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We investigate the correlation between the distribution of galaxies and the predicted gravitational-wave
background of astrophysical origin. We show that the large angular scale anisotropies of this background
are dominated by nearby nonlinear structure, which depends on the notoriously hard to model galaxy
power spectrum at small scales. In contrast, we report that the cross-correlation of this signal with galaxy
catalogues depends only on linear scales and can be used to constrain the average contribution to the
gravitational-wave background as a function of time. Using mock data based on a simplified model, we
explore the effects of galaxy bias, angular resolution and the matter abundance on these constraints. Our
results suggest that, when combined with galaxy surveys, the gravitational-wave background can be a
powerful probe for both gravitational-wave merger physics and cosmology.
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I. INTRODUCTION

Gravitational waves (GWs) are one of the striking
predictions of the general theory of relativity [1,2]. The
first indirect detection was obtained by measuring the
orbital decay of a pulsar binary system by Hulse and
Taylor [3] and, a century after they were conjectured, the
GW signal of a merging black hole binary was detected by
the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [4]. Because the strain of GWs is less affected by
distance compared to electromagnetic radiation, they
potentially contain important information about sources
which would be otherwise too dim to be observable. This
discovery paved the way for a new multimessenger era in
cosmology and opened a new window into the physics of
compact objects and gravity [5].
Every GW signal observed so far has been emitted from

bright sources resolved as distinct events, such as low-
redshift black hole [6–9] and neutron star binary mergers
[10]. However, in addition to resolved events, one can
expect the presence of a GW background (GWB) produced
by the superposition of unresolved compact binaries that
are either too far away or too faint to be detected
individually. In practical terms, these unresolved sources
form stochastic GWBs, which may differ in spectral shape
and frequency depending on the source population [11].

For instance, supermassive black hole binaries form a
stochastic background in the nHz band, which is expected
to soon be detected by the pulsar timing array (PTA)
[12–14]. While in the mHz band, the mergers of a similar
population of massive binaries are expected to be detected
as resolved events by the Laser Interferometer Space
Antenna (LISA) [15].
GWBs might also have a cosmological origin. Examples

of such backgrounds are those produced in the early
Universe, such as during inflation [16], or a phase tran-
sitions [17]. Moreover, a hypothesized primordial black
hole population [18] might also contribute to the total
number of compact binaries in the Universe. Many of these
cosmological backgrounds are predicted to be isotropic and
they can extend over multiple frequency bands, from nHz
up to GHz [19,20].
In this paper, we discuss the background due to solar-

mass sized stellar remnants (black hole or neutron star
binaries). The astrophysical GWB resulting from their
inspiral and coalescence should be detectable not only in
mHz band [21], but also in the Hz to kHz band. In this
range, LIGO searches of this background have already been
performed [22].
While the experimental challenges associated with the

detection of this GWB are not the focus of this work, it is
worth pointing out that fundamental obstacles persist in
both frequency ranges. In the mHz band, the reconstruction
is hindered by the presence of an additional low-frequency
background induced by Galactic white dwarf binaries [23].
To address this complication, previous works have shown
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that this background can be removed by exploiting the
yearly modulation of space-based GW observatories [24].
On the other hand, the main obstacle in the Hz-kHz is
represented by the large shot noise contribution. Because
the astrophysical GWB in this band is comprised of
multiple unresolved transient events, a low event rate
induces a large theoretical uncertainty in the total expected
energy density. In particular, the contribution of this effect
to the scale-dependence of the signal has a divergent formal
expression [25,26].
None of these GWBs have been detected yet. Still, if ever

observed, they would be the direct analogues of electro-
magnetic backgrounds formed by the superposition of
multiple astronomical signals. Examples of this type of
backgrounds are the cosmic infrared background (CIB)
[27], produced by stellar dust, and the cosmic x-ray
background (CXB) [28], formed by numerous extragalactic
x-ray sources.
The anisotropies of the astrophysical GWB have been

extensively studied for years [11] and, more recently, two
independent groups Cusin et al. [29,30] and Jenkins et al.
[31,32] obtained discrepant predictions for the scale-
dependent signal [26,33]. The main disagreements are
related to the shape of the angular power spectrum as well
as the overall amplitude of the signal. The difference in
shape seems to be related to the treatment of nonlinear
scales (see also Sec. II of this paper), whereas the difference
in amplitude is due to the chosen normalization. Here, let us
mention that the main focus of their investigations so far
has been the study of the autocorrelation signal and its shot-
noise component, with further studies in this field being
carried out also in [34–37]. It is, however, worth pointing
out that signals beyond autocorrelation, such as the cross-
correlation between GWB and galaxy clustering or weak
lensing convergence, have also been modelled to some
extent (see, e.g., [38]).
Here, we study the cross-correlation between the anisot-

