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a b s t r a c t 

This paper gives a first study of the thermal and thermal oxidative ageing of ELIUM® resins. Chain ends

unzipping was observed to be the main degradation mechanism under nitrogen whereas an oxidation

mechanism with random chain scissions is shown to predominate in presence of oxygen. A first simplified

kinetic model is proposed and fits experimental results for thin films at temperatures ranging from 230

to 310 °C under oxygen or nitrogen. 

1. Introduction

Manufacturing of large composite parts with short processing 

times, low external heating is a continuous challenge in several in- 

dustrial sectors such as marine industry (hull and bridges of race 

boats), aeronautic and aerospace industry, renewable energy (wind 

turbine blade) [1] . 

ELIUM® resin is one of the youngest members of organic ma- 

trices. The polymer is obtained from a low viscosity [ 2 , 3 ] reactive 

mixture of polymer solution of (meth)acrylic monomers (MMA, 

Alkyl acrylic) and acrylic copolymer chains (viscosity of 100 cPs) 

and possibly other comonomers [4] . Its polymerization is activated 

by a ketone peroxide as thermal initiator and can be achieved at 

room temperature with the presence of an iron salt-based cata- 

lyst [2] . The final material has thus two advantages: both fastness 

and simplicity of radical polymerization (comparable for example 

to unsaturated polyesters) together with the toughness of acrylic 

copolymer such as poly(methyl methacrylate (PMMA) where a 

sub-glassy mobility [5] allows a better toughness than in other 

composite matrices (vinylesters, unsaturated polyesters or epoxies 

[6] for example) .

The last open issue is the long-term stability of ELIUM® resin.

Apart papers dealing with water ageing [ 7 , 8 , 9 ], the thermal ageing 
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case remains open to the best of our knowledge. Given the struc- 

tural commonality with Polymethylmethacrylate (PMMA), thermal 

degradation is expected to induce both random chain scissions 

together with chain ends unzipping. However, it remains to as- 

sess the possible differences in kinetics with PMMA. Apparent 

degradation parameters were previously assessed for PMMA un- 

der anisothermal conditions [ 10 , 11 ] but it is tricky to predict 

the isothermal degradation of ELIUM® from those apparent ki- 

netic parameters established from very high degradation temper- 

ature. Moreover, the predicting lifetime requires to understand the 

macromolecular changes induced by ageing [12] . 

That is the reason why we decided in this paper: 

- to focus on isothermal degradation first under nitrogen and

then in presence of oxygen,

- to perform isothermal degradation only,

- to propose a kinetic model running for degradation under air

and under nitrogen basing on the elementary steps of degrada- 

tion.

2. Experimental

2.1. Materials 

Two kinds of ELIUM® resins (ELIUM® V1 and V2) were stud- 

ied. Their approximate structure is depicted in Fig. 1 . ELIUM® V2 

differs from ELIUM® V1 by the addition of a divinyl groups work- 

ing as a crosslinker and methacrylic acid used for improving ther- 
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Fig. 1. Schematized structure of ELIUM V1 (a) and V2 (b).

mal stability. In other words, ELIUM V1 is a “thermoplastic resin”

whereas ELIUM® V2 is processed in liquid state but gives a ther- 

moset network after curing. ELIUM® V1 was supplied as films of 

about 100 μm thickness. ELIUM® V2 was supplied as 4 mm plates 

and about 50 μm films were samples using a Leica microtome. 

A PMMA commercial grade (VM100, also supplied by Arkema) 

was used as a “model system”. About 350 μm thickness films were 

prepared by compression molding using a Gibitre press by heating 

for 3 minutes at 200 °C under 220 bars and using wedges to get 

right thickness. 

2.2. Ageing condition 

Samples were isothermally aged in thermal analysis cells of TGA 

device (see after) under either pure nitrogen or pure oxygen sup- 

plied by a 50 ml min 

−1 gas flow. 

Some complementary tests were performed in ventilated ovens 

at 150, 180 and 200 °C (supplied by SCS) on ELIUM V2 plates to 

check the thickness of oxidized layer (TOL). 

2.3. Characterization 

2.3.1. Thermogravimetric measurements (TGA) 

TGA measurements were performed using a Q500 apparatus 

driven by QSeries Explorer (TA Instruments). Isothermal measure- 

ments were performed either under 100% N 2 or 100% O 2 atmo- 

sphere supplied by a continuous 50 ml min 

−1 gas flow. Isother- 

mal degradation was performed at a constant temperature ranging 

from 230 to 310 °C. 

2.3.2. Differential Scanning Calorimetry measurements (DSC) 

DSC measurements were performed using DSC Q10 apparatus 

(TA instruments) using the following procedure: samples were first 

isothermally degraded in situ either under 100% N 2 or 100% O 2 at- 

mosphere. After cooling to 40 °C, they were heated at a 10 °C min 

−1 

so as to determine the glass transition temperature (T g ) value. 

2.3.3. Gel Permeation Chromatography measurements (GPC) 

GPC measurements were performed on a WATERS 717 + Au- 

tosampler Instrument in THF (1 ml min 

−1 ) equipped with a Wa- 

ters 2414 Refractive Index detector on samples previously in situ 

aged in TGA cell (see above). Average molar masses are given in 

polystyrene equivalent. 

