

Definition of new WAN
paradigms enabled by smart

measurements

Francesco Ciaccia

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX.
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis)
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized
by the titular of the intellectual property rights only for private uses placed in investigation and
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor
availability from a site foreign to the UPCommons service. Introducing its content in a window or
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the
thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Definition of new WAN
paradigms enabled by smart

measurements

Francesco Ciaccia

Directors:
Dr. René Serral-Gracià
Dr. Mario Nemirovsky

Computer Architecture Department
Universitat Politecnica de Catalunya

This dissertation is submitted for the degree of
Doctor of Philosophy

October 2020

A Maria e Salvatore, il nucleo della famiglia nucleare.

Acknowledgements

Writing this dissertation was not just the result of effort and research, but a long
journey during which I met a lot of incredible people: that is what I value the most
of this experience.

This thesis would have not been possible without the support given by my
supervisors, Dr. Mario Nemirovsky and Dr. René Serral-Gracià. Thank you for the
opportunity you gave me, the unconditional support, the knowledge, the mentoring.
My appreciation of you goes beyond the professional and academic side.

A special acknowledgement goes to Dr. Ivan Romero, as one of the main
advisors and contributors to this work. Our endless conversations, investigations, and
collaborations made this thesis possible. Thank you.

To all the people at Clevernet, for their feedback, cooperation, and friendship.
Especially I would like to thank: Dr. Rodolfo Milito for his mentoring; Dr. Oriol
Arcas Abella for his precious feedback and help in development; Dr. Diego Montero
for his great efforts and methodic contributions; Genís Riera Pérez for his continuous
support to my research and close friendship. And to everybody else in the office who
made my day-to-day lighter, funnier, better (with the risk of forgetting somebody):
Roberto Barreda, Arnau Verdaguer, Lluis Castillo, Fernando Stecconi, Francesco
Carrella, David Rodríguez, Judit Gonzáles, Tugberk Arkose. I learnt a lot from each
one of you; working at Clevernet has been one of the best experiences of my life.

I want to give a special thank to the people that have been very close to me and
supported my work throughout all these years: to Alberto, for being the best friend
somebody could ever aspire to have. You supported me mentally and physically in
many, many occasions; thank you for always being there. To Raquel, for having been
such an important part of my life during this journey. To Josue, for his great advise,

vi

friendship, and for sharing the joys and pains of pursuing a Ph.D. To my Bros: Doc,
Toyo, Teddy. Our friendship does not know distance limits.

Finally, my biggest thank goes to my parents, Maria and Salvatore. Everything I
am, I owe it to you. I love you.

vii

This work was supported by the Industrial PhD grant 2015DI023 of AGAUR
and Gencat and the project Efficient Smart Multi Connected Networks co-financed
by the Spanish Ministry of Ciencia Innovacioon y Universidades with reference
RTC-2017-6655-7, The Spanish Agenda Estatal de Investigacion and the European
Regional Development Fund (FEDER).

Abstract

Nowadays massive amounts of data are being moved over the Internet thanks to data-
hungry applications, Big Data, and multimedia content. Combined with a reduction
in cost and augmented reliability for high-speed broadband access, the whole Internet
infrastructure is facing new challenges especially when information crosses long
geographical distances. That is the case for Wide Area Networks (WANs), which are
typically traversed in enterprises with multi-site deployments. When a connection
is established between end-points that are geographically distant with high latency
and high bandwidth, data is flowing over a so-called Long Fat Network. Currently,
transport protocols in end-points are not able to exploit the resources of such links,
notably the most common Transmission Control Protocol (TCP) implementations
still stuffer from design flaws that limit their efficiency. More recent developments
still suffer from low fairness in resource sharing and lack of global visibility.

We identify SD-WAN as an SDN use-case that can enable new transport protocols
adoption, improving traffic behavior over WANs, without the need to modify the end-
points. In this Ph.D. thesis, we explore new approaches to network measurements
that will enable both end-points and SD-WAN edge routers, to gain visibility over
the end-to-end network status. Such additional visibility promotes the development
of smarter control mechanisms for network traffic, improving resource utilization.

The preliminary study carried on comprises TCP behavior over WANs and
existing methodologies to control its traffic patterns and enforce rate throttling. We
also identify a specific use case that poses challenges for WAN scenarios: the Split
TCP connections in a Performance Enhancing Proxy (PEP).

New control mechanisms to improve resource utilization and fairness are defined
in this project. Specifically, we propose a new approach called Receive Window
Modulation (RWM) that allows edge-routers to control the sending rate of a TCP

x

connection by modifying the window advertised by the receiver. We prove that such
a controller can improve TCP efficiency and fairness by leveraging local information
and additional contextual information obtained from network measurements. It also
provides a lossless throttling mechanism, allowing for policy enforcement without
hindering TCP throughput. We validate RWM in a real experimental scenario,
showing improvements of up to 70% in TCP throughput when coupled with loss-
based congestion controls. Bufferbloat is also mitigated, reducing the end-to-end
TCP latency measured almost three-fold in some scenarios.

Another contribution of this research project includes a new method to estimate
network available bandwidth from TCP passive probings based on the statistical
analysis of the Inter-Packet arrival time (SABES). The methodology is based on the
packet dispersion model and takes advantage of state-of-the-art machine learning
techniques to improve its accuracy, including Deep Neural Networks and Kernel
Density Estimation. We validate the model in both simulations and real-world
experiments, obtaining a median of the mean absolute error distribution of less than
10% of the network capacity.

We also study network capacity estimation and bottleneck detection with an
innovative active probing approach called HIRE. We propose a new packet dispersion
model that takes into account the packet pairs delay, allowing for precise end-to-end
capacity estimation. HIRE also introduces the concept of Hidden packets Red-shift
Effect, which consists of injecting TTL expiring packets in between probing pairs at
a specific rate. This technique allows locating the narrow link position along the path
and even estimating the capacity of some of the other links located before the narrow
link. We validate the model in simulations obtaining an estimation error of less than
6% in all scenarios, even when reducing the probing traffic considerably.

All these contributions constitute the building blocks of a Stateful Edge Router
Architecture, SERA. Such architecture is presented in the final part of the dissertation,
preparing the ground for future developments.

Table of contents

List of figures xv

List of tables xix

Glossary xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Contributions . 3

1.3.1 Preliminary Work . 3
1.3.2 TCP Control . 4
1.3.3 Smart Measurements for Wide Area Networks 5
1.3.4 Network Control . 5

1.4 Methodology . 6
1.5 Thesis Structure . 6

2 TCP over Wide Area Networks 9
2.1 TCP Control and Self Induced Congestion 10

2.1.1 Loss Based Congestion Controls 11
2.1.2 BBR: Congestion based congestion control 14

2.2 The Split TCP problem in WANs 15
2.2.1 TCP buffer and windows behavior in Split TCP 16

2.3 Conclusions . 19

xii Table of contents

3 Traffic Control in Linux 21
3.1 TCP memory management in the Linux network stack 22
3.2 Traffic Control . 24
3.3 Active Queue Management . 27
3.4 Token Bucket Filter . 29

3.4.1 System tick and high resolution timers 30
3.4.2 TBF evaluation as a pacing shaper 31
3.4.3 TBF limitations . 34

3.5 Conclusions . 35

4 Receive Window Modulation for TCP over WAN 37
4.1 Architecture . 39

4.1.1 Use Cases . 41
4.2 Experiments . 42

4.2.1 Testbed . 42
4.2.2 Evaluation . 44

4.3 Related Work . 49
4.4 Discussion . 50

4.4.1 RWM Compliance with TCP 50
4.4.2 Path Symmetry . 51
4.4.3 Available Bandwidth Estimation 51
4.4.4 Distributed deployment of points of control 52

4.5 Conclusions . 52

5 Packet dispersion model and measurement 53
5.1 Packet dispersion . 54
5.2 Probe-gap curve . 56

5.2.1 Probe-gap Model - PGM 57
5.2.2 Probe-rate Model - PRM 57

5.3 Inter-packet time measurement challenges in Linux 58
5.4 Conclusions . 60

Table of contents xiii

6 Available Bandwidth Estimation 63
6.1 SABES Heuristic . 65

6.1.1 Capacity Estimation . 66
6.1.2 Available Bandwidth Estimation 67

6.2 Heuristic Evaluation . 70
6.2.1 Simulation environment 70
6.2.2 Heuristic simulation results 70

6.3 Related Work in AvBw estimation 72
6.4 Conclusions . 75

7 Deep Neural Networks for AvBw estimation 77
7.1 Neural Network design . 78
7.2 Evaluation over simulation dataset 80
7.3 Evaluation in real testbed . 81

7.3.1 Real testbed results . 82
7.3.2 Comparison with ASSOLO 82

7.4 Improving SABES-NN: a direct estimation approach 84
7.4.1 Time series analysis . 84
7.4.2 SABES-KDE . 85
7.4.3 SABES-KDE results evalution 87
7.4.4 SABES-KDE limitations and future work 88

7.5 Related Work in DNN and ML usage for AvBw estimation 89
7.6 Conclusions . 90

8 Narrow link estimation and location 91
8.1 Theoretical bases . 92

8.1.1 Smallest Link Capacity Set 92
8.1.2 Packet pair dispersion . 93
8.1.3 Packet pair dispersion-delay 94

8.2 Narrow link capacity determination 98
8.2.1 Capacity estimation evaluation 99

8.3 Hidden red-shift effect . 101
8.3.1 Narrow link location . 102

xiv Table of contents

8.3.2 SLCS capacity determination 103
8.4 Related Work . 104
8.5 Conclusions . 105

9 Towards a Stateful SD-WAN traffic controller 107
9.1 Stateful Edge Router Architecture 108
9.2 Takeaways and final remarks . 110

References 113

Appendix A TCP Internals 119
A.1 Flow Control . 119
A.2 Zero Windows and the Persist Timer 121
A.3 Slow Start . 122
A.4 Congestion Avoidance . 122
A.5 Fast Retransmit . 123
A.6 Fast Recovery . 123

List of figures

1.1 The research project areas covered and contributions. 3

2.1 Chapter contribution to the dissertation. 9
2.2 Schematic behavior comparison of Reno and CUBIC loss-based

congestion controls. 12
2.3 The connection RTT is heavily affected by the Reno congestion control. 13
2.4 BBR and CUBIC transferring the same file in the same environment. 14
2.5 Split TCP connections. 15
2.6 Full Split TCP connections behavior with a proxy close to a sending

server. 17
2.7 RTT evolution in the Split TCP scenario. 18

3.1 Chapter contribution to the dissertation. 21
3.2 TCP queues in the kernel are collections of socket buffer pointers. . 22
3.3 TCP receive buffer in Linux and its relationship with the advertised

receive window. 23
3.4 Simplified Linux networking stack up to the transport layer. 26
3.5 Simplified representation of the Token Bucket Filter. Source: [1]. . . 29
3.6 Testing environment for TBF evaluation. 32
3.7 File transfer with and without a TBF shaper. 34

4.1 Chapter contribution to the dissertation. 37
4.2 Receive Window Modulation example deploy scheme. 39

xvi List of figures

4.3 Network topology and configuration for the experiments (RWM only
in the client-side router). 43

4.4 Flow completion time for one (4.4a) and then four (4.4b) downloads
starting simultaneously with or without the controller for different
values of RTT. 45

4.5 Throughput of four concurrent transfers. In 4.5a a legacy TCP
CUBIC scenario. In 4.5b the same experimental environment is
being controlled by RWM. 46

4.6 Maximum flow completion time of each set of four concurrent down-
loads with or without the controller, for different values of RTT. . . 47

4.7 Tail drops caused in the intermediate router queue for one (4.7a) and
then four (4.7b) concurrent downloads with or without the controller
for different values of RTT. 48

5.1 Chapter contribution to the dissertation. 53
5.2 Packet dispersion. Source: [45]. 55
5.3 Packet dispersion distributions. Source: [16] 56
5.4 Representation of the probe gap curve. The C−λ point marks the

available bandwidth. 57
5.5 GRO/GSO/TSO mechanisms maximize network throughput. 58
5.6 Inter-packet rate measurements in NFV for a 1Gbps link. 60

6.1 Chapter contribution to the dissertation. 63
6.2 The Inter-Packet Rate is the rate of the originally sent data packets

that is possible to infer from their TCP acknowledgments spacing. . 65
6.3 Capacity estimation following SABES heuristic. 67
6.4 The number of samples selected to build the statistic depends on the

last measured RTT. 68
6.5 Example of IPrate distribution that matches SABES criteria obtained

with the dynamic sliding window. 69
6.6 Simulated topology with one single 100 Mbps bottleneck and hop-

persistent cross-traffic flowing in the same direction of the main TCP
data flow. 70

List of figures xvii

6.7 Heuristic application to a single TCP flow, single bottleneck scenario.
The mean absolute error of B is 7.4Mbps. 71

6.8 Mean absolute error results of the estimations applying SABES in a
simulated environment with 100Mbps bottleneck for different values
of cross-traffic link utilization and latency. 72

7.1 Chapter contribution to the dissertation. 77
7.2 The DNN classification problem. 78
7.3 Deep Neural Network acting as histogram classifier for available

bandwidth estimation. 79
7.4 Estimation results for SABES and SABES-NN applied to our valida-

tion data-set. 80
7.5 Real testbed topology with one single 300Mbps bottleneck. 81
7.6 SABES-NN running in a real testbed. Estimations mean absolute

error is 8% of the bottleneck capacity. 82
7.7 SABES-NN compared to ASSOLO estimations. 83
7.8 Different type of moving window for time series analysis; the tum-

bling window reduces the resolution but improves scalability. Source:
[66]. 85

7.9 SABES-KDE function obtained during a single tumbling window. . 86
7.10 Validation set estimation error using the tumbling window and differ-

ent estimation strategies. 87

8.1 Chapter contribution to the dissertation. 91
8.2 Smallest Link Capacity Set - SLCS. Capacities are expressed in Mbps. 93
8.3 Packet pair delay dispersion representation under different network

conditions. Cross-traffic is one-hop persistent. 96
8.4 Red dashed line represents OWD2 =OWDdet +Dbu f f er. Blue dashed

line is OWD1 = OWDdet , not affected by additional delays. Vertical
black dashed line is the capacity of the bottleneck on the path, O1. . 97

8.5 Capacity determination with Kernel Density Estimation based on the
Bsel selection obtained with the proposed heuristic. 99

xviii List of figures

8.6 Schematic example of the Hidden Inter-packet Red-shift Effect
(HIRE) over a non-congested path. 101

8.7 HIRE applied with Nt = 20 and #Hp = 5. The narrow link position
is detected when the probing train dispersion behavior changes due
to hidden packets expiration. 103

8.8 Capacity determination of the O2 link of the SLCS. 104

9.1 The research project final proposal for a Stateful Edge Router Archi-
tecture. 107

9.2 Software Stateful Edge Router Architecture. 109

A.1 TCP State Machine in Linux. 120

List of tables

1.1 Mapping of document contributions to the thesis chapters. 7

3.1 Throughput achieved by TBF according to the R and B parameters set. 33

4.1 Quartiles and standard deviation for the 20 ms RTT for some combi-
nations of number of concurrent flows and intermediate buffer size
(in packets). Statistics for the scenarios controlled at the nominal
BDP value are shown. 47

7.1 All SABES flavours estimation error compared. 88

8.1 ppdd narrow link capacity estimation summary. Nominal Cn is
300Mbps. Cn, f is the estimation obtained with fixed cross-traffic
packet size of 1500B, while Cn,r with variable size cross-traffic packets.100

Glossary

Acronyms / Abbreviations

ANN Artificial Neural Network

AQM Active Queue Management

BDP Bandwidth-Delay Product

DNN Deep Neural Network

ECN Explicit Congestion Notification

HIRE Hidden Packets Red-shift Effect

IXP Internet Exchange Point

LFN Long Fat Network

ML Machine Learning

MPLS Multiprotocol Label Switching

MPTCP Multipath TCP

MTU Maximum Transmission Unit

NIC Network Interface Card

OS Operating System

PEP Performance Enhancing Proxy

xxii Glossary

QDISC Queueing Discipline

RED Random Early Detection

RWM Receive Window Modulation

RWND Receive Window

SABES Statistical Available Bandwidth Estimation

SD-WAN Software Defined Wide Area Network

SDN Software Defined Networking

SERA Stateful Edge Router Architecture

SLA Service Level Agreement

TBF Token Bucket Filter

TC Traffic Control

TCP Transmission Control Protocol

ToS Type of Service

VPN Virtual Private Network

WAN Wide Area Network

XDP eXpress Data-Path

Chapter 1

Introduction

Over the last decade, the interest in Software Defined Networking (SDN) has in-
creased both in academia and in industry. The main idea behind SDN is leveraging
software to increase network devices programmability, and ease deployment and
management. In the industry, the most relevant use-case for SDN that surged during
the years is represented by the Software Defined Wide Area Network, SD-WAN.
WANs are computer networks which are geographically extended. In enterprises,
WANs usually connect branch offices and head-quarters where centralized services,
databases, or private clouds are provided. Branch-to-branch topologies are also
common. Over such long distances, Internet performance is usually unstable, given
that the traffic could cross multiple administrative domains and exchange points;
in remote deployments, last mile connections could also be very poor in terms of
reliability, connectivity and throughput.

MPLS dedicated connections are the usual choice to provide bounded perfor-
mance in terms of latency and bandwidth for critical use-cases, according to specific
Service Level Agreements (SLA). However, their cost is usually prohibitive, es-
pecially when the bandwidth grows. MPLS connections are often encrypted and
allow for the establishment of Virtual Private Networks (VPNs). SD-WAN solutions
objective, between others, is to allow companies to migrate from expensive MPLS
connections, to the use of legacy Internet, while retaining most of the MPLS features
(namely ease of deployment, security and SLA compliance).

2 Introduction

1.1 Motivation

While most SD-WAN solutions in the market address the problems of enterprise
networks management and deployment over WAN effectively, providing bounded
performance guarantees over the legacy Internet still represents a challenge. One of
the main reasons is its higher congestion level than the one of a dedicated MPLS
link, that, combined with the typical high latency of WANs, translates in poor data
transfer throughput, often hindering mission critical applications response time. This
is particularly true when using the Transmission Control Protocol (TCP), because
of its design principles. While other transport protocol such as QUIC are becoming
more popular, TCP still moves most of the bytes transmitted over the Internet [50].

Legacy Internet access links do not provide guarantees in terms of availability
either, which could cause complete business disruptions and considerable economic
losses. To compensate such scenarios, SD-WAN solutions try to increase availability
by leveraging multiple Internet access links at the same time and seamlessly migrating
traffic in case of connectivity disruption. More sophisticated systems are also able to
detect brownouts, where connectivity is still provided but the Quality of Service in
terms of specific metrics is not met; however their visibility over the network status
is limited to conventional metrics such as jitter, latency and packet loss.

1.2 Objectives

The objective of this research project is to investigate innovative solutions to address
SD-WANs criticalities in terms of performance and network visibility. To achieve it,
we identify current flaws in the TCP transport protocols and propose a new scheme
to improve its performance behavior that can be deployed in an edge router (which
represent the typical topological deployment of an SD-WAN solution). Further-
more, new methodologies to estimate the network congestion level are proposed,
introducing state of the art machine learning algorithms in processing well known
passive measurements such as inter-packet time to extrapolate the end-to-end avail-
able bandwidth. Another technique based on active probing is exposed, establishing
a new paradigm in the interpretation of packet-pairs dispersion that allows for precise
narrow link capacity estimation and location on path. All this additional visibility

1.3 Contributions 3

6'�:$1�
,PSURYHPHQWV

7&3�LQ�:$1V 6PDUW�PHDVXUHPHQWV

5HFHLYH�:LQGRZ�
0RGXODWLRQ7UDIILF�&RQWURO $YDLODEOH�%DQGZLGWK�

(VWLPDWLRQ
&DSDFLW\�HVWLPDWLRQ�DQG�

ERWWOHQHFN�ORFDWLRQ

Fig. 1.1 The research project areas covered and contributions.

is finally exploited in combination with the previously described TCP controller to
achieve resource sharing and performance optimization over the traffic handled by
an SD-WAN device.

1.3 Contributions

Following the motivation and objectives described, the research project focused on
different areas in computer networks, with the final intention of designing innovative
SD-WAN devices that can leverage additional end-to-end visibility of the network to
improve network resources utilization. The project preliminary work included the
study of TCP in WAN scenarios and other related topics, and resulted in a granted
patent. One of the two core phases of this PhD explored new mechanisms in TCP
control that can be implemented in an edge router, resulting in a conference paper.
Smart measurements were the focus of the third phase of the project, providing
material for two conference papers and a journal. Finally, an architecture for an SD-
WAN device based on the rest of the work is proposed as the last part of the project,
which was included as part of a second patent filing. Documentation distributed
internally at the hosting company was also part of the project output and were used
to elaborate this dissertation. Figure 1.1 provides a visual overview of the areas
investigated in the project and their inter-dependencies.

1.3.1 Preliminary Work

The preliminary work carried out for the project resulted in two main documents:

4 Introduction

[PAT1] Nemirovsky, M., Serral-Gracià, R., Ciaccia, F., & Romero, I. (2017). Intelli-
gent adaptive transport layer to enhance performance using multiple channels.
U.S. Patent Application No. 15/626,130. Patent Granted. [52]

[INT1] Arcas Abella, O., Ciaccia, F., & Montero, D. (2018). TCP Insights Analysis
and Operative Recommendations from the Technology Group. Clevernet
Internal Documentation.

The topics in analysis include the exploration of standard TCP and Multi-Path
TCP (MPTCP) protocols behavior in WAN scenarios, and the study of new WAN
measurements to identify path diversity and exploit multi-connectivity. To fully
understand the advances in MPTCP development, an extensive study about TCP and
its behavior in Linux system was carried on internally at the company and resulted
in [INT1]. The MPTCP advances resulted in the development of a prototypal
MPTCP path-manager for the Linux Kernel. Contributions were provided to the
patent filing [PAT1], specifically in specifying innovative traceroute techniques. A
framework for flexible network assessment through active probing was implemented
and integrated in the company product in this first part of the project. An analysis
tool leveraging eBPF technology to collect detailed TCP statistics from the Linux
kernel was developed and will be open-sourced in the future.

1.3.2 TCP Control

A considerable part of the thesis focuses on TCP; this part of the research project
generated the following documents:

[INT2] Ciaccia, F. (2018). Linux Token Bucket Filter Implementation analysis. Clev-
ernet Internal Documentation.

[PAP1] Ciaccia, F., Arcas-Abella, O., Montero, D., Romero, I., Milito, R., Serral-
Gracia, R., & Nemirovsky, M. (2019, July). Improving TCP Performance and
Reducing Self-Induced Congestion with Receive Window Modulation. In 2019
28th International Conference on Computer Communication and Networks
(ICCCN) (pp. 1-6). IEEE. [11]

1.3 Contributions 5

From the preliminary work studies and needs of the company, surged the idea
to research established and new mechanisms to limit TCP self-induced congestion
to improve throughput and reduce bufferbloat. An analysis was carried on state
of the art mechanisms implemented in the Linux kernel to control flow burstiness
and resulted in [INT2] . A new approach to mitigate TCP self-induced congestion
in WANs was presented in [PAP1], representing one of the main contributions of
this research project. The Receive Window Modulation controller proposed also
represents an effective mechanism to throttle TCP flows without inducing packet
loss.

1.3.3 Smart Measurements for Wide Area Networks

The other main area that was covered during the project development was network
measurements, resulting in the following publications:

[PAP2] Ciaccia, F., Romero, I., Arcas-Abella, O., Montero, D., Serral-Gracià, R., &
Nemirovsky, M. (2020). SABES: Statistical Available Bandwidth EStimation
from passive TCP measurements. IFIP Networking 2020. [12]

[PAP3] Ciaccia, F., Romero, I., Serral-Gracià, R., & Nemirovsky, M. (2020). HIRE:
Hidden Inter-packet Red-shift Effect. 2020 IEEE Global Communications
Conference. [13]

[PAP4] Ciaccia, F., Romero, I., Serral-Gracia, R., & Nemirovsky, M. (2020). AI-
enhanced End-to-end Network Assessment. To be submitted to Q1 Journal.

A series of innovative approaches and techniques were presented in [PAP2],
[PAP3], and [PAP4], focusing on end-to-end available bandwidth assessment and
end-to-end capacity estimation. The information provided by such smart measure-
ments can be exploited effectively to improve the behavior of the controller developed
during the first part of the project.

1.3.4 Network Control

The mechanisms described in the smart measurements publications were included in
the patent:

6 Introduction

[PAT2] Romero, I., Ciaccia, F., Nemirovsky, M., & Serral-Gracià, R. (2020). Auto-
matic Communication Network Control. PCT/US Patent Application submit-
ted 05/2020. Patent Pending. [60]

The patent [PAT2] also prepared the ground describing coordination mechanisms
to achieve a better bandwidth management in a controlled network. An architecture
for such an integrated controller is presented in this thesis dissertation and will be
the subject of a future publication.

1.4 Methodology

The research methodology employed in the research project encompasses a wide
variety of tools. The TCP behavior study and the proposed mitigation scheme have a
system design approach, with a qualitative and quantitative evaluation achieved by
prototyping the controller and testing it in a real world scenario.

The available bandwidth estimation proposal focuses on a data driven approach,
with massive amount of different scenarios generated through simulation, which were
then used to train a neural network model whose generalization has been validated
both in simulations and real world scenarios.

The narrow link active-probing based tool called HIRE, is based on an analytical
model which is validated in simulations.

1.5 Thesis Structure

Table 1.1 shows how the research project contributions map to this dissertation
chapters.

The remainder of this manuscript is structured as follows.
Chapter 2 outlines the behavior of modern TCP implementations in WAN scenar-

ios, and exposes the main problem this work addresses.
Chapter 3 shows state-of-the-art solutions in the Linux networking stack that

mitigate some TCP flaws, and poses the background to better understand the solutions
proposed subsequently.

1.5 Thesis Structure 7

Chapter Title Contributions

Chapter 2 TCP over Wide Area Network [INT1]
Chapter 3 Traffic Control in Linux [INT2]
Chapter 4 Receive Window Modulation for TCP over WAN [PAP1], [PAT2]
Chapter 5 Packet-pair dispersion models and measurement [INT2]
Chapter 6 Available Bandwidth Estimation [PAP2], [PAT2]
Chapter 7 Deep Neural Networks for AvBw estimation [PAP2], [PAT2], [PAP4]
Chapter 8 Narrow link estimation and location [PAP3], [PAT2], [PAP4]
Chapter 9 Towards a Stateful SD-WAN traffic controller [PAT2]

Table 1.1 Mapping of document contributions to the thesis chapters.

Chapter 4 highlights a proposal to mitigate TCP self-induced congestion and
throttle TCP flows losslessly. The system exploits the protocol flow control mecha-
nisms, in a scheme called Receive Window Modulation (RWM).

Chapter 5 discusses network measurements of interest and the challenges posed
by their collection in modern virtualized environments, with emphasis on packet
dispersion.

Chapter 6 evaluates a proposal to estimate end-to-end available bandwidth from
inter-packet time, called SABES. It is based on the packet dispersion model and
implemented with a heuristic approach.

Chapter 7 extends the heuristic developed in 6 by means of Deep Neural Net-
works, improving the available bandwidth estimation obtained.

Chapter 8 delve deeper in the end-to-end capacity estimation problem describing
an approach based on active probing and exposing a new model for packet-pairs
dispersion analysis, called HIRE.

Chapter 9 summarize the main contributions of the project, and proposes an
architecture for a stateful software edge router based on the technology presented in
the rest of the dissertation. It also sets the discussion for future developments with
some final remarks.

Chapter 2

TCP over Wide Area Networks

The Internet is a packet-switched network of networks that interconnects the world.
Instead of a centralized management, it uses relatively simple algorithms in au-
tonomous nodes that have emergent properties as a whole. In contrast to other types
of networks, it does not intrinsically provide some guarantees to the users, such
as integrity and reliability of the communications. The TCP/IP suite of protocols
provides these guarantees, in particular error-free, ordered and reliable delivery of
the data. Specifically, TCP is a transport protocol that uses an Automatic Repeat
Request mechanisms to retransmit data that is corrupt or lost, and sliding windows
to control how much data to send to not saturate the receiver (Flow Control) or the
network (Congestion Control). A more comprehensive and detailed overview about
generic TCP concepts is provided in Appendix A.