ropies of the astrophysical GWB and galaxy clustering
(GC), and argue why it represents the ideal observable to
detect the background and measure its properties. There are
three main reasons for this choice. First, the distribution of
compact mergers forming the GWB is determined by the
distribution of their host galaxies. This means that one
should expect a relatively large correlation between the two
signals. Second, the cross-correlation signal for diffuse
backgrounds is expected to have a larger signal-to-noise
ratio compared to the autocorrelation signal, hence the
former is likely to be detected earlier [39]. Third, as
presented in the next section, our investigation shows
that the autocorrelation signal of the astrophysical GWB
is very sensitive to small-scale structure, while the cross-
correlation signal is free from this problem. In a somewhat
similar spirit, Refs. [40–42] have recently studied the cross-
correlation of resolved GW sources with large scale
structure and lensed cosmic microwave background.

Our paper is organized as follows. In Sec. II we review
the main aspects of the GWB autocorrelation signal and
highlight its limitations. In Sec. III, we present the angular
power spectrum of the cross-correlation signal and calcu-
late the expected shot-noise contamination (Appendix A).
In Sec. IV we demonstrate how the cross-correlation can be
used to constrain the average power emitted by unresolved
GW sources as a function of redshift, and quantify the
required signal-to-noise ratio and angular resolution. To do
this, we use a fiducial cosmology based on the best-fit
results of Planck 2018 [43] and a toy model for the GWB.
Finally, we present our conclusions in Sec. V.

II. GRAVITATIONAL-WAVE ANISOTROPIES

In this section, we discuss the autocorrelation signal of
the anisotropic GWB. This signal, as well as the shot-noise
contamination, have been extensively studied in previous
works [25,38,44]. Here, we review the main aspects of
modelling these and describe some particularities.
Our starting point is the definition of the dimensionless

energy density of GWs from a given direction of the sky r̂,
per unit solid angle:

ΩGWðν0; r̂Þ ¼
ν0
ρc

dρGWðν0; r̂Þ
dν0d2r̂

; ð1Þ

where ρGWðν0; r̂Þ is the present-day energy density in GWs,
ν0 is the observed frequency and ρc ¼ 3H2

0=8πG is the
critical density of the Universe. Note that, from now on,
we suppress the frequency dependence. We model this
signal as

ΩGWðr̂Þ≡
Z

dr r2KðrÞnðr⃗Þ; ð2Þ

where nðr⃗Þ is the galaxy density field in comoving
coordinates r⃗, and K is the GW kernel that encodes the
average contribution of a galaxy to ΩGW as a function of
comoving distance r. In practice, this includes information
about the star formation history of the Universe and the
properties of the emitting binary population. It is instructive
to rewrite Eq. (2) in terms of the galaxy overdensity
δgðr⃗Þ≡ nðr⃗Þ=n̄ðrÞ − 1, with n̄ðrÞ being the average num-
ber density of galaxies, defined as n̄ðrÞ≡ R

d2r̂nðr⃗Þ=4π.
With this notation we have

ΩGWðr̂Þ ¼
Z

dr r2KðrÞn̄ðrÞðδgðr⃗Þ þ 1Þ: ð3Þ

From this point, the angular power spectrum of the
anisotropic GWB CGW

l can be calculated to be

CGW
l ¼ 4π

Z
kmax

kmin

dk
k
jδΩlj2PðkÞ þ BGW

l : ð4Þ
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Here δΩlðkÞ is given by

δΩlðkÞ ¼
Z

dr r2KðrÞn̄ðrÞTgðk; rÞjlðkrÞ; ð5Þ

where Tg is the synchronous gauge transfer function
relating the galaxy power spectrum to the primordial one
PðkÞ ¼ Asðk=k�Þns−1, and jl is the spherical Bessel func-
tion of order l. Note that the galaxy bias is implicitly
absorbed in Tg. Note also that in Eq. (5) we neglect rela-
tivistic corrections, as they are generally found to be below
cosmic variance [45].
The term BGW

l in the power spectrum is the shot-noise
bias term introduced by the spatial and temporal shot-noise
in the distribution of the individual events forming the
GWB. Following [25], we write the shot-noise contribution
in the kHz band as

BGW
l ¼

Z
drK2ðrÞn̄ðrÞr2

�
1þ 1þ zðrÞ

RðrÞTO

�
: ð6Þ

Because of the low event rate in this frequency range, this
noise contribution is inversely proportional to the average
number of events per galaxy, written as the average
redshifted event rate ð1þ zÞ=RðrÞ multiplied by the obser-
ving time TO. However, because the duration of the inspiral
phase in the mHz band is much larger than any reasonable
observing time, the contribution of the term 1=ðRðrÞT0Þ is
negligible in this case.
The GWB discussed here is an integrated signal.

