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Measuring local moiré lattice heterogeneity of twisted bilayer graphene
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We introduce a new method to continuously map inhomogeneities of a moiré lattice and apply it to large-area
topographic images we measure on open-device twisted bilayer graphene (TBG). We show that the variation in
the twist angle of a TBG device, which is frequently conjectured to be the reason for differences between devices
with a supposed similar twist angle, is about 0.08◦ around the average of 2.02◦ over areas of several hundred
nanometers, comparable to devices encapsulated between hexagonal boron nitride slabs. We distinguish between
an effective twist angle and local anisotropy and relate the latter to heterostrain. Our results imply that for our
devices, twist angle heterogeneity has an effect on the electronic structure roughly equal to that of local strain.
The method introduced here is applicable to results from different imaging techniques and on different moiré
materials.
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I. INTRODUCTION

Stacking two sheets of identical periodic lattices with a
small twist angle θ leads to a superperiodic lattice with moiré
lattice constant λ(θ ) much larger than the original lattice con-
stant a [Fig. 1(a)]. This new lattice is called a moiré lattice.
When using atomic layers exfoliated from van der Waals ma-
terials and stacking them with a twist angle, the electronic and
structural properties are modulated on the moiré length scale
λ(θ ), leading to the potential for new, emergent electronic
properties of the moiré material [1,2].

Such new properties have been spectacularly demonstrated
in twisted bilayer graphene (TBG) around the magic angle
of θ ≈ 1.1◦ [3–11]. In TBG, the moiré lattice modulates the
interlayer coupling between the individual graphene sheets,
as well as the van der Waals forces on the individual carbon
atoms. The former leads to flat bands of low-kinetic-energy
electrons [1]. The latter leads to a slight deformation of the
graphene lattice and band gaps that separate the more local-
ized electrons from the other bands [1]. When the flat bands
are tuned to the Fermi level, they pair and condense into a
superfluid at temperatures much higher than what one would
naively expect at the low carrier densities observed in TBG
[4]. Additionally, a variety of insulating and metallic behavior
has been observed in TBG for different twist angles and band
fillings [3,5,6,12].
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The kinetic energy of the electrons changes rapidly as
the twist angle is varied, especially around the magic angle;
therefore the fabrication of devices with just the right angle
is key in making them superconducting. However, getting the
right angle might not even be the most challenging aspect of
fabricating high-quality superconducting TBG devices: Con-
taminations, internal stress, and heterogeneities of the twist
angle are difficult to avoid. This is in part because the magic
angle is not the lowest energy configuration and in part be-
cause of the strong forces associated with the tear-and-stack
technique. Internal stress and heterogeneities are often con-
jectured to limit the quality of the devices and are attributed
as the main causes for the variability between devices [13].
This holds especially for open devices that lack the hexagonal
boron nitride (hBN) top layer; notably, such devices have
never been found to superconduct. Measuring, visualizing,
and characterizing heterogeneity in the twist angle and strain
in TBG is thus crucial to understand and improve devices.

Probably the most complete visualization of inhomogene-
ity thus far has been obtained using scanning superconducting
quantum interference device (SQUID)-on-tip microscopy
(SOT) [14]. SOT measures the Landau levels as a func-
tion of location and thus has access to the local superlattice
carrier density. On encapsulated devices, SOT has been
used to visualize heterogeneity on length scales of a few
micrometers with a resolution of several tens of nanome-
ters, demonstrating that the twist angle varies by less than
4% [14]. While being a very precise measure of the lo-
cal twist angle, SOT is also influenced by other factors,
e.g., inhomogeneities of the chemical potential and the local
magnetic screening. Other techniques to access homogene-
ity are nanospot angle-resolved photoemission spectroscopy
(nano-ARPES) [15–17], which can image the full electronic
structure in reciprocal space with a spatial resolution of circa
600 nm, low-energy electron microscopy (LEEM) [15], which
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FIG. 1. (a) Moiré pattern created by stacking two hexagonal lat-
tices with a twist angle of 5◦. (b) Schematic representation of our
spatial lock-in algorithm to map the local twist angle and anisotropy.
The measured lattice can be thought of as the result of a series of
transformations applied to an ideal lattice. The scaling transforma-
tion D holds information about the local twist angle θ∗(r) and the
intrinsic local strain present in the device, κ (r). V gives the direction
of this local strain, ψ (r). Finally, W indicates the relative angle
between the bilayer and the underlying hBN substrate.

can image structural inhomogeneities at twist angles lower
and higher than the magic angle, conductive atomic-force
microscopy (AFM) [18], nano-photocurrent mapping [19],
which can measure the twist angle with a resolution on the
order of 20 nm, and scanning single-electron transistors [20],
which can map the twist angle by measuring the inverse lo-
cal compressibility. Finally, scanning tunneling microscopy
(STM), the probe used in this study, has been used to mea-
sure both the topography and the local density of states of
TBG, including the emergence of correlations at the magic
angle [21–26].

In previous STM studies, two different methods have been
used to determine the local twist angle. First, one can deter-
mine the twist angle using three neighboring moiré lattice sites
in real space. The distances between each lattice site, λ1, λ2,
and λ3, are fit to a set of equations that yield the twist angle at a
per-triangle resolution [Fig. 1(a)] [22] and, using a model with
assumptions about the strain distribution in the two layers, an
estimate for the heterostrain ε.

A second method to determine the twist angle uses the
Fourier transform of a real-space topography to determine
the moiré wavelengths λ j in the three directions of the moiré
lattice (in principle, two directions are fully determining the
lattice, but often all three are used for a better signal-to-noise
ratio). The twist angle is determined using λ = a

2 sin( θ
2 )

, where

λ = 1
3

∑3
j=1 λ j and a is the lattice constant of graphene. Using

the Fourier transform is generally more accurate than fitting
three moiré lattice peaks, because it averages over the whole
field of view, but this also limits its spatial resolution to the
full field of view.

