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2INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, I-40129 Bologna, Italy
3Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

Submitted, October 12, 2019

ABSTRACT
Taking advantage of a Bayesian hierarchical inference formalism, we study the evo-
lution of the observed correlation between central stellar velocity dispersion σ0 and
stellar mass M∗ of massive (M∗ & 1010.5 M�) early-type galaxies (ETGs) out to red-
shift z ≈ 2.5. Collecting ETGs from state-of-the-art literature samples, we consider
both a fiducial (0 . z . 1.2) and an extended (0 . z . 2.5) samples. Based on the
fiducial sample, we find that at z . 1.2 the M∗ − σ0 relation is well represented by

σ0 ∝ Mβ
∗ (1 + z)ζ , with β ' 0.23 (at given z, σ0 increases with M∗ as a power law with

slope similar to the classical Faber-Jackson relation) and ζ ' 0.26 (at given M∗, σ0
decreases for decreasing z, for instance by ' 20% from z = 1 to z = 0). The analysis
of the extended sample suggests that over the wider redshift range 0 . z . 2.5 the
slope β could be slightly steeper at higher z (β ' 0.2+ 0.2 log(1+ z) describes the data
as well as constant β ' 0.23) and that the redshift-dependence of the normalisation
could be stronger (ζ ' 0.42). The intrinsic scatter in σ0 at given M∗ is ' 0.07 dex for
the fiducial sample at z . 1.2, but is found to increase with redshift in the extended
sample, being ' 0.11 dex at z = 2. Our results suggest that, on average, the velocity
dispersion of individual massive (M∗ & 5 × 1011M�) ETGs decreases with time while
they evolve from z ≈ 1 to z ≈ 0.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies:
formation – galaxies: fundamental parameters – galaxies: kinematics and dynamics

1 INTRODUCTION

Since the late 1970s it was found empirically that present-
day early-type galaxies (ETGs) follow scaling relations, i.e.
correlations among global observed quantities, such as the
Faber-Jackson relation (Faber & Jackson 1976) between lu-
minosity L and central stellar velocity dispersion σ0, the
Kormendy relation (Kormendy 1977) between effective ra-
dius Re and surface brightness (or luminosity), and the fun-
damental plane (Djorgovski & Davis 1987; Dressler et al.
1987) relating σ0, L and Re. When estimates of the stellar
masses are available, analogous scaling relations are found,
replacing L with M∗: the M∗−Re (stellar mass–size) relation,
the M∗ − σ0 (stellar mass–velocity dispersion) relation and
the stellar-mass fundamental plane (e.g., Hyde & Bernardi
2009a,b; Auger et al. 2010; Zahid et al. 2016b). These scal-
ing laws are believed to contain valuable information on the
process of formation and evolution of ETGs. Any success-
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ful theoretical model of galaxy formation should reproduce
these empirical correlations of the present-day population of
ETGs (Somerville & Davé 2015; Naab & Ostriker 2017).

The observations strongly indicate that ETGs are not
evolving passively. For instance, measurements of sizes and
stellar masses of samples of quiescent galaxies at higher red-
shift imply that the M∗ − Re relation evolves with time: on
average, for given stellar mass, galaxies were significantly
more compact in the past (e.g. Ferguson et al. 2004; Dam-
janov et al. 2019). There are also indications that ETGs
at higher redshift have, on average, higher stellar velocity
dispersion than present-day ETGs of similar M∗ (e.g. van
de Sande et al. 2013b; Belli et al. 2014; Gargiulo et al.
2016; Belli et al. 2017; Tanaka et al. 2019). Interestingly,
the stellar-mass fundamental plane, relating M∗, σ0 and Re
appears to change little with redshift (Bezanson et al. 2013b,
2015; Zahid et al. 2016a). The observed behaviour of these
scaling relations as a function of redshift represents a further
challenge to models of galaxy formation and evolution.

In the standard cosmological framework, structure for-
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mation in the Universe occurs as a consequence of the col-
lapse and virialisation of the dark matter halos, in which
baryons infall and collapse, thus forming galaxies. In this
framework, massive ETGs are believed to be the end prod-
ucts of various merging and accretion events. Given the
old ages of the stellar populations of present-day ETGs,
any relatively recent merger that these galaxies experi-
enced must have had negligible associated star formation.
Based on these arguments, a popular scenario for the late
(z . 2) evolution of ETGs is the idea that these galax-
ies grow via dissipationless (or ”dry”) mergers. Interestingly,
dry mergers make galaxies less compact: for instance, galax-
ies growing via parabolic dry merging increase their size as
Re ∝ Ma

∗ , with a & 1, while their velocity dispersion evolves
as σ0 ∝ Mb

∗ , with b . 0 (Nipoti et al. 2003; Naab et al.
2009; Hilz et al. 2013). Thus, the transformation of indi-
vidual ETGs via dry mergers is a possible explanation of
the observed evolution of the M∗ − Re, M∗ − σ0 and stellar-
mass fundamental plane relations (Nipoti et al. 2009b, 2012;
Posti et al. 2014; Oogi & Habe 2013; Frigo & Balcells 2017).
Though this explanation is qualitatively feasible, it is not
clear whether and to what extent dry mergers can explain
quantitatively the observed evolution of these scaling laws.
In this context, the stellar velocity dispersion σ0 is a very
interesting quantity to consider. Even for purely dry merg-
ers of spheroids, σ0 can increase, decrease of stay constant
following a merger, depending on the merger mass ratio and
orbital parameters (Boylan-Kolchin et al. 2006; Naab et al.
2009; Nipoti et al. 2009a, 2012; Posti et al. 2014). Moreover,
even slight amounts of dissipation and star formation during
the merger can produce a non-negligible increase of the cen-
tral stellar velocity dispersion with respect to the purely dis-
sipationless case (Robertson et al. 2006; Ciotti et al. 2007).

In a cosmological context, the next frontier in the theo-
retical study of the scaling relations of ETGs is the compar-
ison with observations of the evolution measured in hydro-
dynamic cosmological simulations. A quantitative charac-
terisation of the evolution of the observed scaling relations
of the ETGs is thus crucial to use them as test beds for
theoretical models. On the one hand, the evolution of the
observed stellar mass–size relation is now well established,
being based on relatively large samples of ETGs out to z ≈ 3
(Cimatti et al. 2012; van der Wel et al. 2014) . On the other
hand, given that measuring the stellar velocity dispersion
requires spectroscopic observations with relatively high res-
olution and signal-to-noise ratio, the study of the redshift
evolution of correlations involving σ0, such as the M∗ − σ0
relation and the stellar-mass fundamental plane, is based
on much smaller galaxy samples than those used to study
the stellar mass–size relation. This makes it more difficult
to characterise quantitatively the evolution of these scaling
laws out to significantly high redshift.

In this paper, we focus on the stellar mass–velocity dis-
persion relation of ETGs with the aim of improving the
quantitative characterisation of the observed evolution of
this scaling law. We build an up-to-date sample of massive
ETGs with measured stellar mass and stellar velocity dis-
persion by collecting and homogenising as much as possible
available state-of-the-art literature data. In particular, we
consider galaxies with stellar masses higher than 1010.5 M�
and we correct the observed stellar velocity dispersion to σe,
the central line-of-sight stellar velocity dispersion within an

aperture of radius Re, so in our case σ0 = σe. We analyse
statistically the evolution of the M∗ − σe relation without
resorting to binning in redshift and using a Bayesian hier-
archical approach. As a result of this analysis we provide
the posterior distributions of the hyper-parameters describ-
ing the M∗ − σe relation in the redshift range 0 . z . 2.5,

under the assumption that, at given redshift, σe ∝ Mβ
∗ . We

explore both the case of redshift independent β and the case
in which β is free to vary with redshift.

The paper is organised as follows. Section 2 describes
the galaxy sample and the criteria adopted to select ETGs.
We present the statistical method in section 3 and our results
in section 4. Our results are compared with previous works
in section 5. Section 6 concludes. Throughout this work, we
adopt a standard Λ cold dark matter cosmology with Ωm =
0.3, ΩΛ = 0.7 and H0 = 70 km s−1Mpc−1. All stellar masses are
calculated assuming a Chabrier (2003) initial mass function
(IMF).

2 GALAXY SAMPLE

To study the evolution of the stellar mass–velocity disper-
sion relation of ETGs we build a sample of galaxies con-
sisting in a collection of various subsamples of ETGs in the
literature. Our goal is to build a sample spanning a redshift
range as large as possible. At the same time, in order to
make an accurate inference, it is important to select galax-
ies and measure their stellar masses and velocity dispersions
in a homogeneous way. These two requirements are some-
what conflicting: in order to minimize biases, it would be
ideal to use the same selection criteria, data and analysis
methods for all galaxies in our study. This, however, is diffi-
cult to achieve in practice, due to the lack of large samples of
galaxies with measured stellar velocity dispersion at z > 1.

In light of this challenge, we find it useful to build
our sample as the sum of two distinct samples, each op-
timized for meeting one of our two criteria. The first is our
fiducial sample, consisting of quiescent galaxies drawn from
the Sloan Digital Sky Survey (SDSS; Eisenstein et al. 2011)
and the Large Early Galaxy Astrophysics Census (LEGA-
C; van der Wel et al. 2016), which cover the redshift range
0 . z . 1.2. For the galaxies in this sample we strictly ap-
ply consistent selection criteria, then measure their stellar
masses using photometric data from the first data release of
the Hyper Suprime-Cam (HSC; Miyazaki et al. 2018) Subaru
Strategic Program (Aihara et al. 2018, DR1). The second is
a high-redshift sample, consisting of stellar mass and veloc-
ity dispersion measurements of galaxies at 0.8 . z . 2.5
from various independent studies. For the galaxies in this
high-redshift sample, we only require that the definitions of
stellar mass and stellar velocity dispersion are the same as
those of the fiducial sample. In both cases, we apply a lower
limit to the measured stellar mass of log(Mobs

∗ /M�) > 10.5.
We also define an extended sample, obtained by combining
the fiducial and high-redshift samples.

Our strategy is to carry out our inference on both the
fiducial and the extended samples. Given the way the sam-
ples are built, we expect our results at z < 1 to be more
robust (i.e. less prone to observational biases), but it is nev-
ertheless very interesting to examine trends out to z ≈ 2.5,
as probed by our extended sample. In the following two sub-
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Figure 1. Equivalent width EWHβ of Hβ as a function of equiv-
alent width EW[OII] of [OII] for galaxies drawn from the origi-

nal catalogues of SDSS (red dots) and LEGA-C (blue squares).

For LEGA-C galaxies, we select objects with signal-to-noise ratio
> 10. The black dashed line represents a linear fit to the data.

Galaxies in the shaded region of the diagram (EW[OII] < −5) are

excluded from our sample of ETGs.

sections we describe in detail how measurements for these
samples are obtained.

2.1 The fiducial sample

Our fiducial sample consists of two sets of galaxies. The
first set is drawn from the data release 12 (DR12; Alam
et al. 2015) of the SDSS. In particular, we consider only
objects belonging to the main spectroscopic sample, by ap-
plying the condition programname=‘legacy’ or program-

name=‘southern’. The second set is selected from the
LEGA-C survey DR2 (Straatman et al. 2018). The LEGA-
C DR2 contains spectra of 1,922 objects obtained with the
Visible Multi-Object Spectrograph (VIMOS; Le Fèvre et al.
2003) on the Very Large Telescope (VLT). LEGA-C targets
were selected by applying a cut in Ks-band magnitude to a
parent sample of galaxies with photometric redshift in the
range 0.6 < z < 1.0 drawn from the Ultra Deep Survey with
the VISTA telescope (UltraVISTA; Muzzin et al. 2013).

