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Journal Name

A Quantum Chemical Model for a Series of Self-Assembled
Nanocage: The Origin of Stability Behind the Coordination-Driven
Formation of Transition Metal Complexes up to [M12L24]24+

Yuichiro Yoshida,a Satoru Iuchi,b and Hirofumi Sato∗a,c,d

Herein, we present a systematic computational model to study electronic states and free energies of
self-assembled multi-metal complex series. By combining the previously developed model Hamiltonian
approach for transition-metal complexes and the generalized Born model, thermodynamics, optimized
geometries, electronic states of [Pd12L24]24+ nanocage, and [PdnLm]2n+ complex series are revealed.
The effective model Hamiltonian is a theoretical method to obtain d-electron wavefunction and
potential energy including interaction energy between transition-metal and ligands. In the present
improvement, the electronic state on each transition-metal center is focused as a building unit and
solved under the whole electronic field of the assembling system. We realize a reliable and systematic
treatment of multi-transition-metal complexes having different sizes and charges. Consequently, our
model could reproduce binding energies of [PdnLm]2n+ complex series quantitatively as compared
to the density functional theory (DFT). Regarding free energy, we revealed that the assembling
solute becomes unstable due to the electrostatic interaction, and effects of the solvent and counter
anions mainly compensated it. Optimized geometries were also analysed. The local square-planar
coordination structures around the palladium centres were characterized in the complex series. The
relationships between entire symmetrical geometries and the local coordination structures are also
discussed. Finally, electronic structures of the [Pd12L24]24+ nanocage were well characterized as a
single-determinant, where only dx2−y2 is unoccupied due to the ligand-field effect. We also found
that the solvent polarized the electronic states of the Pd ions, whereas the counter anion suppressed
the polarization. The present method realizes size-independently reliable and rapid computations,
and therefore, can be expected to further application studies on self-assembly dynamics.

1 Introduction
Coordination-driven self-assembly creates discrete and highly-
charged nanostructures in different sizes in solution.1–11 Fujita et
al. reported self-assembled nanocage [Pd12L24]24+ and analogues
of different sizes composed of similar building blocks, namely pal-
ladium(II) and ligand (L).1–5 How can we understand the mech-
anism to determine the size of the charged complexes? The key
to metal-complex formation is directional coordination bonds,
which are derived from multiple configurations of d-electrons.
The molecular mechanical (MM) force field is widely used for
the computation of large molecules12–14, but it cannot be used.
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Semi-empirical quantum mechanical (QM) approaches, such as
density functional tight-binding model (DFTB3), have been ap-
plied to transition metals in the past several years,15,16 but here,
we are taking a different approach: An effective model Hamil-
tonian, which is a semi-empirical QM method, having wavefunc-
tions in a d-orbital space.17,18 An explicit treatment of the wave-
function for d-electron is essential to understand the directional
coordination bond19. The similar model Hamiltonian is applied
to several transition-metal complex systems and works very well:
the potential energies of d–d states of nickel(II) in aqueous so-
lution,17 those of iron(II)-bipyridine complex,18,20 and ligand-
exchange reaction at a palladium(II) capsule complex.21 There
are two suitable features in the model Hamiltonian. First, the
Hamiltonian has some interaction terms between the transition
metal centre and ligand environment, which have clear physical
meanings. This clarifies how the complex is stable. Second, we
treat a multi-metal complex as an assembly of building blocks
centred on each transition metal. Therefore, electronic states on
each transition metal centre can be focused and solved under the
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whole assembling system. The increase of the computational cost
should be directly proportional to the number of metals, and the
reliability is independent of the complex size.

Solvation affects the assembly of charged-complex series.
When some complexes assemble, electrostatic interactions be-
tween the charges of the same sign make the system unstable. On
the contrary, the more charged the complex becomes, the larger
is the solute-solvent interaction. The two contributions cancelling
out each other is necessary to be treated in a balanced way.22 In
this study, solvation free energy is evaluated using the general-
ized Born (GB) model.23–26 The GB is an efficient and reliable
solvation model and has been commonly used for solvation of
biomolecules.27,28 Another advantage of the GB is its tractable
analytical gradients that are used to obtain stable structures of
charged species in solution. Molecular dynamics (MD) simula-
tion and enhanced sampling techniques have been applied to self-
assembly in the last four years,29–32 but performing uniform sam-
pling across various sizes and drastically-changing charges is still
challenging. Regarding the three-dimensional reference interac-
tion site model (3D-RISM), Fujita et al. carefully applied some
correction methods33–35 to an amphiphilic self-assembling sys-
tem.36 It is, however, still unclear whether the approximations in
3D-RISM are suitable for the charged assembling series; further-
more, realizing geometry optimization is challenging.

The stability of the complexes should be discussed based on
free energy, not potential energy. Analytical gradients are neces-
sary to perform free energy analysis through geometry optimiza-
tion and vibrational analysis. Both the model Hamiltonian and GB
methods have analytical gradients, and therefore, free energy can
be obtained in a stable structure in solution. The entropy terms
make an important contribution to self-assembly.32,37 Overesti-
mation of the vibrational entropy is known as a serious problem
owing to the low-lying vibrational frequencies in the harmonic
approximation.38,39 The potential energy surface of a metal com-
plex is relatively flat, and therefore, we carefully compared the
free energies by suppressing the overestimation.

To summarize, the present strategy offers size-independent ac-
curacy, rapid computation and a clear view of the electronic struc-
ture, thanks to the model Hamiltonian: The electronic structure
of the palladium ions under the surrounding environment is well
characterised through the valence wavefunction. Besides, it is
straightforward to be combined with MD simulation, enabling us
to compute a solution system with further sophistication.

In this study, the [Pd12L24]24+ nanocage discovered by Fujita et
al.1–5 and its partial series [PdnLm]2n+ are investigated. As men-
tioned above, to discuss the thermodynamic stability of charged
metal-complexes of different sizes, it is necessary (1) to treat the
d-electrons in a QM manner, (2) to estimate the solvation effect
for the charged series, and (3) to realize free energy evaluation
in a systematic manner. In this study, we propose a systematic
computation that considers all the aforementioned points, for the
first time. First, we describe the model Hamiltonian that effi-
ciently treats the electronic states of the transition metals and
the gradients. Second, the GB model and its parametrization are
described. In the result section, first, we show the reliability of
our QM model as compared to that of the single-point density

functional theory (DFT) calculations. Then, free energy evalu-
ation and geometry optimization results are discussed. Finally,
we analyse the electronic states of transition metals in the giant
[Pd12L24]24+ complex.

