

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.1 (Jan-2020)

E-mail: mhammad@hu.edu.jo, aotoom@hu.edu.jo, mhammad@uob.edu.bh, nadera@inf.u-szeged.hu, rawan_abuseini@itc.hu.edu.jo

 http://journals.uob.edu.bh

Multiview Visualization of Software Testing Results

Maen Hammad

1
, Ahmed Fawzi Otoom

1
, Mustafa Hammad

2
,

Nadera Al-Jawabreh
3
 and Rawan Abu Seini

1

1 Department of Software Engineering, The Hashemite University, Zarqa, Jordan

2Department of Computer Science, University of Bahrain, Sakhir, Bahrain
3 Department of Software Engineering, University of Szeged, Hungary

Received 25 May 2019, Revised 18 Nov. 2019, Accepted 30 Dec. 2019, Published 01 Jan. 2020

Abstract: Software visualization can play a vital role in reducing testing efforts. It can be utilized to help testers in understanding the

testing status of the code. This paper proposes a visualization technique to model the results of test cases that applied on object

oriented code elements. The proposed visualization help testers to understand and to keep track on test cases and their tested code

elements. Five views are proposed to cover different code levels; method, class, package, UML and system. A tool has been

developed to automatically manage the software testing process and to generate the data model for the proposed visualizations. The

evaluation results showed that the proposed views are useful and helpful in understanding the testing results.

Keywords: Software testing, software visualization, program comprehension.

1. INTRODUCTION

The Software development life cycle (SDLC) guides
the project and provides a reliable path for building a
successful project that meets customer needs. An
important stage in any SDLC is testing which is important
for reducing costs associated with defects and for building
a quality product. Testing is essential to verify that the
software meets its requirements with no hidden bugs.
Software testing is done by large number of test cases.
Almost each method in the project needs to be tested by
one or more test case. A set of test cases are generated to
cover all combination of requirements and ensuring the
code statements are executed correctly. As a result, test
cases and their results become difficult to comprehend [1].
Testers consume time and effort to determine the resulting
status for all test cases. For example, they need to know
the number of failed/passed test cases for each method
and to identify the names of classes/packages that have at
least one failed method. Moreover, it is not easy for them
to keep track on classes and methods that are not tested so
far.

Many research approached utilized visualization to
model testing information. For example, Cornelissen et al.
[2] visualized testing information based on UML
sequence diagram. Another example is the work done by
Jones et al. [3]. They visualized tested code statements.
But, there is a need to visualize test cases with their object
oriented code elements. Visualizing testing results

combined with tested code elements help testers to
quickly understand testing results and locate code
components that passed and failed testing. Visualizing the
results of test cases as well as the tested code elements
supports testers in understanding testing results.

In this paper, we extend and revise our work in [4].
We propose a visualization technique to model test cases
and their tested code elements. The proposed
visualizations provide useful information about test cases,
their results and their locations. Different views are
presented to provide information about classes and
packages that have been tested. Testers can easily identify
the testing status of classes and packages. The proposed
views also help testers to determine tested and untested
code elements. Five views are proposed. The first view
visualizes the tested methods and the number of test cases
for each method. The result of each testing case is also
shown. The second view is on the class level. It visualizes
the testing information for all methods in specific class.
Package view is the third proposed view. It shows all test
cases that cover the all package’s classes with their
methods. Another view is proposed to provide a summary
about testing results in UML compatible way. This view
visualizes testing results in the UML class diagram of the
class. The fifth view is the system view. It visualizes the
information of test cases for all packages and classes.

An automated process, supported by a tool, is also
proposed to generate the data model for the proposed

http://dx.doi.org/10.12785/ijcds/090105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/388625035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

52 Maen Hammad, et. al.: Multiview Visualization of Software Testing Results

http://journals.uob.edu.bh

visualizations. The proposed process can be realized as a
testing integrated environment to automatically extract
object oriented components, generate test cases, applying
testing and visualizing testing results. We utilized the
JUnit tool to run the generated testing cases.

The main research contributions of this paper are:

1. A useful and easy to comprehend visualizations.

The goal is to help in understanding and keeping

track the results of test cases and their locations in

code.

2. A semi-automated and lightweight approach to

generate the data model for the proposed

visualizations.

3. A tool that realizes the proposed approach to

generate the data model by extracting methods,

apply testing and connecting them with their test

cases.

