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Abstract 51 

Mammalian orthoreovirus (MRV) has been identified in humans, livestock, and wild animals; this wide 52 

host range allows individual MRV to transmit into multiple species. Although several interspecies 53 

transmission and genetic reassortment events of MRVs among humans, livestock, and wildlife have been 54 

reported, the genetic diversity and geographic distribution of MRVs in Africa are poorly understood. In this 55 

study, we report the first isolation and characterization of MRVs circulating in a pig population in Zambia. 56 

In our screening, MRV genomes were detected in 19.7% (29/147) of fecal samples collected from pigs 57 

by reverse transcription-polymerase chain reaction. Three infectious MRV strains (MRV-85, MRV-96 58 

and MRV-117) were successfully isolated, and their complete genomes were sequenced. Recombination 59 

analyses based on the complete genome sequences of the isolated MRVs demonstrated that MRV-96 shared 60 

the S3 segment with different MRVs isolated from bats, and that the L1 and M3 segments of MRV-117 61 

originated from bat and human MRVs, respectively. Our results suggest that the isolated MRVs emerged 62 

through genetic reassortment events with interspecies transmission. Given the lack of information 63 

regarding MRVs in Africa, further surveillance of MRVs circulating among humans, domestic animals, 64 

and wildlife is required to assess potential risk for humans and animals. 65 

  66 



Introduction 67 

Orthoreoviruses, belonging to the genus Orthoreovirus in the family Reoviridae, are non-enveloped, 68 

icosahedral, segmented double-stranded RNA (dsRNA) viruses that infect vertebrates and invertebrates [1]. 69 

The orthoreovirus genome consists of 10 dsRNA segments divided into three size classes based on the 70 

characteristic mobility by gel electrophoresis, including three large segments (L1–L3), three medium 71 

segments (M1–M3), and four small segments (S1–S4) [1]. The genome is encased in two concentric capsid 72 

protein shells [1]. This structural feature contributes to the thermostability and protease resistance of its 73 

virion and play a role in the entry process of orthoreoviruses [2-8]. The genus Orthoreovirus is divided into 74 

two phenotypic groups, namely fusogenic and nonfusogenic groups, based on the ability to induce cell–cell 75 

fusion and syncytium formation [9]. Mammalian orthoreovirus (MRV) is nonfusogenic and includes four 76 

major serotypes (MRV1–4) according to the capacity for neutralization and hemagglutination inhibition 77 

using type-specific reovirus antisera [1]. The representative prototypes of each serotype are type 1 Lang 78 

(T1L), type 2 Jones (T2J), type 3 Dearing (T3D), and type 4 Ndelle (T4N) [10, 11]. The serotype specificity 79 

is determined by σ1 protein encoded in the S1 segment, which has the largest sequence divergence [12-14]. 80 

The genome segments of MRV have been exchanged between evolutionarily distinct strains, resulting in 81 

unpredicted reassortant viruses containing various combinations of the genome segments [15-19]. 82 

MRVs have been identified in humans, livestock, and wild animals with a wide host range [2, 19-26]. 83 

Individual MRVs can infect multiple species; several interspecies transmission and genetic reassortment 84 

events involving both humans and animals have been reported [2, 15-19, 26-28]. An MRV strain isolated 85 

from a child with acute gastroenteritis had high similarity with MRVs detected in bats, indicating 86 

interspecies transmission between bats and humans [26]. Another MRV isolated from a child with 87 

encephalitis possessed a reassorted genome between human and porcine MRVs [28]. Other MRVs isolated 88 

from pigs with diarrhea in USA emerged via genetic reassortment among different evolutionarily strains 89 

from humans, bats, and pigs [2]. These previous reports suggest that livestock and wildlife play an important 90 

role in the occurrence of interspecies transmission and genetic reassortment events, and it is therefore better 91 

to consider their genomic variations in several hosts to understand their evolution. 92 



MRV has a wide geographic distribution, and it has spread to North and South America, Asia, Europe, 93 

and Africa [2, 16, 26, 27, 29]. Among African countries, only two MRVs have been reported in Cameroon: 94 

a T4N strain, a prototype of serotype 4, isolated from a rodent [11, 30, 31]; and the CMR-HP55 strain 95 

detected from children with diarrhea [27]. Although MRVs isolated from pigs have been reported in Japan, 96 

China, South Korea, Italy, and the USA [2, 3, 18, 32-35], they have never been detected from pigs in Africa. 97 