2.3.4. Optical microscopy 

Optical microscopy was used for measuring the Thickness of 

Oxidized Layer (TOL) for aged bulky samples. After polishing the 

samples to get a smooth surface, a ZEISS Axio Imager A2M opti- 

cal microscope was used to obtain the TOL ((Thickness of Oxidized 

Layers) values. 

3. Results

3.1. Stability under N 2 

Mass loss on PMMA, ELIUM® V1 and V2 were monitored 

isothermally at different temperatures (from 230 to 310 °C) ver- 

sus time exposure under 100% N 2 atmosphere in TGA cell (NB: for 

PMMA, some experiments were done in duplicate and triplicate for 

checking the repeatability). Results are presented in Fig. 2 . 

They call for the following comments: 

1 © at very low exposure times, a very fast decrease is observed 

with an initial mass loss close to 10%. In ELIUM®, it seems that the 

initial part is mainly due to residual monomers. The residual mass 

was expressed as: 

m 

m 0 

= 

m v + m p 

m v 0 + m p 0 

(1) 

Where m v is the masse of residual (non polymerized) monomers, 

m p of the volatile compounds released due to polymer decompo- 

sition. As depicted in Appendix 1 ( Fig. 10 ) and discussed later, m p 

decreases following an apparent first order kinetics, and it seems 

reasonable to assume that it is also the case for m v . If so: 

m 

m 0 

= 

m v 0 . exp ( −k v .t ) + m p 0 . exp ( −k obs .t )

m v 0 + m p 0 

(2) 

with k v >> k obs so that at early times : 

d 

dt 

(
m

m 0 

)
∼ −k v . m v 0

m v 0 + m p 0 

(3) 

Whereas, at longer times, with m p >> m v : 

ln 

(
m

m 0 

)
∼ exp ( −k obs .t ) (4) 

Both equations will be used to extract apparent rate constants 

of degradation. k v was shown to be hardly temperature dependent 

but this is not surprising since the loss of residual monomers oc- 

curs meanwhile the cell temperature is equilibrating to the ageing 

temperature. 

2 © in a second stage, mass decreases with an auto slowed down 

kinetics. A pseudo first order kinetics is observed for PMMA and 



Fig. 2. Kinetics of mass changes for PMMA (a) and ELIUM® V1 and V2 (b) under N 2

at different tem peratures. For Figs. 1 a and 1 b, dashed lines correspond to best ki- 

netic model with rate constants given in Table 3 (see ‘’Discussion”). NB: the number

of experimental points is lowered for better clarity.

fits acceptably in a first approach for ELIUM® in the medium con- 

version degrees (up to almost 50% mass loss). 

3 © in a first approach, PMMA and ELIUM® display some com- 

parable trends: for example, at 250 °C, about 20% of the initial mass 

is lost after 20 h aging under 100% N 2 for both materials. At 270 °C 

and 290 °C, the mass loss after 20 h is in both cases close to 40% 

and 65%. More in detail, ® V2 which is more stable than ELIUM®

V1 possibly in link with the presence of some comonomers, which 

will be depicted in terms of rate constants for depolymerization in 

the following. 

To better understand the mechanisms responsible for mass 

loss, DSC measurements were performed in order to measure the 

change in glass transition value and investigate the architecture of 

degraded materials. Fig. 3 depicts thermograms of virgin and aged 

PMMA and ELIUM® V1 resin having undergone a thermal expo- 

sure in situ under nitrogen. Corresponding T g changes are given 

in Fig. 4 a together with values for samples degraded in presence 

of oxygen. Under nitrogen, the glass transition temperature re- 

mains almost constant within the experimental uncertainties (con- 

trarily to ageing oxygen, as it will be seen later). A small increase 

Fig. 3. DSC traces of unaged and ELIUM® and PMMA aged 2 h under N 2 at 250 °C. 

Fig. 4. T g changes of PMMA and ELIUM® V1 versus exposure time at 250 °C under

N 2 (a) and as a function of temperature for different exposure times under N 2 (b).



Fig. 5. GPC measurements for PMMA samples aged under N 2 or O 2 at different

temperatures.

can even be observed, maybe due to the evaporation of residual 

monomers (see above). This observation seems also to be true at 

temperatures higher than 250 °C (i.e. 270 and 290 °C) for different 

exposure times. One sees that despite significant mass loss levels 

(up to 30% at 290 °C after 4 h exposure), T g depletion remains rel- 

atively low (about 5 °C). As it will be seen later, this is in line with 

the existence of a predominant unzipping mechanism i.e. a chain 

ends depolymerization. 

Contrarily to ELIUM® V2 which is a thermoset resin i.e. insol- 

uble, PMMA can be easily analyzed by GPC as illustrated in Fig. 5 

for PMMA aged at 250, 270 and 290 °C during 2 h. The measured 

molar masses for samples aged at 250, 270 and 290 °C under N 2 

for 2h are given in the Table 1 . They confirm that decrease in mo- 

lar mass is low which suggests that volatile segments come for the 

chain ends as is will be tentatively justified later. 