2 Computational Methods
In this section, we present a summary of the computational meth-
ods used by our model. First, the effective model Hamiltonian de-
veloped previously17,18 and the present extension are described.
Second, we briefly describe the GB method and the Hawkins’ pair-
wise approximation23–25 to obtain reasonable effective Born radii
of palladium(II) complexes.

2.1 Model Hamiltonian

In the model Hamiltonian approach, the n-th d–d state energy En

at given nuclear coordinates RRR for a palladium(II) centre in a com-
plex is obtained by diagonalizing the model effective Hamiltonian
matrix HHHeff as

HHHeff(RRR)CCC
(n)(RRR) = En(RRR)CCC(n)(RRR) (1)

where the basis functions of HHHeff are 45 Slater determinants origi-
nating from 4d8 electronic configurations {Φ}. The wavefunction
of the n-th electronic state Ψn is written as a linear combination
of these Slater determinants as

|Ψn(rrr;RRR)〉=
45

∑
I=1

C(n)
I (RRR) |ΦI(rrr;RRR)〉 (2)

where rrr are the metal electronic coordinates. Each Slater determi-
nant |Φ(rrr;RRR)〉 is simply composed of Pd2+ 4d atomic Slater-type
orbitals ϕ with spin functions, where the exponent ζ4d is a pa-
rameter to be determined. In actual calculations, all the orbitals
ϕ are expanded into six Gaussian 3d functions using the reported
coefficients and exponents.40

The model Hamiltonian matrix HHHeff is composed of four terms
as

HHHeff = HHHPd2+
+HHHES +HHHEX +HHHCT (3)

The first term describes the electron repulsion in an isolated Pd2+

ion. The last three terms describe the metal-ligand electrostatic
(ES), exchange (EX), and charge-transfer (CT) interactions. By
simply modelling these terms, electronic energies of the transition
metal ion under the surrounding environment can be evaluated
in a computationally cheap manner via the diagonalization of the
model Hamiltonian. By applying this Hamiltonian to each transi-
tion metal centre in a complex, the energies and electronic states
on each centre can be obtained. The explicit forms of the model
Hamiltonian matrix are described as follows.

Isolated Pd2+ term: This term is modelled by the Slater inte-
grals F2 and F4. The values reported in Ref. 19 are used in this
study.

Electrostatic term: We extend the electrostatic interaction ma-
trix elements for the multi-metal complex systems. The ES matrix
element between the K- and L-th Slater determinants for the M-th
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metal ion is expressed as

H(M),ES
KL =

Natoms

∑
i(6=M)

(
4d

∑
k,l

γ
KL
kl

〈
ϕ
(M)
k

∣∣∣∣ −Qi

|rrrM−RRRi|

∣∣∣∣ϕ(M)
l

〉
+

QiZM

|RRRM−RRRi|
δKL

)
(4)

where γ and Qi are the vector coupling coefficient and the point
charge on the i-th atom, respectively. The ZM is the nuclear charge
of the M-th Pd2+ ion, which is 10.0e in the present model. In the
aforementioned formula, the change of the electronic states on
the M-th metal ion is from all other atoms in the system includ-
ing the other metal ions M′(6= M). Note that a similar strategy
was presented to study ligand-exchange reaction on a local site of
a multi-metal complex,21; however, the electrostatic field effect
from M′s was omitted.

Exchange term: The exchange interaction matrix elements for
the M-th metal ion are modelled as a product of the overlap inte-
grals:

H(M),EX
KL =

LMO

∑
m̃

Cm̃
EX

NB sites

∑
i

4d

∑
k,l

γ
KL
kl

〈
ϕ
(M)
k |m̃i

〉〈
m̃i

∣∣∣ϕ(M)
l

〉
(5)

where Cm̃
EX are adjustable parameters for the localized molecular

orbitals (LMOs), m̃ = σ ,π. The LMOs are modelled by atomic 2p
orbitals defined in the local frame x̃ỹz̃ of binding sites on each lig-
and. In the present model, the binding sites are nitrogen atoms
(NB), and 2px̃ and 2pz̃ are used to represent σ and π, respec-
tively; x̃ is parallel to the bisectional line of two NB–CA bonds,
and z̃ is normal to the CA–NB–CA plane as shown in Figure 1.
The exponent of Slater type atomic orbital for nitrogen, ζ2p, is
an adjustable parameter, and the orbital was expanded into six
Gaussian 2p functions41 in evaluating the overlap integrals.

Charge transfer term: The charge transfer interaction matrix
elements for the M-th metal ion are introduced by considering
charge-transferred configurations from the ligand to the metal 4d
and 5s orbitals as

H(M),CT
KL =

NB sites

∑
i

Cm̃
CT

CTconfig

∑
S

4d

∑
k,l
(γS)

KS
ik

〈
m̃i

∣∣∣ϕ(M)
k

〉
(γS)

KS
li

〈
ϕ
(M)
l | m̃i

〉

+
NB sites

∑
i

E0
CT

[
{1− exp(−kCT

(
|RRRM−RRRi|−R0

CT

)
)}2−1

]
δKL

(6)

with the vector coupling coefficient:

(γS)
KS
ik =

〈
m̃im̃iΦK

∣∣∣â†
iα âkα + â†

iβ âkβ

∣∣∣Φ̃S

〉
(7)

where Φ̃S are the CT configurations from a ligand occupied or-
bital to a metal unoccupied 4d orbital and thus originated from
(m̃i)

1(ϕ4d)
9. The operators â† and â are creation-annihilation op-

erators. In the present modelling, only the σ type orbital was
considered for m̃ to reduce the number of parameters for simplic-
ity as the overlap integrals containing σ are expected to be larger
than those containing π, and thus, Cσ

CT is an adjustable parameter.
The second term represents the CT to 5s orbitals, which can be
also modelled by the overlap integrals as in the first term by using

the 5s orbitals.17 However, this term contributes only to the diag-
onal elements, and thus, a simpler modelling by using the Morse
potential was employed.18,42 E0

CT, kCT, and R0
CT are adjustable

parameters.

