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ABSTRACT: Proteins often have both orthosteric and allosteric
binding sites. Endogenous ligands, such as hormones and
neurotransmitters, bind to the orthosteric site, while synthetic
ligands may bind to orthosteric or allosteric sites, which has
become a focal point in drug discovery. Usually, such allosteric
modulators bind to a protein noncompetitively with its
endogenous ligand or substrate. The growing interest in allosteric
modulators has resulted in a substantial increase of these entities
and their features such as binding data in chemical libraries and
databases. Although this data surge fuels research focused on
allosteric modulators, binding data is unfortunately not always
clearly indicated as being allosteric or orthosteric. Therefore, allosteric binding data is difficult to retrieve from databases that contain
a mixture of allosteric and orthosteric compounds. This decreases model performance when statistical methods, such as machine
learning models, are applied. In previous work we generated an allosteric data subset of ChEMBL release 14. In the current study an
improved text mining approach is used to retrieve the allosteric and orthosteric binding types from the literature in ChEMBL release
22. Moreover, convolutional deep neural networks were constructed to predict the binding types of compounds for class A G
protein-coupled receptors (GPCRs). Temporal split validation showed the model predictiveness with Matthews correlation
coefficient (MCC) = 0.54, sensitivity allosteric = 0.54, and sensitivity orthosteric = 0.94. Finally, this study shows that the inclusion
of accurate binding types increases binding predictions by including them as descriptor (MCC = 0.27 improved to MCC = 0.34;
validated for class A GPCRs, trained on all GPCRs). Although the focus of this study is mainly on class A GPCRs, binding types for
all protein classes in ChEMBL were obtained and explored. The data set is included as a supplement to this study, allowing the
reader to select the compounds and binding types of interest.

■ INTRODUCTION

Drugs bind to proteins to exert a biological effect, which can be
activation, deactivation, or blockage to prevent an endogenous
ligand from binding. The location on the protein where the
endogenous, or natural, ligand binds is called the orthosteric
binding site. All other binding sites are described as allosteric
binding sites.1 Allosteric binding of ligands (allosteric
modulation) has been reported and studied at many protein
classes, including membrane-bound G protein-coupled recep-
tors (GPCRs).1−3 Moreover, structural information is available
from the Protein DataBank,4 which shows the binding of
allosteric ligands to GPCRs at different sites (Figure 1).2,5 The
transmembrane (TM) domains of the orthosteric binding
pocket in GPCRs are highly conserved for most GPCR classes.
An exception is formed by class C GPCRs, for which the
orthosteric site lies in the extracellular Venus flytrap domain.
The most common allosteric binding site for class C GPCRs is
located close to or at the orthosteric site in the TM domain of
other (class A) GPCRs.6 Other GPCR allosteric binding sites
have been identified close to or in the intracellular domain and

between helices in the TM domain.2,3 The physicochemical
properties of these multiple binding sites can vary greatly,
enabling dissimilar ligands to bind the same protein via different
sites.
Although allosteric modulators are widely studied and

reported, allosterism of compounds is not yet annotated in the
public chemical database ChEMBL.7 Previous attempts have
been made to retrieve allosteric properties of compounds from
the original published article to fill this information gap in the
ChEMBL database.8,9 However, although allosteric and
orthosteric annotations were retrieved, the added value of this
information in binding predictions was not assessed. We
observed that allosteric compounds bind with a lower absolute
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affinity on average but with similar ligand efficiency, and we
hypothesized that the inclusion of this information would lead to
a better prediction of affinity.8

In the current study an updated text mining protocol is
presented that annotates orthosteric and allosteric compounds
more accurately. Moreover, the data set is additionally curated
for class AGPCRs, improving the data set’s quality for this target
type. The value of the allosteric annotation of compounds was
assessed by training pChEMBL prediction models for class A
GPCRs with and without binding type information. Further-
more, models were constructed that were able to predict
allosterism of class A GPCR compounds. The entire annotated
data set and the script for model training are freely available as a
supplement to this article. Additionally, the reader is able to

apply text mining on new documents to annotate the binding
type of compounds by using the text mining method and
keywords that are provided.