3.2. Investigation of the stability under oxygen 

The stability of samples under oxygen was first investigated by 

determining the thickness of oxidized layer at several temperatures 

( Fig. 6 ) for 4 mm thick plates aged in ovens under air. This latter 

was estimated as the total thickness of the dark edge of samples 

by optical microscopy. For summarizing: 

Table 1

Measured molar mass after ageing at different tempera- 

tures under 100% N 2 or 100% O 2 atmosphere.

Ageing conditions M w (kg mol (1 ) M n (kg mol −1 ) 

0 h (not aged) 123.7 60.6

2h - 250 °C - N 2 125.3 64.7

2h - 270 °C - N 2 124.2 67.1

2h - 290 °C - N 2 108.2 51.5

2h - 310 °C - N 2 68.9 28.8

1h - 250 °C - O 2 57 8.6

2h - 250 °C - O 2 13.3 2.6

15 h - 250 °C - O 2 2.1 1.3

Table 2

Measured TOL on ELIUM® V2 samples (up to 3 months aging for the high- 

est values).

Temperature ( °C) 150 °C 160 °C 180 °C 200 °C

TOL (μm) 1100-1300 1100-1200 760-870 550-830

- There is no evidence of cracks occurring within the oxidized

layer and favoring the propagation of this latter towards deeper

layers [13] . The measured Thicknesses of Oxidized Layers (TOL)

are given in Table 2 .

- TOL takes an almost constant value depending only on tem- 

perature and certainly external oxygen concentration. Despite

lower than in recently developed thermoset matrices (~ 1500-

20 0 0 μm in epoxidized linseed oil thermosets [14] ), its value is

clearly higher than in other thermosets (for instance less than

300 μm for vinyl esters, 600 μm in unsaturated polyesters [15] )

degraded in comparable conditions.

- As previously described in literature [16] , TOL decreases when

increasing temperature.

Those values were tentatively extrapolated at temperatures un- 

der investigation (250-290 °C) using Arrhenius equation. One sees 

that oxidation would hardly be controlled by oxygen diffusion for 

samples below 300 μm at 290 °C so that in the following, investi- 

gations will be performed on 50 μm thin ELIUM® V2 obtained by 

microtomy, 150 μm ELIUM® V1 films obtained by casting reactive 

mixture between two plates, and 350 μm PMMA films obtained 

by compression molding. Moreover, the control of oxygen diffusion 

has only a low impact on the main conclusions of this paper. 

The effect of oxygen on thermal ageing was thus investigated 

for example by performing isothermal TGA under pure oxygen. 

They are directly compared with TGA under nitrogen at the same 

Fig. 6. Optical microscopy images of the oxidized layer at (a) 200 °C 3 weeks and (b) 180 °C 15 weeks (b) for ELIUM® V2 samples.



Fig. 7. Comparison of mass loss monitored by TGA under nitrogen and oxygen for

50 μm ELIUM® V2 films at several temperatures. Full and dashed lines correspond

to kinetic modeling respectively under oxygen and nitrogen with rate constants

given in Table 3 .

temperatures in Fig. 7 . According to a preliminary interpretation, 

it seems that the presence of oxygen induces an auto-accelerated 

mass loss mechanism but in the earlier exposure time, the “pure”

thermal mechanism is prominent. 

Those experiments were completed by measuring the T g 
changes (related to polymer backbone modifications) after isother- 

mal ageing runs. Corresponding results are given in Fig. 4 . Both 

PMMA and ELIUM® V1 present a strong T g changes in those con- 

ditions (about 20 °C decrease after 2 h aging). This confirms the 

instability of acrylic resins at high temperatures under O 2 . Those 

strong T g changes indicate the presence of chain scissions ran- 

domly located in PMMA, and presumably in ELIUM as well. Those 

latter are confirmed by GPC measurements ( Fig. 5 ) leading to the 

molar mass values for samples aged at different times given in 

Table 2 . 

Last, two GC-MS analyses (subcontracted in 2MATECH, Aubière, 

France) were performed on gaseous compounds evolved by sam- 

ples aged 1h at 250 °C either under N2 or air in hermetic vials. In 

both cases, MMA was found to be the predominant volatile com- 

pounds ( Fig. 10 ). 

4. Discussion

The aims of this section are: 

- to compare the nature of the mechanism under nitrogen and in

presence of oxygen,

- to propose a kinetic modeling working for ELIUM® V1, ELIUM®

V2 and PMMA with parameters related to the thermal stability,

- to adapt this kinetic model for ageing either under inert atmo- 

sphere or in presence of oxygen.

4.1. Nature of the mechanisms involved under inert atmosphere or in 

presence of oxygen 

The most striking facts are that under oxygen, average molar 

mass decreases fast in conjunction with a higher level of mass loss 

whereas values expressing the macromolecular architecture (M n , 

T g ) remains almost constant for ageing under inert atmosphere de- 

spite the occurrence of mass loss ( Fig. 8 ). 