In this paper, we introduce an alternative method of quanti-
fying and visualizing the heterogeneity in open devices, with
sub-moiré lattice cell resolution over length scales of hundreds
of nanometers. We develop a spatial lock-in method that en-
ables one to map, with sub-moiré wavelength resolution, the
local twist angle θ∗(r), the local moiré anisotropy κ (r), and
the anisotropy direction ψ (r), as defined below. Notably, we
can separate these effects from each other and from rotations

of the lattice [Fig. 1(b)]. We then apply our method to deter-
mine the heterogeneity in open TBG devices.

II. METHODS

We fabricate our devices using the tear-and-stack method
with a special focus on avoiding contamination to ensure the
large clean areas needed for this study. A single graphene
flake is precut into two halves with an AFM tip, ensuring
initial crystallographic alignment between them. The first half
is subsequently picked up with a hBN flake, mechanically
exfoliated on a SiO2/Si chip, and adhered to a polydimethyl-
siloxane (PDMS)/polycarbonate (PC) stamp at ∼100 ◦C. The
second half of the graphene flake is manually rotated to a
target twist angle of 1.5◦–2.0◦ and consequently picked up by
the hBN/graphene stack on PC. In the next step, the PC layer
is carefully peeled off of the initial PDMS stamp and placed
on another PDMS stamp upside down. The sacrificial PC layer
is then removed in 1-methyl-2-pyrrolidone. Subsequently, the
TBG/hBN heterostructure is transferred onto a target SiO2/Si
substrate with a prepatterned navigation structure, two gold
electrodes, and a graphite gate contacting one of them within
the measurement area. We carefully align the TBG/hBN stack
with the local graphite gate to avoid short-circuiting. The sec-
ond prepatterned gold electrode is used to electrically contact
TBG using another graphite piece. The devices are inserted
into our ultrahigh-vacuum setup and annealed at 350 ◦C for
12 h before inserting them into the low-temperature STM
operating at 4.2 K. The TBG samples are located using a
capacitive navigation scheme [27].

III. SPATIAL LOCK-IN ALGORITHM

Figure 2(a) shows a topographic image where both
the atomic lattice of the top graphene layer and the moiré
lattice are resolved. The Fourier transform of the image shows
the lattice peaks as well as the peaks from the moiré super-
lattice [Fig. 2(b), blue and green insets, respectively]. While
such small fields of view are well suited for spectroscopy
studies, we require large fields of view that encompass many
moiré cells for the heterogeneity study using spatial lock-in
detection presented here. Figure 2(c) shows an example.

The general method of spatial lock-in is illustrated in the
left column of Fig. 3 for the one-dimensional case: The “mea-
sured” signal S(x), a not-quite periodic signal, is multiplied
with a reference signal, a perfectly periodic complex plane
wave Sref (x). The phase of the resulting signal, when low-pass
filtered, corresponds to the local phase of the original wave. To
obtain the local variations in wavelength λ(x) of the original
wave, shown at the bottom left of Fig. 3, one calculates the
derivative of the local phase. Spatial lock-in algorithms like
this have been used previously in electron microscopy stud-
ies (known as geometric phase analysis) [28–30] and optical
metrology [31]. In the context of STM, the most well-known
application is known as the Lawler-Fujita algorithm [32].
Lawler, Fujita, and co-workers have, based on earlier work
by Slezak et al. [33], introduced a lock-in algorithm to correct
topographic images for drift by calculating the displacement
field, i.e., the vectors that connect the coordinates of the
measured images with the points of an ideal reference lattice.
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FIG. 2. (a) STM topography of a device with an average twist angle of θ = 2.38◦ (setup conditions: V = 250 mV, I = 100 pA). The
topography shows both the atomic and moiré lattice. (b) Fourier transform of (a), with zoom-ins of the moiré peaks (green inset) and the
bottom left atomic peak (blue inset). Satellite peaks of the moiré lattice are visible around the atomic peak as well. (c) Large-scale topography
measured on a different device with an average twist angle of 2.02◦ (setup conditions: V = 250 mV, I = 20 pA).

Our motivation here is different: We do not need to correct
an imperfect image, but want to extract heterogeneities of the
lattice.

To do so, we start with defining three reference plane waves
Rj (r) = eiq j ·r, j ∈ {1, 2, 3}, where the reference wave vectors
qj are determined by simultaneously fitting six Gaussians to
the Bragg peaks in the Fourier transform of the topography
[Fig. 4(b)]. In order to measure deviations from an isotropic
triangular lattice, we force the reference wave vectors to be of

FIG. 3. Lock-in in 1D. The panels in the left column show, from
top to bottom, the signal (an almost periodic sinusoid), the real part of
the reference, the real part of the product of the signal and reference,
and the wavelength calculated by taking the gradient of the phase of
the product signal. The right column displays the Fourier transform
of the (complex) signals in the left column. Finally, in the bottom
right curve, the orange dashed line represents the Gaussian filter used
for the lock-in procedure.

equal magnitude and 60◦ with respect to each other (although
see Appendix A4 on the choice of reference vectors). The
reference lattice is then defined as the real part of the sum
of the reference plane waves, i.e., Tr (r) = Re[T0

∑
j R j (r)] =

T0
∑

j cos(q j · r), where T0 is the average amplitude.
The transformation between the measured lattice, Tm(r),

and this perfectly periodic, hexagonal reference lattice, Tr (r),
can approximately be parametrized as the shifts between
points in the moiré lattice and corresponding points in the
reference lattice. To this end, we introduce the displacement
field u(r) in the following manner:

Tm(r) = Tr[r + u(r)] = T0

∑
j

cos{q j · [r + u(r)]}.