Because of this, the low-redshift objects might significantly
contribute to the GWB. Indeed, the astrophysical models
of [38] suggest that the combination

K̃ðrÞ ¼ KðrÞn̄ðrÞr2 ð7Þ

is not decaying to negligible values close to redshifts z ∼ 0.
This introduces two complications in the modeling.
The first is connected to the shot noise. To highlight this,

we rewrite Eq. (6) as

BGW
l ¼

Z
dr

K̃2ðrÞ
n̄ðrÞr2

�
1þ 1þ zðrÞ

RðrÞTO

�
: ð8Þ

From this expression, it is clear that the shot-noise has
a divergent expression due to low-redshift (low-r) con-
tributions. To obtain a well-behaved prediction for the
autocorrelation signal, this divergence can be suppressed if
local events are excluded from the background. This is
equivalent to setting a lower limit in the integral above
different from zero.
Second, there exist a complication derived from the

scale dependent part of the angular power spectrum [the
first term in Eq. (4)], which is expected to receive non-
negligible contributions from small, highly nonlinear

scales. To get some intuition about this feature, let us
simplify our expression for the GWB angular power
spectrum by using the so-called Limber approximation

jlðxÞ →
ffiffiffiffiffiffi
π

2α

r
δDðα − xÞ; ð9Þ

where δD is the Dirac delta-function and α≡ lþ 1=2.
Using this in Eq. (5) and neglecting the bias term we obtain

CGW
l ≈

2π2

α

Z
kmax

kmin

dk
k3

K̃2

�
α

k

�
S2

�
k;
α

k

�
; ð10Þ

Sðk; rÞ≡ Tgðk; rÞPðkÞ1=2: ð11Þ

What Eq. (10) demonstrates is that K̃ðrÞ acts as a
modified kernel and selects a particular domain in the
k-integral. This causes small scales to contribute signifi-
cantly to CGW

l , unless K̃ is vanishing at the lower end of its
argument or S̃2=k3 is falling fast enough at large values
of k. As the modeling of the galaxy power spectrum at
nonlinear scales is highly uncertain, this feature is signal-
ling a potential danger of using the autocorrelation signal as
a probe of GW merger history or cosmology.
To accurately assess the impact of the issue mentioned

above, let us turn to the results of exact numerical
computations which do not rely on the Limber approxi-
mation. Having in mind the speed requirements of our later
parameter analysis, we have developed a fast numerical
procedure1 to compute the integrals in Eqs. (4) and (5),
given the dark matter transfer function Tmðk; rÞ calculated
using an Einstein-Boltzmann solver.2

A technical remark is in order here. Given the rapidly-
oscillatory nature of the spherical Bessel functions in
Eq. (5), we have precomputed the line-of-sight integrals
over these Bessel functions on bins of a fine r-grid. On the
speed grounds, the source terms are then inserted only on a
much coarser grid, which is only justified if these source
functions do not vary significantly between two coarse-grid
points. While this assumption is well justified for the
transfer functions, we can only use our integrator if the
kernel KðrÞ does not have rapid changes. In this paper, we
consider only such smooth-enough kernels (and window
functions—see the next sections). We have verified the
reliability of our integration procedure against a modified
version of the latest public version of CAMB [48,49].
Our results are illustrated in the left panel of Fig. 1,

where we have chosen several values of kmax, the
upper limit of the integral in Eq. (4), and calculated the

1The codes used in this paper are publicly available at https://
github.com/valerivardanyan/GW-GC-CrossCorr.

2In this paper, we use the ΛCDM limit of the EFTCAMB code
[46,47] for simplicity, as it is easier to output the required transfer
functions as a function of redshift.
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corresponding angular power spectra for the multipoles in
the range l ¼ ½2; 100�. Note in particular that the magni-
tude of the signal changes drastically with kmax, meaning
that the autocorrelation signal depends heavily on the shape
of the low redshift power spectrum on nonlinear scales.
This is likely one of the causes behind the discrepancy
between Jenkins et al. and Cusin et al. and suggests that an
accurate prediction of the autocorrelation signal should take
into account not only the shot-noise contribution [38,44],
but also the uncertainties due to baryonic effects in the
matter distribution at small scales [50,51]. We point out, in
particular, that the galaxy catalogue based on dark-matter-
only simulations of [52] and the HaloFit model of [53] are
not designed to consistently or accurately model this
uncertainty. While not shown, we point out that this
problem is even more noticeable at high l, where a larger
value of kmax ∼ 5 Mpc−1 is required for the integrals to
converge (as highlighted in [26]).