Understanding the distribution of MRV in Africa is important for veterinary and public health perspectives. 98 

In this study, we investigated the prevalence of MRV infection in pigs in Zambia and identified novel MRV 99 

strains with evidence of reassortment events between human and animal MRVs. 100 

Results 101 

Detection of MRV infection in pigs in Zambia 102 

We screened 147 fecal samples collected from pigs in Zambia for the detection of MRV via reverse 103 

transcription-polymerase chain reaction (RT-PCR). The MRV genome was detected in 19.7% of the 104 

samples (29/147; Table 1). With respect to specific subsets, the MRV genome was detected in 14.3% 105 

(1/7) and 15.0% (6/40) of non-diarrheal and diarrheal samples, respectively, collected from suckling pigs 106 

and in 29.3% (12/41) and 16.9% (10/59) of healthy and diarrheal fattening pigs, respectively. The MRV 107 

genomes were detected in specimens from farms located in the Lusaka, Chilanga, Kafue, and Chibombo 108 

districts, suggesting a widespread MRV infection across all examined farms in Zambia. 109 

Isolation and characterization of MRV 110 

The supernatants of fecal suspensions were inoculated onto African green monkey kidney (Vero E6) 111 

cells for viral isolation. Obvious cytopathic effects (CPEs) were observed in Vero E6 cells inoculated with 112 

fecal samples within a few days. As described in the Methods section, we attempted to isolate MRVs using 113 

Vero E6 cells cultivated in Eagle’s minimum essential medium (MEM) with either 5 µg/ml trypsin and 114 

0.3% bovine serum albumin (BSA) or 2% fetal bovine serum (FBS). In total, 18 of 147 MRV strains 115 

(12.2%) were isolated from Vero E6 cells cultivated in MEM supplemented with trypsin and BSA, whereas 116 



five MRVs (3.4%) were obtained from cells grown in MEM supplemented with FBS. The isolation 117 

efficiency of these two methods was significantly different (p < 0.01), indicating that MEM supplemented 118 

with trypsin and BSA was more suitable for isolating MRVs from Vero E6 cells than MEM supplemented 119 

with FBS. MRV-85, MRV-96, and MRV-117 were isolated from fecal samples collected from Farms B, E, 120 

and C, respectively. These representative strains were used for further analyses. 121 

Vero E6 cells infected with MRV-85, MRV-96, and MRV-117 exhibited CPEs, as indicated by the 122 

rounding of individual cells and characteristic eosinophilic inclusion bodies (Fig. S1). The viral segmented 123 

dsRNA was separated via sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and 124 

the migration patterns of the viral M and S segments of the three MRV strains differed from each other; this 125 

finding corresponds with the different genetic backgrounds of these strains (Fig. 1). 126 

Bioinformatics analyses of nucleotide sequences obtained via next-generation sequencing and the 127 

rapid amplification of cDNA ends (RACE) method revealed that the genomes of isolated MRV strains 128 

(MRV-85, MRV-96, and MRV-117) consisted of 10 segments (3915, 3901, 3854, 2304, 2241, 2203, 1433, 129 

1331, 1198, and 1196 bp in length) encoding 10 open-reading frames (λ1, λ2, λ3, µ1, µ2, µNS, σ1, σ2, 130 

σ3, and σNS, Table S3). Although different migration patterns of dsRNA genomes from these strains were 131 

observed via SDS-PAGE (Fig. 1F), there was no difference in the length of the respective viral segments 132 

among obtained MRV strains based on their nucleotide sequences, suggesting that this property is 133 

attributable to differences of the sequence composition as previously observed [36]. The 5′- and 3′-134 

untranslated regions (UTRs) ranged 12–32 and 32–80 bp in length, respectively. Isolated Zambian MRV 135 

strains possessed consensus genome sequences of the 5′- and 3′-termini (5′-GCUA and UCAUC-3′, 136 

respectively) similarly as other reported MRVs [1, 37]. The determined genomic sequences of the MRVs 137 

were deposited in the DNA Data Bank of Japan (DDBJ) under the following accession numbers: MRV-138 

85, LC533904–LC533913; MRV-96, LC533914–LC533923; and MRV-117, LC533924–LC533933. 139 

Sequence comparison of each viral segment and encoding protein of MRVs 140 

Homology comparison of the complete genomic sequences among the Zambian MRV strains (MRV-141 