To extract the displacement field from our data, each refer-
ence signal is multiplied with the original topographic image
and low-pass filtered with a Gaussian window. This operation
corresponds to convolution of the original topographic image
with the plane wave encompassed by a Gaussian, calculating
the relevant wave vector component of the ultimately small
window two-dimensional (2D) Fourier transform. The win-
dow of the Gaussian filter needs to be chosen large enough
(small enough in frequency space) in order to exclude larger
frequencies but simultaneously small enough (big enough in
frequency space) to maintain good spatial resolution (Ap-
pendix A). A lower limit on the filter size is put in place by
higher frequencies: If the filter chosen is too small (too large in
frequency space), more of the higher frequencies become in-
cluded in the filter window reducing the signal-to-noise ratio.
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FIG. 4. (a) STM topography of a device with an average twist angle of 2.02◦ [V = 250 mV, I = 20 pA, same data as in Fig. 2(c)]. The
blue circle at the bottom right indicates the size of the filter used by the algorithm (see text). (b) Fourier transform of (a), showing the Bragg
peaks of the moiré lattice visible in the image. The Bragg peaks are labeled q1–q3. (c) Effective twist angle map extracted from (a), by the
algorithm discussed. The red square indicates the area over which the average twist angle and standard deviation are calculated. (d) Local
moiré anisotropy map κ (r) extracted by the algorithm from (a). (e) Local moiré anisotropy direction ψ (r) extracted by the algorithm from (a).
(f) Heterostrain map extracted as described in the text.

In practice, a filter width of a few periods is used, as illustrated
by the circle in Fig. 4(a). The local phase of the result of this
operation corresponds to the local shift between the real image
and the reference wave, or more precisely φ j (r) = q j · u(r)
(Appendix A).

This local phase is 2π periodic and needs to be phase un-
wrapped to remove discontinuities. After phase unwrapping,
the displacement field u(r) can be extracted from two of the
phase maps by pixelwise multiplication with Q−1, the inverse
of a matrix containing the wave vectors used (although not
applied here, using all three wave vectors is more involved
but can be beneficial for situations with low signal-to-noise
ratio, as detailed in Appendix A4).

In a second step, we decompose the obtained displacement
field u(r) into the local effective twist angle θ∗(r) and the lo-
cal moiré anisotropy magnitude and direction, κ (r) and ψ (r),
respectively. To that end, we consider the Jacobian of the
transformation, J = I + ∇u, which is the displacement gradi-
ent tensor that describes the transformation of an infinitesimal
triangle at each position. The polar decomposition J = WA
splits J into the product of the unitary matrix W , describing
the local rotation of the lattice, and a matrix A, describing
the local scaling and anisotropy. This matrix A can be further
decomposed into a (unitary) rotation matrix V , indicating the
major and minor axes of scaling and a diagonal scaling matrix
D such that J = WA = WV �DV . This final decomposition is

illustrated in Fig. 1(b) and makes it straightforward to extract
relevant quantities. The change in density of unit cells is equal
to the change in area under the effect of the deformation
gradient tensor; hence the geometric mean of the scaling
elements in the diagonal of D,

√
d1d2 = √

det(J ), allows us
to calculate the wavelength of the moiré lattice and, conse-
quently, the local twist angle (Appendix A). Furthermore, the
local anisotropy magnitude κ (r) is calculated by taking the
ratio of the scaling elements that make up D, κ = d1

d2
, where

d1 > d2. Defined in this way, κ = 1 indicates an isotropic
lattice, and κ > 1 indicates an anisotropy of the moiré lattice
in the direction given by ψ , the angle corresponding to the
rotation corresponding to V . Lastly, the rotation of the total
lattice, corresponding to W , is left unattended, as a rotation
of the full lattice should not directly influence the physics at
play, although we point out that it does describe the variations
of the rotation with respect to the hBN substrate.

IV. RESULTS

Figure 4(c) shows the effective twist angle θ∗(r), Fig. 4(d)
shows the local anisotropy κ (r), and Fig. 4(e) shows the
angle of major scaling ψ (r), all as a function of location for
open-device TBG. The maps show rather smooth variations
with an exception in the bottom right corner of the field of
view, where an apparent vertical feature appears. This feature
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is only barely visible in the topography itself, showcasing
the sensitivity of our method. The origin of this particular
vertical stripe remains unclear, and no such peculiarities were
observed in our other data (Appendix G).

The overall twist angle heterogeneity in the image in
Fig. 4(c), excluding border effects, is 0.033◦ (standard de-
viation) or 0.23◦ peak to peak. We find areas of hundreds
of nanometers with a standard deviation of the twist an-
gle of 0.02◦ and a peak-to-peak variation of 0.08◦, e.g.,
in the area marked by a red square in Fig. 4(c). A good
estimate of the accuracy of our method can be made by
applying the conventional Lawler-Fujita algorithm [32] and
using spatial lock-in to extract the residual displacement field
(Appendix E). We find residual twist angle variations more
than one order of magnitude smaller than the originally found
values, underlining the accuracy of our method. We further
note that this is achieved with a pixel density corresponding
to ∼5 pixels per moiré lattice constant, which makes imple-
mentation of the conventional heterostrain model challenging
(Appendix J).

Our result allows for a first comparison between open and
encapsulated devices. For the latter, we compare our results
with results from SOT [14]. SOT measures the superlattice
density ns(r), which scales directly with the size of the unit
cell. We note that SOT does not differentiate between het-
erogeneity of the chemical potential, strain, and twist angle,
which can all influence ns(r).

To make a comparison between SOT and our data, one
has to take into account the difference in the width of the
point spread function (PSF). As this width is around 30 nm
for SOT, we artificially broaden the PSF of our data to match
(Appendix I), which naturally leads to a reduction of both the
peak-to-peak spread and the standard deviation. In the full
field of view, including the bright vertical feature, we find
a peak-to-peak spread of 0.20◦ and a standard deviation of
0.036◦. These numbers are similar among different devices of
similar twist angle (Appendix K) and measured for areas of
several hundreds of nanometers across.

Interestingly, this result matches rather well with the result
from SOT on encapsulated devices, despite the lack of a
stabilizing top hBN slab in our devices. This implies that open
devices can rival the quality of encapsulated devices, at least
in terms of twist angle homogeneity.