With the goal of selecting only passive galaxies, we ap-
ply a selection based on the equivalent width of the forbidden
emission line doublet of [OII], EW[OII]λλ3726, 3729. Specifi-
cally, we include only those galaxies that have EW[OII] ≥
−5 Å, where EW[OII] of SDSS and LEGA-C galaxies are ob-
tained from the respective data release catalogues. Although
[OII] is not a perfect indicator of star formation activity, as
it can suffer from contamination from emission by an active
galactic nucleus, and other spectral lines could be used in
its place (Hβ, for example), these lines are in general not
accessible in the spectra of most LEGA-C galaxies, as they
are redshifted outside of the available spectral range. For the
sake of homogeneity in our selection criteria, and in order to
keep the high end of the redshift distribution of the LEGA-C
galaxies in our sample, we use [OII] as a first step towards ob-
taining a sample of quiescent galaxies. Neverthless, we find a
good correlation between EW[OII] and EWHβ for those galax-
ies drawn from the original catalogues of SDSS and LEGA-C
for which both measurements are available (see Figure 1).
Although half of the LEGA-C galaxies do not have values
of EW[OII] in the DR2 catalogue, these are for the most part
objects at the low end of the redshfit range, z < 0.8.

We then look for imaging data in the Wide layer of the
HSC DR1. The Wide layer of HSC covers approximately

108 square degrees. The number of SDSS galaxies present
in this dataset is ≈ 3000, which, while only a small frac-
tion of the total number of SDSS galaxies, is still sufficiently
large to carry out a statistical analysis of the stellar mass–
velocity dispersion relation. LEGA-C targets are located in
a ' 1.3 deg2 region, for the most part overlapping with the
Cosmic Evolution Survey (COSMOS; Scoville et al. 2007)
area. HSC DR1 data from the Ultra Deep layer are avail-
able for most (≈ 1700) of the objects in the LEGA-C DR2.

The motivation for using HSC data is in its high depth
(i-band 26 mag detection limit for a point source in the
Wide layer) and good image quality (typical i-band see-
ing is 0.6′′). This is particularly important for the LEGA-C
galaxies, which are much fainter and have smaller angular
sizes compared to the SDSS ones, due to their higher red-
shift. For each galaxy with available HSC DR1 data, we
obtain cutouts in the g, r, i, z, y filters, then visually inspect
them to remove objects showing any presence of discs, spi-
ral arms, contamination by external objects, merging pairs,
as well as galaxies for which a single Sérsic model (Sérsic
1968) does not provide a qualitatively good description of
the surface-brightness distribution (e.g., irregular galaxies).
Roughly 50% of the objects in both samples are rejected at
this stage.

We measure stellar masses by, first, fitting a Sérsic sur-
face brightness distribution to g, r, i, z, y imaging data, and,
then, fitting stellar population synthesis (SPS) models to the
resulting magnitudes, following the same procedure adopted
by Sonnenfeld et al. (2019). In particular, we obtain 201×201
pixel (≈ 34′′× 34′′) sky-subtracted cutouts of each galaxy in
each band, we fit the five-band data simultaneously with
a seeing-convolved Sérsic surface brightness profile with el-
liptical isophotes and spatially uniform colors, while itera-
tively masking out foreground or background objects using
the software SExtractor (Bertin & Arnouts 1996). For the
sake of robustness in our flux measurements, we only keep
galaxies for which the half-light radius of the best-fit Sérsic
profile is smaller than 0.5Rsky,i , where Rsky,i is the radius
of the i-band isophote with surface brightness equal to the
RMS of the sky background. In other words, we only con-
sider galaxies for which most of the flux accounted for by the
model is actually detected in HSC data. This step removes
≈ 10% of the objects: these are typically galaxies with a very
large best-fit Sérsic index, nSer ≈ 10.

We fit the observed grizy fluxes with composite stellar
population models, obtained using the BC03 stellar popu-
lation synthesis code (Bruzual & Charlot 2003), with semi-
empirical stellar spectra from the BaSeL 3.1 library (Westera
et al. 2002), Padova 1994 stellar evolution tracks (Fagotto
et al. 1994a,b,c) and a Chabrier IMF. We consider star for-
mation histories with an exponentially declining star forma-
tion rate and we apply a prior on metallicity based on the
mass–metallicity relation measured by Gallazzi et al. (2005).
We sample the posterior probability distribution of stellar
mass, age (time since the initial burst of star formation),
star formation rate decline timescale, metallicity and dust
attenuation with a Markov Chain Monte Carlo (MCMC),
following the method introduced by Auger et al. (2009). We
then consider the posterior probability distribution in log-
stellar mass, marginalised over the other parameters, and

MNRAS 000, 1–23 (2019)
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Table 1. Properties of the subsamples of ETGs used to build
our fiducial (SDSS and LEGA-C) and high-redshift (vdS13, B14,

G15 and B17) samples (the acronyms are defined in section 2).

Column 1: subsample name. Column 2: redshift range. Column
3: stellar mass range in logarithm. Column 4: number of galaxies.

Sample z log(M∗/M�) NETG

SDSS (0.05; 0.55) (10.50; 12.14) 1583

LEGA-C (0.60; 1.18) (10.50; 11.72) 127

vdS13 (0.80; 2.19) (10.54; 11.93) 73

B14 (1.03; 1.60) (10.59; 11.34) 26

G15 (1.26; 1.41) (11.04; 11.49) 4

B17 (1.52; 2.44) (10.60; 11.68) 24

approximate it as a Gaussian with mean equal to

log Mobs
∗ =

log M(84)
∗ + log M(16)

∗
2

(1)

and standard deviation

σM∗ =
log M(84)

∗ − log M(16)
∗

2
, (2)

where log M(84)
∗ and log M(16)

∗ are the 84 and 16 percentile of
the distribution, respectively. We refer to Sonnenfeld et al.
(2019) for more details. Finally, we apply a lower cutoff
to the observed stellar mass, selecting only galaxies with
log(Mobs

∗ /M�) > 10.5. The final sample consists of 1583 SDSS
galaxies, with mean redshift ' 0.203 and redshift standard
deviation ' 0.106, and 127 galaxies from the LEGA-C sam-
ple, with mean redshift ' 0.833 and redshift standard devi-
ation ' 0.113.

For each SDSS galaxy, we obtain, from the DR12 cata-
logue, the value and relative uncertainty of the line-of-sight
stellar velocity dispersion measured in the 1.5′′ radius fiber
of the SDSS spectrograph, which we label σap. We convert
this measurement into an estimate of the central velocity dis-
persion integrated within an aperture equal to the half-light
radius, σe, by applying the following correction:

σe = σap ×
(

Re
1.5′′

)−δ
, (3)

where Re is the half-light radius and δ = 0.066 (Cappellari
et al. 2006).

Velocity dispersion measurements provided in the
LEGA-C DR2 are converted to values of the central velocity
dispersion σe applying the aperture correction

σe = 1.05σap, (4)

which is a good approximation for galaxies at z < 1.8 (van
de Sande et al. 2013a; Belli et al. 2014). The distributions
in redshift and in stellar mass of the fiducial sample and of
the SDSS and LEGA-C subsamples are shown in Figure 2
(see also Table 1).

2.2 The high-redshift and extended samples

Our high-redshift sample of ETGs is a sample of 127 galax-
ies in the redshift range 0.8 . z . 2.5, built as follows. We
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Figure 2. Distributions of the subsamples and samples of ETGs

in redshift (top panel) and stellar mass (bottom panel). From the

top to the bottom, the SDSS subsample, the LEGA-C subsam-
ple, the high-redshift sample (vdS13+B14+G15+B17 subsam-

ples), the fiducial sample (SDSS+LEGA-C subsamples) and the

extended sample (fiducial sample+high-resdhift sample) distribu-
tions are shown.

obtain measurements of the stellar mass and stellar velocity
dispersion of quiescent galaxies out to z ≈ 2.5 from a variety
of studies. In order of increasing median redshift, we take
26 galaxies drawn from the LRIS sample presented in Belli
et al. (2014, hereafter B14), including only those galaxies
for which EW[OII] ≥ −5 Å (as done for the fiducial sample;
subsection 2.1), 73 galaxies from van de Sande et al. (2013a,
hereafter vdS13), 4 galaxies from Gargiulo et al. (2015, here-
after G15), and 24 galaxies from Belli et al. (2017, hereafter

MNRAS 000, 1–23 (2019)
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B17). The main properties of each of these subsamples are
summarised in Table 1. Among the 73 galaxies of the vdS13
subsample, only 5 galaxies are presented for the first time
in vdS13, while the remaining 68 sources are collected from
different studies. All the galaxies in the high-redshift sam-
ples are classified as quiescent, based on their UV J colours,
morphology and/or spectra. For the vast majority of these
galaxies, stellar masses are measured by fitting SPS models
to broadband imaging data and by scaling the total flux to
match that measured by fitting a Sérsic surface brightness
profile to high-resolution images from Hubble Space Tele-
scope (HST). The details of the SPS models are very sim-
ilar to those we adopted in our measurement of the stellar
masses of the fiducial sample. In all these subsamples stellar
masses are computed assuming Chabrier IMF and central
velocity dispersions are given within an aperture of radius
Re. Our extended sample, obtained by combining the fidu-
cial and high-redshift samples, consists of 1837 ETGs with
M∗ ≥ 1010.5 M� in the redshift interval 0.05 . z . 2.44.
The distributions in redshift and in stellar mass of the high-
redshift and extended samples are shown in Figure 2.

In summary, after homogenising the observational data,
for all galaxies in our samples we have measurements of spec-
troscopic redshift z, of stellar mass M∗ and of the central
stellar velocity dispersion σe. In Table 2 we list the identi-
fier, redshift, effective radius Re, stellar velocity dispersion
σe and stellar mass M∗ for all the galaxies except for those
drawn from the SDSS catalogue.

MNRAS 000, 1–23 (2019)
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Table 2. Physical properties of the ETGs of the LEGA-C, vdS13, B14, G15 and B17 subsamples used to build our fiducial and high-
redshift samples (we omit here galaxies taken from the SDSS subsample). Column 1: name of the subsample (in the case of the subsample

vdS13, when a galaxy is taken from previous work, we indicate also the original reference: Be=Bezanson et al. (2013a), vD=van Dokkum

et al. (2009), On=Onodera et al. (2012), Ca=Cappellari et al. (2009), Ne=Newman et al. (2010), vdW&Bl=van der Wel et al. (2008)
& Blakeslee et al. (2006), To=Toft et al. (2012). Column 2: galaxy identifier. Column 3: redshift. Column 4: central stellar velocity

dispersion with 1σ uncertainty. Column 5: logarithm of the stellar mass with 1σ uncertainty. For the ETGs of the G15, vds13 and B17

subsamples there are no estimates of the uncertainty on M∗: for these galaxies we assumed uncertainty 0.15 dex in our analysis.