III. CROSS-CORRELATION WITH
GALAXY CLUSTERING

In this section, we introduce the main concepts necessary
for modeling the cross-correlation signal and discuss its
advantages.
First of all, we define the observed overdensity of

galaxies in the given direction r̂ per unit sold angle as

Δðr̂Þ ¼
Z

drWiðrÞδgðr⃗Þ; ð12Þ

where WiðrÞ is the probability density function of the
galaxies’ comoving distances (also referred to as the GC
window function) and δgðr⃗Þ is the galaxy overdensity
defined earlier. Using Eq. (12), the angular power spectrum
of GC, CGC

l , can be shown to be

CGC
l ¼ 4π

Z
dk
k
jΔlðkÞj2PðkÞ þ

1

ni
; ð13Þ

where ΔlðkÞ is given by

ΔlðkÞ ¼
Z

drWiðrÞTiðk; rÞjlðkrÞ: ð14Þ

Tiðk; rÞ is the transfer function for the galaxy overdensity in
the selected redshift range WiðrÞ, jlðkrÞ is the spherical
Bessel function of order l and ni is the average number
of galaxies per steradian, also dependent on the specific
redshift selection WiðrÞ. This final quantity appears the in
second term in Eq. (13) and dictates the size of the shot-
noise component of the power-spectrum.
Using Eqs. (5) and (14), one can derive the angular

power spectrum of the cross-correlation C×
l of the GWB

and the GC maps, given by Eq. (2) and (12). This is

C×
l ¼ 4π

Z
dk
k
δΩ�

lðkÞΔlðkÞPðkÞ þ Bl; ð15Þ

where the shot-noise contribution Bl, derived in
Appendix A, can be shown to be

Bl ¼
Z

drWiðrÞKðrÞ: ð16Þ

With these expressions in mind, we can now discuss how
the cross-correlation signal can be used to address the
modeling challenges we have presented in the previous
section.
To address the first one, we notice that, while the 1=r2

divergence is still present in the integral in Eq. (16), this
integral is generally well behaved if the window function
WiðrÞ decays fast enough at small redshifts. Notice that this
is impossible to do in the equivalent expression for the
autocorrelation in Eq. (6).
With respect to the second issue, we compare in Fig. 1

the effects of the small-scale power spectrum on both
the auto and cross-correlation. To explain the different
behavior, we note that the equivalent of Eq. (10) for the
cross-correlation is

FIG. 1. Left panel: Linear autocorrelation power spectra CGW
l of the GWB of a constant K̃ðrÞ for a set of upper limits of the integral in

Eq. (4), in units of Mpc−1. Right panel: The same as in the left panel, but for the cross-correlation between a galaxy sample (centered at
z ¼ 0.5) and the GWB, C×

l . Both of the panels are supposed to be understood as normalized with respect to the amplitude of the fiducial
GWB model, to be discussed in detail later.
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C×
l ≈

2π2

α

Z
kmax

kmin

dk
k3

Wi

�
α

k

�
K̃
�
α

k

�
S2

�
k;
α

k

�
: ð17Þ

Because GC surveys allow for redshift-selection of the
sources, the GC window functionWiðrÞ can be taken to be
peaked at some nonzero redshift and quickly decaying for
larger or smaller values of r. Equation (17) shows that this
behavior cuts off the contribution from very large and very
small scales, as shown in the right panel of Fig. 1.

IV. INFORMATION CONTENT

A. Model setup

In this section, our primary goal is to explore the
sensitivity of the cross-correlation signal to various param-
eters and estimate its information content. To this end,
we model the signal using simple, but representative
assumptions about the GW and GC maps. This allows
us to derive an upper limit on the constraining power by
assuming the theoretical minimum uncertainty due to
cosmic variance.
We base our model for K̃ðrÞ on the physically motivated

one of Cusin et al. [38], by noting that their function AðzÞ
is the analogue of our K̃ðrÞ in redshift space. In this
reference, in particular, it is shown that AðrÞ is a slowly-
evolving function of redshift, and has a similar shape over a
wide range of frequencies and assumptions about the
source population (see their Figs. 19 and 13). Thus, we
model the kernel as

KðrÞ ¼ K0

2n̄ðrÞr2 ftanh ½10ðz�ðrÞ − zðrÞÞ� þ 1g; ð18Þ

where K0 is the amplitude of the kernel, z� is a cutoff
redshift, and n̄ðrÞ ≈ 10−1 Mpc−3 is the average comoving
galaxy number density estimated using Fig. 4 of [54]. We
do not implement a redshift dependence for this quantity
because its value is relevant only for the shot-noise
component of the cross-correlation, found to be negligible
in the cases considered here. In our fiducial model, we
assume z� ¼ 1 (see Fig. 2), as it known by Cusin et al. that
the astrophysical kernel KðrÞn̄ðrÞr2 is expected to decay
around that value in redshift. Notice that, while K0 should
be dimensionful, its units are irrelevant to us because the
cross-correlation signal is proportional to its value. For the
rest of the paper, we call Kfid

0 the fiducial value of this
quantity.
In the next subsections, we study the cross-correlation

between the GWB modeled above and two galaxy cata-
logues centered at different redshifts. The two window
functions, W1 and W2, are assumed to be Gaussian dis-
tributions centered at z̄ ¼ f0.5; 1.5g and with widths of
σz ¼ f0.18; 0.6g. These values are picked so that the two
selections overlap with the constant portions of K̃ðrÞ.