Our results then raise the following question: Why have
open devices never been shown to superconduct or to show
spectral gaps in low-temperature tunneling experiments? As-
suming that the mechanical properties of the bilayer do not
change drastically as the angle of reconstruction is approached
(θ ≈ 1.0◦), our experiments suggest that the homogeneity of
the TBG itself cannot be the only reason. Instead, another rea-
son might be the absence of a second hBN layer encapsulating
the bilayer, despite hBN often being neglected in theoretical
studies due to its supposed weak interaction. Furthermore, the
second hBN layer creates a near-symmetric environment for
the bilayer. We speculate that the breaking of this symmetry
may be the basis for the lack of superconductivity in open
devices. However, more careful transport investigations of
open devices are necessary to confirm this hypothesis.

The local anisotropy parameter κ (r) discussed here can be
related to heterostrain, following the model of Kerelsky et al.

[22]. Here, it is assumed that one of the graphene sheets is
strained with a uniaxial strain ε(r), while the other one is
unaffected and only undergoes a rotation. To connect to our
measurements, we note that for small average twist angles, the
displacement field of the moiré lattice is related to relative dis-
placement of the constituting layers by the following formula:
(〈J〉 − I ) · umoiré(r) = u↓(r) − u↑(r) = u∼(r), where 〈J〉 is
the Jacobian corresponding to the average angle between the
layers and u∼(r) is the relative displacement field experienced
between the two sheets (Appendix B). The relative displace-
ment field can be decomposed in the same way as before,
where the angle corresponding to W now corresponds to the
deviation of the twist angle between the two sheets from the
average twist angle, and the local anisotropy κ (r) and ψ (r)
obtained from the resulting scaling matrix indicate the relative
strain between the layers. Furthermore, from the resulting
scaling matrix elements, we can calculate the magnitude of
the strain applied to the deformed sheet, ε(r) (Appendix B).
We show the resulting ε(r) in Fig. 4(f). On average, we find
that ε = 0.14% with a standard deviation of 0.09%.

It is interesting to compare the numbers for strain and
twist angle heterogeneity, and their respective influence on the
electronic structure of TBG. Calculations using a continuum
model have considered both strain and twist angle changes
in TBG samples close to the magic angle [34]. It was shown
that a heterostrain of ε ≈ 0.1% results in a splitting of the van
Hove singularities of approximately 5 meV. This is compa-
rable to variations in the twist angle of about 0.03◦, which
we obtain by interpolating the relation between twist angle
and van Hove splitting given in Ref. [35]. Furthermore, stress
can cause strong qualitative changes to the electronic structure
including new van Hove singularities for ε ≈ 0.5%. If we
compare these numbers with our measurements, we conclude
that there is a roughly equal effect of the observed strain and
twist angle inhomogeneity, suggesting that both have to be
taken into account when fabricating samples, as both effects
significantly alter the electronic structure compared with a
perfect lattice.

Before concluding, we want to address one potential chal-
lenge of the method introduced here: It is also sensitive to
piezo drift. Piezo drift occurs in STM experiments due to
thermal fluctuations that influence the piezo, due to piezo
relaxation after a change of field of view or due to the piezo
relaxation from the movement necessary to take the topogra-
phy. The former two effects change over time. The latter effect
depends on the speed with which the topography is measured.
To check the validity of this procedure, we have repeated
the above procedures for different topographies in the same
field of view, taken with different scan speeds at different
times. As we show in detail in Appendix F, these different
measurements yield very similar results, demonstrating that
the twist angle variations we measure are intrinsic and not a
consequence of piezoelectric drift.

V. CONCLUSION

In this paper, we have visualized and characterized struc-
tural heterogeneity in TBG, demonstrating peak-to-peak
variations in the twist angle of roughly 0.08◦ over areas
of hundreds of nanometers. While our samples exhibit an
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average twist angle higher than the magic angle, we expect
the issues to be similar as long as the twist angle is above
the reconstruction that occurs for twist angles �1◦. This in-
dicates that the best open-device TBG could, purely based on
homogeneity of the twist angle, superconduct and that lack
of experimental evidence thereof suggests a critical role of
the missing hBN top layer. The spatial lock-in algorithm we
introduced is in principle applicable to a variety of different
moiré materials and, additionally, may also be usable in a
different context, e.g., in determining the topological prop-
erties of band structures through quasiparticle interference
(QPI) measurements [36]. We anticipate that this algorithm
can be applied to other microscopy probes as well, including
AFM and LEEM. Lastly, by presenting our results in the
way we did, we hope to pave the way for further studies,
especially for correlating electronic and spatial properties by
combining with theoretical models such as the ones presented
in Refs. [34,37,38].
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APPENDIX A: SPATIAL LOCK-IN ALGORITHM

1. Deformations of a lattice

We perform lock-in measurements on images that clearly
display a periodic lattice. In STM, this implies that we can use
any topography of sufficient quality that displays the crystal
lattice. The idea is to use a lock-in measurement in order to
find a transformation of coordinates between the measured,
“distorted” image and its pristine, undeformed equivalent (in
this paper, a perfect triangular lattice). Defining the measured
and pristine images as Tm(r) and Tr (r′), respectively, both with
measurement coordinates r = (x, y) ∈ R2 and lattice coordi-
nates r′ = (x′, y′) ∈ R2, the following relation holds:

Tm(r) = Tr[r + u(r)] = Tr[f (r)] = Tr (r′) = Tm[f−1(r′)],

where the transformation from measurement coordinates to
lattice coordinates is given by

f (r) = r + u(r) = r′. (A1)

Here, u(r) is called the displacement field, connecting the
measurement coordinates to the lattice coordinates, as is well
established in continuum mechanics. For convenience, we

also define the inverse displacement

u′(r′) := f−1(r′) − r′ = r − r′.

Note that by substitution, we have the following relation be-
tween forward and inverse displacement:

u′(r′) = f−1[f (r)] − [r + u(r)] = −u(r).

With this, we can express the pristine image at lattice coordi-
nates in terms of the measured image:

Tr (r′) = Tm[f−1(r′)] = Tm[r′ + u′(r′)]

= Tm[r′ − u(r)]

= Tm{r′ − u[r′ − u(r)]}
≈ Tm{r′ − [u(r′) − (∇u)(r′ − r)]}
= Tm{r′ − [u(r′) − (∇u)u(r)]}
= Tm{r′ − u(r′) − (∇u)u′(r′)}.

