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Abstract. The viscoplastic behavior of polycrystalline Mg2SiO4 wadsleyite aggregates, a major high pressure
phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging
several scale transition models. At the very fine nanometric scale corresponding to the dislocation core struc-
ture, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory ex-
perimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–
Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equa-
tions are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain
scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition
models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme
of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT
based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and
heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and
temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical
tests conducted at strain-rates typical for laboratory experiments.

Keywords. Earth mantle, Multiscale modelling, Dislocations, Polycrystal, Viscoplasticity.

∗Corresponding author.

mailto:olivier.castelnau@ensam.eu
mailto:katell.derrien@ensam.eu
mailto:ritterbex.sebastian_arthur_willem.us@ehime-u.ac.jp
mailto:philippe.carrez@univ-lille.fr
mailto:patrick.cordier@univ-lille.fr
mailto:moulinec@lma.cnrs-mrs.fr


1. Introduction

The flow of rocks in the Earth’s mantle controls many large-scale geodynamic processes. Among 
them, mantle convection is of primary importance since it constitutes the main mechanism for 
the Earth to evacuate internal heat, and it drives continental drift and associated seismic events. 
Quantitative modeling of mantle convection, which also allows investigation of past dynamics 
and prediction of future events, depends on our understanding of the rheology of rocks under 
thermo-mechanical conditions that prevail in the Earth’s interior.

The Earth’s mantle extends to ca. 2900 km depth where pressure reaches 130 GPa and tempera-
ture is exceeding 3000 K. In response to increasing pressure and temperature with depth, minerals 
observed in rocks from the upper mantle transform at depth to denser assemblages. These phase 
transitions are responsible to global discontinuities of the velocities of seismic waves across the 
corresponding depths. The 410 km discontinuity is generally thought to be caused by the phase 
transition of olivine (the low pressure phase of (Mg,Fe)2SiO4) to wadsleyite and the 520 km dis-
continuity by the phase transition of wadsleyite to ringwoodite. These phase transitions give rise 
to the so-called transition zone which ends at the 670 km discontinuity where the lower mantle 
begins.

The transition zone is a major layer between the upper and lower mantles and is expected to 
influence the whole mantle convection depending on its rheological properties. Information on 
the mechanical properties of rocks come primarily from laboratory mechanical tests. This 
experimental approach is however rendered very challenging since the P , T conditions are in the 
range of 15 GPa and 1600 K for wadsleyite in the upper transition zone. Furthermore, rheological 
laws deduced from laboratory experiments at strain-rates of typically 10−5 s−1 need to be 
extrapolated by ∼10 orders of magnitudes to the extremely low strain-rate conditions (ca. 10−15 s
−1) prevailing during Earth’s mantle convection.

In that context, the computational approach is an alternative to infer the viscoplastic 
behavior of mantle rocks and offers the potentiality to tackle the extremely low strain-rate 
conditions issue, provided all relevant and physical-based deformation mechanisms at play in 
the mantle are properly taken into account. However, this requires bridging several 
characteristic length scales, from sub-nanometer to sub-meter. To be able to glide, dislocations 
must overcome their intrinsic lattice friction, which strongly depends on their structure at the 
atomic scale (sub-nm). Core structures of dislocations belonging to given slip systems can be 
calculated using the Peierls–Nabarro–Galerkin method [4], relying on first principle simulations 
of generalized stacking fault (GSF) surfaces. This allows addressing accurately the effect of 
pressure on atomic bonding. Intrinsic lattice friction is then calculated and quantified by the 
Peierls potential. At finite temperatures, dislocation glide mobility results from thermally-
activated motion of dislocations over their Peierls potentials. The obtained energy barriers for 
dislocation glide can then be combined with Boltzmann statistics to provide a constitutive 
relation at the grain level (mm scale), for each available slip systems [5, 6].

