m√
3M

. (3.9)

However, for
√

3ML .
√

2m, subleading corrections to the isocurvature mass, consisting of
the kinetic term for φ in the Hubble parameter, become important and lead to bifurcations.
In particular µ2

s(χ = 0) < 0 at large φ and it slowly increases as inflation proceeds along the
geodesic, becoming positive at

φ2
cr =

4m2

3(2m2 − 3L2M2)
, (3.10)

where we have assumed φ > 1.

The subleading terms also determine the fate of the background trajectory when the
geodesic solution is unstable. In addition to a local maximum, the subleading terms induce
two minima in the effective potential at

χ2
± = L

(√
2m√
3M
− L

)
, (3.11)

for φ � φcr. The background trajectory will smoothly transit from the early non-geodesic
trajectory at χ± to the subsequent geodesic phase at χ = 0. Figure 2 shows the evolution
of the effective gradient V ,χ

eff and its zeroes as φ evolves, resulting in a pitchfork bifurcation.
Moreover, it is clear from the figure that the numerical trajectories converge to the geodesic
solution somewhat later; this can be understood as inertia in the moduli system, and indeed
the different trajectories only become geodesic when µ2

s ' H2 rather than 0.

3.3 Hyperinflation

A second example displaying a similar phenomenon is hyperinflation (2.16). It admits three
solutions: radial evolution with θ′ = 0, and two spiralling phases where the normalized
angular velocity

y = L sinh
( ρ
L

)
θ′ , (3.12)

is either zero or non-zero. For the first two ε ≈ εV and so ω ≈ 0. Stability of these
solutions follows straightforward from our analysis. First, M2

eff = 0 (as the effective gradient

is identically zero V ,θ
eff = 0), which is a consequence of the shift symmetry in θ. Second, if we

study the evolution of y we obtain

y′ = −
(

3− 1

2
(ρ′)2 +

ρ′

L
coth

( ρ
L

))
y , (3.13)

where the term in parenthesis is identical to eq. (3.2), after substituting ε → εV and ρ′ =
−(log V ),ρ. When the gradient exceeds a critical value the gradient-flow solutions (y = 0)
become unstable and the system is driven towards the hyperinflation attractor.

For the simple example with

V = 1
2m

2ρ2 , (3.14)

– 10 –
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Figure 2. Left: the effective gradient of sidetracked inflation with L = 0.0034, m = 1 and M = 240
along the stationary direction χ for different values of φ, signaling the existence of one or three points
of V ,χeff = 0. The stability of each is determined by the slope of the curve. Right: the corresponding
bifurcation diagram. The black-dotted curve are the non-geodesic solutions to eq. (2.5), while the
colored curves correspond to numerical solutions of the background system.

the trajectory undergoes such a transition at ρ = 2/(3L). Remarkably, one can bring all
these solutions to proceed along a single direction via the field redefinition

cosh
( ρ
L

)
= cosh

(χ
L

)
cosh

(
φ

L

)
, cot(θ) = coth

(χ
L

)
sinh

(
φ

L

)
, (3.15)

leading to

ds2 = cosh2
(χ
L

)
dφ2 + dχ2 . (3.16)

This maps any spherically symmetric potential V (ρ) onto a particular V (φ, χ), providing all
the necessary ingredients for realizing sidetracked inflation along φ.6

Close to the geodesic solution (χ = 0), the scalar potential reads (assuming φ > L)

V = 1
2m

2φ2 + 1
2m

2 φ

L
χ2 . (3.17)

The effective mass for motion along χ = 0 reads M2
eff = m2

L (φ − 2
3L), becoming negative for

φ < φcrit = 2/3L. At larger field values the geodesic solution is stable as the orthogonal field
is strongly stabilised, while it becomes unstable at smaller field values. At this point, two new
stable non-geodesic solutions come into existence, thus making up a pitchfork bifurcation [42]
(see figure 3).