Energy and Gradients: The ground state energy of multi-metal
system is given as

Etotal
0 =

NM

∑
M

E(M)
0 −

NM

∑
M>M′

QMQM′

|RRRM−RRRM′ |
+VMM (8)

where NM is the number of metal and E(M)
0 is the ground state

energy of M-th metal complex. The E(M)
0 is evaluated by diago-

nalizing the model Hamiltonian for the M-th ion, HHH(M)
eff .

HHH(M)
eff = HHHPd2+

+HHH(M),ES +HHH(M),EX +HHH(M),CT (9)

Hence, the electronic states and E(M)
0 of a metal centre (M) are

determined under the ligand-field effects of the whole system
including other metals. This procedure is performed for each
metal centre, leading to the double-counting of the metal-metal
interaction appeared in Eq. (4). This double-counting is then re-
moved as the second term in Eq. (8). The last term of this equa-
tion is the contribution from the MM force field, including the
intramolecular interactions within each ligand and counter an-
ion BF−4 , the intermolecular interactions between these species,
and non-electrostatic interactions between Pd2+ and counter an-
ion. Note that, in the crystal structure of nanocage [Pd12L24]

24+,5

metal-metal distances are more than 1 nm; therefore, the influ-
ence on the M-th complex from the other metal ions can be con-
sidered classically, and the metal-metal dispersion interaction is
negligible. The charge of other metals QM′ is set to +2.

The gradient of singlet ground-state energy shown in Eq. (8)
with respect to RRRi are written as

GGGi =
NM

∑
M

∂E(M)
0

∂RRRi
−

NM

∑
M 6=M′

∂

∂RRRi

QMQM′

|RRRM−RRRM′ |
+

∂VMM

∂RRRi
, (10)

where the first term is obtained from the first derivative of the
effective Hamiltonian:18

∂E0

∂RRRi
= ∑

KL
C(0)

K
∂Heff

KL
∂RRRi

C(0)
L . (11)

Ligand: The general Amber force field (GAFF)43 was employed
as the potential function for describing the ligand and the inter-
actions between them.

2.2 Generalized Born model

The solvation free energy GGB is estimated using the GB
model:23,26

GGB =−1
2

(
1− 1

ε

)Natoms

∑
i, j

QiQ j

ηGB
(12)

ηGB =

[
R2

i j +αiα jexp

(
−

R2
i j

4αiα j

)]1/2

(13)
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(a) (b)

Fig. 1 Atom types and point charges of (a) pyridine and (b) bidentate
ligand L. Only the parameters of symmetrically unique atoms are shown.
Definition of the local frame x̃ỹz̃ on the binding sites is also displayed.

where ε, αi, and Ri j are the dielectric constant, effective Born
radius of i-th atom, and distance between atoms i and j, respec-
tively. The value of ε was set to 46.7, corresponding to the relative
dielectric constant of dimethylsulfoxide (DMSO).5 The determi-
nation of the effective Born radius α is an important factor for a
reliable estimation of solvation free energy. However, to the best
of our knowledge, few case studies for transition metal complex
exist; therefore, to reproduce the solvation free energy of polariz-
able continuum model (PCM), we performed parametrization for
the building unit centred on metal.44,45

The effective Born radii, α, in Eq. (13), can be determined by
the pairwise approximation developed by Hawkins et al.24–26 as

α
−1
i = ρ

−1
i −

1
2 ∑

j

(
1

Li j
− 1

Ui j
+Ai j +Bi j

)
(14)

Ai j =
Ri j

4

(
1

U2
i j
− 1

L2
i j

)
(15)

Bi j =
1

2Ri j
ln

Li j

Ui j
+

S2ρ2
j

4Ri j

(
1

L2
i j
− 1

U2
i j

)
(16)

Li j =Ui j = 1 if Ri j +Sρ j ≤ ρi (17)

Li j = ρi if Ri j−Sρ j ≤ ρi ≤ Ri j +Sρ j (18)

Li j = Ri j−Sρ j if ρi ≤ Ri j−Sρ j (19)

Ui j = Ri j +Sρ j if ρi ≤ Ri j +Sρ j (20)

where ρi is the intrinsic radius of the i-th atom. S is a scale fac-
tor of ρ, which is introduced to reduce overestimation of effective
Born radii α,24,25 and various S values have been prepared ac-
cording to the pair of atom types. In this study, however, for
simplicity, one constant value was introduced regardless of atom
pairs.

3 Parametrization

3.1 Parametrization for model Hamiltonian
The bidentate ligand L in [Pd12L24]

24+ has two pyridine (py) rings
that coordinate to metal ions individually (Figure 1); therefore,

the interactions between Pd2+ and L at these pyridine binding
regions were focused to determine the parameters in the model
Hamiltonian. Specifically, the ab initio electronic structure calcu-
lation results for the [Pd(py)4]2+ complex were used as reference
data.

Point charges of ligand: The point charges on ligand atoms
were determined by the restrained electrostatic potential (RESP)
fits46 to be consistent with GAFF utilized for the ligand term in
Eq. (8). To include the polarization effect between the ligands
effectively, the RESP charges were determined from the (py)4

structure without the Pd2+ ion. The (py)4 structure was ob-
tained from the [Pd(py)4]2+ structure optimized by MP2 with
Stuttgart/Dresden (SDD) ECP47 for Pd and 6-311G*48 basis set
for other atoms. The Merz-Singh-Kollman scheme49,50 was em-
ployed to generate grid points. The RESP fitting was performed
at the HF/6-31G* level using the Antechamber program.51 The
resultant RESP charges are summarized in Figure 1(a) with the
atom types for GAFF.

For the bidentate ligand L, the same point charges Q were used
at the two pyridine rings in L except for HA atom at the opposite
side from the ligating NB, as shown in Figure 1(b). The charges
on the two HA atoms were redistributed to the remaining region
of L to conserve charge neutrality based on the Mulliken charges
determined for L. The Mulliken charges were determined by the
HF/6-311G* level at the MP2-optimized structure.