Sample Object z σe[km/s] log M∗[M�]

LEGA-C 128682 0.9281 148.5 ± 21.1 10.856 ± 0.12

LEGA-C 129358 0.8523 172.1 ± 8.4 11.224 ± 0.128

LEGA-C 129957 0.6655 200.1 ± 11.4 10.589 ± 0.079
LEGA-C 133163 0.6966 178.3 ± 7.5 10.751 ± 0.129

LEGA-C 133240 0.7282 137.1 ± 9.1 10.577 ± 0.079

LEGA-C 134358 0.902 192.8 ± 12.8 10.752 ± 0.107
LEGA-C 140050 0.8993 249.6 ± 8.9 11.324 ± 0.105

LEGA-C 210980 0.8968 188.8 ± 15.5 10.835 ± 0.089

LEGA-C 95941 0.926 172.4 ± 7.4 11.269 ± 0.091
LEGA-C 96621 0.7132 245.7 ± 8.7 11.263 ± 0.089

LEGA-C 97310 0.9428 154.9 ± 12.3 10.8 ± 0.159
LEGA-C 98227 0.901 147.9 ± 34.1 10.705 ± 0.111

LEGA-C 131869 0.7261 166.5 ± 7.9 10.603 ± 0.093

LEGA-C 135149 0.8813 221.6 ± 13.4 10.856 ± 0.08
LEGA-C 105208 0.9345 202 ± 26 11.23 ± 0.125
LEGA-C 117907 0.9047 167.5 ± 11.2 10.836 ± 0.128

LEGA-C 119005 0.9243 140.1 ± 28.6 11.013 ± 0.109
LEGA-C 119395 1.037 245.7 ± 19.1 11.251 ± 0.082
LEGA-C 123726 0.7254 167.2 ± 8.2 11.037 ± 0.078

LEGA-C 86744 0.6714 282.8 ± 8.4 11.081 ± 0.107
LEGA-C 87479 0.7412 222.8 ± 9.7 11.231 ± 0.097
LEGA-C 88863 0.8124 108.6 ± 7.7 10.686 ± 0.155
LEGA-C 106394 0.8381 143.5 ± 11.4 10.907 ± 0.118

LEGA-C 112593 0.8653 167 ± 24.8 10.569 ± 0.112
LEGA-C 118972 0.8922 136.4 ± 12.3 10.855 ± 0.123
LEGA-C 119426 0.7998 258.4 ± 39.5 10.848 ± 0.077

LEGA-C 126603 0.9331 201 ± 14.6 10.883 ± 0.123
LEGA-C 127946 0.9387 209.8 ± 17.1 11.312 ± 0.083
LEGA-C 128478 0.7513 294.8 ± 23.2 11.326 ± 0.064

LEGA-C 128834 0.6985 59.9 ± 16.1 10.874 ± 0.171
LEGA-C 129897 0.7282 189.9 ± 9.7 11.213 ± 0.105
LEGA-C 129947 0.732 195.1 ± 12.5 10.65 ± 0.101

LEGA-C 130982 0.852 204.4 ± 28.6 10.921 ± 0.061

LEGA-C 131942 0.6919 246 ± 10.4 11.184 ± 0.082
LEGA-C 138718 0.6558 230.3 ± 12.8 11.211 ± 0.055
LEGA-C 179040 0.8902 202 ± 11.8 11.07 ± 0.111
LEGA-C 206616 0.7276 179 ± 8.7 11.051 ± 0.091

LEGA-C 127745 0.7307 166.3 ± 14 10.918 ± 0.102

LEGA-C 128668 0.995 183.4 ± 19.8 11.317 ± 0.106
LEGA-C 129730 0.9362 132.5 ± 18.2 10.951 ± 0.111

LEGA-C 131716 0.942 209 ± 27.1 10.737 ± 0.11
LEGA-C 133833 0.73 179.9 ± 12.7 10.565 ± 0.096
LEGA-C 166634 0.8527 191.2 ± 47.7 10.933 ± 0.135
LEGA-C 169134 0.8548 233.1 ± 15.5 11.004 ± 0.091

LEGA-C 169320 0.8759 155.9 ± 8.2 11.17 ± 0.104
LEGA-C 178560 0.7636 158.2 ± 18.6 10.833 ± 0.118

LEGA-C 180162 0.6784 189.8 ± 11.2 10.757 ± 0.078
LEGA-C 208824 0.7312 144.3 ± 6.4 11.261 ± 0.083
LEGA-C 236382 0.8855 184.8 ± 13.5 10.882 ± 0.12

LEGA-C 238743 0.6997 111.8 ± 6.3 10.858 ± 0.106
LEGA-C 119489 0.6819 219.1 ± 8.9 11.102 ± 0.114

LEGA-C 121033 0.938 235.9 ± 16.3 11.05 ± 0.117
LEGA-C 121293 1.0501 154.2 ± 20.4 10.908 ± 0.197
LEGA-C 124139 0.9249 287.9 ± 11 11.626 ± 0.088

LEGA-C 161188 0.8916 222.4 ± 11 11.206 ± 0.076
LEGA-C 108345 0.6773 147.5 ± 7.1 10.941 ± 0.091
LEGA-C 109076 0.9509 199.4 ± 14.5 11.07 ± 0.126

LEGA-C 118184 0.6767 252.8 ± 7.7 11.085 ± 0.105
LEGA-C 119022 0.7344 161.4 ± 8.9 11.034 ± 0.097
LEGA-C 120120 0.6287 245.1 ± 8.9 11.237 ± 0.075

Sample Object z σe[km/s] log M∗[M�]

LEGA-C 120781 0.6279 176.1 ± 6.9 10.811 ± 0.076

LEGA-C 123441 0.8932 193.2 ± 19.8 10.664 ± 0.088

LEGA-C 125017 0.6574 206.7 ± 16.8 10.964 ± 0.094
LEGA-C 145294 0.685 205.4 ± 13.4 10.665 ± 0.072

LEGA-C 158315 0.89 168.5 ± 10.7 10.95 ± 0.129

LEGA-C 158934 0.837 205.1 ± 7.5 11.323 ± 0.118
LEGA-C 217545 1.0143 271 ± 8.6 11.498 ± 0.095

LEGA-C 219193 0.8512 221.8 ± 9.5 10.992 ± 0.101

LEGA-C 219834 0.661 219.6 ± 10.2 11.01 ± 0.078
LEGA-C 226945 1.1741 258.8 ± 34.2 10.814 ± 0.245

LEGA-C 228562 0.7256 174.9 ± 7.9 10.776 ± 0.116
LEGA-C 230835 0.9769 143.7 ± 12.3 10.772 ± 0.155

LEGA-C 231630 0.7249 181 ± 4.6 10.904 ± 0.155

LEGA-C 232890 0.7657 162 ± 9.5 10.722 ± 0.095
LEGA-C 203467 0.9184 172.3 ± 10 10.983 ± 0.089
LEGA-C 212327 0.885 107.6 ± 14.1 10.532 ± 0.121

LEGA-C 213599 0.7366 149.1 ± 10.2 10.944 ± 0.088
LEGA-C 215711 0.6653 168.2 ± 9.7 10.664 ± 0.128
LEGA-C 216804 0.6661 183.4 ± 8.2 11.241 ± 0.071

LEGA-C 225216 0.8938 187.5 ± 13.2 11.037 ± 0.123
LEGA-C 225383 0.6983 160.3 ± 10.2 10.714 ± 0.103
LEGA-C 226458 0.8902 154.9 ± 40.1 10.782 ± 0.065
LEGA-C 228931 0.6967 219.4 ± 12.2 11.133 ± 0.076

LEGA-C 230889 0.6961 68.2 ± 5.7 10.503 ± 0.083
LEGA-C 232884 1.005 196.1 ± 29.6 11.135 ± 0.184
LEGA-C 247031 0.8659 128.4 ± 13.4 11.244 ± 0.097

LEGA-C 249582 0.8911 235 ± 24.5 10.741 ± 0.08
LEGA-C 258091 0.8905 186.8 ± 14.6 11.362 ± 0.09
LEGA-C 259363 0.6656 151.9 ± 7.5 10.819 ± 0.108

LEGA-C 93681 0.6068 131.1 ± 15.5 11.051 ± 0.107
LEGA-C 95303 0.8818 211.8 ± 10 11.507 ± 0.141
LEGA-C 96221 0.8781 229.5 ± 15 11.217 ± 0.088

LEGA-C 96616 0.8374 227.8 ± 10.2 11.235 ± 0.106

LEGA-C 98016 0.8246 198.3 ± 11.4 11.229 ± 0.084
LEGA-C 98104 0.9814 234.7 ± 23.4 11.127 ± 0.115
LEGA-C 101430 0.9871 206.7 ± 26.5 11.139 ± 0.109
LEGA-C 102581 0.9762 245.7 ± 10.4 11.712 ± 0.11

LEGA-C 182000 0.8247 205.3 ± 14 11.085 ± 0.078

LEGA-C 183906 0.891 299.9 ± 21.1 11.435 ± 0.084
LEGA-C 185631 0.9253 100.7 ± 12.5 10.858 ± 0.105

LEGA-C 215209 0.7288 212.6 ± 11.2 11.17 ± 0.064
LEGA-C 227297 0.8857 205.8 ± 19.8 10.757 ± 0.105
LEGA-C 228250 0.998 245.6 ± 12 11.417 ± 0.126
LEGA-C 228340 0.6968 213.6 ± 10.2 11.098 ± 0.105

LEGA-C 231931 0.9968 270.7 ± 15.3 11.549 ± 0.082
LEGA-C 243246 0.6963 268.1 ± 13.4 10.935 ± 0.078

LEGA-C 244680 0.9576 204.5 ± 23.9 11.085 ± 0.088
LEGA-C 245763 0.7542 146.2 ± 15.3 10.625 ± 0.108
LEGA-C 246345 0.9989 173.5 ± 6.4 11.22 ± 0.168

LEGA-C 261136 0.8843 173.4 ± 25.2 10.618 ± 0.091
LEGA-C 262197 1.1127 275.8 ± 31.3 11.409 ± 0.115

LEGA-C 27265 0.7329 288 ± 15.5 11.081 ± 0.077
LEGA-C 32375 0.9164 205.5 ± 35 10.783 ± 0.079
LEGA-C 32382 0.9735 264.4 ± 18.2 11.188 ± 0.128

LEGA-C 40014 0.9359 255.9 ± 15.8 11.07 ± 0.107
LEGA-C 73790 0.8411 197.2 ± 25.7 11.052 ± 0.125
LEGA-C 76336 0.8242 216.5 ± 16.9 10.786 ± 0.111

LEGA-C 76593 0.8982 208.7 ± 18.6 10.834 ± 0.112
LEGA-C 77934 0.9889 206.2 ± 18.4 10.977 ± 0.124
LEGA-C 77957 0.8993 298.1 ± 20.4 11.154 ± 0.128MNRAS 000, 1–23 (2019)
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Sample Object z σe[km/s] log M∗[M�]

LEGA-C 78554 0.9752 208.1 ± 18.1 11.161 ± 0.137

LEGA-C 79405 0.8265 106.3 ± 11.2 10.635 ± 0.11
LEGA-C 85318 0.824 238.7 ± 14 10.984 ± 0.088
LEGA-C 86395 0.8663 161.1 ± 20.7 10.591 ± 0.117
LEGA-C 87207 0.8325 140.5 ± 12.8 10.753 ± 0.105