Interestingly, for a given mass loss level, the corresponding de- 

crease of glass transition is higher for ageing in presence of oxygen 

than for ageing under inert atmosphere. For discussing this result, 

Fig. 8. T g changes vs mass loss for ELIUM® V1 resin aged under nitrogen and oxy- 

gen.

let us recall that glass transition changes with molar mass as fol- 

lows [17] : 

T g = T g ∞ 

− k FF / M N (5) 

Where T g ∞ 

is the “fictive” value for a PMMA sample with an infi- 

nite molar mass, and k FF is the Fox Flory constant (114 °C and 200 

K kg mol −1 values for PMMA are given in [18] ). 

M n changes with the concentration in chain scissions: 

- For random chain scissions [19]

1 

M N 

− 1

M N0 

= s (6) 

- For chain end scissions (unzipping)

M N = M N0 − s . M N . M 0 (7) 

(where M 0 is the molar mass of the monomer unit). 

It comes: 

- For chain ends scissions

T g − T g0 = −k F F . M 0

M N0 

· s

1 − s. M 0 

(8) 

i.e. at low conversion degrees

d T g /ds = − k F F . M 0 / M N0 (9) 

- For random chain scissions

T g − T g0 = k FF . s (10) 

i.e. at low conversion degrees

d T g / ds = −k FF (11) 

Since M 0 << M N0 , it means that a limited number of chain scis- 

sion has a strong effect on molar mass for random chain scissions 

compared to chain end scissions. 

According to literature, there are three main mechanisms 

at the origin of unzipping ( Scheme 1 ): random chain scissions 

[20] followed by the ejection of monomers located at chain ends

( Scheme 1 a).

- scissions located on weak sites such as head to head moieties

(possibly in the middle of chains – Scheme 1 b). In principle,

this reaction occurs even at low temperature (around 200 °C)

[21] .

- unzipping occurring directly at chain ends holding double

bonds [22] ( Scheme 1 c and 1 d), those latter being expected

since no transfer agent was used for ELIUM® manufacturing.



Scheme 1. Initiation mechanism of thermal degradation.

According to the glass transition and molar mass changes (see 

previous section), we assumed that unzipping occurs mainly at the 

chain ends, consistently with other results [20] . In other words, it 

seems to us that: under inert atmosphere, the mechanism is an 

unzipping mechanism occurring by chain ends, consistently with 

literature data [23] . 

- under oxygen, the unzipping mechanism is complicated by the

fact that alkyl radicals can simultaneously undergo unzipping

and react with oxygen and induce a degradation mechanism

where chain scissions can occur simultaneously on the polymer

chain.

4.2. Degradation mechanism under inert atmosphere 

According to many previous researches, it can be considered 

that the auto-decelerated shape of mass loss curves for PMMA 

[ 21 , 24 ] based polymers obeys a first order kinetics: 

dm 

dt 
= − k obs . m (12) 

Observed apparent rate constants (k obs ) can be assessed from 

first order diagrams (see Fig. 2 ). Corresponding values are plotted 

in Fig. 9 together with values for PMMA either from this work or 

from literature [ 21 , 24 ]. 

In a first approach, data measured in this work in the same 

temperature range for PMMA, ELIUM® V1 and ELIUM® V2 are rel- 

atively comparable. They reasonably fit with the Arrhenius law, 

with apparent activation energy equal to 113.5 kJ mol −1 (PMMA 

studied in this work) or ~ 140 kJ mol −1 for ELIUM® V1 and ELI- 

UM® V2. Reversely, data from [ 21 , 24 ] seem responsible for a cer- 

tain distortion in the Arrhenius diagram with a higher activation 

energy (~ 200 kJ mol −1 ). This curvature can be explained as fol- 

lows: at higher temperature, initiation results either from chain 

end or random chain scission (whereas only the first one exists 

at temperatures below 300 °C). As it will be seen later, since the 

apparent rate constant for depolymerization is a function of rate 

constant for elementary steps ( Eq. 19 ), the existence of those two 

competing mechanisms can result in a curvature in Arrhenius dia- 

gram [ 25 , 26 ]. 

According to those data, ELIUM® V2 resin seems slightly more 

stable than ELIUM® V1 towards the unzipping degradation, which 

can be explained as follows: ELIUM® V2 reactive mixture con- 

tains a slight percentage of 1,4 butanediol dimethacrylate and 

methacrylic acid working which may act as depolymerization in- 

hibitors (the effect of ethylene glygol dimethacylte is illustrated in 

[27] ).

The “first order” plot ( Fig. 2 ) and the apparent rate constant al- 

low easily to screen and characterize the stability of acrylic resins. 

However, it remains quite empirical since it does not really take 



Fig. 9. Arrhenius diagram for apparent rate constants of thermal decomposition un- 

der nitrogen atmosphere.

Scheme 2. Depropagation for unzipping.

into account the chemical mechanisms at the origin of mass loss 

(as it will be seen later, this is needed to predict the degradation 

under air). A more complete (but simplified) mechanism is sum- 

marized here below: 

1 © As discussed above, initiation would start by chain ends. 

2 © Depropagation (« unzipping ») leads to monomer release 

( Scheme 2 ). 