This paper is organized as follows. Section 2
summarized the main related work in the area. The
proposed visualizations are presented in Section 3.
Section 4 presents the automated process for the proposed
technique followed by a detailed example in Section 5.
The developed supported tool is presented in Section 6.
The evaluation is presented in Section 7. Section 8
concludes our findings and summarizes our future work.

2. RELATED WORK

Muto et al. [5] suggested an approach to visualize the
quality of the software. The proposed approach focuses on
visualizing the compatibility between source-code’s
implementations and software’s specifications with
respect to normal testing, which means unit testing, and
static checking. Furthermore, a visualization framework
has been proposed in [6]. In this framework, the goal was
to help software developers and testers in determining the
test-suite’s location, its relationship with the produced
source-code, and software artifacts identification that
covered by test cases. In a recent work, Urata and
Katayama [7] proposed a method to generate testing
diagrams. These diagrams are set to visualize all test cases
that test the software projects. The proposed method is
implemented by combining test case descriptions with
UML diagrams.

There are many tools for visualizing software testing
data. For example, TeCReV [8] is a graph-based tool that
visualizes information related to software test coverage
and test redundancies. This tool can be used in many
software validation processes, such as fault localization
and expanding tests coverage. Moreover, TestQ [9] and
ӼSuds [10] tools are also focused on fault localization
purpose. Tamisier et al. [11] proposed a tool to visualize
test results and uncovered code segments information.
Another tool is presented in [12], which is named
ChronoTwigger. This tool generates 2D and 3D

visualizations based on the Beyer’s algorithm converge.
ChronoTwigger targets to visualize co-evolution of
software and test files to better understand the relationship
between the software development and testing processes.

Dershem et al. [13] proposed a java based tool to
visualize class’s components with their relationships. The
goal was to simplify the comprehension of the object-
oriented models. Moreover, Kang and Bieman [14] used a
similar idea and introduced a visualization approach that
focuses on visualizing classes and their relationships. The
proposed approach can be used to visualize individual
class or clustered classes with more attention to classes
that are continuously changed. Other examples of similar
works can be found in [15][16][17] [18][19].

Jones et al. [3] presented a visualization technique,
which is implemented by Spectrum-based color and
statement coverage criteria. The target source code is
colored based on the test cases execution results. The
proposed technique maps the program's statements with
passed and failed test cases using colors. A similar
method has been proposed by Renieris and Reiss [20]
where the authors suggested a program spectrum-based
method for fault localization. In order to consider the
execution of the program in a similar runtime context,
they match a failing test case with the most similar
passing test case.

In other works, visualization techniques are used to
visualize the software faults. For example, D'Ambros et
al. [21] proposed an approach to visualize the software
bugs history with two views; the system radiography and
bug watch. The first view is set to identify the most
affected areas in the system, while the second one focuses
on visualizing the different status of a specific bug.
Oliveira Neto et al. [22] showed that the visualization of
diversity information helps in the maintenance and
optimization activities.

3. THE PROPOSED VISUALIZATIONS

The proposed visualizations aim to model the results
and locations of test cases in classes, methods and
packages. Software testers should be able to quickly
comprehend the results of their testing, locations of
pass/fail test cases, and untested methods.

There are five different views for the proposed
visualizations. These views are:

1. Method view. This view visualizes the testing
information for a single method. The following
information is displayed in this view; method’s name,
names and number of test cases, and the result of
each test case.

2. Class view. This view visualizes classes in addition to
the Method view visualizations.

3. Package view. This view visualizes packages in
addition to the Class view visualizations.

 Int. J. Com. Dig. Sys. 9, No.1, 51-59 (Jan-2020) 53

http://journals.uob.edu.bh

4. UML view: this view visualizes testing results by
using the UML class diagram of the code.

5. System view: this view provides high level summary
about the testing results of all packages in software
projects.

Figure 1. Five test cases for method area in Rectangle class

To clarify the idea, consider the implementation of the
area() method in Fig. 1. This method calculates the area
of a rectangle. Five test cases are designed to test the
area() method. These test cases are the five methods;
test1Area(), test2Area(), test3Area(), test4Area() and
test5Area(). After running the five testing methods, three
of them will pass and the other two will fail. Testing
results are reported as in textual format and separated
from the area() method. In this paper, the proposed
visualizations model the number of applied test cases for
each method, their results and the tested code element.

