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/Abstract: We present the synthesis and self-assembly of a
chiral bis(urea) amphiphile and show that chirality offers a
remarkable level of control towards different morphologies.
Upon self-assembly in water, the molecular-scale chiral infor-
mation is translated to the mesoscopic level. Both enantio-
mers of the amphiphile self-assemble into chiral twisted rib-
bons with opposite handedness, as supported by Cryo-TEM
and circular dichroism (CD) measurements. The system pres-
ents thermo-responsive aggregation behavior and combined

\

transmittance measurements, temperature-dependent UV,
CD, TEM, and micro-differential scanning calorimetry (DSC)
show that a ribbon-to-vesicles transition occurs upon heat-
ing. Remarkably, chirality allows easy control of morphology
as the self-assembly into distinct aggregates can be tuned
by varying the enantiomeric excess of the amphiphile,
giving access to flat sheets, helical ribbons, and twisted rib-
bons.

/

Introduction

Self-assembly is a very powerful bottom-up approach to build
complex architectures,”? taking advantage of information-rich
building blocks that have specific supramolecular interac-
tions.”! The self-assembly of amphiphilic molecules is an effec-
tive tool to generate a variety of morphologies in water.** A
plethora of self-assembled structures has been accessed by
harnessing the hydrophobic effect® as main driving force in
combination with supramolecular interactions such as m-m
stacking or hydrogen bonding.” These structures range from
“simple” aggregates like micelles,” vesicles® and inverted
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structures™ to more complex architectures such as nano-
tubes,""¥ sheets," and ribbons."

Among the number of motifs available for directing self-as-
sembly, ureas have shown to effectively form stable soft mate-
rials. They have been largely applied as low weight molecular
gelators (LWMG),"2” in both organic solvent?'® and in
water,”?® as well as supramolecular polymers.”>*® A particu-
larly interesting feature of the urea motif is its tendency to
form highly directional intermolecular H-bonding networks,
which allows to impart high levels of order into the self-assem-
bled structure.['82431-38

In an attempt to synergistically exploit intermolecular H-
bonding and the hydrophobic effect, different research groups
have focused on amphiphiles containing linear and branched
urea and bis(urea) motifs.***? Such structures have been ex-
plored in the formation of monolayers at the water-air inter-
face,*" micelles™? and rod-like micelles.”**? In certain exam-
ples, modification of the lipophilic chain of the urea-containing
surfactant led to the formation of cubic and hexagonal aggre-
gates in aqueous medium."®**! However, to the best of our
knowledge, more complex architectures in water based on bi-
s(urea) amphiphiles have not yet been discovered.

Taking the challenge on how to control the formation of
more complex mesoscopic structures in aqueous medium, we
designed the chiral bis(urea) amphiphile U1, shown in
Figure 1. We envisioned that in order to tune morphologies,
chirality can act as a powerful control element.*>? Tetraethy-
lene glycol chains have been chosen as the hydrophilic com-
ponent of the amphiphile to allow for good dispersion in
water.'***%% Fyrthermore, we decided to install aliphatic
chains in proximity to the bis(urea) moieties to potentially trig-
ger the formation of a hydrogen bonding network within the
hydrophobic domain of the self-assembled structures. Herein,

© 2020 The Authors. Published by Wiley-VCH GmbH

Check for
updates


http://orcid.org/0000-0003-0380-7056
http://orcid.org/0000-0003-0380-7056
http://orcid.org/0000-0003-3435-8310
http://orcid.org/0000-0003-3435-8310
http://orcid.org/0000-0003-3435-8310
http://orcid.org/0000-0003-0667-6338
http://orcid.org/0000-0003-0667-6338
http://orcid.org/0000-0003-0667-6338
http://orcid.org/0000-0003-0667-6338
http://orcid.org/0000-0001-9192-3393
http://orcid.org/0000-0001-9192-3393
http://orcid.org/0000-0001-9192-3393
http://orcid.org/0000-0003-0588-8435
http://orcid.org/0000-0003-0588-8435
http://orcid.org/0000-0003-0588-8435
https://doi.org/10.1002/chem.202003403
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fchem.202003403&domain=pdf&date_stamp=2020-11-19