LEGA-C 89072 0.837 190.3 ± 18.1 10.822 ± 0.084
LEGA-C 90888 0.8837 199.9 ± 13.5 10.789 ± 0.093

G15 S2F1-511 1.267 281 ± 23 11.05

G15 S2F1-633 1.297 447 ± 27 11.48
G15 S2F1-527 1.331 240 ± 26 11.14
G15 S2F1-389 1.406 234 ± 45 11.14

vdS13 7447 1.800 287 ± 53.5 11.22
vdS13 18265 1.583 401 ± 72 11.32
vdS13 7865 2.091 446 ± 56.5 11.64

vdS13 19627 2.036 304 ± 41 11.20
vdS13 29410 1.456 371 ± 102 11.24

vdS13-Be 17300 1.423 295 ± 8 11.24

vdS13-Be 21129 1.584 301 ± 10 11.24
vdS13-Be 22260 1.240 256 ± 16 11.41

vdS13-Be 21434 1.522 250 ± 17 11.27
vdS13-Be 20866 1.522 306 ± 24 11.34
vdS13-Be 53937 1.621 280 ± 21 11.90

vdS13-vD 1255 2.186 544 ± 138.5 11.26
vdS13-On 254025 1.823 270 ± 106.5 11.39
vdS13-Ca 2239 1.415 111 ± 35 10.54
vdS13-Ca 2470 1.415 141 ± 26 10.71

vdS13-Ne E1 1.054 204 ± 22 11.07
vdS13-Ne S1 1.110 220 ± 13 11.29
vdS13-Ne E2 1.113 137 ± 11 10.89
vdS13-Ne E3 1.124 241 ± 23 11.14

vdS13-Ne E4 1.179 237 ± 14 10.95
vdS13-Ne E5 1.225 129 ± 20 10.61
vdS13-Ne E6 1.243 278 ± 22 11.07

vdS13-Ne GN1a 1.253 268 ± 15 11.10
vdS13-Ne E7b 1.262 96 ± 19 10.71
vdS13-Ne E8 1.262 259 ± 23 10.81

vdS13-Ne GN2 1.266 220 ± 17 10.93
vdS13-Ne GN3 1.315 263 ± 19 11.37
vdS13-Ne S2b 1.315 157 ± 23 10.70

vdS13-Ne S3 1.394 248 ± 61 11.16
vdS13-Ne GN4b 1.395 193 ± 38 10.72

vdS13-Ne E9 1.406 313 ± 54 10.85

vdS13-Ne GN5b 1.598 260 ± 27 11.92
vdS13-vdW&Bl 1649 0.84 245 ± 29 11.03
vdS13-vdW&Bl 2409 0.84 290 ± 34 10.90

vdS13-vdW&Bl 3058 0.83 304 ± 33 11.30
vdS13-vdW&Bl 3768 0.82 224 ± 25 10.97

vdS13-vdW&Bl 3910 0.83 298 ± 44 10.91

vdS13-vdW&Bl 4345 0.83 339 ± 35 11.18
vdS13-vdW&Bl 4520 0.83 320 ± 29 11.68

vdS13-vdW&Bl 4926 0.83 313 ± 40 10.84

vdS13-vdW&Bl 5280 0.83 261 ± 32 10.98
vdS13-vdW&Bl 5298 0.83 286 ± 41 10.60

vdS13-vdW&Bl 5347 0.83 255 ± 25 10.76
vdS13-vdW&Bl 5450 0.84 234 ± 26 11.33
vdS13-vdW&Bl 5529 0.82 183 ± 24 10.76

vdS13-vdW&Bl 5577 0.83 308 ± 42 10.89
vdS13-vdW&Bl 5666 0.83 287 ± 23 11.20

vdS13-vdW&Bl 5756 0.83 234 ± 28 11.02

vdS13-vdW&Bl 6688 0.84 276 ± 38 10.98
vdS13-vdW&Bl 237 0.85 283 ± 22 11.30
vdS13-vdW&Bl 635 0.82 203 ± 18 10.77

vdS13-vdW&Bl 681 0.84 344 ± 32 10.61
vdS13-vdW&Bl 761 1.01 377 ± 40 11.53

vdS13-vdW&Bl 951 0.85 237 ± 18 11.37
vdS13-vdW&Bl 1236 0.85 219 ± 13 10.85
vdS13-vdW&Bl 1286 0.85 249 ± 17 11.04

Sample Object z σe[km/s] log M∗[M�]

vdS13-vdW&Bl 1287 0.85 345 ± 23 11.45

vdS13-vdW&Bl 1328 0.84 252 ± 36 10.67
vdS13-vdW&Bl 1559 0.94 179 ± 13 10.79
vdS13-vdW&Bl 1633 0.84 333 ± 14 10.98
vdS13-vdW&Bl 1706 0.91 217 ± 13 11.17

vdS13-vdW&Bl 1709 0.84 220 ± 12 10.71
vdS13-vdW&Bl 1 1.09 233 ± 17 11.17
vdS13-vdW&Bl 2 0.96 202 ± 10 11.28

vdS13-vdW&Bl 3 1.04 302 ± 34 10.82
vdS13-vdW&Bl 4 0.96 337 ± 19 11.63
vdS13-vdW&Bl 7 1.14 233 ± 20 11.54

vdS13-vdW&Bl 12 1.12 263 ± 23 10.94
vdS13-vdW&Bl 13 0.98 249 ± 11 11.24
vdS13-vdW&Bl 14 0.98 199 ± 24 10.89

vdS13-vdW&Bl 18 1.10 327 ± 37 11.50
vdS13-vdW&Bl 20 1.02 201 ± 17 11.16

vdS13-To 19627 2.039 326 ± 54 11.37

B14 28739 1.029 238 ± 11 10.94 ± 0.08
B14 31377 1.085 133 ± 18 10.83 ± 0.09
B14 16343 1.098 290 ± 8 11.04 ± 0.03
B14 28656 1.101 251 ± 15 11.08 ± 0.08
B14 35291 1.110 245 ± 10 11.22 ± 0.11
B14 21657 1.125 270 ± 13 10.97 ± 0.09
B14 21870 1.179 230 ± 12 11.02 ± 0.07
B14 1241357 1.188 207 ± 13 10.86 ± 0.04
B14 33887 1.193 162 ± 33 10.74 ± 0.11
B14 18249 1.252 286 ± 109 10.77 ± 0.04
B14 7310 1.255 176 ± 16 11.13 ± 0.07
B14 13073 1.258 265 ± 12 10.97 ± 0.03
B14 30822 1.259 271 ± 25 10.96 ± 0.07
B14 1244914 1.261 252 ± 13 11.18 ± 0.07
B14 32915 1.261 264 ± 17 10.88 ± 0.05
B14 22760 1.262 232 ± 17 10.83 ± 0.06
B14 22780 1.264 88 ± 18 10.75 ± 0.07
B14 2823 1.316 215 ± 21 11.01 ± 0.16
B14 37085 1.316 164 ± 14 10.60 ± 0.15
B14 2337 1.327 279 ± 20 11.04 ± 0.06
B14 19498 1.401 250 ± 39 10.75 ± 0.07
B14 5020 1.415 181 ± 54 10.83 ± 0.08
B14 4906 1.419 298 ± 26 11.34 ± 0.07
B14 20275 1.442 221 ± 70 10.80 ± 0.07
B14 34256 1.582 377 ± 54 11.33 ± 0.04
B14 2653 1.598 174 ± 27 10.82 ± 0.18
B17 17364 1.526 168 ± 84 10.83
B17 17361 1.527 169 ± 43 10.80
B17 17641 1.528 142 ± 54 10.65
B17 17089 1.528 348 ± 57 11.56
B17 17926 1.573 231 ± 39 11.01
B17 22719 1.579 262 ± 51 11.03
B17 24891 1.604 391 ± 71 10.85
B17 35616 1.609 198 ± 49 11.11
B17 30737 1.620 307 ± 82 11.23
B17 43367 1.624 299 ± 74 11.07
B17 30475 1.633 296 ± 109 10.74
B17 32707 1.647 174 ± 30 11.14
B17 16629 1.657 358 ± 76 10.61
B17 37529 1.665 232 ± 60 11.00
B17 22802 1.667 291 ± 31 10.92
B17 29352 1.690 146 ± 31 10.84
B17 19958 1.722 169 ± 87 10.72
B17 17255 1.739 147 ± 40 10.84
B17 25526 1.752 134 ± 36 10.73
B17 13083 2.088 197 ± 52 11.11
B17 11494 2.093 319 ± 26 11.67
B17 7884 2.105 430 ± 69 11.47
B17 1769 2.300 338 ± 46 11.17
B17 5681 2.435 452 ± 130 10.96
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3 METHOD

We use a Bayesian hierarchical method to infer the distribu-
tion of stellar velocity dispersion as a function of stellar mass
and redshift for the ETGs in our samples. This method al-
lows us to properly propagate observational uncertainties, to
disentangle intrinsic scatter from observational errors and to
correct for Eddington bias (Eddington 1913), which is intro-
duced by our choice of imposing a lower cutoff to the stellar
mass distribution. Throughout this section stellar masses are
expressed in units of M�.

3.1 Bayesian hierarchical formalism

We describe each galaxy in our sample by its redshift, stel-
lar mass and central stellar velocity dispersion. We refer to
these parameters collectively as Θ = {M∗, σe, z}. These rep-
resent the true values of the three quantities, which are in
general different from the corresponding observed values. We
assume that the values of Θ are drawn from a probability
distribution, described in turn by a set of hyper-parameters
Φ:

P(Θ) = P(Θ|Φ). (5)

Our goal is to infer plausible values of the hyper-parameters,
which summarise the distribution of our galaxies in the
(M∗, σe, z) space, given our data. We will describe in detail
the functional form of the distribution P(Θ|Φ) in subsec-
tion 3.2.

Using Bayes’ theorem, the posterior probability distri-
bution of the hyper-parameters given the data d is

P(Φ|d) ∝ P(Φ)P(d |Φ), (6)

where P(Φ) is the prior probability distribution of the model
hyper-parameters and P(d |Φ) is the likelihood of observing
the data given the model.

The data consist of observed stellar masses, stellar ve-
locity dispersions and redshifts,

d ≡ {Mobs
∗ , σobs

e , zobs}, (7)

and related uncertainties. Since measurements on different
galaxies are independent from each other, the likelihood
term can be written as

P(d |Φ) =
∏
i

P(di |Φ), (8)

where di is the data relative to the i-th galaxy. For each
galaxy in our sample, the likelihood of the data depends
only on the true values of the redshift, stellar mass and ve-
locity dispersion, Θ, and not on the hyper-parameters Φ. In
order to compute the P(di |Φ) terms in equation (8), then, we
need to marginalise over all possible values of the individual
object parameters Θi :

P(di |Φ) =
∫

dΘiP(di |Θi,Φ) =
∫

dΘiP(di |Θi)P(Θi |Φ). (9)

This allows us to evaluate the posterior probability distri-
bution, equation (6), provided that a model distribution
P(Θ|Φ) is specified, priors are defined and the shape of the
likelihood is known. The method is hierarchical in the sense
that there exists a hierarchy of parameters: individual ob-
ject parameters Θi are drawn from a distribution that is, in
turn, described by a set of hyper-parameters.