A. Method View

The level of this view is single methods. Testers may
need to visualize information about a single method that
they are working on. A single column with number of
rectangles is displayed that corresponds to a single
method. The method’s name is displayed in the first
rectangle at the bottom of the column. The remaining

rectangles model the number of test cases. So, the number
of rectangles above the method name corresponds to the
number of test cases for that method. The name of each
test case is also shown in each rectangle. This is necessary
to help developers in quick locating the failed test cases.

Fig. 2 shows the proposed method view visualization
for the area() method shown in Fig. 1. The method is
tested by five test cases. These test cases are the five
methods; test1Area(), test2Area(), test3Area(),
test4Area(), and test5Area(). Rectangles with red colors
indicate failed test cases where passed ones are filled with
green color.

test5Area

test4Area

test3Area

test2Area

test1Area

 Method area

Figure 2: Method view visualization of test cases shown in Fig.1

B. Class View

This view shows all test cases for all the class
methods. Testers can view the testing status of all
methods on the class level. The Class view includes all the
visualized information of the Method view but on class
level.

Fig. 3 shows an example for a class named C that has
four methods named; M1(), M2(), M3() and M4().
Method M1() is tested by three methods (i.e. test cases).
The results of two test cases TC1() and TC2() were
passed and it was failed for the third test case TC3().
Method M2() is tested by three test cases with passed
result; TC2(), TC3() and TC5(). Test cases TC1() and
TC4() failed for method M2(). Method M3() is also
tested by the two passed test cases; TC1() and TC2() in
addition to the two failed test cases TC3() and TC4().
Finally Method M4() has no test cases. This means it is
not been tested. The color of each rectangle reflects the
testing result for each test case. Method M4() has no
rectangles above it to indicate zero test cases. All the
methods of class C are shown above the class name in
separate columns.

 TC5

 TC4 TC4

TC3 TC3 TC3

TC2 TC2 TC2

TC1 TC1 TC1

 Method M1 Method M2 Method M3 Method M4

Class C

Figure 3. An example of the Class view visualization

 Package Example;

class Rectangle
 …..
public int area(int l, int w) { return l*w; }

}
 public void test1Area() {
 Rectangle test = new Rectangle();
 int area = test.area(12, 12);
 int actual = area; assertEquals (144,actual);
 }
 public void test2Area() {
 Rectangle test = new Rectangle();
 int area = test.area(0, 12);
 int actual = area; assertEquals(0,actual);
}
 public void test3Area() {
 Rectangle test = new Rectangle();
 int area = test.area(- 1, 12);
 int actual = area; assertEquals(12,actual);
 }
 public void test4Area() {
 Rectangle test = new Rectangle();
 int area = test.area(10, 12);
 int actual = area; assertEquals(120,actual);
 }
 public void test5Area() {
 Rectangle test = new Rectangle();
 int area = test.area(10, 10);
 int actual = area; assertEquals(20,actual);
}

54 Maen Hammad, et. al.: Multiview Visualization of Software Testing Results

http://journals.uob.edu.bh

Figure 4. An example of the package view visualization

C. Package View

The testing information is visualized on the package
level. All the classes of the package are viewed. This view
includes both Method and Class views.

Fig. 4 shows an example for the proposed package
view visualization. The figure shows the testing
information for a package named P. This package has
three classes C1, C2, and C3. As shown in the figure, the
name of the package is displayed at the first rectangle at
the bottom. The classes of the package are displayed in
the next above level of rectangles. Next, the methods of
each class are displayed. All the three classes are
visualized with all their methods and test cases. Methods
C1.M4() and C3.M2() have no colored rectangles to
indicate that they have not been tested by any test case.

D. UML View

The UML view visualizes testing results by using the
UML class diagram of the code. The name of the method
under testing is colored based on testing results. Method
names that are colored by red have not passed all test
cases. Green color represents methods that are
successfully tested by all test cases. Methods that have not
been tested are colored by black.

For example, Fig. 5 shows a UML class diagram for a
class named Rectangle with three methods. The red color
for method area means it failed in testing. Green color for
method circumference indicates that this method passed
all its test cases. Black color represents incomplete or
untested methods.

Figure 5. The UML view for class Rectangle

The class name is also colored based on the testing
results of its methods. In case all the methods of a class
are successfully tested, the class name is colored by green.
Otherwise, the red color is used to indicate that at least

one of the class's methods did not pass any test case.
Black color means that not all methods have been tested.

