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Abstract: The analysis of the functional diversity of soil nematodes requires detailed knowledge on 

theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed 

terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of 

soil nematode diversity in crop production and on the most consistent external drivers affecting 

their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined 

in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate 

(apple) climates. The multiple facets of nematode network analysis, for management of multi-

trophic interactions and restoration purposes, represent complex tasks that require the integration 

of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diver-

sity at the field level, and its response to current changes, will help to explain the observed com-

munity shifts. Integrating approaches based on evolutionary biology, population genetics and 

ecology can quantify the contribution of nematode fauna to fundamental soil functions. These in-

clude carbon transformation, nutrient cycling, pest control and disease transmission. In conclusion, 

different facets of nematode diversity such as trophic groups, life history traits, variability in body 

size and/or taxa identities in combination with DNA-based techniques are needed in order to dis-

close nematode–soil–ecosystem functioning relationships. Further experimental studies are re-

quired to define locally adapted and sustainable management practices, through ecosystem-based 

approaches and nature-based solutions.  

Keywords: apple; banana; land use intensity; nematode community; Pratylenchus; Radopholus; soil 

biodiversity; soil ecosystem service; soil microbiome 

 

1. Introduction 

Biological diversity is the foundation of ecosystem processes (functions) and ser-

vices. Climate and habitat changes, invasive alien species, overexploitation and pollution 

are the most important direct drivers of biodiversity loss and ecosystem service changes 

induced by human activities [1]. Approximately 60% of the world ecosystem services are 

considered as degraded or unsustainably used [2]. More than 75% of Earth’s ice-free land 

shows evidence of alteration as a result of land use and human habitation [3]. The land 

use and the associated loss of natural habitats were rated as the most important drivers of 

biodiversity decline in the terrestrial realm [4]. The changes showing marked spatial 

variation and future losses appear concentrated in biodiverse but economically poor 

countries [5]. The conversion of natural land from complex to simplified agricultural and 
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forestry systems can have substantial, often strongly negative, effects on soil biological 

communities and their activities [6,7]. Croplands, pastures and permanent plantations 

are the predominant land uses related to agriculture, where the degree of intensity can 

range from minimal to intense. In general, conventional crop systems are characterized 

by simplified land cover, degraded soil, low organic matter (OM) content, more extreme 

wet–dry cycles and high residual nutrient levels. In particular, soil degradation results in 

accelerated erosion, soil habitat changes and biodiversity losses, induced by multiple 

agricultural practices, such as excessive tillage, inadequate residue management and ex-

cessive use of fertilizers and pesticides. We have, however, almost no information on 

species loss, biodiversity decline or composition shifts in soil communities, and the re-

lated impacts on ecosystem processes, such as primary production, biogeochemical cy-

cles and decomposition [8]. 

Nematodes represent one of the largest phyla in the animal kingdom, both in terms 

of diversity and abundance. They have great genetic diversity and phenotypic plasticity 

that enables them to occupy a vast range of habitats. Nematodes are the most numerous 

soil-dwelling multicellular animals that feed and reproduce in the water film around and 

within soil aggregates. However, a small group of plant parasitic species spend a signif-

icant part or their lifecycle in roots. Being a widespread and diverse group, nematodes 

display a wide range of adaptations and functional traits that make them ideal for eco-

logical and evolutionary biology studies. Moreover, they are involved in complex eco-

logical networks through their interactions with other soil organisms, at multiple levels. 

The implementation of molecular methods, including next-generation sequencing (NGS), 

has greatly facilitated the study of nematode diversity, enabling new insights into our 

understanding of their distribution patterns [9–13].  

This review focuses primarily on nematode functional diversity in terrestrial eco-

systems. We first discuss the functional diversity concept in ecosystem ecology and some 

current understandings on the ecology of terrestrial nematodes related to their functional 

role, spatial distribution and community assembly. Experimental results and findings 

linking nematode functional diversity to human-induced changes are presented, taking 

as examples plant parasitic nematodes (PPN) or entomopathogens in two perennial crops 

with high impact, focusing on cover changes or agricultural intensity.  

2. Functional Diversity 

The biodiversity–ecosystem functioning relationship is one of the most explored 

topics in ecology. In general, scientists and conservationists measure species richness and 

diversity. However, recent studies and theoretical developments show that ecosystem 

processes depend heavily on the functional characteristics (traits) of the organisms pre-

sent in an ecosystem [14,15] or functional diversity. It is defined as “the range and value 

of those species and organismal traits that influence ecosystem functioning” [16]. Moving 

from a taxonomic to a functional trait-based approach enables large-scale comparison of 

general patterns and principles across communities and ecosystems [17,18]. This ap-

proach allows us to understand how much trait diversity is necessary to maintain multi-

ple ecosystem functions simultaneously (i.e., ecosystem multifunctionality), and to reveal 

the complex nature of the community changes and response to disturbance [19–22].  

Ecosystem processes and services depend on the structure, function and dynamics 

of soil communities. To understand the relationships between soil biota and ecosystem 

services, the utility of the “functional groups” approach appears to be limited, as it fails 

to consider within-group variation in traits, underestimating the link between functional 

diversity and ecosystem functioning [23,24]. Functional groups are usually defined at one 

trophic level, and the relationship between such groups and ecosystem functioning is not 

always straightforward. The functional trait (physiological, morphological, behavioral, or 

phenological), is a well-defined property of organisms, usually measured at the indi-

vidual level [15]. They affect fitness indirectly, via their impact on growth, reproduction 

and survival [25]. It is crucial to distinguish both the effect traits, i.e., the species traits 
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that affect ecosystem functioning, and the response traits, that determine a species re-

sponse to an environmental change [26].  

