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Abstract. Recently, effects of nonlinearity on topologically nontrivial systems have

attracted attention and the stability of topologically protected edge states has been

studied for a quantum walk with nonlinear effects, which is akin to time-periodically

driven systems (Floquet systems). In the previous work, it has been found that the

edge states can be stable attractors or unstable repellers depending on their intrinsic

topological property, while the stability is not affected by the strength of nonlinearity.

In the present work, we find additional bifurcations at which edge states change from

stable attractors to unstable repellers with increasing the strength of nonlinearity in

nonlinear quantum walks, for the first time. The new bifurcations are unique to Floquet

systems, since we take dynamical properties of Floquet systems into consideration

by directly applying the time-evolution operator of the quantum walks to the linear

stability analysis. Our results shed new light on nonlinear effects on topological edge

states in Floquet systems.

1. Introduction

The study of topological phases of matter has been very active in broad research fields,

from original condensed matter physics to photonic, acoustic, and exitonic systems,

and so on. In the latter new systems, the research of nonlinear effects has attracted

theoretical and experimental interests [1, 2, 3, 4, 5, 6, 7] since nonlinear effects can cause

interesting phenomena related to topologically protected edge states, such as emergence

of solitons [2, 5], frequency shift of edge modes [4], and non-reciprocity [7]. While the

nonlinear effects have been actively studied for topological phases in static systems,

those for topological phases in time-dependent systems have been unclear, because of

difficulty for treating nonlinear effects in time-dependent systems, even in periodically

driven systems.

Floquet systems, time-periodically driven systems, have attracted great deal of

attention [8, 9] to explore non-trivial topological phases induced by periodically driving

external fields [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], analyze the stability of



systems itself or limit cycles [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], to name a

few. Floquet systems with high tunability have been realized in various experimental

setups. One example is a discrete time quantum walk (hereafter, quantum walk)

[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Quantum walks are

described by time-evolution operators and have been exploited to explore Floquet

topological phases [38, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. There are several

advantages in quantum walks in comparison to condensed matter systems, such as real

space observations of edge states [38] and existence of edge states with long lifetime in

the presence of dissipation [46]. In addition to these unique features, nonlinear effects

in quantum walks using a feed-forward scheme have been studied [58, 59].

In 2016, it was shown that, in a nonlinear quamtum walk, topologically protected

edge states become a stable attractor or an unstable repeller after long time evolution,

depending only on their topological properties [60], but not on the strength of

nonlinearity. To this end, the linear stability analysis was applied using an effective

Hamiltonian in a continuum limit. However, taking the continuum limit results in

losing an exact description of dynamical properties of the system, which plays a key role

in Floquet systems.

In this work, we study the stability of edge states in time-periodically driven

systems with nonlinear effects, by focusing on nonlinear quantum walks. To this end,

we apply the linear stability analysis of edge states in nonlinear quantum walks, by

directly treating time-evolution operators to take the dynamical properties into account.

As a consequence, in addition to obtaining consistent results in Ref. [60], we find

additional bifurcations where edge states change from stable attractors to unstable

repellers with increasing the strength of nonlinearity. The bifurcations are typical

examples of phenomena unique to Floquet systems, and cannot be predicted by the

approach of the effective Hamiltonians in the continuum limit. We discuss the origin of

this bifurcation at the end of this paper.

This paper is organized as follows. In Sec. 2, we explain linear quantum walks and

edge states. The stability analysis done in Ref. [60] is reviewed in Sec. 3. Section 4 is

devoted to a linear stability analysis for edge states of single (4.1) and two (4.2) step

nonlinear quantum walks, by directly treating time-evolution operators. Summary and

discussion are given in Sec. 5.

2. Quantum walks without nonlinear effects

Before dealing with nonlinear quantum walks, we explain standard quantum walks

without nonlinearity. We consider quantum walks in which walkers move in one

dimensional position space |x〉 and have two internal states |L〉 = (1, 0)T and |R〉 =

(0, 1)T, where the superscript T denotes the transpose. Using these bases, a state in a

time step t is written as

|ψ(t)〉 =
∑

x,s=L,R

ψx,s(t) |x〉 ⊗ |s〉 , (1)



where ψx,s(t) denotes the wave function amplitude. By using a time-evolution operator

U , the state at time step t+ 1 is described as

|ψ(t+ 1)〉 = U |ψ(t)〉 . (2)

In the standard quantum walks, U is composed of a coin operator C(θ) and a shift

operator S, which are defined as

C(θ) =
∑
x

|x〉 〈x| ⊗ C[θ(x)], C[θ(x)] = e−iθ(x)σ2 , (3)

S =
∑
x

(
|x− 1〉 〈x| 0

0 |x+ 1〉 〈x|

)
, (4)

respectively, where σ2 is one of Pauli matrices σi (i = 1, 2, 3). The position-dependent

rotation angle θ(x) is a parameter which determines how internal states are mixed,

and the shift operator changes the position of wave function amplitudes depending on

internal states. In quantum walks, quasienergy ε is defined as µ = e−iε, where µ is the

eigenvalue of U . The quasienergy ε has 2π periodicity.

We consider two types of quantum walks. The first one is a single-step quantum

walk, whose time-evolution operator is given by

U1 = C(θ0/2)SC(θ0/2). (5)

The second one is a two-step quantum walk defined by

U2 = U2bU2a, (6)

where U2a and U2b are

U2a = C(θ2/2)SC(θ1/2), U2b = C(θ1/2)SC(θ2/2). (7)

Note that, since U2 shifts wave function amplitudes on even (odd) sites to even (odd)

sites as it includes two shift operators, U2 is decomposed to a block matrix structure

for even sites and odd sites. As defined in a symmetry time frame [50], time-evolution

operators of single-step and two-step quantum walks, U1 and U2, have time-reversal

symmetry T UT −1 = U−1, particle-hole symmetry ΞUΞ−1 = U , and chiral symmetry

… … … …

Figure 1. Position dependence of θi(x) (i = 0, 1, 2). There are two boundaries between

x = ±m and x = ±(m+ 1). The number of sites is 4m and m is an even number. We

call the region for |x| ≤ m (|x| > m) as the inner (outer) region. Periodic boundary

conditions are imposed on both edges at x = −2m and x = 2m− 1.



ΓUΓ−1 = U−1. Each symmetry operator is defined as T = 1lx ⊗ σ1K, Ξ = 1lx ⊗ 1lsK,
and Γ = 1lx ⊗ σ1, where 1lx =

∑
x |x〉 〈x| , 1ls =

∑
s=L,R |s〉 〈s|, and K is the complex

conjugation operator. Thus, U1 and U2 are classified into BDI class [50, 51, 53, 60, 61].

It is known that, if we consider the system depicted in Fig. 1, there exist topologically

protected edge states with ε = 0 and ε = π near x = ±m where θi(x) changes its sign.

We describe edge states in single and two-step quantum walks as

|Φε,η〉 =
∑
x,s

Φ(ε,η)
x,s |x〉 ⊗ |s〉 , (8)

where the labels ε = 0, π and η = ± represent the quasienergy and chirality of edge

states, respectively. Thereby, the edge states |Φε,η〉 satisfy

U1/2 |Φε,η〉 = e−iε |Φε,η〉 , Γ |Φε,η〉 = η |Φε,η〉 . (9)

Since the chiral symmetry operator is Γ = 1lx ⊗ σ1, wave function amplitudes of edge

states satisfy the relation

Φ
(ε,η)
x,L = ηΦ

(ε,η)
x,R . (10)

By taking Eq. (10) into account, we use a simplified notation

|Φ(ε)
x | ≡ |Φ

(ε,η)
x,L | = |Φ

(ε,η)
x,R |, (11)

when we focus on absolute values of wavefunction amplitudes and ε.

3. Nonlinear quantum walks and stability of edge states: previous work

It has been proposed to introduce nonlinear effects in quantum walks, using feed-forward

control in optical systems. In the proposed feed-forward scheme [58, 59], the intensity

of light is measured during the propagation and the conditions of optical elements

corresponding to coin operators through which light passes after the measurement are

changed depending on results of the measurement. In Ref. [60], a nonlinear coin operator

C(κΘ) =
∑
x

|x〉 〈x| ⊗ C[κΘ(x, t)] (12)

was introduced, where Θ(x, t) corresponding to the rotation angle of the coin operator

is defined as

Θ(x, t) = |ψx,L(t)|2 − |ψx,R(t)|2. (13)

Since Θ(x, t) depends on wave function amplitudes at every time step t, the coin

operator C(κΘ) introduces nonlinear effects. The parameter κ denotes the strength of

nonlinearity. For convenience, we fix the sign of κ as κ ≥ 0 in the following. From Eqs.