To address the rheology of polycrystalline aggregates (sub-m scale), a second scale transi-

tion, from the grain to the polycrystal, must be carried out. In minerals, this is another diffi-cult 
task as few independent slip systems are generally available. For example, olivine exhibits less 
than 4 independent dislocation slip systems leading to an extreme viscoplastic anisotropy at the 
grain scale and, as a consequence, a quite challenging application of mean-field homog-
enization methods. Indeed, as shown by Pierre Gilormini [7, 8], many earlier homogenization 
methods provides an unrealistically stiff (i.e. violating a rigourous upper bound) estimation of 
the effective rheology. Using the more advanced Partially Optimized Second-Order (POSO) Self-
Consitent (SC) estimate proposed by [9], it has been shown that the overall viscoplastic behav-
ior (flow stress and stress sensitivity) in olivine is controlled by the behavior of accommodation



mechanisms (dislocation climb, diffusion, grain boundary sliding, . . .) which are not clearly 
iden-tified yet [10–13]. Moreover, rocks are subjected to very large strain during mantle 
convection, in-ducing the development of pronounced crystallographic textures that can be 
partly characterized by the anisotropic velocities of seismic waves [14]. The associated effective 
viscoplatic anisotropy may strongly influence the mantle flow pattern in-situ [15,16]. However, 
the prediction of in-situ texture distribution is tedious as, besides temperature-related 
mechanisms such as recrystalliza-tion and grain growth, the prediction of deformation texture is 
also sensitive to the used homog-enization scheme [17]. Regarding the transition zone, texture 
development associated with large shear strain have been investigated in [18] for wadsleyite 
using an earlier extension of the SC scheme (the tangent approach of [19]) whose 
inconsistencies have been described in [7, 8] and partly corrected in [20]. In Tommasi et al. 
paper [18], the effective viscosity of wadsleyite and its relation with the active slip systems has 
not been investigated.

The POSO version of the Self-Consistent scheme was up to recently the most accurate mean-

field method for predicting the effective viscoplastic behavior of highly anisotropic materials 
such as mantle rocks. As shown in e.g. [21, 22], this method provides results in very good agree-
ment with computational homogenization (providing reference solutions) e.g. based on the 
Fourier Transform (FFT, sometimes also denoted spectral method) introduced by [3]. Among its 
advantages, the POSO-SC method complies with the variational upper bound [23] that has been 
applied to highly anisotropic polycrystals in [24–26]. However, it lacks duality (stress and strain 
formulations lead to different results) and the link between the behavior of the thermo-elastic 
polycrystal used as a reference (called Linear Comparison Composite, LCC) and the non-linear 
viscoplastic behavior of the real polycrystal of interest requires complex computa-tion of some 
corrective terms [27] that is rarely carried out in practice. The above mentioned limitations of 
POSO-SC have been ruled out recently with the Fully Optimized Second-Order (FOSO) method 
[1, 28], which has, to the best of our knowledge, only been applied yet to porous sea ice [29].

This paper focusses on the rheological behavior of Mg2SiO4 wadsleyite. In Section 2, we pro-
vide the strength of the various slip systems based on computational mineral physics and the cor-
responding P–T dependent constitutive relation at the grain scale. We present in Section 3 how 
the mean-field (FOSO-SC) and full-field (FFT) homogenization schemes have been applied. Re-
sults are then presented and discussed in Section 4 and compared to the available experimental 
results.

2. Viscoplastic behavior of slip systems

2.1. At the dislocation scale from generalized stacking fault energies

The modelling of gliding properties of dislocations in wadsleyite has been initiated by Ritterbex
et al. [6] for the Mg end-member of (Mg,Fe)2SiO4, i.e. the pure magnesian Mg2SiO4 composition. 
The first step of the model is to identify the most important slip systems and to determine the 
specific atomic arrangements which build the dislocation core. Such calculations are usually 
performed at the atomic scale. However, the long range displacement fields of dislocations 
impose the use of classical molecular dynamic simulation instead of highly accurate density 
functional theory based ab-initio calculations.

Another option to compute dislocation core properties is to use the Peierls–Nabarro model 
which relies on generalized stacking fault (GSF) energies. GSF’s probes the ability of a perfect crys-
tal structure to undergo a rigid body shear localized in a specific plane, and, combined with the 
Peierls–Nabarro approach, allows to search for potential easy slip systems of any crystalline ma-
terials. More importantly, such calculations do not require supercells containing large numbers



Figure 1. Dislocation modeling in Mg2SiO4 wadsleyite at 15 GPa (a) Generalized Stacking 
fault calculated by [30] for a {101} plane. The easy shear path is along 〈111〉. (b) Dislocation core 
profile for a 1/2〈111〉{101} dislocation calculated from the Peierls–Nabarro Galerkin method. S 
is the disregistry profile.

of atoms so they can be performed by using ab initio methods, ensuring that the effect of high 
pressure on bond energy or ion interactions is accurately taken into account. In orthorhombic 
wadsleyite (lattice parameters a = 5.70 Å, b = 11.44 Å, c = 8.26 Å at 18.5 GPa), the easiest slip sys-
tems are [100](010) and 1/2〈111〉{101}. An example is provided in Figure 1a which shows a GSF 
calculated in a {101} plane at 15 GPa. On the vertical axis is represented the excess energy asso-
ciated with a rigid body shift in the considered plane. One can deduce that in {101} planes, the 
easiest shear path is along 〈111〉 directions.