Moreover, we model the transfer functions in Eqs. (14)
and (5) by using a linear bias approximation (valid for large
scales):

TiðkÞ ¼ biTmðk; rÞ; ð19Þ

and

Tgðk; rÞ ¼ bGWTmðk; rÞ; ð20Þ

where Tmðk; rÞ is the transfer function for cold dark matter
and the bX are known as bias parameters. When varying our
model, we freeze the bias of both galaxy catalogues since it
can be extracted from the clustering autocorrelation signal
alone. On the contrary, we treat the GW bias bGW as a free
parameter and we assume it to be a constant over redshift.
While this is not necessarily true, in the absence of shot-
noise, only the combination bGWK̃ðrÞ appears in the signal.
This implies that a more complex model can always capture
any redshift dependence through the function K̃ðrÞ. Note,
however, that breaking the degeneracy between the linear
bias of the GW population and the amplitude of the
astrophysical kernel KðrÞ requires a full understanding
of the GWB kernel and all ingredients [55].
For the rest of the analysis, we focus on the mHz

frequency band, and assume that low-redshift events
(below r ¼ 150 Mpc) can be filtered. In our modeling,
as discussed in the previous sections, these assumptions are
essential to obtain a well-behaved signal which is not
overwhelmed by noise. For reference, under these assump-
tions we get the following relative noise values at l̂ ¼ 10:

BGW
l̂

CGW
l̂

≈
Bl̂

C×
l̂

≈ 10−4: ð21Þ

The first value is derived using the inspiral time of a solar
mass black hole binary starting from 1 mHz [56], an
observing time of 1 year and a merger rate of 10−5 per
year [57].
As a summary of our model, Fig. 2 contains the two

window functions W1, W2 and the kernel K̃ðrÞ.

B. Behavior of the cross-correlation

Before attempting to reconstruct the parameters of our
model from mock data, let us gain some insights into
the response of the cross-correlation signal on various
parameters.
First, we explore the dependence of the signal on the

kernel amplitude K0, or, more precisely, the combination
bGWK0. In the upper left panel of Fig. 3 we can see that in
the case of both of the window functions W1 and W2 the
change of the amplitude induces a significant change in
the signal. Note that here the bias itself is fixed. In reality,
the kernel amplitude K0 and the bias are perfectly
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degenerate with each other since the two appear as
proportionality constants to both cross-correlation signals.
To see this, in the lower left panel of Fig. 3 we demonstrate
the impact of varying bGW on the signal when bGWK0 is
held fixed. Note that a similar scaling with the kernel
amplitude is present also for the autocorrelation signal
shown in Fig. 4, which is proportional to ðbGWK0Þ2.
Second, we turn our attention to the dependence of the

signal on the turnover redshift z�. In the upper right panel of
Fig. 3 we see that the change of z� induces a change in the
shape of the signal. The signal with W2 is sensitive to z�,

while in the case ofW1 the signal is practically independent
of it. A similarly small effect is also visible in the
autocorrelation signal in Fig. 4.
Third, it is interesting to show the effect of Ωm on the

signal. Specifically, in the lower left panel of Fig. 3, it is
demonstrated that the effects ofΩm andK0 are qualitatively
different from each other. Indeed, changing Ωm rotates the
signal, while K0 affects the amplitude of the signal. This
rotation effect due to varying Ωm is expected, as a similar
effect is observed in the galaxy clustering autocorrelation
signal. Indeed, such a behavior in the signal allows galaxy
clustering to constrain bothΩm and the normalization of the
matter power spectrum σ8 (see, e.g., [58]).
Finally, we point out that the scale-dependent power

spectra discussed in this sections do not have a clear peak
for any value of l and practically do not show any sign of
decaying power for small scales. This is in contrast to the
naive expectations based on galaxy clustering result. This
difference is due to the interplay between projected scales
and redshift selection described in Sec. II, together with the
use of relatively wide effective window functions (K̃ðrÞ,
W1 and W2).

C. Constraining K(r)

The goal of this section is to understand the constraining
power of the cross-correlation signal by studying how
precisely the astrophysical model can be inferred from a
noisy Cl measurement.