6By “sidetracked” we refer to models that admit one geodesic solution along the minimum of the “heavy”
field potential and two non-geodesic ones, generalizing the specific models of ref. [15].
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Figure 3. Left: the effective gradient for hyperinflation in the coordinates of eq. (3.16) at different
φ-values with m = 1 and L = 0.01. Right: the corresponding bifurcation diagram. The black-dotted
curves are the non-geodesic solutions to eq. (2.5), while the colored curves correspond to numerical
solutions of the background system.

4 Generalizations and comparison

4.1 Beyond isometries

In ref. [21] a unification scheme was considered for the non-geodesic phase, based on the large
turn rate of studied models. Stability of the solution was shown using the perturbations’
equations in the adiabatic/entropic decomposition and requiring µ2

s > 0, where µ2
s is the

isocurvature effective mass
µ2
s = V ,χ

;χ + εRH2 + 3ω2 . (4.1)

However, as has been pointed out in ref. [24], it is possible to have both a stable homoge-
neous solution and unstable orthogonal perturbations, leading to an apparent paradox. The
resolution of this apparent paradox becomes clear if we compare µs with the stability criteria
we presented earlier, in particular Meff

µ2
s = M2

eff − GχχΓφχχV,φ + εH2R(φ) . (4.2)

Using χ′ ≈ 0, D =
(
log
√
G
)′

and

D′ ≈ 1

2

Gχχ,φφ
Gχχ

v2 − 1

2

(
Gχχ,φ
Gχχ

)2

v2 (4.3)

εR(φ) = −1

2

Gχχ,φφ
Gχχ

v2 +
1

4

(
Gχχ,φ
Gχχv

)2

v2 . (4.4)

we can rewrite the previous in a more geometrical way as:7

µ2
s

H2
≈
M2

eff

H2
− (3− ε+D)D −D′ . (4.5)

7An interesting parallel exists between eq. (4.5) and eq. (5) of [43] if one makes the substitution D =
−2hi/H. While both relations describe the mass of isocurvature modes, they were each derived in a different
context. We do not fully understand their relation at this point, and thus leave this as an open question for
future work.
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The two masses are equal when the metric has an isometry in the inflationary direction, which
is the case for the examples in [21]. Otherwise, µ2

s and M2
eff can differ and even have opposite

signs. While this might sound surprising, the situation is similar to the familiar case of a
spherically symmetric quadratic potential in flat target space. In polar coordinates Gχχ = φ2

and V = 1
2m

2φ2, inducing a difference between both mass notions in (4.5). The effective
mass vanishes, indicating a range of neutrally stable trajectories on the attracting surface,
while the isocurvature mass is positive, corresponding to a decrease of the proper distance
between these trajectories, and a corresponding suppression of isocurvature fluctuations, as
one approaches the minimum at φ = 0.

The Hamilton-Jacobi formalism provides a clear illustration between the two (effective
and isocurvature) mass notions in the absence of an isometry. The discussion around eq. (3.6)
holds for any metric of the form of eq. (3.1) and thus generates an infinite set of adjacent,
non-isolated critical points for the orthogonal fields. One can check that M2

eff = 0 for such
constructions, highlighting the flat directions, while the isocurvature mass is proportional to
the additional terms in (4.5). For example, by choosing

ds2 = ρ2 dθ2 + Gρρ(θ) dρ2 , V =
m2

2

(
θ2 − 2

3ρ2

)
, (4.6)

the background trajectories of ref. [16]

ρ = ρ0 , θ̇ = ±
√

2/3m/ρ2
0 , (4.7)

carry over, while the isometry along θ is broken. One can check this by examining the
background equations of motion

θ̈ + 3Hθ̇ +
2

ρ
ρ̇θ̇ − 1

2

∂θGρρ(θ)
ρ2

ρ̇2 +
1

ρ2
V,θ = 0 (4.8)

ρ̈+ 3Hρ̇+
∂θGρρ(θ)
Gρρ(θ)

ρ̇θ̇ − ρ

Gρρ(θ)
θ̇2 +

1

Gρρ(θ)
V,ρ = 0 (4.9)

We can see that eq. (4.7) satisfies the equations of motion, since on the attractor ρ̇ = 0 the
term Gρρ cancels out. The same holds for the slow-roll parameter and the Hubble parameter,
while the turn rate is affected by the presence of Gρρ