In this chapter we will analyse how classic TCP implementations can cause self-
induced congestion in WAN scenarios, also causing a phenomenon called bufferbloat.

7&3�LQ�:$1V

Fig. 2.1 Chapter contribution to the dissertation.

10 TCP over Wide Area Networks

Opposed to loss based TCP congestion control algorithms, we also review more
modern approaches providing better network resources estimation. Finally we present
a specific scenario of interest called Split TCP, which presents challenges that we
address with the proposal presented in Chapter 4.

2.1 TCP Control and Self Induced Congestion

TCP is the transport protocol of choice for many of the distributed application being
developed. It provides guarantees in terms of data integrity and delivery; it controls
and modulates the sending rate according to estimated network conditions by means
of two mechanisms: i) congestion control and ii) flow control. The former is a sender
mechanism aimed at adjusting the sending rate, according to congestion events in the
network as estimated by the congestion control algorithm. The latter provides the
receiver with a mechanism to signal to the sender the amount of data it can receive.
In fact, TCP flow control relies on explicitly signaling the available receive window
in the protocol header. It was designed considering slow receivers, which were not
able to process all the received data because of constrained computational resources.
However, TCP flow control is rarely involved in a normal TCP connection in modern
Internet era, as processing power has increased dramatically since the protocol
definition, preventing the receiver to become the bottleneck. That is generally true,
except for cases where the maximum receive window advertised is smaller than the
path Bandwidth-Delay Product (BDP). This can happen even in modern operating
systems that are equipped with receive window scaling options and receive window
auto-scaling mechanisms such as Linux, Microsoft Windows, Android, and macOS.
In these cases, the maximum buffer allocated by the operating system binds the
maximum advertised TCP receive window, causing flows than could generate higher
throughput to be flow-controlled. However, this is easily overcome by a correct setup
of the maximum TCP allocated buffer, and is configurable in most operating systems.
To explain the phenomenology of TCP self-induced congestion we will assume that
the advertised TCP receive window is big enough to accommodate the flow BDP, so
that we are not limited by TCP flow control.

Opposed to that, while network infrastructure has evolved, TCP design choices in
congestion control can still represent a limitation in network resources exploitation.

2.1 TCP Control and Self Induced Congestion 11

Many congestion control proposals, e.g. CUBIC [28], act too aggressively, contribut-
ing to what we define as self-induced congestion: intermediate routers start dropping
packets causing consistent throughput reduction, especially in the presence of loss-
based congestion control algorithms. Then, when big buffers are present along the
path, bufferbloat manifests, reducing the responsiveness of latency-sensitive concur-
rent flows, such as those of interactive applications. In the following sections we will
analyze how loss-based congestion controls operate and affect the network behavior;
later we will present a recent development in congestion control that follows a better
control scheme based on the estimation of the path BDP, called BBR.

2.1.1 Loss Based Congestion Controls

Historically, TCP congestion control algorithms reacted to packet loss interpreting
it as a congestion signal. This caused a reduction in the sending rate to alleviate
pressure over the network infrastructure. The most common causes for packet losses
on the Internet are:

• congestion in intermediate router queues,

• routers Active Queueing Management (AQM) policies,

• targeted throughput throttling,

among others. In the beginning of TCP history, congestion in intermediate routers
could be attributed to slow links, high access concurrency, and small buffers in routers
queues. In these cases, packet loss represents an actual signal of network congestion,
especially when related to tail-drop in small router queue buffers.

TCP congestion control was designed to react to losses as shown in Figure
2.2. To exemplify the different congestion controls response in this figure, we
assume that a loss is always triggering a Retransmission Timeout (RTO), causing
the algorithm to restart from the Slow Start phase (SS). The consolidated Reno
congestion control reduces its congestion window by half when a packet loss is
detected, impacting the flow throughput considerably. Its congestion avoidance phase
is linear, causing a slow recovery of the actual optimal throughput. More modern
loss-based congestion controls such as CUBIC, have increased their efficiency by

12 TCP over Wide Area Networks

688 77 6IRS '9&-' 0SWW
� �
� �
� �
� �
� �� �� �� �

�� ����������� �
�� ����������� �
�� ���� �
�� ����������� �
�� ����������� �

��
�
�
�
� � � �

� ����������� �
�� ����������� �
�� ���� �
�� ����������� �
�� ����������� �
�� ���� �
�� ����������� �
�� ����������� �
�� ���� �
�� ����������� ��

��
� ����

�� ����������� �
�� ����������� �
�� ���� �
�� ����������� �
�� ����������� �

Fig. 2.2 Schematic behavior comparison of Reno and CUBIC loss-based congestion
controls.

reducing less the congestion window in case of a loss event and growing faster during
their congestion avoidance (following a cubic shape spline function). CUBIC is the
default congestion control in the Linux kernel.

Along the years, to cope with higher demand and higher capacity links, and thanks
to a reduced price in memory technology, routers manufacturers started increasing
the queues buffer size. However, congestion control algorithms did not change, still
probing the network for packet loss before reducing their sending rate. In the absence
of active queueing management in the routers, packets are tail-dropped once the
buffer has been filled. In presence of such bigger buffers, a huge quantity of packets
is queued before any actual loss takes place, while the sender is still increasing its
sending rate. The excess of packets buffered in the router queue causes other flows
crossing the same router, and the congesting flow itself, to perceive a considerable
increment in round-trip latency. This phenomenon called bufferbloat is disruptive
for most interactive and latency-sensible applications, while greatly reducing TCP
bulk data throughput because it usually triggers RTOs [25]. Bufferbloat is especially
perceived in WAN scenarios characterized by naturally big propagation delays. This
is because the TCP acknowledgements take more time to be received by the sender,
whose response to congestion is delayed. In Figure 2.3 an example of bufferbloat
is shown. A TCP bulk data transfer of a 50MB file using the Reno congestion
control is competing for a WAN link of 100Mbps of capacity and a nominal RTT

2.1 TCP Control and Self Induced Congestion 13

2 4 6 8 10 12
0

20

40

60

80
Th

ro
ug

hp
ut
 [M

bp
s]

TCP Reno

2 4 6 8 10 12
Time [s]

0.15

0.20

0.25

0.30

RT
T
[s
]

sRTT

Fig. 2.3 The connection RTT is heavily affected by the Reno congestion control.

of 140ms. Cross-traffic is occupying approximately the 20% of the link capacity.
The slow-start growth curve of Reno is aggressive and causes a massive packet loss
around second 4. The connection RTT grows up to 350ms, more than doubling the
nominal propagation delay. An RTO is triggered because the ACKs notifying the
missing packets are delayed considerably. As a consequence the congestion control
reduces its congestion window to zero, starting with the slow start process all over
again. The network available resources are not efficiently utilized, and the flow takes
13s to complete the file transfer. If the same file would have been transmitted with an
average throughput corresponding to the 80Mbps of available bandwidth, it would
have finished in approximately 5s, less than half the time.

The key takeaway is that loss-based congestion controls are not able to fully
and efficiently exploit WAN network resources as they react to packet loss and not
other type of signaling to detect network congestion. Ideally, an efficient congestion
control should adapt the sending rate to the path available BDP.

14 TCP over Wide Area Networks

Time [s]
0

100

200

300

400
Th

ro
ug

hp
ut
 [M

bp
s]

BBR CUBIC

0 10 20 30 40 50
Time [s]

0.050

0.075

0.100

0.125

0.150

RT
T
[s
]

BBR CUBIC

Fig. 2.4 BBR and CUBIC transferring the same file in the same environment.

2.1.2 BBR: Congestion based congestion control

Recently, Google has proposed a new hybrid scheme for congestion control called
BBR [9]: its objective is to characterize the current BDP of the connection. It
accomplishes so by estimating the minimum RTT and the end-to-end available
bandwidth, by periodically inducing queueing and then draining the buffer. BBR
operates on the Kleinrock’s optimal operating point [44] in which the available
bandwidth and the round trip time, RTT, are estimated in order to determine the
bandwidth-delay product (BDP). The endpoint probes periodically to estimate the
tight link available bandwidth by pacing packets at higher rates than the previous
estimation.

Figure 2.4 shows a comparison between CUBIC and BBR in terms if throughput.
The same 1GB file is transferred in two separate moments in time, first with CUBIC,
then with BBR. The testing environment RTT is approximately 50ms, with an
Internet access link nominal capacity of 700Mbps symmetric. BBR terminates the
file transfer in less than half the time than CUBIC, with a more consistent behavior.
Both congestion control algorithms have impact on the connection RTT. However,

2.2 The Split TCP problem in WANs 15

7&3�,QVLJKWV ���

QRUPDO�

&DVH������� ���0ESV� ����� ���PV���PV�
GLVWULEXWLRQ�
QRUPDO�

���0%� KXJH�

&DVH����'HFRXSOHG�7&3V�FRQQHFWLRQV�ZLWK�D�SUR[\�LQ�WKH�PLGGOH�

7KLV FDVH VWXGLHV WKH LPSOLFDWLRQV RYHU D 7&3 FRQQHFWLRQ ZKHQ D 3UR[\ LQWHUDFWV DV D� � � � � � � � � � � � � � �
PDQ�LQ�WKH�PLGGOH EHWZHHQ WKH &OLHQW DQG WKH 6HUYHU� 7KH RYHUDOO FRQQHFWLRQ LV EHWZHHQ WKH� � � � � � � � � � � � �
&OLHQW DQG WKH 6HUYHU IROORZLQJ D 7&3�OLNH WUDQVDFWLRQ� KRZHYHU JLYLQJ WKDW WKH SUR[\ DFWV� � � � � � � � � � � � � �
WUDQVSDUHQWO\� WZR GLIIHUHQW 7&3 FRQQHFWLRQV DUH HVWDEOLVKHG� (DFK 7&3 FRQQHFWLRQ LV� � � � � � � � � � �
VXEMHFWHG WR WKH QHWZRUN DQG HQGSRLQWV FRQGLWLRQV� DQG WKH MRE RI WKH 3UR[\ LV WR FRXSOH� � � � � � � � � � � � � � � �
WKHP IRU WKH SXUSRVHV RI WKLV VWXG\� 1R RWKHU WDVN� VXFK DV ILOWHULQJ� LV SHUIRUPHG LQ WKH� � � � � � � � � � � � � � � � �
3UR[\��

�

�

)LJXUH �� &DVH � FRQVLGHUV D 7&3�OLNH WUDQVDFWLRQ EHWZHHQ WKH &OLHQW DQG WKH 6HUYHU� � � � � � � � � � � � � �
ZLWK D 3UR[\ LQ WKH PLGGOH� ,W UHVXOWV LQ WZR 7&3 FRQQHFWLRQV� ZKHUH WKH SUR[\ KDV WR� � � � � � � � � � � � � � � � �
VWLWFK WKH GDWD EHWZHHQ WKHP� 7KH 3UR[\ DFWV RQ EHKDOI RI WKH &OLHQW ZKHQ IRUZDUGLQJ� � � � � � � � � � � � � � �
WKH UHTXHVW� 6LPLODUO\� WKH 3UR[\ IRUZDUGV GH GDWD VHQW IURP WKH 6HUYHU WRZDUG WKH� � � � � � � � � � � � � �
&OLHQW��7KLV�SURFHVV�LV�UHIHUUHG�DV�FRXSOLQJ�7&3��	�7&3���

:H DUH SDUWLFXODUO\ LQWHUHVWHG LQ WKH FDVH GHSLFWHG LQ)LJXUH �� ZKHUH WKHUH LV D :$1� � � � � � � � � � � � � � � �
EHWZHHQ�WKH�FOLHQW�DQG�WKH�SUR[\��ZKLOH�WKHUH�LV�D�/$1��EHWZHHQ�WKH�SUR[\�DQG�WKH�VHUYHU���

7KLV VHWXS EULQJV XS WKH LQWHUDFWLRQV EHWZHHQ WKH)ORZ &RQWURO DQG WKH &RQJHVWLRQ &RQWURO� � � � � � � � � � � � � �
PHFKDQLVPV� 7KH 3UR[\ EHKDYHV DV D VORZ UHFHLYHU� VWUXJJOLQJ WR FRXSOH WZR GLVVLPLODU 7&3� � � � � � � � � � � � � �
FRQQHFWLRQV� :KLOH)ORZ &RQWURO GRPLQDWHV WKH EHKDYLRU RI WKH �ORVVOHVV� YHU\ ORZ ODWHQF\�� � � � � � � � � � � � �
/$1 7&3 FRQQHFWLRQ� WKH &RQJHVWLRQ &RQWURO GHWHUPLQHV KRZ IDVW WKH GDWD LV SXVKHG LQWR� � � � � � � � � � � � � �
WKH�:$1�� �

)ORZ�&RQWURO�	�&RQJHVWLRQ�&RQWURO�
7KH�IROORZLQJ�WDEOH�GHVFULEHV�WKH�VFHQDULRV�GHILQHG�WR�VWXG\�WKH�7&3�FRXSOLQJ�FDVH��)RU�WKH�
/$1�DQG�:$1�HQYLURQPHQW��GLIIHUHQW�EXIIHUV�VHWWLQJV�DUH�FRQVLGHUHG��)XUWKHUPRUH��ZH�
FRQVLGHU�D�,QWHUQHW�OLNH�577�DQG�D�KLJK�ORVV�UDWH�SHUFHQWDJH�WR�WULJJHU�WKH�&RQJHVWLRQ�
&RQWURO�ZLWK�GLIIHUHQW�EXIIHUV�FDVHV��
�
� 7&3��>/$1@� 7&3��>:$1@�

1DPH� %:� %XIIHUV� %:� /RVV� 577� %'3� %XIIHUV�

&OHYHUQHW��,QF��

Fig. 2.5 Split TCP connections.

BBR impact is limited in time and corresponds with its bandwidth probing phase,
when the queues are filled on purpose. CUBIC on the other hand, is consistently
filling the queues with many peaks up to three times the nominal propagation delay
especially. While BBR addresses many of the problems of loss-based congestion
controls, studies have found a few flaws. BBR has been proven to build long-term
standing queues that can cause misleading BDP estimations [30]. This causes the
algorithm to often overestimate the BDP while not being fair to other competing
flows, especially loss-based congestion control TCP flows [46].

2.2 The Split TCP problem in WANs

A specific use case of interest for Clevernet are Performance Enhancing Proxies
(PEPs). PEPs are very useful in mitigating link related degradation as specified in
the RFC [5]. Consistent performance improvements over WANs can be achieved by
using the Split TCP connections mechanism. In a Split TCP connection scenario, a
proxy located close to a receiving or sending end-point, terminates the connection of
that end-point and opens another connection towards the final connection destination.
This allows the proxy to take control over the TCP connection and apply specific
optimization such as Window Scaling (when it is not enabled in the endpoint),
improved congestion control algorithms, ACK filtering and retransmission, etc. . . .
In the case of PEP being deployed in an WAN edge router (as an SD-WAN device
usually is), a connection impairment happens as shown in Figure 2.5.

We are particularly interested in the case depicted in Figure 2.5, where there is a
WAN between the client and the proxy, while there is a LAN between the proxy and
the server. This setup brings up the interactions between the Flow Control and the
Congestion Control mechanisms. The Proxy behaves as a slow receiver, struggling to
couple two dissimilar TCP connections. While Flow Control dominates the behavior

16 TCP over Wide Area Networks

of the (lossless, very low latency) LAN TCP connection, the Congestion Control
determines how fast the data is pushed into the WAN.

2.2.1 TCP buffer and windows behavior in Split TCP

To verify the Split TCP behavior we conducted a test in a controlled environment,
replicating the deployment of Figure 2.5. To achieve this, we used two Linux devices
acting as server and client of an HTTP file transfer, with a third Linux device acting
as a router in between the two. We emulate the desired environment by adding
a shaper in the proxy that enforces a rate limiting of 100Mbps with 120ms RTT
over the WAN link. The WAN RTT has a variability of ±20ms and the link has an
additional 0.2% of packet loss, exacerbating the characteristics of a bad WAN link,
causing a strong LAN-WAN impairment. The test consists of a download initiated
by the client that acts as receiver and provided by the server that acts as a sender. The
receive buffers and windows in the Linux systems are tuned so to accommodate the
maximum nominal BDP of the connection, so that unnecessary flow control over the
WAN will not limit the maximum throughput. The congestion control in use is the
Linux default, CUBIC.

We developed a tool that takes advantage of the eBPF technology [23] in the
Linux kernel to easily extract information from the operating system, specifically
about the network stack status and TCP connections. Figure 2.6 shows the behavior
in terms of TCP throughput, receive buffer utilization, TCP windows, and RTT as
perceived by the server, the proxy, and the client. The eBPF tool was deployed in all
three nodes participating in the connection. We will dig deeper into the Split TCP
system by looking at each metric in analysis first in the LAN connection and then in
the WAN:

• Throughput: from Figures 2.6a and 2.6d, we can see that throughput is loosely
coupled between the two connections. This is because the proxy tries to match
the amount of data it is receiving from the sender over the LAN with the speed
it is able to achieve over the WAN. The bad WAN conditions however, limit the
congestion control growth as shown in Figure 2.6f, thus the WAN throughput.

2.2 The Split TCP problem in WANs 17

0 5 10 15 20
Time [s]

2

4

6

8

10

12

Th
ro
ug

hp
ut
 [M

bp
s]

throughput

(a) Server throughput - LAN.

0 5 10 15 20
Time [s]

250000

500000

750000

1000000

1250000

1500000

1750000

Bu
ffe

rs
 si

ze
 [B

yt
es

]

rcv_buffer rcv_buffer_utilization

(b) Proxy buffer - LAN.

0 5 10 15 20
Time [s]

0

25000

50000

75000

100000

125000

150000

W
in
do

w
Si
ze
 [B

yt
es
]

proxy_rwnd
server_cwnd

zero_wnd_event

(c) LAN TCP Windows.

0 5 10 15 20
Time [s]

0

2

4

6

8

10

Th
ro
ug

hp
ut
 [M

bp
s]

throughput

(d) Proxy throughput - WAN.

0 5 10 15 20
Time [s]

0

500000

1000000

1500000

2000000

Bu
ffe

rs
 si

ze
 [B

yt
es

]
rcv_buffer rcv_buffer_utilization

(e) Client buffer - WAN.

0 5 10 15 20
Time [s]

0

200000

400000

600000

800000

1000000

W
in
do

w
Si
ze
 [B

yt
es
]

client_rwnd proxy_cwnd

(f) WAN TCP Windows.

Fig. 2.6 Full Split TCP connections behavior with a proxy close to a sending server.

• TCP Windows: as a consequence of the connection impairment, the proxy
tries to limit the amount of data the server is delivering over the very low-BDP
LAN connection. It does so by activating TCP flow control as shown in Figure
2.6c. The proxy receive window oscillates continuously, advertising a receive
window of zero bytes, every time it needs the server to stop sending data. The
congestion window of the server is not relevant in the LAN connection as
the dominant factor is the proxy flow control (red line) Fig. 2.6c. As already
anticipated instead, in the WAN connection between proxy and client, the
situation is completely different. The driving factor of the WAN rate is the
proxy congestion control (green line), which is always operating far below the
client advertised receive window threshold as shown in Figure 2.6f.

• Buffers: in the intent of containing the sender rate, the proxy uses flow control
at the TCP level. In the meanwhile it is coping with memory pressure on its
receive buffer over the LAN, storing as much data as it can while trying to
send it to the final client over the WAN slow link as shown in Figure 2.6b: the
green line represents the buffer utilization while the red line is the maximum

18 TCP over Wide Area Networks

0 5 10 15 20
Time [s]

0

10

20

30

40
RT

T
[m

s]
snd_sRTT

(a) RTT as seen by server - LAN.

0 5 10 15 20
Time [s]

0

25

50

75

100

125

150

RT
T
[m

s]

snd_sRTT

(b) RTT as seen by proxy - WAN.

Fig. 2.7 RTT evolution in the Split TCP scenario.

buffer size, which is auto-tuned by the operating system according to the
connection needs. On the other hand, the client receive buffer is barely used
as shown in Figure 2.6e, with some occasional spike related to the storage of
the out-of-order packets that are stored in case of losses over the WAN, while
waiting for retransmission from the proxy.

Finally, we show the RTT recorded for this TCP connection from the server over
the LAN (Figure 2.7a) and from the proxy over the WAN (Figure 2.7b). Is notable
the behavior shown in the LAN: the back-pressure operated from the proxy over the
sender, and the consequent buffering in the proxy, causes a clear case of bufferbloat.
The proxy is operating local TCP acknowledgements, so that the sender is not bound
to the WAN latency. The propagation delay of this LAN is less than 1ms, but the
TCP connection is perceiving up to 40ms RTT between the server and the proxy.

As seen, the split TCP case study presented poses some challenges:

• reducing the consistent memory pressure over the proxy due to the low LAN
BDP and slow processing of the proxy;

• mitigating the consequent bufferbloat over the LAN;

• improving the inconsistent performance over the WAN due to lossy links and
poor congestion control performance.

2.3 Conclusions 19

2.3 Conclusions

In this chapter we have introduced how modern TCP implementations behave in
WANs. We have seen that loss-based congestion controls, which use is still wide-
spread, have some limitations: they can be too aggressive causing bufferbloat and
massive tail-drops in routers, which hinder final connection throughput and latency;
on the other hand they can be very inefficient in exploiting the available bandwidth
in presence of losses, even tough no actual cross-traffic is present (e.g. in case of
random losses such as over wireless). While new developments in congestion control
seem promising, their short-term wide deployment seems unlikely as they are still
affected by a few quirks and require end-points operating systems adoption and
migration.

SD-WAN edge devices represent a solution to address most of these problems
without the need to modify the end-points, while providing consistent optimizations in
traffic engineering and management, for example by using a Performance Enhancing
Proxy (PEP). We studied a specific use case for PEPs over WANs, that presented us
with different issues. Between them, reducing bufferbloat over low-BDP scenarios in
presence of a slow consumer (such as the proxy forwarding over the WAN).

With the objective of addressing such challenges in mind, we investigated already
existing mechanisms that could help us, including Active Queueing Management,
policing, and throttling techniques as exposed in Chapter 3, before realizing the need
to develop a more comprehensive system as exposed in the rest of the dissertation.

Chapter 3

Traffic Control in Linux

The Linux operating system has evolved over the years, at each iteration supporting
new features with its networking stack. A Linux-based system is able to cope
with almost any networking protocol and task, from switching and routing, up to
application level deep packet inspection. It provides a layered system that allows
any developer or network administrator to take as much control as needed over any
networking-related task. As shown in Figure 3.1, in this chapter we will focus on the
traffic control system of the Linux kernel, with special attention on how it interacts
with the TCP stack and how it can be used to enforce bandwidth throttling and
mitigate bufferbloat. This will provide the needed context to understand the proposal
of Chapter 4.

7&3�LQ�:$1V

7UDIILF�&RQWURO

Fig. 3.1 Chapter contribution to the dissertation.

22 Traffic Control in Linux

7&3�,QVLJKWV ��

7KH ODVW YDOXH RQ WKH VHFRQG OLQH �PHP ����� LV WKH QXPEHU RI SDJHV DOORFDWHG WR 7&3� ,Q� � � � � � � � � � � � � � � � � �
WKLV FDVH ZH FDQ VHH WKDW ���� LV ZD\ EHORZ �������� VR WKHUH
V QR ZD\ ZH FDQ SRVVLEO\ EH� � � � � � � � � � � � � � � � � � �
UXQQLQJ�RXW�RI�7&3�PHPRU\��

3HU�6RFNHW�0HPRU\�$OORFDWLRQ�DQG�%XIIHULQJ�

7KH 7&3 VHQG DQG UHFHLYH ZLQGRZV DUH GLUHFWO\ UHODWHG WR WKH DYDLODEOH PHPRU\ EXIIHU� +HUH� � � � � � � � � � � � � � �
ZH ZLOO EULHIO\ GHVFULEH KRZ WKH EXIIHUV FDQ EH GHILQHG� KRZ WKH\ DUH XVHG DQG KRZ WKH\� � � � � � � � � � � � � � � � �
GHWHUPLQH�WKH�ZLQGRZ�VL]H��

�

7&3 6RFNHW DQG LWV VHQG� UHFHLYH DQG RXW�RI�RUGHU TXHXHV RI 6RFNHW %XIIHUV� 6RFNHW� � � � � � � � � � � � �
%XIIHUV DUH SDFNHWV DXJPHQWHG ZLWK PHWDGDWD� 2QFH DOORFDWHG� /LQX[WULHV WR� � � � � � � � � � �
PLQLPL]H FRSLHV DQG GDWD PRYHPHQWV� DQG XVXDOO\ WKH\ UHPDLQ LQ WKH VDPH PHPRU\� � � � � � � � � � � � �
ORFDWLRQ��2QO\�SRLQWHUV�WR�6RFNHW�%XIIHUV�DUH�WUDQVIHUUHG�EHWZHHQ�TXHXHV��

,W LV LPSRUWDQW WR XQGHUVWDQG WKDW LQ /LQX[SDFNHWV DUH DOORFDWHG DV 6RFNHW %XIIHUV �6.%��� � � � � � � � � � � � � � �
7KHVH 6.%V DUH QRW PRYHG RU FRSLHG� H[FHSW IRU VRPH FDVHV OLNH GHIUDJPHQWDWLRQ RU� � � � � � � � � � � � � �
PHPRU\ RSWLPL]DWLRQ� DQG SRLQWHUV WR WKHP DUH SXVKHG DQG SRSSHG IURP LQWHUIDFH RU VRFNHW� � � � � � � � � � � � � �
TXHXHV�GHQRWLQJ�WKHLU�RZQHUVKLS��

&OHYHUQHW��,QF��

Fig. 3.2 TCP queues in the kernel are collections of socket buffer pointers.

3.1 TCP memory management in the Linux network stack

The memory used by the TCP stack has two important aspects. First, how much of
this finite resource is used, and what to do when it becomes scarce. Second, how the
memory buffers are related to the protocol’s windows, and how their size affect the
connection.

For instance, a TCP connection without enough memory will under-perform in
a network with big latency. On the other hand, a connection with huge windows
may bloat the buffers of the Internet and become too aggressive and unstable, even
suffering from unnecessary losses.

The TCP connections have system-wide and per-socket limits. If any of them are
reached, or will be soon, the kernel may consider that there is memory pressure and
might start performing optimizations, which can consume CPU time and affect the
connection throughput. In severe cases, to alleviate memory pressure, packets may
be dropped.

In Linux, packets are allocated as Socket Buffers (SKB). Socket Buffers are
packets augmented with metadata. SKBs are not moved or copied, except for some
cases like de-fragmentation or memory optimization, and pointers to them are pushed
and popped from interface or socket queues denoting their ownership. Figure 3.2
shows the main queues of a TCP socket in the Linux kernel: send, receive and
out-of-order queues. TCP queues in Linux are colletions of pointers to SKBs. Once
allocated, Linux tries to minimize copies and data movements of SKBs, and usually
they remain in the same memory location, while only pointers to SKBs are transferred

3.1 TCP memory management in the Linux network stack 23

7&3�,QVLJKWV ���

�

6LPSOLILHG GLDJUDP RI WKH QHWZRUNLQJ GDWD SDWK LQ WKH /LQX[NHUQHO� $SSOLFDWLRQ GDWD� � � � � � � � � � � � �
FRQVLVWV LQ SXUH E\WH VWUHDPV� 6RFNHW %XIIHUV �6.%� DUH SDFNHWL]HG EXIIHUV RI E\WHV� � � � � � � � � � � � �
ZLWK PHWDGDWD� DQG SRLQWHUV WR WKHP DUH SXVKHG WR DQG SRSSHG IURP 6RFNHW DQG� � � � � � � � � � � � � �
7UDIILF &RQWURO TXHXHV� 7KH QHWZRUN GULYHUV WUDQVODWH EHWZHHQ 6.% DQG IUDPHV� 7KH� � � � � � � � � � � �
/LQX[1$3, FDQ UHGXFH WKH QXPEHU RI LQWHUUXSWV JHQHUDWHG E\ WKH QHWZRUN FDUG E\� � � � � � � � � � � � � �
VZLWFKLQJ�WR�EXV\�SROOLQJ��

7KH WRWDO PHPRU\ XVHG E\ D 7&3 FRQQHFWLRQ LV LWV 6RFNHW VWUXFWXUH DQG DOO WKH 6.%V SRLQWHG� � � � � � � � � � � � � � � � �
LQ LWV TXHXHV� 7KH PD[LPXP PHPRU\ WKDW WKH 7&3 FRQQHFWLRQ FDQ XVH LV GHWHUPLQHG E\� � � � � � � � � � � � � � �
YDULRXV�V\VFWO�SDUDPHWHUV��DQG�PXVW�EH�VKDUHG�ZLWK�WKH�UHFHLYH�ZLQGRZ��

�

7KH 7&3 UHFHLYH EXIIHU LV VKDUHG EHWZHHQ WKH UHFHLYH DQG WKH RXW�RI�RUGHU TXHXHV RI� � � � � � � � � � � � � �
6RFNHW %XIIHUV DQG WKH UHFHLYH ZLQGRZ �UZQG�� 7KH PD[LPXP VL]H RI WKH UZQG LV� � � � � � � � � � � � � �

&OHYHUQHW��,QF��

Fig. 3.3 TCP receive buffer in Linux and its relationship with the advertised receive
window.

between queues. The total memory used by a TCP connection in Linux can consists
of its socket structure and all the SKBs pointed in its queues.