3.2 The model

The dependent variable of our model is the central velocity
dispersion, σe, while stellar mass and redshift are indepen-
dent variables. As such, it is useful to write the probability
distribution of individual galaxy parameters as

P(Θ|Φ) = P(M∗, z |Φ)P(σe |M∗, z,Φ). (10)

Here, P(M∗, z |Φ) describes the prior probability distribution
for a galaxy in our sample to have true stellar mass M∗ and
true redshift z. This probability depends on some hyper-
parameters, which may vary between different subsamples.
Our galaxies have been selected by applying a lower cut to
the observed stellar masses, log Mobs

∗ > 10.5. We then expect
the probability distribution in the true stellar mass to go to
zero for low values of M∗. We also expect P(M∗, z |Φ) to vanish
for very large values of M∗, as there are few known galaxies
with M∗ > 1012. For simplicity, we assume that P(M∗, z |Φ)
separates as follows:

P(M∗, z |Φ) = P(M∗ |Φ)P(z |Φ), (11)

where P(M∗ |Φ) is a skew Gaussian distribution in log M∗,

P(M∗ |Φ) ∝
1√

2πσ2
σ∗

exp
{
−(log M∗ − µ∗)2

2σ2
∗

}
E(log M∗ |Φ), (12)

with

E(log M∗ |Φ) = 1 + erf
(
α∗

log M∗ − µ∗√
2σ∗

)
, (13)

where µ∗, σ∗ and α∗ are three hyper-parameters. Since this is
a prior on the stellar mass distribution, and since the typi-
cal uncertainty on the stellar mass measurements is much
smaller than the width of this distribution (as shown in
section 4), the particular choice of the functional form of
P(M∗ |Φ) does not matter in practice, because the likelihood
term dominates over the prior. The main role of the prior
is downweighting extreme outliers and measurements with
very large uncertainties. The term P(z |Φ) in equation (11)
describes the redshift distribution of the galaxies in our sam-
ple. As we will show later, this term does not enter the prob-
lem, because uncertainties on the observed redshifts can be
neglected.

The second term on the right hand side of equation (10)
is the core of our model. We assume that the logarithm of
the stellar velocity dispersion is normally distributed, with a
mean that can scale with redshift and stellar mass and with
a variance that can evolve with redshift:

P(logσe |M∗, z,Φ) = N(µσ(M∗, z), σ2
σ(z)). (14)

We adopt the following functional form for the median of
this distribution:

µσ = µ
SDSS
0 + β log

(
M∗

Mpiv
∗

)
+ ζ log

(
1 + z

1 + zpiv

)
. (15)

In general, the slope β is allowed to depend on z as

β = βSDSS
0 + η log

(
1 + z

1 + zpiv

)
. (16)

We perform our analysis considering two different cases:
the first is a constant-slope case (model Mconst), i.e. equa-
tion (16) with η = 0; in the second, which we refer to as
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the evolving-slope case (model Mevo), η is a free hyper-
parameter. For the standard deviation σσ in equation (14),
namely the intrinsic scatter of our relation, we adopt the
form

σσ = ψ
SDSS
0 + ξ log

(
1 + z

1 + zpiv

)
. (17)

In equations (15-17) Mpiv
∗ = 1011.361 and zpiv = 0.17311, i.e.

the median values of stellar mass and redshift of the SDSS
ETGs, respectively, while the quantities µSDSS

0 , βSDSS
0 and

ψSDSS
0 are the median values of the hyper-parameters µ0, β0

and ψ0 obtained when fitting equation (14) to the ETGs of
the SDSS subsample with

µσ = µ0 + β0 log

(
M∗

Mpiv
∗

)
and σσ = ψ0, (18)

i.e. neglecting any dependence on z. In order to prevent the
relation being dominated at lower redshifts by the SDSS sub-
sample, which constitutes more than 85% of the extended
sample, we assume the model in equation (18) as the zero
point at zpiv for our redshift-dependent models, because our
main interest is to trace the evolution of the relation at
higher redshift (z & 0.5). Hereafter, we will refer to the
model in equation (18) as model MSDSS.

3.3 Sampling the posterior probability
distribution functions of the model
hyper-parameters

Our goal is to sample the posterior probability distribution
function (PDF) of the model hyper-parameters Φ given the
data d, P(Φ|d). For this purpose, we use an MCMC ap-
proach, using a Python adaptation of the affine-invariant
ensemble sampler of Goodman & Weare (2010), emcee
(Foreman-Mackey et al. 2013). For each set of values of the
hyper-parameters, we need to evaluate the likelihood of the
data. This is given by the product over the galaxies in our
sample of the integrals in equation (9). Using log M∗, logσe
and z as the integration variables and omitting the subscript
i in order to simplify the notation, equation (9) reads

P(Mobs
∗ ,σobs

e , zobs |Φ) =

=

∭
d log M∗ d logσe dz ×

×P(Mobs
∗ , σobs

e , zobs |M∗, σe, z) ×
×P(M∗, σe, z |Φ) =

=

∭
d log M∗ d logσe dz ×

×P(Mobs
∗ |M∗)P(σobs

e |σe) δ(zobs − z) ×
×P(M∗ |Φ)P(z |Φ)P(σe |M∗, z,Φ).

(19)

In the last line, we have used equations (10) and (11), and we
have approximated the likelihood of observing redshift zobs

as a delta function, in virtue of the very small uncertain-
ties on the redshift (typical errors are < 10−4). As a result,
the redshift distribution term P(z |Φ) becomes irrelevant, as
it contributes to the integral only through a multiplicative
constant that we can ignore.

Assuming a Gaussian likelihood in logσobs
e for the term

Table 3. Jeffreys’ scale (Jeffreys 1961), giving the strength of

evidence in the comparison of two models having Bayes factor B
(equation 24).

| ln B | Strength of evidence

0 − 1 Inconclusive

1 − 2.5 Weak evidence
2.5 − 5 Strong evidence

> 5 Decisive evidence

P(σobs
e |σe), the integral over d logσe can be performed an-

alytically, as we show in Appendix A. We also assume a
Gaussian likelihood for the measurements of log Mobs

∗ ,

P(Mobs
∗ |M∗) =

A(log M∗)√
2πσ2

M∗

exp

{
−(log M∗ − log Mobs

∗ )2

2σ2
M∗

}
, (20)

with one caveat: since we are only selecting galaxies with
log Mobs

∗ > 10.5, the likelihood must be normalised accord-
ingly,∫ ∞

10.5
d log Mobs

∗
A(log M∗)√

2πσ2
M∗

exp

{
−(log M∗ − log Mobs

∗ )2

2σ2
M∗

}
= 1.

(21)

In other words, the probability of measuring any value of the
stellar mass larger then log Mobs

∗ = 10.5, given that a galaxy
is part of our sample, is one. We perform the final integration
over log M∗ numerically with a Monte Carlo method (see
Appendix A). We assume flat priors on all model hyper-
parameters.

3.4 Bayesian evidence

In our analysis, we consider models with different numbers
of free hyper-parameters. To evaluate the performance of
a given model in fitting the data, we rely on the Bayesian
evidence Z that is the average of the likelihood under priors
for a given model M:

Z = P(d |M) =
∫

dΘP(d |Θ,M)P(Θ|M). (22)

We remark that, in our approach, the parameters Θ are de-
scribed by a set of global hyper-parameters Φ. When com-
paring two models, say modelsM1 andM2, we are interested
in computing the ratio of the posterior probabilities of the
models

P(M1 |d)
P(M2 |d)

= B P(M1)
P(M2)

, (23)

where

B ≡ P(d |M1)
P(d |M2)

=
Z1
Z2

(24)

is the Bayes factor. When B � 1, M1 provides a bet-
ter description of the data than M2, and vice versa when
B � 1. The value of the Bayes factor is usually compared
with the reference values of the empirical Jeffreys’ scale (Jef-
freys 1961), reported in Table 3. Given two different models,
the quantity | lnB| is a measure of the strength of evidence
that one of the two models is preferable. We compute the
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Bayesian evidence Z of a model exploiting the nested sam-
pling technique (Skilling 2004). Briefly, the nested sampling
algorithm estimates the Bayesian evidence reducing the n-
dimensional evidence integral (where n is the number of the
parameters of a given model) into a 1D integral that is less
expensive to evaluate numerically. In practice, we evaluate
Z for a model using the MultiNest algorithm (see Feroz
& Hobson 2008; Feroz et al. 2009) included in the Python
module PyMultiNest (Buchner et al. 2014). For details about
the estimates of the Bayesian evidence and the algorithm ex-
ploited to compute them, we refer the interested readers to
Feroz & Hobson (2008) and Buchner et al. (2014).

4 RESULTS

In this section we present the results obtained applying the
Bayesian method described in section 3 to the fiducial sam-
ple and to the extended sample of ETGs, the latter consist-
ing of a combination of the fiducial and high-redshift samples
(see section 2).

In subsection 3.2 we have introduced three models:
model MSDSS (representing the present-day M∗ − σe rela-
tion), modelMconst (representing the evolution of the M∗−σe
relation with redshift-independent slope β) and modelMevo
(representing the evolution of the M∗ − σe relation with
redshift-dependent slope β). In modelsMconst andMevo the
intrinsic scatter of the M∗−σe relation is allowed to vary with
redshift. In addition to these models, we also explore sim-
pler models in which the intrinsic scatter is assumed to be
independent of redshift. These models are namedMNES

const and

MNES
evo , where NES stands for non-evolving scatter. In sum-

mary, we take into account five models: modelMSDSS, repre-
sented by equation (18), modelsMconst andMevo, described
by equation (15) (the former obtained by assuming η = 0 in
equation (16)), and the modelsMNES

const andMNES
evo , which are

the same asMconst andMevo, respectively, but with ξ = 0 in
equation (17). A description of the hyper-parameters used
for each model is provided in Table 4. Model MSDSS is ap-
plied to the SDSS subsample. The other four models are
applied twice, once to the fiducial sample and once to the
extended sample (we use the superscripts ”fid” and ”ext” to
indicate that a model is applied, respectively, to the fiducial
and extended samples).

The model-data comparison is performed as described
in section 3. We validated our method by applying it to a
mock dataset similar to the considered observational dataset
(see Appendix B). Each MCMC run (see subsection 3.3) uses
50 random walkers running for 800 steps to reach the con-
vergence of the hyper-parameter distribution. The resulting
inferences on the hyper-parameters used in model MSDSS
are shown in Figure 3. The SDSS galaxies are described by

σe ∝ Mβ0
∗ with β0 ' 0.233, close to the slope of the clas-

sical Faber-Jackson relation σ0 ∝ L0.25 (Faber & Jackson
1976). The normalisation (µ0) is such that galaxies with
M∗ = 1011M� have σe ' 172 km s−1 and the intrinsic scat-
ter (ψ0) is ' 0.066 dex in σe at fixed M∗. Our fit to the
present-day M∗ − σe relation is broadly consistent with pre-
vious analyses (see section 5 for details).

The median values of the hyper-parameters of all mod-
els, with the corresponding 1σ errors, are listed in Table 5.
In order to compare the models we compute the Bayesian

evidence Z of each model, using a configuration of 400 live
points in the nested sampling algorithm. The resulting Z
and the Bayes factors (see equation 24) are listed in Ta-
ble 6. The performance of models MNES

evo is relatively poor
when applied to both the fiducial and the extended samples,
so in the following we focus on the other models. In Figures
4-6, we show the inferences of the modelsMNES

const,Mconst and
Mevo for both the fiducial and the extended samples.

4.1 Fiducial sample (0 . z . 1.2)

The Bayesian evidences for the four models applied to the
fiducial sample (Table 6) indicate that the most representa-

tive model isMNES,fid
const . According to Jeffreys’ scale (Table 3),

the other three models are significantly worse (with weak ev-

idence against models MNES,fid
evo and Mfid

const, and strong evi-

dence against model Mfid
evo). Thus, based on our analysis of

the fiducial sample, we conclude that at z . 1.2 the normal-
isation of the M∗ − σe relation changes with z, while neither
the slope nor the intrinsic scatter vary significantly. In this
redshift interval the M∗ − σe relation is well described by a

power law σe ∝ Mβ
∗ with the same slope β = 0.233 and the

same scatter 0.066 dex found for the SDSS subsample. At
fixed M∗, the normalisation of the stellar mass–velocity dis-
persion relation increases back in time as σ0 ∝ (1+ z)ζ , with
ζ ' 0.26, so, at fixed M∗, galaxies tend to have higher σe at
higher redshift: the median velocity dispersion at fixed M∗
is ≈ 20% higher at z = 1 than at z = 0.