As recalled above, the GSF serves as input for the Peierls–Nabarro model used to compute 
dislocation core structures by minimization of the total energy of the system composed of the 
elastic strain energy and the inelastic stacking fault energy across the potential glide planes. 
Ritterbex et al. [6] used a generalization of the Peierls–Nabarro model in the framework of the 
element-free Galerkin method which allows for the introduction of multiple glide planes in order 
to describe more general core structures involving spreading in several planes. In wadsleyite, for 
all slip systems considered, dislocations exhibit a planar core involving two well-separated partial 
dislocations enclosing a stacking fault (see an illustration in Figure 1b).

Besides the core structure, i.e. the atomic arrangement within the vicinity of the dislocation 
core, Ritterbex et al. computed the lattice friction experienced by dislocations on each slip sys-
tem. The amount of lattice friction is often described as the height of the Peierls potential or 
quantified through the maximum of the derivative of the potential, the Peierls stress. Neverthe-
less, whereas Peierls stress or Peierls potential are strictly related to the core of dislocations, the 
glide of dislocations at finite temperature is thermally activated. Thermal activation means that 
glide at finite temperature is controlled by the nucleation and propagation of unstable kink-
pairs over the Peierls barrier, assisted by the resolved shear stress. Ritterbex et al. provided a full 
de-scription of these kink processes according to an elastic interaction model [31]. For 
wadsleyite, since dislocations are dissociated, the kink-pair mechanism may involve different 
types of kink nucleation events depending on the stress regime. Indeed, kink nucleation must 
occur on both partials with sequences of events that can either be correlated or uncorrelated 
leading to dis-tinct nucleation enthalpy depending on the stress regime [32]. Finally, from the 
kink-pair nucle-ation enthalpy, the dislocation velocity law can be formulated as a function of 
temperature and resolved shear stress. The corresponding constitutive relation has to account 
for these two stress



Table 1. Rheological parameters of 1/2〈110〉{110} and [100](010) screw dislocations in
wadsleyite at 15 GPa for τ≥ τc . Units are m·s−1 for A, J for B , and MPa for τ

τc τp Ac Bc αc βc Au Bu αu βu

1/2〈111〉{101} 455 3500 2190 1.97×10−18 0.5 1.6 4380 8.49×10−19 1.0 5.0
[100](010) 4800 1208 2×10−18 0.5 1.03

regimes, leading to two different expressions of the shear-rate on the slip system

γ̇c (τ) = Ac
p
ρm exp

{
− Bc

kbT

[
1−

(
τ

τp

)αc
]βc

}
(1)

γ̇u(τ) = Au
p
ρm

τ−τc

τ
exp

{
− Bu

kbT

[
1−

(
τ−τc

τp

)αu
]βu

}
(2)

where indexes c and u stand for correlated and uncorrelated kink-pair nucleation regimes,
respectively. Here, ρm is the density of mobile dislocations, T is the temperature, τp is the
Peierls stress, A and B are two constants, and kb ' 1.3806×10−23 m2·kg·s−2·K−1 is the Boltzmann
constant. A is related to the shear-rate at τ= τc , marking the transition stress between correlated
and uncorrelated regimes, whereas B is an activation energy. The resolved shear stress τ acting
on the slip system is given by

τ= S :σ (3)

where S is the Schmid tensor (see Appendix A), σ the local deviatoric stress tensor, and “:” the
twice contracted product. The resulting shear-rate on a given slip system is given by