Particularly relevant in the context of this dissertation, is the Linux TCP receive
buffer, and how it is implemented and correlated with the TCP receive window
advertised in the protocol header. This is because we leverage TCP flow control in a
scheme called Receive Window Modulation (RWM) as exposed in Chapter 4. One of
the possible RWM implementations uses socket options to modify the TCP receive
window advertised on a flow according to the RWM criteria. Another implementation
foresees the per-packet modification of the advertised TCP window of a flow, in
which case we have to guarantee that the end-point buffers boundaries are respected
to avoid breaking TCP semantics and the endpoint memory management. A good
understanding of the receive window and buffer mechanisms in Linux is then needed.
Figure 3.3 shows a graphical representation of the Linux TCP receive buffer. The
TCP receive buffer is shared between the receive and the out-of-order queues of
SKBs and the receive window (rwnd). The maximum size of the rwnd is denoted by
the window clamp. The queues may grow and occupy part or all of the rwnd space,
which will force the receiver to announce a smaller advertised window (awnd) in the
packet header (window update).

24 Traffic Control in Linux

In Linux, and most modern operating systems, a Dynamic Right-Sizing mech-
anisms is implemented [22]. The idea of dynamic right-sizing is to automatically
resize the TCP receive buffer and consequently its advertised receive window, by
estimating the connection BDP, without the need to manually tune the TCP buffer
size. In this way, the flow control does not represent an unnecessary bottleneck in
case of high BDP networks such as Long Fat Networks (LFNs). LFNs are networks
characterized by high bandwidth capacity but also very high round trip time, which
translates in high Bandwidth Delay Product (BDP). Maximum boundaries set in the
kernel default configuration can still represent a limitation in such scenarios.

In the following sections, we will see how the Linux kernel interacts with SKBs
to enforce traffic control.

3.2 Traffic Control

The Linux Traffic Control system (TC) consists of a set of tools and queueing
systems by which packets are sent and received in a network device [7]. It allows to
manipulate packets, control their rate, enforce admission control of specific flows,
reorder, and schedule the transmission and reception of packets. The basic control
mechanism to achieve such features is the queue. Being packets serialized by design
in a stateless packet-switched network such as Internet, queues represent the basic
entity to store, delay, and re-organize packets. TC primary operational component
are Queueing Disciplines (qdisc).

TC defines six basic actions it can perform over traffic [7]:

• Shaping: packets can be delayed in a shaper to control their rate. This is the
most common action to be performed to enforce bandwidth throttling in output
queues. Shaping can be used to smooth bursty traffic (which is strictly related
to the concept of TCP self-induced congestion). The underlying mechanisms
of shaping are token and buckets.

• Scheduling: schedulers rearrange packets in a queue. The simplest scheduling
model is FIFO (First-In First-Out). More sophisticated scheduling discipline
try to address specific traffic engineering objectives. For example Stochastic

3.2 Traffic Control 25

Fair Queueing (SFQ) tries to prevent a single flow to starve other flows by
utilizing all the bandwidth resources.

• Classifying: classification is the mechanism by which packets are selected
possibly to be treated differently by being queued in different queues. Classes
can be defined through filters and are the base for complex shaping hierarchies
thanks to the Hierarchical Token Bucket (HTB) qdisc.

• Policing: policing consists in measure and limit traffic to a specific queue. Is
the basic mechanism to enforce admission control, which means allowing a
flow to be established or not (e.g. dropping a new connection establishment
because a specific user has reached her quota). Policing foresees packet drop
as possible policing action, but other actions are possible (e.g. packet mark-
ing). While policing can drop packets, it does not enforce specific bandwidth
throttling as in the case of the shaper as it does not delay packets.

• Dropping: a mechanism that allow packet drop, according to specific criteria
(e.g. dropping can derive from policing a specific class of traffic; packets are
also dropped when a shaper queue limit is reached).

• Marking: packets can be altered by means of the marking action. For example,
it is possible to apply a specific DSCP code in a packet IP header to be used by
routers on the path to enforce Differentiated Services (DiffServ).

A qdisc is basically a scheduler. Any TC queue needs an associated qdisc to
define how packets are handled. In TC terminology, any qdisc that delays packets
such as a shaper, is a non-work-conserving queuing mechanism. The most basic
qdisc is FIFO as already described. In Linux the default qdisc for any defined
interface is pfifo_fast, a slightly modified version of FIFO, that implements basic
traffic prioritization following the Type Of Service (ToS) field in the IP header.

Figure 3.4 shows a simplified version of the different levels of the networking
stack that a TCP packet goes through in the Linux kernel. Top-down we can see
that applications write or read streams of bytes from the TCP socket. Internally the
socket manages different queues as list of pointers to SKBs. At the IP level, routing
decisions are taken. Before the packets are actually passed or received from the NIC,

26 Traffic Control in Linux

7&3�,QVLJKWV ���

�

6LPSOLILHG GLDJUDP RI WKH QHWZRUNLQJ GDWD SDWK LQ WKH /LQX[NHUQHO� $SSOLFDWLRQ GDWD� � � � � � � � � � � � �
FRQVLVWV LQ SXUH E\WH VWUHDPV� 6RFNHW %XIIHUV �6.%� DUH SDFNHWL]HG EXIIHUV RI E\WHV� � � � � � � � � � � � �
ZLWK PHWDGDWD� DQG SRLQWHUV WR WKHP DUH SXVKHG WR DQG SRSSHG IURP 6RFNHW DQG� � � � � � � � � � � � � �
7UDIILF &RQWURO TXHXHV� 7KH QHWZRUN GULYHUV WUDQVODWH EHWZHHQ 6.% DQG IUDPHV� 7KH� � � � � � � � � � � �
/LQX[1$3, FDQ UHGXFH WKH QXPEHU RI LQWHUUXSWV JHQHUDWHG E\ WKH QHWZRUN FDUG E\� � � � � � � � � � � � � �
VZLWFKLQJ�WR�EXV\�SROOLQJ��

7KH WRWDO PHPRU\ XVHG E\ D 7&3 FRQQHFWLRQ LV LWV 6RFNHW VWUXFWXUH DQG DOO WKH 6.%V SRLQWHG� � � � � � � � � � � � � � � � �
LQ LWV TXHXHV� 7KH PD[LPXP PHPRU\ WKDW WKH 7&3 FRQQHFWLRQ FDQ XVH LV GHWHUPLQHG E\� � � � � � � � � � � � � � �
YDULRXV�V\VFWO�SDUDPHWHUV��DQG�PXVW�EH�VKDUHG�ZLWK�WKH�UHFHLYH�ZLQGRZ��

�

7KH 7&3 UHFHLYH EXIIHU LV VKDUHG EHWZHHQ WKH UHFHLYH DQG WKH RXW�RI�RUGHU TXHXHV RI� � � � � � � � � � � � � �
6RFNHW %XIIHUV DQG WKH UHFHLYH ZLQGRZ �UZQG�� 7KH PD[LPXP VL]H RI WKH UZQG LV� � � � � � � � � � � � � �

&OHYHUQHW��,QF��

Fig. 3.4 Simplified Linux networking stack up to the transport layer.

packets are queued in the TC qdisc, according to the defined policies. In case of
egress traffic, packets can be rate controlled by a shaper, classified, dropped, etc. . . .
Operations on ingress traffic are usually limited to policing/admission control, being
that we cannot control how packets are delivered from the network to the device.

At the TC control level, before the packets are actually delivered or received
to/from the NIC driver, we find two main mechanisms governing how the application
byte stream is split into packets: Generic Segmentation Offload (GSO), Generic Re-
ceive Offload (GRO), and TCP Segmentation Offload (TSO). A thorough explanation
of these mechanisms and the challenges they pose in per-packet measurements as is
exposed in Chapter 5.

In the following sections we will introduce some of the most important Active
Queue Management (AQM) schemes aimed at mitigating bufferbloat. Such schemes
are implemented as schedulers in the Linux TC system. In obtaining a better control
of the traffic to mitigate TCP self-induced congestion, and also to throttle traffic at an
arbitrary rate, we studied in detail how the TC shaping mechanism works, focusing
on the the token and buckets system it uses, specifically the Token Bucket Filter

3.3 Active Queue Management 27

(TBF). We will see TBF internals, how it can be used as pacing shaper, and which
are its limitations.

3.3 Active Queue Management

AQM schemes are used in routers to mitigate network congestion or to improve end-
to-end latency. They try to overcome the limitations of a typical tail-drop queuing
system, where packet are dropped once buffers are full. Tail-drop can cause TCP
global synchronization [64], a phenomena where different TCP loss-based congestion
control flows flowing through the same router, loose packets at the same when the
router buffer gets full causing a reduction in throughput. This reduction is followed
by another exponential increase in throughput from all the senders, causing the
buffer to fill again and drop packets causing a bad network resources utilization and
increased end-to-end latency.

The most relevant proposal in AQM, as well as the first, is Random Early
Detection (RED) [24]. RED is an AQM scheme that drops packets probabilistically
before the buffer becomes full by looking at the average queue size. RED assumes
a cooperating congestion control at the transport protocol to effectively avoiding
dropping all of its packets once the threshold is exceeded. On the other hand it
guarantees control on the gateway queue size even in presence of a non-cooperating
transport level congestion control. However, dropping packets can be very harmful to
loss-based congestion control throughput causing resources under-utilization. Also,
RED requires some manual configurations to perform efficiently.

RED can also mark packets once the per-queue quota threshold is exceeded, for
example through Explicit Congestion Notification (ECN) [57]. ECN consists of a bit
that can be set in the IP header to signal that the router is experiencing congestion.
The ECN bit must then be interpreted by the receiving end-point which is then in
charge of echoing the ECN bit to the sender in an acknowledgment. ECN biggest
limitation is that it needs cooperation from the intermediate and end-points even tough
a recent study showed that 70% of the most visited website enabled ECN support
by 2017 [50]. However ECN has to be paired with AQM marking mechanisms in
the intermediate routers and enabled in the client operating system. ECN is still
not enabled by default for outgoing connections in most of the commercial OSes,

28 Traffic Control in Linux

limiting its effectiveness. Finally, as exposed in [4], ECN "[...] only detects the
presence of congestion, not its extent. In the presence of mild congestion, the TCP
congestion window is reduced too aggressively, and this unnecessarily reduces the
throughput of long flows".

CoDel [53] was designed to counteract bufferbloat effects. It addresses some of
RED limitations: the algorithm is knob-free, meaning it is self-configuring; average
queue size is not considered as an indicator to identify misbehaving queues anymore.
CoDel distinguishes between good and bad queues by looking at the amount of time
a packet spends in the queue. If the queueing delay increases over a certain threshold
the queue is classified as bad, usually implying the formation of a standing queue.
This avoids misclassifying bursty queues as bad. CoDel and AQM techniques in
general, are advised as best practices for Internet routers in RFC 7567 [3].

Fejes et al. in [21] study of the effect of AQM on recent congestion control
schemes. The study focuses especially on DCTCP [4] and BBRv2 [8] (denoted as
scalable TCP implementations) and their interaction with modern AQM schemes
including CSAQM [51] and PI2 [14]. The article shows that coexistence of loss-based
and scalable TCP implementation is hard to reach and that modern AQM strategies
cannot still provide good results in terms of fairness.

Even tough AQM and ECN are the established proposal for bufferbloat and
congestion mitigation in routers, they present limits. Deployment wise, AQM/ECN
schemes need support by both the endpoints and the infrastructure. Dropping/marking
packets is harmful for loss-based congestion controls and in some scenarios it can
cause excessive reduction of the congestion window and bandwidth under-utilization.
On the other hand, they are not effective in signaling congestion to scalable TCP
implementations such as BBRv2, causing a fairness problem in presence of heteroge-
neous congestion control scenarios. Most AQM implementations also do not allow
to set different classes of traffic and enforce specific throttling policies for each class.

In the following section we dig deeper into the throttling mechanism provided by
the Linux Traffic Control system and evaluate its performance and limitations. In
Chapter 4 it is exposed a proposal that addresses the limitations of state of the art
AQM and throttling mechanisms in a scheme called Receive Window Modulation.

3.4 Token Bucket Filter 29

Fig. 3.5 Simplified representation of the Token Bucket Filter. Source: [1].

3.4 Token Bucket Filter

The Token Bucket Filter (TBF) is one of the Linux TC qdisc. TBF is a shaper that
enforces a specific rate over traffic being emitted on a network interface (being it
virtual or physical). It follows the principles of a token bucket shaper; it also has
additional components that allow not only to control the steady state rate but also the
peak rate by means of a leaky bucket shaper.

The Linux implementation of all shaping mechanisms relies on tokens and
buckets (also for other queuing disciplines). In the Linux kernel implementation, one
token corresponds to one byte of data. For TBF the kernel keeps two main structures:
a packet buffer that works as bFIFO (bytes FIFO) and a token bucket. Packets are
dequeued from the buffer when enough tokens have accumulated in the bucket which
is replenished at fixed intervals; this allows to match the desired rate as shown in
Figure 3.5.

The token bucket filter can work as policer or a shaper. When working as a
policer, packets that arrive to the queue and cannot be dispatched because there are
not enough tokens, are dropped. When working as a shaper, packets are accumulated
in the buffer waiting for the necessary tokens to be generated.

The main control parameters of this qdisc are:

• Burst size, B: the size of the token bucket in bytes.

30 Traffic Control in Linux

• Rate, R: the rate at which we want to shape the traffic.

• Limit (Latency): limit is the amount of bytes that are allowed to accumulate in
the buffer waiting for tokens; it can be expressed also as latency, indicating the
time a packet is allowed to wait in the queue for tokens before being discarded.
If limit is set to 1 Maximum Transmission Unit (MTU) bytes (or latency to 0
µs), TBF will work as a pure policer, meaning that all non-conforming packets
will be dropped.

• System tick or HZ: is a hidden parameter that influences the frequency at
which the token bucket is replenished of tokens, in systems that cannot take
advantage of high resolution timers (i.e. old machines and/or badly compiled
kernels). This value is system dependent, e.g. on Intel machines is set to
100Hz, 250Hz, or 1000Hz.

• Peakrate and second bucket size (mtu): these two parameters are needed to
achieve perfect shaping (leaky bucket), meaning that no burst is allowed to go
over the peakrate value. This is implemented by means of a secondary token
bucket with size 1 (mtu).

3.4.1 System tick and high resolution timers

Current versions of the available documentation always refer to the limitation this
tool can have due to the system tick parameter. Specifically, the system tick imposes a
limitation on the minimum allowed burst/bucket size B to reach a specific rate control;
this is because if the shaper is invoked by a fixed system interrupt with a specific
frequency f , the maximum rate it can reach is Rmax = B · f . As a consequence, the
minimum bucket size necessary to achieve a given rate R is given by: Bmin =

R
f .

The bucket size also enforces the maximum burst allowed. In case the shaper has
been idle for enough time and the token bucket is full, the next flow of packets will
be allowed to be sent at wire speed for a maximum amount of B bytes. The discrete
nature of the system tick makes it necessary to set a minimum burst size to enable
rate R. It also imposes a limitation to the peakrate control system. This system works
with a secondary token bucket, placed right after the first one. This bucket is sized to
one MTU worth of tokens. This is needed to obtain precise rate conformance on a

3.4 Token Bucket Filter 31

millisecond scale, analogous to the metering mechanism of a leaky bucket. For Intel
architecture, Linux currently sets the system tick frequency to 250Hz. This does not
allow for the leaky bucket to be refilled fast enough, finally limiting the peakrate to
no more than 3Mbps with a 1500B MTU.

Even though most of the documentation available on the web regarding this key
component behavior (even the very same comments inside the kernel code!) still
refer to this limitation, the current implementation relies on a much more modern
mechanism that allows TBF to be perfectly usable for today’s rate control needs:
high resolution timers (Linux HR Timers). A thorough investigation of the code
brought to a different conclusion, as current implementation relies on high resolution
timers allowing for a very high precision also for the peakrate control.

The shaper, once scheduled a packet for dequeue, sets its own watchdog by
means of the Linux HR timers which have nanosecond precision. Supposing perfect
nanosecond precision, real time process scheduling, and negligible per-packet pro-
cessing time, a modern CPU with a 4Ghz processor could handle a shaping precision
of more than 100Gbps traffic per core (being 5ns the transmission time of a 64B
packets at 100Gbps).

Real systems though, are quite different as per-packet processing is not negligible
and that in the general case the system in use will not be hard real-time, with many
context switches and preemptions on non-atomic operations (see [6]). The picture
gets even more complicated when the system is virtualized, as clock precision is
generally not good. HR timers also come at expenses of very high CPU consumption
according to the number of shapers running on the system, as each one of them will
set a nanosecond watchdog timer that will rise an interrupt

3.4.2 TBF evaluation as a pacing shaper

We wanted to evaluate the limitations of the TBF shaper in relation with its bucket size
B. This is because, with a bucket size of only one packet the TBF is not only a shaper
but also a pacer, meaning that it not only enforces bandwidth throttling over a time
interval, but it actually schedules each packet departure of the queue at the specified
rate. This is of interest to reduce burstiness and self-induced congestion. However,

32 Traffic Control in Linux

5RXWHU

$:6�
3DULV

%LWQDS
%DUFHORQD

8S�WR�
���*ESV 8S�WR�

�*ESV &OLHQW

6LWH�&

3&�&��

$ &

6KDSHU

6LWH�$

6HUYHU

7%)�VKDSLQJ

Fig. 3.6 Testing environment for TBF evaluation.

as we found out, a bucket size B = 1 ·MTU does not allow to scale efficiently for
shaping values higher than 100Mbps, in our virtualized testing environment.

In Figure 3.6 is shown the testbed used to carry on the experiments. The testbed
is composed of four VMs, two located in Amazon AWS in the Paris site, and two
in Clevernet datacenter in Barcelona. An iperf3 TCP transfer of 10 seconds (fixed
time, no fixed size) is executed, being the Barcelona host the client/receiver and
the Paris host the server/sender. We enforce TBF shaping on the egress interface
of the router/shaper A, while no traffic control is set on any of the other nodes. All
TCP related configurations are Linux defaults (default TCP windows and CUBIC
congestion control algorithm); they are good enough to guarantee site C ingress link
utilization (1Gbps) given the relatively low round trip time between Barcelona and
Paris (20ms).

We increased the rate variable R, while keeping the ∼1500B (one MTU/packet)
value for the burst B to see if it was possible to find the point where, even with high
precision timers, it was not possible to achieve the desired maximum throughput. We
quickly found that by sizing the burst to one MTU we were already losing precision
at 200Mbps. We then increased the burst size to one and a half, two and then
three MTUs. Table 3.1 shows the experiments results in terms of actual throughput,
given four burst size values with different rates. Results reported are taken from
a bandwidth monitoring tool (bmon) measuring throughput on the egress interface
of router A. Values are show on standard output and are manually sampled by the
operator during the steady state phase of the connection (around 5 seconds from

3.4 Token Bucket Filter 33

Rate Burst Size [B]

T1600B T2400B T3200B T4800B

100 100 100 100 100
200 192 200 200 200
400 352 400 400 400
600 487 585 592 600
800 606 760 780 800
1000 670 930 960 984

Table 3.1 Throughput achieved by TBF according to the R and B parameters set.

start). It is possible to observe from table 1 that the burst parameter sized to one MTU
is not enough to guarantee sufficient precision for rate control values bigger than
100Mbps. To achieve perfect shaping at all rates we need to increase the burst size to
three packets (4800B). When shaping at 1000Mbps we are hitting hardware and/or
ISP limitations getting a steady state throughput of 984Mbps for burst size equal
to three packets. We tried bigger values than 3MTUs for the burst size B without
improving the achieved throughput.

Once we found the minimum token bucket size B that allowed for shaping up to
1Gbps of sustained throughput, we wanted to understand if with this configuration we
could be able to actually pace packets at that rate on a per-packet level and compare
it with a scenario without shaper.

In Figure 3.7 are shown the results for two tests performed in the same environ-
ment described previously. We plot just the first two seconds of the trace to focus
on the TCP slow start phase, where burstiness can be more evident. To measure the
result we run a packet trace capture with tcpdump on the same egress interface where
the shaper is set; this implies that we are not measuring actual wire speed but the
speed at which packets are passed to the NIC driver ring buffer.

We first run a transfer without any shaping in router A. Figure 3.7a shows the
sustained throughput obtained by the file transfer. The sliding window used to
compute the throughput is set to 1s. Already at this scale we can perceive that at
the end of the slow start phase there is some burstiness. The phenomena becomes
clear when changing scale for the sliding window to 1ms as shown in Figure 3.7b.

34 Traffic Control in Linux

0.0 0.5 1.0 1.5 2.0
Time [s]

0

200

400

600

800

1000

Th
ro
ug

hp
ut
 [M

bp
s]

no_shaper

(a) Throughput, 1s, no shaper.

0.0 0.5 1.0 1.5 2.0
Time [s]

0

1000

2000

3000

4000

5000

Th
ro
ug

hp
ut
 [M

bp
s]

no_shaper

(b) Throughput, 1ms, no
shaper.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

0.020

0.021

0.022

0.023

0.024

0.025

0.026

0.027

RT
T
[s
]

no_shaper

(c) RTT, no shaper.

0.0 0.5 1.0 1.5 2.0
Time [s]

0

200

400

600

800

1000

Th
ro
ug

hp
ut
 [M

bp
s]

tbf_1000R_4800B

(d) Throughput, 1s, TBF,
1000R, 4800B.

0.0 0.5 1.0 1.5 2.0
Time [s]

0

200

400

600

800

1000

Th
ro
ug

hp
ut
 [M

bp
s]

tbf_1000R_4800B

(e) Throughput, 1ms, TBF,
1000R, 4800B.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

0.0196

0.0198

0.0200

0.0202

0.0204

0.0206

0.0208

0.0210

RT
T
[s
]

tbf_1000R_4800B

(f) RTT, TBF, 1000R, 4800B.

Fig. 3.7 File transfer with and without a TBF shaper.

The sender is actually bursting packets at wire speed (approximately 4Gbps) in some
time intervals, followed by intervals without transmission. This causes the building
up of a persistent queue in steady state, that impacts the connection perceived RTT
by 25% (+7ms compared to the 20ms base latency), as shown in Figure 3.7c.

The second experiment places a TBF shaper in router A with an enforced rate R
of 1000Mbps (the narrow link capacity of the testbed) and 4800B as burst size B. We
can already perceive a more linear growth compared to the non controlled case in the
sustained throughput at a 1s scale as shown in Figure 3.7d. When looking at a 1ms
scale we discover that almost perfect shaping is enforced, with no bursty event over
the nominal 1Gbps capacity as noticeable in Figure 3.7e. No standing queue builds
up as no noticeable additional latency is measured as shown in Figure 3.7f.

3.4.3 TBF limitations

TBF is not building any standing queue in the scenario described in Figure 3.7
because its rate R corresponds exactly to the narrow link capacity of the testbed.

3.5 Conclusions 35

In case we wanted to throttle at values lower than the nominal capacity, the shaper
would have had to delay packets in its buffer to match the desired rate, causing the
formation of a persistent queue. This happens because being TBF a shaper, it is a
non-work-conserving queuing mechanism.

TBF can also be expensive in terms of CPU resources as it acts as the base mech-
anism for the multi-class token bucket shaper, which in Linux is called Hierarchical
Token Bucket (HTB). TBF is agnostic to the type of traffic being throttled, and that
is where HTB becomes handy: we can define a hierarchy of traffic classes and their
token borrowing policies. Each subclass (or leaf class in HTB terminology) is then
throttled by mean of a TBF mechanism. On top of the high amount of interrupt
derived from the HR timers of TBF, HTB adds the overhead of its locking mechanism:
to guarantee coherency in the shaping enforced, each time a packet traverses the HTB
hierarchy it will take the lock over the whole classes tree, causing an higher CPU
consumption and making this mechanism less parallelized, as different CPUs that
could be handling different flows belonging to different traffic classes, will compete
for the same lock. As such, deep HTB hierarchy are usually very performance
demanding. Carousel authors present the problem in their paper [61].

3.5 Conclusions

In this chapter we have introduced the Linux networking stack, and dug deep into
some of its components.

We have seen how the Linux kernel handles TCP packets in form of Socket
Buffers (SKBs) and its TCP memory management with emphasis on the TCP receive
buffer. SKBs are the basic unit managed by the Traffic Control system (TC).

We have introduced TC and some scheduler proposals in literature that address
TCP bufferbloat and fair sharing. However, these mechanisms are based on the
assumptions that TCP reacts to packet losses (which could not be the case in the pres-
ence of congestion controls such as BBR). With loss-based congestion control they
effectively mitigate bufferbloat, however their way to control traffic is by dropping
packets, which is something undesirable as it can hinder throughput unnecessarily.
While their configurability degree varies, none of these schedulers can throttle the
connection throughput to a desired value, which is one of the objectives of our work.

36 Traffic Control in Linux

We then studied in depth the basic shaping mechanism in the Linux kernel, the
Token Bucket Filter (TBF) qdisc. We discovered experimentally that TBF takes
advantage of high resolution timers, that allow the shaper to also work as a perfect
pacer when setting the burst/bucket size to fairly small values, while retaining
its ability to scale up to 1Gbps of sustained throughput. Such a solution enables
both throttling and burstiness mitigation, at the cost of high resources consumption.
Because of its non-work-conserving nature, TBF also cannot prevent traffic from
building up persistent queues when we are throttling it at a rate consistently below
the sender rate.

This second part of our preliminary study highlighted the limitations of the exist-
ing TC mechanisms for TCP as they cannot provide a lossless throttling mechanism
that can mitigate bufferbloat at the same time. Existing AQM schemes require coop-
eration from both the end-points and the infrastructure, while their effectiveness is
limited. This motivated us in the development of the Receive Window Modulation
scheme exposed in Chapter 4.

Chapter 4

Receive Window Modulation for
TCP over WAN

From our study in the interaction between TCP and some of the most relevant
traffic control mechanisms provided by the Linux system, we realized that currently
there was not a scheme that provided the following features all in a single control
mechanism:

• lossless throttling: to guarantee fair usage of a link, current AQM schemes rely
on dropping packets to cause a reduction in TCP throughput; a mechanism that
allows to signal the sender to reduce its rate without having to drop packets is
instead desirable.

• non-delaying shaping: traffic rate control is usually achieved through traffic
shapers that delay packets in a queue to control their output rate according to

7&3�LQ�:$1V

5HFHLYH�:LQGRZ�
0RGXODWLRQ

Fig. 4.1 Chapter contribution to the dissertation.

38 Receive Window Modulation for TCP over WAN

specific policies; this causes the creation of persistent queues that increment
end-to-end latency of the connection. We wanted to define a work-conserving
shaping mechanism.

• self-induced congestion mitigation: in presence of aggressive senders such as
loss-based congestion controls, WANs can get bloated, dropping packets in
intermediate routers and reducing the final connection throughput. We wanted
to improve TCP congestion control behavior in WANs without the need to
change congestion controls in the end-points.