FIG. 3. Effects of the model parameters bGWK0, z�, Ωm and bGW on the cross-correlation signal. The uncertainties are the cosmic
variance defined in Appendix B. Note particularly that in the case of both of the window functions W1 and W2 the change in bGWK0

induces a significant change in the amplitude of the signal (upper left panel), while when the combination bGWK0 is fixed, the signal is
not sensitive to the value of the GW bias bGW (lower left panel). Note that mostly the high-l multipoles are sensitive to changes in z�
(upper right panel). Note also that the change on Ωm modifies the tilt of the signal, without altering its overall amplitude (lower right
panel). All of the panels are supposed to be understood as normalized with respect to the amplitude of the fiducial GWB model.

FIG. 2. Fiducial model as a function of redshift z, of the GW
source kernel K̃ðrðzÞÞ in Eq. (7). In practice, we cut off the low-
redshift sources with comoving distances smaller than 150 Mpc
(see the text for details). The galaxy clustering window functions
W1 and W2 are assumed to be Gaussian.
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In our analysis, we focus on the best-case scenario
of cosmic-variance limited uncertainties as derived in
Appendix B and use a simple proxy for the overall
signal-to-noise ratio of the cross-correlation, defined as

�
S
N

�
2 ≡ Xlmax

l¼lmin

ðC×
l Þ2

VarC×
l
: ð22Þ

Let us note that in our setup the GC signal dominates over
the GC shot noise, implying that Eq. (22) is indeed the
theoretical limit for uncertainties.
In the presence of multiple, independent window func-

tions, we simply sum the relative signal-to-noise expres-
sions in quadrature.
We compute the cross-correlation power spectra, given

in Eq. (15), using the model presented in Sec. IVA, and

attempt to recover the model parameters from a noisy
realization. To explore the inferred constraints as a function
of angular resolution and S/N levels, we do this in several
multipole ranges of l with lmin ¼ 2 and varying lmax.
The parameters of interest in our analysis are the

amplitude of the GWB kernel K0 and the turnover redshift
z�. In addition to these, we also explore the bias bGW and
Ωm to see if variations in Tgðk; rÞ can affect the inferred
KðrÞ, and to explore the possible degeneracies between the
GWB model and cosmology. To include the effects of
varying Ωm we have precomputed the dark matter transfer
functions for a grid of Ωm values, and have inferred the
results for the intermediate values through nearest neighbor
interpolation.
The exploration of the parameter space is carried out

using the MCMC PYTHON code EMCEE [59]. We have
employed a Gaussian likelihood function on Cl with
diagonal covariance matrix given through Eq. (B6), and
the prior ranges given in Table I. Note that since we expect
K0 to be degenerated with bGW, we do not vary K0 itself,
but rather vary the combination bGWK0.
The main results of the analysis are summarized in

Fig. 5, where we show the expected constraints on the
parameters of interest as a function of the maximum

FIG. 4. Effects of the model parameters bGWK0, z�, Ωm and
bGW on the autocorrelation signal. The uncertainties are defined
as in Fig. 3. The curves should be understood as normalized with
respect to the amplitude of the fiducial GWB model.

TABLE I. Prior ranges of the sampled parameters. For Ωm we
use a Planck-2018 inspired Gaussian prior.

Parameter Fiducial value Prior

bGWK0 1 [0.01, 100]
bGW 1 [0.1, 10]
z� 1 [0.5, 1.5]
Ωm 0.32 Gð0.32; 0.013Þ

FIG. 5. Constraints on the GWB parameters (bGWK0, z�) and cosmology (Ωm) obtained using the cross-correlation signal with two
window functions as a function of the maximum multipole included in the analysis. Cosmic-variance limited measurements are assumed
for all the constraints, so these should be understood as the best-case scenario results. Larger values of the signal-to-noise ratio (S/N)
correspond to better angular resolution [see Eq. (22)]. We have explored the effect of Ωm on these constraints by either fixing its value
(left panel), or setting a Planck-2018-like Gaussian prior (right panel). Remarkably, the combination bGWK0 can be constrained even
with very limited angular sensitivity. The turnover location z� is practically unconstrained for lmax ≲ 50, and Ωm is prior dominated for
these multipoles. In case of lmax ≳ 50 all the relevant parameters are tightly constrained, and for lmax ∼ 100 the constraints are at the
level of a few percent. Notably, the cosmology (mimicked by varyingΩm in our analysis) can match and surpass the CMB results only in
case of high angular resolution/signal-to-noise. For reference, lmax ¼ 100 roughly corresponds to 2 degrees.
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multipole included in the analysis. We also show the
corresponding cosmic-variance-only signal-to-noise ratios.
Let us first have a look at the left panel of the figure,

which corresponds to a fixed Ωm value. As we see, bGWK0

is constrained and, notably, this is true even in the limited
multipole range corresponding to lmax ¼ 10. This is
expected, as a clear detection of the signal is associated
with a measurement of its amplitude. On the other hand,
less encouraging are the results for the turnover redshift z�,
which can be constrained only for lmax ≳ 50 or, equiv-
alently, a S/N of ∼33.
In the right panel of the figure, we now impose a