γ̇(τ) = γ̇c (τ) (4)

when τ≤ τc and

γ̇(τ) = 1
2 [γ̇c (τ)+ γ̇u(τ)] (5)

otherwise. For waldsleyite, the modelling that has been performed for dislocations with screw
character which are the rate-limiting ones. The easiest slips include the family 1/2〈111〉{101}
with four individual slip systems (1/2[111̄](101), 1/2[11̄1̄](101), 1/2[111](101̄), 1/2[11̄1](101̄)),
and the additional system [100](010). At stresses higher than τc = 455 MPa as considered here,
the rheology of 1/2〈111〉{101} screw dislocations at 15 GPa is governed by (5) whereas that for
[100](010) is given by (4). The corresponding rheological coefficients are indicated in Table 1.
Finally, the local strain-rate ε̇ at position x inside a grain, resulting from the glide of dislocations
on all slip systems, is given by

ε̇(x) =
S∑

s=1
S(s)γ̇(s)(x) (6)

with S(s) the Schmid tensor for system (s) and S (= 5) the number of slip systems. Note that the 
four systems 1/2〈111〉{101} are independent and do not allow axial strain of the crystal lattice 
along the lattice direction b (see Appendix A). The fifth system [100](010) does not add any 
additional degree of freedom, and therefore the wadsleyite crystal is left with only four 
independent slip systems. As discussed in [13, 33], four systems are sufficient to accommodate 
locally any viscoplastic deformation of the polycrystalline aggregate.



2.2. Power law approximation of slip system behavior

Although homogenization models could in principle be applied with constitutive relations hav-
ing an exponential form as (4) and (5), it is more common to use instead a power-law behavior

γ̇pl = γ̇0

∣∣∣∣ ττ0

∣∣∣∣n−1 τ

τ0
(7)

where the index pl stands for power-law. This is the form commonly implemented in homoge-
nization codes. Here, γ̇0 and τ0 are two constants to be determined, a reference shear-rate and a
reference shear stress, respectively. We consider here the value γ̇0 = 10−5 s−1 as a typical strain-
rate achieved during laboratory mechanical tests. Form (7) can be seen as a power-law approxi-
mation of (4) or (5) valid in a range of τ values close to a given reference value denoted τr . To find
τ0, one expresses that the power-law approximation is tangent to the exponential form at τ= τr :

γ̇pl (τr ) = γ̇(τr ) ,
∂γ̇pl

∂τ

∣∣∣∣
τ=τr

= ∂γ̇

∂τ

∣∣∣∣
τ=τr

. (8)

This leads to the following expression for the stress exponent n

n = ∂ log γ̇

∂ logτ

∣∣∣∣
τ=τr

= τr

γ̇(τr )

∂γ̇

∂τ

∣∣∣∣
τ=τr

(9)

while the reference stress τ0 reads

τ0 = τr

(
γ̇(τr )

γ̇0

)−1/n

. (10)

These can be calculated using the following expressions for the derivatives in (9)

∂γ̇c

∂τ
= −a exp

{
b

[
1−

(
τ

τp

)α]β}
αβb

τ

(
τ

τp

)α (
1−

(
τ

τp

)α)β−1

(11)

∂γ̇u

∂τ
= a exp

{
b

[
1−

(
τ−τc

τp

)α]β}{
τc

τ2 − αβb

τ

(
τ−τc

τp

)α (
1−

(
τ−τc

τp

)α)β−1
}

(12)

with a = A
p
ρm , b =−B/(kbT ), and with indexes c and u left for the sake of clarity.

Power-law approximations of the exponential constitutive relations have been calculated
under typical conditions corresponding to high P , T laboratory mechanical tests, i.e. considering
a density of mobile dislocations ρm = 1012 m−2 and a strain-rate γ̇ = γ̇0 (leading to τ0 = τr ). It
is observed that the power-law provides a very good approximation of the original exponential
behavior, as illustrated in Figure 2a at 1700 K. The resulting power-law parameters are provided
in Figure 2b for a large temperature range. It turns out that the rheology of the various slip systems
is strongly non-linear. Values of n are between ∼17 and 100 for the considered temperature range,
with a different behavior for both slip systems. Moreover, the reference shear stress for the system
[100](010) is significantly stiffer (∼3 times) than for 1/2〈111〉{101}.