3. Nematode Functional Role, Functional Groups and Traits Diversity  

Studies on the role of nematode diversity are less represented when compared to the 

interactions involving plants, fungi or bacteria, which comprise the greatest number of 

studies currently available in the literature (Figure 1). This prevalence is also indicated by 

the wordcounts for biodiversity and nematode studies, as shown in Figure 2.  

 

Figure 1. Number of publications with the keyword “biodiversity” indicated, for each node pair, 

by the edge thickness (data retrieved from PubMed, search period: 1947–2020; network produced 

with Gephi, https://gephi.org). 

 

Figure 2. Most represented words in title and abstract of scientific papers with keywords “biodi-

versity”, “soil” and “nematode” in title and/or abstract, published during the last five years 

(source: PubMed, produced at https://www.jasondavies.com/wordcloud/). 

Being an important component of soil food webs, nematodes have an essential role 

in all soil processes and ecosystem functions. They are involved in carbon (C) transfor-

mation and nutrient cycling originating from living plant roots (“direct pathway”) and 

dead plant residues (“indirect pathway”). Through their metabolic and behavioral activ-

ity, nematodes contribute to plant growth and primary productivity, C and nutrient cy-
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cling, as well as pest and disease control, such as by entomopathogenic nematodes (EPN) 

[27]. Nematodes also indirectly contribute to decomposition of soil OM [11,28].  

The functional grouping of nematodes is generally synonymous with their alloca-

tion into feeding groups, however the link between ecosystem functions and functional 

groups is not always straightforward or clear [23]. Different feeding groups can be in-

volved in a given function (e.g., nematodes from all feeding groups contribute to the C 

transformation or nutrient cycling, directly or indirectly). The majority of free-living 

nematodes feed on bacteria and fungi, and their role can be direct, via the excretion of 

(in)organic compounds into soil, and indirect, by altering the size, composition and ac-

tivity of the microbial community [29]. Microbial feeders can promote the competitive 

ability and dispersal of beneficial microbiota by selectively grazing on harmful soil mi-

croorganisms [30] or by transferring, as vectors, beneficial bacteria to the rhizosphere 

[31], and vice versa, harmful bacteria and viruses can also be transmitted in this way. Soil 

nematodes have developed numerous feeding strategies within each trophic group and a 

great variety of morphological structures used for food ingestion [11]. Dissecting the 

complex web of services resulting by nematodes’ evolutionary history requires intense 

analytical efforts. A schematic summary of nematode functional roles is given in Table 1. 

The impact of nematode diversity and functional roles varies at different spatial scales, 

ranging from single root systems to cultivated field or wider space levels. Moreover, the 

activity of phylogenetically distant taxa may converge towards the same functional role. 

This trend is mirrored by species from the same taxonomic lineage (i.e., Tylenchida or 

Dorylaimida) that have distinct functional roles. 

Table 1. A schematic list of nematode contributions to main soil functions and services provided by different trophic groups. 

Nematode Trophic 

Groups 
Functions * 

 Plant Production Pests or Pathogens Regulation Disease Transmission C and Nutrient Cycling 

Bacterial feeders 
+/ (vectors of benefi-

cial/harmful bacteria) 
+ (feeding on harmful bacteria)  + 

Fungal feeders  + (feeding on pathogenic fungi)  +  

Herbivores 
+/ (weed con-

trol/plant parasitism) 
 + (virus vectors) + 

Predators  + (PPN preying)  +  

Omnivorous  + (PPN preying)  + 

Entomopathogens  + (insect killing)  +  

* Signs indicate positive (service) and negative (disservice) contributions (in parenthesis). 

Another representation of nematode functional diversity is related to their life his-

tory strategies. A combination of traits (e.g., body size, reproductive potential, longevity, 

tolerance) have been used to classify nematodes along a colonizer-persister (c-p) scale 

(i.e., classification into r- and K-selected species), reflecting the habitat quality, maturity 

and stability [32]. Non-parasitic nematode families were assigned to five classes. These 

range from r-strategists, having short lifecycle, high reproduction rates, high coloniza-

tion ability and tolerance to stress (c-p 1), to k-strategists, having long lifecycle, very few 

offspring, low colonization ability and sensitivity to stress (c-p 5) [33,34]. Based on this 

classification, the nematode maturity index was developed and extensively tested over 

three decades. Generally, the c-p ranking is recognized as a functional trait, however it is 

based on a combination of selected physiological, morphological and behavioral traits. 

The knowledge on the nematode trophic and life history traits was integrated into a ma-

trix classification of nematode ‘guilds’ [34]. The soil food web diagnostic framework was 

then developed, by providing a weighting system for the presence and abundance of 

nematode “functional guilds” in relation to enrichment and soil food web structure [35]. 

Nematode communities are mostly surveyed to the genus level and subsequently 

assigned to feeding and life history groups (at the family level). However, the trophic 
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position and functioning of non-parasitic species continue to be poorly understood, de-

spite their ubiquity and abundance. Moreover, recent studies on Pristionchus spp. 

showed great polyphenisms (alternative phenotypes produced by the same genotype) in 

mouth morphology, larval development and reproductive or feeding mode [36–38]. Such 

a nematode phenotypic plasticity allows individuals to adapt easily to changing envi-

ronments, therefore a great functional diversity can be maintained in the absence of sub-

stantial genetic variation [39]. With other experimental studies, these observations indi-

cate that the functional role of nematodes may be highly species-specific [40] and that 

certain functions might involve a complex of multiple species with different specific 

temporal and spatial cues [41]. An overlap of functional roles is evident in EPN, as these 

nematodes are both bacterivores and insect parasites. 