Fitting procedure: The genetic algorithm52 was used to deter-
mine the parameters by minimizing a function

χ
2 =

Nconfig

∑
i

e−w(EMP2
i −EMP2

0 )(Emodel
i −EMP2

i )2 (21)

where EMP2
0 is the ground state energy at the optimized struc-

ture RRR0 at the MP2 level. Through this fitting, the metal-ligand
dispersion interaction is effectively taken into account in the
model Hamiltonian. EMP2

i is the MP2 energy at the structure
RRRi = RRR0± qqqn, where qqqn is the n-th normal mode. The 16 normal
modes corresponding to the lowest 16 frequencies were chosen,
because these soft modes correspond to relative pyridine-ring mo-
tions around the heavy Pd2+ ion and are important to reproduce
coordinate bonds. The number of structures employed, Nconfig,
were 33 in total, including RRR0. The weight w was set to 10.0
Hartree−1. The obtained parameters are summarized in Table 1.

Potential energy surface properties of [Pd(py)4]2+: As a re-
sult of the fitting of potential energy curves along with low-
frequency normal modes, the model Hamiltonian reproduced
those of the MP2 calculations quantitatively. In this part, the op-
timized structures of [Pd(py)4]+2 and normal-mode frequencies
are compared.

A good description around the optimized structure is mani-
fested in correspondence with [Pd(py)4]+2 structures optimized
by the model Hamiltonian, and the MP2 calculation as sum-
marized in Table 2. Geometry optimization of the model was
performed using the L-BFGS minimizer53,54 in OPTIM,55 and
the convergence criterion for the root-mean-square gradient was
5.0×10−6. Both the structures are D4 symmetrical, and the differ-
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Table 1 Parameters in the model Hamiltonian

Parameter Unit

F2 1200.3a cm−1

F4 74.9a cm−1

ζ4d 2.9286 a.u.
ζ2p 4.3744 a.u.
Cσ

EX 45.3715 a.u.
Cπ

EX 82.9277 a.u.
Cσ

CT 0.5904 a.u.
E0

CT 49.1065 kcal/mol
kCT 3.2796 Å−1

R0
CT 1.9599 Å

(a) Taken from Ref. 19.

ence of the Pd–N bond length is less than 0.01 Å. The differences
in Pd–N–C bond angle and N–Pd–N–C dihedral angle are within
2.3◦.

Table 2 [Pd(py)4]2+ structures optimized by the model Hamiltonian and
MP2

Pd–N (Å) Pd–N–C (◦) N–Pd–N–C (◦)b

Model 2.04 122.6 123.1
MP2a 2.04 120.3 124.4
(a) Stuttgart/Dresden ECP 47 for Pd and 6-311G* 48 basis set for other atoms.

(b) Two N atoms belong to two adjacent ligands.

Figure 2 displays the comparison of the normal mode frequen-
cies between the model Hamiltonian and MP2 calculations. Each
red circle corresponds to a normal mode that was assigned using
the absolute value of the inner product of normal mode vectors,
|qqqModel · qqqMP2|. As seen in Figure 2, the normal mode frequen-
cies up to 1000 cm−1 are in a good agreement, though only 16
normal modes up to roughly 200 cm−1 were employed for the
parameter fitting. Note that the modes with relatively large fre-
quency (∼1000 cm−1 and more) are characterized by intramolec-
ular vibration in ligand, and thus, are mostly characterized by the
quality of GAFF employed for the ligand.

3.2 Parameter for generalized Born model

The intrinsic radii {ρi} are 1.63, 1.47, 1.70, 1.55, 1.92, and
1.20 Å for Pd, F, C, N, B, and H, respectively.56,57 A scale factor,
S = 0.863, was introduced regardless of atom pairs for simplicity.
This value was determined in order to reproduce the solvation
free energies of [Pd3L9(BF4)6] and [Pd2L7(BF4)4], and these par-
tial structures [PdL4(BF4)2]s and Ls obtained by PCM44,45 by fit-
ting, where these structures were taken from the crystal structure
of [Pd12L24(BF4)24].5 We confirmed the differences of the solva-
tion free energies were also reproduced quantitatively. The PCM
calculation was performed at the M06L58 level with LANL2DZ
ECP59 for Pd and 6-31G* basis set60,61 for other atoms using the
GAMESS program.62

 0

 200
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 1000

 0  200  400  600  800  1000

ω
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2
 (
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-1
)

ωModel (cm
-1

)

Fig. 2 Normal mode frequencies of the model Hamiltonian and MP2.

4 Results and discussion

4.1 Comparison of model Hamiltonian and DFT using bind-
ing energy

Our first goal is to develop an effective QM model to describe as-
sembled metal-complex series [PdnLm]

2n+ with different sizes and
charges. Here, to discuss the reliability of our model, single-point
binding energies were compared to those of DFT at the crystal
and its partial structures. The binding energy ∆E of [PdnLm]

2n+

complex was evaluated by the following equations:

nPdL4→ PdnLm +(4n−m)L (22)

∆E =E(PdnLm)+(4n−m)E(L)−nE(PdL4) (23)

where the integers n and m represent the numbers of Pd2+ and L
in the complex, respectively. Here, each palladium is assumed
to form four coordinate bonds with Ls, and six complexes of
(n,m) = (1,4),(2,7),(3,9), (4,12), (5,14), and (12,24) were pre-
pared from the crystal structure of (12,24).5 Among them, ∆E for
(2,7) and (3,9) were computed with different basis sets and DFT
functionals to assess the dependency (Table 3). ∆E was different
in several kcal/mol for both complexes. Compared to the compu-
tations with the largest set, the differences are 3-4% and 7% for
M06-L and M06-2X, respectively. Hence, it could be said that the
basis set dependencies are not significant in both functionals.