■ RESULTS

Construction of the Orthosteric/Allosteric Binding
Type Data Set Using Text Mining. Keyword-enabled text
mining was applied on documents retrieved from ChEMBL7 to
determine the binding type of the compounds (see Methods for
details). Only the compounds from the assays that were
annotated as “primary assay” were categorized as allosteric,
orthosteric, bitopic, or covalent. The primary assay was assigned
based on the highest number of compounds per assay of each
document. In contrast to previous work where an effort was
made to characterize allosteric compounds,8,9 the bitopic and
covalent classes were added to remove these compounds from
the allosteric and orthosteric classes. Upon manual assessment
of the text-mined orthosteric and allosteric compounds for class
A GPCRs, it was observed that one document contained a
primary assay with computationally derived activity values
instead of experimental binding activities.21 Therefore, com-
pounds from the secondary assay were selected for this
document. Furthermore, 46 histamine H4 compounds that
were categorized as allosteric were in fact orthosteric, which was
detected when checked manually. These compounds were
corrected accordingly. To expand the data set, additional
“undetermined” class A GPCR documents were manually
categorized, which resulted in a further addition of 306
orthosteric and 24 allosteric compounds. For the majority the
binding types were well-defined, especially for class A GPCRs, as
confirmed by manual random sample assessment and positive
model outcomes. The total binding type data set (for all text-
mined proteins) contained 201 721 data points (9 390 allosteric,
14 265 orthosteric, and 178 066 undetermined), of which
60 116 defined data points for class A GPCRs (1 442 allosteric,
9 914 orthosteric, and 48 760 undetermined).

Chemical Properties of Allosteric Modulators. The
differences between orthosteric and allosteric binders were
explored by evaluating the following properties: molecular
weight, A Log P, number of hydrogen bond donors and
acceptors, activity (pChEMBL), number of rotatable bonds, and
number of aromatic bonds. It was observed that the properties of
the allosteric modulators for all proteins in ChEMBL were
comparable to those of the orthosteric compounds (Table 1). In
general, the orthosteric compounds covered a wider range of all
properties: additional higher molecular weights, more diversity
in A Log P, and compounds with more hydrogen bond donors

Figure 1. Ligand binding sites observed in crystal structures of class A
GPCRs. Orthosteric ligands are shown in green, allosteric modulators
in orange. The following crystal structures are included (PDB):
4MBS,10 4MQT,10 4N6H,11 4NTJ,12 4PHU,13 5LWE,14 5NDZ,15

5NLX,16 5T1A,2 5TZR,17 5TZY,17 5X7D,18 6C1Q,19 and 6C1R.20

Table 1. Physicochemical Properties of Orthosteric and Allosteric Compounds in ChEMBLa

allosteric orthosteric

median MAD mean and standard deviation median MAD mean and standard deviation

pChEMBL 6.4 0.9 6.5 ± 1.2 7.1 1.0 7.1 ± 1.4
molecular weight 383 61 404 ± 135 434 93 541 ± 474
A Log P 3.8 1.0 3.8 ± 2.0 3.8 1.3 3.1 ± 3.9
num. H donors 1 1 1 ± 2 1 1 4 ± 8
num. H acceptors 4 1 4 ± 2 5 2 6 ± 8
fraction rotatable bonds 0.17 0.05 0.18 ± 0.09 0.20 0.06 0.22 ± 0.12
fraction aromatic bonds 0.50 0.11 0.47 ± 0.17 0.43 0.12 0.42 ± 0.18