Gaussian prior on Ωm, with its variance being comparable
to the Planck-2018 constraint on Ωm. While the z� results
are not affected, the uncertainties on the amplitude are now
slightly inflated, due to a degeneracy between Ωm and
bGWK0. This is also visible in the signal responses plotted
in Fig. 3.
Let us now fully concentrate on the two limiting angular

sensitivities in our analysis. We take a LIGO-like angular
sensitivity limited to the multipole range of l ∈ ½2; 10�,
as well as an angular sensitivity of a hypothetical high-
resolution GW detector corresponding to l ∈ ½2; 100�.

The full constraints, for the case of Gaussian priors on
Ωm, are presented in Fig. 6.
We can clearly see that K0bGW is constrained even in the

case of the limited angular resolution, while bGW is never
separately constrained. We have checked that the latter
feature is also present in all the other runs presented in this
section. This justifies our choice to vary the combination
bGWK0 instead of varying bGW and K0 separately.
The turn-over redshift z� is unconstrained for the

low-resolution case, while it is tightly constrained for
the case of lmax ¼ 100. The dark matter abundance Ωm
is prior dominated for the low-resolution case, while it
beats the prior in the high-resolution scenario. Also note-
worthy are the degeneracies between Ωm and K0bGW, as
well as between z� and K0bGW. These can be easily
understood by inspecting the combined behaviors pre-
sented in Fig. 3.
Before turning to our conclusions let us mention that the

results presented in this section depend on the precise
details of the GC window functions and GWB detection
and more precise results can only be obtained by perform-
ing a realistic forecast with exact survey/detector specifi-
cations. While we leave a more detailed investigation for
future research, our results suggest that a cosmic-variance
limited measurement of the GWB anisotropies down to l ∼
100 is able to tightly constrain the redshift evolution of the
GW kernel K̃, as well as to provide Planck-like constraints
on cosmological parameters.

V. CONCLUSIONS

In this paper, we have discussed in detail the angular
power spectrum of the cross-correlation between the GWB
of astrophysical origin and GC.
We have shown that, contrary to the autocorrela-

tion signal, the cross-correlation signal does not depend
heavily on the small-scale galaxy power spectrum and
hence is a more robust observational probe. To this point,
we have also shown that the shot-noise associated with this
signal is small for realistic choices of the window func-
tions Wi.
Then, armed with these results, we studied in detail the

properties of the angular power spectra for a range of model
parameters. In particular, we have shown how the signal is
sensitive to the turnover redshift z� of the GWB kernel, a
combination of its amplitude and the bias bGWK0, as well
as the dark matter abundance Ωm. We have also shown that
the signal is not separately sensitive to bGW and K0. A
summary of these is presented in Fig. 3.
As one of the main goals of this paper, we have per-

formed a Bayesian parameter estimation using an MCMC
sampling based on mock data with cosmic-variance-limited
uncertainties. This choice allows us to provide an upper
limit on the constraining power of this new observational
probe (Fig. 5). In particular, we have demonstrated that the
cross-correlation signal is a powerful tool to constrain the

FIG. 6. Posterior distributions for the cases of lmax ¼ 10
(orange) and lmax ¼ 100 (black), with Planck-2018-like Gaussian
prior on Ωm (shown in red dashed line). Contours represent the
68% and 95% confidence regions. We can clearly see that K0bGW
is constrained even in the case of the limited angular resolution,
while bGW is never separately constrained. The turn-over redshift
z� is unconstrained for the low-resolution case, while it is tightly
constrained for the case of lmax ¼ 100. Finally, Ωm is prior
dominated for the low-resolution case, while it beats the prior in the
high-resolution scenario. Also noteworthy are the degeneracies
between Ωm and K0bGW, as well as between z� and K0bGW.
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properties of the GWB kernel KðrÞ if appropriate GC
window functions are used. This is true even when
marginalizing over uncertainties in the cosmology gravi-
tational-wave bias.
We have quantified for the first time the need of

high-resolution GW detectors in order to extract the full
information content of the GWB of astrophysical origin.
In particular, we have shown that both a high angular
resolution and a high signal-to-noise ratio (l ∼ 100,
S=N ∼ 70) are required to recover both the matter abun-
dance Ωm and features of the kernel KðrÞ as a function of
redshift. Note, in particular, that these requirements are
far above the angular resolution of present-day and near-
future detectors (roughly l≲ 10, and even l≲ 4 for
LISA [22,60]). While this is not the priority of currently
proposed third-generation detectors [61], it is worth noting
that the advantages of high-resolution gravitational-wave
astronomy are numerous and not limited to the study of this
anisotropic background [62].
The case for studying the cross-correlation is strength-

ened by noticing that the anisotropies of the GWB in kHz
band will most probably first be measured through cross-
correlation with galaxy surveys, as the latter will provide a
guiding pattern to be looked at in the noisy GW data. Given
the promising nature of our results regarding the constraints
of the GW kernel parameters and Ωm, we believe that the
cross-correlation between GW and GC has the potential to
be a robust observational probe in the era of multimes-
senger cosmology.
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APPENDIX A: SHOT-NOISE FOR THE
CROSS-CORRELATION SIGNAL