(10), (12), and (13), we can understand that the nonlinear coin operator has no effect on

edge states, i.e. C(κΘ) |Φε,η〉 = C(0) |Φε,η〉 = |Φε,η〉, because of |Φ(ε,η)
x,L |2 − |Φ

(ε,η)
x,R |2 = 0.

Therefore, edge states are stationary states in the nonlinear quantum walks we consider

below. The time evolution of a single-step nonlinear quantum walk is described by U1

and C(κΘ),

|ψ(t+ 1)〉 = U1C(κΘ) |ψ(t)〉 . (14)



Since Θ introduces nonlinear effects, Eq. (14) is a nonlinear equation. As mentioned

above, edge states |Φε,η〉 are stationary states in this dynamics. Taking the continuum

limit in x and t, Eq. (14) is transformed into a nonlinear Dirac equation

i
∂

∂t
|ψx(t)〉 = −iσ3

∂

∂x
|ψx(t)〉+ [θ0(x) + κΘ(x, t)]σ2 |ψx(t)〉 , (15)

where |ψx(t)〉 = [ψx,L(t), ψx,R(t)]T and only the first order in θ0(x) and κΘ(x, t) is taken

into account. Using Eq. (15), the stability of edge states is studied in Ref. [60].

Suppose that |ψ(t)〉 consists of the stationary edge state with quasienergy ε and

chirality η, |Φε,η〉, and an infinitesimally weak fluctuating state around the edge state

|δψ(t)〉,

|ψ(t)〉 = |Φε,η〉+ |δψ(t)〉 , |δψ(t)〉 =
∑
x,s

δψx,s(t) |x〉 ⊗ |s〉 , (16)

where |δψx,s(t)/Φ(ε,η)
x,s | � 1 is assumed. Substituting Eq. (16) into Eq. (15) and

expanding the equation up to the first order in δψx,s(t), the time-evolution equation

for |δψ(t)〉

i
∂

∂t
|δψx(t)〉 = Ω |δψx(t)〉 , Ω = −iσ3

∂

∂x
+ θ0σ2 − 2iκ|Φ|2[η1ls − σ1] (17)

is obtained, where |δψx(t)〉 = [δψx,L(t), δψx,R(t)]T. In Eq. (17), for simplicity, x

dependence of θ0(x) is ignored. In addition, x and ε dependences of |Φ(ε)
x | are also

ignored, and we write it as |Φ|. From Eq. (17), we can understand that the time

evolution of a plane wave state with wave number q, |δψx(t)〉 = ei(qx−ωt) |δψ0(0)〉, is

determined by the complex frequency

ω = −2iκη|Φ|2 ±
√
q2 + θ20 − 4κ2|Φ|4, (18)

which is the eigenvalue of Ω (see Appendix A for details). On one hand, if all of Im(ω)

are negative, |δψx(t)〉 decays with time steps. Then, |Φε,η〉 remains as a stable state.

Therefore, Eq. (18) means that an edge state with chirality η = + is always stable

when κ > 0. On the other hand, if there is ω whose imaginary part is positive, then,

|δψx(t)〉 grows with time steps and overhelms the edge state |Φε,η〉. In this case, |Φε,η〉
is unstable. So, when κ > 0, |Φε,−〉 are always repellers. From the analysis done in Ref.

[60], it is concluded that the strength of nonlinearity κ (> 0) is irrelevant to determining

whether an edge state becomes an attractor or a repeller.

It is worth noting that, Ω in Eq. (17) can be seen as a non-Hermitian Hamiltonian

and possesses so-called PT symmetry. However, PT symmetry does not have any effect

on the stability of edge states, while PT symmetry breaking occurs as the value of κ is

varied. See Appendix A for details.

4. Nonlinear quantum walks and stability of edge states: present work

In this section, we explore the stability of edge states in single and two-step nonlinear

quantum walks, without taking the continuum limit, which differs from the analysis in



Ref. [60] explained in Sec. 3. We will demonstrate below that this scheme is essential

to find additional bifurcations unique to Floquet systems.

In both single and two-step nonlinear quantum walks, there are cases where soliton-

like states appear when an initial state |ψ(0)〉 is localized at a single site, which we do

not focus on in the present work. Since we empirically know that soliton-like states do

not appear if |ψ(0)〉 is a Gaussian wave packet, we employ the following initial state

ψx,L(0) = ψx,R(0) = N exp(−x2/2∆2), (19)

where the standard deviation ∆ is a parameter and N is a real normalization constant.

As wave function amplitudes of the initial state are all real, ψx,s(t) are always real during

the nonlinear time evolution.

4.1. single-step nonlinear quantum walks

First, we consider the single-step nonlinear quantum walk explained in Sec. 3, the same

model in Ref. [60]. Substituting Eq. (16) into Eq. (14) we obtain the time-evolution

equation for |δψ(t)〉,

|δψ(t+ 1)〉 = V
(ε,η)
1 |δψ(t)〉 , V (ε,η)

1 = U1Dκ,η(|Φ(ε)
x |), (20)

up to the first order in δψx,s(t), where Dκ,η(|Φ(ε)
x |) is

Dκ,η(|Φ(ε)
x |) =

∑
x

|x〉 〈x| ⊗ Dκ,η(|Φ(ε)
x |), (21)

Dκ,η(|Φ(ε)
x |) = 1ls − 2κ|Φ(ε)

x |2
(

η −1

−1 η

)
= (1− 2κη|Φ(ε)

x |2)1ls + 2κ|Φ(ε)
x |2σ1. (22)

We remark that, if κ = 0, Dκ,η(|Φ(ε)
x |) is an identity operator and V

(ε,η)
1 = U1 is a

unitary operator. Then, the eigenvalues of V
(ε,η)
1 , λ

(ε,η)
1 , are complex numbers on a unit

circle in a complex plane. For κ > 0, since Dκ,η(|Φ(ε)
x |) and then V

(ε,η)
1 are nonunitary

operators, λ
(ε,η)
1 are not on the unit circle in general. We note that λ

(ε,η)
1 appears as

quartets because of symmetries of the non-unitary time-evolution operator V
(ε,η)
1 . Due to

the bipartite structure of V
(ε,η)
1 , V

(ε,η)
1 has sublattice symmetry SV (ε,η)

1 S−1 = −V (ε,η)
1 ,

where S is a unitary operator. In addition, by following the symmetry classification

of non-Hermitian systems in Ref. [62], the non-unitary operator V
(ε,η)
1 possesses AZ†

particle-hole symmetry [Ξ̃(V
(ε,η)
1 )∗Ξ̃−1] = V

(ε,η)
1 , where Ξ̃ is a unitary operator. These

two symmetries guarantee that eigenvalues appear as quartets, ±λ(ε,η)1 and ±(λ
(ε,η)
1 )∗.

In the linear stability analysis, eigenstates which have the largest value of |λ(ε,η)1 |
dominate the dynamics of the nonunitary time evolution in Eq. (20). On one hand,

if max(|λ(ε,η)1 |) ≤ 1, |δψx,s(t)| decays with time steps or remains small. Then, the

edge state |Φε,η〉 becomes a stable attractor. On the other hand, if max(|λ(ε,η)1 |) > 1,

|δψx,s(t)| grows with time steps and |Φε,η〉 becomes an unstable repeller. Taking it into

account that U1 is a unitary operator and Dκ,η(|Φ(ε)
x |) is Hermitian, the upper bound of

max(|λ(ε,η)1 |) is determined by

max(|λ(ε,η)1 |) ≤ max
x

(1, |1− 4κη|Φ(ε)
x |2|), (23)



where 1 and 1−4κη|Φ(ε)
x |2 are eigenvalues ofDκ,η(|Φ(ε)

x |) (see Appendix B for derivations).

While Eq. (23) gives only the upper bound of max(|λ(ε,η)1 |), as we numerically

demonstrate later, this inequality can correctly estimate the criteria of the linear stability

analysis, namely, max(|λ(ε,η)1 |) ≤ 1 or max(|λ(ε,η)1 |) > 1, at least for the present model.

Thereby, here we summarize the results derived from Eq. (23) under the facts that κ > 0

and |Φ(ε)
x | > 0:

(i) In the case of η = −, since max(|λ(ε,−)1 |) ≤ 1 + 4κmaxx(|Φ(ε)
x |2) > 1 is satisfied for

any κ, |Φε,−〉 can always be unstable repellers.

(ii) In the case of η = +, |Φε,+〉 are inevitably stable attractors when κ is smaller than

a threshold value κc, which guarantees max(|λ(ε,+)
1 |) ≤ 1. For κ > κc, however, an

additional bifurcation can occur since max(|λ(ε,+)
1 |) can be larger than one.