aThe fractions of rotatable bonds and aromatic bonds represent the number of bonds normalized to the total number of bonds per compound. An
independent (unpaired) t test gave p < 0.001 (two-tailed, α = 0.05) for the difference between the allosteric and orthosteric means of each property,
which indicates a significant difference. MAD = mean absolute deviation.
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Figure 2. Physicochemical properties of orthosteric and allosteric compounds in ChEMBL per protein family. Orange boxes indicate the area between
the 25th percentile and 50th percentile, gray indicates the area between the 50th percentile and 75th percentile, the border between orange and gray
indicates the median value or 50th percentile, and the whiskers indicate the minimum value up to the 25th percentile (bottom whiskers) and the 75th
percentile up to the maximum value (top whiskers). (A) pChEMBL value; (B) A Log P; (C) fraction of rotatable bonds; (D) fraction of aromatic
bonds.
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and acceptors. A slight difference was observed in the spread of
bioactivities of the two binding types. Although the orthosteric
compounds included a higher number of low pChEMBL values
(pChEMBL < 4), the bioactivity median was 0.7 log units higher
than that of allosteric compounds (pChEMBL 7.1 and 6.4,
respectively), in line with previous work.8 Moreover it was
observed that allosteric modulators contained a bigger fraction
of aromatic bonds (value normalized to the number of bonds)
compared to orthosteric compounds. This corresponds with
previous statements that allosteric modulators are more
aromatic.8,9 Please note that for the modeling work below, a
more diverse number of descriptors was used. Nonetheless, the
physicochemical properties of the allosteric modulators are
generally not very different from those of orthosteric
compounds.
When only a specific protein class was explored, class A

GPCRs in this case, it was observed that the properties of the
orthosteric and allosteric compounds were comparable to the
mean of compounds for all proteins in ChEMBL. However, we
noticed that the properties of individual protein classes could
vary significantly compared to the properties of the entire set.
Figure 2 (and Supporting Information Figure S1) displays the
variances between the ligand properties of different protein
classes. Although class A GPCRs contained the second-largest
number of mined allosteric modulators (1442 compounds) and
are therefore able to cover more chemical ground, it is
remarkable that most protein classes have less pronounced
properties: the minimum and maximum values for especially
molecular weight, A Log P, and hydrogen bond donors and
acceptors were less prominent than for the class A GPCRs. The
A Log P values of the orthosteric class B and C GPCR
compounds (A Log P 5.2 and A Log P −2.7, respectively) were
deviating a lot from the conclusion drawn from the entire set
where the median A Log Pwas 3.8. However, these observations
could be explained, as shown below.
It was observed that the biggest allosteric set was retrieved for

class C GPCRs (2513 compounds), of which the orthosteric site

is located in the extracellular Venus flytrap domain, in contrast to
other GPCR classes. The orthosteric compounds in this class
had a observably lowerA Log P than the allosteric modulators:A
Log Pmedian orthosteric −2.7 and allosteric 3.7. Given that the
orthosteric compounds for class C GPCRs bind to a structurally
different binding site than the allosteric modulators for this
receptor, this observation is not surprising. Furthermore, it is
known that glutamate receptors make up a large fraction of class
C GPCRs, for which the main natural ligand is glutamate, a
charged amino acid.22 Hence, orthosteric ligands should
resemble these characteristics, leading to the observed shift in
A Log P values (the median A Log P of orthosteric compounds
binding to glutamate receptors is −3.0). Moreover, it is
noteworthy to mention that the class C GPCR compounds
might bias the full data set as they represent 27% of the allosteric
modulators. A similar trend was observed for class B GPCRs,
with an A Log Pmedian for orthosteric compounds of 5.2. It was
found that the orthosteric compounds for class B GPCRs
consisted of solely peptides and that the allosteric class was only
represented by seven modulators, which were also peptides.
Therefore, class B GPCRs alone will not be a good case for
modeling allosterism.
Class A GPCRs, on the other hand, contained a sufficient

number of orthosteric and allosteric compounds (9914
orthosteric and 1442 allosteric) and a well-balanced portion of
small molecules and peptides: orthosteric 5428 small molecules,
4395 peptides, and 91 undefined; and allosteric 851 small
molecules and 591 peptides (as classified by ChEMBL).23 It
should be noted that the results in this section are based on text-
mined binding types. Therefore, caution is advised when
comparing and drawing conclusions from the differences
observed between orthosteric and allosteric compounds and
also between protein classes. Nonetheless, an effort was made to
curate the binding types for class A GPCRs with higher accuracy
to support the findings in the current study.