Therefore, if we can determine u(r), and thereby u′(r′),
we can reconstruct the pristine image. This is the idea of
the Lawler-Fujita reconstruction algorithm [32]. In their orig-
inal paper, Lawler, Fujita, and co-workers [32] use u′(r′) =
−u(r′), which is a good approximation if u varies slowly.

2. Properties of the deformation

The displacement field u(r), as defined above, fully de-
scribes the deformation of the lattice but does not directly
provide insight into the relevant properties. To that end, we
first define the Jacobian of the transformation f ,

J ≡ ∇f = 1 + ∇u,

where ∇u is the Jacobian of the displacement field. In contin-
uum mechanics terminology, ∇u is the deformation gradient
tensor, and in canonical terms it is defined as follows:

∇u =
( dux

dx
dux
dy

duy

dx
duy

dy

)
.

In order to fully characterize the deformation of the lattice,
we decompose J into its polar form,

J = W P = WV �DV, (A2)

where W is the rotation matrix corresponding to the rotation of
the full lattice and the matrix P describes the local anisotropy
and scaling. P is further decomposed into the rotation matrix
V indicating the orientation of the axis of anisotropy (i.e., the
axis of largest scaling, with the axis of smallest scaling per-
pendicular to it) and the diagonal scaling matrix D = (d1 0

0 d2
),

where by convention and implementation d1 � d2 holds for
any position r.

The geometric mean of these directional scaling factors is
equal to the square root of the determinant of D and therefore
of J:

√
d1d2 = √

det(J ). As this corresponds to the local scal-
ing of the wavelength of the moiré lattice, we can use this to
quantify the local twist angle:

λ(r) =
√

d1d2
4π√
3|q j |

, (A3)
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where |q j | is the length of the chosen reference vectors. This
local wavelength is then converted to a local twist angle using
the well-known expression

θ (r) = 2 arcsin

(
2λ(r)

a

)
,

where a = 2.46 Å is the lattice constant of graphene and θ (r)
is the local twist angle.

A quantification of the local anisotropy is given by the ratio
κ = d1/d2, and the angle between the anisotropy axis and the
x axis is finally calculated from V : ψ = arctan (Vxy

Vxx
).

In our practical implementation, the singular value de-
composition (SVD) is used to obtain the decomposition in
Eq. (A2) for each point in the image, and MATLAB’s ATAN2
is used to find the right quadrant of the angles from the signs
of Vxx and Vxy.

3. Determination of the displacement field u(r)

In order to determine u(r) for a certain image, we per-
form a lock-in measurement. To clarify, we can represent any
(nearly) periodic image as

Tm(r) = T0

∑
j

eiq j ·[r+u(r)] = T0

∑
j

ei(q j ·r+φ j ), (A4)

where φ j = q j · u(r) is the position-dependent phase of the
lattice. The summation runs over the reciprocal lattice vectors
q j ( j ∈ {1, 2, 3} for a hexagonal lattice), T0 is the constant
indicating the amplitude of the modulation, and u(r) is again
the displacement field.

The phase is measured using standard lock-in procedure:
The existing image is mixed with a reference image contain-
ing a specific plane wave. If we choose the periodicity of this
reference wave sufficiently close to that of the lattice in the
image itself, we can then low-pass filter the mixed image and
end up with a phase map for a specific wave. For clarification,

cos(q j · r + φ j )e
−iq j ·r = eiφ j

2
(1 + e−2i(q j ·r+φ j ) ) �→ 1

2
eiφ j ,

where the cosine in the first term denotes the (real-valued)
measured image, whereas the complex exponential denotes
the reference wave and �→ denotes low-pass filtering in order
to get rid of the last term between brackets, corresponding to
a rotating wave approximation. Alternatively, for a Gaussian
low-pass filter, this corresponds to a real-space Gaussian inte-
gration window of the lock-in.

By taking the (pointwise) angle of the complex, filtered
product image, we end up with the phase map. In particular,
this phase map contains information about the displacements
of each pixel in the measured image Tm(r) with respect to
the pristine reference lattice Tr (r) along the wave vector q j

used for the lock-in procedure. This procedure is repeated
for at least one additional reciprocal lattice vector. The two
phase maps are then used to find the displacement field u(r).
From the definition of u(r) [Eq. (A1)], the following holds:
r′ = r + u(r). Multiplying this equation by the reciprocal
lattice vectors, we get a system of equations expressing the
projection of the distortion onto the reciprocal lattice vectors:

q j · r′ = q j · r + φ j, j ∈ 1, 2, 3.

Selecting only j ∈ {1, 2}, we have, in matrix notation,

Q =
(−q1−

−q2−
)

=
(

q1x q1y

q2x q2y

)

such that we can write, for φ = (φ1
φ2

),

Qr′ = Qr + φ. (A5)

Multiplying by Q−1, we find r′ = r + Q−1φ, and therefore
u(r) = Q−1φ(r).

4. Additional notes on choice of reference vectors

a. Selecting two reference vectors

To obtain u(r) as described above, we only used the phase
of the lock-in signal of two reference vectors. For a triangular
or hexagonal lattice, a priori three possible choices of which
two reference vectors to use are possible from the three linear
independent reference vectors as fitted to the fast Fourier
transform (FFT) of the image. To select which two vectors
to use for the reconstruction of u(r), we either selected the
ones with the largest average lock-in amplitude or inspected
the phase-unwrapped images and selected the ones where no
remaining phase slips occurred.

b. Using more than two reference vectors

In principle, information is lost when only selecting the
phase of the lock-in signal of two reference vectors to obtain
u(r). Although not used in this paper, in situations with low
signal-to-noise ratio, it could be beneficial to use all the in-
formation. Equation (A5) also holds for more than two phases
and reference vectors. Although Q is not a square matrix in
this case, a solution can be obtained for each pixel using
linear least-squares minimization of the following equivalent
equation:

Qu(r) = φ(r),

where additionally the amplitudes of the lock-in signals can
be used as weights to the minimization problem.

c. Isotropy

Enforcing the reference lattice to be isotropic can be done
either in advance, by enforcing isotropic reference wave vec-
tors (as applied in this paper), or, alternatively, after the initial
lock-in step, by adding an additional linear phase 	φ j =
�q j · r to the obtained phase, where �q j is the difference
between the reference wave vector used and the isotropic wave
vector.