Although nematodes often represent the dominant eukaryotes in terms of abun-

dance and diversity, most experimental studies used for evaluating their functional role 

involve a limited number of species. For example, studying the effect of within-trophic 

level diversity of bacterivorous nematodes and population interactions on nitrogen 

mineralization, Postma-Blaauw et al. [42] found that the life history strategies of the spe-

cies of the same trophic group significantly affected their communal impact on the soil 

ecosystem processes. A single nematode species is able to influence the population size of 

other species that may, in turn, alter the functioning of the system [43]. How experi-

mental observations can be generalized remains, however, uncertain, in particular if we 

consider the broad range of ecosystem types and processes globally present. A better 

approach to adopt would be to investigate these complex systems through long-term 

field experiments or in situ studies [17]. 

At first, the functional diversity was assessed mainly as functional group richness 

(i.e., the number of feeding groups and functional guilds) and their relative abundance. 

In recent years, the analyses of single or multiple nematode traits were regarded as reli-

able alternatives to assess the community-level response to disturbances and biodiversi-

ty–functions relationships. In terrestrial ecosystems, the functional trait-based approach 

has been undertaken for nematode assemblages alone [44,45] or for more complex sys-

tems that involve several trophic levels, e.g., bacteria, nematodes and collembolans [46]. 

Body size, measured either at the individual or species level, has been used to evaluate 

the interaction strengths between consumers and resources [47], and is correlated directly 

with properties that influence the performance of organisms and communities [15]. The 

body size/mass spectra of free-living nematodes as response/effect trait metrics alone or 

in combination with behavior (feeding structure) and life history strategies have been 

used to evaluate nematode functional diversity [48–50]. The combination of discrete and 

continuous traits (trophic groups and body size) distribution rather than the functional 

diversity indices (functional divergence, functional evenness and functional richness) 

was found to better reveal the soil food web structure and trait-mediated responses of 

nematode communities to environmental filters in different ecosystem types [51].  

4. Soil Nematode Communities in Space and Time 

The influence of environmental factors and biotic interactions on biodiversity, 

community assembly and dynamics in soil is so far unclear. The current me-

ta-community concept postulates that the structure of local communities is shaped by at 

least three interacting forces: dispersal, environmental filtering and biotic interactions 

[52]. Being small-bodied organisms, soil nematodes exhibit an aggregate distribution at a 

microscale level tied to their limited dispersal, niche partitioning and trait plasticity, with 

plants being one of the key determinants [53]. The soil spatial heterogeneity and the 

temporal variation in resource availability create high microhabitat diversity, potential 

for resource utilization and niche partitioning, and hence complex biotic interactions. In 

natural systems, deterministic (i.e., niche-based) rather than stochastic processes were 

found to be more important in delimiting the phylogenetic nematode community struc-

ture [54]. Closely related nematode phylotypes tended to co-occur more often, demon-
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strating that closely related lineages occupy similar niches. This provided evidence for 

the existence of self-organized communities (functional units) that soil supports at a 

given scale as a result of long periods of coevolution that have selected for the best com-

bination of organisms [55]. 

In contrast to natural and semi-natural systems, the nematode community structure 

and diversity in agricultural soils are strongly modified by the habitat structure and 

human activities. These are combined with the ability of local organisms to adapt to 

greater perturbations and constantly changing factors. Differences in the spatial and 

temporal availability of major plant resources, i.e., litter and rhizodeposits, separate the 

nematode fauna into metacommunities [56]. The patterns may also be associated with a 

complexity of relationships that nematode species have with soil components as a whole, 

including their own density and that of prey, predators and/or microbial parasites. 

Nematode communities also tend to be dynamic, and constantly changing (adapt-

ing) over time, as they do in space, as shown by changes in nematode composition and 

population dynamics, due to endogenous or external drivers. In newly colonized envi-

ronments, the identification of a “path towards equilibrium” may reveal unexpected ex-

ternal drivers, that contribute to the construction of a stable community. For example, 

when studying the nematode succession on a pristine volcanic island (Surtsey, Iceland) 

50 years after its original formation, Ilieva-Makulec et al. found a progressive increase of 

nematode taxa over time [57]. However, the presence of seagull colonies on the island 

increased the diversity and abundance of bacterial and plant-feeding taxa inside the 

colony area, rich in nutrients and plants, whereas higher numbers of mycophagous spe-

cies occurred outside, in other less fertile zones. The manner in which soil fertility and 

vegetation directly and indirectly shape soil communities can vary greatly across organ-

ism groups and over the system timescales (chronosequences) [58]. However, the em-

pirical analyses explaining the temporal heterogeneity effects on community assembly 

and dynamics remain insufficient, calling for more research efforts and investments. 

5. Biodiversity Alterations Due to Agriculture 

5.1. Land Cover Change 

Deforestation in the tropics is one of the most dramatic contemporary examples 

which results in a decline in species diversity, including nematode fauna [59,60]. Species 

richness was greater in undisturbed tropical forest than after clearing, cultivation or 

during regeneration. Re-analyzing the data from south-central Cameroon regarding the 

effects of tropical forest disturbance and clearance on eight animal groups (birds, butter-

flies, flying beetles, canopy beetles, canopy ants, leaf-litter ants, termites and soil nema-

todes), it was found that the effects were stronger on species composition than on rich-

ness, and were mostly concordant among taxa [61,62]. In contrast to previous findings 

[61], species richness for most groups did not decline with disturbance level, thus sup-

porting the view that changes in species richness at local scales do not always reflect the 

ecosystem response to disturbance. The strength of the relationships between disturb-

ance and community composition relationship depends on the disturbance drivers and 

the functional groups considered [62]. The greatest observed response was from organ-

isms feeding on plant material (living or dead), including herbivorous nematodes which 

were, with beetles and termites, the most sensitive to forest disturbance.  

Recovery following destruction of vegetation (secondary vegetation) is yet another 

land process [4] that will result in a marked effect on the after-disturbance nematode 

communities, although the response appears to be idiosyncratic and case-specific [63,64]. 