Chemical Structures of Class A GPCR Allosteric
Modulators. The chemical structures of compounds for the

Figure 3. Clustered scaffolds of orthosteric and allosteric compounds for class A GPCRs. Bemis−Murcko scaffolds are depicted with the root scaffold
indicated in bold.
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class A GPCRs were explored based on their scaffold trees. The
scaffolds were clustered based on two tree levels: the root
(smallest scaffold) and the Bemis−Murcko framework24

(biggest scaffold). Clustering of the class A GPCR set resulted
in 313 unique root scaffolds and 4362 Bemis−Murcko scaffolds.
The allosteric modulators covered 19 root scaffolds and 564
Bemis−Murcko scaffolds. The orthosteric compounds con-
tained significantly more unique scaffolds: 229 root and 3770
Bemis−Murcko scaffolds. Furthermore, it was observed that
some clusters contained both orthosteric and allosteric
compounds: 65 root and 28 Bemis−Murcko scaffold clusters
were shared. Notably, clusters formed based on the root scaffold
are not uniform with the clusters based on Bemis−Murcko
scaffolds. In contrast, it was observed that compounds that were
grouped into a shared cluster based on root scaffold were
clustered into either an orthosteric-specific or an allosteric-
specific cluster based on the Bemis−Murcko scaffold (Figure 3).
This can be explained since the Bemis−Murcko scaffolds are
bigger and thereforemore specific. The root scaffold, however, is
more general and therefore prone to cluster more diverse
compounds into the same cluster.
Predicting Allosteric Modulation. Convolutional deep

neural networks (DNNs, see Methods for network architecture)
were applied to observe if allosteric modulation of compounds
for class A GPCRs could be predicted. Compounds of the
binding type data set that were published before the year 2013
were used for model training. Compounds published in 2013 or
later were used for validation. This time-split, or temporal-split,
approach has advantages over random-split validation as it gives
a more accurate representation of the models’ predictive
performances.25 Furthermore, the training set was balanced to
correct for the unequal number of orthosteric and allosteric
compounds. This was performed using oversampling of the
minority class. The minority class was multiplied until it reached
an amount of compounds that was comparable to the majority
class.
The allosteric and orthosteric binding types were predicted by

a model trained on physicochemical properties, compound
fingerprints, and protein descriptors (for details see Methods).
The temporal-split validation showed that the proteochemo-
metric (PCM)26 DNNmodel, which was trained on compound
and protein class A GPCR data, could be used to differentiate
allosteric modulators from orthosteric compounds: Matthews
correlation coefficient (MCC) = 0.54, sensitivity = 0.54,
specificity = 0.94, positive predictive value (PPV) = 0.82, and
negative predictive value (NPV) = 0.80. Although sensitivity for
allosteric compounds is significantly lower than that for
orthosteric compounds (the specificity metric in this case),

the model’s predictive ability is sufficient to differentiate
between both binding types.

DNNs Outperform Random Forest in Binding Type
Predictions. The binding type DNNmodel was compared to a
random forest (RF)model that was trained and tested on exactly
the same data (class A GPCRs). The predictive performance of
the RF model for allosteric compounds was slightly worse than
that of the DNN model with a performance of MCC = 0.43,
sensitivity = 0.35, specificity = 0.97, PPV = 0.85, and NPV =
0.74. This result indicates that the DNN model was better than
the RF model in identification of the binding type of class A
GPCRs.