• compatibility with legacy TCP: AQM schemes try to address congestion and
bufferbloat mitigation in the network core but often rely on the end-points
cooperation (e.g. by supporting ECN); they can also signal congestion to the
sender by dropping packets, but such an action can be over-repressive against
loss-based congestion controls (e.g. CUBIC, Reno), or completely disregarded
by scalable TCP congestion controls (e.g. BBR, DCTCP).

In order to address these problems, we present Receive Window Modulation
(RWM), a control module for edge routers:

• RWM adjusts the advertised receive window of packets traversing the edge
router. This is intended to provide an upper bound to the sender’s congestion
window growth; the window, which is an upper limit to the connection’s
bandwidth-delay product (BDP), is based on the router’s locally available
bandwidth, the estimated connection RTT, and the policies for each class of
traffic allowing for the lossless throttling of TCP connections.

• RWM mitigates self-induced congestion and improves end-to-end TCP perfor-
mance, latency and fairness. Average application goodput is improved up to
70% and latency is reduced by a 2.5x factor in some scenarios.

• This mechanism does not require any modification of the TCP stack, as it is
transparent to the end-points, nor connections are terminated by a proxy.

• RWM preserves the characteristics of the sender congestion control deployed
in the end-point.

4.1 Architecture 39

Receiver

Sender

ACKs flow

Data flow

Advertised RWND:

4MB

60ms RTT

Locally available downlink:

100Mbps

Modified RWND:

750KB

Locally available uplink:

80Mbps

Modified RWND:

600KB

LAN 1

LAN 2

Fig. 4.2 Receive Window Modulation example deploy scheme.

• RWM is compatible with any TCP implementation as it relies on the basic
mechanism of TCP flow-control; no cooperation or additional support is
required from the end-points.

4.1 Architecture

The main idea behind RWM is to enforce an upper bound to the sending rate of the
sender, exploiting TCP flow control. This is achieved by modifying the receiver’s
advertised window of in-flight acknowledgement packets. This type of control tries
to mitigate some limitations of loss-driven congestion control algorithms, which are
still extensively used nowadays. Tail drop in intermediate routers can be reduced
and bufferbloat avoided if the sending rate in the end-point is adjusted to the path’s
nominal BDP. The edge deployment vantage point gives the router visibility on all
the flows being generated in the Internet access link, which allows a fair share of
the edge router resources in terms of bandwidth: the router can throttle flows in case
they exceed a specific policy or the local resources of the router without the need to
drop packets.

RWM computes the BDP value for each flow based on:

• RTT measurement during connection establishment.

40 Receive Window Modulation for TCP over WAN

• The router access link available capacity, where capacity can refer to the router
network card nominal line rate or a user provided parameter indicating the
bandwidth throttling enforced by the ISP on the access link.

Figure 4.2 shows a typical functional schema of a RWM deployment. Both edge
routers implement RWM: the controller can be deployed close to both the sender
and/or the receiver. In the scenario presented in Figure 4.2 the connection is already
established and both edge routers were able to estimate the connection RTT based
on the three-way handshake. Each of them transparently modify the receive window
advertised by the receiver in the acknowledgement packets, in order to match the
locally available bandwidth. The sender will then conform its sending rate to the
enforced receive window in case its congestion window exceeds it.

The control logic is triggered on a per-event basis: when a new incoming flow is
registered, it is associated a specific traffic profile so that RWM can recompute the
optimal value of the receive window for all active flows; a data plane component will
then enforce it on the target flow. Particular attention is put in extracting the Window
Scaling factor negotiated by both endpoints on connection establishment. Bandwidth
allocation is done on a per-class basis, where classes can be defined by the user based
on the application port. An upper limit is assigned for the bandwidth of each class.
The user is free to allocate bandwidth to the classes within those limits.

Being C the capacity of the edge router link as previously defined; P the allocation
policy defined for a specific traffic class j, expressed as percentage of the access link
capacity; i the i-th flow for the class j; RWM recomputes the receive window RWND
to be assigned to each flow i so that it always respects the following relation:

∑
j
(∑

i

RWNDi

RT Ti
)∗Pj =C (4.1)

Equation 4.1 guarantees that the link capacity is distributed equally between flows
of the same class and that each class is assigned the user defined share of network
resources. The operation of RWM’s logic implementing equation 4.1 is described in
Algorithm 1. Given the link capacity and the traffic class policies, RWM computes
the amount of link share to provide to each class. Then it iterates over all classes
and their active flows, and computes the BDP associated to each of them starting

4.1 Architecture 41

from an estimation of the round trip time. It finally computes the receive window to
enforce on the acknowledging flow based on the window scaling factor it registered
at connection establishment. If the window advertised by the receiver is smaller than
the one computed, the adjustment is not applied (see section 4.4.1).

Algorithm 1 RWM operation

procedure NEW FLOW REGISTERED

C← access_link_capacity
for c in traffic_classes do

Pc← class_policy
Cc←C ·Pc

for f in flow_table_c do
if WSCALE f not recorded then

skip to next flow
end if
RT Tf ← estimated_ f low_rtt
BDPf ← (Cc ·RT Tf)/len(f low_tablec)
RWNDBDPf ← BDPf /2WSCALE f

RWND f ← min(RWND f ,RWNDBDPf)
end for

end for
end procedure

4.1.1 Use Cases

RWM’s primary use case targets an enterprise edge gateway or router for WAN links.
Our proposed architecture allows for dynamic adaptation of resource utilization, and
combined with policy definition and traffic classification, is a powerful tool to be used
in corporate networks. RWM is particularly appropriate to improve traffic control at
ingress/egress WAN access links, especially when they represent the bottleneck, e.g.
in site to site corporate communication. As previously exposed, RWM specifically
addresses cases of self-induced congestion; while certain robustness in a real scenario
has been proven through experiments (further detailed in section 4.2), its behavior
has not been studied in networks where massive amount of cross traffic is the cause
of intermediate congested nodes (see section 4.4.3).

42 Receive Window Modulation for TCP over WAN

4.2 Experiments

A series of experiments were conducted to validate the proposed architecture. The
experimental evaluation addresses a scenario where all the traffic flows handled by
the router are bulk data transfers belonging to a single traffic class. The objective of
the experiments is to validate the benefits obtained when activating the controller
in different network scenarios in terms of Flow Completion Time (FCT), goodput,
total latency and fairness. In our testbed we emulate different network conditions to
generate a range of BDP scenarios. In this evaluation we test the controller between
two known locations and deploy one single point of control in the edge router close to
the receiver; this edge router has the smallest access link between the two locations.
We do not have control over the intermediate hops along the Internet path connecting
the two locations. As such the BDP computed in the edge router is only dependent
on the local bottleneck and does not take into account possible variability in the inner
section of the network. To compensate, we define a ±δ around the locally computed
BDP value. We’ve set the value of δ to 10%, in order to study the response of the
control when under and over estimating the network conditions.

4.2.1 Testbed

The testbed general configuration is shown in Figure 4.3. The testing environment
includes two pairs of nodes in different geographic locations. Each pair is composed
of a node that acts as a server or client and another one that acts as router/gateway for
the paired instance. The nodes involved are all virtual machines running Debian Linux
Stretch. One site has 1Gbps WAN access link, while the other has a 10Gbps one.
The typical round-trip time over the Internet between the two sites is 20ms±0.2ms.
In the 1Gbps link site is located the client; it connects to a web server connected
through the 10 Gbps link. The virtual machines with the access link of 10Gbps are
EC2 Amazon instances. Both instances are m5.xlarge type which are guaranteed to
run on Intel Xeon Platinum 8000 series processors, have 4 virtual CPUs assigned
and 16GB of RAM. The other two VMs with the 1Gbps access link run in our lab
environment; each VM has 4 virtual CPUs and 4GB of RAM assigned. They are

4.2 Experiments 43

1Gbps

10 Gbps

Internet

~20 ms RTT

RWM Controller

Client

Server

Real + emulated = ~[20-140]ms total RTT

Narrow link = 1Gbps

Fig. 4.3 Network topology and configuration for the experiments (RWM only in the
client-side router).

hosted on a server blade with 96GB of RAM, running an Intel Xeon CPU E5-2620
v4 with 8 physical cores with hyperthreading.

The only parameters modified at the endpoints are the maximum receive and
send buffer size of TCP, which have been tuned to 60MB. This allows the endpoints
to reach full theoretical link utilization in all BDP scenarios and avoids the endpoint
receive window to become the bottleneck. The congestion control algorithm at the
sender is CUBIC (Linux’s default). On the router close to the client we use the
Linux Traffic Control module called NetEm [29], to change the environment network
conditions. We add delay to the link, while keeping the fixed capacity of 1Gbps.
Latency introduced has a variability of ±3ms; this variability induces some packet
reordering as consecutive packets scheduling can be delayed or anticipated to emulate
transient network variability. We do not enforce any artificial loss through NetEm,
relying on the intrinsic variability of the Internet between the two sites.

We test with the NetEm standard buffer size of 1000, then with a buffer size of
10000 packets, the former to emulate a small buffer router on path, the latter to study
the behavior of the latency induced on the connection by possible bufferbloat. The
10000 packets scenario also allows us to study if there is any smaller queue on the
Internet path that causes drops., removing any interference due to the NetEm shaper.

44 Receive Window Modulation for TCP over WAN

4.2.2 Evaluation

The experiments consist of HTTP GET transfers performed through the client with
the wget tool. The server provides 1GB files through a nginx web server. The client
acts as receiver and the server as sender. We combine the following parameters
during testing:

• BDP of the path - varied by means of controlling the latency in the client router.
Total RTT varies between 20ms and 140ms.

• Client router buffer size: 1000 and 10000 packets.

• Number of concurrent transfers - one and four.

• Controller BDP set: i) exact BDP, ii) exact BDP−10%, iii) exact BDP +10%,
and iv) No Controller.

Each combination of parameters is tested 50 times for a total of over 3000 tests.
We study the FCT of the downloads. We also recollect statistics from the endpoints
by means of an eBPF [32] based analysis tool. In particular, in the endpoints we
measure:

• The throughput of each download.

• The evolution of the RTT during the data transfer.

• The evolution of the receive window advertised by the receiver and the actual
receive window seen by the sender (that could have been modified by our
controller).

• The evolution of the congestion window of the sender.

We show the results of FCT using categorical boxplots. Each category represents
all the tests performed for a specific value of total RTT for a certain number of
concurrent transfers. In each category four boxes are shown: three represent the
results when enabling the controller and providing it different values for the BDP
estimation as previously described; the fourth box represents the results without the
controller.

4.2 Experiments 45

20 60 100 140
RTT [ms]

20

40

60

F
lo
w
C
om

pl
et
io
n
T
im

e
[s
]

Control

BDP -10%

BDP

BDP +10%

none

(a)

20 60 100 140
RTT [ms]

20

40

60

80

100

F
lo
w
C
om

pl
et
io
n
T
im

e
[s
]

Control

BDP -10%

BDP

BDP +10%

none

(b)

Fig. 4.4 Flow completion time for one (4.4a) and then four (4.4b) downloads starting
simultaneously with or without the controller for different values of RTT.

Flow Completion Time

Figure 4.4a depicts the series of tests with one single transfer. We can observe that
the range for the non-controlled scenario has considerable variability. The controller
improves the behavior of the flows by keeping a more consistent rate during the
whole transfer. While improvement is clear for the 60ms and 100ms scenarios, we
can see that for 140ms the margin is reduced. Results suggest that, when increasing
the RTT, and thus the BDP, the amount of in-flight data injected by the sender is
enough to fill one or multiple queues along the path. This holds true even when
controlling the receive window to match the nominal BDP. As a matter of fact we
start measuring tail drop in our own router’s buffer.

On the other hand, we can see from Figure 4.4b that when adding multiple traffic
sources the aggressiveness of the congestion control algorithm at the sender is enough
to incur in a consistent performance penalty even at lower latencies. At 140ms of
RTT is possible to observe that the 50th percentile for the FCT of the uncontrolled
scenario is almost 1.5 times higher than the controlled scenario. The difference
between the different levels of control applied is marginal with a clear trend: an
underestimation of the BDP of 10% brings less variability but average higher values
for FCT, while the best results are obtained when controlling at the ideal BDP point;
overestimation shows lower 25th percentile values for higher RTT values, but brings
more variability to the overall statistic. In this representation each data transfer counts
as independent event. We computed the distance between the 50th percentiles of the

46 Receive Window Modulation for TCP over WAN

0 10 20 30 40 50 60 70
Time [s]

0

200

400

600

800

1000

T
hr

ou
gh

pu
t[

M
bp

s]

flow1
flow2

flow3 flow4 aggregated throughput

(a)

0 10 20 30 40 50 60 70
Time [s]

0

200

400

600

800

1000

T
hr

ou
gh

pu
t[

M
bp

s]

flow1
flow2

flow3 flow4 aggregated throughput

(b)

Fig. 4.5 Throughput of four concurrent transfers. In 4.5a a legacy TCP CUBIC
scenario. In 4.5b the same experimental environment is being controlled by RWM.

different categories: RWM improvement in term of FCT in the one transfer scenario
is up to 46%, while in the 4 transfers scenario the improvement goes up to 70%.
Another relevant observation can be done by looking at the 140ms category in the
scenario of Figure 4.4b: the 75th percentile of any of the controlled tests is better
than the 25th percentile of the non-controlled case.

Fairness

In figure 4.5 we compare a non controlled experiment using CUBIC in the endpoints,
with the same scenario deploying RWM in the receiver’s edge router. Four downloads
start simultaneously; total RTT is of 60ms. Figure 4.5a shows the throughput of the
four connections having a very varied behavior with inconsistent performance. One
of the flows is greedier and finishes faster, penalizing the congestion windows of the
other three flows. The final FCT for the set is around 70 seconds. In Figure 4.5b the
throughput for the test performed using the controller is shown. The throughput is
consistent along the whole duration of the data transfer and the congestion windows
always works above the level of the receive windows being enforced. The four flows
reach fair sharing of the link capacity and all finish at the same time, taking around
40 seconds.

In Figure 4.6 we repropose the results seen in Figure 4.4b but this time considering
only the FCT of the slowest of the group of four simultaneously started transfers.

4.2 Experiments 47

20 60 100 140
RTT [ms]

40

60

80

100

120

F
lo
w
C
om

pl
et
io
n
T
im

e
[s
]

Control

BDP -10%

BDP

BDP +10%

none

Fig. 4.6 Maximum flow completion time of each set of four concurrent downloads
with or without the controller, for different values of RTT.

Figure 4.6 confirms the trend seen in the previous section but also provides stronger
validation for the fairness properties of RWM.

Latency

Table 4.1 summarizes the statistics for the RTT of a subset of combinations of the
tests performed. In case of lower latencies (20ms case) is possible to observe how
the average standing queue induced by a loss-based congestion control is within the
order of magnitude of the latency itself. The controller avoids buffering in any of
the intermediate nodes. Mean value corresponds to the nominal RTT, and statistical
variation is negligible. In all the cases shown, the variability of the non-controlled
scenarios exhibits a higher standard deviation.

control flows buffer std mean 25th 50th 75th max

none 1 1000 12.8 53.2 42.8 56.0 64.4 71.2
none 4 1000 15.9 52.8 41.9 58.5 65.1 71.0
none 1 10000 12.6 55.7 46.4 59.0 66.1 71.4
none 4 10000 15.4 53.5 45.5 59.4 65.2 71.1

RWM 1 1000 0.2 21.0 21.0 21.0 21.0 21.3
RWM 4 1000 0.2 20.4 20.3 20.4 20.6 25.5
RWM 1 10000 0.1 21.0 21.0 21.0 21.0 21.1
RWM 4 10000 0.2 20.4 20.3 20.4 20.5 21.1

Table 4.1 Quartiles and standard deviation for the 20 ms RTT for some combinations
of number of concurrent flows and intermediate buffer size (in packets). Statistics for

the scenarios controlled at the nominal BDP value are shown.

48 Receive Window Modulation for TCP over WAN

20 60 100 140
RTT [ms]

0

10000

20000

30000

40000

P
ac
ke
t
L
os
se
s

Control

BDP -10%

BDP

BDP +10%

none

(a)

20 60 100 140
RTT [ms]

0

5000

10000

15000

20000

25000

30000

P
ac
ke
t
L
os
se
s

Control

BDP -10%

BDP

BDP +10%

none

(b)

Fig. 4.7 Tail drops caused in the intermediate router queue for one (4.7a) and then
four (4.7b) concurrent downloads with or without the controller for different values

of RTT.

Self-induced losses

We measured the amount of per-test tail-dropped packets in our intermediate router
acting as buffer to increase artificially the latency. This measurement gives an idea of
how aggressive are the TCP flows when not controlled or controlled by RWM. Figure
4.7 shows the result when the buffer queue size is set to 1000 packets. Figure 4.7a is
a representation of the results obtained by the tests when executing one single TCP
transfer at a time. We can see that standard non-controlled CUBIC induces tail-drops
in our queue starting at 60ms of induced latency, while the RWM controlled scenario
is able to contain the packet loss up to 140ms. In this case, the−10% underestimation
of the path BDP reduces considerably the amount of packets dropped. Similar results
are obtained with the four concurrent test-set as shown in Figure 4.7b. We start
seeing more variation for the RWM controlled scenario already at 100ms, however it
is marginal. The absolute number of losses is lower than the single test-set scenario
probably due to the augmented concurrency triggering the sender congestion control
to reduce the window to a lower threshold. The amount of tail-dropped packets is
coherent with the results obtained in terms of FCT as shown in Figure 4.4: the more
packet lost, the worse the distribution in terms of throughput, thus longer time to
complete the transfer.

4.3 Related Work 49

4.3 Related Work

In [67] an architecture for bandwidth fair sharing is proposed; it focuses on home
gateways and a credit-based resource allocation system. The solution, although,
requires some level of interaction with the ISP core network to negotiate the amount
of credits the gateway can spend during a congestion period. They also envision a
control mechanism based on TCP advertised window modification, but it is not based
on BDP estimation. They adapt the TCP receive window by proxying the connection
and controlling the receive window at the socket level in the gateway. Instead, RWM
proposal for TCP window modification is based on in-flight packet modification.

Other works have been proposed in the past that take advantage of the TCP
flow control mechanism to optimize the connection behavior. Explicit Window
Adaptation (EWA) [36] also modifies the advertised window of TCP packets as a
means of congestion control in intermediate nodes. The goal is to reduce buffer
bloat and self-induced congestion due to TCP’s window probing. Their testing
environment is based on TCP/IP connections over ATM virtual networks. The value
of the advertised window is a function of the available buffer space in the ATM router,
and the behavior of EWA is compared against a typical Random Early Detection
(RED) buffer management mechanism. RWM extends this study in several ways.
Window adaptation is a powerful mechanism as demonstrated in EWA with ATM
networks, but this technology has been largely superseded by IP-only networks.
In this paper, the effects of window adaptation are tested in a more up-to-date
environment where RWM is agnostic to the type of network segments the flow will
traverse. RWM does not need to be deployed at the bottleneck as its objective is to
maximize end-to-end behavior of the TCP flows according to the local resources
available to the edge router. The feedback function does not need to be exclusively
coupled to the buffer space though, as it can be dynamically derived from the current
locally available bandwidth and some user defined traffic policies, computing a BDP
value for each connection. In addition, the benefits of window adaptation in this work
are not only focused on goodput and buffer utilization, but also a study on the impact
on latency is included. In [65] a similar flow control based mechanism is proposed
but the scheme is developed with satellite networks in mind and its deployment
model foresees the controller to be right before the satellite link bottleneck.

50 Receive Window Modulation for TCP over WAN

In Chapter 2 we have introduced BBR as a new congestion control algorithm
based on BDP estimation. We have also seen its limitations as it lacks of fairness
in presence of other flows using loss-based congestion controls and with RTT het-
erogeneity. RWM operates differently. The receive window is set accordingly to the
edge router access link locally available capacity and the measured connection RTT,
providing an upper boundary to the sender congestion control. It is not a substitute of
the congestion control algorithm deployed in the sender: the response of the sender
algorithm to transient network conditions is preserved. Given this, if our system is
coupled to senders that use loss-based congestion controls like CUBIC, the fairness
of such an algorithm towards other flows is retained. Finally, in contrast to BBR, this
system is targeted to routers and does not require modifying the end-points.

4.4 Discussion

4.4.1 RWM Compliance with TCP

TCP is a transport-level protocol, where flow control and congestion control policies
are applied by the endpoints. On-route packet processing and modification is not
required by design. As a matter of fact, TCP has a checksum mechanism to detect
errors that can originate in the network. RWM guarantees TCP data integrity by
recomputing the TCP checksum of each modified packet. At the same time the flow
control semantic is kept intact: if the original advertised receive window is lower than
the value the controller wants to enforce, no changes are applied to the packet. This
guarantees that the receiving endpoint can still apply flow control in case of need (e.g
if it is not able to process the amount of data received). Another important matter is
the preservation of the window scaling factor. The receive window field in the TCP
header is a 16-bit word. It allows to signal receive window of up to 65kB, which is
very small considered the BDP that modern connections can achieve, especially on
LFNs. To overcome this limitation the Window Scaling option has been proposed
as part of the standard [34] and it is implemented in most TCP stacks nowadays.
Window Scaling is a TCP option which is negotiated at connection establishment and
provides a multiplication factor for the receive window value declared in the header
allowing for values of up to 230 bytes for the TCP receive window. Being an option

4.4 Discussion 51

negotiated only during the three-way handshake, is necessary to parse this value to
correctly interpret the receive window values being advertised on the flow. RWM
does not interact with flows for which it was not possible to retrieve the window
scaling option on establishment, thus preserving the flow control semantics in all
cases.

4.4.2 Path Symmetry

The controller, in order to be able to estimate the connection RTT, to retrieve the
window scaling factor and finally to apply the computed receiver window to all
packets of the flow, needs to have visibility on packets from both directions of a TCP
flow. This is usually the case in edge routers acting as gateways in corporate LANs,
which is the typical use case envisioned for RWM as stated in section 4.1.1. On the
other hand this limits the applicability of the scheme as routers deeper in the Internet
core could not have access to both directions of the flow due to path heterogeneity.

4.4.3 Available Bandwidth Estimation

Currently RWM bases the BDP computation exclusively on its locally available band-
width and the RTT measured for the connection. In the testing environment presented
in section 4.2 the edge router manages the smallest Internet access link between the
sender and the receiver. While this schema was shown to be effective in this scenario,
there is no guarantee that it would be as effective in presence of consistent cross
traffic deep down in the network. In such a case the congestion control of the sender
will be triggered by packet losses happening in the network core, not just due to
self-induced congestion. Effectiveness of RWM in these scenarios could be improved
by developing a BDP estimator that takes into account transient network conditions
by employing available bandwidth estimation techniques, predicting variations in
network conditions so to control the flow with a more conservative window value
before loss events could take place. Chapter 6 addresses the available bandwidth
measurement problem and propose an innovative strategy to estimate it, that can be
integrated in RWM.

52 Receive Window Modulation for TCP over WAN

4.4.4 Distributed deployment of points of control

We have developed RWM for the following scenario: traffic across two remote sites
traversing the Internet, with RWM deployed in just one of the two sites edge router.
This solution does not require the controller deployed in more than one node. Future
work includes a study of the convergence properties of multiple sites topologies with
an RWM deployed at the edge router of each site.

4.5 Conclusions

In this chapter we presented a novel controller for an edge router that improves
end-to-end TCP connections behavior by throttling the flows modifying the TCP
receive window advertised: we call it Receive Window Modulation - RWM. RWM
computes the window value to enforce by estimating the BDP of the connection
based on its locally available bandwidth and the end-to-end RTT. RWM has been
proven to enhance TCP goodput, while reducing dramatically the buffering caused
in intermediate nodes by TCP loss-based congestion control mechanisms. As a
consequence, buffer-bloat is contained and TCP connections behavior in terms of
latency improves. The experimental evaluation focuses on a scenario where the traffic
is mostly composed of bulk data transfers. In this case RWM shows an improvement
for average application goodput of up to 70%, while avoiding buffering in the
intermediate nodes and consistently reducing latency in respect to legacy CUBIC TCP
connections. The best results have been obtained in presence of multiple concurrent
flows where the RWM schema is able to provide high level of fairness when sharing
link resources. However, its response to transient network conditions and actual
congestion could be improved by additional visibility provided by an available
bandwidth estimator. We investigate established models in available bandwidth
estimation based on packet-pair dispersion, in Chapter 5. A new algorithm that takes
advantage of packet-pair dispersion models applied to passive TCP measurements is
then proposed in Chapter 6.

Chapter 5

Packet dispersion model and
measurement

In our journey to improve WANs behavior through the definition of new control
mechanisms to be deployed in edge devices, we realized the need for a better un-
derstanding of the end-to-end network conditions. As exposed in section 4.4.3, our
RWM scheme could benefit from an accurate estimation of the network available
bandwidth for example. There has been a productive community effort during the last
20 years in defining, developing and testing models that enable end-to-end network
bandwidth resources estimation. One of the most relevant is the packet dispersion
model, which is obtained from measuring the inter-packet time of packet pairs or
trains.

6PDUW�PHDVXUHPHQWV

Fig. 5.1 Chapter contribution to the dissertation.

54 Packet dispersion model and measurement

In this Chapter we will provide a definition for the packet dispersion model,
show remarkable results obtained by the community in respect to the statistical
analysis of packet dispersion distributions, and finally emphasize some challenges
involved in measuring inter-packet time effectively in modern NFV environments.
Such background is necessary to understand the contributions exposed in Chapters 6
and 8.

5.1 Packet dispersion

The packet dispersion model has been used by the community to study mainly two
characteristics of a network: capacity and available bandwidth. The end-to-end
capacity of a path is intended as the maximum bandwidth of the link with the least
nominal capacity on the path, called the narrow link. While capacity is generally a
feature which is stable in time (with the exception of wireless scenarios) the available
bandwidth of a path is a transient condition that can have continuos variations over
small time scale. To measure the available bandwidth of an end-to-end path in a given
moment in time we will have to estimate the load of the tight link, being this the link
with the least amount of available bandwidth, or the most amount of cross-traffic.
Even tough the narrow link could easily be the subject of heavy congestion, making
it also the tight link, this is not necessarily always the case. For example, an Internet
Exchange Point (IXP) with very high nominal capacity, could get very congested
making it the tight link of a given end-to-end path.

The main idea behind packet dispersion is to send two packets of equal size
back-to-back (i.e. at the maximum rate R achievable by the sender) into the network.
Assuming the network in analysis does not have any cross traffic, once the packet
pair traverses the narrow link with capacity Cn on path, their relative distance or
dispersion will increase linearly in respect to Cn. As a consequence, to be able to
measure Cn we need R >Cn.

Figure 5.2 illustrates packet pair dispersion. Packets of size L are emitted back-
to-back by the sender at a rate R = 1/∆in. When the packet pair traverses a link with

5.1 Packet dispersion 55

technique.
Packet pair dispersion sends two equal-sized packets back-to-

back into the network. After traversing the narrow link, the time
dispersion between the two packets is linearly related to the link
with the least capacity.1 Packet train dispersion extends packet
pair dispersion by using multiple back-to-back probing packets.
However, the concepts for a packet train are similar to that of a
single packet pair.

Figure 1 [1] illustrates the packet dispersion concept. When
packets of size with initial dispersion go through a link
of capacity , the dispersion after the link becomes [1]:

Fig. 1. Packet Dispersion

(1)

After packets traverse each link on an hop end-to-end path,
the final dispersion at the receiver is:

(2)

where is the end-to-end capacity. Therefore, the end-to-end
path capacity can be estimated by .

Since packet dispersion provides faster measurement times
and induces less network load than other bandwidth estimation
techniques, it has been adopted by commercial applications such
as Windows Streaming Media where a three-packet train is sent
prior to streaming to estimate end-to-end capacity.