θ′ = − 2

θρ2
0

, ε =
2

θ2ρ2
0

, H =
mθ√

6
, ω2 =

2

3

m2

ρ2
0

Gρρ . (4.10)

While M2
eff = 0, signaling the existence of background trajectories for any constant

value ρ0, as long as eq. (3.2) is satisfied, the isocurvature mass µ2
s can be either stabilizing or

tachyonic. In the special case of µ2
s = 0, isocurvature modes grow on super-horizon scales at

a constant rate. Combined with a constant turn rate, they continuously seed the adiabatic
modes outside the horizon, leading to predictions that mimic those of single-field models [16].
Let us we choose a negatively curved manifold with

Gρρ ∼ eθ/L , R = − 1

2L2ρ2
, (4.11)

Even though the curvature of the manifolds given in eq. (4.11) is singular in the origin ρ = 0,
we can still view it as holding for ρ > 0. For this model, the potential given in of eq. (4.6)
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Figure 4. Various dynamical quantities for the two models (4.6) with Gρρ = eθ (solid lines) and
Gρρ = 1 (dashed lines) and initial conditions {ρ, θ,

√
Gρρρ′,

√
Gθθθ′}init = {4, 4, 1.5, 1.5}. Left : the

velocities ρ′ (blue) and θ′ (orange). Right : the slow-roll parameters ε (blue), ησσ (orange), turn
rate Ω (red) and the isocurvature mass-squared µ2

s (black). The effective mass for the second model
reached the precision accuracy and was omited.

is also singular at ρ = 0, so the manifold must be smooth in the region of validity of the
potential. The isocurvature modes in this model exhibit richer phenomenology compared
to the flat metric case [16], where µs = 0. In particular, along the (neutral) attractor at
ρ = ρ0 = const. the isocurvature mass is

µ2
s

H2
=

1

L2θ2ρ4
0

(
3Lθρ2

0 − 1
)
. (4.12)

We see that µ2
s > 0 for θ > 1/Lρ2

0 and is negative otherwise. This means that the behavior of
the isocurvature modes depends on the field-space curvature and the initial conditions, since
different ρ0 corresponds to different value of µ2

s. Furthermore, the character of the isocurva-
ture modes can change during inflation, since θ is a monotonically decreasing function. The
different behavior is shown in figure 4. Notice that for this model ησσ = 6/(3θ2ρ2 − 3) and
hence ησσ ≈ ε for θ2ρ2 � 1. It is worth relating µ2

s to eq. (3.2), which is a criterion for the
existence of a stable solution with ρ̇ = 0. This can be written as

3− ε+
d

dN
log
(√
G
)

=
1

Lθρ2
0

µ2
s

H2
− 2

θ2ρ2
0

> 0 , (4.13)

hence no stable background trajectory exists for µ2
s < 0. This simple generalization of

the model given in ref. [16] showcases the complex dynamics that can arise if one considers
inflationary solutions with non-zero turn rate that do not proceed along field-space isometries.
For example a time varying value of µ2

s and ω2/H2, coming from a non-constant Gρρ can
lead to features in the scalar power spectrum. We leave a more thorough analysis of the
phenomenology of such models for future work.

4.2 Perturbations

Background trajectories with a non-zero turn rate can also affect the behaviour of fluctua-
tions. We can always define gauge-invariant perturbations along the direction of motion (Qσ)
and perpendicular to it (Qs). On super-Hubble scales gauge invariant entropy perturbations
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Qs obey (see e.g. ref. [29] and references therein)

Q′′s + (3− ε)Q′s +
µ2
s

H2
Qs ≈ 0 . (4.14)

If µ2
s > 0, Qs → 0, allowing the comoving curvature perturbation Rc = Qσ/

√
2ε to freeze

at some point after horizon crossing. The moment of freeze-out is mostly determined by the
magnitude of µ2

s/H
2; this results from the slow-roll equations for Rc and S = Qs/

√
2ε valid

for k � aH [29]:

R′c '
2ω

H
S , S′ ' βS , (4.15)

where β depends on slow-roll quantities and µ2
s/H

2.