Table 4 lists ∆Es for the series of complexes with the present
model Hamiltonian. In Figure 3, ∆E is plotted with respect to the
complex size n. The ∆E increases rapidly as the system size be-
comes large. This is rationalized by considering that the complex
[Pd12L24]

24+ forms the cage-like structure including twelve Pd2+

ions, and the large instability is due to unfavourable ES interac-
tions between positive ions. To see this further, we confirmed that
the expected value of ES increases as the complex becomes large,
whereas, those of EX and CT do not by the construction of the
model Hamiltonian.

The DFT results computed with the two functionals at the same

Journal Name, [year], [vol.], 1–12 | 5

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Table 3 Basis set dependence of the energies ∆E

method (2,7) (3,9)
M06-L63,64

LANL2DZ, 6-31G* 96.1 (−4.1 %) 276.3 (−3.8 %)
SDD, 6-31G* 96.8 (−3.3 %) 277.6 (−3.3 %)
SDD, 6-311G* 100.1 (0.0 %) 286.8 (0.0 %)

M06-2X63,64

LANL2DZ, 6-31G* 93.6 (−6.9 %) 272.1 (−6.9 %)
SDD, 6-31G* 93.5 (−6.9 %) 272.1 (−7.0 %)
SDD, 6-311G* 100.0 (0.0 %) 291.0 (0.0 %)

Energies are in kcal/mol, and the difference with respect to the 6-311G*
values are in the parenthesis.

geometry and the difference from them are also shown in the ta-
ble. The agreements are sufficient for all the complexes within a
few percents, i.e. independent to the size. For (2,7) and (3,9),
the differences are smaller than those from the basis set depen-
dency shown in Table 3, indicating that the present model is well-
designed.

Table 4 Single-point binding energies ∆E of [PdnLm]2n+ series (kcal/mol)

(n, m) Model M06-La M06-2Xa

(2,7) 96.5 (0.4 %, 3.2 %) 96.1 93.6
(3,9) 282.0 (2.0 %, 3.6 %) 276.3 272.1
(4,12) 514.1 (1.0 %, 1.6 %) 509.2 505.8
(5,14) 809.5 (2.0 %, 1.7 %) 793.8 796.3
(12,24) 4724.7 (−0.3 %, 1.5 %) 4739.0 4654.6
(a) LANL2DZ ECP for Pd and 6-31G* basis set for other atoms were used.

Energies are in kcal/mol, and the differences between the model and the
references (M06-L and M06-2X) are in the parenthesis, respectively.

E
(k

ca
l/

m
o
l)

n

(1, 4)

(2, 7)

(3, 9)

(4, 12)

(5, 14) (12, 24)

Fig. 3 Single-point binding energies of complexes [PdnLm]
2n+, ∆E

(Eq. (23)), from the model Hamiltonian (black open circles), M06-2X
calculations (red filled circles), and M06-L calculations (blue open trian-
gles). LANL2DZ ECP for Pd and 6-31G* basis set for other atoms were
used. Structures of the complexes are also shown.

4.2 Estimation of free energies in solution

Free energy estimation was performed by combining the model
Hamiltonian and GB. All of the supramolecules (n,m) were op-
timized at three conditions: in gas phase, solution phase, and
solution phase with BF−4 s.

The binding energy ∆E of [PdnLm]
2n+, solvation free energy dif-

ference ∆δGGB for the [PdnLm]
2n+ formation, interaction energy

∆Eint between [PdnLm]2n+ and 2nBF−4 , and the configurational
entropic term −T ∆S were examined as follows.

∆Gsum = ∆E +∆δGGB +∆Eint−T ∆S (24)

where T denotes the temperature (298.15 K) and δ represents the
structural relaxation by the solvent effect. The thermodynamic
cycle to estimate the stability of [PdnLm]

2n+ is shown in Scheme 1.
The interaction energy is the energy difference of the optimized
structures between with and without BF−4 as follows.

∆Eint = E([PdnLm(BF4)2n])+GGB([PdnLm(BF4)2n])

−
[
E([PdnLm]

2n+)+GGB([PdnLm]
2n+)+2n

{
E(BF−4 )+GGB(BF−4 )

}]
.

(25)

The configurational entropy term is evaluated using rigid-
rotor harmonic-oscillator approximation.65 Geometry optimiza-
tion was performed using the L-BFGS algorithm53,54 in OPTIM,55

and the convergence criterion for the root-mean-square gradient
was 5.0×10−6. The crystallographic information was used for the
initial guess. To reveal the size and environmental effects, only lo-
cal optimizations were performed. Regarding BF−4 , the force field
parameters developed by Liu et al. were used.66 Lennard-Jones
potential parameters for Pd were introduced to describe Pd–BF4

binding, that is, σ = 4.74 Å and ε = 0.027 kcal/mol. The for-
mer was determined from the MM3 atomic size,67 and the latter
from fitting. Note that the fitting value is extremely close to the
value from the Mavroynnis–Stephen theory with atomic polar-
izability.68–70 The vibrational entropies were estimated through
normal-mode analysis with a correction method for low-lying fre-
quency modes developed by Grimme.39 Second derivatives of the
model Hamiltonian and GB were calculated in a semi-analytical
manner.

Table 5 presents the computed free energies and their compo-
nents in Eq. (24). The binding energies ∆E are positive for all
the [PdnLm]

2n+ complexes and increase with the increase in the
system size, as discussed on the single-point comparison in Sec-
tion 4.1. In contrast, the solvation free energy differences and
the interaction energies with anions are all negative and their
absolute values increase with the increase in the size of the sys-
tem. For larger complexes, ∆E becomes large and is almost com-
pensated by ∆δGGB. ∆Eint is the second leading term to com-
pensate unfavourable ∆E, although different from ∆δGGB by an
order of magnitude. One might wonder if BF−4 s are bound or
not. One of the reasons why BF−4 was assumed to be bound
is that the anomaly highly-charge of the metal-complex, up to
+24. The charge of the smallest one (n = 2) is +4, but the anion
should be bound to make comparison uniformly over the com-
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gas

solution

n[PdL4]2+(gas) [PdnLm]2n+(gas) + (4n − m)L(gas)ΔE
δGGB([PdnLm]2n+) + (4n − m) × δGGB(L)

n[PdL4]2+(sol) +2nBF−4 (sol)
−n × δGGB([PdL4]2+)

[PdnLm]2n+(sol) + (4n − m)L(sol) +2nBF−4 (sol)

[PdnLm(BF4)2n](sol) + (4n − m)L(sol)
ΔEint

Scheme 1 Thermodynamic cycle to estimate the stability of [PdnLm]2n+.