III. PACKET DISPERSION ISSUES IN WIRELESS NETWORKS

A. Rate Adaptation Simulation

While ns-22 provides IEEE 802.11 components such as
CSMA/CA, MAC layer retries, contention, propagation and er-
ror models, it lacks a rate control algorithm (RCA). Since the
802.11 standard [16] does not specify a specific RCA, each
WLAN card manufacturer is free to implement their own RCA.
RCAs adjust link rate based on the signal strength or by reacting
to accumulated statistics, such as number of retries, packet error
rate or throughput [17], [18]. Auto Rate Fallback (ARF) [19],
the first commercial RCA implementation, raises the data rate
after consecutive transmission successes and lowers the date rate
after link layer transmission failures. Under most wired channel
conditions, ARF outperforms fixed-rate 802.11, but when trans-
mission failures are caused by wireless link layer congestion,
ARF can have a negative impact [20].

Also called the narrow link.
The Network Simulator - ns-2. Online at http://www.isi.edu/nsnam/ns/

Receiver Based Auto Rate (RBAR) [21] uses RTS frame anal-
ysis to measure channel quality. RBAR receivers determine the
highest feasible frame transmission rate that channel conditions
can tolerate and notify the sender of the chosen rate via a CTS
frame. Since RTS/CTS messages are sent to the AP, all wireless
nodes become aware of the new transmission rate and set their
backoff timers accordingly. However, RBAR is not available in
basic mode where RTS/CTS is disabled.

Starting with an RBAR simulation module provided by [22]
for ns-2 2.1b7,3 RBAR was re-implemented in NS 2.27. We
extended the physical layer parameters using the specifications
of the Lucent OriNOCO wireless PC card.4 Our documented
RBAR implementation is available online5. Figure 2 provides
ns-2 throughput results versus separation distance for two sim-
ulated wireless nodes moving away from each other. Average
throughput is measured using 1000-byte packets for a single
CBR flow with RTS/CTS enabled. The fixed-rate approaches
(1, 2, 5.5 and 11 Mbps) have a relatively fixed throughput as the
distance increases until the link is dropped when the nodes move
out of transmission range. RBAR (labeled “Multiple Rate”) dy-
namically adjusts the rate downward as distance increase.

To more accurately simulate physical condition effects on
RCAs, an additional ns-2 extension to model Ricean (or
Rayleigh) fading [23] was implemented and imported into NS
2.27. Figure 3 shows simulated effects of Ricean fading for two
wireless nodes 390 meters apart where with fading turned off
RBAR would fix the data rate at 11 Mbps. The figure tracks
RBAR dynamically adjusting the rate between 11, 5.5, 2 and 1
Mbps in response to fading strength variability as a function of
time.

B. Issues with Packet Dispersion in Wireless Networks

This section discusses physical layer wireless issues that may
cause bandwidth estimation techniques to perform poorly.

Most wireless MAC layers use frame retries or Forward Er-
ror Correction (FEC) to recover lost frames. IEEE 802.11 net-
works retransmit up to a fixed number of times with exponential
backoff between retransmissions. While frame retries reduce
packet loss, frame retries increase packet delay variance that
yields packet dispersion inconsistencies and large variations in
time measurements. Namely, dispersion between packet pairs
can be compressed or expanded when traversing a wireless AP
even without congestion in the network.

Figure 5 depicts a typical network topology for studying
packet dispersion in a WLAN. To characterize the effects of
wireless traffic on packet dispersion, the wireless network traffic
is divided into probing, crossing and contending traffic. Prob-
ing traffic is the packet pairs or trains sent along the estimated
network path through the AP to the client (1). Wireless channel
conditions and other traffic may vary the probing traffic disper-
sion behavior and produce estimation errors.

While crossing traffic does not contend with probe packets,
crossing traffic does share the bottleneck and thereby strongly
impacts bandwidth estimate accuracy on the WLAN. Figure 5
shows crossing traffic coming from the AP to associated clients

Downloadable from http://www-ece.rice.edu/networks/.
http://www.agere.com/client/wlan.html
http://perform.wpi.edu/downloads/#rbar

722

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on June 24,2020 at 14:42:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 5.2 Packet dispersion. Source: [45].

capacity Ci < R their link output dispersion ∆out will be:

∆out =
L
Ci

(5.1)

Once the packet pair traverses all the links N along the path, we obtain that the
dispersion measured in the receiver is:

∆R =
L

mini=0...N Ci
=

L
Cn

(5.2)

Equation 5.2 provides a simple model to estimate the narrow link capacity of
an end-to-end path by measuring the inter-packet arrival time of packet pairs in
a receiver node. However, it does not take into account the noise introduced by
cross-traffic along the path. Congested links can affect the precision of the capacity
estimation provided by the packet dispersion model.

On the other hand, we can capture a statistics of multiple packet dispersion
measurements to estimate the transient network available bandwidth. Such a statistic
can be represented in form of an histogram and relevant information can be extracted
from it. A pioneer work in the analysis of the packet pair dispersion distributions is
[16]. By using this model they study the packet pair dispersion histogram shapes
looking for significant patterns that allow for detection of the end-to-end narrow link
capacity or its available bandwidth. Figure 5.3 shows different examples of packet
dispersion measurements histograms as analyzed by Dovrolis et al. Given a multi-hop
simulated path with a narrow link capacity of 40Mbps, they analyze the distribution
under different cross-traffic conditions after sending 1000 packet pair probes of fixed

56 Packet dispersion model and measurement

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

0

40

80

120

160

200

240

280

320

360

400

of

 m
ea

su
re

m
en

ts

P={100,75,55,40,60,80}, L=Lc=1500B

u=20%

Capacity Mode (CM)

Post−Narrow
Capacity Mode

Sub−Capacity
Dispersion Range
 (SCDR)

 (PNCM)

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

0

20

40

60

80

100

120

140

160

of

 m
ea

su
re

m
en

ts

P={100,75,55,40,60,80}, L=Lc=1500B

SCDR

PNCM

CM
u=80%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Bandwidth (Mbps)

0

50

100

150

200

250

300

350

400

450

of

 m
ea

su
re

m
en

ts

ren (U−Delaware) to hardy (Ensica, France)

Saturday 10am (EDT)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Bandwidth (Mbps)

0

50

100

150

200

250

300

350

of

 m
ea

su
re

m
en

ts

ren (U−Delaware) to hardy (Ensica, France)

Thursday 10am (EDT)

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

0

20

40

60

80

100

120

140

160

of

 m
ea

su
re

m
en

ts

P={100,75,55,40,60,80}, u=50%, L=1500B

Fixed CT packet size: Lc=1500B
SCDR CM

PNCMs

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

0
10
20
30
40
50
60
70
80
90

100
110
120

of

 m
ea

su
re

m
en

ts

P={100,75,55,40,60,80}, u=50%, L=770B

SCDR

Lc uniform in [40,1500]B
Variable CT packet size:

CM

PNCM

(a) 20% cross-traffic.

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

0

40

80

120

160

200

240

280

320

360

400

of

 m
ea

su
re

m
en

ts

P={100,75,55,40,60,80}, L=Lc=1500B

u=20%

Capacity Mode (CM)

Post−Narrow
Capacity Mode

Sub−Capacity
Dispersion Range
 (SCDR)

 (PNCM)

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

0

20

40

60

80

100

120

140

160

of

 m
ea

su
re

m
en

ts

P={100,75,55,40,60,80}, L=Lc=1500B

SCDR

PNCM

CM
u=80%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Bandwidth (Mbps)

0

50

100

150

200

250

300

350

400

450

of

 m
ea

su
re

m
en

ts

ren (U−Delaware) to hardy (Ensica, France)

Saturday 10am (EDT)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Bandwidth (Mbps)

0

50

100

150

200

250

300

350

of

 m
ea

su
re

m
en

ts

ren (U−Delaware) to hardy (Ensica, France)

Thursday 10am (EDT)

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

0

20

40

60

80

100

120

140

160

of

 m
ea

su
re

m
en

ts

P={100,75,55,40,60,80}, u=50%, L=1500B

Fixed CT packet size: Lc=1500B
SCDR CM

PNCMs

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

0
10
20
30
40
50
60
70
80
90

100
110
120

of

 m
ea

su
re

m
en

ts

P={100,75,55,40,60,80}, u=50%, L=770B

SCDR

Lc uniform in [40,1500]B
Variable CT packet size:

CM

PNCM

(b) 80% cross-traffic.

Fig. 5.3 Packet dispersion distributions. Source: [16]

size 1500B. In the case of the 20% cross-traffic as in Fig. 5.3a a strong capacity mode
is detected. This is because cross-traffic interference is limited and most packet pairs
reach the destination with the rate of the narrow link. When cross-traffic increases,
for example at 80% as in Fig. 5.3b, the distribution shape changes considerably and
the capacity mode is not obviously detectable anymore. Many work in literature
focused on extracting valuable information from such distributions, including our
own contributions proposed in Chapters 6, 7, and 8.

5.2 Probe-gap curve

In the active probing area, a part from packet dispersion, two well established models
for available bandwidth estimation are extensively covered in literature: the probe-
gap model (PGM) and the probe-rate model (PRM). In both cases the analysis carried
on is based on the observation of the inter-send gap of some crafted probes from a
sender and the inter-arrival gap of those same probes in the receiver. The models are
based on the probe-gap curve as shown in Figure 5.4. Assuming a fluid cross traffic
model and representing the network between sender and receiver as a single FIFO
queue, we define gin and gout as, respectively, the inter-packet gap when packets
are entering the bottleneck (i.e. leaving the sender), and the inter-packet gap when
packets are leaving the bottleneck (i.e. entering the receiver). By looking for the

5.2 Probe-gap curve 57

g o
ut
/g
in

1

� − � 1/gin

1

�

Fig. 5.4 Representation of the probe gap curve. The C−λ point marks the available
bandwidth.

bending point where (gout/gin)> 1, the probe-gap curve provides an estimation of
the available bandwidth. PGM and PRM differ in the way they infer the bending
point of the curve.

5.2.1 Probe-gap Model - PGM

The idea behind PGM is to send packet pairs at a rate equal to the one of the narrow
link to then estimate the rate of the tight link. As such, PGM assumes that capacity is
known in advance. A few tools implementing PGM foresee an exploratory phase in
which capacity is inferred.

5.2.2 Probe-rate Model - PRM

PRM methods are also called iterative methods, as they gradually decrease the time
interval between the probes or trains of probes to detect the probe-gap curve bending
point, thus they do not take assumptions on the link capacity. While methods like
these have been proven to be more accurate than PGM-based methods, they generally
require more time and generate more probing traffic. During this period of time,
cross traffic can considerably vary, causing incorrect estimations.

58 Packet dispersion model and measurement

�

)UDPH
/LQN
/D\HU

*62��762

*52

1,&

'ULYHU

5LQJ�%XIIHU�
�'0$�,QWHUUXSWV�

,QWHUUXSW�
&RDOHVFLQJ

;'3�H%3)�
SURJUDP

Fig. 5.5 GRO/GSO/TSO mechanisms maximize network throughput.

5.3 Inter-packet time measurement challenges in Linux

Packet dispersion and other available bandwidth estimation models such as PGM and
PRM all rely on precise packets timestamping to determine the exact inter-packet
time between probes. Obtaining such a measurement in modern operating systems
can be quite challenging. Along the years, improving network throughput has been
the focus of most end-user operating systems. Favouring throughput is usually
achieved by batch-processing packets, minimizing the amount of interrupts handled
by the operating system and the operations on protocol headers. The downside of
this type of optimizations is the loss of timely information in respect to when packets
are actually processed by the NIC and sent/received over/from the network.

In Figure 5.5 we can see that the Linux kernel implements various of these
mechanisms. We will focus on GSO, GRO, and TSO. These are optimizations that
allow the networking stack to handle SKBs worth of many bytes of data, delaying
packetization/segmentation at a later moment (in case of egress traffic - GSO), or
grouping adjacent packets in a single SKB (in case of ingress traffic - GRO). This
reduces the amount of per-packet operations and improves throughput. For outgoing
packets, another optimization is possible, the TCP Segmentation Offload (TSO): in
this case the egress traffic segmentation is managed directly by the hardware NIC,
when supported.

5.3 Inter-packet time measurement challenges in Linux 59

Another optimization is implemented in the communication between the NIC
driver and the rest of the kernel, interrupt coalescing. As the name itself indicates,
the idea is to reduce the amount of hardware interrupts generated from the NIC and
handled by the OS upon packet reception. To do so, received packets are accumulated
in a ring buffer and notified to the kernel only once a certain amount of packets has
been received or a timeout is triggered.

Given all these optimization mechanisms, the point in the stack at which packets
are timestamped can affect greatly the accuracy of the inter-packet time measured,
thus the inferred inter-packet rate used to build the packet dispersion distributions.
For example, timestamping in a user-space application is usually inaccurate. We
explored the possibilities provided by Linux to obtain a more accurate inter-packet
time.

First we implemented an inter-packet measurement system based on the Linux
eXpress Data-Path (XDP) [33]. XDP provides a high performance programmable
network data path. It works only on the ingress path of the traffic received by a
NIC. It allows to inject eBPF program in the stack hook just after the NIC driver
before GRO is performed over incoming packets as shown in Figure 5.5. We set-up
an experiment between two back-to-back servers running Linux Debian. The link
between servers has a capacity of 1Gbps. The experiment consisted in an HTTP
transfer of a 1GB file with no cross-traffic. We timestamped each incoming TCP
acknowledgement tsi in the sender with an XDP eBPF program, and registered each
ACK sequence number acknumi . We then computed what we call iter-packet rate
following 5.3:

IPrate =
acknumi−acknumi−1

tsi− tsi−1
=

δacks

δt
(5.3)

Such a measurement allows to infer the rate of the packets originally sent by sender
by looking exclusively at the connection acknowledgements. We will use such a
metric extensively in Chapters 6 and 7.

In Figure 5.6a we can see the cumulative density function of the inter-packet rate
measurements obtained when running the file transfer experiment and timestamping
with XDP. As shown, more than 50% of the measurements is resulting in inter-packet
rate of more than 1Gbps, which is not correct. This happens as a consequence of
the interrupt coalescence performed by the NIC driver [56] [69]. ACKs arrivals are

60 Packet dispersion model and measurement

(a) Cumulative density function of
inter-packet rate measured by XDP.

(b) Cumulative density function of
inter-packet rate measured by Libpcap with

hardware timestamps.

Fig. 5.6 Inter-packet rate measurements in NFV for a 1Gbps link.

aggregated and the timestamp performed in the XDP program does not reflect the
actual inter-packet arrival time as seen in the NIC.

We then repeated the experiment using tcpdump to capture packet traces in the
receiver NIC. We enabled the hardware timestamp that was supported by the server
hardware. In this way, libpcap has access to the timestamp taken by the hardware
NIC instead of relying on a software timestamp. To the authors knowledge, XDP
eBPF programs cannot get access to the hardware timestamp field which is filled in
when instantiating the received packet socket buffer in higher levels of the Linux
kernel network stack. As such, in presence of hardware timestamp support, libpcap
is able to obtain very accurate inter-packet time measurements. Figure 5.6b shows
the cumulative density function of the inter-packet rate obtained by libcap: now most
of the measurements are in the 1Gbps range, showing that it is possible to achieve
accurate inter-packet rate measurements.

5.4 Conclusions

In this chapter we exposed the main concepts behind the packet dispersion model.
Packet dispersion is a method to analyze end-to-end network capacity and available
bandwidth. Other models such as PGM and PRM have been introduced as their use

5.4 Conclusions 61

is well established in the active probing available bandwidth estimation community.
All these models rely on the inter-packet time measurement. We explored how
to obtain this measurement in modern OSes such as Linux. We found out that it
is possible to measure inter-packet time with good accuracy thanks to improved
hardware/software support. This enables the research of new techniques based on
the packet dispersion model for SD-WAN applications. In Chapter 6 a first proposal
for available bandwidth estimation is presented.

Chapter 6

Available Bandwidth Estimation

Nowadays, improving the Quality of Experience of final users is of paramount
importance. To this end, Software-Defined Networking (SDN) opens new horizons
for network devices to be smart, and to take advantage of the network deep contextual
knowledge. Network stacks in endpoints and edge routers play an important role in
managing the available network resources, but they usually lack visibility. Bandwidth
adaptation, on the other hand, has always been one of the fundamentals research
topics in both routing architectures and transport protocols. As of today, endpoints
can infer the available bandwidth from their achieved TCP throughput; however, TCP
throughput does not necessarily reflect the network available bandwidth, depending
mostly on the congestion control strategy adopted. Another way to estimate it is
to actively generate probes with specific traffic patterns as extensively documented
in literature [16, 63, 40, 48, 58, 19, 26]. We detect some limitations in both these
approaches. TCP throughput can be misleading when estimating the available

6PDUW�PHDVXUHPHQWV

$YDLODEOH�%DQGZLGWK�
(VWLPDWLRQ

Fig. 6.1 Chapter contribution to the dissertation.

64 Available Bandwidth Estimation

bandwidth. Congestion control algorithms use specific metrics to interpret congestion
and adapt their sending rate iteratively. Loss-based congestion controls react to
packet loss. Such algorithms, combined with the big buffers of modern routers, can
considerably degrade the performance of connections, causing bufferbloat [25]. Their
behavior greatly affects the link utilization, finally impeding a correct estimation of
the available network resources, as the network state is modified by their operation.
More recent developments in TCP congestion control, such as Google’s BBR [9],
take another estimation strategy, much more promising and effective. However,
its way of probing for available bandwidth still affects the network under analysis,
consequently altering the available bandwidth estimation as detailed in Section 6.3.
On the other hand, many of the developed active probing methods are not suitable
for real-world estimation. Their biggest limitation is that they usually need to be
deployed in both endpoints of the connection, making them unsuitable for single-
sided analysis, especially on routers. Finally, most methodologies assume a fluid
cross traffic model, defeating their accuracy in scenarios with highly variable cross
traffic patterns.

In this study, we propose a Statistical Approach to Available Bandwidth EStima-
tion, – SABES –, a passive probing method based on the packet dispersion model
applied to TCP acknowledgments. Its main characteristics are:

• computationally inexpensive and therefore suited to real time analysis,

• does not need to be deployed at both endpoints,

• no assumptions about the cross-traffic model are made, is data-driven and
based on an extensive set of simulations and real-world scenarios,

Possible applications of SABES include active congestion control strategies
e.g., active queue management at an edge router or congestion control at the end-
point, and available bandwidth analysis. While it relies on accurate TCP segments
time-stamping, we demonstrate that our filtering technique makes it robust even in
virtualized environments.

6.1 SABES Heuristic 65

SENDER

RECEIVER

t

Seq

4345

Seq

5793

Seq

7241

Seq

8689

Seq

10137

Seq

11585

Seq

13033

ACK

5793

Cumulative

ACK

Cumulative

ACK

Cumulative

ACK

ACK

8689

ACK

11585

ACK

14481

Seq

14481

Inter-Packet Rate is modified according

to the bottleneck available bandwidth

Delayed in

bottleneck buffer

t

. . .

Seq

15929

Seq

17377

The Inter-ACK gap (or Inter-Packet Rate)

allows us to measure the sender's original pacing

and the effects of cross traffic over it

Fig. 6.2 The Inter-Packet Rate is the rate of the originally sent data packets that is
possible to infer from their TCP acknowledgments spacing.

6.1 SABES Heuristic

The idea behind SABES is to evaluate the inter-packet arrival time of the acknowledg-
ments of a TCP flow. The ACK number carried in a packet allows the computation
of the actual inter-packet rate of the packets that generated each specific ACK pair.
For each ACK pair with ACK number acknum we define the the inter-ack bytes as
δacks = acknumi−acknumi−1 and the inter-packet time δt is then: δt = tsi− tsi−1. ts is
the ACK timestamp taken either on the egress interface of the receiver or the ingress
interface of the sender. We finally define the inter-packet rate - IPrate as:

IPrate =
acknumi−acknumi−1

tsi− tsi−1
=

δacks

δt
(6.1)

Duplicated and out of order ACKs-derived measurements are discarded. Figure
6.2 provides a graphical representation of the inter-packet gap/rate model using
TCP acknowledgements. IPrate can be measured both in sender and receiver. To be
noted that in real systems, TCP stacks implement cumulative acknowledgements.
Measuring the inter-ACK gap for every ACK-pair comprises the behavior of two or
more original packet-pairs sent by the sender. Using the measurements obtained with
Equation 6.1, we split the algorithm into two phases. The first phase tries to infer
the connection narrow link capacity at the beginning of a TCP connection, while the
second one tries to continuously estimate the available bandwidth.

66 Available Bandwidth Estimation

6.1.1 Capacity Estimation

At the beginning of a TCP connection, while the sender congestion window is still
growing, packets are sent in bursts with an inter-packet rate that approximates the
sender NIC link speed; at that time, packets are said to be sent back-to-back and
cross traffic is less likely to interfere with such packets; cross-traffic interference is
more likely when TCP slow start has grown considerably or during TCP congestion
avoidance. However, if there is a link with lower capacity than the sender NIC,
packets will be queued before entering this link and the inter-packet rate measured on
the acknowledgements will be paced accordingly. We base our capacity estimation
technique on the one proposed by pathrate in [16]. We study the IPrate distribution
of the first α ACKs. Valid values for α vary according to the link capacity, the TCP
slow start algorithm, the connection RTT, and the amount of cross traffic in the tight
link. We always assume that the TCP flow in analysis is a bulk data transfer and all
packets are the size of TCP MSS. We study a worst-case scenario, looking for the
minimum amount of packets for α that makes a correct capacity estimation possible.
We find that for a 100Mbps narrow link, with 90% cross traffic from multiple Pareto
sources, 140ms RTT, and multiple competing flows, that at least 10 acknowledgments
are needed to estimate the capacity. To this end, we bind the formula to the NIC
capacity Cn, which we assume we can know in advance, being 1Gbps for this specific
case. We derive then:

α =
Cn

2 ·MSS ·RT T
· ε (6.2)

where ε is a constant derived from the data exploration of the previously cited worst
case scenario. With such an α value we are able to complete the capacity estimation
between 3 and 30 RTTs, with less cycles for larger RTTs. In this way, we can capture
enough information to build the histogram statistic while not delaying the capacity
estimation to a late moment in the connection lifetime. Being the first packets of
a TCP connection sent back-to-back, we can follow the conclusions of [16] and
analyze if the distribution highest mode represents more than β% of the total sample
data. We choose β = 30% as shown in [16]; this applies to non-congested scenarios
where a strong capacity mode is formed, as shown in Figure 6.3a. If the distribution
is not found to have a single high mode, we proceed by studying the IPrate generated
by ACK-trains: we consider every N acknowledgements instead of each pair and

6.1 SABES Heuristic 67

0 20 40 60 80 100 121 141 161 181
ip_rate [Mbps]

0

5

10

15

20

25

sa

m
pl
es

estimated_capacity pairs

(a) Capacity estimation is obtained from
single strong mode in packet pairs

0 22 44 66 88 110 132 154 176 199

ip_rate [Mbps]

0.0

2.5

5.0

7.5

10.0

12.5

#
 s

a
m

p
le

s

estimated_capacity pairs trains

ADR
Highest strong mode > ADR

(b) Capacity estimation is obtained from
packet trains dispersion

Fig. 6.3 Capacity estimation following SABES heuristic.

perform the same computation described in Equation 6.1. This is equivalent to using
packet trains as done in pathrate. We look at ACKs trains of size N = 4. In this
scenario, IPrate converges closer to the flow throughput; in [16] a similar concept
is identified as Asymptotic Dispersion Rate (ADR). We pick the ADR value as the
main mode of the distribution obtained from ACKs trains. If multiple mode have the
same frequency, we pick the highest value one. We then look for the first mode in
the original set of modes obtained from ACK pairs and select the first mode with a
value higher than the ADR as capacity value as show in Figure 6.3b. The accuracy of
this technique is affected by the bin size selected. In our case, we fix the number of
bins to 10 instead of selecting a single bin size.

6.1.2 Available Bandwidth Estimation

SABES main objective is to first identify specific moments in which the IPrate

measurements are valid to be used to estimate available bandwidth. Since we are not
controlling how the probes are generated, the packet pacing applied by TCP is not
always adequate to proceed with the estimation. For example, this happens when
the flow has a very low throughput, as per the application generating the traffic itself
(e.g. interactive flows or constant bit-rate flows) or because of very high level of
concurrency on the machine generating traffic (e.g., more than hundreds of bulky
flows). A sliding-window mechanism based on the connection Round-Trip Time

68 Available Bandwidth Estimation

SENDER

RECEIVER

t

t

Last RTT measured includes

3 ACKs in sliding windowPacket

400

ACK

401

. . .

Packet

500

ACK

501

An increased RTT extends

the sliding window to include ACKs far

in the past in the dynamic analysis

Fig. 6.4 The number of samples selected to build the statistic depends on the last
measured RTT.

(RTT) is used. When measuring in the sender the exponentially smoothed RTT sRT T
is used. In the receiver, the RTT used for the sliding window is measured during
the three-way handshake. The dynamic sliding window Di of the ACKs IPrate is
obtained as defined in Eq. 6.3:

Di = {pk.iprate|tspk ∈Wi} (6.3)

Wi = [tspi−min(1sec,sRT Ti), tspi] (6.4)

where ts is the packet timestamp, pi is the last received ACK and sRT Ti is the
smoothed RTT computed up to the last RTT measurement. The maximum window
horizon is set to 1 second behind tspi as defined in Eq. 6.4. A graphical representation
of the dynamic sliding window mechanism is provided in Figure 6.4. The result is
filtered to remove statistical outliers that can derive from noisy measurements, using
a simple inter-quartile range rule over the window in analysis. We discard duplicated
ACKs. We finally filter any inter-packet time bigger than twice the RTT, as they
are usually associated with retransmission timeouts or slowly growing congestion
windows.

We use the samples selected through this dynamic sliding window mechanism -
Di - to build a statistical distribution of the inter-packet rate in form of an histogram.

6.1 SABES Heuristic 69

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ip_rate values normalized to capacity

0.0

0.1

0.2

0.3

0.4
P

er
ce

nt
ag

e

mean
median

75p
25p

real_avbw

Fig. 6.5 Example of IPrate distribution that matches SABES criteria obtained with
the dynamic sliding window.

We studied this histogram for a big simulation data-set and derive an heuristic to infer
when the IPrate follows specific patterns. Given Di we define its inter-quartile range as
I (Di) = q75(Di)−q25(Di) and its mean-median distance as M (Di) = |q50(Di)−
x̄(Di)|, where qy() and x̄() are the y-quantile and mean operator, respectively. From
extensive data-analysis of both simulations and real-world traces we detect that when
M (Di) is small and I (Di) is big, x̄(Di) is representative of the network available
bandwidth. We finally define two parameters ω and γ as the mean-median maximum
distance and the minimum distribution spread, respectively. Both are derived from the
capacity C estimated in 6.1.1; we experimentally find that ω = 0.1 ·C and γ = 3 ·ω
allow to identify distributions that meet our criteria. The set B of all available
bandwidth estimations obtained from a single TCP flow is defined as:

B = {x̄(Di) |M (Di)≤ ω and I (Di)≥ γ} (6.5)

In Figure 6.5 is shown an example of valid IPrate sliding histogram following the
heuristic criteria. The samples are normalized according to the estimated link capacity.
In this case, the mean value actually approximates the available bandwidth with an
error of 3.5%.

70 Available Bandwidth Estimation

100Mbps

Cross traffic

TCP traffic of interest

1Gbps 1Gbps

1Gbps1Gbps

Fig. 6.6 Simulated topology with one single 100 Mbps bottleneck and hop-persistent
cross-traffic flowing in the same direction of the main TCP data flow.

6.2 Heuristic Evaluation

6.2.1 Simulation environment

To validate our model, we simulated a network scenario in ns-3 [59]. The simulated
dumbell topology consists of multiple intermediate routers and one single bottleneck
link at 100Mbps, as shown in Figure 6.6. All the other links have 1Gbps capacity.
We simulate scenarios with different values of end-to-end latency, varying between
20ms and 140ms. Cross-traffic is traverses only the bottleneck link (is said to be
one-hop persistent). The TCP traffic of interest goes through all topology up to the
receiver. Cross-traffic and traffic of interest are generated from different sources and
received in different sinks. The cross-traffic generators simulated are both constant
bit-rate and on-off Pareto sources. In both cases, cross-traffic is generated so to use
20%, 50%, and finally 90% of the bottleneck capacity. We generate tests with one
single cross-traffic flow, up to 30 concurrent cross-traffic sources; cross-traffic flows
duration is continuos until the end of the TCP transfers. The TCP traffic of interest
flows are bulk data transfers of 1MB, 5MB and 50MB. We test generating only one
TCP flow, with 20 and up to 50 concurrent TCP flows generated from the same host.
TCP congestion control algorithm is the loss-based TCP-Reno (default in ns-3).