Enhancement of Bioactivity Predictions by the
Incorporation of Binding Types. It was studied if the text
mining derived binding types could contribute to the predictive
performance of pChEMBL prediction models. Instead of the
prediction of binding types, the DNN models were trained to
predict the activity of compounds (pChEMBL value ≥6.5 is
active), using the binding types as descriptor. The models were
validated using the same temporal split as mentioned previously
(split on the year 2013). The effect of the implementation of
binding types was analyzed by comparison of the performances
of the pChEMBL prediction model with and without binding
type. The models were trained on both orthosteric and allosteric
compounds but validated on allosteric modulators and
orthosteric compounds separately to remove any bias that
might result from the addition of the binding type descriptors.
Potential bias might be induced since the allosteric compounds
are on average less potent than the orthosteric compounds:
pChEMBL 6.6 ± 1.3 and 7.3 ± 1.3, respectively, for class A
GPCRs. The findings for bioactivity predictions for allosteric
modulators are reported in this section and Table 2, and the
results for orthosteric compounds are included in Supporting
Information File S2. It was observed that theMCC of the class A
GPCR pChEMBL prediction model with implemented binding
type descriptors was slightly higher than for the pChEMBL
prediction model that lacked these descriptors, MCC 0.27 and
0.30, respectively, for allosteric modulators. Remarkably the
overall performance (MCC) increased slightly for allosteric
bioactivity predictions, but sensitivity decreased (−0.05) when
adding binding types. Nevertheless, specificity and accuracy
both increased: specificity +0.12 and accuracy +0.03. The
receiver operating characteristic (ROC) remained comparable
(or slightly worse −0.01).
The addition of the binding types and their effect on

pChEMBL predictions for allosteric modulators were further
evaluated when the model was trained on the full GPCR data set
and on the data set containing all proteins in ChEMBL. The

Table 2. DNN Regression Model Performances for Prediction of Bioactivities of Allosteric Modulators for Class A GPCRsa

training data set added descriptor MCC sensitivity specificity accuracy PPV NPV RMSE ROC

class A GPCRs − 0.27 0.81 0.44 0.61 0.55 0.74 1.07 0.73
binding type 0.30 0.74 0.56 0.64 0.58 0.72 1.15 0.72

predicted binding type 0.22 0.51 0.70 0.62 0.59 0.63 1.01 0.70
GPCRs − 0.27 0.78 0.48 0.62 0.56 0.73 1.01 0.74

binding type 0.34 0.78 0.55 0.65 0.59 0.75 1.09 0.73
predicted binding type 0.15 0.52 0.63 0.58 0.54 0.61 0.99 0.67

all proteins in ChEMBL − 0.35 0.74 0.61 0.67 0.61 0.74 1.03 0.74
binding type 0.37 0.74 0.62 0.68 0.62 0.74 0.98 0.75

predicted binding type 0.18 0.43 0.74 0.60 0.58 0.61 1.06 0.67
aMCC = Matthews correlation coefficient, PPV = positive predictive value, NPV = negative predictive value, RMSE = root-mean-square error, and
ROC = receiver operating characteristic.
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pChEMBL predictions for class A GPCRs increased when
binding types were included in the models trained on these
bigger data sets (Figure 4). All metrics improved or performed
equally upon the addition of binding types to these enlarged data
sets. The pChEMBL predictions for allosteric modulators of
class A GPCRs when trained on the full GPCR data set
improved the most with a MCC of 0.27 increasing to 0.34. The
best performing model for allosteric modulators for class A
GPCRs was the PCMmodel trained on all proteins with binding
types included (MCC 0.37).
Expansion of Binding Type Predictions into Bio-

activity Models. It was observed that the DNN models were
able to predict if compounds were binding in an allosteric or
orthosteric manner. Furthermore, the addition of binding type
descriptors into pChEMBL prediction models enhanced model
performance. Therefore, models were applied iteratively by first
predicting the binding types of compounds, subsequently
followed by implementation of these predictions into training
of a pChEMBL prediction model. The compounds used for
testing were retrieved from ChEMBL assays that were
categorized as “undetermined” by the text mining protocol.
The predicted binding types were added as a descriptor which
ranged from zero (“0”) to one (“1”), with 1 being allosteric and 0
being orthosteric. The scores for this descriptor were derived as
output from the binding type classification model and indicated
the probability of a compound belonging to the orthosteric class
(score <0.5) and allosteric class (score >0.5). The trained class A
GPCR pChEMBL prediction model (regression) was compared
to a pChEMBL prediction model that lacked these predicted
binding type descriptors. The performance was MCC 0.22,
sensitivity 0.51, specificity 0.70, accuracy 0.62, PPV 0.59, NPV
0.63, root-mean-square error 1.01 (RMSE), and ROC 0.70
(Table 2). The pChEMBL prediction model that included
predicted binding types overall performed worse than the
pChEMBL prediction model without the predicted binding
types, with the exception of increased specificity and PPV. This
may be a result of the implementation of “uncertain” values to
generate new predictions; an additional modeling error is
introduced into the pChEMBL prediction model that uses
predicted descriptors. Furthermore, it was observed that the
performances of the models that included predicted binding
types decreased when the training set was enlarged with all
GPCRs and all proteins in ChEMBL. This is in contrast with the