Table 5 Free energy components in Eq. (24) for [PdnLm]
2n+ (kcal mol−1)

(n, m) ∆E ∆δGGB ∆Eint −T ∆Strans −T ∆Srot −T ∆Svib ∆Gsum

(2, 7) 38.8 −36.0 −37.3 0.8 0.1 −0.5 −34.2
(3, 9) 273.8 −262.7 −59.6 −8.9 −8.4 9.2 −56.5

(4, 12) 405.7 −390.2 −82.8 −7.8 −6.9 11.8 −70.2
(5, 14) 709.4 −690.1 −110.0 −17.4 −15.2 24.5 −98.8
(12, 24) 4537.2 −4395.9 −313.4 −127.0 −113.5 126.8 −285.8

plexes. In our computations, the solution system can be elec-
trically neutral by explicitly introducing the anions into the sys-
tem. This treatment may be supported by a cold-spray ionization
mass spectrometry (CSI-MS)71,72 experiment where there were
species with different charges [Pd12L24(BF4)24−l ]

l+ (where l is in-
teger from 11 to 16).5 It is also noted that, in the crystal structure
of [Pd12L24(BF4)24], the averaged value of the Pd–B distances is
4.37 Å, and that in the present optimized structure is also 4.37 Å.

The contributions of entropic terms are relatively smaller than
the solvation free energies by an order of magnitude, but not neg-
ligible at all. Because many ligands are released on the bind-
ing, the total translational and rotational entropies contribute to
the stabilization, in particular of the huge complex like (12, 24),
while the vibrational one destabilises it (Table 5). Note that the
tendency for the instability of vibrational entropy term does not
change without the corrections for low-frequency modes. The en-
tropic terms together make the cage complex stable, and it can
be considered that this causes the release of many ligands during
the closed [Pd12L24]

24+ complex formation.

4.3 Optimized geometries

Figure 4 and Table 6 show the optimized geometries of [PdnLm]
2n+

series in the gas phase, solution phase, and solution phase with
BF−4 s. Overall, structural differences between with and with-
out BF−4 s in the solution phase is insignificant as the root-mean-
square deviation (RMSD) values show (Table 6). However, the
gas-phase structures of n= 2,4,5 complexes are different from the
ones in the solution-phase (the RMSDs are 4.868, 5.059, 6.169
Å, respectively). In these complexes, the ligands are stacked with
each other due to dispersion interaction, which is included in the
GAFF potential. Morever, in the solution-phase results, few π−π

stacking were found between the ligands, owing to the solvent
effect.

The local coordination structure around each palladium centre
retains the so-called square planar structure, and the averaged
values of the bond lengths rave(Pd–N), bond angles θave(Pd–N–C),

and dihedral angles φave(N–Pd–N–C) are listed in Table 6. Only
the [Pd2L7]

4+ complex in gas has a five coordinated centre (Fig-
ure 4 (b)). Four ligands bind to form a square planer structure,
and additionally, one axial site is coordinated by the ligand whose
another binding site coordinates to another palladium centre.

The values of rave(Pd–N), θave(Pd–N–C), and sinφave(N–Pd–N–
C) are similar in all the cases, but the those of φave(N–Pd–N–C)
have large standard deviations. This is derived from the local
coordination structure around each palladium centre. Table 7
presents the averaged trigonometric functions of the dihedral an-
gle φave,M(N–Pd–N–C) in each metal centre at [Pd12L24]

24+. Half
of the metal centres have cosφave(N–Pd–N–C) of the opposite sign,
and all of the metal centres have sinφave(N–Pd–N–C) of the same
sign. The difference is derived from the orientation of the co-
ordinated rings (Figure 5): half of the rings have a clockwise
coordination and the remaining half have an anti-clockwise coor-
dination to form S6 and Ci symmetrical structures in the gas and
solution phases, respectively.

Finally, the relationships between optimized geometries and lo-
cal coordination structures are discussed. Figure 6 classifies the
Pd(II) ion centres using color following the local coordination fea-
tures presented in Table 7. In the gas-phase structure, the two sets
of the Pd centres, (1,10,12) and (2,9,11), which have clockwise
and anti-clockwise local coordination, respectively, are in the top
and bottom positions and form two triangles. In the middle of the
cage complex, the two kinds of local coordination structures are
alternately arranged in the hexagon ring consisting of the centres
(3,5,7,4,6,8). There is a C3 rotational axis which passes through
the centre of the two triangles and hexagon, and a mirror plane
on the hexagon ring. A S6 operation permutes the sets (1,10,12)
and (9,11,2) and rotates the set (3,5,7,4,6,8) to (5,7,4,6,8,3)
with inversion of the local coordination structures. On the other
hand, in the solution phase, the centres in the triangles do not
have the same local coordination features. Consequently, the C3

rotational axis disappears, and the only inversion operation re-
mains. In the BF−4 binding case in the solution phase, though the
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(a) (b) (c)

(d) (e) (f)

Fig. 4 oOptimized structures of [PdnLm]2n+ series; (a) [PdL4]
2+, (b) [Pd2L7]

4+, (c) [Pd3L9]
6+, (d) [Pd4L12]

8+, (e) [Pd5L14]
10+, and (f) [Pd12L24]

24+.
Gray, blue, and red skeletons correspond to those in gas phase, in solution phase, and in solution phase with BF−4 , respectively.