6.2.2 Heuristic simulation results

We show qualitative results for the heuristic in a single TCP flow with 20% Pareto
cross-traffic scenario in Figure 6.7. Blue dots represent SABES estimations. The

6.2 Heuristic Evaluation 71

2.5 5.0 7.5 10.0 12.5
Time [s]

0

20

40

60

80

100
Th

ro
ug

hp
ut

 [M
bp

s]

TCP_flow
cross_traffic

real_avbw
SABES

Fig. 6.7 Heuristic application to a single TCP flow, single bottleneck scenario. The
mean absolute error of B is 7.4Mbps.

heuristic provides correct estimations based purely on acknowledgments-derived
measurements in moments where the actual TCP throughput is far from matching
the real available bandwidth. As a matter of fact in this scenario the loss-based
TCP congestion control is never converging to an optimal link utilization. As a
matter of fact, this flow TCP throughput diverges from the real available bandwidth
with an error of 30Mbps in its congestion avoidance phase. On the other hand
SABES heuristic is able to detect when the IPrate measurement is representative of
the available bandwidth and the mean absolute error of the estimation set B is 7
Mbps.

We show the distribution of the mean absolute error of the estimation in Figure 6.8.
Estimations are computed over a validation data-set consisting of highly competitive
simulations scenarios, with 50 TCP concurrent flows and 30 cross-traffic Pareto
sources, using up to 50% and then 90% of the bottleneck capacity. We test this in a
topology with an end-to-end RTT of 20ms and then 140ms. Bottleneck capacity is
100Mbps. Results improve in the 90% cross-traffic scenario in respect to the 50%.
We deduce that the better estimation obtained in the 90% cross-traffic scenario is

72 Available Bandwidth Estimation

50 90
Pareto cross-traffic link utilization (%)

0
10
20
30
40
50
60
70
80
90

100

M
ea

n
A

bs
ol

ut
e

E
rr
or

 [M
bp

s]
latency

20
140

Fig. 6.8 Mean absolute error results of the estimations applying SABES in a
simulated environment with 100Mbps bottleneck for different values of cross-traffic

link utilization and latency.

due to the average TCP throughput being closer to the actual available bandwidth;
in these cases the TCP congestion control is able to converge to a fairly precise
value, improving the IPrate statistic. On the other hand the estimations accuracy
is independent on the RTT. Results obtained provide good confidence margins in
the estimation with a computationally lightweight process implementable as part
of a real-time system. SABES can be deployed both close to the sender or the
receiver and its estimations are obtained exclusively from passive TCP analysis.
However, the results distribution for the 50% cross-traffic case shows a median error
value of approximately 30Mbps, which is rather high. In Chapter 7, we investigate
the problem and propose an AI-enhanced solution, improving estimation results
considerably.

6.3 Related Work in AvBw estimation

While SABES is based on the packet pair dispersion model as exposed in Chapter 5,
available bandwidth estimation has been subject of extensive studies in the network-

6.3 Related Work in AvBw estimation 73

ing community, comprising other types of models. As seen in Chapter 2 the BBR
TCP congestion control operates on the Kleinrock’s optimal operating point [44] in
which the available bandwidth and the round trip time, RTT, are estimated in order
to determine the bandwidth-delay product (BDP). The endpoint probes periodically
to estimate the tight link available bandwidth by pacing packets at higher rates than
the previous estimation. However, BBR has been proven to build long-term standing
queues that can cause misleading BDP estimation [30]. This causes the algorithm
to often overestimate the BDP while not being fair to other competing flows [46].
Recent development in BBRv2 try to mitigate the problem, however early studies
suggest that it is still sufferring from such problems [21]. We suggest that BBR
BtlBw estimation could be improved by embedding packet pair dispersion analysis,
whilst their current evaluation is based on the in-flight bytes estimation. SABES
available bandwidth estimation strategy could be used as part of a congestion control
scheme that preserves higher fairness characteristics such as those guaranteed by
loss-based congestion controls. The SABES approach entails detecting moments
when the TCP sending rate is higher than the available bandwidth, and analyzing
the ACKs inter-packet distribution to detect its value at that time. Under normal
TCP operating conditions, this type of behavior can provoke phases where the flow
self-induced congestion is still not causing adverse events such as buffer-bloat or
packet loss; to estimate the available bandwidth during those phases is beneficial.
Such approach is also taken by TCP HyStart [27]: it is a heuristic to find a safe exit
point for TCP slow start which infers the available bandwidth based on the clocking
of TCP ACKs. HyStart mitigates the losses caused by slow start and it is used as
the default slow start algorithm for the CUBIC congestion control; their heuristic
includes packet trains being sent back-to-back during the slow start. In addition to
what HyStart does, SABES filters out statistical anomalies in clocking of TCP ACKs.
SABES can run in real-time during the whole lifetime of the TCP connection and
find adequate moments to estimate available bandwidth.

In the area of active probing tools we identify related work using the packet
dispersion, PGM, and PRM models.

Pathrate is a tool developed in [16], which is the first work in providing a rigorous
definition of the packet disperion model and we extensively base our work on it.
Other works include the more recent [35, 49, 54].

74 Available Bandwidth Estimation

As explained in Chapter 5, idea behind PGM is to send packet pairs at a rate
equal to the one of the narrow link to then estimate the rate of the tight link. As such,
PGM assumes that capacity is known in advance. A few tools implementing PGM
foresee an exploratory phase in which capacity is inferred. SABES does the same,
exploiting some characteristics of TCP slow start to infer the narrow link capacity.
Tools implementing PGM include [63], and [43]. Based on PGM is [40], a work that
takes a similar approach as SABES although with some very relevant differences:
even though they use TCP acknowledgments to estimate available bandwidth, they
take into account both the sending rate of the data packets and the receiving rate of
the ACKs, following the probe-gap model proposal. SABES looks exclusively to the
ACKs clocking and its distribution to determine the available bandwidth, making it
suitable for receiver-side-only TCP based estimation; to the authors knowledge, no
other tools implements such an approach. Also, SABES does not need information
provided by the connection socket or by the operating system, making it suitable for
deployment in routers.

Examples of methods implementing a PRM approach are TOPP [48], pathChirp
[58], and BART [19]. pathChirp was one of the first tool developed that used the
concept of packet chirps which consist of packet trains sent with an exponentially
decreasing inter-packet time. This approach aims at generating self-induced conges-
tion in the tight link queue, causing increasing queueing delays. A similar effect is
obtained with TCP flows, especially the ones using loss-based congestion controls
such as CUBIC, and SABES takes advantage of that. BART reaches a fairly accurate
real-time available bandwidth estimation, thanks to the application of Kalman filters
for signal denoising, applied to the inter-packet rate measurements. However, the
tool is not publicly available, and experiments have been conducted in the scale of
tenths of megabits per second, which makes it unsuitable for today network needs.
ASSOLO [26] exploits a new technique for signal denoising called Vertical Hori-
zontal Filter (VHF) which proved to be accurate. The tool runs on Linux and needs
in-kernel support for real-time task scheduling to guarantee accurate packet pacing.

6.4 Conclusions 75

6.4 Conclusions

In this study we presented SABES, a method to estimate network available bandwidth
using passive measurements obtained from TCP traffic. SABES is computationally
inexpensive, taking advantage of simple statistical analysis of TCP traffic. It can be
deployed just on one side of the TCP connection, being it either close to the sender
or the receiver, simplifying its deployment. SABES implements an heuristic that
detects IPrate distributions whose mean value approximates the network available
bandwidth. SABES model was validated in simulations. We show that SABES
heuristic provides a fair estimation of the available bandwidth of our validation data-
set with a median mean absolute error of 30% of the bottleneck capacity. SABES is a
good candidate for an estimator that is part of a TCP congestion control algorithm or
other types of traffic control systems such as the one described in Chapter 4. However,
the estimation results obtained have margin for improvement. We investigate an
enhanced version of SABES in Chapter 7.

Chapter 7

Deep Neural Networks for AvBw
estimation

With the advent of increased computational capabilities Artificial Intelligence has
gained a lot of interest in the research community. AI comprises a vast amount of
techniques and theories, which are united by the objective of designing algorithms
that are able to "learn" from data. Under the umbrella of AI techniques, one that
generated considerable interest is the Deep Neural Network (DNN). DNNs are a
particular type of Artificial Neural Network (ANN) with multiple neuron layers
between the network input and output. They are an effective tool in modeling
complex non-linear problems starting from data samples of the specific domain
analyzed.

6PDUW�PHDVXUHPHQWV

$YDLODEOH�%DQGZLGWK�
(VWLPDWLRQ

Fig. 7.1 Chapter contribution to the dissertation.

78 Deep Neural Networks for AvBw estimation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ip_rate values normalized to capacity

0.0

0.1

0.2

0.3

0.4

P
er

ce
nt

ag
e

mean
median

75p
25p

real_avbw

(a) Mean is representative of the available
bandwidth

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ip_rate values normalized to capacity

0.0

0.2

0.4

P
er

ce
nt

ag
e

mean
median

75p
25p

real_avbw

(b) Mean is not representative of the
available bandwidth

Fig. 7.2 The DNN classification problem.

With the development of SABES-NN we improve the proposal of Chapter 6 in
the following ways:

• we use a neural network to filter out misleading measurements,

• we improve the results obtained by the heuristic approach proposed in Chapter
6 three-fold,

• we compare it to other state-of-the-art tools providing more precise results, up
to 10x.

7.1 Neural Network design

The heuristic described in Chapter 6 tries to identify distributions shaped like the
one in Figure 7.2a, looking for a mean value which is representative of the available
bandwidth. However, there are distributions that match the heuristic criteria but that
do not contain any significant mode close to the available bandwidth, such as the
one shown in Figure 7.2b. The mean of such a distribution gives a 50% error in
the estimation and no actual values are present in the bin closest to the distribution
mean. The histogram shapes of Figure 7.2a and Figure 7.2b are notably different.
To distinguish between them we train a DNN. DNNs have proven to be effective
as classifiers when the input features are non-linear and with high dimensionality,

7.1 Neural Network design 79

Pe
rc
en
ta
ge

ipt_rate values
normalized to capacity

Layer 1 Layer 2

Hidden Layers

Output
Layer

Neuron

Input
Layer

Good
Bad

Fig. 7.3 Deep Neural Network acting as histogram classifier for available bandwidth
estimation.

such as the sliding histograms produced by SABES heuristic. We train a neural
network to classify good and bad histogram distributions; the generalization is
obtained by normalizing the data to the estimated capacity and the total number
of samples obtained in the sliding window. In this way, the neural network input
data is independent of the link capacity and the sample size. We fix the histogram
bins number to 10. This translates in a lower resolution when representing IPrate

distributions of high capacity links (i.e. more than 500Mbps), although we opt for
this compromise to keep the neural network of reasonable size.

We run SABES heuristic and get the complete normalized sliding histograms of
the simulations described in Section 6.2.1. We obtain over 140000 sliding histograms
used as training data-set for the neural network. We run a supervised-learning training
process labeling all the histograms good whose mean value provides an available
bandwidth estimation with an error lower than ±10% of the bottleneck capacity,
and as bad the other histograms. We identify that distributions that overestimate or
underestimate have a similar shape, as far as the estimation error is small. The neural

80 Deep Neural Networks for AvBw estimation

50 90
Pareto cross-traffic link utilization (%)

0
10
20
30
40
50
60
70
80
90

100

M
ea

n
A

bs
ol

ut
e

E
rr

or
 [M

bp
s]

latency
20
140

(a) Heuristic only.

50 90
Pareto cross-traffic link utilization (%)

0
10
20
30
40
50
60
70
80
90

100

M
ea

n
A

bs
ol

ut
e

E
rr

or
 [M

bp
s]

latency
20
140

(b) Neural Network.

Fig. 7.4 Estimation results for SABES and SABES-NN applied to our validation
data-set.

network used is a deep neural network, consisting of two hidden layers as shown in
Figure 7.3. The network inputs are 10 neurons, one per normalized bin of the sliding
histogram. The network output are two neurons, one per class - good and bad.

Following the generalization concepts exposed in [15] we find the minimum
number of neurons per each hidden layer that avoids over-fitting. Given the neural
network number of inputs Ni and outputs No, we use as upper boundary for the
number Nh of the hidden layers neuron, the result of Equation 7.1:

Nh =
Ns

(σ ∗ (Ni +No))
, 2≤ σ ≤ 10 (7.1)

The activation function for the input and hidden layers neurons is a rectified linear
unit (ReLU) while the output layer activation is a normalized exponential function,
also known as softmax.

7.2 Evaluation over simulation dataset

After training, we run again SABES but with the additional filter provided by the
neural network. The validation data-set is the same used for the evaluation of the
heuristic alone. The results obtained are shown in Figure 7.4b. The boxplot shows
the improved accuracy provided by the usage of the neural network. The 50th

7.3 Evaluation in real testbed 81

VM

VM

VM VM

VM

VM

UDP cross-traffic

TCP Traffic

1 Gbps

Host 1 Host 2

300 Mbps 300 Mbps

Fig. 7.5 Real testbed topology with one single 300Mbps bottleneck.

percentile of the estimations error is below 10Mbps in all the scenarios proposed,
compared to the 30Mbps obtained when using the heuristic alone. While training a
neural network can be computationally expensive, we quantify that adding the neural
network evaluation increases the computation execution time only by 6% in respect
to the heuristic alone.

7.3 Evaluation in real testbed

We finally tested SABES-NN in a real testbed. The testbed topology is a dumbell as
shown in Figure 7.5. It is composed of six virtual machines, two for TCP traffic gen-
eration, two for UDP cross-traffic generation, and finally two acting as intermediate
routers and shapers. The VMs are deployed in two different physical hosts. The two
hosts are connected through a 1Gbps link, but we apply a traffic shaper of 300Mbps
to the egress interfaces of both intermediate routers. We also add an artificial delay of
20ms between the two physical hosts using the Linux Traffic Control module NetEm.
All VMs run Debian Linux; Host 1 is running KVM as hypervisor, while Host 2
has VMWare ESXi. TCP traffic is generated as large file transfers of 100 MB over
HTTP. UDP cross-traffic is generated with the D-ITG tool [2]. We chose this tool
as it allows to generate traffic following a Pareto distribution of choice as done in
simulation. We capture the traffic in both sender and receiver VMs with tcpdump,
which uses Libpcap as backend library. Hardware timestamps are enabled in the

82 Deep Neural Networks for AvBw estimation

42.5 45.0 47.5 50.0 52.5 55.0 57.5

Time [s] +1.5794543e9

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

TCP_flow

cross_traffic

real_avbw

SABES-NN

Fig. 7.6 SABES-NN running in a real testbed. Estimations mean absolute error is 8%
of the bottleneck capacity.

hosts NICs and supported by the virtio driver used in the VMs, allowing for precise
timestamping even in virtualized environment.

7.3.1 Real testbed results

In Figure 7.6, the results of SABES-NN estimations are shown for a single test. The
test consists of three concurrent HTTP/TCP file transfers of 100 MB competing for a
bottleneck link of 300Mbps with one UDP cross-traffic flow. The throughput of only
one of the three TCP flows is shown. SABES-NN effectively detects moments where
is possible to infer the real available bandwidth, even though the flow throughput is
far lower. The mean absolute error of the B estimation set is less than 10% of the
bottleneck capacity.

7.3.2 Comparison with ASSOLO

In section 7.3.1 SABES-NN has been tested in a real environment and it was possible
to see how its estimation performs in comparison to a TCP flow throughput. In this

7.3 Evaluation in real testbed 83

Fig. 7.7 SABES-NN compared to ASSOLO estimations.

section we compare SABES-NN with a modern active probing tool for available
bandwidth estimation, ASSOLO [26]. ASSOLO follows a probe-rate model - PRM
- to detect the bending point of the probe-gap model curve as shown in Figure 5.4.
This means that it iteratively sends trains of packet probes at higher rates, looking for
the point where gout/gin > 1. This means that ASSOLO, as most active probing tools,
needs to be deployed in both endpoints of the connection to measure both gin and
gout . ASSOLO also relies on very accurate timestamping, and its usage is advised
only in systems that can run a real-time version of the Linux kernel. However, this
is not the case for virtualized environments: even with a real-time kernel installed
in the guest, the host hypervisor can still preempt the VM itself. ASSOLO assumes
a fluid cross-traffic model with little variability and an average throughput value
that is relatively stable during the duration of its estimation. We measure estimation
period of ASSOLO of being around 20 seconds in our testing environment. During
such a period of time cross-traffic can vary considerably, and this is the case for the
experiment proposed.

In Figure 7.7 SABES-NN is compared to ASSOLO. The test scenario is the
same described in Figure 7.6 but this time we run ASSOLO concurrently with the

84 Deep Neural Networks for AvBw estimation

TCP traffic. We detect that ASSOLO cannot provide accurate measurements when
setting the intermediate shaper to values bigger than 200 Mbps so we reduce it to
this value. In Figure 7.7 results are shown. During the 20 seconds of execution
ASSOLO provides 5 estimations points. Its absolute mean error is of 30% of the
bottleneck capacity (66 Mbps). SABES-NN continuos evaluation of passive TCP
traffic provides around 1500 estimation points gathered from all the three concurrent
TCP transfers. In Figure 7.7 only one TCP transfer is shown. The absolute mean
error of SABES-NN estimations is of 3% of the bottleneck capacity (6 Mbps).

7.4 Improving SABES-NN: a direct estimation approach

We tried a different approach leveraging Neural Network to improve SABES-NN
performance and scalability. First we tried reducing its computational footprint by
switching from a per-packet sliding window analysis to a tumbling window one
as explained in 7.4.1. A second step, exposed in 7.4.2, involved training a neural
network to obtain a direct estimation of the available bandwidth instead of building a
discriminator, bypassing the heuristic implemented in the original SABES proposal.

7.4.1 Time series analysis

In Figure 7.8 the two moving window models are shown on a simplified time series
analysis. The sliding window mechanism exposed in section 6.1.2 follows the scheme
shown in figure 7.8a. For each incoming packet, the window is moved forward of a
single step, however, as exposed in the previous chapter, the window left margin is
dependent from the last measured RTT. This causes consecutive windows to partially
overlap as shown in Figure 7.8a. As noticeable, with a sliding window scheme (Fig.
7.8a), for the example time series, we obtain 11 sample windows. This accounts
for a very precise picture of the time series evolution and allowed us to obtain more
than 140000 histogram samples from our training set. However, in a prototypal
implementation, running the complete heuristic and neural network discriminator in
real-time with a per-packet sliding window proved having poor scalability.

To reduce the computational overhead we implemented a tumbling window
scheme. As shown in Figure 7.8b, the tumbling window is triggered periodically and

7.4 Improving SABES-NN: a direct estimation approach 85

(a) Sliding window time series analysis. (b) Tumbling window time series analysis.

Fig. 7.8 Different type of moving window for time series analysis; the tumbling
window reduces the resolution but improves scalability. Source: [66].

consecutive windows never overlap. As for the sliding window case, we additionally
limit the left window margin based on the RTT measured with the last packet of
the current window. The tumbling window approach allowed our prototype to scale
efficiently in real-time traffic analysis. A rigorous quantification of such improvement
is still pending. However, as shown in Figure 7.8b we obtain only 3 windows with
this method, compared to the 11 windows obtained with the sliding window approach.
When applying the tumbling window analysis to the offline neural network training
process, the number of samples obtained from the training set is reduced from
∼ 140000 to ∼ 15000, i.e. one order of magnitude less. In section 7.4.3 we will
show how this affects the results obtained with SABES-heuristic and SABES-NN.
In section 7.4.2 we present a new DNN approach trained from this reduced training
set that shows the best performance so far in terms of precision and number of
estimations obtained, that we call SABES-KDE.

7.4.2 SABES-KDE

Together with the tumbling window mechanism modification to SABES, we decided
to research new ways to take advantage of the mathematical modeling capabilities of
Neural Networks when studying network available bandwidth. We identify one of
the limits of SABES-NN residing in the histogram representation. While it is easy
to compute and store, the histogram representation is very dependent from the bin

86 Deep Neural Networks for AvBw estimation

size selected. In SABES-NN we opted for a fixed number of bins, instead of a fixed
bin size. This allowed us to obtain a representation independent from the end-to-end
network capacity. To generalize the neural network trained with such histograms we
also normalized the bin values range to the capacity value estimated in the first part
of the algorithm (see 6.1). This type of representation poses two main challenges: a)
the histogram resolution gets coarser at higher capacity values and b) we need correct
capacity estimations to obtain reliable available bandwidth estimations. We address
the former by using a Kernel Density Estimation representation of the probability
density function obtained from the IPrate measurements. KDEs allow for a finer
representation of the distribution, with a lower loss of details than histograms. To
be noted that KDEs are not agnostic to the resolution problem as the shape of the
function is strongly affected by the kernel type selected and its bandwidth, being the
last one the equivalent of the histogram bin size - see [62] for additional information
on KDE. For SABES-KDE we use a gaussian kernel with a bandwidth β = 0.2.
To address the capacity estimation problem we decided to normalize the KDE to a
fixed capacity value, which is big enough to include values in a range significant
for our application domain. Specifically, we opted to normalize to Cnorm = 1Gbps,
independently from the actual narrow link capacity. An example of the representation
obtained with this methodology is shown in Figure 7.9. The narrow link capacity of
the testbed from which the sample is taken is 100Mbps, actually capping the KDE to
a 0.1 maximum value in respect to the selected Cnorm.

0.0 0.2 0.4 0.6 0.8 1.0
ip_rate values normalized to capacity

0

5

10

15

20

25

30

35

KD
E

Pe
rc

en
ta

ge

Fig. 7.9 SABES-KDE function obtained during a single tumbling window.

7.4 Improving SABES-NN: a direct estimation approach 87

50 90
cross-rate

0
10
20
30
40
50
60
70
80
90

100

er
ro
r

20
140

(a) SABES- 1103
estimations.

50 90
cross-rate

0
10
20
30
40
50
60
70
80
90

100

er
ro
r

20
140

(b) SABES-NN - 91
estimations.

50 90
cross-rate

0
10
20
30
40
50
60
70
80
90

100

er
ro
r

20
140

(c) SABES-KDE - 6352
estimations.

Fig. 7.10 Validation set estimation error using the tumbling window and different
estimation strategies.

Using this representation during the tumbling window analysis, we obtained a
series made of 10 random samples selected from each normalized KDE function.
We trained a DNN with 10 inputs and a single output ReLu neuron which provides
the direct available bandwidth estimation in the range [0,1]; the actual available
bandwidth is then obtained by multiplying by Cnorm. SABES-KDE neural network
has a lower dimensionality than the SABES-NN one because we use Equation 7.1 to
select the hidden layers size. The hidden layers dimension derived from Equation
7.1 is dependent from the input training set size, which is one order of magnitude
less for SABES-KDE compared to SABES-NN. We tried to train SABES-NN neural
network with the reduced tumbling window training set but it could not converge to a
satisfactory training accuracy, so we kept the neural network originally trained with
the 140000 sliding window samples to compare the estimation results.

7.4.3 SABES-KDE results evalution

To evaluate the modifications introduced with the tumbling window and SABES-
KDE, we run SABES, SABES-NN, and SABES-KDE against the simulated valida-
tion set already used in 6.2.2 and 7.2. As shown in Figure 7.10a, the pure SABES
heuristic approach in combination with the tumbling window provides poor per-
formance with a mean absolute error of 26.52%. Distribution whiskers go up to
70%. With the heuristic filter we obtain only ∼ 1000 estimations from the original
data set of ∼ 6000 tumbling windows. Adding the SABES-NN discriminator filter

88 Deep Neural Networks for AvBw estimation

Method % Mean Absolute Error % samples

SABES 26.52% 17.4%
SABES-NN 16.37% 1.4%

SABES-KDE 10.07% 100%

Table 7.1 All SABES flavours estimation error compared.

improves considerably the heuristic estimation accuracy as shown in Figure 7.10b.
The mean absolute error in this case goes down to 16.37%, however we retain just
91 samples of the original 6000. Figure 7.10c shows the error distribution obtained
from SABES-KDE. Performance is improved compared to SABES-NN, with a mean
absolute error of 10.07%. As SABES-KDE does not filter in any way the input
representation we retain all the analysis samples. All these results are summarized in
Table 7.1.

7.4.4 SABES-KDE limitations and future work

The preliminary evaluation results of SABES-KDE shown in Section 7.4.3 are promis-
ing. The tumbling window approach is scalable enough for real-time analysis, but
its loss in resolution over the time series is challenging for SABES and SABES-NN.
SABES-KDE is the only flavour that has shown excellent estimation performance in
conjunction with the tumbling window scheme while providing a continuos available
bandwidth evaluation, even when analyzing passive TCP traffic. However, this first
iteration of SABES-KDE is based on a simplification of the KDE representation,
which is the normalization by a fixed Cnorm value, and not the actual narrow link
capacity. This limits the neural network applicability to the normalization range.
Also, the training set must have observations in the full normalized range to achieve
a satisfactory generalization, even in the selected range. For example, we trained
SABES-KDE with a training set made exclusively of experiments with a narrow link
of 100Mbps while keeping Cnorm = 1Gbps. We then applied all SABES flavours to a
simulated validation data set with a narrow link capacity of 500Mbps. In this case,
the mean absolute error of SABES-KDE was of 54%, against the 16% obtained with
SABES-NN because SABES-KDE neural network was not trained with samples in

7.5 Related Work in DNN and ML usage for AvBw estimation 89

the 500Mbps range. To be noted that SABES-NN is not trained with any sample in
the 500Mbps range either, but normalizing the histogram against the estimated narrow
link capacity allows its neural network to achieve good generalization performance.
A version of SABES-KDE using an estimation of the narrow link capacity will be
the focus of future research.

7.5 Related Work in DNN and ML usage for AvBw estima-
tion

In recent years a few approaches in available bandwidth estimation involving neural
networks and machine learning have been proposed. Notably, a first approach using
NNs is presented in a paper from 2005 [20]. The authors used a traces dataset to train
an artificial neural network to predict the actual network bandwidth and compare
it to a system called Network Weather Service (NWS), which provides seasonal
network resources availability based on statistical metrics. They improve the NWS
predictions with the NN approach, however they need to train a different NN for each
network under study, making this approach not scalable nor general.

In [10] a different Machine Learning approach is used: the authors opted for a
Support Vector Machine (SVM) model used to solve a regression problem given the
input of a set of experiments to obtain the available bandwidth estimation. We also
considered SVMs to implement SABES-NN discriminator, looking to exploit the
binary classification capabilities of such model, but results were not satisfactory. This
work also takes an active probing approach, obtaining interesting results when using
packet-chirps as probes (as done in the notorious pathChirp [58]). Chirps are probing
packet trains where the inter-packet rate varies exponentially in a given probing range.
SABES-NN heuristic and neural network identify inter-packet rate distributions of
TCP connections that resemble the ones of active probing chirps.

Khangura et al. in [41] provide a first approach to available bandwidth estimation
using a shallow neural network that directly provides the estimation. As the case
for SABES-NN, the neural network input is normalized by a δ factor, providing a
scale invariant neural network. However, their approach is still based on an iterative
active probing method that generates probes at a given rate. SABES-NN provides

90 Deep Neural Networks for AvBw estimation

estimation based on TCP passive measurements and its neural network detects
histogram shapes that are valid to extrapolate estimations, it does not provide a direct
value for the available bandwidth as it is in [41]. They provide additional validation
of their proposal in [42]. Finally, in [39] the same authors take a reinforcement
learning approach. The active probing generator uses a reward function that tries
to maximize the relationship between the sending rate rout and the actual network
available bandwidth. This approach is promising and could be applied as part of the
control loop of transport protocol congestion control algorithm and we will consider
similar approaches in our future investigations.

