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Abstract 22 

Both natural and anthropogenic disturbances have significant impacts on populations in 23 

terrestrial and marine habitats. Despite evidence that population recovery after large-scale 24 

disturbances in terrestrial habitats varies substantially among species depending on 25 

species traits and types of disturbance, little is known about interspecific differences in 26 

population recovery in marine habitats. In this study, we evaluated the course and status 27 

of recovery of the vertical distribution of nine intertidal sessile species over 6 years 28 

following the 2011 Great East Japan Earthquake. First, we characterized temporal 29 

changes in the vertical position of zonation as the spatial distribution, and total coverage 30 

as the local population size after the 2011 earthquake. Then, we evaluated the differences 31 

in successional status that explain interspecific differences in zonation recovery speed. 32 

Finally, we revealed that temporal changes in the vertical position and abundance after 33 

the earthquake differed according to species. The interspecific differences in the speed of 34 

recovery of zonation after 2014 were correlated with successional status, with later 35 

successional species having a delayed recovery rate. These results indicated that intertidal 36 

sessile assemblages continued to change 6 years after the large earthquake, suggesting 37 

that evaluations of the impacts of disturbances on assemblages and the course of 38 

community recovery require long periods of time. 39 

 40 
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1. Introduction 44 

Both natural and anthropogenic disturbances have significant impacts on populations of 45 

various organisms in terrestrial and marine habitats (Nyström, Folke, & Moberg, 2000; 46 

Sousa, 1984; Vörösmarty & Sahagian, 2000; White, 1985). Population recovery after a 47 

disturbance, which can be defined as the recovery of the abundance and distribution of a 48 

population to its natural state prior to the disturbance (Lotze, Coll, Magera, Ward-Paige, 49 

& Airoldi, 2011), varies substantially among species depending on species traits such as 50 

successional status in terrestrial habitats (Lavorel, McIntyre, Landsberg, & Forbes, 1997; 51 

Walker & del Moral, 2009) and the type of disturbance (e.g., Duarte, Conley, Carstensen, 52 

& Sánchez-Camacho, 2009; Kaiser et al., 2006; Worm et al. 2006). Although the type of 53 

disturbance and the species present are clearly distinct between terrestrial and marine 54 

habitats, successional status (i.e., niche position along a successional gradient) are 55 

common traits (Walker & del Moral, 2003). Therefore, successional status probably 56 

explains interspecific differences in population recovery in marine habitat. 57 

The Great East Japan Earthquake with Mw 9.0 struck off the Pacific coast of the 58 

Tohoku region of Japan in 2011. The mega-earthquake caused a large tsunami with a 59 

maximum runup height of 40 meters and subsidence of several tens of centimeters 60 

throughout the entire Tohoku region (Lay & Kanamori, 2011; Mori, Takahashi, & 2011 61 

Tohoku Earthquake Tsunami Joint Survey Group, 2012; Mori, Takahashi, Yasuda, & 62 

Yanagisawa, 2011; Tajima, Mori, & Kennett, 2013). Previous studies have suggested that 63 

earthquakes have considerable regional-scale impacts on populations of various marine 64 

benthos (Jaramillo et al., 2012; , Noda, Iwasaki, & Fukaya, 2016a,b; Seike, Shirai, & 65 

Kogure, 2013). This is because the tsunami and land level change caused by earthquakes 66 

can transport sessile organisms to unsuitable habitats (Castilla, 1988; Castilla, Manríquez, 67 
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& Camaño, 2010; Lomovasky, Firstater, Salazar, Mendo, & Iribarne, 2011; Noda et al., 68 

2016a,b), affecting the survival and distribution of benthic species. 69 

 In rocky intertidal habitats, there is a notable vertical environmental gradient due 70 

to the effects of tides and waves (Connell, 1972; Raffaelli & Hawkins, 1996). In the upper 71 

intertidal zone, the immersion period is shorter than that in the lower intertidal zone, and 72 

physical conditions, such as temperatures and desiccation levels, are harsher (Helmuth & 73 