Another example, consider the three classes;
Calculation, Calculation1 and Calculation3. The
Calculation class has the method findMax that returns the
maximum number in an array. The second class
Calculation1 has one method called squareNumber. The
Calculation3 class has two methods; cube and
reverseWord. Suppose that methods findMax and cube
passed all test cases generated for them. Also, suppose
that the squareNumber method has failed in at least one
test case from all the test cases designed for it. Method
reverseWord has not been tested yet or its testing is not
completed yet. The UML view visualization for the above
classes is shown in Fig. 6.

Names of methods that passed all testing results are
colored in green (findMax and cube). On the other hand,
the names of methods that failed in at least one test case
are colored with red (squareNumber). Black color refers
to untested methods. The color of the class name is
colored with green in case all its methods passed all test
cases. In this case, Calculations is shown in green. The
black color of Calculations3 means that not all its methods
have been tested.

Figure 6. UML view example for three classes

The UML view has the advantage of showing the
testing results in a format that is familiar to developers.
Developers are very familiar with UML class diagrams.
They can directly locate tested and not tested methods in
one picture. Moreover, they can identify classes that have
methods with no successful testing results the names of
these methods.

E. System View

System view visualization provides as summary about
the testing results for all the packages of the project.
Packages are visualized as UML package diagrams. Sub-
packages are also modeled. The name of the package is
colored based on the testing results of all methods in the
classes of that package. Red color means incomplete or
fail test cases in some methods in the package. If all
methods in the package have been successfully tested, the
package name is colored with green.

As an example, Fig. 7 visualizes the testing results for
the three packages; Loans, Accounts and Operations.
Loans is a sub-package for Accounts. Both their names
are colored with red to indicate incomplete or fail testing

 Int. J. Com. Dig. Sys. 9, No.1, 51-59 (Jan-2020) 55

http://journals.uob.edu.bh

for at least one of their methods. On the other hand, the
red color of the Operation name indicates all its methods
have been tested successfully.

Figure 7. An Example for the system view visualization

4. THE AUTOMATED PROCESS

The proposed visualizations need to be automatically
modeled and generated to be utilized and applied by
testers. So, we propose a lightweight technique to
generate the proposed visualizations for the source code
under testing. The proposed automated process can be
summarized in the following steps:

1. The source code under testing is analyzed to

extract methods and their locations

2. The testing process is applied on the extracted

methods

3. The testing results are linked to the methods

4. The data model is generated based on the

previous three steps

5. The visualizations for the proposed five views

are generated based on the data model

Fig. 8 shows the detailed block diagram for the
proposed process and its main components. These
components are detailed in the subsections below.

A. The Input

The automated process begins by analyzing the Java
source code under testing. The code can be single class,
package of classes or a complete project with many
packages. The amount and level of input code is
determined by testers. Classes with no methods and
abstract methods are filtered out.

Figure 8. Block diagram for the proposed automated process

B. Methods Extractions

The code is parsed to extract all methods for testing
purposes. To do this, we transform the source code into
the XML representation srcML. In srcML [23], each code
element is tagged with its syntactic information. srcML
can be generated automatically from source code by using
the srcML tool from (http://www.srcml.org/). Since
srcML is XML format, a set of XPath queries are applied
on it to extract all methods for all classes or selected
number of classes. This technique has the advantage of
parsing and extracting large number of methods with all
its related information that may be useful for testing. For
each method, the following data are extracted:

 The package and class names.

 Types for its formal parameters.

 Type of its return value.

 Method names that it calls.

 The following information are also extracted

from the source code:

o Packages hierarchy

o Full path for each class (packages/class)
This information is stored in a database for possible

future use by testers. A set of predefined queries was
designed to ease the process of data querying by testers.
For example, they can query about the number of
methods, classes and packages. They also can query about
code specific code elements as the number of conditional
statements in specific method.

C. Generating Test Cases

Testers have the option to select specific classes and
methods from the generated database in the previous step.
A list is shown to them that have the names of classes and
methods. For each selected method, preliminary test cases
are generated using JUnit. The resulted templates of test
cases are shown to developers so they can manually
update or/and add more test cases. The traceability links
between test cases and methods are preserved. Each
method is connected to its test cases. Test cases can also
be generated by using the unit test generator tool for java
Randoop (https://randoop.github.io/randoop). The
generated test cases are also shown to developers for
manual checking and updating.