85, MRV-96, and MRV-117) demonstrated that the highest nucleotide identities of the 10 segments 142 

ranged from 82.8 to 98.7% (Table 2). Based on eight MRV segments (L1, L2, L3, M1, M2, S1, S2, and 143 

S4), Zambian MRV strains shared more than 96.0% identities with each other. Of note, the M3 segment 144 

of MRV-117 was divergent from those of the other two strains (82.8–83.0%), and the S3 segment of 145 

MRV-96 also had low nucleotide identities with those of the other two strains (89.6–90.0%). Similar 146 

results were obtained in comparative analysis focused on the amino acid sequences of nine MRV viral 147 

proteins (λ1, λ2, λ3, µ1, µ2, µNS, σ1, σ2, and σ3); however, only the σNS protein of MRV-96 had high 148 

sequence identities with those of the other two strains (97.2–97.8%). These results indicate that while the 149 

viral protein encoded in the S3 segment is highly conserved among the Zambian MRV strains, the S3 150 

segment of MRV-96 has undergone divergence. 151 

To identify MRV strains genetically related to Zambian MRV strains, we conducted BLAST analyses 152 

using the sequence of each viral segment (Table 3). Half of the segments (L2, L3, M1, M2, and S4) of 153 

Zambian MRV strains were closely related to those of SHR-A, GD-1, and BM-100, which were isolated 154 

from pigs in China or the USA [2, 38]. In contrast, the L1 segments of Zambian MRV strains shared the 155 

highest nucleotide and amino acid sequence identities (97.1–97.2% and 99.0–99.6%, respectively, Table 3) 156 

with that of the MRV WIV8 strain identified in wild bats. Moreover, the nucleotide sequences of the S1 157 

and S2 segments of Zambian MRV strains diverged from those of other MRV strains (85.2–88.1% 158 

nucleotide identities, Table 3). These results suggest that these segments arise from other uncharacterized 159 

MRV strain(s). Despite large divergence among the S2 segments, the amino acid identities of the σ2 protein 160 

of Zambian strains were remarkably high (98.0–98.5%) as compared with those of the bat strain (RpMRV-161 

YN2012). These results suggested that there is little antigenic variation among the σ2 proteins of these 162 

viruses. While the M3 segments of MRV-85 and MRV-96 shared the highest nucleotide and amino acid 163 

identities with those of the porcine strain (BM-100) (90.1–90.3% and 95.5–95.7%, respectively) [2], the 164 

pairwise nucleotide and amino acid sequence identities of the M3 segment of MRV-117 with that of SI-165 

MRV07 identified in patients with diarrhea who traveled to Southeast Asia was 89.8% and 95.7%, 166 

respectively [39]. The S3 segment of MRV-96 shared the highest identity with the HB-B strain isolated 167 



from minks in China [21], whereas the S3 segments of the MRV-85 and MRV-117 strains shared the highest 168 

sequence identities with the T1/Human/Wash.D.C./clone62/1957 and T3/Bovine/Maryland/clone18/1961 169 

strains [40]. 170 

The MRV S1 segment has been demonstrated to encode the cell attachment protein “σ1” which 171 

determines the virus serotype [12]. Based on the identity comparison of S1 segments, Zambian MRV strains 172 

had the closest genetic relationship with MORV/47Ma/06 belonging to the MRV2 group, which was 173 

identified in a common vole in Hungary [22] (Table 3). According to the comparative analyses of the S1 174 

segment and σ1 protein among the Zambian MRV strains, MRV prototypes, and other representative strains, 175 

we found that the Zambian MRVs have the highest nucleotide and amino acid sequence identities with type 176 

2 serotype MRV strains (61.0–85.2% and 58.0–87.3%, respectively; Table S4). Some of the lower-level 177 

identities among Zambian MRV strains and type 2 serotype MRV strains (around 60%) may be due to the 178 

large divergence of the domains unrelated to the serotype-specific features of σ1 protein; similar results 179 

were obtained among other type 2 serotype MRVs. 180 

Phylogenetic characterization of Zambian MRV 181 

Phylogenetic trees of each viral segment were constructed using the sequences of Zambian and other 182 

representative MRVs. Phylogenetic analysis based on the sequences of S1 segments revealed that Zambian 183 