The shifts in nematode composition and diversity depend on the initial community 

structure and appear mediated by plant-soil legacy and the assemblage response to novel 

conditions. Changes in diversity and trophic structure of nematode communities were 

studied in relation to both natural and human-driven modifications, e.g., woody plant 

invasion of grasslands [65], secondary successions after land abandonment [66–68] and 
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ex-arable lands restoration [69]. Using a chronosequence approach to study vegetation 

shifts from grassland to woodland, Biederman and Boutton [65] found that the taxo-

nomic diversity and overall nematode abundances were unaffected by the development 

of forest stands in grassland areas. However, the change reduced the evenness compo-

nent of the taxonomic diversity. Reductions in root-parasitic nematodes ranged from 40% 

in grasslands to <10% in the older wooded areas, while the abundance of bacterivores 

increased from 30% of the nematode communities in grasslands to 70–80% in older 

woody areas. The effect of spreading hay and soil (independently or combined) and 

transplanting intact turfs was tested on plant and soil nematode community develop-

ment, when studying the restoration practices and tools in ex-arable lands [69]. The soil 

spreading and turf transplantation did not affect the soil nematode community compo-

sition at the receptor site, and the introduction of later successional soil organisms into a 

topsoil-removed site did not facilitate the establishment of later successional plants. 

5.2. Land Use Intensity 

The degree of soil habitat perturbations in agrosytems depends on the type and in-

tensity of the production system (e.g., annual-perennial cropland, conventional-organic 

management, pasture) and on the previous management (e.g., tillage, rotation regimes, 

fertilizer application, grazing intensity). Intensive agriculture decreases the abun-

dance/biomass of most groups of soil organisms, and the functional diversity of indi-

vidual groups of soil biota, altering the community structure and reducing the complex-

ity of the soil food webs [70–72]. Simplification of the soil food webs affects multitrophic 

interactions, an effect that can significantly impair soil processes, ecosystem functions 

and services [71,73]. Moreover, land use can strongly affect the resilience of soil food 

webs and their response to extreme events due to climate changes [74].  

Agricultural management practices directly and/or indirectly affect the soil fauna 

with limited abilities of dispersal and re-colonization, including nematodes. Planting 

crops (e.g., sugar beet) susceptible to plant parasitic species (e.g., Heterodera schachtii) and 

long-term intensive cultivation are known to significantly affect nematode diversity by 

providing a pest selection pressure, modifying the soil structure and increasing chemical 

pollution [75]. However, not all taxa or functional groups will decrease in density or di-

versity with increasing crop intensity. Some groups (taxa) are even favored by more in-

tensified cropping practices, such as bacteria, or bacterial and plant feeding nematodes. A 

general pattern often observed in studies dealing with land use intensification (e.g., in-

creased tillage, fertilizer use and grazing) is the increased role of bacterial- vs. fun-

gal-based food webs [76]. These changes are usually associated with a shift in the pro-

portion of bacterial to fungal feeding nematodes and changes in plant-feeding abundance 

and taxa composition [77–82]. The nematode operational taxonomic units (OTUs) rich-

ness and, to a larger extent, OTUs (and genus) diversity and evenness, and abundance of 

herbivorous nematodes were higher in reduced compared to conventional tillage, how-

ever a soil depth stratification effect of reduced tillage on nematode OTUs and genera, as 

well as in the relative abundance of trophic groups was found [81]. Nematode commu-

nities were more strongly affected by tillage than by organic matter addition.  

Another general pattern often observed in disturbed agricultural soils is the lack or 

decreased abundance of organisms of higher trophic levels, such as carnivorous and 

omnivorous nematodes [78], assigned to the group of K life strategists (persisters). 

However, the opposite trend was also occasionally detected [83,84]. Studies comparing 

conventional to no-tillage management showed a greater abundance in no-tillage of 

nematodes from both trophic groups, while others did not reveal a clear effect on either 

feeding group [81,85,86]. A study on nematicide applications revealed no significant 

impact on omnivorous and predatory nematode populations, with an observed yearly 

recovery [83]. The contrasting results could be related to the different response of species 

(genera) present in the community rather than of the trophic group as a whole. The 

physical disturbances and chemical/nutrient changes reported likely alter the nematode 
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genera differently, and the indirect effects of management were likely greater than the 

direct ones [87]. 

Plant-mediated effects may also cause differences in the nematode response to 

management practices. Reduced crop diversity in agrosystems, and related reduction in 

food source variety (e.g., litter quality) with root heterogeneity, decreased nematode di-

versity, altering the community structure and function, thus decreasing the food web 

complexity [79,88,89]. Other studies showed that the nematode abundance was signifi-

cantly reduced after nematicide applications, especially for plant feeders and predators. 

When studying different maize crop management systems, monoculture was found to 

reduce plant and bacterial feeders’ diversity [90]. Another study showed that, over five 

years, complex plant communities developed more complex nematode communities, 

with a higher ratio of predators to plant feeders and of fungal to bacterial feeding nem-

atodes, thus reducing the relative abundance of plant feeders that were more common in 

simplified plant communities [91]. 

Other studies, however, found stronger effects of plant identity rather than diversity 

on nematode composition [92–94]. Changes in nematode diversity were linked to the 

presence of a specific crop plant. Plant–soil biota feedbacks can affect the primary 

productivity in terrestrial habitats and certain ecosystem processes [95–97]. These links 

are well-known for many parasitic nematodes but are still not well-understood for other 

herbivorous and free-living species. The plant developmental stage appeared as a dom-

inant determinant of the rhizosphere community, significantly affecting most abundant 

nematodes [98], and vice versa, by altering competition among plant functional groups, 

nematodes were found to modify the community structure and functions of semi-natural 

plant communities [90]. 