The best-fitting M∗ − σe relations found for model
MNES,fid

const at z = 0, z = 0.5 and z = 1 are shown in Figure 7. In
this diagram the dashed curves are obtained by computing,
at given z and log M∗, the median value of logσe among all
the values sampled by the posterior distribution obtained
with the MCMC; similarly, the shaded bands, which we will
refer to as 1σ bands, are defined by computing the 16%
and the 84% of the distribution of logσe, at given z and
log M∗, for the same sampling. This plot clearly shows that
the evolution of the normalisation of the M∗ −σe relation at
0 . z . 1 is significant.

In summary, based on the median values of the hyper-
parameters of model MNES,fid

const , the evolution of the M∗ − σe
relation in the redshift range 0 . z . 1.2 can be roughly
described by

log
(

σe
km s−1

)
' 2.22+ 0.23 log

(
M∗

1011M�

)
+ 0.26 log(1+ z), (25)

with redshift-independent intrinsic scatter σσ ' 0.07 in
logσe at given M∗.

4.2 Extended sample (0 . z . 2.5)

We move here to the analysis of the models applied to the
extended sample. Based on the Bayesian evidences Z, we
find that, among the models applied to the extended sam-
ple, modelMext

const has the highest value ofZ, so it is the most
representative model to trace the evolution of the M∗ − σe
relation. However, Mext

evo cannot be rejected: its Bayes fac-
tor relative to model Mext

const is such that | lnB| < 1, thus,
according to Jeffrey’s scale (Table 3), Mext

evo is not signifi-
cantly worse than Mext

const. We conclude that the considered
observational data do not allow us to determine whether
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Table 4. Hyper-parameters used in the models. Column 1: name of the model. Column 2: name of the hyper-parameter. Column 3:
description of the hyper-parameter. Column 4: priors used in the models (”low”and ”up” indicate, respectively, the lower and upper bounds

and ”guess” is the starting value). M
piv
∗ and zpiv are the median values of stellar mass and redshift of the SDSS ETGs (subsection 3.2).

Model Hyper-parameter Description Prior (low; up; guess)

MSDSS

µ0 Median value of logσe at M
piv
∗ Uniform (1; 3; 2.3)

β0 Index of the M∗ − σe relation: σe ∝ M
β0
∗ Uniform (0; 1; 0.2)

ψ0 Intrinsic scatter in logσe Uniform (0; 1; 0.1)

µ∗ Mean of Gaussian prior in the stellar mass distribution Uniform (10; 13; 11)

σ∗ Standard deviation in the Gaussian prior of stellar mass distribution Uniform (0; 2; 0.15)
α∗ Skewness parameter in the Gaussian prior of stellar mass distribution Uniform (0.1; 10; 1)

Mevo

µSDSS
0 Median value of logσe at M∗ = M

piv
∗ and z = zpiv ' 2.319

βSDSS
0 Index of the M∗ − σe relation at z = zpiv: σe ∝ M

βSDSS
0
∗ ' 0.233

η Index of the β − (1 + z) relation: β ∝ (1 + z)η Uniform (−2; 2; 0; 0.05)

ζ Index of the σe − (1 + z) relation: σe ∝ (1 + z)ζ Uniform (−2; 2; 0; 0.05)

ψSDSS
0 Median value of ψ0 of the intrinsic scatter at z = zpiv ' 0.066
ξ Index of the σσ − (1 + z) relation: σσ ∝ (1 + z)ξ Uniform (−2; 2; 0; 0.05)
µ∗ Mean of Gaussian prior in the stellar mass distribution Uniform(10; 13; 11)

σ∗ Standard deviation in the Gaussian prior of stellar mass distribution Uniform (0; 2; 0.15)
α∗ Skewness parameter in the Gaussian prior of stellar mass distribution Uniform (0.1; 10; 1)

Mconst Same as Mevo, but with η = 0

MNES
evo Same as Mevo, but with ξ = 0

MNES
const Same as Mevo, but with η = ξ = 0

Table 5. Inferred median and 68% limits on the PDFs of the hyper-parameters of the models.

µ0 β0 ψ0 η ζ ξ µ∗ σ∗ α∗

MSDSS 2.319+0.002
−0.002 0.233+0.006

−0.006 0.066+0.002
−0.002 − − − 11.241+0.028

−0.035 0.351+0.01
−0.008 0.247+0.128

−0.098

Mfid
const − − − − 0.255+0.042

−0.044 0.069+0.04
−0.034 10.816+0.089

−0.091 0.305+0.06
−0.042 0.928+0.946

−0.53

Mfid
evo − − − 0.116+0.182

−0.202 0.289+0.074
−0.076 0.067+0.04

−0.036 10.819+0.095
−0.089 0.305+0.054

−0.042 0.944+0.834
−0.575

Mext
const − − − − 0.422+0.028

−0.029 0.098+0.025
−0.025 10.808+0.096

−0.066 0.323+0.051
−0.049 1.259+0.875

−0.707

Mext
evo − − − 0.222+0.120

−0.122 0.492+0.047
−0.052 0.088+0.26

−0.023 10.819+0.097
−0.064 0.313+0.047

−0.045 1.175+0.79
−0.681

MNES,fid
const − − − − 0.258+0.034

−0.038 − 10.834+0.081
−0.091 0.3+0.057

−0.035 0.786+0.781
−0.469

MNES,fid
evo − − − 0.153+0.174

−0.015 0.31+0.069
−0.067 − 10.832+0.083

−0.086 0.299+0.054
−0.036 0.827+0.751

−0.51

MNES,ext
const − − − − 0.431+0.022

−0.023 − 10.844+0.094
−0.075 0.308+0.048

−0.039 0.911+0.738
−0.567

MNES,ext
evo − − − 0.29+0.108

−0.099 0.517+0.04
−0.041 − 10.866+0.087

−0.076 0.29+0.046
−0.032 0.79+0.66

−0.506

the slope of the M∗ −σ0 relation evolves with redshift in the
range 0 . z . 2.5. Instead, there is a strong evidence that

both modelMNES,ext
const andMNES,ext

evo must be rejected (having
Bayes factors such that lnB < −4, relative toMext

const). Hence,
considering the extended sample, the M∗ − σe relation has a
significant intrinsic scatter evolution.

The median M∗ − σe relations (with 1σ bands) for the
two best models of the extended sample, i.e. Mext

const and
Mext

evo, at six representative redshifts (z = 0, 0.5, 1, 1.5, 2 and
2.5) are shown in Figure 8. At given redshift, the central
stellar velocity dispersion σe increases with stellar mass: the
slope β increases from ' 0.22 at z = 0 up to ' 0.32 at z = 2 for
model Mext

evo (while it is fixed at β = 0.233 in model Mext
const).

At fixed M∗, the normalisation of the stellar mass–velocity

dispersion relation varies with redshift as σ0 ∝ (1+ z)ζ , with
ζ ' 0.42 for model Mext

const and ζ ' 0.49 for model Mext
evo. For

instance, the median velocity dispersion at M∗ = 1011 M�
varies from σe ' 160 km s−1 at z = 0 to σ0 ≈ 250 km s−1 at
z = 2 for both modelsMext

const andMext
evo. The intrinsic scatter

increases with redshift from ' 0.06 dex at z = 0 to ' 0.11 dex
at z = 2. A direct comparison of the the two best mod-
els of the extended sample (Mext

const and Mext
evo) can be found

in Figure 9, in which the median correlations, each with
its 1σ uncertainty band and intrinsic scatter, are plotted
at six representative redshifts. At all redshifts, the central
stellar velocity dispersions predicted by the two models are
essentially indistinguishable around M∗ = 1011M� and differ
significantly only at the high-mass end.
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In summary, based on the median values of the hyper-
parameters of model Mext

const the evolution of the M∗ − σ0
relation in the redshift range 0 . z . 2.5 can be roughly
described by

log
(

σe
km s−1

)
' 2.21+ 0.23 log

(
M∗

1011M�

)
+ 0.42 log(1+ z), (26)

with an intrinsic scatter

σσ ' 0.06 + 0.1 log(1 + z). (27)

According to model Mext
evo, the evolution of the M∗ − σ0 re-

lation in the redshift range 0 . z . 2.5 can be roughly

described by

log
(

σe
km s−1

)
' 2.22+ β(z) log

(
M∗

1011M�

)
+ 0.49 log(1+ z), (28)

with

β(z) ' 0.22 + 0.22 log(1 + z) (29)

and an intrinsic scatter

σσ ' 0.06 + 0.09 log(1 + z). (30)
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Figure 4. Same as Figure 3, but for the models MNES,fid
const (pink contours) and MNES,ext

const (azure contours; see Tables 4 and 5).

4.3 Comparing the results for the fiducial and
extended samples

In Figures 4-6 we compare the posterior PDFs of the hyper-
parameters obtained for modelsMNES

const,Mconst andMevo ap-
plied to the fiducial and extended samples. In all cases the
main difference between the fiducial-sample and extended-
sample cases is in the distribution of the hyper-parameter ζ ,
which quantifies the redshift-evolution of the normalisation
of the M∗−σe relation. The median values are ζ = 0.26−0.29
for the fiducial sample and ζ = 0.42 − 0.49 for the extended
sample, so the evolution of σ0 at given M∗ is stronger for
the extended sample than for the fiducial sample. The dif-
ferences in the distributions of ζ of the same model applied
to the fiducial and to the extended samples are about 2-2.5σ.

The distributions of all the other hyper-parameters (for in-
stance, η, which quantifies the evolution of the slope, or ξ,
which quantifies the evolution of the intrinsic scatter) are
instead consistent within 1σ when comparing the results for
the fiducial and extended samples.

The best model of the fiducial sample (modelMNES,fid
const )

is directly compared to the best models of the extended
sample (Mext

const and Mext
evo) in the top panels of Figure 9,

in which the correlations are plotted at z = 0, z = 0.5 and
z = 1. The aforementioned discrepancy in ζ is apparent in
the z = 1 panel of this figure, in which the fiducial-sample
and extended-sample curves are offset by 0.15-0.2 dex in
M∗ at given σe. The origin of this offset might be due to
different factors. A contribution could come from observa-
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Figure 5. Same as Figure 3, but for the models Mfid
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const (azure contours; see Tables 4 and 5).

tional biases. For instance, while the estimates of the stellar
masses of the fiducial sample are consistent with each other,
for the extended sample the measurements are derived inde-
pendently from different studies. The offset in M∗ is compa-
rable to the mean uncertainty of the stellar mass estimates
in the high-redshift sample, so systematic differences in the
stellar mass estimates might well contribute to this offset.
As a further test, we applied our model to the high-redshift
sample of galaxies, finding at z = 1 a M∗ − σe relation offset
by 0.2 − 0.25 dex in M∗ with respect to the best model of
the fiducial sample. Such offset appears hard to explain en-
tirely with systematic effects in the stellar mass estimates.
This suggests that the higher values of ζ found for the ex-
tended sample might be at least partly due to the fact that

the redshift-dependence of the normalisation of the M∗ − σe
relation is actually stronger at higher redshift.

5 COMPARISON WITH PREVIOUS WORKS

In this section we compare our results on the M∗ − σ0 re-
lation with previous works in the literature. Specifically, we
compare with the studies of Auger et al. (2010), Hyde &
Bernardi (2009a), Zahid et al. (2016b), Belli et al. (2014)
and Mason et al. (2015), which we briefly describe in the
following. All the authors assumed a Chabrier IMF for their
estimates of the stellar masses, except for Mason et al. (2015)
who assumed a Salpeter IMF (Salpeter 1955).
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evo (azure contours; see Tables 4 and 5).