MRVs formed a distinct clade near the branches of bat (SI-MRV05) and rodent (MORV/47Ma) virus strains 184 

within the larger clade encompassing the MRV2 strain (Fig. 2A); these results suggest that the isolated 185 

Zambian strains might be classified into MRV2. Based on the L2, L3, M1, M2, and S4 phylogenies, 186 

Zambian MRV strains clustered with various porcine strains (Fig. S2). The phylogenetic analysis of the L1 187 

segment indicated that the Zambian MRV strains were monophyletic with a bat strain (WIV8). MRV-117 188 

formed a lineage with the bat strain (WIV8) out of a different lineage consisting of other two Zambian 189 

MRVs (Fig. S2). The topologies of the phylogenetic tree based on the S2 segment revealed that a separate 190 

unique lineage was formed by Zambian MRV strains. Notably, the Zambian MRV strains were divided 191 

into two clusters on the basis of each M3 and S3 phylogeny (Fig. 2B and 2C). Whereas the M3 segments 192 



of MRV-85 and MRV-96 were closely related to those of porcine strains, MRV-117 clustered with human 193 

strains (SI-MRV07, T1L, and CMR-HP55). Based on the S3 segment phylogeny, MRV-96 was located out 194 

of the lineage, containing MRV-85 and MRV-117 and formed the cluster with various MRV strains, such as 195 

mink, bat, human, and porcine strains (Fig. 2C). These phylogenetic incongruities suggested the occurrence 196 

of reassortment events between the MRV strains of various hosts. 197 

To date, only two MRV strains, namely Ndelle (MRV4) and CMR-HP55 (MRV2), have been 198 

identified from rodents and humans in Africa, respectively [11, 27, 30, 31]. These strains were detected 199 

in Cameroon, and thus prompting an investigation into the evolutionary relationship between the isolated 200 

Zambian MRVs and the Cameroonian MRVs in the phylogenetic trees. The phylogenetic analyses of 201 

MRVs indicated that the genome segments of Zambian MRVs were distantly related to those of 202 

Cameroonian MRVs, excluding for M3 segment. Based on the M3 segment phylogeny, MRV-117 203 

clustered with human strains, including CMR-HP55 as mentioned previously (Fig. 2B). 204 

Detection of reassortment events 205 

To further investigate the evidence of genetic recombination in Zambian MRVs, recombination 206 

analyses were conducted using SimPlot software. Because MRV-96 and MRV-117 were not grouped with 207 

other Zambian MRV strains in the phylogenetic trees based on the sequences of the S3 and M3 segments, 208 

respectively (Figs. 2B and 2C), we performed standard similarity plot and bootscan analyses based on 209 

individual MRV segments. These analyses revealed that MRV-96 displayed high degrees of sequence 210 

similarity and bootstrap support with MRV-85 and/or MRV-117 in the L1–L3, M1–M3, S1, S2, and S4 211 

segments, but not in the other S3 segment, which exhibited similarity with the sequences of a bat virus 212 

strain (WIV8; Figs. 3A–3C). The analyses for MRV-117 demonstrated high degrees of sequence 213 

similarity and bootstrap supports for the L2, L3, M1, M2, and S1–S4 segments among the three Zambian 214 

MRVs and for the M3 segment between MRV-117 and a human strain (SI-MRV07) as expected (Fig. 215 

3C–3E). The L1 segment exhibited higher similarity and bootstrap support between MRV-117 and a bat 216 

strain (WIV8) than those among the Zambian MRVs. These results suggest the occurrence of genetic 217 



reassortment events among different MRV strains. 218 

Discussion 219 

Although MRVs are widely distributed in humans, livestock, and wild animals in Asia, Europe, and 220 

North, and South America [2, 16, 19-27, 29], they have never been detected from pigs in Africa and their 221 

epidemiological information in Africa is limited. In this study, we report the isolation and 222 

characterization of MRVs circulating in a pig population in Zambia. In our screening, 19.7% of pigs in 223 

Zambia were positive for MRVs, which were detected in all investigated areas, including Lusaka, 224 