If after horizon crossing orthogonal fields are still evolving, then the non-uniqueness
of the background trajectory is inherited by observables as well. One then finds a range
of possible values for {ns, r, . . .}.8 Analytical estimates can be constructed in the following
way: on sub-Hubble scales one can identify uncoupled perturbations by an appropriate time-
dependent rotation [40]; close and prior to horizon crossing, if the mass of isocurvature
perturbations on sub-Hubble scales

m2
s ≡ µ2

s − 4ω2 , (4.16)

is large enough then S will be stabilized at a zero of its ‘effective gradient’ given by [27, 33](
k2

a2
+m2

s

)
S + 2ωṘc = 0 . (4.17)

Substituting this solution into the equation for Rc provides an equation similar to single-
field but with a k-dependent sound speed. Note that in general solving these equations is
a model-dependent problem. For example, in angular inflation with α � 1 when the ratio
of the heavy to light field is (m2/m1)2 . O(10), the curvature perturbation freezes shortly
after horizon-crossing; when the masses of the two fields differ significantly then |β| � 1 and
there can be substantial super-horizon evolution [41]. Note that in both cases the background
trajectory is unique, given by minimizing Veff , but perturbations behave differently, as shown
in figure 5.

5 Summary and discussion

Multi-field models often display a strong attracting behaviour; orthogonal fields are stabilised
by their effective potential, consisting of potential energy and generalized centrifugal forces
due to non-geodesic motion. This can be interpreted as the (partial) minimisation of the total
energy density given by the Hubble parameter as a function of the orthogonal fields and is
the analogue of moduli stabilization, albeit on a time-dependent background. Moreover, as
inflation proceeds, the stabilisation pattern can undergo pitchfork bifurcations, with a stable
minimum becoming unstable with the simultaneous appearance of two new stable trajectories
or vice versa. The total number of stable minus unstable solutions remains constant, char-
acteristic of pitchfork bifurcations. This structure is reminiscent of the waterfall transition

8Multi-field α-attractors are exceptions to this rule, because the leading order contribution is independent
of the specific initial state [13, 35].
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Figure 5. Power spectrum of curvature perturbation for angular inflation with α = 1/600 and mass
ratio (m2/m1)2 equal to 9 (blue), 100 (red) and 225 (orange).

in hybrid inflation [44]. It would be interesting to investigate whether the analogy to hybrid
inflation can be extended beyond the background evolution, providing distinct observational
signatures [46–48] for multi-field models exhibiting pitchfork bifurcations during inflation.

We presented a unifying perspective on different scenarios of multi-field inflation in
curved geometries, based on the dynamical properties of the inflationary evolution after
the decay of the initial transient regime. While angular inflation has a unique minimum
of Veff , both sidetracked and hyperinflation exhibit dynamical pitchfork bifurcations. This
instability is therefore intrinsically of the same nature; analyzing hyperinflation after the
coordinate transformation of eq. (3.15) makes it a special case of sidetracked inflation. This
connects two models that were so far thought to be distinct, thus underlining the unifying
nature of our approach. Moreover, it demonstrates that the conservation of angular moment
is not essential to the bifurcation in hyperinflation.

Finally, we showed that the existence of an isometry along the inflationary direction is
not a necessary condition for the existence and stability of inflationary attractors with a non-
zero turn-rate. By providing a simple generalization of shift-symmetric orbital inflation [16],
we constructed a model in which the effective mass Meff is identically zero for all members
of a continuous family of trajectories with a constant radius, thus extending the notion of a
neutrally stable attractor. However, the isocurvature mass on any of these trajectories is not
zero but rather positive and depends on the field-space curvature. Furthermore µ2

s evolves
in time, allowing for the generation of features in the scalar power spectrum. We leave
an extensive analysis of the intruiging phenomenology of inflationary models with broken
isometries for future work.
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A Slow-roll conditions and stability