Farming integrating low-impact, system-oriented and sustainable practices is an al-

ternative to the increasing intensification of conventional agriculture. Organic agriculture 

is a management system with emphasis on the minimal use of off-farm inputs, aiming at 

restoring, maintaining and enhancing biodiversity, biological cycles and soil biological 

activity. Different agricultural systems affect nematode communities in diverse ways, 

which depend on the specific combinations of management practices and environmental 

factors. These impede the extrapolation of the results from experimental and field studies 

to other different environmental conditions. Impacts of various practices applied in or-

ganic or natural agrosystems on soil biota, including nematode communities, have been 

extensively studied and compared to conventional agrosystems [99–103]. The effects of 

various forms of agricultural management on nematode diversity range from negative to 

positive, depending on the type of practice and the measure of diversity applied [10]. Soil 

nematode assemblages appear resilient to many management practices. However, the 

level at which biodiversity is assessed can strongly bias our interpretations. Most anal-

yses are at the generic and trophic levels, but greater changes, or taxon replacement, may 

occur at the species level [75]. Complementary changes at the taxonomic level may not be 

detected at the functional diversity level.  

6. Impact in High-Value Crops  

6.1. Effects of Banana Cropping Systems on Nematodes 

Bananas (Musa spp.) are typically grown in highly commercial, large-scale mono-

culture plantations. They consist primarily of a single Cavendish genotype and minor 

variants, while single plantations are usually composed of clones from a single source. 

This narrow genetic pool represents a major risk for pest and disease outbreaks. Conse-

quently, the banana industry has traditionally relied heavily upon the use of synthetic 

pesticides to mediate the impact of pests and diseases, including nematodes. As with 

many tropical crops, bananas are challenged by and susceptible to a range of PPN spe-

cies. At any one time, they are mostly infected by multiple species [104], which could 

severely compromise the fruit production and other services provided by plantations. 
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Most studies on nematode assemblages and functional groups’ diversity in banana 

agrosystems explored the effects of plant cover composition and diversity changes on 

regulation of the most common PPN [105–109]. The stability and beneficial ecosystem 

functions and services (e.g., regulation of weeds, pests or pathogens) of intensively 

managed agrosystems can be enhanced by increasing plant diversity through cover 

plants or associated crops. Increasing the cover crop species diversity is expected to en-

hance plant productivity through increased resource use efficiency [110]. Multispecies 

cropping agrosystems perform multiple functions and services other than crop produc-

tion, increasing soil OM and C sequestration, regulating soil moisture, suppressing 

weeds, pathogens and pests, retaining N, sustaining higher soil biodiversity, etc. In-

creasing plant richness tends to increase pest regulation in the field. The cover plants 

may control PPN directly, by various self-defense mechanisms and traits (morphologi-

cal, physical and chemical) and indirectly—through soil food web modifications, in-

cluding changes in the relative abundance between PPN and their predators, e.g., car-

nivorous nematodes or arthropods [111]. The abundance of bacterivorous, omnivorous 

and root-hair feeding nematodes, and the Shannon–Weaver diversity index, tended to 

increase when a cover crop was introduced between rows [105]. However, data showed 

specific effects of cover crop species, as PPN were less abundant in plots with Poaceae 

than in those with Fabaceae. 

Poeydebat et al. [106] investigated the processes leading to PPN regulation in ba-

nana agrosystems, evaluating the effects of plant richness (crop and non-crop), soil 

properties (humidity, soil OM, C:N ratio) and nematode trophic groups on multitrophic 

interactions. Different pest regulation pathways were found, including regulation of 

Radopholus similis by plant community effects, of Helicotylenchus multicinctus and 

Meloidogyne spp. by non-trophic interactions with free-living nematodes and of 

Pratylenchus coffeae by both effects. No regulation of PPN by predaceous nematodes was 

found. Other studies showed that previous crop plants, biochemical characteristics of 

cover crop litter, management type (conventional vs. organic, mixed vs. monoculture) 

and the type of organic amendments also applied strongly influenced the nematode as-

semblages, their trophic interactions and complexity, possibly leading to PPN suppres-

sion [107–109,112–114]. 

The PPN biology and host adaptation also play a key role in the damage induced. 

The burrowing nematode, R. similis, is the most important PPN of banana, largely as this 

tends to be the prominent nematode in commercial dessert banana plantations, where 

close attention is paid to pest management. However, R. similis rarely occurs alone but, as 

an aggressive species, it often overshadows the presence and damage of other nematode 

species. Other co-occurring species, such as H. multicinctus and Meloidogyne spp., result in 

damage beyond that caused by R. similis alone [115]. In addition, significant differences 

in the aggressiveness and damage potential of different populations of R. similis have 

been demonstrated, which are themselves differentially affected by host resistance [116].  

Depending on the geographic location, climate and banana genotype, the nematode 

diversity may differ substantially. In Africa, for instance, R. similis has tended to domi-

nate the nematode communities (and damage) in the East African Highland cooking 

bananas, at altitudes below 1400 m. Above this altitude, Pratylenchus goodeyi, which is 

more tolerant of cooler temperatures than R. similis, becomes dominant [117–119]. Heli-

cotylenchus multicinctus remains ever present across the altitudinal gradients, while 

Meloidogyne spp., Rotylenchulus spp., Rotylenchus spp. and other Helicotylenchus spp., 

among others, regularly occur [103]. In the hotter lowland areas in East Africa, the nem-

atode community composition has shifted away from R. similis, with Pratylenchus coffeae, 

as well as P. goodeyi, becoming more prevalent [120–122]. In West Africa, however, where 

R. similis has previously been the dominant nematode pest species, a trend in the rise of 

P. coffeae has been observed [117]. Overall, this demonstrates the continuously dynamic 

nature of PPN on banana and the need to be aware of this dynamism when developing 

appropriate management options. 