(iii) The threshold value κc is given by

κc =
1

2 maxx(|Φ(ε)
x |2)

, (24)

which is obtained from the condition 1− 4κηmaxx(|Φ(ε)
x |2) = −1.

The first result is consistent with the conclusion in Ref. [60]. However, the second and

third results claim that |Φε,+〉 can be unstable for κ > κc and an additional bifurcation

occurs with increasing the strength of nonlinearity κ.

In order to confirm the validity of Eq. (24) by numerically calculating eigenvalues

of V
(ε,η)
1 , we derive the analytical solution of |Φε,η〉. For simplicity, we consider the case

in which θ0 > 0 is satisfied. Under an assumption that left and right boundaries in Fig.

1 locate far away and the overlap of edge states on each boundary is negligible, |Φε,η〉
becomes

Φ
(ε,η)
x,L = ηΦ

(ε,η)
x,R = N1(−1)

ε
π
xe−γ|x−ηm

′|, (25)

where an inverse of a localization length γ and a normalization constant N1 are

γ = log(
1 + sin θ0

cos θ0
), N1 =

√
1− e−2γ

4
, (26)

and m′ = m for |x| ≤ m and m′ = m+1 for |x| ≥ m+1. The derivation of Eqs. (25) and

(26) is given in Appendix C. Edge states with η = +, |Φε,+〉, are localized at the right

boundary, and |Φε,−〉 are localized at the left boundary. From Eqs. (24) and (25), we

obtain the expected threshold value κc. Alternating sign changes on the position space,

(−1)
ε
π
x, do not influence Dκ,η(|Φ(ε)

x |) and V
(ε,η)
1 , which can be understood from Eq. (22).

Thus, in the single-step nonlinear quantum walk, V
(0,η)
1 = V

(π,η)
1 and λ

(0,η)
1 = λ

(π,η)
1 hold,

since |Φ0,η〉 and |Φπ,η〉 have the same localization length γ−1. Therefore, we focus only

on V
(0,η)
1 and λ

(0,η)
1 hereafter. Because of this equivalence, however, there are always two

stable states |Φ0,η〉 and |Φπ,η〉 when max(|λ(0,η)1 |) = max(|λ(π,η)1 |) ≤ 1, and we cannot

predict which state is realized after long time evolution from the linear stability analysis

we shall explain. Substituting Eq. (25) into Eqs. (20)-(22), we calculate λ
(ε,η)
1 by

numerical diagonalizations. Figure 2 shows κ dependence of max(|λ(0,η)1 |). In the case
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Figure 2. κ dependence of max(|λ(0,η)1 |), with θ0 = π/8 and m = 150. (a) In the case

of η = −. The inset shows the logarithm of max(|λ(0,−)
1 |). (b) In the case of η = +.

The green dashed line represents |1− 4κmaxx(|Φ(ε)
x |2)| (see Appendix B).

of η = −, max(|λ(0,−)1 |) > 1 is satisfied for all κ > 0 as shown in Fig. 2 (a). Therefore,

|Φε,−〉 are always unstable repellers. In the case of η = +, max(|λ(0,+)
1 |) remains to be 1

when κ is smaller than a threshold value κc ≈ 3.61 (when θ0 = π/8), as shown in Fig. 2

(b). In this case, |Φε,+〉 are stable attractors. However, for κ > κc, max(|λ(0,+)
1 |) becomes

larger than one, which means that |Φε,+〉 also become unstable. These numerical results

completely agree with the theoretical predictions from Eq. (23). In Fig. 2 (b), the

absolute value of 1 − 4κmaxx(|Φ(ε)
x |2), one of the eigenvalues of Dκ,+(|Φ(ε)

x |), is also

plotted to support this conclusion.

Here, we verify the additional bifurcation predicted from the stability analysis by

numerically simulating time evolution of the nonlinear quantum walk in Eq. (14) with

the initial state in Eq. (19). To begin with, we employ the same parameters as shown in

Fig. 2 where the stability analysis predicts the additional bifurcation at a threshold value

κc ≈ 3.61, from Eq. (24). Below the threshold, the probability distribution (normalized

intensity) is accumulated around a boundary near x = 150, forming a stationary state

as shown in Fig. 3 (a-1) and (a-2). Figure 3 (a-3) compares the probability distribution

of the stationary state at T = 6× 105 and that of an edge state |Φ0,+〉 of the quantum

walk without nonlinearity. Since both states are almost identical, we can see that the

edge state |Φ0,+〉 is a stable attractor for κ < κc. Above the threshold, the dynamics is

similar to that with κ < κc up to a certain time step; i.e. the probability distribution is

accumulated around the boundary as shown in Fig. 3 (b-1). Figure 3 (b-2) clarifies that

the shape of the probability distribution near the boundary abruptly shrinks around

3.8× 105 time steps. Remarkably, the state after the abrupt shrink is not stationary as

the state slightly fluctuates. From Fig. 3 (b-3), we can see that the edge state |Φ0,+〉 is

unstable for κ > κc, since the final state localizes stronger than the edge state |Φ0,+〉.
As the probability distribution of the other edge state |Φπ,+〉 localized near x = 150 is

the same as that of |Φ0,+〉, we can also see that |Φπ,+〉 is unstable form Fig. 3 (b-3).

In order to quantitatively study the stability of edge states, we calculate a fidelity
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Figure 3. Time evolution of the probability distribution (normalized intensity)

|ψx(t)|2 = |ψx,L(t)|2 + |ψx,R(t)|2 of the single-step nonlinear quantum walk with

θ0 = π/8 and ∆2 = 50. Two boundaries locate at x = ±150. The nonlinear parameter

κ is (a) below the threshold value κ = 3.6 < κc and (b) above the threshold value

κ = 3.9 > κc. The left and center columns show the time evolution in shorter and

longer time scales, respectively. The right column shows probability distributions at

the final time step T = 6×105, crosses and solid lines whose colors are blue and green,

and the edge state |Φ0,+〉, red circles and dashed lines.

which is defined as

Fε,η(t) = | 〈Φε,η|ψ(t)〉 |. (27)

If the edge state |Φε,η〉 is stable, the fidelity is close to one after many time steps. In the

case of κ = 3.6 < κc, as shown in Fig. 4 (a), the fidelity for the edge state |Φ0,+〉, F0,+(t),

remains to be almost one after long time steps. In the case of κ = 3.9 > κc as shown in

Fig. 4 (b), F0,+(t) and Fπ,+(t) cannot reach one and abruptly decrease around 3.8× 105

time steps, which is consistent with the observation in Fig. 3 (b-2). Fidelities for other

edge states with η = − are almost zero during the time evolution. These observations

clearly validate the prediction from the linear stability analysis. We note that the abrupt

shrink of the probability distribution in Fig. 3 (b-2) or the sharp drop of F0,+(t) in Fig.

4 (b) cannot be predicted from the linear stability analysis. This is because the linear

stability analysis cannot predict behaviours in the unstable region where fluctuations

become dominant, since the analysis assumes weak fluctuations around the edge states,

while it can predict stable-unstable transitions.

For completeness, we explain how the additional bifurcation occurs, by showing all

eigenvalues of V
(0,+)
1 , λ

(0,+)
1 , for various values of κ in the complex plane as shown in

Fig. 5. Here, the inside (outside) of the unit circle in the complex plane corresponds
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Figure 4. Time-step dependence of the fidelity Fε,η(t) for edge states |Φ0,+〉, |Φπ,+〉,
|Φ0,−〉, and |Φπ,−〉. (a) κ = 3.6 < κc and (b) κ = 3.9 > κc, with θ0 = π/8, ∆2 = 50,

and m = 150.

to a stable (unstable) region of the edge states. First of all, we remark that almost

all of λ
(0,+)
1 are identical or very close to eigenvalues of U1 which are on the unit circle

due to unitarity of U1, except a quartet of eigenvalues by following reasons. Firstly,

the edge states of U1, |Φε,η〉 are also eigenstates of V
(ε,η)
1 with the same eigenvalue e−iε,

because Dκ,η(|Φ(ε)
x |) |Φε,η〉 = |Φε,η〉 is satisfied, which can be understood from Eqs. (21)

and (22). Secondly, Dκ,η(|Φ(ε)
x |) ' 1ls unless x is near the boundaries at x = ±m, since
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Figure 5. Eigenvalues of V
(0,+)
1 , λ

(0,+)
1 , in the complex plane, with θ0 = π/8 and

m = 150. Circles depicted in dashed lines are the unit circles. In (a-1) κ = 1.6, (b-1)

κ = 1.7, (c-1) κ = 1.8, (d) κ = 2.2, and (e) κ = 5.0, all eigenvalues are plotted. (a-2)

1 ≤ κ ≤ 1.68, (b-2) 1.7 ≤ κ ≤ 1.77, and (c-2) 1.85 ≤ κ ≤ 2.3 show trajectories of

particular four eigenvalues, which mainly contribute to the bifurcation of |Φε,+〉. The

eigenvalues go toward the direction of the arrows as κ is increased.



|Φ(ε)
x |2 takes exponentially small values far away from the boundaries. Then, extended

bulk states of U1, |Ψb〉, whose eigenvalues are µb satisfy Dκ,η(|Φ(ε)
x |) |Ψb〉 ' |Ψb〉 and

V1 |Ψb〉 ' µb |Ψb〉, as the bulk states have small wave function amplitudes at x = ±m.