D. Running Test Cases

By using the generated test cases, each method is
tested and the testing result is recorded as pass or fail.
JUnit (https://junit.org/) is used to run the testing suites on
methods under considerations. The obtained result of the
testing process is the names of passed and failed test cases
for each method. The database of the extracted methods is
updated to save the testing results for each method. The
database has now important information about the number
of test cases for each method, their names and their results
as passed or failed. This information is necessary for
generating the data model for the views.

Code

Methods

Extraction
Methods

Test Cases
Generator

Test Cases Views

Modeling

Apply Testing

Data Model

 Models

http://www.srcml.org/
https://randoop.github.io/randoop

56 Maen Hammad, et. al.: Multiview Visualization of Software Testing Results

http://journals.uob.edu.bh

E. Views Modeling

This component is responsible for generating the data
model for the proposed five views. This data model is
used to visualize the proposed views. The testing results
from running test cases and the database generated from
the method extraction step are used to generate the data
model. The generated data model is saved in well
organized database. So, it can easily accessed by any
specialized visualization tool to generate the views. The
data model has the following main information:

 The dimensions and filling information for

rectangles.

 The locations and the order of the rectangles needed

to represent methods, classes, packages and test

cases.

 The names and colors for packages, classes and

methods that are used to model the UML view.

5. DETAILED EXAMPLE

 A detailed example is discussed in this section to
clarify the proposed visualizations. The visualized
example is a Java package named Shapes that has the
classes: Circle and Rectangle.

The Circle class has four methods to be tested;
setRadius, getRadius, getDiameter, and getArea. Method
getDiameter has been written incorrectly for the testing
purposes. The Rectangle class is the second class in the
Shapes package. It has class seven methods that need to
be tested. These methods are; getH, getW, getArea, setH,
setW and toString.

For testing purposes, two test classes are generated.
One test class for Circle named CircleTest and another
one named RectangleTest for the Rectangle class. The
CircleTest class has five methods that represent five test
cases for the Circle class. Method Circle.getDiameter is
tested by two methods; testGetDiameter1 and
testGetDiameter2.

All methods of Rectangle are tested by the methods of
RectangleTest except method Rectangle.toString. This
method has no test cases. Method Rectangle.getArea is
tested by the two test cases; testGetArea1 and
testGetArea2. Table 1 lists all methods in both classes

with their generated test cases and the result of running
these test cases.

The next step is to run the test cases to get their results
as pass or fail. JUnit was used to run apply the test cases.
The execution results of tests are shown in Table 1. All
methods passed test cases except the getDiameter method.
The second test case, testGetDiameter2, caused the testing
of getDiameter to fail. The package view for the two
classes in the package Shapes is shown in Fig. 9. The
view includes both; the method and the class views.

TABLE I. METHODS OF CLASSES CIRCLE AND RECTANGLE WITH

THEIR TEST CASES.

Method Test Case Result

Circle.setRadius CircleTest.testSetRadius Passed

Circle.getRadius CircleTest.testGetRadius Passed

Circle.getArea CircleTest.testGetArea Passed

Circle.getDiameter CircleTest.testGetDiameter1 Passed

CircleTest.testGetDiameter2 Failed

Rectangle. GetH RectangleTest.testGetH Passed

Rectangle. GetW RectangleTest.testGetW Passed

Rectangle. GetArea1 RectangleTest.testGetArea1 Passed

RectangleTest.testGetArea2 Passed

Rectangle. SetH RectangleTest.testSetH Passed

Rectangle. SetW RectangleTest.testSetW Passed

Rectangle.toString - -

 The UML views of the two classes are shown in Fig.
10. The name of Rectangle is shown in black color to
indicate incomplete testing for the class. Method
Rectangle.toString was not tested. The other class Circle
in red to indicate failing testing results in at least one
method in the class. Method Circle.getDiameter failed in
one test case and hence it is colored in red. The system
view of the two classes is shown in Fig. 11. The name of
the package Shape is shown in red color to indicate a
failing test case in at least one of its classes.