Chemistry—A European Journal

Full Paper
doi.org/10.1002/chem.202003403

Chemistry
Europe

European Chemical
Societies Publishing

! 0-R
o 0 ! o) S o
SNH HN— i S—NH HN—
C12H25_NH HN_C12H25 : C12H25_NH HN_C12H25
(RR)-U1 (S,85)-U1

R = %00

Figure 1. Design of bis(urea) amphiphiles (R,R)-U1 and (S,5)-U1.

we show that these amphiphiles self-assemble into thermo-re-
sponsive chiral structures (nanoribbons) of which the morphol-
ogy can be altered by heating or by simple mixing of enantio-
mers.

Results and Discussion
Synthesis and self-assembly behavior

The bis(urea) enantiomers (R,R)-U1 and (S,5)-U1 were synthe-
sized separately from commercially available starting materials
(see the Supporting Information for synthetic details). Conden-
sation of the corresponding enantiomer of a previously report-
ed PEGylated diphenylethylenediamine precursor®™ with
2 equivalents of dodecyl isocyanate afforded the desired prod-
ucts in excellent yield and optical purity [90% yield and 98 %
ee for (R,R)-U1 and 89% yield and 96% ee for (5,5)-U1]. The
structures were confirmed by HRMS, '"HNMR and "C NMR
spectroscopy.

The self-assembly behavior of these products was initially
studied with circular dichroism (CD) spectroscopy (Figure 2).
The CD spectrum of (R,R)-U1 in acetonitrile, a solvent for which
'H NMR dilution studies (see Figure S6 in the Supporting Infor-
mation) revealed that no aggregation occurs, showed a bisig-
nate signal at 230 nm and a positive signal at 285 nm and the
exact mirror image CD spectrum was observed for (S,5)-U1.
When the CD spectra were recorded in water, completely dif-
ferent signals were observed (Figure 2). Compounds (S,S)-U1

60
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Figure 2. CD spectra of (S,5)-U1 and (R,R)-U1 in acetonitrile (0.5 mm) and of
(5,5)-U1 and (R,R)-U1 in double distilled water (0.5 mm).
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and (R,R)-U1 presented fully positive and negative CD absorp-
tion, respectively. With respect to the spectrum recorded in
acetonitrile, the signal around 230 nm was red-shifted and
much less intense (it should be noted that the lower intensity
is partially due to a decrease in absorption, see Figure S9 in
the Supporting Information for the UV/Vis absorption spectra).
Furthermore, the signal around 275 nm displayed a broaden-
ing and a slight increase in intensity as well as a blue shift of
the absorption maximum. The significantly different CD ab-
sorption in water than in acetonitrile hinted at an aqueous
self-assembly process.”*®

Cryogenic transmission electron microscopy (Cryo-TEM) con-
firmed the anticipated formation of self-assembled structures
in water. Both (R,R)-U1 and (S,5)-U1 gave rise to twisted rib-
bons (Figure 3 and Figure S14 in the Supporting Information).
The structure of these ribbons was uniform within the sample,
presenting a twisting pitch (for a 360° turn) of about 90 nm
and a width of around 25 nm. Unfortunately, we were not able
to determine the mesoscopic handedness of these ribbons,
due to the bidimensional character of the Cryo-TEM pictures.

The self-assembled structures were further characterized by
small-angle X-ray scattering (SAXS) experiments on (R,R)-U1
(see Figure S17 in the Supporting Information). The scattering
profile showed a slope proportional to the inverse scattering
vector square (g~2), which is typical for flat aggregates. These
experiments thus confirm the presence of the ribbon architec-
tures observed by Cryo-TEM.

(R,R)-U1

Figure 3. Cryo-TEM image of twisted ribbons of (R,R)-U1 (2 mm in double-
distilled water).