3 © Last, termination corresponds to the reaction between two 

radicals to form a “stable” chain ( Scheme 3 ). It can involve sec- 

ondary and tertiary radicals ( Scheme 1 a- 1 d). The coupling of ter- 

tiary radicals ( Scheme 1 d) creates an unstable head to head group 

likely to initiate further degradation. In a first approach, this lat- 

ter reaction was neglected compared to the other reactions [ 28 , 29 ] 

so that we do not have to add a new initiation reaction (with a 

supplementary kinetic parameter) in the model. 

Assuming a bimolecular termination process, this derived ki- 

netic model is thus: 

Ends → P ° (k i ends ) 

P n ° → P n-1 ° + M (k DP ) (subscripts correspond to resid- 

ual polymerization degree of chains) 

P ° + P ° → stable product (k t ) 

In this last case, it can for example be shown: 

d [ P ◦] 

dt 
= k i ends [ ends ] − 2 k t [ P 

◦] 
2 (13) 

[ends] is the concentration in chain ends likely to initiate de- 

polymerization (vinyl groups for example). For PMMA, it might be 

close to ρ0 /M n0 at t = 0 (where ρ0 is the polymer density and 

M n0 its initial average number molar mass). Under the assumption 

that steady state is quickly reached, it gives: 

[ P ◦] = 

√
1 

2 k b 
·
(

k i ends · ρ0 

M n 

)
(14) 

The concentration of released monomers [M] is given by: 

d [ M ] 

dt 
= − k DP . [ P 

◦] (15) 

Which leads to the theoretical expression of mass loss rate for un- 

zipping: 

d 
(

m
m 0

)
dt 

= −M m

ρ0 

· d [ M ]

dt
= −M m

ρ0 

· k DP ·
√

k i ends · ρ0 

2 k t . M n 
(16) 

Where M m 

is the mass of the monomer released from unzipping. 

In the (empirical) first order model, one has: 

[ M ] = [ M ] 0 . exp ( −k obs . t ) (17) 

Scheme 3. Termination for unzipping.



Scheme 4. Fate of alkyl radicals under air.

i.e. at low conversion degrees:

[ M ] / [ M ] 0 ∼ 1 − k obs . t (18) 

So that this kinetic model converges with the empirical first or- 

der model at steady state where the following equality is observed: 

k obs = 

M m

ρ0 

· k DP ·
√

k i ends · ρ
2 k t . M n 

(19) 

It suggests that Eq. 19 can be used as a simplified relationship 

to estimate the relative orders of magnitude of k i , k DP , k t from the 

apparent k obs value estimated in Fig. 2 . 

In order to estimate all the rate constants, the differential sys- 

tem was solved using Scilab® software with the script given in 

“Supplementary Informations”. The strategy is to identify rate con- 

stants from the fitting of data given in Fig. 2 . In order to mini- 

mize the number of adjustable kinetic parameters, some values (k t , 

[ends] 0 ) related to elementary steps were fixed as discussed below. 

The missing values must verify (at least roughly) Eq. 19. 

In the case of radical PMMA polymerization, the rate constant 

between two alkyl radical ended PMMA chains is k t ~ 5.10 7 l mol −1 

s −1 [30] . There is no reason, for us, to consider there is any differ- 

ence with PMMA. 

Since PMMA and ELIUM® resins display an almost common be- 

havior (apart the release of free monomers), we decided to con- 

sider that: 

- in PMMA, the initial concentration in chain ends is ρ0 /M n0 ~

1/60 mol l −1 .

- in ELIUM® resin, this concentration is the same. In fact, even

if this is an approximation, it can be easily verified that model

simulations remain almost the same provided that the quantity

k i /M n0 remains constant.

Using those rules for rate constants, the rate constant for un- 

zipping can thus be estimated. They allow to fit mass loss curves 

( Fig. 2 ) and are thus expected to express the reactivity of each sys- 

tem. 

It can be verified that k obs (derived from Fig. 2 ) and k obs 
∗ (de- 

rived from Eq. 19 ) are relatively close. In other words, despite some 

approximations made for the concentration of radicals in steady 

state, it validates the proposed kinetic model. k DP is found to ver- 

ify Arrhenius law with an activation energy E aDP ~ 100 kJ mol −1 , 

which can be discussed as follows: for propagation reaction in 

PMMA polymerization, the activation energy (E aP ) is reported to be 

about 25 kJ mol −1 [31] meanwhile the reaction enthalpy for poly- 

merization reaction is �H r ~ -60 kJ mol −1 [32] . It is hence not 

surprising to observe E aDP ~ E aP - �H r . 

According to [33] , the rate of scission of chain ends for a PMMA 

synthesized by Reversible Addition Fragmentation chain Transfer 

(k i ) is given by 1.06 × 10 6 × exp(-77600/RT) s −1 . In a certain

way, it could be considered that RAFT agents are chosen so as to 

make possible the “reactivation” of PMMA chain [23] end into rad- 

ical living forms so that k i is expected here to be lower, in good 

agreement with the values we used for our model. Reversely, the 

activation energy of initiation reaction is found lower than in ref 

[24] (more than 200 kJ mol −1 ) where unzipping is studied at high

temperature where random chain scission might be the main ini- 

tiation mode. 