Diversity 2021, 13, 64 10 of 23 
 

 

The occurrence of multiple damaging species has relevance for management op-

tions, especially selective options that may be species-specific, such as host resistance or 

biological control. Options, therefore, of a more general nature or that combine alterna-

tives with specific target species should be considered in order to effectively manage 

multiple infections. Previously, in commercial plantations, the regular and repetitive use 

of the same chemical nematicide was relied upon, but the adaptation of microbes, which 

quickly degraded them, rendered some treatments ineffective, resulting in the alternate 

use of different compounds [123]. Chemical nematicide treatments, in addition to fungi-

cides and insecticides, have amounted to extreme levels of application, however, a situa-

tion that questions the ecological sustainability of such systems [124,125]. The long-term 

persistence of some compounds, such as Chlordecone, has also occurred in some in-

stances, leading to their progressive removal from use, and to the search for less haz-

ardous options [126,127].  

In general, the monoculture of banana should be avoided to suppress the build-up 

of nematode population densities and high, long-term pathogen pressure. In the com-

mercial dessert banana systems, this is not always practical or feasible, while the small-

holder systems tend to comprise a tapestry of different cultivars and crops. Although 

different, both production systems tend to be heavily affected by nematode damage, but 

for varying reasons. For instance, high pathogen pressures are created in dessert mono-

culture systems, while infected planting material and a poor understanding of nematode 

pests perpetuate a nematode infection cycle (and build-up) in smallholder systems. These 

two very different production systems are also similarly characterized by their associated 

microbial communities, which contain antagonists capable of suppressing biotic con-

straints, including PPN [128,129]. Banana plants that appeared to be growing well in 

otherwise nematode-infested fields were targeted for sampling. Isolation and testing for 

efficacy against nematodes established a number of microbial candidates that have 

proved to be effective at managing nematodes and improving banana yields. They have 

since been employed as biocontrol inoculants, plant strengthening agents and bioferti-

lizers on banana, as well as other crops [115,130].  

Banana has a rich microbiome diversity, which is influenced by plant health. In East 

Africa, banana plants with (symptomatic) and without (asymptomatic) Fusarium wilt 

were the major drivers of the fungal community composition in the rhizosphere [131]. 

Isolating specific candidates or mediating the microbial composition towards improving 

plant vigor or health, or for managing banana pests and diseases, offer much potential 

and benefits to production.  

Nematode pest densities can also be mediated through the use of various intercrops, 

which have differential host status for nematode pests. Interestingly, preference should 

be given to intermediate or good R. similis hosts (e.g., common bean and sor-

gho-Sudangrass), which can result in lower nematode build-up and reduced (long-term) 

pathogen pressure on the banana crop. Including a poor or non-host crop (e.g., marigold 

and sunn hemp) can result in an adverse effect on long-term pathogen pressure, as 

nematodes migrate to banana plants, the good host, aggravating the problem [132]. 

Conversely, break cropping with non-hosts can be effective where plantations are regu-

larly shifted or replanted. Planting sugarcane (Saccharum hybrid) was found to eliminate 

R. similis after 10 weeks [133]. Consequently, diversifying the cropping system can have 

beneficial effects on microbial/nematode diversity, with positive impacts on crop health 

and productivity. Although Van Asten et al. [134] did not assess the microbiome, they 

found substantial improvement in productivity and economic benefits in the combined 

cropping of coffee and banana, compared to either alone.  

The mixed and often complex diversity of smallholder cropping conditions may 

provide multiple benefits that are at first not obvious. For example, banana plants grown 

in agroforestry systems in Nicaragua and Costa Rica were characterized by greater po-

tential plant-beneficial bacteria, such as Pseudomonas and Stenotrophomonas, while dis-

ease-causing species, such as Erwinia, were less represented [135]. Banana plants have 
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also been found to benefit from the presence and colonization by arbuscular mycorrhizal 

fungi (AMF), which can improve crop production through various mechanisms, includ-

ing protection against nematodes [136]. AMF inoculants supported more vigorous plan-

tain plants and prevented root invasion by P. coffeae and R. similis in Nigeria [137]. 

However, the interplay between crops in mixed cropping systems can additionally in-

fluence the population levels and diversity of AMF, as well as other microbes. Van der 

Veken et al. [138] demonstrated that a number of intercrops were more or less compatible 

to AMF, which could increase or sustain the AMF rhizosphere population. Among them, 

groundnut and sweet potato are regularly intercropped in banana-based cropping sys-

tems in West Africa.  

As with most crops, banana similarly responds positively to the practice of mulch-

ing. Indeed, banana appears heavily dependent on mulching as an important source of 

nutrient cycling [139]. However, although organic mulching may facilitate weevil 

build-up, the benefits tend to outweigh the detrimental aspects, through crop nutrition 

and the suppression of damage caused by nematodes. There are numerous reports 

available demonstrating the beneficial effect of mulching on nematode damage. How-

ever, it is difficult to separate the individual effects of a better nutrition from reduced 

PPN damage. The rhizosphere microbial diversity will undergo substantial modification 

following organic mulching, which will depend on the type of OM, the climate, soil type, 

etc. [140]. The possible negative impact by P. goodeyi on banana in Rwanda, for instance, 

was likely masked by the fact that nematode populations were positively correlated with 

high plant density and/or mulching practices, which reduced root necrosis and led to 

relatively high plant vigor, irrespective of soil type [141].  