We follow [25] and evaluate the shot-noise contribution
to the observed cross-correlation signal C×

l in terms of the
shot-noise contribution to the covariance between the
observed maps Ωðr̂Þ and Δðr̂0Þ. Our starting point is

Bl ¼
Z

d2r̂Plðr̂ · r̂0ÞCov½Ωðr̂Þ;Δðr̂0Þ�SN: ðA1Þ

By keeping in mind that K̃ðrÞ ¼ r2KðrÞn̄ðrÞ and that
δgðr⃗Þ ¼ ðnðr⃗Þ − n̄ðrÞÞ=n̄ we use the definitions in Eqs. (2),
(12) to write:

Cov½Ωðr̂Þ;Δðr̂0Þ�SN ¼
Z

dr
Z

dr0
r2

n̄

× Cov½KðrÞnðr⃗Þ;Wiðr0Þnðr⃗0Þ�SN:
ðA2Þ

As a side note, we point out that this expression is a
stretch of notation since, formally, the quantities KðrÞnðr⃗Þ
and WðrÞnðr⃗Þ represent the mean values of the variables
that we are trying to correlate. To proceed, we notice that
WðrÞnðr⃗Þ is proportional to the number density of galaxies
visible in the galaxy survey and that KðrÞnðr⃗Þ is propor-
tional to the number density of GW events around an
infinitesimal volume centred in r⃗. This is confirmed by the
formalism used in the aforementioned references [25,29] to
predict a realistic KðrÞ.
In a finite volume δVi we write down the number of GW

mergers as

Λi ¼
XNi

k

λk; ðA3Þ

where N is the number of galaxies present in this volume
and the λj-s are the number of events for each galaxy. If we
assume that N and λk are Poisson distributed, Λi follows a
compound Poisson distribution with variance

Var½Λi� ¼ hΛ2
i i − hΛii2 ¼ hNiiðhλi þ hλi2Þ: ðA4Þ

If we call f the fraction of galaxies in the volume δVj
visible in the galaxy survey we also derive:

Cov½fNj;Λi� ¼ fhNihλiδij; ðA5Þ

where δij is the Kronecker delta. By going back to the
continuous case, we obtain the following result:

Cov½KðrÞnðr⃗Þ;Wiðr0Þnðr⃗0Þ�SN ¼ n̄ðrÞWiðrÞKðrÞδ3ðr⃗ − r⃗0Þ:
ðA6Þ

Finally, by plugging everything into Eq. (A1) we obtain
the result shown in the main text:

Bl ¼
Z

drWiðrÞKðrÞ: ðA7Þ
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APPENDIX B: COSMIC VARIANCE OF THE
CROSS-CORRELATION SIGNAL

Assume we have two maps on the sky, corresponding to
the GWB and GC anisotropies. The angular decomposition
coefficients aGWlm and aGClm are assumed to be Gaussian
random variables with zero mean, and each m-mode is
drawn from the same distribution. The relevant angular
power spectra are defined as

C×
l ≡ Cov½aGWlm ; aGClm�; ðB1Þ

CGW
l ≡ Var½aGWlm �; ðB2Þ

CGC
l ≡ Var½aGClm�: ðB3Þ

It is then trivial to construct an unbiased estimator of the
cross-correlation power spectrum as

cC×
l ¼ 1

2lþ 1

Xþl

m¼−l
aGWlm aGClm: ðB4Þ

The variance of this estimator can then be shown to be

VarC×
l ¼ 1

ð2lþ 1Þ2
Xþl

m¼−l
Var½aGWlm aGClm�

¼ 1

ð2lþ 1Þ2
Xþl

m¼−l
CGW
l CGC

l

þ Cov½ðaGWlm Þ2; ðaGClmÞ2� − Cov½aGWlm ; aGClm�2:
ðB5Þ

In summary, we have

VarC×
l ¼ CGW

l CGC
l þ ðC×

l Þ2
2lþ 1

; ðB6Þ

where we have used the Gaussianity of alm ’s. Making the
aGClm → aGWlm replacement turns this expression into

VarCGW
l ¼ 2ðCGW

l Þ2
2lþ 1

; ðB7Þ

which, of course, recovers the usual cosmic variance result.
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