Since k i is in part unknown, this investigation was completed 

by a parametric study (see “Supplementary Informations” file). For 

summarizing, there is an interplay between all rate constants so 

that many set could acceptably fit the experimental data. However, 

an accurate simulation of the curve cannot be obtained if one sig- 

nificant error (for example a factor 2 on one rate constant) is made, 

because it cannot be compensated by changes on other parameters. 

Interestingly, k DP is found lower for example for ELUM V2 than 

ELIUM V1. This might be in link with the presence of comonomers 

working as “internal stabilizers”. In the future, a more thorough 

description of the unzipping reaction would be based on a scheme 

closed to copolymerization process: 

− − −M 1 − M 1 
◦ → − − −M 1 

◦ + M 1 k DP 11

− − −M 2 − M 1 
◦ → − − −M 2 

◦ + M 1 k DP 21

− − −M 1 − M 2 
◦ → − − −M 1 

◦ + M 2 k DP 12

− − −M 2 − M 2 
◦ → − − −M 2 

◦ + M 2 k DP 22

Where M 1 is MMA and M 2 a comonomer, such as typically k DP11 

>> k DP12 for example.

4.3. Degradation mechanism in presence of oxygen 

According to Scheme 4 , two kinds of alkyl radicals can be gen- 

erated during PMMA or ELIUM® thermolysis and both can react 

with oxygen to give a hydroperoxide. 



Table 3

Kinetic parameters for degradation used for fitting mass loss curves ( Figs. 2 and 7 ). k obs comes from Fig. 2 and k obs 
∗ from Eq. 19. 

T ( °C) [V] (mol l -1 ) k v (s -1 ) k i (s -1 ) k DP (s -1 ) k t (l mol -1 s -1 ) k obs (s -1 ) k obs 
∗ (s -1 ) k 1 (s -1 ) k 2 (l mol -1 s -1 ) k 3 (l mol -1 s -1 ) k 5 (l mol -1 s -1 )

ELIUM V2 230 1 2.3 ×10 -3 1.1 ×10 -5 110 5.0 ×10 7 4.9 ×10 -7 4.1 ×10 -7 7.0 ×10 -4 1.0 ×10 5 320 5.0 ×10 7

ELIUM V2 250 1 2.3 ×10 -3 2.75 ×10 -5 200 1.1 ×10 -6 1.2 ×10 -6 1.25 ×10 -3 1.0 ×10 5 650 5.0 ×10 7

ELIUM V1 250 1.5 2.3 ×10 -3 2.0 ×10 -5 375 1.3 ×10 -6 1.9 ×10 -6 - - - -

PMMA 250 0 - 4.0 ×10 -5 450 2.8 ×10 -6 3.2 ×10 -6 - - - -

ELIUM V2 270 1 2.3 ×10 -3 3.5 ×10 -5 550 5.1 ×10 -6 3.7 ×10 -6 3.5 ×10 -3 1.0 ×10 5 1225 5.0 ×10 7

ELIUM V1 270 1.5 2.3 ×10 -3 4.0 ×10 -5 800 4.6 ×10 -6 5.7 ×10 -6 - - - -

PMMA 270 0 - 5.5 ×10 -5 720 5.7 ×10 -6 6.0 ×10 -6 - - - -

ELIUM V2 290 1 2.3 ×10 -3 5.5 ×10 -5 1400 1.6 ×10 -5 1.2 ×10 -5 - - - -

ELIUM V1 290 1.5 2.3 ×10 -3 9.0 ×10 -5 2100 1.2 ×10 -5 2.2 ×10 -5 - - - -

PMMA 290 0 - 7.0 ×10 -5 1450 1.8 ×10 -5 1.4 ×10 -5 - - - -

PMMA 310 0 - 11 ×10 -5 2400 3.8 ×10 -5 2.8 ×10 -5 - - - -

E a (kJ mol -1 ) ELIUM V2 60.1 101.4 0 140.2 - 179.6 0 76.3 0

ELIUM V1 92.0 105.3 135.3 - - - - -

PMMA 41.4 73.3 113.5 - - - - -

From a kinetic point of view, the rate constant for the reac- 

tion P ° + O 2 → POO ° (k 2 ) is reported to be about 10 8 l mol −1 

s −1 [34] whereas the solubility in polymers is about 10 −3 mol l −1 

[35] . The balance between the rate of oxidation and unzipping is

given by k 2 [O 2 ]/k DP ~ 10 5 /k DP and clearly exceeds 1 for all tem- 

peratures under investigation. In other words, an oxidation mech- 

anism takes place and predominates. However, MMA is the main

volatile product (like under inert atmosphere) meaning that rad- 

icals are mainly located by chain ends meanwhile random chain 

scission seem to co-exist with chain ends unzipping. Basing on ex- 

isting literature, a speculative mechanism can be proposed (see 

“Appendix 2”), despite more analytical data are needed to vali- 

date it. We thus tried to model the effect of oxygen on mass loss 

rate by adding the mechanisms (summarized as 1, 2, 3 and 5 re- 

actions) derived from the Basic Autooxidation Scheme to the un- 

zipping scheme presented in the previous section. The complete 

scheme becomes: 

Initiation by thermolysis : Ends → P 

◦ ( k i )

Depropagation : P n 
◦ → P n −1 

◦ + M ( k DP )