Hofmann, 2001; Menge & Branch, 2001). The magnitude of larval and propagule fluxes 74 

for sessile species is relatively low because these individuals are transported passively by 75 

waves (Bownes & McQuaid, 2006; Bownes & McQuaid 2009; Munroe & Noda, 2009; 76 

Raimondi, 1988). In comparison, in the lower intertidal zone, more species interactions 77 

occur, and predation pressure (e.g., Menge, 1978a,b; Paine, 1971) and species 78 

competition for space (e.g., Chapman, 1990; Connell, 1961a,b; Lubchenco, 1980) 79 

increase. Consequently, sessile species, such as barnacles, mussels, and macroalgae, are 80 

distributed within a vertical range of tens of centimeters; this is known as zonation and it 81 

is a common pattern worldwide (e.g., Dayton, 1971; Lewis, 1964; Menge, 1976; 82 

Stephenson & Stephenson, 1972). 83 

 The zonation of sessile species (i.e., their vertical position and abundance) along 84 

the Pacific coast of Tohoku region was altered by the Great East Japan Earthquake in 85 

2011. This change in zonation was assumed to be the result of subsidence because the 86 

negative impacts of the tsunami on the abundance of sessile species was negligible 87 

(Iwasaki, Fukaya, & Noda, 2016; Iwasaki & Noda, 2018; Noda et al., 2016 a,b; see 88 

Supplemental Materials for details). Subsequently, zonation should be affected by the 89 

recruitment and mortality of sessile organisms. While previous studies have demonstrated 90 

that the dynamics of rocky intertidal zonation after the earthquake varied substantially 91 
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among species, the causes of these interspecific differences have not been examined 92 

(Noda et al. 2016a,b). Therefore, we hypothesized that interspecific differences in the 93 

speed of recovery of zonation can be explained by differences in the successional status 94 

of each species. Because early successional species exhibit greater recruitment of larvae 95 

or propagules and faster population growth after recruitment than late successional 96 

species (Farrell 1991), their zonation is likely to recover more quickly after an earthquake 97 

compared with later successional species. 98 

 In this paper, we report the course and status of recovery of the vertical 99 

distribution of nine rocky intertidal sessile species at 23 sites, located 150–160 km 100 

northwest of the epicenter of the 2011 Great East Japan Earthquake, over 6 years. First, 101 

we characterize temporal changes in the vertical position of zonation as the spatial 102 

distribution and total coverage as the local population size after the earthquake in 2011. 103 

Then, we evaluate the differences in successional status, a factor that could potentially 104 

explain interspecific differences in zonation recovery speed. 105 

 106 

2. Materials and Methods 107 

2.1 Study area 108 

The study area was located along 30 km of coastline on the Sanriku Coast of Japan (Fig. 109 

1). The study shores were 150–160 km north-northwest of the epicenter (38°06′12.0′′N 110 

and 142°51′36.0′′E) of the Great East Japan Earthquake, which caused large tsunami 111 

waves (run-up height, several to 30 m) and subsidence of 50–60 cm throughout the area 112 

(Lay & Kanamori, 2011; Noda et al., 2016a; Tajima et al., 2013). Low tide occurs during 113 

the day from April to September and at night from October to March. Dominant sessile 114 

species were the bivalves Crassostrea gigas and Septifer virgatus, the barnacles 115 
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Chthamalus challengeri and Semibalanus cariosus, and the perennial algae Gloiopeltis 116 

furcata, Analipus japonicus, and Hildenbrandia rubra. Detailed information about biota 117 

is provided in Okuda, Noda, Yamamoto, Ito, and Nakaoka (2004), Nakaoka, Ito, 118 

Yamamoto, Okuda, and Noda (2006), and Fukaya, Okuda, Nakaoka, Hori, and Noda 119 

(2010). 120 

 121 

2.2 Census design 122 

A hierarchical sampling design (Noda 2004) was applied for a census of five shores 123 

separated by 2.6–7.9 km (Fig. 1). In July 2003, four or five sites within each shore were 124 

chosen and two permanent rectangular plots were established within each site: control 125 

plots and succession plots. Control plots were un-manipulated, and succession plots were 126 

cleared of all organisms on the rock surfaces in July 2003 by burning with gas torches 127 

and scratching with wire brushes. Each control and succession plot was 50 cm wide by 128 