3. Polycrystal modeling

We now proceed to the next scale transition, i.e. estimation of the effective (average) viscoplastic
behavior of a representative polycrystalline aggregate composed of a large number of grains.
We consider the case for which grains are randomly oriented (random crystallographic texture)
and exhibit equiaxed shapes so that the effective behavior can be considered as isotropic. In the
sequel, effective (or homogenized) quantities are denoted with a tilde (̃.) and volume average
ones with a bar (̄.). The effective viscoplastic behavior thus reads

˙̄εeq = γ̇0

(
σ̄eq

σ̃0

)ñ

(13)



Figure 2. (left) Power-law approximations of the slip system behaviors for wadsleyite at γ̇=
10−5 s−1: comparison of the original exponential constitutive relation with its power-law
approximation (fit) at 1700 K. (right) Evolution of τ0 and n of the power-law approximations
of the slip system behavior at γ̇= 10−5 s−1, for various temperatures.

where σ̄eq is the effective von Mises equivalent stress (σ̄eq = √
(3/2)σ̄i j σ̄i j ), ˙̄εeq is the effective

von Mises equivalent strain-rate (˙̄εeq =
√

(2/3)˙̄εi j ˙̄εi j ), where σ̄ = 〈σ(x)〉 and ˙̄ε = 〈ε̇(x)〉 are the
mean deviatoric stress and strain-rate tensors respectively.

To estimate the effective reference stress σ̃0 and effective stress sensitivity ñ, and to investi-
gate how the stress/strain-rate are distributed within grains, we make use of two scale transition
methods, the mean-field FOSO-SC scheme recently proposed by [1] and the full-field computa-
tional homogenization based on the FFT method [3]. All results below have been obtained for
uniaxial deformation under a prescribed macroscopic strain-rate ˙̄εeq = γ̇0, so that σ̄eq = σ̃0.

3.1. Mean-field approach—FOSO-SC scheme

Mean-Field homogenization of heterogeneous materials is relatively straightforward when the
mechanical behavior of each mechanical phase (i.e. grains with given orientation) is linear and
homogeneous. This is the case for linear thermo-elastic polycrystalline aggregates where the local
constitutive relation for a phase p reads

ε(x) = M(p) :σ(x)+ε(p)
0 (14)

where M(p) and ε(p)
0 only depend on the crystal orientation of the considered grain. This leads to

an effective behavior of the same form

ε̄= M̃ : σ̄+ ε̃0. (15)

In that case, to estimate the effective compliance given by

M̃ = 〈M(x) : B(x)〉, (16)

with B the stress concentration tensor of the purely elastic problem (i.e. when ε(p)
0 = 0) defined

as σ(x) = B(x) : σ̄, it is sufficient to estimate the phase-average of B, denoted 〈B〉(p). Indeed, the
volume integral in (16) can be transformed into a discrete sum over all mechanical phases

M̃ =∑
p

fp M(p) : 〈B(x)〉(p), (17)

with fp indicating the volume fraction. This is why mean-field homogenization is very efficient
numerically.



The situation for non-linear polycrystals as considered here is more complex as the local com-
pliance M(x) defined after (6) depends on the local stress state which is itself heterogeneously
distributed within deforming grains [34]. The solution (17) therefore cannot be used directly. The
standard approach to address this issue relies on a linearization of the non-linear polycrystal of
interest in order to end up with a thermo-elastic-like material (LCC), exhibiting the same mi-
crostructure as the original non-linear one, but for which the standard thermo-elastic homoge-
nized solution applies. Finding the proper linearization procedure is a difficult task, this is why
several propositions can be found in the literature (some of them are listed below). The exact link
between the effective behavior of the non-linear polycrystal and of the linearized thermo-elastic
one is another difficulty that has often been left aside [27]. The impact of the used linearization
procedure on the effective behavior becomes critical for highly non-linear materials or, equiva-
lently, highly anisotropic local behavior or high mechanical contrast between the phases. As seen
in the previous section, waldseyite exhibits both very high non-linearity and anisotropy, which
constitutes a challenge for mean-field homogenization.