Chilanga, Chibombo, and Kafue. A similar prevalence of MRV infection was observed in pig populations 225 

in the USA, South Korea, and China [2, 18, 32], suggesting that MRV has spread across pig populations 226 

globally. 227 

Phylogenetic analysis based on the S1 segments of MRV demonstrated that Zambian MRV strains 228 

formed a monophyletic group with various MRV2 strains. The isolation of MRV2 in pigs has been 229 

reported in Austria and Japan (GenBank accession number JN799419) [35]. A Japanese MRV2 strain 230 

was isolated from fecal specimens collected from both diarrheal and apparently healthy pigs, and this 231 

result was similar to our findings in Zambia. Further epidemiological studies are required to estimate the 232 

impact of MRV2 infection in the pig population worldwide. 233 

During the cell entry of MRV, the outer capsid proteins μ1 and σ3 are degraded by luminal or 234 

intracellular proteases to generate metastable intermediate particles called infectious subviral particles 235 

(ISVPs) for membrane penetration [5-8]. Protease treatment of MRV virions, resulting in the digestion 236 

of viral outer capsids and formation of ISVPs, enhances viral entry into cells [2, 41, 42]. The addition of 237 

chymotrypsin to cell culture medium promotes the viral growth of MRV1, MRV2, and MRV3 strains in 238 

several cell lines [43]. Conversely, some MRV3 strains featuring threonine at position 249 in the cell 239 

attachment protein σ1 are susceptible to cleavage by trypsin, and treatment with trypsin in vitro leads to 240 

the cleavage of the viral protein and a resultant 90% reduction of virus infectivity [44]. We demonstrated 241 

that MRV was efficiently isolated from fecal samples in Vero E6 cells using trypsin and BSA, suggesting 242 



that this procedure is more useful for MRV2 isolation than the virus propagation in Vero E6 cells with 243 

medium supplemented with FBS. Despite the clear effect of protease on virus propagation in vitro, little 244 

information about the evaluation of protease treatment for MRV isolation using clinical and field samples 245 

is available. The present study provides an effective protocol for the isolation of MRVs excluding MRV3 246 

strains, the σ1 protein of which is susceptible to proteolysis. 247 

The phylogenetic analyses and recombination analyses based on whole-genome sequences of MRV 248 

clearly demonstrated some genetic reassortment events between Zambian MRVs and different MRV 249 

strains. Although the S3 segment of MRV-96 had the highest identity to that of the mink HB-B strain, 250 

the bat WIV8 strain were predicted as the genetically close strain to MRV-96 via recombination analyses 251 

as demonstrated in our dataset. Taken together, these results suggest that the number and diversity of 252 

MRV genomic sequences currently maintained in the databank are not sufficient to infer the precise 253 

origin of the S3 segment of the MRV-96 strain. Contrarily, the M3 segment of MRV-117 most likely 254 

originated from human strains, such as SI-MRV07 and CMR-HP55, but there is no information about 255 

human MRV strains in Zambia. Interestingly, these strains were recently detected in patients with 256 

gastroenteritis in South Asia and Africa [27, 39], thus suggesting that MRV causing gastroenteritis in 257 

humans might present in Zambia. Understanding the consequences of viral reassortment is important to 258 

prepare for newly emerging high pathogenic viruses, and further surveillance of MRVs circulating in 259 

human and other animals in Zambia is required to enhance veterinary and public health. 260 

Methods 261 

Sample collection 262 

We selected five farms, each housing more than 500 pigs; farms A and E were located in Lusaka, farm 263 

B in Chilanga, farm C in Kafue, and farm D in the Chibombo district. Fecal samples were collected with 264 

the cooperation of local veterinary personnel from January to December 2018 [45]. For the collection of 265 

fecal samples, some pens were chosen at random, and fresh stools on the floor were collected into tubes. 266 

Collected samples were then transported at 4°C to the laboratory and stored at −80°C until analysis. In total, 267 



47 and 100 fecal samples were obtained from suckling (0–3 weeks old) and fattening pigs (4–12 weeks 268 

old), including those with or without diarrhea, respectively (Table 1). 269 

Detection of MRV by RT-PCR 270 

Fecal samples were suspended in phosphate-buffered saline (PBS) (10% [w/v]) containing 5% 271 

antibiotic–antimycotic solution (Anti-Anti; Gibco, Waltham, MA, USA) and briefly centrifuged. Total 272 

RNAs were extracted from the supernatants using TRIzol-LS (Invitrogen, Waltham, MA, USA) according 273 

to the manufacturer’s instructions. RNA samples were examined to detect MRVs by RT-PCR using two 274 

specific primer sets based on the conserved sequence within the L1 and L3 segments as previously 275 

described [46-48] (Table S1). The protocol of RT-PCR for detecting the L3 segment was modified from 276 

that of the PrimeScript One Step RT-PCR Kit v2 (Takara, Shiga, Japan). The RT-PCR conditions were as 277 

follows: an initial reverse transcription step at 50°C for 30 min; a PCR activation step at 94°C for 2 min; 278 