The only exception is topologically trivial localized states, i.e. impurity states, which

are localized near boundaries but whose quasienergy is neither 0 nor π. These states

take important roles for us to understand the additional bifurcation as we explain in

the next paragraph.

We find that the absolute values of these eigenvalues are not equal to one and

strongly depend on κ, the strength of nonlinearity. Increasing κ, the four eigenvalues,

plotted as light blue squares, flow toward inside of the unit circle, and reach on the

real axis [Fig. 5 (a)]. Further increasing κ, two eigenvalues (blue squares) flow toward

the origin, while other two eigenvalues (purple triangles) move towards the opposite

direction [Fig. 5 (b)]. After two eigenvalues (blue squares) collide and pass through

each other at the origin [Fig. 5 (c)], four eigenvalues (purple triangles and blue squares)

flow toward outside of the unit circle, being on the real axis [Fig. 5 (c-2),(d)]. Again

increasing κ, the eigenvalues (plotted as red triangles and red squares) go out from the

unit circle [Fig. 5 (e)], which makes |Φε,+〉 unstable. As we have explained, the motion

of λ
(0,+)
1 in the complex plane changes |Φε,+〉 from stable to unstable as κ is increased.

This additional bifurcation is related to that the stable region of λ
(ε,η)
1 is bounded,

which is one of peculiar features of Floquet systems (see also Sec. 5). Furthermore, as

mentioned in Sec. 3, the linear stability analysis in the continuum limit does not predict

the additional bifurcation. These facts suggest that the bifurcation we have shown is

unique to Floquet systems.

Before closing this subsection, we extensively check the validity of the additional

bifurcation. Figures 6 (a) and (b) show max(|λ(0,+)
1 |) and max[F0,+(T ), Fπ,+(T )] at

T = 3 × 106, respectively, for various values of θ0 and κ. In Fig. 6 (b), as the linear

stability analysis cannot predict which state is realized in the nonlinear dynamics, |Φ0,+〉
or |Φπ,+〉, we show max[F0,+(T ), Fπ,+(T )]. We also plot analytically predicted values of

κc in Eq. (24). We remark that the predicted values agree well with those obtained by

numerical results. We also note that, as shown in Fig. 6, κc is a decreasing function

of θ0 in 0 < θ0 < π/2. This is because, when θ0 and the gap size for ε = 0, π are

large, |Φ(ε)
x |2 have a large value at localization positions ±m and ±(m + 1), since the

localization length γ−1 is small (see Appendix B for details).

4.2. two-step nonlinear quantum walks

Next, we consider a two-step nonlinear quantum walk whose time evolution is described

as

|ψ(t+ 1)〉 = U2bC[−κΘ̃] |ψ̃(t)〉 , |ψ̃(t)〉 = U2aC[κΘ] |ψ(t)〉 . (28)

Here Θ(x, t) is defined from wave function amplitudes of |ψ(t)〉 as shown in Eq. (13).

Θ̃(x, t) is also defined from |ψ̃(t)〉 in a simillar way:

Θ̃(x, t) = |ψ̃x,L(t)|2 − |ψ̃x,R(t)|2. (29)



For the same reason with the single-step nonlinear quantum walk, edge states |Φε,η〉 are

stationary states in this dynamics because of Θ(x, t) = Θ̃(x, t) = 0 for |ψ(t)〉 = |Φε,η〉.
We emphasize that we cannot apply the analysis in terms of the effective Hamiltonian

in Ref. [60] to the two-step nonlinear quantum walk. This is because two nonlinear coin

operators C(κΘ) and C(−κΘ̃) in Eq. (28) cancel out each other up to the first order

in κ by taking the continuum limit in x and t. Therefore, we have to directly analyze

the time-evolution operator in order to check the stability of edge states in the two-step

nonlinear quantum walk.

Before analyzing the stability of edge states |Φε,η〉, we explain properties of |Φε,η〉
for the two-step quantum walk without nonlinearlity in Eq. (6). We assume that

two boundaries in Fig.1 are separated enough and edge states localized at different

boundaries have no overlap each other. See Appendix D for details. Note that, in the

two-step quantum walk, edge states have finite wave function amplitudes only at even

sites or odd sites because of the decoupling between even and odd sites. While we

use |Φε,η〉 at even sites for the linear stability analysis, our conclusion does not depend

on the even-odd parity. Figure 7 shows how the values of (ν0, νπ) depend on the coin

parameters θ1 and θ2, where ν0 and νπ are topological numbers for zero-energy gap and

π-energy gap, respectively. In the following, we consider that the coin parameters in the

inner region shown in Fig. 1 sweep the thick line (green) in regions A and B as shown in

Fig. 7 for simplicity. In both regions A and B, ν0 has the same value and the analytical

form of |Φ0,η〉 is

Φ
(0,+)
x,L =

{
N2e

−γ0|x−m| (x ≤ m)

N2pe
−γ0|x−(m+2)| (x > m)

(30)

Φ
(0,−)
x,L =

{
N2pe

−γ0|x−(−m−2)| (x < −m)

N2e
−γ0|x−(−m)| (x ≥ −m)

(31)
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Figure 6. θ0 and κ dependences of (a) max(|λ(0,+)
1 |) and (b) max[F0,+(T ), Fπ,+(T )]

for T = 3 × 106. The threshold predicted from Eq. (24) is shown by the green solid

curves. The initial state is given by Eq. (19) with ∆2 = 30 and m = 100.
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Figure 7. θ1 and θ2 dependences of topological numbers (ν0, νπ). The green thick

solid line, θ2 = −0.6θ1 + π/5, is used when the validity of the linear stability analysis

is confirmed in Fig. 10. Then, the coin parameters in the inner region in Fig. 1 locate
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where γ0, p, and N2 are

γ0 =
1

2
log

[
(1 + sin θ1)(1 + sin θ2)

cos θ1 cos θ2

]
, p =

cos θ2
1 + sin θ2

, N2 =

√
1− e−4γ0
2(1 + p2)

. (32)

See Appendix D for derivations. Irrespective of the parameter regions, |Φ0,+〉 and |Φ0,−〉
are localized at the right and left boundaries, respectively. On the other hand, for ε = π,

the value of νπ and localization centers of |Φπ,η〉 depend on which parameter region θ1
and θ2 exist in. In the region A, |Φπ,η〉 is

Φ
(π,+)
x,L =

{
N2p(−1)

x
2 e−γ

A
π |x−(−m−2)| (x < −m)

N2(−1)
x
2 e−γ

A
π |x−(−m)| (x ≥ −m)

(33)

Φ
(π,−)
x,L =

{
N2(−1)

x
2 e−γ

A
π |x−m| (x ≤ m)

N2p(−1)
x
2 e−γ

A
π |x−(m+2)| (x > m)

(34)

where

γAπ =
1

2
log

[
(1− sin θ1)(1 + sin θ2)

cos θ1 cos θ2

]
. (35)

Equations (33) and (34) mean that |Φπ,+〉 is localized at the left boundary and |Φπ,−〉
is vice versa, in the region A. In the region B,

Φ
(π,+)
x,L =

{
N2p(−1)

x
2 e−γ

B
π |x−m| (x ≤ m)

N2(−1)
x
2 e−γ

B
π |x−(m+2)| (x > m)

(36)

Φ
(π,−)
x,L =

{
N2(−1)

x
2 e−γ

B
π |x−(−m−2)| (x < −m)

N2p(−1)
x
2 e−γ

B
π |x−(−m)| (x ≥ −m)

(37)

where

γBπ =
1

2
log

[
(1 + sin θ1)(1− sin θ2)

cos θ1 cos θ2

]
. (38)



Localization centers of |Φπ,+〉 and |Φπ,−〉 in the region B are the opposite of those in

the region A. Note that we can obtain |Φε,η〉 in odd sites by changing m, m + 2, and

p to m − 1, m + 1, and p−1, respectively, in Eqs. (30)-(37). In regions A and B, the

normalization constant N2 for |Φπ,η〉 is obtained by substituting γAπ and γBπ into γ0 in

Eq. (32), respectively.