previous observation that model performance increased upon
training set enlargement. This indicates that the binding type
descriptor weighs heavily in the determination of the pChEMBL
value. Therefore, it is of importance that accurate experimentally
validated binding types are used in model training, as predicted
binding types are not sufficient.

■ DISCUSSION

Via our text mining protocol we were able to retrieve accurate
“orthosteric” and “allosteric” binding types. The addition of
these literature mined binding types in pChEMBL prediction
models increased model performance. However, an important
aspect is that the binding types should be reliable.
Implementation of predicted binding types as a descriptor,
with a potential error in prediction, did not improve model
performance. Although the binding type model did not enhance
the accuracy of pChEMBL predictions, the model could be
applied to indicate possible allosterism of compounds, as the
performance of the binding type model (MCC = 0.54) is
remarkably better than random (MCC = 0). In contrast to our
study, allosterism predicting models that are reported in the
literature are not specified to class A GPCRs or report a less
reliable validation method (random split instead of temporal
split).8,27 Therefore, the performance of these models cannot be
compared directly.
The physicochemical properties of allosteric modulators

generally match the properties of orthosteric compounds;
both are druglike.8 Nevertheless, the chemical features can be
distinctive between protein classes, which is reflected by the
differences in A Log P, fraction of rotatable bonds, and fraction
of aromatic bonds.9 For class A GPCRs, root and Bemis−
Murcko scaffolds were identified that specifically match
allosteric modulators or orthosteric compounds. Additionally,
scaffolds were found that were shared among allosteric and
orthosteric compounds.
Manual evaluation of the text mining results showed that

some documents were misclassified. This indicates that the text
mining derived binding types are not 100% accurate and
therefore might still contain some inaccuracies. However, the
majority of the binding types are well-defined, especially for class
A GPCRs, as confirmed by manual random sample assessment
and positive model outcomes. Furthermore, the addition of
specific keywords to filter for covalent and bitopic compounds

Figure 4. Performances of DNN regression models for the prediction of bioactivities of class A GPCR allosteric modulators with and without binding
type descriptors. MCC = Matthews correlation coefficient, PPV = positive predictive value, and NPV = negative predictive value.
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increases the accuracy of categorization of the allosteric and
orthosteric classes. Although addition of a bitopic class in text
mining for allosteric modulators has been reported before,8

implementation of a filter for covalent compounds is only
presented in this study. The effort that was made to text mine for
binding types has the advantage that multiple binding types can
be assembled and annotated. In contrast to the compounds
published in the Allosteric Database,28 which only lists allosteric
molecules, orthosteric compounds were also actively annotated
in this study and thus available as an additional subset.
The data set that resulted from text mining was not limited to

class A GPCRs but contained determined binding types for
multiple protein classes in ChEMBL including receptors,
enzymes, and solute carriers. Furthermore, some compounds
could not be divided into one of the assigned binding type
classes, resulting in “undetermined binding type” compounds.
These compounds were thus not picked up using the extensive
list of keywords. The expansion of the searched text from title
and abstract text to full paper text may decrease the number of
undetermined compounds. However, feasibility may be difficult
as not all papers are open access.
It was shown that the expansion of the training set using all

proteins increased pChEMBL predictions for class A GPCRs, a
finding that has been observed for PCM modeling previously.26

Moreover, implementation of the text mining derived binding
types increased model performance even further. Previous
research shows that the choice of descriptors can influence
model performance.29 Nevertheless, to the best of the authors’
knowledge, the use of binding types as additional descriptors in
bioactivity modeling has not yet been reported.