43 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C for 30 s; and a final extension at 72°C for 7 min. PCR 279 

was performed in a thermal cycler (Applied Biosystems, Foster City, CA, USA). PCR products were 280 

subjected to direct sequencing using the Big Dye Terminator v3.1 Cycle Sequencing kit (Applied 281 

Biosystems). 282 

Virus isolation 283 

Vero E6 cells were maintained in Dulbecco’s Modified Eagle’s Medium (Nissui Pharmaceutical Co., 284 

Tokyo, Japan) supplemented with 10% FBS, 2 mM L-glutamine, 100 units/ml penicillin, 100 µg/ml 285 

streptomycin, 3.5 mg/ml D-glucose, and 1.0 mg/ml NaHCO3 at 37°C in an atmosphere of 5% CO2. The 286 

supernatants of fecal suspensions were inoculated onto Vero E6 cell cultures, followed by 1 h of incubation 287 

at 37°C in 5% CO2 for virus adsorption. After the inocula were removed, the cells were washed twice with 288 

PBS and maintained in MEM (Nissui Pharmaceutical Co.) containing 5 µg/ml trypsin, 0.3% BSA, 2 mM 289 

L-glutamine, 4% Anti-Anti, and 1.0 mg/ml NaHCO3 at 37°C in 5% CO2. To evaluate the trypsin sensitivity 290 

of MRV isolation, confluent monolayers of Vero E6 cells inoculated with each fecal sample were prepared 291 



and maintained in MEM containing 2% FBS instead of trypsin and BSA. The supernatants of Vero E6 cells 292 

were passaged three times to observe CPEs. The culture medium collected from cells displaying CPEs 293 

were filtered through 0.45-µm membrane filters (Iwaki, Tokyo, Japan) to remove bacterial cells and re-294 

inoculated into the cells. Viral isolation was confirmed by RT-PCR. The morphology and staining features 295 

of MRV-infected cells were assessed via hematoxylin and eosin staining. 296 

The electrophoretic patterns of the viral dsRNA were observed by SDS-PAGE as previously 297 

described [36]. Vero E6 cell monolayers grown in T-175 flasks were infected with the isolated MRVs. 298 

The infected cells exhibiting CPEs were subjected to three freeze-thaw cycles, and the debris was 299 

removed via centrifugation at 1750 × g at 4°C for 10 min. For virus concentration, the supernatants were 300 

ultracentrifuged at 28,000 rpm and 4°C for 2 h using an SW-28 rotor and an Optima L-90K (Beckman 301 

Coulter, Brea, CA), and the pellets were resuspended in PBS. Total RNAs were extracted from the re-302 

suspensions using QIAamp Viral RNA Mini Kits (Qiagen, Hilden, Germany) according to the 303 

manufacturer’s instructions. Viral dsRNAs were purified as previously described [49]. Briefly, extracted 304 

total RNAs were mixed with equal volumes of 4 M LiCl and incubated at 4°C overnight. The dsRNAs 305 

were precipitated by adding isopropanol and ammonium acetate at −30°C and pelleted via centrifugation. 306 

Purified dsRNA was separated by SDS-PAGE using 4–15% gradient gel. MRV genome segments were 307 

visualized via ethidium bromide staining. 308 

Whole-genome sequencing 309 

Total RNAs were extracted from the supernatants of MRV-infected cells using QIAamp Viral RNA 310 

Mini Kits (Qiagen), and cDNAs were synthesized using a PrimeScript Double Strand cDNA Synthesis Kit 311 

(Takara) according to the manufacturer’s instructions. The cDNA libraries were prepared using a Nextera 312 

XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s 313 

instruction and subjected to whole-genome sequencing on the MiSeq instrument with a MiSeq Reagent Kit 314 

v3 (600 cycles) (Illumina). Sequencing data was analyzed using CLC Genomics Workbench software (CLC 315 

bio, Hilden, Germany). After trimming low-quality reads, remaining reads were de novo assembled with 316 



the default settings. The obtained contigs were analyzed via local BLAST against the virus reference 317 

downloaded from the NCBI database. Consensus sequences obtained by mapping to the reference 318 

sequences of other known MRVs were aligned with MRV contigs obtained via de novo assembly. Finally, 319 

all trimmed reads were re-mapped to the aligned sequences and consensus sequences. Additionally, the 5′- 320 

and the 3′-terminal regions of each MRV segment were amplified by RACE (Table S1). The RACE method 321 

was performed using a SMARTer RACE cDNA Amplification Kit (Takara) according to the manufacturer’s 322 

protocol. PCR products were subjected to direct sequencing using a Big Dye Terminator v3.1 Cycle 323 