Now, we consider the linear stability analysis for edge states of the two-step

nonlinear quantum walk. Using the analytical form of |Φε,η〉, Eqs. (30)-(37), we linearize

the time-evolution equation (28). In the same way with the single-step nonlinear

quantum walk, we assume the infinitesimally weak fluctuating state in Eq. (16) and

substitute it into Eqs. (28). Ignoring higher order terms in δψx,s(t), we can obtain the

time-evolution equation of |δψ(t)〉,

|δψ(t+ 1)〉 = V
(ε,η)
2 |δψ(t)〉 , V (ε,η)

2 = U2bD−κ,η̃(|Φ̃(ε)
x |)U2aDκ,η(|Φ(ε)

x |), (39)

where |Φ̃(ε)
x | denotes absolute values of wave function amplitudes, in the same way with

Eq. (11). Edge states |Φ̃ε,η̃〉 are defined by

|Φ̃ε,η̃〉 = U2a |Φε,η〉 . (40)

As explained in Appendix E, |Φ̃ε,η̃〉 is also the eigenstate of the same chiral symmetry

operator Γ and the following relation is satisfied:

Γ |Φ̃ε,η̃〉 = η̃ |Φ̃ε,η̃〉 , η̃ = eiεη. (41)

Here, we emphasize that chiralities η̃ depend on ε. In the same way as we explained in

Sec. 4.1, the largest value of |λ(ε,η)2 |, where λ
(ε,η)
2 are eigenvalues of V

(ε,η)
2 , dominates the

time evolution in Eq. (39). If max(|λ(ε,η)2 |) > 1 (≤ 1) is satisfied, where |δψ(t)〉 grows

(does not grow) with time steps and |Φε,η〉 is unstable (stable). As derived in Appendix

B, the upper bound of max(|λ(ε,η)2 |) is determined by a product of the maximum value

of eigenvalues of Dκ,η(|Φ(ε)
x |) and that of D−κ,η̃(|Φ̃(ε)

x |). The eigenvalues of Dκ,η(|Φ(ε)
x |)

and D−κ,η̃(|Φ̃(ε)
x |) are

δ1 = 1, δ2(x) = 1− 4κη|Φ(ε)
x |2, δ̃1 = 1, δ̃2(x) = 1 + 4κη̃|Φ̃(ε)

x |2, (42)

respectively. Taking these eigenvalues into account, the upper bound of max(|λ(ε,η)2 |) is

expressed as

max(|λ(ε,η)2 |) ≤ max
x

(
δ1, |δ2(x)|

)
max
x

(
δ̃1, |δ̃2(x)|

)
. (43)

Contrary to the single-step nonlinear quantum walk in Sec. 4.1, max(|λ(ε,η)2 |) depends

on the quasienergy ε, since the localization length of |Φ0,η〉 and |Φπ,η〉 are different.

Although Eq. (43) gives only the upper bound of max(|λ(ε,η)2 |), numerical

calculations that we will show later guarantee that the inequality properly predicts

the bifurcation points for the present model. Thereby, we again summarize the results

obtained from Eq. (43) here.

(i) The edge states |Φ0,η=±〉 and |Φπ,−〉 can be unstable for any κ > 0, since the right

hand side of Eq. (43) is always larger than one and max(|λ(ε,η)2 |) > 1 can be satisfied.



(ii) In the case of |Φπ,η=+〉, the edge state is inevitably stable as long as both

maxx(|δ2(x)|) and maxx(|δ̃2(x)|) are smaller than or equal to one, corresponding

to max(|λ(π,+)
2 |) ≤ 1. This is satisfied when κ is smaller than a threshold value

κc. For κ > κc, max(|λ(π,+)
2 |) > 1 can be satisfied since maxx(|δ2(x)|) and/or

maxx(|δ̃2(x)|) is larger than one. Therefore, a transition from a stable attractor to

an unstable repeller occurs.

(iii) The threshold is given by

κc =
1

2 maxx

(
|Φ(π)

x |2, |Φ̃(π)
x |2

) , (44)

which comes from the condition that one of maxx(|δ2(x)|) and maxx(|δ̃2(x)|)
becomes one.

Now, we numerically confirm the validity of the above results. To this end, we calculate

eigenvalues of V
(ε,η)
2 by numerical diagonalizations after substituting the analytical

solutions of edge states in Eqs. (30)-(38) into Eq. (39). Figure 8 (a)-(d) show κ

dependence of the maximum value of |λ(ε,η)2 | for four kinds of edge states under specific

conditions. We clearly observe that max(|λ(ε,η)2 |) for edge states |Φ0,+
x 〉, |Φ0,−

x 〉, and |Φπ,−
x 〉

become larger than one for κ > 0. However, max(|λ(π,+)
2 |) for the edge state |Φπ,+

x 〉
remains to be one as long as κ < κc, and starts to increase with increasing κ further.

When θ1 = −π/4 and θ2 = 2π/5, the value of κc is estimated as κc ≈ 1.03 from Eq.

(44). These observations are consistent with the analytically derived predictions from

Eq. (43). We verify the above result of the stability analysis by numerically calculating

the time evolution of the nonlinear quantum walk in Eq. (28). The fidelity Fε,η(T ) at

a time step T = 107 is shown in Fig. 8 (e). As expected from max(|λ(ε,η)2 |) in Fig.

8 (a)-(d), Fπ,+(T ) is almost one (much smaller than one) for κ ≤ κc (κ > κc), while

F0,+(T ), F0,−(T ), and Fπ,−(T ) are always much smaller than one.

Here, we explain details for κ dependences of λ
(π,+)
2 , eigenvalues of V

(π,+)
2 , in the

complex plane shown in Fig. 9. Eigenvalues near the unit circle (gray circles) are inside

or on the unit circle. Increasing κ, one real eigenvalue inside the unit circle (green

triangle) flows toward the origin, while two complex eigenvalues (light blue squares)

approach to the real axis [Fig. 9 (a) and (b)]. Further increasing κ, two eigenvalues

(green triangle and red empty triangle) flow toward the negative side and go beyond the

unit circle [Fig. 9 (c) and (d)]. This establishes κ dependences of max(|λ(π,+)
2 |) in Fig. 8.

As the behavior of λ
(π,+)
2 in the complex plane is crucial, the bifurcation of |Φπ,+〉 in the

nonlinear two-step quantum walk is one of the typical phenomena in Floquet systems.

Finally, we present a comprehensive result to verify the additional bifurcation in

the two-step nonlinear quantum walk. Figure 10 (a) and (b) show max(|λ(π,+)
2 |) and

Fπ,+(T ) at T = 3 × 106, respectively, for various θ1, accordingly θ2 = −0.6θ1 + π/5,

and κ. Comparing Fig. 10 (a) with (b), it is obvious that the stability analysis based

on max(|λ(π,+)
2 |) gives the correct prediction, excepting near θ1 = θ2 = π/8 where the

topological number νπ is not defined as shown in Fig. 7 and the edge states |Φπ,η〉 do not

exist. The reason is as follows. By putting θ1 = θ2 into Eqs. (35) and (38), we obtain
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Figure 8. (a)-(d) max(|λ(ε,η)2 |) and (e) the fidelity at T = 107, F
(ε,η)
2 (T ), with

θ1 = −π/4, θ2 = 2π/5, ∆2 = 50, and m = 150. The black dashed lines in

(a)-(d) represent max(|λ(ε,η)2 |) = 1, and the orange solid line in (d) represents

|1 − 4κηmaxx(|Φ(ε)
x |2)|. Note that, |ψ(0)〉 and |Φε,η〉 have amplitudes only at even

sites.

γ
A/B
π = 0. Therefore, the localization length of the edge state diverges. Even near this

point, |Φπ,η〉 have a huge localization length. Then, edge states localizing at left and

right boundaries could largely overlap each other, and the assumption that |Φπ,+〉 and

|Φπ,−〉 are independent is not suitable. Therefore, we can shrink this exceptional region

by making the system size larger. Note that, when |Φπ,+〉 is stable and the initial state

|ψ(0)〉 in Eq. (19) has amplitudes at both even and odd sites, Fπ,+(T ) for large T is

almost 0.5, since |Φπ,+〉 have amplitudes only at even or odd sites. Then, we need to
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Figure 9. Eigenvalues of Fπ,+, λ
(π,+)
2 , in the complex plane, with θ1 = −π/4, θ2 =

2π/5, and m = 150. The circles depicted in dashed lines are the unit circles. All

eigenvalues are shown for (a) κ = 0.3 and (c) κ = 0.6. In (b) 0.2 ≤ κ ≤ 0.468 and

(d) 0.48 ≤ κ ≤ 1.288, trajectories of three eigenvalues, which mainly contribute to the

bifurcation of |Φπ,+〉, are plotted. The eigenvalues flow toward the direction of the

arrows with increasing κ.



replace |Φπ,+〉 with |Φπ,+〉 /
√

2 in order to calculate λ
(π,+)
2 , and this makes κc become

2κc.