• Auger et al. (2010) take into account 59 ETGs (morpho-
logically classified as ellipticals or S0s) identified as strong
gravitational lenses in the Sloan Lens ACS Survey (SLACS)
(Bolton et al. 2008; Auger et al. 2009) with a mean red-
shift z ≈ 0.2. The stellar masses of these ETGs span the
range 11 < log(M∗/M�) < 12. The measured velocity dis-
persion is corrected to σe/2, the velocity dispersion within
an aperture Re/2, by applying the correction of Jorgensen
et al. (1995). Auger et al. (2010) report best fits of the stel-
lar mass-velocity dispersion relation both allowing and not
allowing for the presence of intrinsic scatter.

• Hyde & Bernardi (2009a) extract 46410 ETGs from
the SDSS DR4 with parameters updated to the DR6 val-
ues (Adelman-McCarthy et al. 2008). They include galaxies

with 60 < σe/8/(km s−1) < 400, where σe/8 is the stellar ve-
locity dispersion measured within an aperture Re/8. Hyde &
Bernardi (2009a) consider both linear and quadratic fits to
the log M∗ − logσe/8 relation. Here we compare our results
with their linear fit for their sample of ETGs in the range
10.5 < log(M∗/M�) < 11.5 and −23 < Mr < −20.5, where Mr

is the absolute magnitude in the r band. This sample spans
the redshift range 0.07 < z ≤ 0.35.

• Zahid et al. (2016b) analyse the M∗−σ0 relation for mas-
sive quiescent galaxies out to z ≈ 0.7. For our comparison,
we use their power-law fit obtained for a subsample drawn
from the Smithsonian Hectospec Lensing Survey (SHELS)
(Geller et al. 2005) at 0.5 < z < 0.6, observed with the Hec-
tospec spctrograph whose fibers have an aperture radius of
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Table 6. Bayesian evidences Z and Bayes factors B of the mod-

els. The Bayes factors are relative to the Bayesian evidences of
model MNES,fid

const for the fiducial sample and of model Mext
const for

the extended sample, i.e. the models with the highest evidences
for given sample.

Model lnZ ln B

Mfid
const 101.201 ± 0.187 −1.904 ± 0.351

Mfid
evo 100.238 ± 0.192 −2.867 ± 0.356

MNES,fid
const 103.105 ± 0.164 −

MNES,fid
evo 101.618 ± 0.176 −1.487 ± 0.34

Mext
const 168.65 ± 0.191 −

Mext
evo 167.741 ± 0.203 −0.909 ± 0.394

MNES,ext
const 162.75 ± 0.174 −5.9 ± 0.365

MNES,ext
evo 164.373 ± 0.187 −4.277 ± 0.378
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Figure 7. Central stellar velocity dispersion within 1 Re as a func-
tion of the stellar mass. The dashed lines represent the median
relations at three representative redshifts (z = 0, 0.5 and 1) for
the model MNES,fid

const . The shaded areas indicate the 1σ uncertainty

ranges. The intrinsic scatter is not shown in these plots. The black
dots represent the ETGs of the fiducial sample.

0.75′′. Concerning SHELS galaxies, at z ≈ 0.1 velocity dis-
persion is measured in an aperture of around 1.4 kpc. As
highlighted by Damjanov et al. (2019), though the observed
velocity dispersions are not corrected for the aperture, these
measurements are estimated to differ at most by 3−4% from
velocity dispersions within Re.
• Belli et al. (2014) measure σe and M∗ for a sample of

galaxies with median redshift z ≈ 1.23. We take from Zahid
et al. (2016b) the best fit parameters of the sample of Belli
et al. (2014).

Table 7. Values of the parameters of equation (31), according to

the fits of the considered literature works.

Reference µ0 β0

Auger et al. (2010) 2.41 0.24
Auger et al. (2010) with scatter (± 0.04) 2.40 0.18

Belli et al. (2014) 2.49 0.30

Hyde & Bernardi (2009a) 2.39 0.286

Mason et al. (2015) 2.44 0.18

Zahid et al. (2016b) SHELS (0.5 < z < 0.6) 2.37 0.26

• Mason et al. (2015) provide a fitting formula describ-
ing the redshift evolution of the M∗ − σe relation, assuming
redshift-independent slope determined by the low-z relation
measured by Auger et al. (2010). In particular, we compare
our fit with the constraints inferred by Mason et al. at z = 2.

In order to make a direct comparison as homogeneous as
possible between our work and the others in the literature,
we rescale all the fit parameters to the following functional
form

log
(

σe
km s−1

)
= µ0 + β0 log

(
M∗

Mpiv
∗

)
, (31)

where Mpiv
∗ = 1011.361M� (Chabrier IMF). The Salpeter

M∗,Salp stellar mass used in Mason et al. (2015) is con-
verted into a Chabrier stellar mass M∗,Chab, assuming that
a Salpeter IMF implies 0.25 dex higher stellar masses than
a Chabrier IMF (Bernardi et al. 2010). Finally, to directly
compare with our fit the fits of Auger et al. (2010) and Hyde
& Bernardi (2009a), who report σe/2 and σe/8, respectively,
we estimate σe/2 and σe/8 for our SDSS galaxies (using equa-
tion 3), we compute the median values of logσe − logσe/8 '
−0.06 and logσe − logσe/2 ' −0.02, and we correct the fits
of Auger et al. (2010) and Hyde & Bernardi (2009a) using
logσe = logσe/8 − 0.06 and logσe = logσe/2 − 0.02.

In Figure 10, we show the comparison between our mod-
els and the previous works at z = 0.2, 0.55, 1.23 and 2. At
low redshift (z = 0.2; top-left panel of Figure 10) we com-
pare our results with Auger et al. (2010) (two fits of which
one accounting and the other not accounting for the intrin-
sic scatter) and Hyde & Bernardi (2009a). For clarity rea-

sons, here we show only theMNES,fid
const fit, because theMext

const
and Mext

evo curves are essentially indistinguishable from that

of MNES,fid
const at this redshift, which is close to zpiv (see Fig-

ure 9). We find a good agreement with Hyde & Bernardi
(2009a), whose fit is only slightly steeper than ours. Also
the fits of Auger et al. have slope similar to that our model,
but have normalisation slightly higher than our estimates,
for instance by ≈ 0.09 dex in σe at M∗ ≈ 1011M�. This is
probably related to the fact that the Auger et al. sample
consists of strong lenses: at fixed stellar mass, the probabil-
ity for a galaxy of being a strong lens increases with central
velocity dispersion. Lensing selection effects might tend to
bias a sample towards higher values of σe.

Moving towards higher redshifts, the fit of SHELS
galaxies at 0.5 < z < 0.6 of Zahid et al. (2016b) almost
perfectly overlaps with our models Mext

const and Mext
evo evalu-

ated at redshift z = 0.55 (top-right panel of Figure 10). We

MNRAS 000, 1–23 (2019)



The stellar mass-velocity dispersion relation of early-type galaxies 17

10.50 10.75 11.00 11.25 11.50 11.75 12.00
logM∗ [M�]

2.0

2.2

2.4

2.6

2.8

lo
g
σ

e
[k

m
/s

]

0.0 0.5 1.0 1.5 2.0 2.5
redshift

Mext
const

10.50 10.75 11.00 11.25 11.50 11.75 12.00
logM∗ [M�]

2.0

2.2

2.4

2.6

2.8

lo
g
σ

e
[k

m
/s

]

0.0 0.5 1.0 1.5 2.0 2.5
redshift

Mext
evo

Figure 8. Same as Figure 7, but for model Mext
const (left-hand panel, dotted lines) and model Mext

evo (right-hand panel, dash-dotted lines).
The lines represent the median relations at six representative redshifts (z = 0, 0.5, 1, 1.5, 2 and 2.5). The black dots represent the ETGs

of the extended sample.

find also a good agreement with the MNES,fid
const model, which

is only slightly shallower than the SHELS fit.
In the bottom-left panel of Figure 10 we compare our

models evaluated at z = 1.23 (mean redshift of the sample
of Belli et al. 2014) with the linear fit obtained by Belli
et al. (2014). While the Mext

const is shallower than the fit by
Belli et al. (2014), the median relation of Mext

evo model is
remarkably similar in slope to Belli et al. (2014) relation,
and differs only slightly in normalisation by ≈ 0.1 dex.

Finally, we compare the median relations of our models
Mext

const and Mext
evo with the estimates done by Mason et al.

(2015) at z = 2 (bottom-right panel of Figure 10). Both
our curves are somewhat steeper than that of Mason et al.
(2015), but we find a very good match at M∗ ≈ 1011M�.

Overall, we do find a satisfactory agreement among our
results and previous works in the literature at all the ex-
plored redshifts. Some of the differences highlighted above
may be ascribed to differences in the redshift distribution
of the galaxy sample, stellar mass ranges, data and mod-
els used in the measurements of the stellar masses, selection
criteria or fitting methods.

6 CONCLUSIONS

We have studied the evolution of the correlation between
central stellar velocity dispersion σ0 (here measured within
Re) and stellar mass M∗ for massive (M∗ & 1010.5 M�) ETGs
observed in the redshift range 0 . z . 2.5. We have modelled
the evolution of this scaling law using a Bayesian hierarchical
method. This allowed us to optimally exploit the available
observational data, without resorting to binning in either
redshift or stellar-mass space. The main conclusions of this
work are the following.

• The central velocity dispersion of ETGs increases with

stellar mass following a power-law relation σ0 ∝ Mβ
∗ with

β ' 0.23, similar to the classical Faber-Jackson relation L ∝
σ4

0 (Faber & Jackson 1976), with stellar mass M∗ replacing
luminosity L.

• The normalisation of the M∗−σ0 relation increases with
redshift: at given stellar mass, σ0 ∝ (1 + z)ζ with ζ ' 0.26 in
the redshift range 0 . z . 1.2 probed by our fiducial sample.
This implies that a typical ETG at z ≈ 0 has σ0 lower by
about 20% than ETGs of similar mass at z ≈ 1. Over the
wider redshift range 0 . z . 2.5, probed by our extended
sample, we find ζ = 0.4 − 0.5, which, modulo systematic
effects (for instance in the estimate of the stellar mass), could
suggest that the evolution of the normalisation of the M∗−σ0
is stronger at higher redshift.

• In the redshift range 0 . z . 1.2 the M∗ − σ0 relation
has redshift-independent intrinsic scatter ' 0.07 dex in σ0
at given M∗. The analysis of the extended sample leads to
the conclusion that the intrinsic scatter is higher at higher
redshift, up to ' 0.11 dex at z = 2.

• In the redshift range 0 . z . 2.5, probed by the ex-
tended sample, a model in which the slope β of the M∗ − σ0
relation increases with redshift as β ≈ 0.2 + 0.2 log(1 + z) de-
scribes the data as well as the model with constant β ' 0.23.
Thus, current data do not allow to determine whether or not
the M∗ − σ0 relation is actually steeper at higher redshift:
additional observational data, especially at high redshift,
appear necessary to address the question of the redshift-
dependence of β.