■ CONCLUSIONS

We successfully retrieved allosteric and orthosteric binding
types using text mining. Implementation of these binding types
into class A GPCR pChEMBL prediction models improved
model performance. Although we were able to predict the
binding type of compounds, implementation of these predicted
binding types into pChEMBL prediction models did not
enhance model performance. Since we did observe improve-
ment of model performance when accurate binding types were
included, we encourage the use of binding type descriptors in
computational models. Unfortunately, binding type information
on compounds is not always readily accessible, especially in the
public domain. This research therefore stresses the importance
of binding type integration in public databases.

■ METHODS

Text Mining and Compound Classification. Binding
types, orthosteric or allosteric, were assigned to the compounds
using text mining. Documents that contained both a title and an
abstract were retrieved from the ChEMBL database (version
22).23,30,31 The abstracts and titles were screened for keywords
to classify the corresponding document in one of the following
classes: orthosteric, allosteric, bitopic, and covalent. Documents
were classified using a three-layer approach. Remaining, or
unclassified, documents were termed “undetermined”. Every
layer of the classification process included a different set of
keywords (Supporting Information datasheet S3), with the most
accurate and general keywords in the first layer and decreased
accuracy of keywords in the following layer. The third layer
contained general orthosteric keywords that were not applied in
the first layer as they were generally only mentioned in

conjunction with allosteric keywords. The documents that
could not be classified within the first layer continued to the
second layer and, if applicable, to the third layer. Every
document that contained at least one bitopic or covalent
keyword was directly classified into the corresponding class.
Classification of orthosteric and allosteric documents was
determined by majority vote based on the number of
occurrences of keywords belonging to the orthosteric or
allosteric class. Compounds from the primary assay, the assay
containing the most bioactivities, of the orthosteric and
allosteric classified documents were retrieved from ChEMBL
and assigned to the same class as the corresponding document.
Additionally, class A GPCR compounds from the primary assays
of previously undetermined documents were placed in the
orthosteric class if published before 2000, as from this year on
the literature started more actively reporting allosteric binding
types. Therefore, we assumed that the study was performed for
orthosteric binders, when allosterism was not explicitly
mentioned in a paper in the years prior to 2000. The text
mining protocol to categorize documents is included as
Supporting Information file S4.

Data Set. The ChEMBL7 data derived through text mining
were filtered on confidence score 5 (multiple direct proteins), 7
(direct protein complex subunits), and 9 (direct single protein).
Additionally, values retrieved from PubChem32 and compounds
without a defined or exact pChEMBL value (relation is “=”)
were discarded. Only pChEMBL values that were determined
using binding assays were kept. Mean pChEMBL values were
calculated for bioactivities of duplicate compounds tested on the
same target. All compounds were standardized using Pipeline
Pilot (version 16.2.0.58):33 the largest fragment was kept, and
stereochemistry and charges were standardized. The data set is
included as Supporting Information file S5.

Compound Descriptors. Compounds were encoded by
their physicochemical properties (Supporting Information file
S6). Additionally FCFP6 fingerprints34 were used to describe
the compounds’ structures. Moreover, the activity types (Ki, Kd,
EC50, IC50, and AC50) were added as binary descriptor, with bit
“1” if this activity type was used for measuring the activity value
of the compound. The nonbinary properties were scaled to
values between 0 and 1, where 1 is equal to the highest value
obtained for that particular property from ChEMBL. The
compound descriptors for all compounds in the data set are
included in Supporting Information file S6.

Protein Descriptors. The protein sequences were trans-
formed into descriptors by dividing every sequence into sections
that contained five amino acids per section. From these sections
the mean values were calculated for the amino acids’
physicochemical properties: molecular weight, number of chiral
atoms, LogD, charge, number of hydrogen bonds and acceptors,
rigidity, and number of aromatic bonds. By using the
physicochemical properties per five amino acids, the protein
descriptors become alignment independent (as we have shown
previously) allowing us to expand the application area to diverse
multiprotein family data sets.29 Moreover, in this approach
descriptor calculation and model training times will be faster
compared to the incorporation of physicochemical properties
per single amino acid. Additionally, protein taxonomy was taken
into account by including classification levels L1, L2, L3, L4, L5,
and L6 from ChEMBL.23 These levels were translated into
binary values and added as a protein descriptor.