5. Summary and discussion

In this work, we have shown that the stability of topologically protected edge states

of the single and two-step nonlinear quantum walks can be predicted by the linear

stability analysis, precisely taking the dynamical properties of Floquet systems into

consideration. Contrary to the previous work [60], we have analytically found the

additional bifurcations depending on the strength of nonlinearity for both nonlinear

quantum walks by directly applying time-evolution operators of the quantum walks to

the linear stability analysis. Then, we have confirmed the validity of the analysis by

numerical calculations.

Finally, we discuss the origin of the additional bifurcation from the viewpoint of

eigenvalues. In single and two-step nonlinear quantum walks, as shown in Figs. 5 and 9

respectively, the flow of eigenvalues in the complex plane as a function of the strength

of nonlinearity is of importance for the additional bifurcations of edge states. Here,

we discuss further on these bifurcations, by pointing out that there is a fundamental

difference for the stability analysis between time-independent static systems and time-

periodically driven systems, in which linearized equations are described by effective

static Hamiltonians and time-evolution operators, respectively. On one hand, in the

static systems, eigenvalues of non-Hermitian Hamiltonians such as ω in Eq. (17) are

crucially important for the stability of stationary states. On the other hand, in the

(a) (b)
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Figure 10. θ1 and κ dependences of (a) max(|λ(π,+)
2 |) and (b) F

(π,+)
2 (T ) with

m = 100, T = 3 × 106, and ∆2 = 70. Note that, |ψ(0)〉 and |Φπ,+〉 have amplitudes

only at odd sites. In both pictures (a) and (b), rotation angles θ1 and θ2 in the inner

region (outer region) are scanned along the green solid (blue dashed) line in Fig. 7,

θ2 = −0.6θ1 + π/5, avoiding points on which θ1 = 0, θ2 = 0, or θ1 = θ2. On the white

dashed lines, θ1 = θ2 = π/8. The green lines represent κc as a function of θ1, obtained

from Eq. (44).
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Figure 11. Schematic pictures of stable and unstable regions in the complex plane, in

the case of (a) usual systems (with no time-periodicity) and (b),(c) Floquet systems.

In (b) and (c), brown and green arrows represent the motion of an eigenvalue of a

time-evolution operator and quasienergy ξ = i log(λ), respectively.

Floquet systems, eigenvalues of nonunitary time-evolution operators, such as λ
(ε,η)
1 and

λ
(ε,η)
2 in Eqs. (20) and (39) respectively, determine the stability of stationary states. In

the former case, a spectral region which makes a stationary state stable is unbounded

as shown in Fig. 11 (a), while the stable region is bounded in the latter case, which

is surrounded by the unstable region as shown in Fig. 11 (b). This difference makes

stationary states of Floquet systems more fragile. To clearly see this, we consider a

simplified situation of the two-step nonlinear quantum walk in Sec. 4.2 by focusing

on one eigenvalue, say λ, as shown by the green triangle in Fig. 9. Since λ is real

and monotonically decreases with increasing the strength of nonlinearity as shown in

Fig. 11 (b), We can easily understand that λ can flow into the unstable region in

this case. This peculiarity is more highlighted by introducing quasienergy defined from

λ as ξ = i log(λ). The quasienergy ξ plays a similar role of ω, as the stability of

stationary states depends on the sign of Im(ω) and Im(ξ) as shown in Figs. 11 (a)

and (c), respectively. Figure 11 (c) shows the trajectory of ξ corresponding to λ in

Fig. 11 (b). When λ passes through the origin, the value of ξ jumps from (0,−∞)

to (π,−∞) and the direction of motion is reversed, and then ξ enters in the unstable

region. The discontinuity of ξ originates from the phase singularity of λ at the origin,

and such a discontinuity never occurs in time-independent systems or systems described

by effective static Hamiltonians which are approximately derived. While we need to

consider more complicated situations for the single-step nonlinear quantum walk, the

boundedness of the stable region is important in both nonlinear quantum walks. Since

the boundedness is a consequence of treating time-evolution operators for linear stability

analysis, the additional bifurcations of edge states that we have shown in the present

work are phenomena unique to Floquet systems. It should be interesting to discuss

the same type of bifurcations in which stationary states become unstable due to the

boundedness of the stable region in other Floquet systems. To this end, we note that

quantum walks are defined by simple time-evolution operators, and this advantage makes



it possible to derive the bifurcation points analytically. Therefore, it may be reasonable

to employ Floquet systems in which time-evolution operators can be derived without

approximation, such as models treated in Refs. [19, 63], while the derivation is difficult

in Floquet systems described by Hamiltonians which are smooth functions of time, e.g.

electronic systems under the application of light [9, 10, 12].

In the single-step nonlinear quantum walk, the effective Hamiltonian in the

continuum limit is non-Hermitian (Appendix A), although our analysis is based on

time-evolution operators. Recently, systems described by non-Hermitian Hamiltonians

with PT symmetry have been explored enthusiastically [64, 65], where P and T
represent parity and time-reversal, respectively. As shown in Appendix A, the effective

Hamiltonian has PT symmetry. Although PT symmetry does not influence the stability

of edge states in the single-step quantum walk (Appendix A), generally, it can have the

large effect on the stability of stationary states in nonlinear systems. While large number

of PT symmetric non Hermitian systems are experimentally realized in linear optical

systems, it may be also interesting to study the relation between stability of stationary

states and PT symmetry in other nonlinear systems.

An open problem is the stronger localization of probability distributions in the

unstable region as shown in Fig.3 in Sec. 4. Since the linear stability analysis is not

useful in this region, other methods would lead to better understandings of stronger

nonlinear effects in quantum walks.

Acknowledgement

We thank Y. Asano, H. Hirori, R. Okamoto, and K. Yakubo for helpful discussions.

This work was supported by KAKENHI (Grants No. JP18J20727, No. JP19H01838,

No. JP18H01140, No. JP18K18733, and No. JP19K03646) and a Grant-in-Aid for

Scientific Research on Innovative Areas (KAKENHI Grant No. JP15H05855 and No.

JP18H04210) from the Japan Society for the Promotion of Science.

Appendix A. PT symmetry of the effective Hamiltonian in the continuum

limit of the single-step nonlinear quantum walk

We argue the non-Hermitian Hamiltonian in Eq. (17) from the viewpoint of PT
symmetry. PT symmetry is a combined symmetry of parity and time-reversal

symmetries. When a non-Hermitian operator has PT symmetry, there are two phases,

that is, a PT -symmetry unbroken phase and PT -symmetry broken phase [64, 65]. While

all eigenvalues are real in PT -symmetry unbroken phase, in the PT -symmetry broken

phase, eigenvalues are partially or fully complex. The transition between the two phases

is called PT -symmetry breaking.

Assuming a homogeneous system and applying Fourier transformation to the

infinitesimally weak fluctuating state |δψx(t)〉, Eq. (17) is expressed by a wave number



q as,

i
∂

∂t
|δψ0(t)〉 = Ω(q) |δψ0(t)〉 , (A.1)

where Ω(q) corresponds to a non-Hermitian effective Hamiltonian

Ω(q) = −2iκη|Φ|21ls + Ω̃(q), Ω̃(q) =

(
q −iθ0 + 2iκ|Φ|2

iθ0 + 2iκ|Φ|2 −q

)
. (A.2)

Here, we focus only on the second term in Eq. (A.2), and identify that Ω̃(q) has PT
symmetry

(PT )Ω̃(q)(PT )−1 = Ω̃(q), (A.3)

where the PT symmetry operator is

PT = σ3K. (A.4)

Since the eigenvalue of Ω̃(q) is

ω̃ = ±
√
q2 + θ20 − 4κ2|Φ|4, (A.5)

the eigenvalue of Ω(q) is given by

ω = −2iκη|Φ|2 ±
√
q2 + θ20 − 4κ2|Φ|4. (A.6)

If the imaginary part of the eigenvalue of Ω(q) is negative (positive), the edge state

|Φε,η〉 is stable (unstable). The first term in Eq. (A.2), −2iκη|Φ|2, makes |Φε,+〉 (|Φε,−〉)
stable (unstable). When κ < |θ0|/4|Φ|2, ω̃ is entirely real because the PT symmetry

is unbroken. Therefore, the stability of the edge states is determined by the first pure

imaginary term in Eq. (A.6). Increasing κ, ω̃ can become pure imaginary with positive

and negative signs since the PT symmetry is broken when θ0 < 2κ|Φ|2. However,

the PT symmetry breaking does not affect the stability of edge states since the first

imaginary term in Eq. (A.6) always dominates the sign of Im(ω) due to the following

relation

2κ|Φ|2 ≥ |Im(ω̃)|. (A.7)

Therefore, the PT symmetry breaking is irrelevant to the stability of |Φε,η〉 for the

analysis in terms of the effective Hamiltonian.