The results of this work confirm and strengthen previ-
ous indications that the M∗ − σ0 relation of massive ETGs
evolves with cosmic time. The theoretical interpretation of
the observed evolution is not straightforward. Of course, the
stellar mass of an individual galaxy can vary with time: it
can increase as a consequence of mergers and star formation
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Figure 9. Central stellar velocity dispersion within 1 Re as a function of the stellar mass according to models MNES,fid
const (dashed lines),

Mext
const (dotted lines) and Mext

evo (dash-dotted lines) at six representative redshifts (z = 0, 0.5, 1, 1.5, 2 and 2.5). In each panel, the lines
and the shaded areas indicate the median relations and 1σ bands, as in Figures 7 and 8, while the error bars indicate the intrinsic scatter

at a given redshift. In all panels the black solid lines and the black error bars refer to the relation computed at z ' 0.17 (model MSDSS).
In each panel, the black dots represent the ETGs in the indicated redshift range.

and decrease as a consequence of mass return by ageing stel-
lar populations. In the standard paradigm, the first effect is
dominant, so we expect that, as cosmic time goes on, an in-
dividual galaxy moves in the M∗ − σ0 plane in the direction
of increasing M∗. As pointed out in section 1, the variation of
σ0 for an individual galaxy is more uncertain: even pure dry
mergers can make it increase or decrease depending on the
merging orbital parameters and mass ratio. It is then clear
that, at least qualitatively, the evolution shown in Figures
7 and 8 could be reproduced by individual galaxies evolving
at decreasing σ0, but, at least at the low-mass end, even an
evolution of individual galaxies at constant or slightly in-
creasing σ0 is not excluded. Remarkably, our results suggest
that, on average, the stellar velocity dispersion of individual
galaxies with M∗ & 5 × 1011M� at z ≈ 1 must decrease from
z ≈ 1 to z ≈ 0 for them to end up on the present-day M∗ −σ0
relation (see Figure 7).

An additional complication to the theoretical interpre-
tation of the evolution of the scaling laws of ETGs is that
it is not guaranteed that the high-z (say z ≈ 2) ETGs are
representative of the progenitors of all present-day ETGs. If
the progenitors of some of the present-day ETGs were star-

forming at z ≈ 2, they would not be included in our sample
of z ≈ 2 ETGs: this is the so-called progenitor bias, which
must be accounted for when interpreting the evolution of a
population of objects. However, the effect of progenitor bias
should be small at least for the most massive ETGs in the
redshift range 0 . z . 1, in which the number density of qui-
escent galaxies shows little evolution (López-Sanjuan et al.
2012).

The theoretical interpretation of the evolution of the
scaling relations of ETGs can benefit from the comparison of
the observational data with the results of cosmological simu-
lations of galaxy formation. In this approach, the progenitor
bias can be taken into account automatically if simulated
and observed galaxies are selected with consistent criteria.
Moreover, in the simulations we can trace the evolution of
individual galaxies, which is a crucial piece of information
that we do not have for individual observed galaxies. The
method presented in this paper is suitable to be applied to
samples of simulated as well as observed galaxies. In the
near future we plan to apply this method to compare the
observed evolution of the M∗ −σ0 relation of ETGs with the
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Figure 10. Comparison between the median M∗ − σe relations of our best models (MNES,fid
const , azure dashed line; Mext

const, azure dotted

line; Mext
evo, pink dash-dotted line) and of previous works in the literature for the M∗ − σe relation at z = 0.2 (top-left panel), z = 0.55

(top-right panel), z = 1.23 (bottom-left panel) and z = 2 (bottom-right panel). Top-left panel: the light green and dark blue solid lines
are the linear fits of Auger et al. (2010), including and not including the intrinsic scatter, respectively, while the orange solid line is the

linear fit of Hyde & Bernardi (2009a). Here we do not show our fit at z = 0.2 for the Mext
const and Mext

evo models because at this redshift they

are indistinguishable from that of the MNES,fid
const model. Top-right panel: the black solid line is the linear fit of Zahid et al. (2016b) for the

SHELS (0.5 < z < 0.6) sample. Bottom-left panel: the emerald green solid line represents the linear fit of Belli et al. (2014). Bottom-right
panel: the grey solid line is the linear fit of Mason et al. (2015). The error bars indicate the intrinsic scatters.
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results of state-of-the-art cosmological simulations of galaxy
formation.
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Sérsic J. L., 1968, Atlas de galaxias australes

Skilling J., 2004, AIP Conference Proceedings, 735, 395
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APPENDIX A: DETAILS OF THE CALCULATION OF THE LIKELIHOOD USED IN THE
MODEL-DATA COMPARISON

Here we provide some steps of the calculation of the likelihood in equation (14). In this section all masses are in units of solar
masses. By writing explicitly each term in equation (8) for our case, we obtain

P(d |Φ) =
n∏
i=1

∫
d log M∗,i d logσe,i dzi P(log Mobs

∗,i , logσobs
e,i , z

obs
i | log M∗,i, logσe,i, zi)P(log M∗,i, logσe,i, zi |Φ). (A1)

As explained in subsection 3.2, we neglect the uncertainty on redshift, so that the first term on the right-side of equation (A1)
becomes

P(log Mobs
∗,i , logσobs

e,i , z
obs
i | log M∗,i, logσe,i, zi) = P(log Mobs

∗,i | log M∗,i)P(logσobs
e,i | logσe,i) δ(zobs

i − zi). (A2)

Therefore, we can rewrite equation (14) for the i-th galaxy as follows:

P(log Mobs
∗,i , logσobs

e,i , z
obs
i |Φ) =

∫
d log M∗,i

A(log M∗,i)√
2πσ2

M∗,i

exp

{
−
(log M∗,i − log Mobs

∗,i )
2

2σ2
M∗,i

}
1√

2πσ2
∗

exp

{
−
(log M∗,i − µ∗)2

2σ2
∗

}
E(log M∗,i |Φ) ×

×

∫
d logσe,i

1√
2πσ2

σe,i

exp

{
−
(logσe,i − logσobs

e,i )
2

2σ2
σe,i

}
1√

2πσ2
σ,i

exp

{
−
(logσe,i − µσ,i)2

2σ2
σ,i

}
,

(A3)

where

µσ,i = µ0 + β log

(
M∗,i

Mpiv
∗

)
+ ζ log

(
1 + zi

1 + zpiv

)
(A4)

and

σσi = ψ0 + ξ log
(

1 + z
1 + zpiv

)
. (A5)

In equation (A3), the term A(log M∗) allows to normalise the distribution over all values of the observed stellar mass. Specifi-
cally, A(log M∗) ensures that the probability of having an ETG with log Mobs

∗ between 10.5 (the lower bound of the considered
observed stellar mass interval) and +∞ is one:∫ ∞

10.5
d log Mobs

∗,i
A(log M∗,i)√

2πσ2
M∗,i

exp

{
−
(log M∗,i − log Mobs

∗,i )
2

2σ2
M∗,i

}
= 1. (A6)

Hence, A(log M∗,i) is given by

A(log M∗,i) =
1∫ ∞

10.5
dM ′ 1√

2πσ2
M∗,i

exp

{
−
(log M∗,i −M ′)2

2σ2
M∗,i

} =


√
σ2
M∗,i

1
2
σ2
M∗,i

erf

(√
2

2
log M∗,i −M

σ2
M∗,i

)


+∞

10.5

. (A7)

The integral term in d logσe,i of equation (A3) can be written as

1√
2π(σ2

σe,i
+ σ2

σ,i
)
exp

{
−
(logσobs

e,i − µσ,i)
2

2(σ2
σe,i
+ σ2

σ,i
)

}∫
d logσe,i

1√
2πσ̃2

i

exp

{
−
(logσe,i − µ̃i)2

2σ̃2
i

}
=

1√
2π(σ2

σe,i
+ σ2

σ,i
)
exp

{
−
(logσobs

e,i − µσ,i)
2

2(σ2
σe,i
+ σ2

σ,i
)

}
,

(A8)

where

µ̃i =
logσobs

e,i σ2
σ,i + µσ,i σ

2
σe,i

σ2
σ,i
+ σ2

σe,i

and σ̃i =

√√√
σ2
σ,i
σ2
σe,i

σ2
σ,i
+ σ2

σe,i

. (A9)

By writing µσ,i explicitly, equation (A3) becomes

P(log Mobs
∗,i , logσobs

e,i , z
obs
i |Φ) =

∫
d log M∗,i

A(log M∗,i)√
2πσ2

M∗,i

exp

{
−
(log M∗,i − log Mobs

∗,i )
2

2σ2
M∗,i

}
1√

2πσ2
∗

exp

{
−
(log M∗,i − µ∗)2

2σ2
∗

}
E(log M∗,i |Φ) ×

× 1
√

2πσeff,i |β |
exp

{
−
(log M∗,i − µeff,i)2

2σ2
eff,i

}
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(A10)

with

µeff,i = log Mpiv
∗ +

logσobs
e,i − logσ0 − ζ

[
log(1 + zi) − log(1 + zpiv)

]
β

and σeff,i =
(σ2
σe,i
+ σ2

σ,i)
β2 . (A11)

By combining the Gaussian terms centred in log Mobs
∗,i and µeff,i , we obtain the final form of the likelihood:

P(log Mobs
∗,i , logσobs

e,i , z
obs
i |Φ) =

1
|β |

1√
2π(σ2

M∗,i
+ σ2

eff,i)
exp

−
(log Mobs

∗,i − µeff,i)2

2(σ2
M∗, i
+ σ2

eff,i)

 ×
×

∫
d log M∗,i

1√
2πσ′

i
2

exp
−
(log M∗,i − µ

′
i)

2

2σ′
i
2

 A(log M∗,i) S(log M∗,i),

(A12)

with

µ
′
i =

log M∗,iσ2
eff,i + µeff,iσ

2
M∗,i

σ2
eff,iσ

2
M∗,i

and σ
′
i =

√√√√ σ2
eff,iσ

2
M∗,i

σ2
eff,i + σ

2
M∗,i

. (A13)

We compute the integral term in equation (A12) numerically, using the trapezoidal rule.

APPENDIX B: MOCK CATALOGUE

In order to check the reliability of our method, we performed some tests on mock catalogues. In the following, we provide an
example on a mock catalogue of around 1000 ETGs generated as follows (masses are in units of M� and velocity dispersions
in units of km s−1):

• the true stellar masses log M t
∗ have been extracted randomly from a normal distribution centred in 10.7 with standard

deviation 0.5;
• the true velocity dispersions logσt

e ≡ µt have been derived from a normal distribution centred in

µt = µmock
0 + βmock

0 log

(
M t
∗

Mmock
∗

)
(B1)

with Mmock
∗ = 1011.035, µmock

0 = 2.20, βmock
0 = 0.32 and standard deviation ψmock

0 = 0.06 dex;
• the errors on the stellar masses σM∗ have been arbitrarily assumed 0.15 dex for all galaxies;
• the errors on the velocity dispersions σσe have been picked randomly from the normal distribution N(µ ' 0.05, σ ' 0.02);
• the values of log Mobs

∗ and logσobs
e are extracted from N(µ = log M t

∗, σ = σM ) and N(µ = logσt
e, σ = σσe ), respectively;

• finally, we apply the same selection in observed stellar mass used in this work, i.e. log M∗ ≥ 10.5.

In order to sample the PDFs of the model applied to our mock catalogue (hereafter, modelMmock), we perform a MCMC
run (see subsection 3.3), using 50 random walkers running for 800 steps to reach the convergence of the hyper-parameter
distribution. In Figure B1, the obtained µ0, β0 and σ0 hyper-parameters with their 1σ uncertainties for model Mmock are
reported and we show the PDFs of all hyper-parameters computed by our fitting procedure. The input values of the hyper-
parameters are all recovered within 1σ.
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