The most advanced linearization procedure nowadays, that we will use here, is the Fully
Optimized Second Order (FOSO) scheme proposed recently by [1]. In short, starting from a
variational formulation of the problem, the optimal linearization, leading to the definition of the
linear thermo-elastic comparison material, is defined as an optimization problem. Compared
to the Partially Optimized (POSO) formulation [9], full optimization could be carried out in
FOSO, hence the name. This formulation has several significant advantages compared to the
previous POSO one: (i) there is no duality gap, i.e. stress and strain-rate formulations yield similar
results, (ii) stress and strain-rate field statistics in the linearized and non-linear polycrystals
are identical, there is no need to compute the corrective terms as in [27]. As POSO, the FOSO
approach complies by construction with the known upper bounds for the effective behavior.
First application of FOSO-SC to viscoplastic porous hexagonal polycrystals (similar to sea ice)
yields a rheology in very good agreement with the reference results obtained by the FFT full-field
homogenization [29]. In the FOSO-SC approach, the local behavior of the linear thermo-elastic
comparison polycrystal reads, at the slip system level,

γ̇(s)(x) = m(p)
(s) τ(s)(x)+ ė(p)

(s) (18)

where the compliance m(p)
(s) and stress-free strain-rate ė(p)

(s) depend on both the first moment

τ̄
(p)
(s) = 〈τ(s)(x)〉(p) and second moment ¯̄τ(p)

(s) = 〈τ2
(s)(x)〉(p) of resolved shear stress in the mechanical

phase p:

m(p)
(s) = γ̇(τ̂)− γ̇(τ̌)

τ̂− τ̌ , ė(p)
(s) = γ̇(τ̌)−m(p)

(s) τ̌ (19)

with τ̌ and τ̂ defined as

τ̌= τ̄−
√

1−α
α

√
¯̄τ− τ̄2 sign(τ̄), τ̂= τ̄+

√
1−α
α

√
¯̄τ− τ̄2 sign(τ̄). (20)

In (20),
p

¯̄τ− τ̄2 is the standard deviation of the shear stress distribution acting on the slip system.
Using the value α= 0.5 recommended in [1], τ̌ and τ̂ are therefore one standard deviation below
and above the mean value τ̄.

In comparison, the POSO formulation can be obtained using τ̌ = τ̄ and the same definition
for τ̌ as in (20) while the variational upper bound of [23] corresponds to τ̌ = 0 and τ̂ = ( ¯̄τ)1/2. On
the other hand, the earlier affine scheme [20], which is not based on a variational formulation,
would be obtained by taking the limit of (19) for α→ 1, therefore not making use of the shear
stress fluctuation at the slip system level. The even earlier tangent formulation of [19] applied
to wadsleyite in [18] is based on a similar formulation as the affine one but with a compliance
divided by n and ė(p)

(s) = 0.



Figure 3. Typical periodic microstructure considered for FFT computations.

Application to wadsleyite has been performed considering equiaxe grain shapes and using a 
set of 2000 crystal orientations generated by a Sobol quasi-random sequence, that provides better 
overall isotropy than the random orientation usually chosen. As already mentioned, wadsleyite 
exhibits highly anisotropic and non-linear behavior at the grain scale, and this makes the nu-
merical convergence of the FOSO-SC model rather delicate. The used numerical procedure is de-
tailed in Appendix B. It is worth noting that the model converges without having to introduce any 
additional unphysical slip systems often used in the literature to reach a total of 5 independent 
slip systems.

3.2. Full-Field approach—FFT numerical homogenization

The FFT method [3] relies on the 3D microstructure of the considered polycrystal, which consti-
tutes the unit cell, submitted to periodic boundary conditions. This unit cell is discretized into 
N1 × N2 × N3 voxels. This discretization determines a regular grid in the cartesian space xd and a 
corresponding grid in the Fourier space ξd . The heterogeneous problem of a polycrystal exhibit-

ing a different compliance M(x) at each position (x) is rewritten equivalently as a homogeneous 
problem with an arbitrary homogeneous compliance M0 and an additional unknown stress-free 
strain-rate (or polarization) field. The solution is given by a convolution of the Green tensor as-
sociated to M0 with the polarization field of interest. In the Fourier space, this convolution turns 
into a direct product, hence the very high numerical efficiency of the method. An iterative 
scheme must be implemented to obtain, upon convergence, the compatible strain-rate field 
associated to the balanced stress field for nonlinear rheology, as detailed in [2]. This FFT method 
provides the “exact” solution (apart purely numerical errors) for the considered microstructure, 
but re-quires significantly more computing ressources than mean-field estimations. Another 
advantage of such full-field homogenization is that details of stress and strain-rate distributions 
within the microstructure can be obtained.