100 cm high, and the mean tidal level corresponded to the vertical midpoint. 129 

 Each control plot was extended 100 cm above in July 2011 (Fig. 2) because the 130 

study area experienced subsidence due to the Great East Japan earthquake; vertical 131 

subsidence was 50 cm at four shores (Myojin, Oura, Aragami, and Katagishi) and 60 cm 132 

at Akahama (Noda et al. 2016a). Consequently, the vertical observation range for each 133 

control plot was 200 cm after the earthquake. Here, it is noted that although uplift can 134 

occur after subsidence, the effect of the uplift that occurred after the subsidence in the 135 

study area was negligible due to the small range, which was about 2cm over the 6 years 136 

following the earthquake (The Coordinating Committee for Earthquake Prediction, Japan, 137 

2017). 138 

 Each control plot was divided vertically into subsections every 10 cm from the 139 
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upper edge; a plot had 10 and 20 subsections before and after the earthquake, respectively. 140 

In each subsection, 20 grid points were placed on the rock surface at 5-cm intervals in 141 

both the vertical and horizontal directions in each control plot. To estimate coverage as 142 

abundance, each sessile organism occupying a grid point was identified and recorded, and 143 

the total number of grid points for each sessile organism in each subsection was 144 

determined in each census. This census was carried out in July from 2004 to 2017 at low 145 

tide. 146 

 Each succession plot was divided vertically into subsections at 10-cm intervals; 147 

a plot had 10 subsections. In each subsection, the occurrence (i.e., presence or absence) 148 

of sessile organisms was recorded. This census was carried out each July from 2004 to 149 

2010 at low tide. 150 

 151 

 152 

2.3 Data analysis 153 

To characterize the temporal changes in the vertical position of zonation as well as total 154 

coverage, the data from the entirety of the control plots (50 cm width × 200 cm height; 155 

Fig. 2 “raw zonation”) was used for two reasons. First, most of the vertical range of 156 

zonation of the focal species should be covered by the spatial scale of observation to 157 

reliably estimate its recovery rate. Second, sufficient numbers (~10) of species are 158 

required to perform statistical tests. The specific methods for characterizing temporal 159 

changes in vertical position and total coverage are described below in the section 160 

Quantifying zonation. To estimate the rate of population recovery after the earthquake, 161 

the zonation before the earthquake was defined as the zonation of the control plots in July 162 

2011, which was shifted 50–60 cm upward (Fig. 2, “zonation of orange line”). Next, the 163 
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zonation after 2012 was compared with the zonation before the earthquake within the 164 

same tidal range; the data from the upper 50 cm before the earthquake and from the lower 165 

50 cm after 2012 were not used for analysis (Fig. 2, “pink area”). The specific methods 166 

for the estimation are described below in the section Recovery of zonation after the 167 

earthquake. To estimate the species’ successional status, the data from the succession 168 

plots were used. The specific methods for estimation are described below in the section 169 

Successional status. 170 

 171 

Species selection 172 

We selected only common native species for analysis; invasive species (e.g., Balanus 173 

grandula) found in the study area were excluded. Additionally, species with a temporal 174 

mean value of coverage both before and after the earthquake lower than 0.5% were 175 

excluded. For species with low coverage, the vertical distribution and coverage can 176 

include large observation error, making it difficult to accurately estimate their zonation 177 

and/or coverage. Finally, species whose zonation changed between the tine of the 178 

earthquake (i.e., March 11, 2011) and July 2011 were excluded. To evaluate this, the 179 

mean zonation from 2003 to 2010 was compared with the zonation after the earthquake 180 

(the zonation in July 2011 was shifted 50 cm upward) by using the Kolmogorov–Smirnov 181 

test.  182 

Based on the above criteria, nine sessile species were included in subsequent 183 

statistical analyses: four sessile animals (Chthamalus challengeri, Hydroides ezoensis, 184 

Crassostrea gigas, and Septifer virgatus) and five algae (Condrus yendoi, Gloiopeltis 185 

furcate, Hildenbrandia rubra, Analipus japonicus, and Corallinales spp.). 186 

 187 
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Quantifying zonation 188 