Thermo-responsiveness

In the sample preparation in water, an increase in turbidity
was observed upon heating (Figure 4), which pointed to
thermo-responsiveness %

Micro-differential scanning calorimetry (micro-DSC) provided
insight into this thermo-responsive behavior and confirmed

© 2020 The Authors. Published by Wiley-VCH GmbH
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Figure 4. Turbidity change of a U1 sample upon heating (1 mm).

the presence of phase transitions. In consecutive heating/cool-
ing cycles using a 2 mm U1-solution (Figure S13 in the Sup-
porting Information), sharp transitions were observed at 33°C
(heating curve) and at 27 °C (cooling curve). These transitions
were consistently detected at two different heating and cool-
ing rates (i.e., 1 and 0.5°Cmin~"). The thermodynamic parame-
ters of the transitions observed upon heating and cooling are
included in the Supporting Information (Figure S13). The posi-
tive values of AH and AS in the heating curve suggest that the
process is entropy-driven.

Variable-temperature CD measurements (between 20 and
70°C) were then performed to further investigate the thermo-
responsiveness (Figure 5). When heating a 0.5 mm aqueous
sample of (5,5)-U1 above 30°C, the CD absorption spectrum
resembled that of the monomeric amphiphile in acetonitrile
(see Figure 2) in line with the thermal transition detected by
micro-DSC. It should be noted that a decrease in intensity of
the CD signal was witnessed between 40 and 70°C, which is
due to some precipitation inside the cuvette (see the Support-
ing Information for details). Upon cooling of the sample, we
observed an almost full recovery of the original CD absorption
except for the signal at 220 nm (Figure S11 in the Supporting
Information). When these experiments were repeated using
(R,R)-U1, comparable results were obtained (see Figure S10 in
the Supporting Information). Overall, these temperature-de-
pendent changes in CD absorption are in line with the thermal
transition observed by micro-DSC.

Remarkably, Cryo-TEM measurements of the heated aqueous
samples revealed the formation of vesicles generated from the
original twisted ribbons (Figure 6). As was also observed
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Figure 5. Temperature-dependent CD spectra of (5,5)-U1 (0.5 mm), heating
cycle.
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during the CD measurements, further beyond the thermal tran-
sition temperature, the amphiphile started to precipitate. Im-
portantly, when the solutions were allowed to cool to room
temperature, the twisted ribbons were recovered. Apparently,
the vesicles have a CD spectrum that is virtually the same as
that of the non-aggregated amphiphile in the molecularly dis-
solved state (acetonitrile solution). Hence, above the thermal
transition temperature, where vesicles form, there appears to
be no translation of chirality from the molecular to the supra-
molecular structure, in stark contrast with the twisted ribbon
formation at room temperature.

A possible explanation could be that by heating the sample,
the hydrogen-bonding interaction between amphiphiles is
weakened, resulting in the formation of aggregates whose
morphology depends uniquely on the hydrophobic and hydro-
philic characteristics of the amphiphile, that is, vesicles. Inter-
molecular hydrogen-bonding at room temperature, in the bi-
layer of the self-assembled soft-material, is therefore expected
to play a role in the formation of the twisted nanoribbons,
alongside the hydrophobic effect.

Figure 6. Cryo-TEM images of self-assembled vesicles of U1 at 45°C (2 mm).