Appendix B. Derivation of the bifurcation points : upper bounds of the

maximum for absolute values of eigenvalues for nonunitary operators

Given a square matrix A which is diagonalizable, its spectral radius max(|λA|) and

spectral norm σ(A) always satisfy

max(|λA|) ≤ σ(A), σ(A) =
√

max(|λA†A|), (B.1)

where λA (λA†A) is the eigenvalue of A (A†A). Here, A† denotes Hermitian conjugation

of A. We can derive the bifurcation points in single and two-step nonlinear quantum



walks, where edge states become unstable, using Eq. (B.1).

First, we derive the bifurcation points in the single-step nonlinear quantum walk.

As mentioned in the main text, the stability of edge states |Φε,η〉 is determined by

the maximum value of |λ(ε,η)1 |, which is equivalent to the spectral radius of V
(ε,η)
1 =

U1Dκ,η(|Φ(ε)
x |) in Eq. (B.1). Since U1 is unitary, V

(ε,η)
1 satisfies

[V
(ε,η)
1 ]†[V

(ε,η)
1 ] = D†κ,η(|Φ(ε)

x |)Dκ,η(|Φ(ε)
x |). (B.2)

Therefore, from Eq. (B.1), the upper limit of max(|λ(ε,η)1 |) is obtained by diagonalizing

D†κ,η(|Φ
(ε)
x |)Dκ,η(|Φ(ε)

x |). Since Dκ,η(|Φ(ε)
x |) defined in Eq. (21) is Hermitian, the

eigenvalues of D†κ,η(|Φ
(ε)
x |)Dκ,η(|Φ(ε)

x |) correspond to δ21 and δ22(x), where δ1 and δ2(x)

are the eigenvalues of Dκ,η(|Φ(ε)
x |), given by

δ1 = 1, δ2(x) = 1− 4κη|Φ(ε)
x |2. (B.3)

From Eqs. (B.1)-(B.3), the spectral norm σ[V
(ε,η)
1 ] is determined by

σ[V
(ε,η)
1 ] = max

x
[δ1, |δ2(x)|]. (B.4)

On one hand, in the case of η = −, 1 + 4κ|Φ(ε)
x |2 becomes larger than 1 and

max(|λ(ε,−)1 |) ≤ 1 + 4κmax
x

(|Φ(ε)
x |2) (> 1) (B.5)

is satisfied for nonzero κ (> 0). Thereby, |Φε,−〉 can be always unstable. On the

other hand, in the case of η = +, the stability of |Φε,+〉 depends on κ. When

maxx(|1− 4κ|Φ(ε)
x |2|) ≤ 1 is satisfied for small κ, |Φε,+〉 is stable because of

max(|λ(ε,+)
1 |) ≤ 1. (B.6)

When 1− 4κmaxx(|Φ(ε)
x |2) < −1 is satisfied, |Φε,+〉 can be unstable due to

max(|λ(ε,+)
1 |) ≤ |1− 4κmax(|Φ(ε)

x |2)| (> 1). (B.7)

The threshold for the stable to unstable transition is derived as

κc =
1

2 maxx(|Φ(ε)
x |2)

, (B.8)

from the condition that 1− 4κmaxx(|Φ(ε)
x |2) = −1. When the value of maxx(|Φ(ε)

x |2) is

small, large κ is needed to make |Φε,+〉 unstable. Therefore, |Φε,+〉 tends to be stable

(unstable) if the localization length [log(1/ cos θ0 + tan θ0)]
−1 is large (small).

Second, we derive the bifurcation points in the two-step nonlinear quantum walk,

where the edge states |Φε,η〉 become unstable. In addition to Eq. (B.1), we also use an

inequality for square matrices B and C,

σ(BC) ≤ σ(B)σ(C). (B.9)

Substituting V
(ε,η)
2 = U2bD−κ,η̃(|Φ̃(ε)

x |)U2aDκ,η(|Φ(ε)
x |) into A in Eq. (B.1) and using Eq.

(B.9), we obtain

max(|λ(ε,η)2 |) ≤ σ[Dκ,η(|Φ(ε)
x |)]σ[D−κ,η̃(|Φ̃(ε)

x |)], (B.10)



since the spectral norms of the unitary operators, U2a and U2b, are always equal to 1.

The eigenvalues of Dκ,η(|Φ(ε)
x |) are given in Eq. (B.3), and those of D−κ,η̃(|Φ̃(ε)

x |) are

given by

δ̃1 = 1, δ̃2(x) = 1 + 4κη̃|Φ̃(ε)
x |2. (B.11)

From Eqs. (B.3), (B.10), and (B.11), the upper bound of max(|λ(ε,η)2 |) is given by

max(|λ(ε,η)2 |) ≤ max
x

(δ1, |δ2(x)|) max
x

(δ̃1, |δ̃2(x)|). (B.12)

From Eq. (B.12), we can understand that, for (ε, η) = (0,+), (0,−), and (π,−),

maxx(|δ2(x)|) and/or maxx(|δ̃2(x)|) are larger than one for nonzero κ (> 0). Thereby,

the edge states |Φ(0,±)
x 〉 and |Φ(π,−)

x 〉 can be unstable. Regarding the edge state with

(ε, η) = (π,+), it is inevitably stable as long as maxx(|δ2(x)|) ≤ 1 and maxx(|δ̃2(x)|) ≤ 1

are satisfied, which means

max(|λ(π,+)
2 |) ≤ 1. (B.13)

When one of maxx(|δ2(x)|) and maxx(|δ̃2(x)|) is larger than one, the upper bound of

max(|λ(π,+)
2 |) becomes

max(|λ(π,+)
2 |) ≤ |1− 4κmax

x
(|Φ(π)

x |2, |Φ̃(π)
x |2)| (B.14)

and |Φπ,+〉 can be unstable, since the right hand side of Eq. (B.14) is larger than one.

Therefore, the threshold of the stable to unstable transition is given by

κc =
1

2 maxx(|Φ(π)
x |2, |Φ̃(π)

x |2)
. (B.15)

Appendix C. Edge states in the single-step quantum walk

In Appendix C, we derive Eqs. (25) and (26). Since edge states satisfy Eq. (10), in the

inner region where −m ≤ x ≤ m and θ0(x) = θ0, the time-evolution equation of |Φε,η〉
becomes

e−iεΦ
(ε,η)
x,L = cos(θ0/2)αηΦ

(ε,η)
x+1,L − sin(θ0/2)βηΦ

(ε,η)
x−1,L, (C.1)

ηe−iεΦ
(ε,η)
x,R = sin(θ0/2)αηΦ

(ε,η)
x+1,R + cos(θ0/2)βηΦ

(ε,η)
x−1,R, (C.2)

where αη and βη are

αη = cos(θ0/2)− η sin(θ0/2), βη = sin(θ0/2) + η cos(θ0/2). (C.3)

Considering edge states localized near the right boundary, we assume

Φ(ε,η)
x,s = N1(−1)

ε
π
xe−γ(m−x), (C.4)

where N1 is the normalization constant. While Φ
(0,η)
x,s have the same sign in any position,

the sign of Φ
(π,η)
x,s is opposite to that of Φ

(π,η)
x±1,s. Substituting Eq. (C.4) into Eqs. (C.1)

and (C.2), we obtain

1 = cos(θ0/2)αηe
γ − sin(θ0/2)βηe

−γ, (C.5)



η = sin(θ0/2)αηe
γ + cos(θ0/2)βηe

−γ, (C.6)

for both ε = 0 and ε = π. Since Eqs. (C.5) and (C.6) are quadratic equations of eγ,

we obtain two solutions of eγ from each equation. We employ one solution which is

obtained from both Eqs. (C.5) and (C.6). Then, eγ becomes

eγ = βη/αη. (C.7)

From Eqs. (C.3) and (C.7), η must be + for the solution of the localized state (γ > 0).