7.6 Conclusions

In this chapter we presented an available bandwidth estimation technique that lever-
ages Deep Neural Networks, improving the heuristic proposed in Chapter 6. It works
by detecting patterns in the distributions obtained through the dynamic sliding win-
dows of SABES. The DNN acts as discriminator of histograms that are better suited
for the estimation. SABES-NN improves the estimation results over the validation
set reducing the median of the mean absolute error distribution down to 10% of the
estimated bottleneck capacity, compared to the 30% obtained through the heuristic
alone. SABES-NN, as SABES, relies on a good initial estimation of the bottleneck
capacity. The approach proposed to estimate the end-to-end narrow link capacity
through the first ACKs of the TCP connection is based on a heuristic proposed in [16].
We then studied an alternative approach training a neural network to provide a direct
estimation of the available bandwidth, SABES-KDE. The input representations of
this DNN are KDEs normalized by a fixed Cnorm value, making it independent from
the actual narrow link capacity estimation. While the results obtained are promising,
its generalization capabilities are poor. Better results could be achieved normalizing
by the narrow link capacity instead of a fixed value. This motivated us to study
alternative ways to obtain precise narrow link estimations in Chapter 8 through the
definition of a new packet dispersion model.

Chapter 8

Narrow link estimation and
location

In todays Internet massive amounts of data are being moved due to data hungry
applications, for example multimedia content streaming which, combined with a
reduction in cost and augmented reliability for high speed broadband access, result
in new challenges for the future Internet. Even though the Internet core is largely
over-provisioned, parts of the network can still represent a bottleneck in presence of
cross-traffic coming from multiple sources, especially in access links. End-to-end
capacity determination, together with available bandwidth estimation, has always
been a key research topic in the networking community [18, 16, 37, 38, 35, 63, 26].
Such measurements are useful to improve bandwidth allocation, packet scheduling,
and congestion control, both in endpoints and routers. Capacity estimation is of

6PDUW�PHDVXUHPHQWV

&DSDFLW\�HVWLPDWLRQ�DQG�
ERWWOHQHFN�ORFDWLRQ

Fig. 8.1 Chapter contribution to the dissertation.

92 Narrow link estimation and location

the uttermost importance in modern systems that rely on dynamic algorithms for
resources allocation, as, for example, 5G mmWave networks. Such environments,
and wireless environment in general, present considerable challenges as the resources
allocated to the different network devices can frequently vary. Capacity estimation
techniques can also be effectively exploited to verify network sizing and planning
in enterprises WAN or even detecting Service Provider throttling in residential
connections, making such a measurement a very effective tool to be deployed in as
SD-WAN device.

In this chapter we propose a novel approach to the capacity estimation problem.
Our technique improves state of the art analysis of packet pair dispersion, introducing
the concept of packet pair dispersion delay. The novel concept of hidden packets
is also introduced. It consists in sending packets with smartly crafted TTL, to later
improve the accuracy of the estimation with a series of machine learning approaches.
As a consequence, this technique provides a twofold benefit; on the one hand it
allows to compute the link with the smallest available capacity on the path, namely,
the narrow link. On the other hand, it provides the specific hop in the network where
such narrow link is located, giving a very accurate picture of the network status
and topology. An important feature of the proposed contribution is that it can be
exploited end-to-end, while requiring a modest amount of network and computational
resources, making it suitable for real world usage. We leave as an important part of
our future work the implementation of the proposed solution in a real environment.
We validate both the accuracy and the feasibility of our algorithm through simulation
of environments with realistic traffic loads and cross-traffic events, where we obtain
an estimation error for the narrow link capacity of less than 1% in most scenarios.

8.1 Theoretical bases

8.1.1 Smallest Link Capacity Set

Given an end-to-end path we represent it as a oriented weighted acyclic graph from
a source to a destination node. Links weights are the links capacities. We define
the Smallest Link Capacity Set (SLCS) as the set of all the links of an end-to-end
path which capacity value constitute the narrow link of a complete-path-subset; a

8.1 Theoretical bases 93

300 600400 600500

O
1

O
2

Source

O

800

Dest

500

3

300 600400 600500

O
1

Source

800

Dest

500

300 600400 600500

O
2

Source

800

Dest

500

O

300 600400 600
500

Source

800

Dest

3

Fig. 8.2 Smallest Link Capacity Set - SLCS. Capacities are expressed in Mbps.

complete-path-subset is any sub-segment of the end-to-end path that includes the
source node. If in a complete-path-subset multiple consecutive links have the same
capacity value, they are considered as a single link. Figure 8.2 shows a 7-hop
path with different link capacities (500, 500, 400, 600, 300, 800, 600 Mbps) from
source to destination. Thus, the SLCS is {O1,O2,O3}where O1 = (300Mbps, link5),
O2 = (400Mbps, link3), O3 = (500Mbps, link1). End-to-end RTT is 280ms. Our
new representation exposed in 8.1.3, is able to estimate the capacity value of all the
link in the SLCS, starting with the end-to-end narrow link. It achieves this by actively
generating packet pair probes and using a new type of packet pair dispersion analysis.

8.1.2 Packet pair dispersion

Here we summarize the packet pair dispersion model introduce in Chapter 5. Packet
pair dispersion is the basis of many network inference framework. To obtain such
measurement, pairs of probe packets of a given size Z are sent over an end-to-end

94 Narrow link estimation and location

path between two end-points at a given rate R. To be able to measure the narrow link
capacity value Cn, R must be higher than Cn. The dispersion of a packet pair τ is the
time interval between the instant the last bit of the first packet and the instant the last
bit of the second packet of the probing pair is received at the destination. We derive
the inter-packet rate as:

IPrate =
Z
τ

(8.1)

Typically, bandwidth estimation tools collect a certain amount of measurements
derived from Equation 8.1 either from actively probing the network or by means
of passive measurements. They then build a histogram representing its distribution
during the measurement period. Various techniques have been tested throughout
the years to remove noise from these distributions and extrapolate the end-to-end
available bandwidth or its narrow link capacity. We introduce a new representation
that takes into account not only the packet pair dispersion but also the propagation
delay that each of the pair packets incur, and finally estimate the narrow link capacity
based on three distributions: the packet pair dispersion distribution and each packet
propagation delay distribution.

8.1.3 Packet pair dispersion-delay

Consider a N-hop path defined by two sequences: capacities sequence C= {C0,C1, . . . ,CN},
and delays D = {D0,D1, . . . ,DN}. In a end-to-end context, we can only get measures
on the sender and the receiver end points. When a packet pair reaches the receiver, we
can compute the one-way delay (OWD) of each packet of the probing pair: OWD1

for the first packet received, and OWD2 for the second packet. When packets tra-
verse a network their propagation delay is affected by different factors: the physical
propagation delay in the transmission medium and the processing delay at each hop
(serialization, routing, etc...) constitute the deterministic delay, Ddet . Packets can
also incur in buffering delay caused by capacity impairment between links that we
define as Dbu f f er. Finally, packets can be delayed due to possible congestion along
the path which we define as the stochastic delay Dsto. As a result, each probing pair
packet OWD is obtained as OWD = ∑

N
i=0 Di. where the delay at each hop i, Di is

given by:
Di = Ddet,i +Dbu f f er,i +Dsto,i (8.2)

8.1 Theoretical bases 95

Every time a pair of packets is sent across the end-to-end path, it can be affected
by cross traffic (stochastic delay Dsto) and/or by limitations of a link capacity (buffer-
ing delay Dbu f f er). These two factors can increase the propagation delay of either one
or both packets of the pair, also affecting the relative distance τ at which the pair was
sent from the source causing variations in the IPrate measured in the receiver. The
three values of OWD1, OWD2, and IPrate configure the packet pair dispersion-delay
(ppdd) triplet that we use to find the narrow link capacity of an end-to-end path
so that each ppddi = (OWD1,i,OWD2,i, IPrate,i). Figure 8.3a shows a representation
for the metric triad. Blue dots represent the first packet and orange dots the second
packet. On the y-axis we plot the OWD of each probe, while on the x-axis is the
IPrate of the each probing pair. On the top and right side of the plot are shown
the histograms of IPrate, OWD1, and OWD2 respectively. The measurements are
obtained from a simulation generated in the ns-2 simulator. The simulated topology
is the one shown in Figure 8.2. 1000 ICMP packet pair probes of size Z = 1500B and
an IPrate = 1Gbps are generated. We generate cross-traffic along the path as UDP
packets of 1500B. The generation pattern follows a Pareto distribution with a shape
value α = 1.9. Cross traffic is generated by 16 sources-destination pairs between
each link (following [16] nomenclature cross-traffic is one-hop persistent). In Figure
8.3a packet pair triplets (IPrate, OWD1, and OWD2) are plotted in a scenario with an
average 20% of each link capacity occupied by cross-traffic.

In the absence of cross traffic the only factor adding delay to the packet pair is
the capacity limit of the narrow link. When this happens, only the second packet
of the packet pair is affected, resulting in an increased value for OWD2. This is,
OWD2 =Ddet +Dbu f f er and OWD1 =Ddet , where Ddet is made up with deterministic
delays and Dbu f f er is the buffering delay caused by the capacity limitations of the
bottleneck. In Figure 8.4, the blue dashed line represents the minimum value acquired
by the first packet. These packets are not affected by buffering, so that OWD1 = Ddet .
The red dashed line represents the minimum value acquired by the second packet of
the probing pair, which is affected by buffering at the bottleneck due to the capacity
limit, giving OWD2 = Ddet +Dbu f f er. Taking into account that the narrow link
capacity is 300Mbps, which corresponds to an inter-packet of 40µs with 1500B of
packet size, and the inter-packet sent is 12µs (1Gbps), it is possible to observe that
the distance between the blue dashed line and the red dashed line corresponds to

96 Narrow link estimation and location

200 400 600
IPrate (Mbps)

140.22

140.24

140.26

140.28

140.30

140.32

140.34

140.36

OW
D

(m
s)

First Packet
Second Packet

(a) 20% of cross traffic.

200 400 600 800
IPrate (Mbps)

140.25

140.30

140.35

140.40

140.45

140.50

140.55

OW
D

(m
s)

First Packet
Second Packet

(b) 70% of cross traffic.

Fig. 8.3 Packet pair delay dispersion representation under different network
conditions. Cross-traffic is one-hop persistent.

Dbu f f er = 28µs. The sum of the distance between the blue and red dashed lines
and the inter-packet sent is equal to the inter-packet of the narrow link. It is worth
noting that the maximum value of IPrate achieved by the packets laying over the
blue dashed line is the narrow link capacity. Similarly, the minimum value in IPrate

achieved by the second packets laying over the red line is the narrow link capacity.
Both values coincide over the vertical black dashed line , which is the capacity of
the narrow link on the path, O1. We distinguish three zones in the relative behavior
of the packet pair dispersion and delay: when the IPrate is below the narrow link
capacity Cn, Dsto due to cross-traffic has a major impact on the second packet of the
probing pair, causing a dilation of the packet pair dispersion, and so a lower IPrate.
For IPrate values exactly at Cn, Dsto affects both packets in the same way, causing
either none or a constant incremental offset in the delay. IPrate values bigger than Cn

are due to cross-traffic in the links posterior to the narrow link. In this case the first
packet of the pair tends to reduce its relative distance in respect to the first packet,
causing a reduction in the measured packet pair dispersion. It is worth noting the
shape of the packet pair dispersion-delay for the two packets: when IPrate <Cn the
second packet ppdd distribution follows a concave form; for IPrate >Cn the second
packet follows a linear form. The first packet follows a linear form for IPrate <Cn

8.1 Theoretical bases 97

100 200 300 400 500 600
IPrate (Mbps)

140.22

140.24

140.26

140.28

140.30

140.32

140.34

140.36
OW

D
(m

s)

First Packet
Second Packet

Fig. 8.4 Red dashed line represents OWD2 = OWDdet +Dbu f f er. Blue dashed line is
OWD1 = OWDdet , not affected by additional delays. Vertical black dashed line is

the capacity of the bottleneck on the path, O1.

and a convex form for IPrate >Cn. This behavior will be the focus of a future work
on the technique to improve its results.

While in the scenario shown in Figure 8.3a the capacity mode could be detected
visually and numerically from the regular packet dispersion, the situation changes in
presence of higher level of cross-traffic. In Figure 8.3b we show the same scenario
as Figure 8.3a but with 70% of cross traffic. To be noted that in nowadays networks
such amount of cross-traffic in a one-hop persistent fashion is hardly found. We
simulate such a scenario to recreate noisy conditions that can be found in real-world
environments which are related to the difficulties involved in performing precise
measurements, especially in time-stamping. In such a scenario the capacity mode is
not identifiable with a simple visual inspection anymore. Also the OWD distributions
vary substantially. The overall ppdd distributions shapes do not follow the pattern
described previously in a clear way. In Section 8.2 we define a heuristic approach
that, combined with state of the art machine learning techniques, allows to identify

98 Narrow link estimation and location

the capacity mode in the IPrate distribution with a high level of confidence even in
noisy environments.

8.2 Narrow link capacity determination

To determine the capacity of the narrow link we take into account the ppdd triplets
distributions, reducing the area of interest around the capacity of the narrow link.
To achieve so, we find a set of ppdd, the Sppdd , so that its triads OWD1 and OWD2

values are concentrated in the low part of their distributions. We define the three
distributions as BIPr,Bowd1,Bowd2 for the IPrate, OWD1, and OWD2 measurements
respectively. To isolate the measurements from relevant packet pair probes we select
a quantile value qx from Bowd1 that can be statistically close to the linear form that
Bowd1 describes when the respective pair IPrate values is lower than Cn. We find
experimentally that when x = 30, the quantile qx provides a good approximation over
a wide range of scenarios, up to 90% of cross-traffic. We then look for the a low
quantile qk in Bowd2. We define the Sppdd set as:

Sppdd = {ppddi | OWD1,i < q30(Bowd1) and OWD2,i < qk(Bowd2)} (8.3)

where OWD1,i,OWD2,i ∈ ppddi. The percentile qk is found iteratively with
unitary increments of k until it satisfies the condition of Equation 8.4:

{
k | len(Sppdd)> α

}
(8.4)

where α is the minimum number of packets that we find to be representative to
build the statistics. For this work we find α = 5 experimentally. The selection Bsel

of the BIPr distribution is finally extracted from Sppdd :

Bsel =
{

IPrate,i | IPrate,i ∈Sppdd
}

(8.5)

Once Bsel is obtained as in Equation 8.5 we apply a kernel density estimation
(KDE) transformation over it. KDE is a method to estimate the probability density
function of a random variable obtained from samples of such distribution. The

8.2 Narrow link capacity determination 99

250 300 350 400 450 500 550 600
IPrate (Mbps)

kernel density estimation
Capacity

Fig. 8.5 Capacity determination with Kernel Density Estimation based on the Bsel
selection obtained with the proposed heuristic.

main control parameters for KDE methods are the kernel type and bandwidth. For
this study we use a gaussian kernel with bandwidth set to 2. Further optimizations
could be obtained with a fine tuning of the KDE bandwidth. Once obtained the
KDE continuos distribution, we can search for its global maximum and use it as
narrow link capacity estimation. In Figure 8.5 this technique is applied to the case
shown in Figure 8.3b. With 70% of cross-traffic finding the capacity mode by simply
inspecting the BIPr distribution would have been very difficult. Thanks to the ppdd
representation we provide the exact value of the narrow link capacity even in such a
noisy environment.

8.2.1 Capacity estimation evaluation

We provide an evaluation of the ppdd model narrow link capacity estimation per-
formance in a variety of simulation scenarios. In Table 8.1 we show the narrow
link capacity estimation Cn obtained from measurements generated in the topology
described in Figure 8.2. As explained in Section 8.1.3, cross-traffic is generated in

100 Narrow link estimation and location

CT % Cn, f Cn,r

10% 300.00 300.00
20% 300.00 300.00
30% 300.01 300.00
40% 300.01 300.01
50% 300.05 299.99
60% 300.08 300.00
70% 300.02 300.03
80% 300.09 295.02
90% 299.97 292.66

(a) Cn estimation with increasing amount of
cross-traffic.

#probes Cn, f Cn,r

1000 300.02 300.06
500 299.92 286.13
100 299.90 284.98
50 299.99 282.39

(b) Cn estimation when reducing the amount
of probing pairs.

Table 8.1 ppdd narrow link capacity estimation summary. Nominal Cn is 300Mbps.
Cn, f is the estimation obtained with fixed cross-traffic packet size of 1500B, while

Cn,r with variable size cross-traffic packets.

form of UDP traffic, following a Pareto random distribution. 16 sources of cross-
traffic inject traffic over each link of the path, in a one-hop persistent fashion. The
probing pairs are ICMP Echo Reply packets of fixed size Z = 1500B. To obtain our
estimation we measure OWD1, OWD2, and IPrate in the destination node.

In Table 8.1a we show the estimation results obtained with increasing values of
cross-traffic when generating 1000 ICMP probes of 1500B. The first column Cn is
with cross-traffic packets of fixed size of 1500B. The column Cn,r shows the results
when the cross-traffic packets size varies following a uniform random distribution
with values between 40B and 1500B. As shown, the estimations are almost always
exact, independently from the network conditions. We see a slight underestimation in
presence of 80% and 90% random cross-traffic, where ppdd estimation has an error
of less than 3%.

In Table 8.1b we show the technique results when reducing the number of probes
generated from 1000 down to only 50. The cross-traffic amount is 70%, a rather high
value. The worst estimation is when using only 50 probes; the result produced has
a marginal error of approximately 6% against a reduction of 95% of the amount of
probing traffic generated.

8.3 Hidden red-shift effect 101

Source Dest

IPS IPR Dbuffer·#Hp

Narrow Link

ttl = 7

IPS IPR

ttl = 6

IPS IPR

ttl = 5

IPS IPR

ttl = 4

link7link6link5link4

1)

2)

3)

4) Dbuffer

Dbuffer·#Hp

Dbuffer·#Hp

Fig. 8.6 Schematic example of the Hidden Inter-packet Red-shift Effect (HIRE) over
a non-congested path.

8.3 Hidden red-shift effect

In this section we define a technique that will be applied both for locating the narrow
link position on the path and to estimate the capacity of the rest of links belonging
to the SLCS. The technique consists in injecting hidden packets Hp between the
probing pairs generating packet probing trains. All train packets have size Z. The
additional Hp packets are said to be hidden as they are generated with a Time To Live
(TTL) value in their corresponding IP header field that will cause their expiration
during transit, before reaching the destination. The first and last packet of the train
are generated with an IPS≡ IPrate,sent = Z/τ . In absence of cross-traffic along the
path the dilation effect caused by the hidden packets over the probing pair dispersion
measured in the receiver (IPrate,recv that we call IPR) is proportional to the amount
of injected hidden packets and the links queueing delay Dbu f f er added up to the node
where the hidden packets expired. Taking advantage of this effect, we can evaluate
the differences in the IPR behavior varying iteratively the TTL value of the hidden
packets. This enables both narrow link location and SLCS capacity estimation.

102 Narrow link estimation and location

8.3.1 Narrow link location

Figure 8.6 shows an example that summarizes the HIRE technique. In this case, four
iterations are needed to determine the narrow link. Three packets are sent: blue (first
packet pair probe), black (hidden packet), and orange (second packet pair probe).
Blue and orange have a TTL value big enough to reach the destination. Black packets
are the hidden packets and have different TTL at each iteration. Three packets are sent
with an IPS rate value between the blue and orange packets equivalent to the narrow
link Cn capacity. Additionally, a hidden packet with T T L = 7 is sent between the
blue and orange packets. When the train of packets reaches the narrow link at hop-5,
both orange and black packets suffer a red-shift effect due to Dbu f f er. As a result the
inter-packet time between all packets of the train increases. At the same time OWD1

and OWDH p increase. When the probing train reaches hop-7 the hidden packet is
dropped leaving only the blue and orange packets. The packets are finally captured
at the destination with a rate IPR. The process is repeated iteratively reducing the
T T L value. Up to T T L = 5 the IPR value measured in the destination will be similar.
When the hidden packet is generated with a T T L = 4, it will expire when reaching
hop-4 just before the narrow link. The IPR measured in the destination will increase.
Only the orange packet suffers the red-shift effect resulting in an increase in the
packet dispersion equal to Dbu f f er.

To detect this change of behavior we repeat the described process generating
a number of probing trains Nt per each TTL value with a fixed amount of hidden
packets #Hp. In Figure 8.7 we apply a heuristic to the 20% cross-traffic scenario to
locate the narrow link position. Per each group of Nt,i of T T Li we compute the mean
of the IPR values measured by each train. We then use a simple heuristic to detect
the behavior change between the groups post and pre narrow link. We start adding
the computed mean values to a distribution and compute its standard deviation. If,
when adding a new mean value of the T T Li group, the standard deviation increases
more than a given threshold γ , we detect a behavior change and select T T Li−1 as the
location of the narrow link. For this study we use γ = 0.2.

8.3 Hidden red-shift effect 103

300 350 400 450 500

Thp (Mbps)

Narrow link hop num ber = 5

Narrow link hop 5

TTL 2 TTL 1

Additional clusters
denote the other nodes

composing the SCLS

TTL 7,6,5
TTL 4,3

The probing pairs rate changes when hidden

packets expire before or after the narrow link

Fig. 8.7 HIRE applied with Nt = 20 and #Hp = 5. The narrow link position is
detected when the probing train dispersion behavior changes due to hidden packets

expiration.

8.3.2 SLCS capacity determination

Thanks to the hidden red-shift effect, HIRE is able to determine the capacity of the
rest of links of the Smallest Link Capacity Set, SLCS. To achieve it, we need to
evaluate first the narrow link capacity and its location. Once we obtain them, we
generate another probing session with IPS = Cn. The hidden packets should also
be generated so that they expire before reaching the narrow link. In this way we
guarantee that the probing trains will be forwarded through the narrow link without
being buffered there. However they will see a dilation in their dispersion causing the
measured IPR to follow Equation 8.6:

IPR =
Z

(τ +Dbu f f er) · (#Hp +1)
(8.6)

It is then possible to estimate the capacity Cn,i of the node i of the path by
generating the hidden packets Hp with TTL i and measuring the IPRi following

104 Narrow link estimation and location

250 300 350 400 450 500 550
IPrate (Mbps)

140.25

140.30

140.35

140.40

140.45

140.50

OW
D

(m
s)

First Packet
Second Packet

Fig. 8.8 Capacity determination of the O2 link of the SLCS.

Equation 8.7:
Cn,i = IPRi · (#Hp,i +1) (8.7)

Figure 8.8 shows this technique applied to estimate the capacity of the second
SLCS link of the topology of Figure 8.2, indicated as O2. The simulation environment
has 20% of cross-traffic. Probing pair packets are generated with IPS = 300Mbps.
Five intermediate hidden packets of 1500B are injected in between each pair. Finally,
T T LH p = 3 so that the hidden packets will expire right after O2 but before reaching
O1. The value provided is exactly the capacity of the O2 link.

8.4 Related Work

Literature regarding packet pair dispersion and capacity estimation is extensive. As of
today many schemes for the narrow link capacity estimation have been proposed [18,
16, 37, 38, 35]. Most models, either based on active probing or passive measurements,

8.5 Conclusions 105

measure the dispersion between packet pairs or packet trains. Packet pairs dispersion
has been proven to be a noisy measurement [16, 17, 35]. The effort of most works
in this area have been focusing on signal processing and de-noising of the intern-
packet rate distribution derived from packet pairs dispersion. Few approaches derive
available bandwidth measurements by looking at signatures in the queuing delay
generated by probe trains emitted with specific patterns [58, 55]. In this work
we propose a novel approach to capacity estimation that takes into account both
packet dispersion and propagation delay on a tri-dimensional plane. Such approach,
combined with state of the art machine learning techniques, provides very precise
estimations for the narrow link capacity.

Our study also addresses the narrow link position location on the end-to-end path.
Few techniques such as the one presented in [31] provides a solution to determine
the position of the currently congested bottleneck links but none before had provided
the position of the narrow link as well as its capacity. By taking advantage of TTL
expiring packets injected in between probing pairs and the packet dispersion-delay
analysis, a new method for narrow link location is presented. When adding hidden
expiring intermediate packets, the probing pairs change their rate when crossing the
narrow link, causing a red-shift effect that allows for narrow link location. Such
a measurement is dependent from precise packet time-stamping which is often a
problem, especially in current SDN virtualized environments. Opposed to that, our
approach simplifies deployment, easing the tool adoption. The approach for narrow
link capacity estimation and location is validated in simulations, showing the tool
robustness in very competitive environments, with irregular cross-traffic patterns
occupying up to 90% of the end-to-end path.

8.5 Conclusions

In this chapter we presented ppdd and HIRE, which are new approaches for estimat-
ing the narrow link capacity of an end-to-end path based on probing pairs. Their
main contributions include a new way of interpreting the packet pair dispersion in
conjunction with each pair packet propagation delay that we call the packet pair
dispersion delay - ppdd. We also present the hidden packets red-shift effect which
consists in injecting TTL expiring packets in between of probing pairs to cause a

106 Narrow link estimation and location

rate reduction when crossing specific links along the path. Based on this two new
concepts we develop different techniques to estimate the narrow link capacity, as well
as its location along the path. HIRE can even provide the capacity estimation of other
links previous to the narrow link. We validate HIRE in a simulation environment
with realistic characteristics. In scenarios with up to 70% random cross-traffic, HIRE
provides exact narrow link estimations, with an error lower than 1%. We prove its
estimation precision even in spite of very high level of cross-traffic (up to 90%) while
using very few probes, with a negligible estimation error of less than 6%. HIRE
method provides very precise measurements for the narrow link capacity, which is a
prerequisite to obtain a good available bandwidth estimation from SABES, the tool
presented throughout chapters 6 and 7. In the future, the new packet pair dispersion
delay model proposed in this chapter could be adapted to passive TCP analysis,
improving the results obtained also for available bandwidth estimation.

Chapter 9

Towards a Stateful SD-WAN
traffic controller

In this thesis we presented different contributions that address both control and
network status assessment from an edge router perspective such as it could be
an SD-WAN node. Following the initial proposal depicted, we investigated two
main topics: TCP optimization in WANs and improved WAN visibility thanks to
smart measurements. In the following sections we present a proposal for a stateful
edge router architecture that takes advantage of all the exposed building blocks to
effectively enhance the end user quality of experience thanks to an SD-WAN device
as shown in Figure 9.1.

Fig. 9.1 The research project final proposal for a Stateful Edge Router Architecture.

108 Towards a Stateful SD-WAN traffic controller

9.1 Stateful Edge Router Architecture

The Stateful Edge Router Architecture (SERA) consists of a modular architecture to
build a scalable and extensible stateful software edge router that optimizes network
flows based on the network state. In Figure 9.2 we introduce its main building blocks.
SERA main component is the Control Strategy Evaluator (CSE) which decides the
best combination of control strategies to optimize the traffic. CSE inputs come from
a variety of sources; where the most relevant ones are:

• Live network monitor: measurements of network metrics of the flows currently
handled by the software router, such as inter-packet arrival time, burstiness,
throughput, etc...

• Traffic classifier: a module able to classify the incoming traffic flows type
based on the statistics fed to it by the network monitor.

• Active probing engine: a module that scans the network resources by proac-
tively sending probes, e.g. to estimate network congestion and bottlenecks
toward a specific destination.

• Traffic policies: a set of user defined policies to assign priorities to specific
types of traffic; these policies could be optimized by means of a learning
process.

The CSE is extensible by design, thus it shall support new input generators. Its
objective is to find the optimal control technique or set of techniques that maximize
network resource exploitation while not harming latency sensitive flows. Overall, our
proposal seeks to improve the users Quality of Experience.

SERA scheme enables multiple actionable control strategies to be implemented
and chained, e.g. Rate Control, proxy or ECN, as shown on the right side of Figure
9.2. New incoming flows trigger the re-evaluation of the control status. A specific
control strategy can be assigned to a new incoming flow, which also may affect the
strategy applied to the other ongoing flows.

SERA could optimize specific connections by proxying them; this could improve
considerably TCP throughput when the endpoints cannot reach link utilization with a

9.1 Stateful Edge Router Architecture 109

...