Table 6 Optimized structures and geometrical properties in each condition

condition rave(Pd–N) (Å) θave(Pd–N–C) (◦) φave(N–Pd–N–C) (◦)a (sinφ)ave Point groupb RMSD from solution (Å)

[Pdpy4]
2+ gas 2.04 122.6 123.1 0.84 D4 0.068 (from MP2)

gas (MP2c ) 2.04 120.3 124.4 0.83 D4

[PdL4]
2+ gas 2.04±0.00 122.7±1.1 124.8±0.4 0.82±0.00 C4 0.310

solution 2.06±0.00 123.2±0.0 125.0±0.0 0.82±0.00 C4

solution with 2BF−4 2.05±0.03 122.7±0.1 116.1±0.9 0.90±0.01 C1 0.371

[Pd2L7]
4+ gas 2.07±0.08 120.9±4.3 89.1±35.4d 0.82±0.20 C1 4.868

solution 2.06±0.01 123.2±0.3 90.2±34.8 0.82±0.01 C1

solution with 4BF−4 2.05±0.04 122.8±1.3 87.3±29.7 0.87±0.03 C1 0.509

[Pd3L9]
6+ gas 2.04±0.00 122.8±3.3 96.5±31.6 0.90±0.19 C1 0.904

solution 2.06±0.01 123.1±1.0 98.9±30.3 0.85±0.06 C1

solution with 6BF−4 2.05±0.03 122.7±0.5 96.4±22.5 0.92±0.04 C1 0.372

[Pd4L12]
8+ gas 2.05±0.06 119.9±7.2 97.8±26.2 0.89±0.13 C1 5.059

solution 2.06±0.02 123.1±1.2 75.6±28.4 0.85±0.07 C1

solution with 8BF−4 2.05±0.04 122.7±1.2 80.9±24.0 0.90±0.06 C1 1.275

[Pd5L14]
10+ gas 2.04±0.05 120.7±6.7 84.9±26.2 0.89±0.08 C2 6.169

solution 2.06±0.03 123.1±1.7 83.7±29.4 0.87±0.07 C1

solution with 10BF−4 2.05±0.04 122.6±1.9 84.0±24.7 0.90±0.07 C1 0.939

[Pd12L24]
24+ gas 2.05±0.04 123.1±1.0 90.0±22.3 0.93±0.05 S6 0.909

solution 2.06±0.01 123.1±1.5 90.0±26.3 0.90±0.06 Ci

solution with 24BF−4 2.05±0.04 122.7±1.3 90.0±22.1 0.93±0.05 C1 1.183
crystal 5 2.00±0.03 121.4±1.3 90.0±5.9 0.99±0.01 Ci (without BF−4 ) 1.129

(a) Two N atoms belong to two adjacent ligands.
(b) Symmetries were determined by SYMMOL. 73 A constant tolerance, 0.005, was used.
(c) Stuttgart/Dresden ECP for Pd and 6-311G* basis set for other atoms.
(d) The average value around the ligands in the equatorial positions.
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cos ϕ

sin ϕ > 0 > 0
< 0 > 0

Fig. 5 Local coordination structures and dihedral angle φ . Clockwise
(left) and anti-clockwise (right).

symmetry is broken, the structural feature is close to the solution-
phase structure. The signs of (cosφ)ave,M (where M = 9,10) as
presented in Table 7 are opposite from those of the gas phase;
therefore, the C3 rotational axis disappears. The value of RMSD
from the gas-phase structure is 0.838 Å, which is slightly smaller
than that from the solution-phase structure (1.183 Å) and that
between the gas- and solution-phase structures (0.909 Å). All the
optimized structures and the crystal structure are geometrically
close each other.

4.4 Analysis of electronic states of Pd2+ ions

Finally, the electronic structure of each palladium(II) ion in
[Pd12L24]

24+ were analysed. The ground state wavefunction of
the M-th Pd2+ ion was found to be composed of a few Slater de-
terminants at most as∣∣∣Ψ(M)

0 (rrrM ;RRR)
〉
=

45

∑
I=1

C(0,M)
I (RRR)

∣∣∣Φ(M)
I (rrrM ;RRR)

〉
≈C(0,M)

1 (RRR) |ξ ξ̄ ηη̄ζ ζ̄ uū〉+C(0,M)
2 (RRR) |ξ ξ̄ ηη̄ζ ζ̄ ūv〉

+C(0,M)
3 (RRR) |ξ ξ̄ ηη̄ζ ζ̄ uv̄〉+C(0,M)

4 (RRR) |ξ ξ̄ ηη̄ζ ζ̄ vv̄〉

+C(0,M)
5 (RRR) |ξ ξ̄ ζ ζ̄ uūvv̄〉

(26)

where the abbreviations ξ , η , ζ , u, and v denote five 4d orbitals
ϕ
(M)
yz , ϕ

(M)
zx , ϕ

(M)
xy , ϕ

(M)
z2 , and ϕ

(M)
x2−y2 , respectively. In analyzing C(0),

the whole complex was rotated such that the M-th ion was placed
at the origin on the local xyz frame, where the x axis was parallel
to an arbitral Pd–N bond and the z axis was normal to the N1–M–
N2 plane and directed toward the outside of the cage.

As presented in Table 8, the weights (C(0)
1 )2 are roughly 86 to

96 % for all the Pd2+ ions, thereby indicating that the electronic
ground states of all the Pd2+ ions in [Pd12L24]24+ are dominated
by a single configuration. This electronic feature is qualitatively
the same in all the three structures. This dominant configuration
is rationalized by considering the ligand-field theory,74 where
only ϕx2−y2 is unoccupied due to repulsion from four ligands in
the xy plane for the square-planar transition-metal complex. The

weights (C(0)
1 )2 increase due to the solvation effect and then de-

crease due to the bound BF−4 . This result indicates the solvent po-
larizes the Pd ions and the anions suppress the polarization effect.
In this regard, it is concluded that the present model provides a
reasonable electronic ground state structure of [Pd12L24]

24+.