The advantage of the latter method would be a slightly
improved signal-to-noise ratio, as the smoothing window can
be centered around the actual average wave vector occurring
in the image instead of the ideal, equal-length, 60◦ rotated
ones.

APPENDIX B: RELATION OF MOIRÉ LATTICE
TO RELATIVE DISPLACEMENT

For a nonhomogeneous bilayer, the system can be fully de-
scribed by two displacement fields u↑(r) and u↓(r) of the top
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and bottom layer, respectively, compared with an undistorted
system.

Tm(r) = Tm↑(r) ⊕ Tm↓(r)

= Tr↑[r + u↑(r)] ⊕ Tr↓[r + u↓(r)]

= Tr↑(r↑) ⊕ Tr↓(r↓),

where Tr (r) denote the atomic lattices, r↓ and r↑ denote the
lattice coordinates of both lattices, and ⊕ denotes the (as of
now, unspecified) operation of the combination of two lattices
into one image.

We can express the deformation of one atomic lattice with
respect to the coordinates of the other:

Tr↓(r↓) = Tr↓[r + u↓(r)] = Tr↓[f↓(r)]

= Tr↓{f↓[f−1
↑ (r↑)]} = Tr↓{f↓[r↑ + u′

↑(r↑)]}
= Tr↓{r↑ + u′

↑(r↑) + u↓[r↑ + u′
↑(r↑)]}.

Assert u↓(r) = J↓r + v↓(r), i.e., a global rotation and/or
scaling plus local variations. Note that here, J↓ is a constant
2 × 2 matrix corresponding to a mean ∇u and therefore cor-
responding to J − I in terms of the J defined in Appendix A.
In this case, we have

Tr↓(r↓) = Tr↓{(I + J↓)[r↑ + u′
↑(r↑)] + v↓[r↑ + u′

↑(r↑)]}.
For two real lattice plane waves Tr (r′) = cos(q j · r′) and

taking the pointwise product for the ⊕ operator, we have

Tm(r↑) = cos(q jr↑) cos (q j{(I + J↓)

× [r↑ + u′
↑(r↑)] + v↓[r↑ + u′

↑(r↑)]})

= cos(q jr↑) cos[q jr↑ + δ(r)]

= 1
2 cos[2q jr↑ + δ(r)] + 1

2 cos[−δ(r)]

= 1
2 cos[2q jr↑ + δ(r)] + 1

2 cos[+δ(r)].

For the modulation δ(r) the following holds:

δ(r) = q j{J↓[r↑ + u′
↑(r↑)] + u′

↑(r↑) + v↓[r↑ + u′
↑(r↑)]}

= q jJ↓(r↑ + u′
↑(r↑) + J−1

↓ {u′
↑(r↑) + v↓[r↑ + u′

↑(r↑)]}).

Substituting r↑ = r + u↑(r) and u′
↑(r↑) = −u↑(r),

δ(r) = q jJ↓[r − J−1
↓ u↑(r) + J−1

↓ v↓(r)]

= q jJ↓[r + umoiré(r)],

with umoiré(r) = J−1
↓ [v↓(r) − u↑(r)] = J−1

↓ u∼(r), where
u∼(r) denotes the relative displacement between the upper
layer and the rotated lower layer. Substituting back in Tm,

Tm(r) =1

2
cos

(
2q j

{
r + u↑(r) + 1

2
[J↓r − u↑(r) + v↓(r)]

})

+ 1

2
cos{J�

↓ q j[r + umoiré(r)]},

Tm(r) =1

2
cos

(
2q j

{
r + 1

2
[J↓r + u↑(r) + v↓(r)]

})

+ 1

2
cos{J�

↓ q j[r + umoiré(r)]}.

FIG. 5. Phase maps of the data shown in Fig. 4 [and Fig. 8(a)].
(a)–(c) correspond to the phase maps of the Bragg peak labeled q1,
q2, and q3, respectively [see Fig. 4(b)]. Because the map correspond-
ing to q2 shows some phase singularities, we use φ1 and φ2 for
determining the displacement field.

Note that for a 2D lattice consisting of the sum of two or
more cosines, each with its own q j , this construction can be
made for each q j separately, nevertheless resulting in a single,
joint umoiré(r) (as expected).

For a small twist angle θ between two equal lattices, e.g.,
magic angle twisted bilayer graphene, we have

J↓ = R(θ ) − I =
(

cos θ − 1 − sin θ

sin θ cos θ − 1

)

≈
⎛
⎝− 1

2θ2 + θ4

24 −θ + θ3

6

θ − θ3

6 − 1
2θ2 + θ4

24

⎞
⎠

= θ

⎛
⎝− 1

2θ + θ3

24 −(
1 − θ2

6

)
1 − θ2

6 − 1
2θ + θ3

24

⎞
⎠

= θR

(
π

2
+ θ

2

)
+ θ3

( θ
48 − 1

3

+ 1
3

θ
48

)
.

Therefore, in this case the topography Tm(r) consists of the
sum of a cosine with approximately twice the atomic fre-
quency and a cosine with approximately θ times the atomic
frequency: the moiré frequency. As expected, this lattice is
rotated by π

2 plus half the angle of the original rotation, i.e.,
angled halfway in between both atomic lattices.