In the outer region, where x ≥ m + 1 and θ0(x) = −θ0, we obtain the same solution in

the same way, while Eq. (C.4) is changed to Φ
(ε,η)
x,s = N1(−1)

ε
π
xe−γ[x−(m+1)]. In the case

|Φε,η〉 is localized near the left boundary, η must be −, while the localization length γ−1

is the same. The boundary condition of |Φε,+〉 is

e−iεΦ
(ε,+)
m,L = α−[cos(θ0/2)Φ

(ε,+)
m+1,L − sin(θ0/2)e−γ(−1)

ε
πΦ

(ε,+)
m,L ], (C.8)

e−iεΦ
(ε,+)
m,R = β+[sin(θ0/2)Φ

(ε,+)
m+1,R + cos(θ0/2)e−γ(−1)

ε
πΦ

(ε,+)
m,R ], (C.9)

near the right boundary. Assuming

Φ(ε,+)
m,s = (−1)

ε
πΦ

(ε,+)
m+1,s, (C.10)

eqs. (C.8) and (C.9) are satisfied. For edge states with η = − and localized near the

left boundary, the boundary condition is the same with Eq. (C.10), changing m, m+ 1,

and + into −m, −m− 1, and −, respectively.

Appendix D. Edge states in the two-step quantum walk

In Appendix D, we derive Eqs. (30)-(38). The edge states have amplitudes only in even

sites or odd sites, since wave funtions at even (odd) sites always shift to even (odd) sites

after one time step, in the two-step quantum walk described by U2. Although we derive

edge states at even sites, edge states in odd sites are obtained in the same way. In the

inner region where −m ≤ x ≤ m and θi(x) = θi (i = 1, 2), Eq. (9) can be wriiten as

e−iεΦ
(ε,η)
x,L =

cos(θ1/2) cos(θ2)α1,ηΦ
(ε,η)
x+2,L − cos(θ1/2) sin(θ2)β1,ηΦ

(ε,η)
x,L

− sin(θ1/2) sin(θ2)α1,ηΦ
(ε,η)
x,L − sin(θ1/2) cos(θ2)β1,ηΦ

(ε,η)
x−2,L

(D.1)

ηe−iεΦ
(ε,η)
x,R =

sin(θ1/2) cos(θ2)α1,ηΦ
(ε,η)
x+2,R − sin(θ1/2) sin(θ2)β1,ηΦ

(ε,η)
x,R

+ cos(θ1/2) sin(θ2)α1,ηΦ
(ε,η)
x,R + cos(θ1/2) cos(θ2)β1,ηΦ

(ε,η)
x−2,R

(D.2)

where αi,η and βi,η are defined as

αi,η = cos(θi/2)− η sin(θi/2), βi,η = sin(θi/2) + η cos(θi/2). (D.3)

Considering the edge states localized near the left boundary, we assume

Φ(ε,η)
x,s = N2(−1)

εx
2π e−γε(x+m), (D.4)

where N2 is the normalization constant. Substituting Eq. (D.4) into Eqs. (D.1) and

(D.2), we obtain

1 =
cos(θ1/2)[cos(θ2)α1,ηe

−2γε − (−1)
ε
π sin(θ2)β1,η]

− sin(θ1/2)[(−1)
ε
π sin(θ2)α1,η + cos(θ2)β1,ηe

2γε ]
(D.5)



η =
sin(θ1/2)[cos(θ2)α1,ηe

−2γε − (−1)
ε
π sin(θ2)β1,η]

+ cos(θ1/2)[(−1)
ε
π sin(θ2)α1,η + cos(θ2)β1,ηe

2γε ]
(D.6)

Solving Eqs. (D.5) and (D.6) for e2γε , we obtain four solutions. Among them, we choose

one which satisfies both Eqs. (D.5) and (D.6). Then, γ0 and γπ are

e2γ0 = (α1,η/β1,η)(α2,η/β2,η), e
2γπ = (α1,η/β1,η)(β2,η/α2,η), (D.7)

respectively. In the outer region where x ≤ −m− 1 and θi(x) = −θi, γ0 and γπ become

the same with Eq. (D.7), while Eq. (D.4) is changed to Φ
(ε,η)
x,s = N2(−1)

εx
2π e−γε(−m−2−x).

As mentioned in the main text, we focus only on parameter regions A and B in Fig. 7,

for simplicity. From Eqs. (D.3) and (D.7), it is known that chirality must be minus for

ε = 0, as γ0 > 0. For ε = π, γπ > 0 is satisfied when η = +, in the parameter region A

where 0 < θ2 < π/2 and −θ2 < θ1 < θ2. In the parameter region B where 0 < θ1 < π/2

and −θ1 < θ2 < θ1, η = − for γπ to be positive. Edge states localized near the right

boundary have the opposite chirality, while γ0 and γπ have the same values with Eq.

D.7). Near the left boundary, Φ
(ε,η)
−m,s satisfies

− sin(θ1/2) cos(θ2)ηα1,ηΦ
(ε,η)
−m−2,s =

[1 + η(−1)
ε
π sin(θ2)]Φ

(ε,η)
−m,s

− cos(θ1/2) cos(θ2)α1,ηΦ
(ε,η)
−m+2,s

(D.8)

Substituting Eqs. (D.4) and (D.7) into Eq. (D.8), the boundary condition of Φ
(0,−)
x,s is

cos(θ2)Φ
(0,−)
−m−2,s = [1− sin(θ2)]Φ

(0,−)
−m,s, (D.9)

in both parameter regions. For |Φπ,η〉, taking it into account the dependence of η and

γπ on parameter regions, boundary conditions become

cos(θ2)Φ
(π,+)
−m−2,s = [1− sin(θ2)]Φ

(π,+)
−m,s (D.10)

in the parameter region A, and

[1− sin(θ2)]Φ
(π,−)
−m−2,s = cos(θ2)Φ

(π,−)
−m,s (D.11)

in the parameter region B, from Eqs. (D.4), (D.7), and (D.8). The boundary conditions

near the right boundary are obtained in the same way.

Appendix E. Derivation of Eq. (41)

In order to derive Eq. (41), we define two time evolution operators with chiral symmetry

ΓUΓ−1 = U−1, U = U ′ and U = U ′′. In the symmtery time frame [50], they are defined

as

U ′ = UbUa, U
′′ = UaUb, (E.1)

where Ua and Ub satisfy

ΓUaΓ
−1 = U−1b . (E.2)



Note that, in the main text, Ua, Ub, and U ′ correspond to U2a, U2b, and U2, respectively.

The edge states in the system described by U ′ are distinguished by the quasienergy

ε = 0, π

U ′ |Φ′ε,η〉 = e−iε |Φ′ε,η〉 , (E.3)

and chirality η = ±,

Γ |Φ′ε,η〉 = η |Φ′ε,η〉 . (E.4)

Acting Ua from left on both sides of Eq. (E.3) and taking Eq. (E.1) into account, we

obtain

U ′′Ua |Φ′ε,η〉 = e−iεUa |Φ′ε,η〉 . (E.5)

From Eq. (E.5), it is seen that edge states with quasienergy ε in the system described

by U ′′, |Φ′′ε,η̃〉, are obtained from |Φ′ε,η〉,

|Φ′′ε,η̃〉 = Ua |Φ′ε,η〉 , (E.6)

ignoring a global phase. Chirality of |Φ′′ε,η̃〉 , η̃, is determined by ε and chirality of |Φ′ε,η〉,
η. Acting the chiral symmetry operator Γ from left on both sides of Eq. (E.6), Γ |Φ′′ε,η̃〉
becomes

Γ |Φ′′ε,η̃〉 = U−1b η |Φ′ε,η〉 , (E.7)

since Eqs. (E.2) and (E.4) hold. Using Eqs. (E.1) and (E.3), the right hand side of Eq.

(E.7) can be written as

U−1b η |Φ′ε,η〉 = U−1b ηeiεUbUa |Φ′ε,η〉 . (E.8)

From Eqs. (E.6), (E.7), and (E.8), |Φ′′ε,η̃〉 satisfies

Γ |Φ′′ε,η̃〉 = η̃ |Φ′′ε,η̃〉 , η̃ = ηeiε, (E.9)

which means that Eq. (41) is satisfied, where |Φ′ε,η〉 and |Φ′′ε,η̃〉 = Ua |Φ′ε,η〉 correspond

to |Φε,η〉 and |Φ̃ε,η〉, respectively, in the main text. Therefore, chirality of |Φ′′0,η̃〉 is the

same as that of |Φ′0,η〉, η. On the other hand, |Φ′′π,η̃〉 has chirality opposite to that of

|Φ′π,η〉, −η.
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