A.1 Adiabatic slow-roll conditions

The potential slow-roll conditions for one field do not generalize in a straightforward manner,
i.e. simple conditions involving only (covariant) derivatives of the potential, in multi-field
inflation. However, we can still derive some useful consistency relations involving kinematic
quantities without solving for the equations of motion. To derive these relations we work in
the standard adiabatic/entropic decomposition [9, 22, 27–29]. Along the direction of motion
the adiabatic field

σ̇2 ≡ GIJ φ̇I φ̇J (A.1)

satisfies the following equation of motion

σ̈ + 3Hσ̇ + Vσ = 0 , (A.2)

where the unit vectors σ̂I along the adiabatic direction are defined as

σ̂I ≡ φ̇I

σ̇
(A.3)

and the corresponding potential gradient is

Vσ ≡ V,I σ̂I . (A.4)

The first slow-roll parameter can be written as

ε ≡ − Ḣ

H2
=

σ̇2

2H2
. (A.5)

Assuming that ε� 1 then imposing the condition |η| � 1 is equivalent to the smallness of

η = 2ε+ 2
σ̈

Hσ̇
. (A.6)

This implies that the σ field follows its potential gradient, satisfying the slow-roll equation
3Hσ̇ + Vσ ≈ 0. Finally, with σ̇ ≈ σ̇SR we obtain

η ≈ 4ε− 2ησσ , (A.7)

where we defined the second slow-roll parameter in the adiabatic direction as

ησσ ≡
Vσσ − ω2

3H2
. (A.8)

It was first pointed out in ref. [13] and further elaborated in ref. [49] that slow-roll inflation
in the mutli-field case requires ησσ as defined in eq. (A.8) to be small. In the single field case,
this reduces to the usual form ησσ → Vσσ/V , which is not necessarily small in the presence
of a large turn-rate.

In our coordinate system χ̇ = 0 and hence the adiabatic and orthogonal directions are

σ̂I =
(

sgn
(
φ̇
)√

Gφφ, 0
)
, ŝI =

(
0,− sgn

(
φ̇
)√

Gχχ, 0
)
. (A.9)

Calculating ε and ησσ for our coordinate choice and imposing slow-roll conditions on φ leads
to eq. (2.4).

– 17 –



J
C
A
P
0
8
(
2
0
2
0
)
0
0
6

A.2 Stability method for background motion

The first step to investigate stability for a system of second order differential equations is to
experss it in first order form with the definition of velocities as new variables vI ≡ (φI)′. Next,
we notice that the condition for prolonged inflation ε′ � 1 suggests that the appropriate set
of variables is {φ, χ, y, x}, where y =

√
Gφφφ′ and x =

√
Gχχχ′ are the normalized velocities.

These are finite quantities and are almost constant during inflation. For a generic two-
field metric

ds2 = Gφφ(φ, χ) dφ2 + Gχχ(φ, χ) dχ2 , (A.10)

the dynamical system becomes

φ′ =
y√
Gφφ

, (A.11a)

χ′ =
x√
Gχχ

, (A.11b)

y′ = −(3− ε)

(
y +

pφ√
Gφφ

)
−

Gφφ,χ
2Gφφ

√
Gχχ

xy +
Gχχ,φ

2Gχχ
√
Gφφ

x2 , (A.11c)

x′ = −(3− ε)

(
x+

pχ√
Gχχ

)
−

Gχχ,φ
2Gχχ

√
Gφφ

xy +
Gφφ,χ

2Gφφ
√
Gχχ

y2 . (A.11d)

where pI = (log V ),I . Linearization of the previous system around a stable background
solution provides the stability criteria. In order to obtain some closed-form expressions we
need to be able to ommit certain subdominant terms. Assuming the metric (3.1) the inflaton’s
velocity is found constant

DNv ≈ 0⇒ v′ ≈ 0 , (A.12)

and the equations of motion imply that the gradient (with upper index) of the inflaton field
should be constant as well

v ≈ −pφ =
pφ
Gφφ

. (A.13)

Since by assumption the χ field is frozen, we arrive at the requirement p′φ ≈ 0 or pφ,φ ≈ 0.
Therefore, the stability conditions given in section 3.1 will be similar to those derived in
ref. [32], up to slow-roll suppressed corrections.
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