5 Conclusions
A systematic semi-empirical QM model to study the thermody-
namics and electronic states of [Pd12L24]

24+ and [PdnLm]
2n+ par-

tial series is presented. Our QM model is based on the model
Hamiltonian developed previously for d–d states of a transition-
metal centre17,18 with the present improvement to treat the en-
tire field of the supramolecule. Electronic state on each transition-
metal centre can be focused and solved under the whole assem-
bling system, and as such, the model reliability is independent
of the complex size. Consequently, our model successfully repro-
duced the binding energies of [PdnLm]

2n+ series.
Free energies of [PdnLm]

2n+ series were estimated by combin-
ing the model Hamiltonian and GB model. The computed binding
energies indicated that the [PdnLm]

2n+ complex series were quite
unstable without the solvation effects owing to the unfavourable
electrostatic interactions in the highly charged system. It was
also found that the solvation free energies and interactions with
counter anions compensated the unfavourable solute binding en-
ergies. The entropic contribution was smaller than the binding
energy and solvation free energy by an order of magnitude but
made the [PdnLm]

2n+ stable.
Furthermore, optimized geometries in the gas and solution

phases were different. The [Pd2L7]
4+, [Pd4L12]

8+, and [Pd5L14]
10+

complexes in gas phase have π−π stacking between ligands and
retain the square-planer coordination structure. However, in the
solution phase, few stacking structures were found and the ef-
fect of BF−4 on the optimized structures was insignificant. In
[Pd12L24]

24+, half of the local coordination structures around each
Pd2+ centre have clockwise coordination, and the remaining half
have anti-clockwise coordination. The relationships between the
optimized geometries, which have S6 and Ci symmetries in the
gas and solution phases, respectively, and the local coordination
structures, were revealed.

Finally, the electronic character of [Pd12L24]
24+ was found to be

consistent with that of the typical square-planar complex of the d8

transition-metal ion system. The weights of the ground electronic
states indicate that solvation polarizes the Pd ions, whereas, the
anions suppress the polarization effect. Giving a clear picture of
the electronic structure is an advantage of introducing valence
d-electron wavefunctions.

Again, our computational model is focused on the transition
metals as building units and can solve the electronic states under
the whole assembling system. This feature enables a reliable and
systematic study of electronic states and thermodynamics of the
charged complex series of different sizes. The present model can
be applied to several huge multi-metal complexes without drasti-
cally increasing the computational cost. The size-independent ac-
curacy and the ability of rapid computation are suitable features
for further studies on coordination-driven self-assembly. Under-
standing the details of the self-assembly process is an important
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Table 7 Characterization of local coordination structures by dihedrals in [Pd12L24]
24+, where two N atoms belong to two adjacent ligands

M gas solution solution with BF−4
(sinφ)ave,M (cosφ)ave,M (sinφ)ave,M (cosφ)ave,M (sinφ)ave,M (cosφ)ave,M

1 0.94±0.04 −0.30±0.14 0.93±0.07 −0.33±0.16 0.94±0.04 −0.33±0.12
2 0.95±0.03 0.30±0.10 0.93±0.07 0.33±0.16 0.93±0.04 0.33±0.11
3 0.90±0.06 −0.40±0.14 0.93±0.03 −0.35±0.08 0.93±0.04 −0.34±0.12
4 0.91±0.03 0.41±0.06 0.94±0.02 0.35±0.04 0.94±0.04 0.33±0.11
5 0.91±0.03 0.41±0.06 0.89±0.05 0.43±0.09 0.87±0.06 0.48±0.11
6 0.90±0.06 −0.40±0.14 0.89±0.05 −0.43±0.11 0.86±0.07 −0.48±0.14
7 0.90±0.06 −0.40±0.14 0.86±0.05 −0.51±0.09 0.95±0.02 −0.30±0.08
8 0.91±0.03 0.41±0.06 0.86±0.05 0.51±0.08 0.95±0.02 0.30±0.05
9 0.95±0.03 0.30±0.10 0.89±0.07 0.41±0.15 0.92±0.04 −0.37±0.12

10 0.94±0.04 −0.30±0.14 0.89±0.07 −0.41±0.15 0.92±0.04 0.37±0.12
11 0.95±0.03 0.30±0.10 0.88±0.07 −0.46±0.13 0.96±0.04 0.25±0.15
12 0.94±0.04 −0.30±0.15 0.88±0.06 0.46±0.13 0.96±0.04 −0.24±0.16

(a) (b) (c)

Fig. 6 The relationships between optimized geometries and local coordination structures; (a) the top view and (b) the side view of S6 optimized
structure in the gas phase and (c) the side view of Ci optimized structure in the solution phase.
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Table 8 Weights (%) of dominant Slater determinants in electronic ground state of each Pd2+ ion in [Pd12L24]24+. Values larger than 1.0 % are shown
for clarity

gas M 1 2 3 4 5 6 7 8 9 10 11 12

(C(0)
1 )2 89.7 89.7 89.2 89.2 89.0 89.1 89.0 88.9 89.5 89.5 89.6 89.6

(C(0)
2 )2 2.9 2.9 3.4 3.4 3.4 3.4 3.5 3.5 3.0 3.0 3.0 3.0

(C(0)
3 )2 2.9 2.9 3.4 3.4 3.4 3.4 3.5 3.5 3.0 3.0 3.0 3.0

(C(0)
4 )2 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1

sum 96.6 96.6 97.0 96.9 96.9 97.0 96.9 96.8 96.5 96.5 96.6 96.6

solution M 1 2 3 4 5 6 7 8 9 10 11 12

(C(0)
1 )2 96.1 96.1 95.5 95.4 94.7 94.7 93.9 93.9 95.6 95.6 95.3 95.3

(C(0)
2 )2 1.2 1.2

(C(0)
3 )2 1.2 1.2

(C(0)
4 )2 2.2 2.2 2.0 2.0 1.9 1.9 1.8 1.8 2.1 2.1 2.1 2.1

sum 98.3 98.3 97.5 97.4 96.6 96.6 98.1 98.1 97.8 97.7 97.4 97.4

solution with BF−4 M 1 2 3 4 5 6 7 8 9 10 11 12

(C(0)
1 )2 90.8 90.7 91.5 91.4 86.2 86.2 91.5 91.5 91.9 92.0 90.8 90.8

(C(0)
2 )2 3.1 3.1 2.7 2.7 5.4 5.3 2.7 2.7 2.4 2.3 3.1 3.1

(C(0)
3 )2 3.1 3.1 2.7 2.7 5.4 5.3 2.7 2.7 2.4 2.3 3.1 3.1

(C(0)
4 )2 1.4 1.4 1.5 1.5 1.5 1.5 1.7 1.7 1.4 1.4

(C(0)
5 )2 1.0 1.0

sum 98.4 98.4 98.3 98.4 97.9 97.9 98.3 98.4 98.3 98.3 98.5 98.4

direction for future work.
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