Using the data accumulated from all control plots, the vertical distribution of each species 189 

was obtained in each year as the mean coverage at the elevation of each of the subsection 190 

relative to the mean tidal level. As a measure of the vertical position of zonation (i.e., the 191 

spatial distribution of a species), the height corresponding to quartiles of the cumulative 192 

frequency distribution (i.e., 25th, 50th, and 75th percentiles) along the tidal height was 193 

calculated for each species in each year. In addition, as a measure of total coverage of the 194 

local population, the sum of the mean coverage of each species was calculated in each 195 

year for control plots. 196 

 197 

Recovery of zonation after the earthquake 198 

The recovery rate of zonation t years after the earthquake was calculated as the similarity 199 

between the zonation before the earthquake and in each year after the earthquake (i.e., 200 

from 2012 to 2017) using Bray–Curtis index as follows: 201 

𝛿𝛿𝑖𝑖,𝑡𝑡 = 1 −
∑ �𝑁𝑁𝑖𝑖,ℎ

(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)−𝑁𝑁𝑖𝑖,ℎ,𝑡𝑡�ℎ

�∑ 𝑁𝑁𝑖𝑖,ℎ
(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

ℎ +∑ 𝑁𝑁𝑖𝑖,ℎ,𝑡𝑡ℎ �
. 202 

Here, 𝑁𝑁𝑖𝑖,ℎ
(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) is the coverage before the earthquake in species i at subsection h (i.e., 203 

the zonation in July 2011 being shifted 50 cm upward) and 𝑁𝑁𝑖𝑖,ℎ,𝑡𝑡 is the coverage t years 204 

after the earthquake in species i at subsection h. Bray–Curtis dissimilarity ranges from 0 205 

to 1, and 𝛿𝛿𝑖𝑖,𝑡𝑡 values near 1 indicate that zonation is highly similar before and after the 206 

earthquake. 207 

 208 

Successional status 209 

As mentioned earlier, successional status is a species trait that may explain interspecific 210 
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differences in recovery rates. Successional status was estimated using Usher’s succession 211 

index for species i, 𝑀𝑀𝑖𝑖, as follows (Usher 1970): 212 

𝑀𝑀𝑖𝑖 = ∑ 𝑦𝑦𝑖𝑖𝑡𝑡 𝑓𝑓𝑖𝑖,𝑡𝑡
𝐹𝐹𝑖𝑖,𝑡𝑡

. 213 

Here, 𝑦𝑦𝑖𝑖 is the years elapsed when 2004 is set to 1, 𝑓𝑓𝑖𝑖,𝑡𝑡 is the occurrence frequency of 214 

species i in the year t (i.e., from 2004) in the succession plot, and 𝐹𝐹𝑖𝑖,𝑡𝑡 is the sum of 215 

occurrence frequencies of species i from 2004 to 2010. 𝑀𝑀𝑖𝑖 is larger if species i occurs in 216 

late successional stages.  217 

  218 

Statistical analyses 219 

The correlation between the recovery rates after the earthquake and successional status 220 

(i.e., Usher’s succession index) was evaluated by Spearman’s rank correlation coefficient. 221 

These statistical analyses were implemented in R 3.5.0 (R Development Core Team, 222 

2018). 223 

 224 

 225 

3. Results 226 

3.1 Changes in zonation after the earthquake 227 

Although all species exhibited upward shifts in their vertical positions of zonation after 228 

the earthquake, temporal patterns differed according to species (Figs. 3–4). In C. 229 

challengeri, C. gigas, G. furcate, and A. japonicus, the recovery of the vertical position 230 

was nearly complete within a few years after the earthquake. In others (i.e., H. ezoensis, 231 

S. virgatus, C. yendoi, H. rubra, and Corallinales spp.), the upward shifts were more 232 

gradual. The vertical positions of S. virgatus and C. yendoi varied among years.  233 

 Although the total coverage of most species increased immediately after the 234 
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earthquake, subsequent changes differed among species (Fig. 5). In C. challengeri, C. 235 

gigas, G. furcate, A. japonicus, and Corallinales spp., the total coverage increased in 2012 236 

and fluctuated after 2013. In H. ezoensis, the total coverage increased. In H. rubra and S. 237 

virgatus, the total coverage decreased until 2015 and increased gradually thereafter. 238 