There is no doubt that sturdier banana plants, that have been mulched, become more 

resilient under nematode attack. This is likely due to multiple reasons, including the 

modification of the rhizosphere soil microbial community, which becomes richer and 

more populated with mulching. Studies on plantain in West Africa have consistently 

demonstrated the improved productivity and longevity of plantations infected with 

nematodes following mulching, irrespective of the type of mulch [137,142–144], and 

similarly elsewhere on other banana types [140,145,146]. The regular application of rela-

tively small amounts of fresh Tithonia diversifolia leaf material to plantain heavily affected 

by nematodes in Nigeria demonstrated great beneficial effects on crop performance [147].  

6.2. Diversity and Function of EPN in Banana Crops  

EPN (Rhabditida) have an important role in ecosystem functioning by acting as bi-

ological control agents of insect pests [42,148], including relevant pests of banana. They 

have developed mutualistic-symbiotic relationships with entomopathogenic bacteria, 

members of γ-Proteobacteria [148] that are vectored into the hosts, causing their death by 

septicemia. EPN occur in soils both in natural and agricultural ecosystems in all conti-

nents, except Antarctica. Some species from tropical and subtropical regions show po-

tential for practical exploitation in banana crops [149–151].  

Although four genera of EPN have been described (Steinernema, Neosteinernema, 

Heterorhabditis and Oscheius), those with the highest impact in agricultural ecosystems 

belong to genera Steinernema and Heterorhabditis. Almost all of the EPN lifecycle occurs 

inside the insect host, and only the third stage, infective juvenile (IJ) (representing a 

dauer or stress-resistant stage) resides in soil, searching for a new victim and acting as a 

vector for its associated bacteria [148]. The IJ is also the life-stage that is applied as a bi-

ocontrol agent in most commercial formulations based on insect cadavers or as aqueous 

suspensions in sponges [152–154].  

When an insect species is naturally infected, the associated EPN may be considered 

as a locally adapted population, with a likelihood to act as an effective pest-regulating 

biocontrol agent. Species from five insect orders (Coleoptera, Hymenoptera, Diptera, 

Lepidoptera and Orthoptera) have been found naturally infected by EPN [154]. Never-

theless, the majority of EPN species/populations have been isolated from soils, using 
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Galleria mellonella as bait [149,154]. EPN epizootics appear uncommon in nature. The 

patchy EPN distribution [155] and persistence in soil depend on biotic and abiotic factors 

such as the presence of hosts, or organisms such as mites, collembolas and fungi, that 

could predate on the EPN populations, the soil type (pH, texture, clay/sand percentage, 

moisture), geographic regions, altitude, vegetation (specie/cultivars) and agricultural 

practices [156]. 

EPN play several roles in soil ecosystems. Beside their function as insect regulators, 

they are natural components of the soil food webs. When they are applied as augmenta-

tive biological control agents, they are integrated as a natural component to the soil food 

web [157]. The relationship between EPN and other trophic guild nematodes in soil in-

volves competition for resource exploitation, observed between indigenous free-living 

bacterivorous nematodes and EPN [158]. In Florida, EPNs and members of the Acro-

beloides-group were detected in all sites sampled, and the abundances of the two guilds 

were positively related [159]. The correlation between prevalence of S. riobrave and 

free-living bacterivorous nematodes revealed the possibility that application of EPN in-

duced a population growth of bacterivorous species [160].  

The presence and persistence of EPN populations has also been related to land use 

change and degradation. It is known that modifications in the above-ground area also 

produce changes in the rhizosphere, as intensification of land use often negatively affects 

the occurrence and recovery of EPN. Several studies showed that EPN occurrence is 

lower in agricultural soils, i.e., annual cropland or pastures, than in natural and second-

ary forests [161,162]. Other studies, however showed that EPN abundance and frequency 

were higher in annual crops than in natural areas [163]. In conventional agricultural 

lands, some practices may affect the presence, survival and infectivity of different EPN 

species/populations. They include tillage and intensive use of pesticides [164]. According 

to Barker and Barker [165], organisms in the higher trophic levels of soil, such as EPN, 

may be sensitive to environmentally induced, bottom-up cascade effects that alter the 

availability of hosts.  

The EPN efficacy as biocontrol agents of several above- or below-ground insect pests 

and production conditions (pastures, orchards, greenhouses, or others) encouraged sev-

eral companies to produce EPN in vivo or in vitro, formulated using many species or 

populations [166,167]. Several insect pests affect Musa-growing areas, with Cosmopolites 

sordidus (banana weevil, BW) as the main and specific rhizome pest. Its larvae feed and 

produce galleries, whereas the adults emerge from the rhizome and move in soil around 

the pseudostem [168]. This type of insect habit represents a severe challenge for efficient 

control, due to the vast network of feeding galleries produced. Excellent control of BW 

was obtained by applying EPN in moist and cryptic habitats, considered as alternative 

methods [169–171]. Several EPN species/populations were evaluated in laboratory and 

field assays for BW management and other pests, such as the banana moth Opogona sac-

chari (bunch pest in the Canary Islands and Brazil) and Metamasius spp., minor or spo-

radic banana pests in America [169–173]. EPN diversity is an important resource in BW 

bio-management, but few studies have been conducted on the variability of local EPN 

populations. Local and foreign species/populations of Steinernema and Heterorhabditis 

were evaluated in different conditions, causing variable mortalities in larvae and adults 

of BW and other pests as well. Several Steinernema and Heterorhabditis spp. have been 

tested in tropical and subtropical areas [171–184]. Many species/populations were re-

covered in several tropical countries, when prospecting for EPN, both in Musa spp. 

monocrops or mixed with others species [176–194]. 