Tuning morphology by mixing enantiomers

We finally turned our attention to investigating the aggrega-
tion behavior of (RR)-U1 and (§,5)-U1 mixtures using Cryo-
TEM. Interestingly, the racemic mixture self-assembled into la-
mellar planar sheets (Figure 7a). The aggregate formed in this
case presented a flat structure and lacked twisting as observed
for the enantiomerically pure samples. The planar bilayers, on
the other hand, were still comparable to the previously ob-
served twisted ribbons in terms of packing. For a sample with
an ee of 20%, planar lamellar structures were still observed
(Figure 7b). At 40% ee (Figure 7 c), beside planar aggregates, a
few twisted ribbons were detected. These ribbons presented a
twist with a pitch of around 200 nm, that is, much larger than
observed for the enantiopure samples. By further increasing
the ee, more twisted structures were observed. At 60% ee, the

© 2020 The Authors. Published by Wiley-VCH GmbH
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Figure 7. Cryo-TEM of self-assembled planar lamellar sheets from (a) the racemic mixture of U1 (2 mm); (b) (R,R)-U1 20% ee (2 mm); (c) (R,R)-U1 40% ee
(2 mm), arrows pointing to a twisted ribbon; (d) (R,R)-U1 60% ee (2 mm); (e) (R,R)-U1 80% ee (2 mm), green arrows pointing to helical ribbons and yellow
arrows pointing to twisted ribbons; (f) (R,R)-U1 85% ee (2 mm), detail of a tape which includes both helical (green) and twisted (yellow) ribbon.

sample was characterized by areas of coexisting planar and
twisted structures (Figure 7d). For the samples with an ee of
80%, we observed a more defined situation, in which three
distinct types of aggregates were present. Alongside planar
sheets, helical and twisted ribbons were observed (Fig-
ure 7e).5” For the samples having ee values above 80%, we
could observe ribbons presenting both a helical and a tightly
twisted component, the latter comparable to the twisted rib-
bons observed in the highly enriched samples of U1 (Fig-
ure 7 f).

In summary, in the case of the racemic mixture, the meso-
scopic structure presents a flat architecture. By increasing the
ee, the aggregate progressively assumes a coiled form, evident
from the formation of helical and twisted tapes. Samples with
high ee values result in areas in which twisted tapes are more
frequently present and closely resemble the mesoscopic char-
acteristics of the nearly enantiopure system. Somehow, the for-
mation of the helical ribbons seems to be an intermediate
stage, in which at much higher concentrations of one enantio-
mer (80% ee) the flat self-assembled structure starts to assume
a coiled morphology, not quite as twisted as the one based on
the pure enantiomers. We can hypothesize that the reason for
this different type of twist is given by a higher local concentra-
tion of a single enantiomer in the self-assembly process, which

Chem. Eur. J. 2020, 26, 1-6 www.chemeurj.org

results in local aggregation of highly enantioenriched amphi-
philes (Figure 3).

At the moment, however, we are not able to answer the
question why the helical ribbon represents an intermediate
state, and further investigation is needed to elucidate this phe-
nomenon. Nevertheless, from these TEM experiments, we can
conclude that the enantiomeric composition strongly influen-
ces the morphology of the aggregates.

Conclusions

We designed a chiral bis(urea) amphiphile which self-assem-
bled into chiral nanoribbons in water. These nanoribbons ex-
hibited thermo-responsive behavior, that is, a reversible
change from nanoribbon to vesicles was observed when in-
creasing the temperature. Furthermore, by mixing the enantio-
mers of the amphiphile in different ratios, the outcome of the
self-assembly process could be easily changed from flat sheets
to helical ribbons and twisted ribbons. Our study shows how
temperature and enantiomeric composition can be used to
tune the morphology of urea-based self-assembled materials.
The new insights gained will encourage future development of
stimuli-controlled self-assembled chiral systems in water.

© 2020 The Authors. Published by Wiley-VCH GmbH
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Tuning of Morphology by Chirality in
Self-Assembled Structures of Bis(Urea) Wrapping with ribbons: Chiral bis(urea) excess of the amphiphile, giving access

Amphiphiles in Water amphiphiles can translate their molecu- to flat sheets, helical ribbons, and twist-
lar scale chiral information to the meso- ed ribbons. The system presents
scopic level via self-assembly in water. thermo-responsive aggregation proper-
The morphology of the aggregates can ties, in which a ribbon-to-vesicles transi-
be tuned by varying the enantiomeric tion occurs upon heating.
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