 239 

3.2 Recovery of zonation after the earthquake 240 

Temporal changes in recovery rates differed among species (Fig. 6). In C. challengeri 241 

and H. ezoensis, recovery rates increased by 2013 and then gradually decreased. In 242 

contrast, in C. gigas, S. virgatus, C. yendoi, G. furcate, and Corallinales spp., recovery 243 

rates decreased immediately after the earthquake and then increased slightly. In H. rubra 244 

and A. japonicus, recovery rates showed relatively little change during the study period. 245 

 246 

3.3 Relationship between recovery rate and successional status 247 

The correlations between the recovery rate and Usher’s succession index were always 248 

negative (Fig. 7). The correlation tended to be stronger after 2014, but statistical 249 

significance was only obtained in 2016. 250 

 251 

 252 

4. Discussion  253 

Although the vertical position of zonation shifted upward after the earthquake in all 254 

species (Figs. 3–4), temporal changes in coverage differed among species (Fig. 5). 255 

Coverage increments accompanying the expansion of the vertical range of zonation, 256 

which were detected for C. challengeri, H. ezoensis, C. gigas, G. frucata, A. japonicus, 257 

and Corallinales spp., suggested that the increase in coverage by recruitment and 258 
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subsequent growth at the upper part of the zone was greater than the decline of coverage 259 

caused by death at the lower part of the zone. In contrast, the coverage decline 260 

accompanied by an upward shift of zonation, as detected for H. rubra, S. virgatus, and C. 261 

yendoi, suggests that the increment of coverage caused by recruitment and subsequent 262 

growth at the upper area was smaller than the decline of coverage caused by death at the 263 

lower area. 264 

 The negative correlation between the recovery rate and Usher’s succession index 265 

tended to be stronger after 2014 (Fig. 7). While the recovery rates of early successional 266 

species did not change over time, those of intermediate and late species decreased, 267 

resulting in a negative correlation. Thus, the obtained results supported our prediction 268 

(i.e., pattern) that recovery rates of zonation are likely to be faster for early successional 269 

species than for late successional species. However, the impacts of the disturbance on 270 

intermediate and late successional species had a time lag, and the mechanism underlying 271 

the negative correlation may be complex.  272 

 The recovery rates of intermediate and late successional species were lower than 273 

those of early successional species, even in 2017 (Fig. 7). It is possible that intermediate 274 

and late successional species needed more time for population recovery after such a “giant” 275 

disturbance. The species with low recovery rates even in 2017, C. gigas, and S. virgatus 276 

(Fig. 7), act as facilitators for small sessile animals and mobile invertebrates by reducing 277 

abiotic stresses such as desiccation and biotic stresses such as predation (Witman 1985). 278 

Therefore, the low recovery rates of these species may be related to the community 279 

structure in intertidal assemblages. 280 

 Our results showed that temporal changes in coverage after subsidence were 281 

distinct among nine sessile species (Fig. 5). These findings are not consistent with 282 
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previous studies of similar taxonomic assemblages showing that the temporal change in 283 

coverage after uplift did not differ among species; most species experienced immediate 284 

mass mortality and subsequent declines in coverage after the Chilean earthquake in 1985 285 

(Castilla, 1988; Durán & Castilla, 1989). This indicates that the temporal change in the 286 

coverage of sessile species after an earthquake with subsidence is more complex and 287 

variable than that with uplift. It might be caused by the more complex population 288 

processes after subsidence than uplift. Shifts in sessile organisms beyond the lower limits 289 

of zonation can cause transient increases in body growth by increasing the immersion 290 

period (Raffaelli & Hawkins, 1996) and can often cause a gradual rise in mortality by 291 

increasing the intensity of competition and consumption (Connell, 1972; Paine, 1974; 292 

Underwood & Denley, 1984). Shifts beyond the upper limits of zonation can cause an 293 

immediate increase in mortality by physical stress, including thermal stress and 294 

desiccation (Helmuth, Mieszkowska, Moore, & Hawkins, 2006; Underwood & Denley, 295 