Figure 9. Package view visualization for the package Shapes

 testGetDiameter2 testGetArea2

testSetRadius testGetRadius testGetDiameter1 testGetArea testGetH testGetW testGetArea1 testSetH testSetW

Method

setRadius

Method

getRadius

Method

getDiameter

Method

getArea

 Method

getH

 Method

getW

 Method

getArea

 Method

setH

Method

setW

Method

toString

Class Circle

Class Rectangle

Package Shapes

 Int. J. Com. Dig. Sys. 9, No.1, 51-59 (Jan-2020) 57

http://journals.uob.edu.bh

Figure 10. UML views for classes Circle and Rectangle.

Figure 11. The system view for package Shapes

6. TOOL SUPPORT

A tool has been developed to implement the proposed

process in Section 4. The tool mainly performs the

following tasks:

 Extracting methods and their related information

from the source code as discussed in Section 4.2.

 Providing statistical information about analyzed

code as of number of classes and methods.

 Generating template testing methods.

 Preserving the traceability links between test cases

and methods.

 Keeping track on the testing results.

 Generating the data model of the proposed

visualizations.

The input of the tool is a java package or project. The

output is the data model for five views. The generated
data model is well formatted and organized to make it
easy to be read and then rendered by any visualization
tool. At this point, the tool generates the data model and
does not render the views.

7. EVALUATION

We conducted an experiment to test some hypotheses
about the proposed visualizations. In the experiment, we
asked programmers to evaluate the usefulness and the
effectives of the proposed views in terms of understanding
testing results. The hypotheses that were investigated are:

Hypothesis 1: Programmers identify failed/passed
testing methods more quickly using the views than not
using the views. If the time needed to identify failed

methods using the view is less that the time without the
views, then the hypothesis is confirmed.

Hypothesis 2: Programmers identify classes/packages
of failed/passed testing methods more quickly using the
proposed views than not using them. If the time needed to
identify locations using the proposed views is less that the
time without the views, then the hypothesis is confirmed.

Hypothesis 3: Programmers identify names and
locations of not tested methods more quickly using the
views than not using the proposed views. If the time
needed to identify names and locations using the proposed
views is less that the time without the views, then the
hypothesis is confirmed. The experiment was conducted
in the following steps:

1. Three java packages were selected from a Java

project. The total number of classes in these

packages is 5 with 25 methods.

2. 60 test cases were generated for 20 methods. We

intentionally designed some test cases to fail for

evaluation purposes.

3. The developed tool was used to generate the data

model.

4. The proposed views were drawn using a drawing

tool based on the generated data model.

5. Four programmers, who are familiar with Java and

testing, were selected. They were also divided into

two groups, two per group.

6. Group 1 was given the code and the testing results

in textual format.

7. Group 2 was given the code and the testing results

in graphical format as method, class, package and

system views.

8. A set of identical questions were asked to each

programmer in both groups and the response time

is recorded.

9. For each group, the average response time for the

hypothesis related questions was calculated.

Each programmer was asked to answer eight questions

that are related to understanding the testing status and
results. These questions are:

1. What are the names of all methods that passed all

their test cases?

2. What are the names of all methods that failed in at

least one test case?

3. What are the names of all methods that were not

tested?

4. What are the names of all classes that have at least

one failed method?

5. What are the names of all packages that have at least

one failed method?

6. What are the names of all classes that have at least

one method with no testing?

58 Maen Hammad, et. al.: Multiview Visualization of Software Testing Results

http://journals.uob.edu.bh

7. What are the names of all packages that have at least

one untested method?

8. What are the names of all packages that completely

passed testing?

Table 2 shows the distribution of the eight questions

on the hypotheses. Fig. 12 shows the average time in
minutes it took the two programmers in each group to
answer the questions of each hypothesis. Based on the
average time comparison, the three hypotheses were
confirmed. The group who has the views answered the
questions more quickly than the other group who has only
the textual results.

Using the views has reduced the average time for the
first two questions related to the fist hypothesis (H1) to
one minute. It was two minutes for the other group. For
questions four, five and eight (H2), the average time was
one and half minutes. Without using the views, it was four
minutes.

Answering questions three, six and seven that are
related to third hypothesis (H3) took much more time with
textual results only. The average time was six minutes.
This is because there are no direct answers for these
questions. Developers have to browse the code and test
cases to identify and locate methods that have no testing
results. With the views, the average time was only two
minutes.

TABLE II. DISTRIBUTION OF QUESTION ON HYPOTHESES

Hyp. Questions

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

H1 X X

H2 X X X

H3 X X X

Figure 12. Average time in minutes for each group. Darker
column for the group with textual data.