Sequencing kit. 324 

Genetic comparison and phylogenetic analysis 325 

The open-reading frame positions and encoded proteins were predicted via comparisons with other 326 

known MRV strains. Bioinformatic analyses were performed using various MRV sequences deposited in 327 

the DDBJ/EMBL-Bank/GenBank databases (Table S2). Global homology analyses were conducted among 328 

Zambian MRV strains using GENETYX version 12 (GENETYX Corporation, Tokyo, Japan). The highest 329 

nucleotide identities for each viral segment of Zambian MRVs were identified via BLAST analyses. 330 

Phylogenetic analyses based on the nucleotide sequence of each viral segment were performed using 331 

MEGA7 [50]. The MUSCLE protocol was used to align the sequences, and phylogenetic trees were 332 

constructed using the maximum likelihood method based on the Tamura–Nei model with 1000 bootstrap 333 

replicates. 334 

Recombination analyses 335 

Homologous recombination within each genome segment among Zambian MRVs and other MRVs 336 

was analyzed. Putative reassortant MRVs were preliminary identified by topological incongruity among 337 

phylogenies of different segments. Such incongruities were further investigated using a dataset of MRVs 338 

composed of the sequences of Zambian MRVs (n = 3) and other MRVs (n = 27) with complete genomic 339 

sequences available in the reference list (Table S2). Alignments for each viral segment were analyzed 340 



using the similarity and Bootscan methods as implemented in SimPlot software version 3.5.1 [51]. 341 

Statistical analysis 342 

Differences in the rates of MRV isolation in the presence and absence of trypsin were analyzed using 343 

the chi-squared test. p < 0.05 denoted statistical significance. 344 
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Tables 498 

Table 1. Summary of sampling areas, profiles of pigs, and results of reverse transcription-polymerase chain 499 

reaction for mammalian orthoreoviruses 500 

Farm  District Sampling date 

No. of positive/No. of tested fecal sample from pigs (%) 

Suckling pigs (0-3 weeks) Fattening pigs (4-12 weeks) 

No diarrhea Diarrhea No diarrhea Diarrhea 

A Lusaka 7/January/2018 1/5 (20) 0/12 (0) - 1/7 (14) 
  14/June/2018 - 0/4 (0) 0/2 (0) 0/9 (0) 

B Chilanga 25/January/2018 - - - 0/4 (0) 
  10/July/2018 - - 2/9 (22) 1/6 (17) 
  4/December/2018 0/1 (0) 1/2 (50) 0/1 (0) 1/7 (14) 

C Kafue 13/February/2018 - 1/5 (25) - 2/10 (20) 
  8/June/2018 - 1/7 (14) 2/8 (25) 0/1 (0) 
  16/August/2018 - 3/10 (30) 5/13 (38) 0/4 (0) 

D Chibombo 2/March/2018 - - - 2/4 (50) 

E Lusaka 17/July/2018 - - 2/4 (50) 2/6 (33) 

    20/December/2018 0/1 (0) - 1/4 (25) 1/1 (100)  

Total 1/7 (14) 6/40 (15) 12/41 (29) 10/59 (16) 

 501 

Table 2. Identity comparison of each genome segment among Zambian strains (MRV-85, MRV-96, and 502 

MRV-117) 503 

Segment 

(Protein) 

Nucleotide sequence identity (%) between Amino acid sequence identity (%) between 