In agricultural areas with more frequent organic or agroecological management, 

EPN adapted to local conditions are more abundant and persistent, compared with more 

intensive farmed habitats [195]. Several studies indicated that practices, such as conser-

vation tillage, use of mulching or application of crop residues over soil surface, do not 

affect EPN persistence and activity. Meanwhile, other factors affect EPN, i.e., the use of 

sugarcane filter mud as manure in clay soils, reinforcing the pertinence of studies on EPN 
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populations under different environmental conditions and agricultural technologies 

[195–199]. 

6.3. Nematodes in Apple Crops  

Apple (Malus domestica) crops are produced in all temperate and subtropical regions 

of the world and represent the fourth most important fruit crop after citrus, grapes and 

banana [200]. EUROSTAT data indicated this crop as the most commonly planted fruit 

tree in the European Union (EU), with a cultivated area covering 473,500 ha or 37% of the 

land covered by orchards in 2017. Similar to other agrosystems, apple production sys-

tems can provide numerous services or disservices that depend on locality, management 

type and applied practices [201,202]. In addition, apple orchards contribute to services, 

such as pollination, pest control, soil fertility, nutrient cycling and soil biodiversity con-

servation in more environment-friendly production systems, when either organic man-

agement or novel biodiversity-enhancing practices are used [202–204]. The trade-offs 

between provisioning and other ecosystem services and disservices usually arise from 

the management choices and should be evaluated in terms of the spatial and temporal 

scales [205].  

Most nematode studies in apple orchards have focused on PPN. However, several 

recent studies investigated nematode community structure in relation to crop manage-

ment type or soil management practices [103,206–209]. A more comprehensive approach 

including other soil organisms, such as protozoa [208], AMF [209] and soil microbes and 

microfauna (e.g., fungi, bacteria, algae and protozoa), has been used [207] for studying 

soil management practices. DNA-based methods were applied too [102,210]. The com-

munity structure and diversity of bacteria, fungi and nematodes, and their relationships 

from naturally and conventionally farmed apple orchards, were studied in Japan using 

denaturing gradient gel electrophoresis (DGGE) [102]. The results indicate that crop type 

as well as management practices improved the nematode community structure and 

functional diversity in organic and natural apple orchards, as compared to conventional 

apple production. However, data relating these results to fruit production and quality 

were not shown. 

Studying the functional diversity of nematodes and their relationship with other 

organisms of the soil food web may help to reveal their contribution to ecosystem ser-

vices and disservices provided by apple orchards (e.g., pest/disease control vs. apple re-

plant disease, ARD). ARD is common to all major apple growing regions worldwide 

[211]. It affects plant propagation in nurseries and replanted apple orchards reducing 

plant growth, as well as fruit yield and quality [212]. Studies on the ARD etiology and 

soil biology in apple orchards have defined a complex of soil-borne pathogens and para-

sites as causal agents. In particular, some fungi (Fusarium and Rhizoctonia), oomycetes 

(Phytophthora and Pythium) and nematodes (Pratylenchus spp.) have been identified as 

key causal agents [213]. Previous research on ARD focused on PPN, mainly Pratylenchus 

penetrans [214], while the role of free-living nematodes in the disease complex was ne-

glected. However, a recent study proved the importance of free-living nematodes and 

their synergetic role to induce ARD [210]. The authors explored the source of the inocu-

lated nematodes (ARD or control soil) and the interaction between ARD nematodes and 

microbes as factors determining the disease insurgence. They found that when nematode 

communities extracted from the ARD soil were added to microbes, regardless of their 

origin, they affected plant growth more severely than treatments without ARD nema-

todes. The nematodes extracted from control soil in combination with microbes, either 

from ARD or control soil, did not induce ARD symptoms. The outcomes underline the 

indirect role of free-living nematodes in transmitting pathogenic microbiota. 
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7. Concluding Remarks 

Although our knowledge on the ecology of terrestrial nematodes has greatly im-

proved over the last few decades, our understanding on the effect of nematode diversity 

on specific soil functions and ecosystem processes remains insufficient. This can be at-

tributed to difficulties in identifying and functionally classifying the great diversity of 

taxa in field studies and to the challenges encountered in assembling manageable and 

well-defined multispecies model systems, when studying the role of nematodes in soil 

and ecosystem processes. As part of the immense soil biodiversity, nematodes are in-

volved in complex ecological networks, having various interactions with other soil or-

ganisms, therefore the ecosystem approach and DNA-based techniques should be em-

braced when future studies are designed.  

Land-use conversion and land-use intensity are the two major impacts related to 

agriculture that significantly affect soil biodiversity, food web structure and complexity, 

causing shifts in below-ground communities, including nematode fauna. Intensively 

managed agrosystems, characterized by higher levels of disturbance and lower plant 

diversity, are more vulnerable to the detrimental effects of soil-borne pathogens and 

pests, which compromise their functioning and services. Frequent perturbations in in-

tensively managed land may select for genera with particular life history traits, such as 

r-strategists with high reproduction rates and small body size, and plant parasitic spe-

cies, thus creating simplified networks and disturbed relationships. Permanent crops, 

such as banana and apple production systems, provide a rich platform to study both the 

nematode pests and beneficial species in relation to the soil microbiome. The diverse and 

ever-evolving complexity of nematode communities demands the development of dy-

namic management practices that account for nematode functional diversity and mul-

ti-species interactions. Understanding the soil microbiome and microfauna diversity and 

composition in banana/apple cropping systems, and harnessing the related beneficial 

interactions, can provide a significant and positive impact on the environment. Enhanc-

ing research on nematode functional diversity and links with above- and below-ground 

biota is an important step toward understanding soil ecosystems’ processes and services. 

Coordinated, interdisciplinary and long-term studies on soil biodiversity–ecosystem 

function relationships may provide comprehensive empirical data needed to develop 

multi-component models [17]. Results will provide knowledge for the development of 

management and restoration activities, by manipulating above- and below-ground asso-

ciations—a major challenge in future agroecology [215]. 
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