Bimolecular termination : 

P 

◦ + P 

◦ → stable product ( k t ) 

Initiation by hydroperoxides decomposition : 

POOH → 2P 

◦ + H 2 O + Volatile ( k 1 )

Propagation : P 

◦ + O 2 → POO 

◦
( k 2 )

Propagation : POO 

◦ + PH → POOH + P 

◦ ( k 3 )

Bimolecular termination : P 

◦ + POO 

◦ → inactive product ( k 5 )

Of course, this is a simplified view of the complete degradation 

mechanisms: or example the termination between POO ° and POO °
is not taken into account here. This latter actually predominates 

under enhanced oxygen pressures [36] which is not the case here, 

and adding it to the mechanistic scheme would induce a supple- 

mentary parameter to be determined. 

In a first approach, it was chosen to present here the “simplest”

scheme (with the advantage of a very limited number of adjustable 

kinetic parameters. This mechanistic scheme leads to the following 

differential system: 

d [ P ◦] 

dt 
= k i [ P H ] − 2 k t [ P 

◦] 
2 + 2 k 1 [ P OOH ] − k 2 [ P 

◦] [ O 2 ]

+ k 3 [ P OO 

◦] [ P H ] − k 5 [ P 
◦] [ P OO 

◦] (20) 

d [ P OO 

◦] 

dt 
= k 2 [ P 

◦] [ O 2 ] − k 3 [ P OO 

◦] [ P H ] − k 5 [ P 
◦] [ P OO 

◦] (21) 

d [ P OOH ] 

dt 
= −k 1 [ P OOH ] + k 3 [ P OO 

◦] [ P H ] + k 5 [ P OO 

◦] [ P ◦] (22) 

We assumed here that termination between P ° and POO ° gen- 

erates dialkylperoxides kinetically equivalent to hydroperoxides in 

term of decomposition. 

The mass of released volatiles (i.e. reactive substrate with ab- 

stractable hydrogen to generate hydroperoxides POOH) is given 

by: 

d m p / m p0 

dt 
= −M 0 

ρ
( k i [ P H ] + k DP [ P 

◦] )

+ 32 

ρ
k2 [P

◦][O2 ] − 18 + M 1 

ρ
k 1 [ P OOH ] (23) 

And for unpolymerized volatiles groups:

d m v / m v 0 

dt 
= −M 0 

ρ
( k v ap [ V ] ) (24) 

M 0 is the molar mass of a monomer unit released from un- 

zipping reaction (100 g mol −1 ). M 1 is the molar mass of a volatile 

compound ejected from the decomposition of alkoxy. This is an ad- 

justable parameter since many kinds of volatiles are released (see 

for example Scheme 5 ). The overall mass changes are thus given 

by: 

dm 

dt 
= 

m v 0 × d m v / m v 0 
dt 

+ m p0 × d m p / m 20

dt 

m v 0 + m p0 

(25) 

The corresponding script is given in Supplementary Information 

file. To simulate the experimental results, it remains now to assess 

the kinetic parameters as explained below: 

1 © The oxygen concentration is on the order of [O 2 ] = 10 −4 l 

l −1 mmHg −1 = 0.003 mol l −1 [35] .

2 © k 3 (for the POO ° + PH → POOH + P °) propagation reaction

corresponds to a mechanism involving chain methylene predomi- 

nates. Using the relation reported by Korcek [37] : 

log k 3 ( 30 

◦C ) = 16 . 4 − 0 . 0477 . BDE (26) 

E 3 = 0 . 55 

’ 
( BDE − 261 . 5 ) (27) 

k 3 and E 3 were calculated using BDE = 395 kJ mol −1 (i.e. a value 

close to the case of methylenic groups in PE). Interestingly, E 3 < 

E aDP which means that unzipping is favored at high temperature 



whereas oxidation would predominate at lower temperatures and 

possibly in use conditions. 

3© According to [38],  the reactivity of alkyl is very high which 

justifies that kt  (P° + P° ) ~ k  5 (P° + POO° ) with an activation energy 
close to 0. 

Finally, three adjustable parameters remain: 

- k 1 expresses the (un)stability of hydroperoxides. This value is

not, to our knowledge, documented in PMMA. Its value is di- 

rectly linked to the length of the “induction period” for mass

loss (see Fig. 6 ).

- k 2 is usually reported to be about 10 8 l mol −1 s −1 , and it is

usually observed k 2 ~ k 5 . Its value is not observed to be tem- 

perature dependent. Here, k 2 was adjusted in particular to fit

the slope of the main mass loss stage under oxygen. Its value

was found lower but this difference can originate from the sim- 

plifications in the mechanistic scheme.

- M 1 value also triggers the shape of mass loss curve after induc- 

tion period. On one side, the molar mass of volatiles is low for

compounds envisaged in the mechanism given in Appendix 2

(69 g mol −1 for formaldehyde + carbon dioxide, 102 g mol −1

for methyl pyruvate), but on the other side, chain scissions oc- 

curring on two close units can generate bigger volatile species.

Here, M 1 was arbitrarily fixed equal to 85 g mol −1 but it is clear

that a more thorough identification of volatiles are needed.