Model Training. The RF models were trained using the
ensemble package from the python Scikit-Learn module.35 The
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amount of trees was set to 500 with random split using seed
12345. Convolutional DNN models were trained to predict
binding type and pChEMBL values. Themultitask DNNmodels
contained two pyramidal shared hidden layers with 2000 and
100 units, respectively. The DNN implementation was built
using Python 2.7 on Keras with Theano36 backend. The
following settings were applied: test-size = 0.01 (10%), layer
dropout = 0.1, learning rate = 0.0001, momentum = 0.8,
patience = 25 s, maximum epochs = 2000, and maximum batch
size = 128. The training set was balanced for the binding type
classes (orthosteric and allosteric) using oversampling of the
underrepresented class. Here, the underrepresented class was
multiplied until it reached a corresponding number of entries
compared to the opposite class. The number of multiplications
was determined by the number of compounds in the majority
class divided by the number of compounds in the minority class
and rounded off to a whole number. The script to run the RF and
DNN models and the configuration file are included as
Supporting Information file S7.
Model Validation.Models were validated with a temporal-

split approach. The training set consisted of all data from before
the year 2013. The test set comprised all data from the
publication year 2013 and above. The test set encompassed
approximately 15% of the whole class A GPCR data set. The
performance of both classification (binding type models) and
regression models (pChEMBL prediction models) was
evaluated using the metrics MCC, sensitivity, specificity,
accuracy, PPV, and NPV.
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Davies, M.; Krüger, F. A.; Light, Y.; Mak, L.; McGlinchey, S.; Nowotka,
M.; Papadatos, G.; Santos, R.; Overington, J. P. The ChEMBL
Bioactivity Database: An Update. Nucleic Acids Res. 2014, 42, D1083−
90.
(24) Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs. 1.
Molecular Frameworks. J. Med. Chem. 1996, 39, 2887−2893.
(25) Sheridan, R. P. Time-Split Cross-Validation as a Method for
Estimating the Goodness of Prospective Prediction. J. Chem. Inf. Model.
2013, 53, 783−790.
(26) Burggraaff, L.; Oranje, P.; Gouka, R.; van der Pijl, P.; Geldof, M.;
van Vlijmen, H. W. T.; IJzerman, A. P.; van Westen, G. J. P.
Identification of Novel Small Molecule Inhibitors for Solute Carrier
SGLT1 Using Proteochemometric Modeling. J. Cheminf. 2019, 11, 15.
(27) Bian, Y.; Jing, Y.; Wang, L.; Ma, S.; Jun, J. J.; Xie, X.-Q. Prediction
of Orthosteric and Allosteric Regulations on Cannabinoid Receptors
Using Supervised Machine Learning Classifiers. Mol. Pharmaceutics
2019, 16, 2605−2615.
(28) Shen, Q.;Wang, G.; Li, S.; Liu, X.; Lu, S.; Chen, Z.; Song, K.; Yan,
J.; Geng, L.; Huang, Z.; Huang, W.; Chen, G.; Zhang, J. ASD v3.0:
Unraveling Allosteric Regulation with Structural Mechanisms and
Biological Networks. Nucleic Acids Res. 2016, 44, D527−D535.
(29) Lenselink, E. B.; ten Dijke, N.; Bongers, B.; Papadatos, G.; van
Vlijmen, H. W. T.; Kowalczyk, W.; IJzerman, A. P.; van Westen, G. J. P.
Beyond the Hype: Deep Neural Networks Outperform Established
Methods Using a ChEMBL Bioactivity Benchmark Set. J. Cheminf.
2017, 9, 45.
(30) Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A. P.; Chambers,
J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L. J.; Cibriań-Uhalte,
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