8. CONCLUSIONS AND FUTURE WORK

A visualization approach has been proposed to support
the comprehension of testing results. Test cases are shown

together with the tested methods. The proposed
visualizations help testers to identify untested methods
and their locations in source code. The number of test
cases and their testing results are also visualized. Different
views are visualized to help in exploring the distribution
of test cases over the different levels on the program. The
evaluation of the views showed they reduce the
comprehension time of understanding the testing results
of the code. Our future work aims to include more code
elements that are useful for testers as the number of
branches and loops.

REFERENCES

[1] Kamimura, M., Murphy, G. C., "Towards generating human-

oriented summaries of unit test cases", Proc. of the IEEE 21st
International Conference on Program Comprehension (ICPC’13),

2013, pp. 215-218.

[2] Cornelissen, B., van Deursen, A., Moonen, L., and Zaidman, A.,
"Visualizing test-suites to aid in software understanding", Proc. of

the 11th European Conference on Software Maintenance and

Reengineering, 2007.
[3] Jones, A., Harrold, M. J., Stasko, J., “Visualization of test

information to assist fault localization”, Proc. of the 24th

International Conference on Software Engineering (ICSE’02),
2002, pp. 467-477.

[4] AF Otoom, M. Hammad, N Al-Jawabreh, RA Seini, "Visualizing

Testing Results for Software Projects", in Proc. of the 17th
International Arab Conference on Information Technology

(ACIT'16), Morocco, 2016.

[5] Muto, Y., Okano, K., Kusumoto, S., "A Visualization Technique
for the Passage Rates of Unit Testing and Static Checking with

Caller-Callee Relationships ", Proc. of the 2011 9th IEEE
International Symposium on Parallel and Distributed Processing

with Applications, 2011, pp. 336-341.

[6] Van Rompaey, B., Demeyer , S., "Exploring the composition of
unit test suites ", Proc. of the 23rd IEEE/ACM International

Conference on Automated Software Engineering (ASE’08), 2008,

pp. 11-20.
[7] Urata, S., Katayama, T., "Proposal of Testing Diagrams for

Visualizing Test Cases", Proc. of the IEEE 6th International

Conference on Software Testing, Verification and Validation
(ICST), 2013, pp. 483-484.

[8] Koochakzadeh, N., Garousi, V., "Tecrevis: a tool for test coverage

and test redundancy visualization", In Testing–Practice and
Research Techniques, Springer Berlin Heidelberg, 2010, pp. 129-

136.

[9] Breugelmans, M., Van Rompaey, B., "TestQ: Exploring structural
and maintenance characteristics of unit test suites", Proc. of the

1st International Workshop on Advanced Software Development

Tools and Techniques, 2008.
[10] Agrawal, H., Alberi, J. L., Horgan, J. R., Li, J. J., London, S.,

Wong, W. E., Ghosh, S., and Wilde, N., "Mining system tests to

aid software maintenance", Computer, vol. 31, no. 7, 1998, pp.
64–73.

[11] Tamisier, T., Karski, P., Feltz, F., "Visualization of Unit and

Selective Regression Software Tests", Cooperative Design,
Visualization, and Engineering, Springer Berlin Heidelberg, 2013,

pp. 227-230.

[12] Ens, B., Rea, D., Shpaner, R., Hemmati, H., Young, J. E., Irani, P.,
"ChronoTwigger: A Visual Analytics Tool for Understanding

Source and Test Co-evolution", Proc. of the Second IEEE

Working Conference on Software Visualization (VISSOFT), 2014,
pp. 117-126.

[13] Dershem, H. L., Vanderhyde, J., "Java class visualization for

teaching object-oriented concepts", ACM SIGCSE Bulletin, Vol.

30, No.. 1, 1998, pp. 53-57.

 Int. J. Com. Dig. Sys. 9, No.1, 51-59 (Jan-2020) 59

http://journals.uob.edu.bh

[14] Kang, B. K., Bieman, J. M., "Using Design Cohesion to Visualize,
Quantify, and Restructure Software", SEKE, 1996, pp. 222-229,

[15] Kleyn, M. F. and Gingrich, P. C., “Graphtrace–understanding

object oriented systems using concurrently animated views",
ACM Sigplan, vol. 23, no. 11, pp. 191-205, 1988.