1984). Furthermore, this difference in complexity in the temporal change of coverage 296 

after the earthquake between cases of subsidence and uplift suggests that the same kind 297 

of disturbance (i.e., an earthquake) can be followed by a highly different recovery process 298 

depending on the conditions (i.e., direction of land level change). 299 

Our results show that zonation of the sessile community had not recovered to the 300 

pre-earthquake state 6 years after the earthquake; in most species, vertical distribution, 301 

total coverage, and vertical position of zonation continued to fluctuate and their recovery 302 

rates remained low (Figs. 3–6). By comparing the temporal change in zonation between 303 

after subsidence following this earthquake and after uplift following the Chilean 304 

earthquake in 1985, the time to recovery of zonation of the sessile community after the 305 

land deformation and the difference depending on the direction of land deformation can 306 
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be predicted as follows. First, the recovery of zonation of the sessile community will 307 

require more than a few years either after subsidence or uplift. This is because the 308 

zonation of the sessile community did not recover to the pre-earthquake state 6 years after 309 

subsidence and 3 years after uplift, respectively. These findings suggest that the sessile 310 

community periodically experiences drastic changes in zonation and the recovery phase 311 

for several years in plate boundary areas where large earthquakes (>Mw 8.0) occur 312 

cyclically at intervals of decades or centuries (Ammon, Lay, & Simpson, 2010; Lay & 313 

Kanamori, 2011). Second, communities dominated by mussels will need more time to 314 

recover after subsidence (Rilov & Schiel, 2006) than after uplift. Mussels are apparently 315 

more vulnerable to increases in predation pressure caused by subsidence than to increases 316 

in physical stress caused by uplift. For example, S. virgatus decreased drastically by 317 

subsidence after this earthquake and did not recover in the 6 years following the 318 

earthquake (Fig 4). The mussel Perumytilus purpuratus did not decrease by uplift after 319 

the Chilean earthquake (Castilla, 1988, Durán & Castilla, 1989) but decreased drastically 320 

by an increase in the predator Concholepas concholepas caused by the exclusion of the 321 

top predator, humans (Durán & Castilla, 1989). These findings emphasize the importance 322 

of collecting information about the recovery process following an earthquake by long-323 

term observation to reveal how the sessile community is determined and maintained at a 324 

large temporal scale. 325 

 326 

Conclusion 327 

We characterized the course and status of recovery of the vertical distribution of nine 328 

intertidal sessile species within 6 years after a mega-earthquake, the 2011 Great East 329 

Japan Earthquake. Temporal changes in vertical position and total coverage after the 330 
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earthquake differed according to species. Interspecific differences in the speed of 331 

recovery of zonation were correlated with successional status, with delayed recovery in 332 

later successional species. Based on our results, we obtained two major conclusions. First, 333 

successional status is likely to be an inherent species trait that is independent of habitat 334 

and can explain interspecific differences in population recovery. Second, intertidal sessile 335 

assemblages continued to change 6 years after the earthquake, suggesting the need for 336 

long-term monitoring to evaluate the impacts and the course of community recovery. 337 

 338 
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Figure legends 585 

Fig. 1 Study site location. Five shores were chosen for the census of intertidal 586 

organisms on the Sanriku coast along the Pacific coast of Japan. Cross mark represents 587 

the epicenter of the Great East Japan Earthquake  588 

Fig. 2 Conceptual diagram of the vertical range between census and analytic region 589 

Fig. 3 Course and status of the recovery of the vertical distribution of rocky intertidal 590 

sessile organisms within 6 years after the mega-earthquake along the coast at locations 591 

150–160 km north-northwest of the epicenter of the 2011 Great East Japan Earthquake  592 
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Fig. 4 Annual changes in the 25%, median, and 75% values in the cumulative frequency 593 

distribution of coverage in the vertical direction after the 2011 Great East Japan 594 

Earthquake  595 

Fig. 5 Annual change in the total coverage of each species after the 2011 Great East 596 

Japan Earthquake  597 

Fig. 6 Recovery rate for each species after the 2011 Great East Japan Earthquake  598 

Fig. 7 Relationship between the recovery rate and Usher’s succession index  599 
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