Traffic

Classifier

Live

Network

Monitor

Control

Strategy

Evaluator
Receive

Window

Modulation

Rate

Control

Active

Probing

Engine

Pacing

Control feedback loop

Proxy

Traffic

Policies

Fig. 9.2 Software Stateful Edge Router Architecture.

single TCP transfer due to a limited maximum receive buffer set in the TCP stack.
It is a very common scenario given that the Linux default maximum TCP receive
buffer is 4MB. This buffer becomes a bottleneck for a connection over a Long Fat
Networks. If SERA detects that specific endpoints have reduced TCP buffer sizes, it
can systematically start proxying their connections and locally tune TCP buffers to
reach link utilization, acting as a Performance Enhancing Proxy (PEP) (see Chapter
2). On the other hand, if it detects connections being too aggressive in their behavior
it could apply a scheme such as the Receive Window Modulation (RWM - Chapter
4) to effectively limit their throughput according to the end-to-end BDP or the user
defined policies which were reconciliated in the Traffic Policies component. The
end-to-end BDP can be estimated by means of passive traffic analysis performed
by the Live Network Monitor applying algorithms such as SABES or SABES-NN
(Chapter 6 and 7). Other periodic measurements performed by the Active Probing
Engine provide additional information for the CSE, such as the end-to-end narrow
link capacity, that represents the maximum threshold for the RWM control. Such
measurement is obtained by means of active probing and applying the packet-pair
dispersion-delay model (ppdd) described in Chapter 8.

110 Towards a Stateful SD-WAN traffic controller

9.2 Takeaways and final remarks

In the previous section we depicted a comprehensive architecture for a smart SD-
WAN device. Its components can be implemented following the proposals presented
in this thesis. Specifically, in this research project we presented a series of original
contributions, including:

• The Receive Window Modulation scheme: RWM is a control mechanism
that exploits TCP flow control. It allows to throttle TCP connections without
dropping packets, independently from the sender congestion control algorithm.
This addresses a criticality of AQM schemes towards modern scalable TCP
implementations such as BBR. We proved that it can improve loss based
congestion control throughput in a variety of scenarios up to 70%. It reduces
end-to-end latency, mitigating bufferbloat up to 2.5x compared to uncontrolled
TCP connections. It does not need cooperation from the end-points interpreting
specific congestion signals as it relies on standard TCP semantics, simplifying
its adoption.

• A Statistical Available Bandwidth Estimation algorithm: SABES proposes
a new approach to available bandwidth estimation, following the packet pair
dispersion model applied to passive TCP traffic analysis. It is based on a
heuristic aimed at detecting inter-packet dispersion distributions of TCP traffic
that allow to identify the network available bandwidth. An improved approach
based on Deep Neural Networks allows SABES to obtain less than a 10%
estimation error in more than 50% of the cases under analysis.

• The Packet-pair dispersion-delay model: the ppdd model is a bi-dimensional
representation of a set of packet pairs sent as active probes, that shows both the
packet pair dispersion and the absolute delay of each pair packet. It allows to
identify with precision the end-to-end narrow link capacity thanks to a heuristic
approach based on state of the art machine learning methodologies. The
technique was then extended with the addition of intermediate TTL expiring
probes, enabling the Hidden Packets Red-shift Effect. HIRE is able to locate
the narrow link logical position in the end-to-end path, increasing the topology
visibility.

9.2 Takeaways and final remarks 111

Future work based on the results obtained in this project includes:

• Comparison in terms of fairness and throughput of RWM and common AQM
schemes, especially in presence of scalable TCP congestion controls such as
BBR.

• Deployment and study of a distributed network of nodes implementing RWM.
We describe such a scenario in [60]. The RWM semantics could induce
emergent behaviors in distributed networks that could make them converge to
a full and fair network resources distribution.

• Extension of the SABES-KDE approach presented in 7.4.2 to reach broader
generalization of the trained neural network.

• Application of the ppdd model to passive TCP traffic in search of a better
representation to measure both narrow link capacity and available bandwidth.

• Implementation of the SERA controller, leveraging all the contributions ex-
posed in this dissertation. Such a job implies additional research to implement
components such as the Traffic Classifier and the Traffic Policies reconciliator.

References

[1] Use linux traffic control as impairment node in a test environ-
ment (part 2), Aug 2018. URL https://www.excentis.com/blog/
use-linux-traffic-control-impairment-node-test-environment-part-2.

[2] Stefano Avallone, S Guadagno, Donato Emma, Antonio Pescapè, and Giorgio
Ventre. D-itg distributed internet traffic generator. In First International
Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004.
Proceedings. IEEE, 2004.

[3] Fred Baker and Gorry Fairhurst. Ietf recommendations regarding active queue
management. draft-ietf-aqmrecommendation-11 (work in progress), 2015.

[4] S Bensley, D Thaler, P Balasubramanian, and L Eggert. G. judd," data center
tcp (dctcp): Tcp congestion control for data centers. Technical report, RFC
8257, DOI 10.17487/RFC8257, 2017.

[5] John Border, Markku Kojo, Jim Griner, Gabriel Montenegro, and Zach Shelby.
Rfc3135: Performance enhancing proxies intended to mitigate link-related
degradations, 2001.

[6] Jesper Dangaard Brouer. Network stack challenges at increasing speeds.

[7] Martin A Brown. Traffic control howto. 2006. URL https://tldp.org/HOWTO/
Traffic-Control-HOWTO/intro.html.

[8] N Cardwell, Yuchung Cheng, S Hassas Yeganeh, Ian Swett, Victor Vasiliev,
Priyaranjan Jha, Yousuk Seung, Matt Mathis, and Van Jacobson. Bbrv2: A
model-based congestion control. In Presentation in ICCRG at IETF 104th
meeting, 2019.

[9] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-Based Congestion Control. Queue, 14(5):
50:20–50:53, October 2016. ISSN 1542-7730. doi: 10.1145/3012426.3022184.

https://www.excentis.com/blog/use-linux-traffic-control-impairment-node-test-environment-part-2
https://www.excentis.com/blog/use-linux-traffic-control-impairment-node-test-environment-part-2
https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

114 References

[10] Ling-Jyh Chen, Cheng-Fu Chou, and Bo-Chun Wang. A machine learning-
based approach for estimating available bandwidth. In TENCON 2007-2007
IEEE Region 10 Conference, pages 1–4. IEEE.

[11] Francesco Ciaccia, Oriol Arcas-Abella, Diego Montero, Ivan Romero, Rodolfo
Milito, Rene Serral-Gracia, and Mario Nemirovsky. Improving tcp performance
and reducing self-induced congestion with receive window modulation. In 2019
28th International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2019.

[12] Francesco Ciaccia, Ivan Romero, Oriol Arcas-Abella, Diego Montero, René
Serral-Gracià, and Mario Nemirovsky. Sabes: Statistical available bandwidth es-
timation from passive tcp measurements. In 2020 IFIP Networking Conference
(Networking), pages 743–748. IEEE, 2020.

[13] Francesco Ciaccia, Ivan Romero, René Serral-Gracià, and Mario Nemirovsky.
Hire: Hidden inter-packet red-shift effect. In 2020 IEEE Global Communica-
tions Conference. IEEE, 2020.

[14] Koen De Schepper, Olga Bondarenko, Ing-Jyh Tsang, and Bob Briscoe. Pi2:
A linearized aqm for both classic and scalable tcp. In Proceedings of the
12th International on Conference on emerging Networking EXperiments and
Technologies, pages 105–119, 2016.

[15] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Hagan.
Neural network design. Martin Hagan, 2014.

[16] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. What
do packet dispersion techniques measure? In Proceedings IEEE INFOCOM
2001. IEEE, 2001.

[17] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. Packet-
dispersion techniques and a capacity-estimation methodology. IEEE/ACM
Transactions On Networking, 12(6):963–977, 2004.

[18] Allen B Downey. Using pathchar to estimate internet link characteristics. ACM
SIGCOMM Computer Communication Review, 29(4):241–250, 1999.

[19] Svante Ekelin, Martin Nilsson, Erik Hartikainen, Andreas Johnsson, J-E Mangs,
Bob Melander, and Mats Bjorkman. Real-time measurement of end-to-end
available bandwidth using kalman filtering. In 2006 ieee/ifip network operations
and management symposium noms 2006. IEEE, 2006.

[20] Alaknantha Eswaradass, X-H Sun, and Ming Wu. A neural network based
predictive mechanism for available bandwidth. In 19th IEEE International
Parallel and Distributed Processing Symposium, pages 10–pp. IEEE, 2005.

References 115

[21] Ferenc Fejes, Gergő Gombos, Sándor Laki, and Szilveszter Nádasy. On the
incompatibility of scalable congestion controls over the internet. In 2020 IFIP
Networking Conference (Networking), pages 749–754. IEEE, 2020.

[22] Mike Fisk and Wu-chun Feng. Dynamic right-sizing in tcp. Technical report,
Los Alamos National Lab., Los Alamos, NM (US), 2001.

[23] Matt Fleming. A thorough introduction to ebpf, 2017. URL https://lwn.net/
Articles/740157/.

[24] Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on networking, 1(4):397–413, 1993.

[25] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the internet.
Queue, 2011.

[26] Emanuele Goldoni, Giuseppe Rossi, and Alberto Torelli. Assolo, a new method
for available bandwidth estimation. In 2009 Fourth International Conference
on Internet Monitoring and Protection. IEEE, 2009.

[27] Sangtae Ha and Injong Rhee. Taming the elephants: New tcp slow start.
Computer Networks, 2011.

[28] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-friendly High-
speed TCP Variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008. ISSN
0163-5980. doi: 10.1145/1400097.1400105.

[29] Stephen Hemminger et al. Network emulation with NetEm. In Linux conf au,
pages 18–23, 2005.

[30] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation
of BBR congestion control. In 2017 IEEE 25th International Conference on
Network Protocols (ICNP), pages 1–10. IEEE, 2017.

[31] Ningning Hu, Li Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang.
Locating internet bottlenecks: Algorithms, measurements, and implications.
ACM SIGCOMM Computer Communication Review, 34(4):41–54, 2004.

[32] IO Visor Project. BCC: BPF Compiler Collection. . URL https://github.com/
iovisor/bcc.

[33] IO Visor Project. Xdp: express data path. . URL https://www.iovisor.org/
technology/xdp.

[34] Van Jacobson, Robert Braden, and David Borman. Tcp extensions for high
performance. Technical report, 1992.

https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp

116 References

[35] Nicolas Kagami, Roberto Irajá Tavares da Costa Filho, and Luciano Paschoal
Gaspary. Capest: Offloading network capacity and available bandwidth estima-
tion to programmable data planes. IEEE Transactions on Network and Service
Management, 2019.

[36] Lampros Kalampoukas, Anujan Varma, and KK Ramakrishnan. Explicit Win-
dow Adaptation: a Method to Enhance TCP Performance. 1:242–251, 1998.

[37] Rohit Kapoor, Ling-Jyh Chen, Li Lao, Mario Gerla, and M Young Sanadidi.
Capprobe: A simple and accurate capacity estimation technique. ACM SIG-
COMM Computer Communication Review, 34(4):67–78, 2004.

[38] Sachin Katti, Dina Katabi, Charles Blake, Eddie Kohler, and Jacob Strauss.
Multiq: Automated detection of multiple bottleneck capacities along a path. In
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,
pages 245–250, 2004.

[39] Sukhpreet Kaur Khangura and Sami Akın. Measurement-based online avail-
able bandwidth estimation employing reinforcement learning. In 2019 31st
International Teletraffic Congress (ITC 31), pages 95–103. IEEE, 2019.

[40] Sukhpreet Kaur Khangura and Markus Fidler. Available bandwidth estimation
from passive tcp measurements using the probe gap model. In 2017 IFIP
Networking Conference (IFIP Networking) and Workshops. IEEE, 2017.

[41] Sukhpreet Kaur Khangura, Markus Fidler, and Bodo Rosenhahn. Neural net-
works for measurement-based bandwidth estimation. In 2018 IFIP Networking
Conference (IFIP Networking) and Workshops, pages 1–9. IEEE, 2018.

[42] Sukhpreet Kaur Khangura, Markus Fidler, and Bodo Rosenhahn. Machine learn-
ing for measurement-based bandwidth estimation. Computer Communications,
144:18–30, 2019.

[43] Jin Cheol Kim and Younghee Lee. An end-to-end measurement and monitoring
technique for the bottleneck link capacity and its available bandwidth. Computer
Networks, 58:158–179, 2014.

[44] Leonard Kleinrock. Power and deterministic rules of thumb for probabilistic
problems in computer communications.

[45] Mingzhe Li, Mark Claypool, and Robert Kinicki. Packet dispersion in ieee
802.11 wireless networks. In Proceedings. 2006 31st IEEE Conference on
Local Computer Networks, pages 721–729. IEEE, 2006.

[46] Shiyao Ma, Jingjie Jiang, Wei Wang, and Bo Li. Fairness of congestion-based
congestion control: Experimental evaluation and analysis. arXiv preprint
arXiv:1706.09115, 2017.

References 117

[47] Matthew Mathis and Jamshid Mahdavi. Forward acknowledgement: Refining
tcp congestion control. ACM SIGCOMM Computer Communication Review,
26(4):281–291, 1996.

[48] Bob Melander, Mats Bjorkman, and Per Gunningberg. A new end-to-end prob-
ing and analysis method for estimating bandwidth bottlenecks. In Globecom’00-
IEEE. Global Telecommunications Conference. Conference Record (Cat. No.
00CH37137). IEEE.

[49] Foivos Michelinakis, Nicola Bui, Guido Fioravantti, Joerg Widmer, Fabian
Kaup, and David Hausheer. Lightweight capacity measurements for mobile
networks. Computer Communications, 84:73–83, 2016.

[50] David Murray, Terry Koziniec, Sebastian Zander, Michael Dixon, and Polychro-
nis Koutsakis. An analysis of changing enterprise network traffic characteristics.
In 2017 23rd Asia-Pacific Conference on Communications (APCC), pages 1–6.
IEEE, 2017.

[51] Szilveszter Nádas, Gergő Gombos, Péter Hudoba, and Sándor Laki. Towards
a congestion control-independent core-stateless aqm. In Proceedings of the
Applied Networking Research Workshop, pages 84–90, 2018.

[52] Mario Nemirovsky, René Serral-Gracià, Francesco Ciaccia, and Ivan Romero
Ruiz. Intelligent adaptive transport layer to enhance performance using multiple
channels, December 21 2017. US Patent App. 15/626,130.

[53] Kathleen Nichols and Van Jacobson. Controlling queue delay. Communications
of the ACM, 55(7):42–50, 2012.

[54] Farzaneh Pakzad, Marius Portmann, and Jared Hayward. Link capacity estima-
tion in wireless software defined networks. In 2015 International Telecommuni-
cation Networks and Applications Conference (ITNAC), pages 208–213. IEEE,
2015.

[55] Anup Kumar Paul, Atsuo Tachibana, and Teruyuki Hasegawa. An enhanced
available bandwidth estimation technique for an end-to-end network path. IEEE
Transactions on Network and Service Management, 13(4):768–781, 2016.

[56] Ravi Prasad, Manish Jain, and Constantinos Dovrolis. Effects of interrupt
coalescence on network measurements. In International Workshop on Passive
and Active Network Measurement, pages 247–256. Springer, 2004.

[57] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168, RFC Editor, September 2001. URL
https://tools.ietf.org/html/rfc3168.

https://tools.ietf.org/html/rfc3168

118 References

[58] Vinay Joseph Ribeiro, Rudolf H Riedi, Richard G Baraniuk, Jiri Navratil, and
Les Cottrell. pathchirp: Efficient available bandwidth estimation for network
paths. In Passive and active measurement workshop, 2003.

[59] George F Riley and Thomas R Henderson. The ns-3 network simulator. In
Modeling and tools for network simulation. Springer, 2010.

[60] Ivan Romero, Francesco Ciaccia, René Serral-Gracià, and Mario Nemirovsky.
Automatic communication network control, May 11 2020. US Patent App.
20/32,386.

[61] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo
Contavalli, and Amin Vahdat. Carousel: Scalable traffic shaping at end hosts.
In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pages 404–417, 2017.

[62] Bernard W Silverman. Density estimation for statistics and data analysis,
volume 26. CRC press, 1986.

[63] Jacob Strauss, Dina Katabi, Frans Kaashoek, and Frans Kaashoek. A measure-
ment study of available bandwidth estimation tools. In Proceedings of the 3rd
ACM SIGCOMM Conference on Internet Measurement.

[64] Tim Szigeti, Christina Hattingh, Robert Barton, and Kenneth Briley Jr. End-
to-End QoS Network Design: Quality of Service for Rich-Media & Cloud
Networks. Cisco press, 2013.

[65] Tarik Taleb, Nei Kato, and Yoshiaki Nemoto. An explicit and fair window
adjustment method to enhance TCP efficiency and fairness over multihops
satellite networks. IEEE Journal on Selected Areas in Communications, 22(2):
371–387, 2004.

[66] VMWare Wavefront. Using moving and tumbling windows to highlight trends.
URL https://docs.wavefront.com/query_language_windows_trends.html.

[67] Felix Ming Fai Wong, Carlee Joe-Wong, Sangtae Ha, Zhenming Liu, and
Mung Chiang. Improving user QoE for residential broadband: Adaptive traffic
management at the network edge. In Quality of Service (IWQoS), 2015 IEEE
23rd International Symposium on, pages 105–114. IEEE, 2015.

[68] N. Cardwell Y. Cheng. Rack: a time-based fast loss detection algorithm
for tcp. RFC draft-cheng-tcpm-rack-00, RFC Editor, October 2015. URL
https://tools.ietf.org/html/draft-cheng-tcpm-rack-00.

[69] Qianwen Yin and Jasleen Kaur. Can machine learning benefit bandwidth
estimation at ultra-high speeds? In International Conference on Passive and
Active Network Measurement, pages 397–411. Springer, 2016.

https://docs.wavefront.com/query_language_windows_trends.html
https://tools.ietf.org/html/draft-cheng-tcpm-rack-00

Appendix A

TCP Internals

TCP is a stateful connection that automatically retransmits lost or damaged packets,
while adapting to the conditions of the endpoints (Flow Control) and the network
(Congestion Control). A TCP connection is initiated exchanging three packets (three-
way handshake), and finishes similarly (although it can remain half-closed if only
one of the endpoints closes its connection). The state machine is shown in Figure
A.1.

TCP flow control and window size adjustment is mainly based on two key
mechanism: Slow Start and Additive Increase/Multiplicative Decrease (AIMD), also
known as Congestion Avoidance (RFC 793 and RFC 5681). Below we describe these
mechanisms and how they are related.

A.1 Flow Control

Flow Control basically means that TCP will ensure that a sender is not overwhelming
a receiver by sending packets faster than it can consume. It’s pretty similar to what’s
normally called Back pressure in the Distributed Systems literature. The idea is that
a node receiving data will send some kind of feedback to the node sending the data
to let it know about its current condition. To control the amount of data that TCP
can send, the receiver will advertise its Receive Window (rwnd), that is, the spare
room in the receive buffer. Every time TCP receives a packet, it needs to send an ack
message to the sender, acknowledging it received that packet correctly, and with this

120 TCP Internals

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

CLOSING
LAST ACK

TIME WAIT

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

Close/FIN

ACK SYN + ACK/ACK

Close/FIN FIN/ACK

ACK

ACK

FIN +
ACK/ACK

FIN/ACK

ACK

Close/FIN

ACK

Timeout after two maximum
segment lifetimes (2*MSL)

Fig. A.1 TCP State Machine in Linux.

A.2 Zero Windows and the Persist Timer 121

ack message it sends the value of the current receive window, so the sender knows if
it can keep sending data. TCP uses a sliding window protocol to control the number
of bytes in flight it can have. In other words, the number of bytes that were sent but
not yet acked. Let’s say we want to send a 150000 bytes file from node A to node
B. TCP could break this file down into 100 packets, 1500 bytes each. Now let’s say
that when the connection between node A and B is established, node B advertises
a receive window of 45000 bytes. Seeing that, TCP knows it can send the first 30
packets (1500 × 30 = 45000) before it receives an acknowledgment. If it gets an ack
message for the first 10 packets (meaning we now have only 20 packets in flight),
and the receive window present in these ack messages is still 45000, it can send
the next 10 packets, bringing the number of packets in flight back to 30, that is the
limit defined by the receive window. In other words, at any given point in time it
can have 30 packets in flight, that were sent but not yet acked. Now, if for some
reason the application reading these packets in node B slows down, TCP will still
ack the packets that were correctly received, but as these packets need to be stored
in the receive buffer until the application decides to read them, the receive window
will be smaller, so even if TCP receives the acknowledgment for the next 10 packets
(meaning there are currently 20 packets, or 30000 bytes, in flight), but the receive
window value received in this ack is now 30000 (instead of 45000), it will not send
more packets, as the number of bytes in flight is already equal to the latest receive
window advertised. The sender will always keep this invariant:

LastByteSent−LastByteAcked ≤ ReceiveWindowAdvertised (A.1)

A.2 Zero Windows and the Persist Timer

In the case a receiver advertises a zero window, TCP will stop transmitting data as
the receiver’s buffer is full. However, After the receiver advertises a zero window,
if it doesn’t send any other ack message to the sender (or if the ack is lost), it will
never know when it can start sending data again. This would lead to have a deadlock
situation, where the receiver is waiting for more data, and the sender is waiting for
a message saying it can start sending data again. To solve this problem, when TCP
receives a zero-window message it starts the persist timer, that will periodically send

122 TCP Internals

a small packet to the receiver (usually called WindowProbe), so it has a chance to
advertise a nonzero window size.

A.3 Slow Start

To avoid that a starting TCP connection floods the network, a Slow Start mechanism
was introduced in TCP. This mechanism effectively probes to find the available
bandwidth. In addition to the window advertised by the receiver, a Congestion
Window (cwnd) value is used and the effective window size is the lesser of the
two. The starting value of the cwnd window is set initially to a value that has been
evolving over the years, the TCP Initial Window. After each acknowledgment, the
cwnd window is increased by one MSS. By this algorithm, the data rate of the sender
doubles each round-trip time (RTT) interval (actually, taking into account Delayed
ACKs, rate increases by 50% every RTT). For a properly implemented version of
TCP this increase continues until:

• the advertised window size is reached,

• congestion (packet loss) is detected on the connection,

• there is no traffic waiting to take advantage of an increased window (i.e. cwnd
should only grow if it needs to).

When congestion is detected, the TCP flow-control mode is changed from Slow Start
to Congestion Avoidance. Note that some TCP implementations maintain cwnd in
units of bytes, while others use units of full-sized segments.

A.4 Congestion Avoidance

Once congestion is detected (through timeout and/or duplicate ACKs), the data rate
is reduced in order to let the network recover. Slow Start uses an exponential increase
in window size and thus also in data rate. Congestion Avoidance uses a linear growth
function (additive increase). This is achieved by introducing - in addition to the cwnd
window - a slow start threshold (ssthresh). As long as cwnd is less than ssthresh,
Slow Start applies. Once ssthresh is reached, cwnd is increased by at most one

A.5 Fast Retransmit 123

segment per RTT. The cwnd window continues to open with this linear rate until a
congestion event is detected. When congestion is detected, ssthresh is set to half the
cwnd (or to be strictly accurate, half the "Flight Size". This distinction is important if
the implementation lets cwnd grow beyond rwnd (the receiver’s declared window)).
cwnd is either set to 1 if congestion was signalled by a timeout, forcing the sender
to enter Slow Start, or to ssthresh if congestion was signalled by duplicate ACKs
and the Fast Recovery algorithm has terminated. In either case, once the sender
enters Congestion Avoidance, its rate has been reduced to half the value at the time
of congestion. This multiplicative decrease causes the cwnd to close exponentially
with each detected loss event.

A.5 Fast Retransmit

In Fast Retransmit, the arrival of three duplicate ACKs is interpreted as packet
loss, and retransmission starts before the retransmission timer (RTO) expires. The
missing segment will be retransmitted immediately without going through the normal
retransmission queue processing. This improves performance by eliminating delays
that would suspend effective data flow on the link.

Fast Retransmit (1990) was superseded by Forward Acknowledgement [47],
which is being replaced by Recent Acknowledgement (RACK) [68] for algorithms
like BBR: “RACK uses the notion of time, instead of packet or sequence counts, to
detect losses, for modern TCP implementations that can support per-packet times-
tamps and the selective acknowledgment (SACK) option. It is intended to replace
the conventional DUPACK threshold approach and its variants, as well as other
nonstandard approaches.”.

A.6 Fast Recovery

Fast Recovery is used to react quickly to a single packet loss. In Fast recovery, the
receipt of 3 duplicate ACKs, while being taken to mean a loss of a segment, does not
result in a full Slow Start. This is because obviously later segments got through, and
hence congestion is not stopping everything. In fast recovery, ssthresh is set to half of

124 TCP Internals

the current send window size, the missing segment is retransmitted (Fast Retransmit)
and cwnd is set to ssthresh plus three segments. Each additional duplicate ACK
indicates that one segment has left the network at the receiver and cwnd is increased
by one segment to allow the transmission of another segment if allowed by the new
cwnd. When an ACK is received for new data, cwnd is reset to the ssthresh, and TCP
enters congestion avoidance mode.

	Table of contents
	List of figures
	List of tables
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.3.1 Preliminary Work
	1.3.2 TCP Control
	1.3.3 Smart Measurements for Wide Area Networks
	1.3.4 Network Control

	1.4 Methodology
	1.5 Thesis Structure

	2 TCP over Wide Area Networks
	2.1 TCP Control and Self Induced Congestion
	2.1.1 Loss Based Congestion Controls
	2.1.2 BBR: Congestion based congestion control

	2.2 The Split TCP problem in WANs
	2.2.1 TCP buffer and windows behavior in Split TCP

	2.3 Conclusions

	3 Traffic Control in Linux
	3.1 TCP memory management in the Linux network stack
	3.2 Traffic Control
	3.3 Active Queue Management
	3.4 Token Bucket Filter
	3.4.1 System tick and high resolution timers
	3.4.2 TBF evaluation as a pacing shaper
	3.4.3 TBF limitations

	3.5 Conclusions

	4 Receive Window Modulation for TCP over WAN
	4.1 Architecture
	4.1.1 Use Cases

	4.2 Experiments
	4.2.1 Testbed
	4.2.2 Evaluation

	4.3 Related Work
	4.4 Discussion
	4.4.1 RWM Compliance with TCP
	4.4.2 Path Symmetry
	4.4.3 Available Bandwidth Estimation
	4.4.4 Distributed deployment of points of control

	4.5 Conclusions

	5 Packet dispersion model and measurement
	5.1 Packet dispersion
	5.2 Probe-gap curve
	5.2.1 Probe-gap Model - PGM
	5.2.2 Probe-rate Model - PRM

	5.3 Inter-packet time measurement challenges in Linux
	5.4 Conclusions

	6 Available Bandwidth Estimation
	6.1 SABES Heuristic
	6.1.1 Capacity Estimation
	6.1.2 Available Bandwidth Estimation

	6.2 Heuristic Evaluation
	6.2.1 Simulation environment
	6.2.2 Heuristic simulation results

	6.3 Related Work in AvBw estimation
	6.4 Conclusions

	7 Deep Neural Networks for AvBw estimation
	7.1 Neural Network design
	7.2 Evaluation over simulation dataset
	7.3 Evaluation in real testbed
	7.3.1 Real testbed results
	7.3.2 Comparison with ASSOLO

	7.4 Improving SABES-NN: a direct estimation approach
	7.4.1 Time series analysis
	7.4.2 SABES-KDE
	7.4.3 SABES-KDE results evalution
	7.4.4 SABES-KDE limitations and future work

	7.5 Related Work in DNN and ML usage for AvBw estimation
	7.6 Conclusions

	8 Narrow link estimation and location
	8.1 Theoretical bases
	8.1.1 Smallest Link Capacity Set
	8.1.2 Packet pair dispersion
	8.1.3 Packet pair dispersion-delay

	8.2 Narrow link capacity determination
	8.2.1 Capacity estimation evaluation

	8.3 Hidden red-shift effect
	8.3.1 Narrow link location
	8.3.2 SLCS capacity determination

	8.4 Related Work
	8.5 Conclusions

	9 Towards a Stateful SD-WAN traffic controller
	9.1 Stateful Edge Router Architecture
	9.2 Takeaways and final remarks

	References
	Appendix A TCP Internals
	A.1 Flow Control
	A.2 Zero Windows and the Persist Timer
	A.3 Slow Start
	A.4 Congestion Avoidance
	A.5 Fast Retransmit
	A.6 Fast Recovery