[16] Knight, C., Munro, M., "Virtual but visible software", Proc. of the

IEEE International Conference on Information Visualization,
2000, pp. 198-205.

[17] Pinzger, M., Gall, H., Fischer, M., Lanza, M., "Visualizing

multiple evolution metrics", Proc. of the 2005 ACM symposium
on Software visualization, 2005, pp. 67-75.

[18] Mustafa Hammad and Adnan Rawashdeh, “A framework to

measure and visualize class coupling”, International Journal of
Software Engineering and Its Applications, Vol. 8, No. 4, 2014,

pp. 137-146.

[19] Maen Hammad and Fatima Abu-Zaitoun, “Visualizing the

Evolution of Subsystems”, International Review on Computers

and Software, Vol.10, No.8, 2015, pp. 875-882.

[20] Renieres, M., Reiss, S. P., “Fault localization with nearest
neighbor queries”. Proc. of 18th IEEE International Conference on

Automated Software Engineering, pp. 30-39, 2003.

[21] D'Ambros, M., Lanza, M., and Pinzger, M. “ “A Bug's Life"
Visualizing a Bug Database”. Proc. of 4th IEEE International

Workshop on Visualizing Software for Understanding and

Analysis, VISSOFT 2007, pp. 113-120, 2007.
[22] Francisco Gomes De Oliveira Neto, Robert Feldt, Robert Feldt,

Linda Erlenhov,José Benardi de Souza Nunes, José Benardi de

Souza Nunes, “Visualizing Test Diversity to Support Test
Optimisation”, Proc. of the 25th Asia-Pacific Software

Engineering Conference (APSEC’18), 2018.

[23] Collard, M. L. , Kagdi H. H., Maletic, J. I., “An XML-based
lightweight C++ fact extractor,” Proc. of 11th IEEE International

Workshop on Program Comprehension (IWPC'03), pp. 134-143,

2003.

 Maen Hammad is an Associate
Professor in the Software Engineering

Department at The Hashemite University,
Jordan. He completed his Ph.D. in

Computer Science at Kent State

University, USA in 2010. He received his
Master in computer science from Al-

Yarmouk University- Jordan and his B.S.

in Computer Science from The Hashemite
University-Jordan. His research interest is

Software Engineering with focus on Software Evolution and

Maintenance, Program Comprehension and Mining Software
Repositories.

 Ahmed F. Otoom is currently working as an
Associate professor in the Software

Engineering department at The Hashemite

University, Jordan. He has a PhD degree in
Computer Science from the University of

Technology, Sydney (UTS), Australia, 2010.

He received his BS in Computer Science from
Jordan University of Science and Technology,

Jordan, and an MS in Software Engineering

from the University Western Sydney,
Australia, in 2002 and 2003, respectively. His

main research interests include Pattern Recognition Techniques and its

applications in the areas of Software Engineering and Image Analysis.

 Mustafa Hammad is an Associate

Professor in the Department of Computer

Science at the University of Bahrain and
Mutah University. He received his Ph.D. in

Computer Science from New Mexico State

University, USA in 2010. He received his
Masters degree in Computer Science from

Al-Balqa Applied University, Jordan in 2005

and his B.Sc. in Computer Science from The
Hashemite University, Jordan in 2002. His

research interests include machine learning,

software engineering with focus on software analysis and evolution.

 Nadera Aljawabrah is a PhD student in

the Software Engineering Department at

Szeged University, Hungary. Her doctoral

research investigates the visualization of

software testing. She holds a master’s
degree in Software engineering from the

Hashemite University, Jordan. She authored

the article “Understanding Test-to-Code
Traceability Links: The Need for a Better

Visualizing Model”, co-authored the article

“Visualizing Testing Results for Software
Projects”, and co-authored the article “Towards a comprehensive survey

of the requirements elicitation process improvements”.

 Rawan Abuseini received her B.Sc.

degree in Computer Information Systems

and the MSc degree in Software
engineering from the Hashemite

University, Zarqa, Jordan, in 2009 and

2015, respectively. In 2011, she joined the
Quality Assurance department in Aspire

Services in Amman - Jordan as a QA

Analyst. In 2016 she held a lecturing
position in Computer Science department,

Princess Nora University in Riyadh Saudi
Arabia. Her current research interests are

in software quality and software testing.