85 and 96 85 and 117 96 and 117 85 and 96 85 and 117 96 and 117 

L1 (λ3) 98.7 96.0 96.0 99.9 99.1 99.0 

L2 (λ2) 98.7 98.7 98.5 99.3 99.3 99.0 

L3 (λ1) 98.3 98.5 98.6 99.2 99.1 99.6 

M1 (µ2) 98.6 98.5 98.7 99.1 98.9 99.1 

M2 (µ1) 98.3 98.1 98.2 99.0 99.2 99.4 

M3 (µNS) 98.4 83.0 82.8 98.7 91.1 91.2 

S1 (σ1) 97.6 97.6 97.3 95.6 96.0 96.5 

S2 (σ2) 98.2 98.5 98.3 98.8 99.2 99.0 

S3 (σNS) 90.0 98.4 89.6 97.8 98.9 97.2 

S4 (σ3) 98.4 98.7 98.5 98.6 99.1 98.9 

  504 



Table 3. Highest nucleotide and amino acid identities for each genome segment of strains isolated in Zambia 505 

Segment 

(Protein) 
Strain 

% identity 
Strain Serotype Host Country year Acession No. 

nt aa 

L1 (λ3) 85, 96, 117 97.1-97.2 99.0-99.6 WIV8 3 bat China 2011 KT444562 

L2 (λ2) 85, 96, 117 91.2-91.3 95.8-96.1 SHR-A 1 pig China 2011 JX415467 

L3 (λ1) 85, 96, 117 95.8-96.0 98.6-99.0 SHR-A 1 pig China 2011 JX415472 

M1 (µ2) 85, 96, 117 95.0-95.4 97.5-98.2 GD-1 3 pig China 2012 JX486060 

    94.9-95.4 97.1-97.6 Netherlands 84 1 human Netherlands 1984 AY428872 

M2 (µ1) 85, 96, 117 93.2-93.5 97.7-98.1 BM-100 3 pig USA 2014 KM820748 

M3 (µNS) 85, 96 90.1-90.3 95.5-95.7 BM-100 3 pig USA 2014 KM820749 

  117 89.8 95.7 SI-MRV07 2 human Slovenia 2017 MG999581 

S1 (σ1) 85, 96, 117 85.2-85.5 85.8-87.3 MORV/47Ma/06 2 rodent Hungary 2006 KX384852 

S2 (σ2) 85, 96, 117 87.8-88.1 98.0-98.5 RpMRV-YN2012 2 bat China 2012 KM087112 

S3 (σNS) 85, 117 95.8-96.3 97.8-98.3 T3/Bovine/Maryland/clone18/1961 3 cattle USA 1961 U35358 

    96.0-96.3 97.8-98.3 T1/Human/Wash.D.C/clone62/1957 1 human USA 1957 U35356 

  96 97.8 99.7 HB-B 1 mink China 2013 KF013856 

S4 (σ3) 85, 96, 117 96.4-96.9 97.5-98.0 GD-1 3 pig China 2012 JX486066 

Abbreviation: nt, nucleotide sequence; aa, amino acid sequence 506 
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Figure legends 508 

Fig. 1. Electrophoresis analysis of the genome of mammalian orthoreoviruses (MRVs) isolated from fecal 509 

samples of pigs. Electropherotypes of viral double-stranded RNAs isolated from MRV strains (MRV-85, 510 

MRV-96, and MRV-117) were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 511 

using 4–15% gradient gel. The locations of three large segments (L1–L3), three medium segments (M1–512 

M3), and four small segments (S1–S4) are indicated. The L2 and L3 segments and the M1 and M2 are 513 

considered to have co-migrated, forming single bands (*). 514 

 515 

Fig. 2. Phylogenetic analysis of the S1, M3, and S3 segments. Phylogenetic trees based on the nucleotide 516 

sequence of the complete S1 (A), M3 (B), and S3 (C) segments were constructed using the maximum 517 

likelihood method with 1000 bootstrap replicates. Bootstrap values greater than 70% are shown on the 518 

interior branch nodes, and the scale bar indicates the number of substitutions per site. Group names (MRV1, 519 

MRV2, MRV3, and MRV4) and cluster names are indicated on the tree. Black circles represent isolated 520 

MRVs in this study. MRV, mammalian orthoreovirus. 521 

 522 

Fig. 3. Recombination analysis of mammalian orthoreovirus (MRV). Similarity plot (A and D) and 523 

Bootscan analyses (B and E) based on the sequences of each viral segment were conducted using SimPlot 524 

software v3.5.1. Two putative reassortant viruses, namely MRV-96 (A and B) and MRV-117 (D and E) were 525 

analyzed. (C) Schematic diagram of the each MRV genome segments. Window and step sizes of 800 and 526 

200 bp, respectively, were used for the similarity plot and Bootscan analyses. Compared sequences and 527 

color coding are specified on the top of panels A and D. 528 
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