1. Relation to uniaxial strain models

Graphene has a Poisson ratio δ = 0.17, so if a strain ε is
applied in one direction, it shrinks in the perpendicular direc-
tion by δε. By applying the decomposition into θ (r), κ (r),
and ψ (r), as described in Appendix A 2, to the relative dis-
placement between the layers u∼(r) and assuming that the
relative strain is dominated by the strain of one layer, we can
calculate that strain ε(r). For uniaxial strain, we have, with
these assumptions in terms of the decomposition into relative
displacement,

κ (r) = d1

d2
= 1 + ε

1 − δε
,

and therefore we can express the strain of a single layer as
follows:

ε(r) = d1 − d2

d2 + δd1
,
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FIG. 6. Schematic overview of the devices studied in this paper.
The contact labeled GND can be used to bias or ground the bilayer.

which can then be related to other measurements and models
[22,34]. In Appendix J, we discuss the accuracy of these
models. Note that the measured quantity umoiré(r) is related to
the relative displacement by a multiplication of J−1. For small
twist angles, ‖J−1‖ ≈ 1

θ
(with θ in radians, i.e., for θ = 1.05◦

we have ‖J−1‖ ≈ 55), strongly amplifying effects of small
relative displacement.

APPENDIX C: PHASE UNWRAPPING
AND SINGULARITIES

In this paper, phase unwrapping of a periodic phase is
needed in two separate places: in the unwrapping of the lock-

in phase φ j (r) before reconstructing u(r), and to obtain a
single-valued anisotropy angle ψ (r). The phase is unwrapped
in both directions of the image. The order in which this is done
usually does not matter, provided there are no phase singular-
ities present in the image. We occasionally encountered some
phase singularities in one of the three phase maps (Fig. 5), but
we worked around this simply by using the other two phase
maps in order to find the displacement field.

In case this is not an option, for example, when applying
this technique to a square lattice, and/or when phase slips
are present in all phase maps, there are more sophisticated
algorithms for phase unwrapping available [31,39,40].

Some of these phase slips were present in the ψ (r) maps,
for example, the one displayed in Fig. 4(e). Here, we used
a MATLAB implementation of a least-squares-based phase un-
wrapping algorithm [39,41].

APPENDIX D: DEVICE OVERVIEW

A schematic of the devices studied in this paper is pre-
sented in Fig. 6. More information about the actual fabrication
process can be found in the main text.

APPENDIX E: ACCURACY OF THE ALGORITHM

As an additional consistency check, we used the Lawler-
Fujita algorithm to reconstruct the undistorted image [32] and
then applied the algorithm on the undistorted image in order
to extract the residual displacement field and compare it to
the previously extracted displacement field. Here, a perfectly
performing and consistent algorithm would extract a zero
residual displacement field. Therefore this gives an indication
of the error of the quantities extracted by the algorithm. Since

FIG. 7. (a) Lawler-Fujita corrected STM topography of Fig. 4(a) [and Fig. 8(a)]. (b) Extracted effective twist angle map of (a). (c) Extracted
residual local anisotropy map of (a). (d) Local anisotropy angle of (c). (e) Heterostrain map of (a). (f) Local moiré rotation of (a). This angle
corresponds to the angle in the W matrix [Eq. (A2)].
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FIG. 8. Spatial lock-in output for sequentially measured topographies in the same field of view. (f) was measured at 65 nm/s, whereas
(a)–(e) were measured with a scan speed of 54 nm/s. The setup condition was kept constant between measurements: V = 250 mV,
I = 20 pA.

we decompose the displacement field, for an almost zero
displacement field, we expect the effective twist angle map
to become more centered around the average twist angle (in
this case, 2.02◦). Furthermore, we expected that most of the
anisotropy is gone, i.e., κ → 1 and ε → 0.

We check this using the topography presented in Fig. 4
[and in Fig. 8(a)] and show the results in Fig. 7. Aside from
edge effects in the corner, both the residual anisotropy and the
residual variations in the twist angle are more than an order
of magnitude smaller than the originally obtained values, in-
dicating self-consistency of the algorithm.

APPENDIX F: VALIDITY CHECK WITH MORE DATA

In this paper, we claim that the contribution of piezo drift
to the output of our algorithm is negligible. To verify this, we
apply it to multiple topographies, all sequentially measured
on the same area. All of them are measured with a scan speed
of 54 nm/s, except the last one [Fig. 8(f)], which is measured
at 65 nm/s. Because piezo drift changes with time and scan
speed, comparing these data sets provides us with insight into
the degree to which the algorithm output is affected by this
effect.
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FIG. 9. (a) STM topography of a TBG device with an average
twist angle of 2.16◦ (setup conditions: V = 170 mV, I = 20 pA).
(b) Extracted effective twist angle map of (a). (c) Extracted local
anisotropy map of (a). (d) Local anisotropy angle of (c). (e) Het-
erostrain map of (a). (f) Local moiré rotation of (a). This angle
corresponds to the angle in the W matrix [Eq. (A2)].

The algorithm output for these measurements is displayed
in Fig. 8, where Fig. 8(a) corresponds to the data shown in
the main text. For completeness, we also show ξ (r), the angle
corresponding to the matrix W (see Appendix A 2).

Comparing these results from different scans, we observe
that almost all deformations are reproduced, in particu-
lar, the vertical linelike feature on the right and the two
minima in κ (r). The only features not reproduced are hor-
izontal “creases,” corresponding to line-to-line scan artifacts.
Additionally, no significant difference is observed for Fig. 8(f)
with the deviating scan speed compared with the rest. From
this, we conclude that most observed deformations are intrin-
sic to the sample.

APPENDIX G: HETEROGENEITY COMPARISON WITH
OTHER DEVICES AND DATA OVERVIEW

We measured two additional devices, with average twist
angles of 2.16◦ and 2.01◦. The output of the spatial lock-in al-
gorithm for these topographies is displayed in Figs. 9 and 10.
Calculating the standard deviation for the twist angle maps,
we find 0.03◦ and 0.06◦, respectively, which is consistent with
the result presented in the main text.

In total, topographies from three different devices are pre-
sented in this paper. We give a short overview of the data
measured per device and the number of pixels for each mea-
surement in Table I.