The final set of rate constants permitting a fair fitting of degra- 

dation under oxygen starting from the degradation model under 

oxygen is given in Table 3 . We emphasize that a deeper insight in 

the understanding of the mechanism is required to justify those 

rate constants in terms of structure-properties relationships. 

5. Conclusions

This paper investigates the thermal degradation under nitrogen 

or in presence of oxygen of ELIUM® resins, together with PMMA 

chosen as a model system. Degradation was monitored in situ by 

TGA (mass loss), together with a study of macromolecular architec- 

ture by T g measurements using DSC and molar mass measurement 

by GPC. Experimental data showed that thermal degradation under 

nitrogen displayed two significant features: it is auto-decelerated 

with minor changes on polymer skeleton whereas degradation 

in presence of oxygen displays an auto-acceleration and strong 

macromolecular changes. It led us to a first kinetic model derived 

from the mechanistic scheme for unzipping (depolymerization) un- 

der inert atmosphere with supplementary reaction derived from 

the basic autoxidation scheme under oxygen. Despite the use of 

a limited number of adjustable parameters, reasonable simulations 

can be obtained at least for the moderate conversion degrees (up 

to 50% mass loss) with kinetic parameters being almost the same 

for PMMA and ELIUM® resins. The next step would be to better 

precise for example the depropagation step in the case of ELIUM®

resins which are very often copolymers so that depropagation step 

is actually comparable to the scheme established for co-oxidation 

or copolymerization. 
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Appendix 1. First order diagrams for mass loss curves 

Fig. 10. First order diagrams for kinetics of mass changes for PMMA (a) and ELIUM® V1 and V2 (b) under N 2 at different temperatures. The slopes are related to the first

order mass loss equation (see “Discussion”) and are given in Table 3 as k obs .

https://doi.org/10.1016/j.polymdegradstab.2021.109523


Appendix 2. Proposal of a degradation mechanism 

According to Scheme 4,  two kinds of alkyl are formed and lead 

to at least two kinds of hydroperoxides, the possible decomposition 

products of which being given in Scheme 5: 

Scheme 5. Decomposition of hydroperoxides in PMMA and ELIUM® resin.

Scheme 6. Oxidation mechanism involving methyl ester group.

However, one sees that such a mechanism only converts 1a 

alkyl radicals into 2a ones, and 2a into 1a, i.e. that reactive species 

remain located on chain ends. It does not explain why molar mass 

of PMMA chain decrease very fast (see our results in “4.1. Nature of 

the mechanisms involved under inert atmosphere or in presence of 



Scheme 7. Oxidation mechanism involving the methylene group.

oxygen” or in ref [39] ) and the faster degradation ( Fig. 6 ) observed 

under oxygen compared to under nitrogen. 

Another mechanism can be envisaged. It is based on the radi- 

cal of CH groups hold by repetitive units randomly located in the 

polymer chains for example by many kinds of radicals (for example 

HO °, or peroxy radicals…). Three reactive groups can be envisaged: 

- methyl in α position if tertiary carbons, which should be very

stable,

- methylene –CH 2 , and methyl groups in α position of ester,

which are expected to be more reactive.

It is difficult at this stage to quantify the relative proportion

of reactions involving C-H (2) and C-H (3) groups. Both C-H actu- 

ally would display bond dissociation energy close to 390 kJ mol −1 

[ 37 , 40 ]. However, at elevated temperatures such as investigated 

here, it seems that they can easily lead to 1a or 1b radicals. For 

example, after a radical attack, a –O-CH 2 ° radical would be gen- 

erated ( Scheme 6 ). Its decomposition could generate formaldehyde 

together with a carboxyl radical. This latter decomposes into a ter- 

tiary radical that will undergo a chain scission to regenerate 1a and 

2a radicals so that the unzipping can go on. It explains why, even 

under air, methyl methacrylate is the major volatile product (see 

[36] ).

If we consider now the alkyl radicals coming from the radical

attack of methylenes, it seems also that they can rearrange by beta 

scission and give 1a radicals ( Scheme 7 a) [41] . 

In other words, the initiation reaction can be summarized as 

follows: 

POOH → PO 

◦ + HO 

◦

HO 

◦ + R − H → P 

◦ + H 2 O
PO 

◦ → volatile + P 

◦

The decomposition of POOH is supposed to be the limiting step 

whereas the decomposition of radicals is supposed to be very fast. 

Finally, we have: 

POOH → 2P 

◦+ H 2 O + volatiles

For the propagation reaction, according to Billingham [42] or 

Schnabel and coll [39] , the reactivity of chain methylenes could 

prevails and induces the formation of hydroperoxides, decom- 

posing as described in Scheme 7 b. It justifies why chain scis- 

sions would occur randomly (see “4.1. Nature of the mecha- 

nisms involved under inert atmosphere or in presence of oxy- 

gen”). Since each P ° radical created from C-H abstraction re- 

arrange into a “chain end radical”, it can be considered that 

POO ° + RH → POO ° + P °. 
Those reactions justify to implement the Basic Autoxidation 

Scheme (see part “4.3. Degradation mechanism in presence of oxy- 

gen”). 
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