APPENDIX H: HOMOGENEITY QUANTIFICATION

In the main text, the average, standard deviation, and peak-
to-peak spread are given for a cropped area of the twist angle
map displayed in Fig. 4(c). We find an average twist angle of
2.02◦ with a standard deviation of 0.02◦ and a peak-to-peak
variation of 0.08◦. In Fig. 11, we show the topography, along

FIG. 10. (a) STM topography of a TBG device with an average
twist angle of 2.01◦ (setup conditions: V = 350 mV, I = 100 pA).
(b) Extracted effective twist angle map of (a). (c) Extracted local
anisotropy map of (a). (d) Local anisotropy angle of (c). (e) Het-
erostrain map of (a). (f) Local moiré rotation of (a). This angle
corresponds to the angle in the W matrix [Eq. (A2)].

with the extracted twist angle map and the crop over which
these values are calculated.

Another thing to consider here is some border effects that
appear in our data. Because our method is based on lock-in
techniques and the real-space resolution is determined by the
size of the filter we choose (see main text), we can expect
an area around the border of our images to be affected by arti-
facts. We consider the size of this border to be about two times
the radius of the filter used for the spatial lock-in procedure,
motivated by the Gaussian profile of the filter: Two times the
sigma of a Gaussian covers roughly 95% of the weight of the
window. In Fig. 12, we show the extracted twist angle map,
the local anisotropy, and the heterostrain map of Fig. 4(a),
accompanied by histograms of each map both including and
excluding the border.

APPENDIX I: ARTIFICIAL RESOLUTION LIMITATION
FOR COMPARISON WITH SOT

In order to compare our results with the result for twist
angle homogeneity obtained on an encapsulated device from
SQUID-on-tip (SOT) measurements [14], we have to consider

TABLE I. Overview of the measured data per device.

Device Fig. Pixels (n)

1 2(a) 321 × 321
2 2(c), 4, 7, 8(a), and 11 246 × 246
2 8(b)–8(f) 984 × 984
2a 10 256 × 256
3 9 236 × 236

aMeasured after moving a few micrometers from the initial field of
view.
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FIG. 11. (a) STM topography of a device with an average twist
angle of 2.02◦ [V = 250 mV, I = 20 pA, same data as in Fig. 4(a)].
(b) Effective twist angle map extracted from (a), by the algorithm
discussed. The red square indicates the area over which the average
twist angle and standard deviation are calculated. (c) Effective twist
angle map corresponding to the area marked by the red square in (b).

the resolution of SOT (∼30 nm). To this end, we smear our
obtained twist angle map [Fig. 4(c)] with a Gaussian filter with
a width of σ = 15 nm, the result of which is shown in Fig. 13.
Then, we obtain a peak-to-peak value of 0.20◦ and a standard
deviation of 0.036◦.

APPENDIX J: ERROR ESTIMATION OF THE
HETEROSTRAIN MODEL

In previous STM work, the twist angle of twisted bilayer
graphene has been extracted with a heterostrain model [22].
This model relies heavily on accurately fitting a Gaussian to
the moiré lattice sites in order to extract their position in space
and, thereby, the relative distance between neighboring sites.

FIG. 12. (a) Effective twist angle map extracted from the data
shown in Fig. 4(a). (b) Local moiré anisotropy map κ (r) extracted
from the data shown in Fig. 4(a). (c) Heterostrain map extracted
from the data shown in Fig. 4(a). (d)–(f) Histograms of the maps
displayed above. The light blue histograms count the full data as
shown, whereas the dark blue histograms exclude a border of two
times the filter radius used in the lock-in procedure [pixels outside
of the dark blue border in (a)]. Finally, the red histograms count the
data inside the area marked by the red square in (a).

FIG. 13. (a) STM topography of a device with an average twist
angle of 2.02◦ [V = 250 mV, I = 20 pA, same data as in Fig. 4(a)].
(b) Effective twist angle map extracted from (a), by the algorithm
discussed. (c) Twist angle map of (b) after smearing with a Gaussian
filter with a sigma of 15 nm.

Here, a Gaussian is fitted to a representative example of the
moiré sites in our data, and we calculate the 95% confidence
interval. The result is shown in Fig. 14. We find a diameter of
∼1 nm for the 95% confidence interval.

APPENDIX K: TWIST ANGLE HOMOGENEITY
OVERVIEW

In this Appendix, we provide the extracted twist angle
homogeneity of each device presented in this paper (Table II).

APPENDIX L: DATA PROCESSING

Regarding data preprocessing and postprocessing, we
made the following manipulations:

(i) Topographies are obtained from the measured data by
subtracting a polynomial background up to eighth order. It
was verified that this did not significantly influence the ex-
tracted displacement fields.

(ii) The topography in Fig. 2(a) was additionally line sub-
tracted.

(iii) FFTs are calculated from the periodic part of the data,
after applying the periodic + smooth decomposition algo-
rithm [42].

(iv) The FFT in Fig. 4(b) uses interpolative shading.
(v) The FFT in Fig. 2(b) is furthermore smeared with a

Gaussian filter (with a width of σ = 0.5 pixels).

FIG. 14. (a) STM topography of a device with an average twist
angle of 2.02◦ [V = 250 mV, I = 20 pA, same data as in Fig. 4(a)].
(b) Zoom-in of (a). (c) Same as in (b), but plotted with interpolative
shading. The red marker indicates the position of the Gaussian fitted
to that moiré site, and the green cross represents the extent of the
95% confidence interval.
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TABLE II. Overview of the twist angle homogeneity extracted per device. Blue and red areas refer to the data inside the areas marked by
the blue and red squares in Fig. 12, respectively.

Description Average twist angle Peak-to-peak variation Standard deviation

Full field of view, Fig. 12 2.02◦ 0.29◦ 0.039◦

Blue area, Fig. 12 2.02◦ 0.23◦ 0.033◦

Red area, Fig. 12 2.02◦ 0.08◦ 0.015◦

Full field of view, Fig. 12, after correcting PSF 2.02◦ 0.20◦ 0.036◦

Full field of view, Fig. 9 (blue area equivalent) 2.16◦ 0.22◦ 0.029◦

Full field of view, Fig. 10 (blue area equivalent) 2.03◦ 0.14◦ 0.029◦
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