For the application to wadsleyite, the considered microstructure is a periodical three-
dimensional unit cells randomly generated by Voronoi tesselation, and containing 1000 grains 
(Figure 3). Crystal orientations are chosen according to the Sobol sequence introduced in



Figure 4. Macroscopic response σ̃0 of wadsleyite for various temperatures. Predictions of
FOSO-SC and FFT polycrystal models including dislocation mobility based on the GSF
model are compared to experimental data. The reponse of individual slip on 1/2〈111〉(101)
(τ value for γ̇= 10−5 s−1 as in Figure 2) as well as the static Lower Bound (LB) are shown for
comparison.

Section 3.1, leading to an effective behavior close to isotropic. The unit cell was discretized into 
256 × 256 × 256 voxels. The effective rheology has been obtained by averaging the model output 
for 10 random realizations of such synthetic polycrystalline agregates. The relative statistical un-
certainty of results given below has been estimated according to the method proposed in [35]. 
For example, we found that using 10 random realizations leads to an error of only 0.1% on the 
effective stress σ̃ 0.

4. Results and discussion

Results provided by the 3-scales homogenization approach described above, from the nanometer 
P–T dependent dislocation core structure up to the sub-meter polycrystal scale, is now given for a 
typical strain-rate corresponding to laboratory mechanical tests. The reference FFT solution and 
the FOSO-SC estimate integrate the rheology of individual slip systems obtained by the Peierls–
Nabarro model described in Section 2.

Figure 4 shows the flow stress σ̃ 0 for temperatures ranging between 1100 K and 2100 K. First 
of all, it can be observed that the mean-field homogeization scheme provides an estimation of 
the effective behavior that lies very close to the reference FFT numerical solution. Both 
estimations differ by less than 5% for the four temperatures computed by FFT (see numerical 
values in Table 2 for 1700 K). The FOSO-SC model therefore does an excellent job considering 
the very strong viscoplastic anisotropy of wadsleyite crystals (recall that axial strain along lattice 
direction b is impossible) and non-linearity (n ' 30 at 1700 K). The effective stress σ̃ 0 is found to 
be ∼4.7 times larger than the flow stress of 1/2〈111〉(101) for the whole temperature range 
considered.

Concerning the effective stress sensitivity ñ, it is normally related with those of individual slip 
systems in a complex way due to the mechanical interaction between the grains during



Figure 5. Distribution of (left) normalized equivalent stressσeq/σ̄eq and (right) normalized
equivalent strain-rate ε̇eq/˙̄εeq in a 2D section of a 3D FFT microstructure for wadsleyite at
1700 K.

Table 2. Effective flow stress σ̄eq and standard deviations (SD) of the equivalent stress and
strain-rate as predicted by various extensions of the SC scheme at 1700 K

FFT STAT TGT POSO FOSO AFF VAR TAYLOR
σ̄eq 2497 1232 1699 2198 2611 3128 3232 +∞

SD(σeq)/σ̄eq 1.59 0 1.082 0.856 1.749 2.503 1.678
SD(ε̇eq)/˙̄εeq 1.495 2.898 1.238 2.307 1.239 2.869 1.168 0

ε̇

deformation. The situation for wadsleyite is somehow simplified as both FFT and FOSO-SC 
approaches predict no activation at all of system [100](010). In [13], it has however been shown 
for olivine that even when the activity of accommodation mechanisms could be considered as 
negligeable, their influence on the effective stress sensitivity can be significant. For example, ñ 
during the creep of olivine can hardly exceed a value of 2 when dislocation glide with n = 3.5 is 
accommodated by a linear mechanisms such as Nabarro–Herring or Coble diffusion. Olivine 
however exhibits only 3 independent slip systems, compared to 4 systems for wadsleyite. Here, 
slip on [100](010) does not relax any kinematic constraint for grains deforming with the four 
systems of the 1/2〈111〉{101} family. Consequently, it is observed that system [100](010) has no 
effect on the effective stress sensitivity, and we find numerically that ñ for wadsleyite is exactly 
equal to the n value of 1/2〈111〉{101} slip, already indicated in Figure 2: it lies between 18 and 50 
in the considered temperature range.

The fields of normalized equivalent stress σeq/σ̄ eq and strain-rate ε̇eq/ε̄̇eq within a section of a 
3D microstructure computed by FFT at 1700 K is shown is Figure 5. Large fluctuations are ob-
served between grains (intergranular heterogeneity) but also inside individual grains (intragran-
ular heterogeneity). Hot spots corresponding to high values are clearly visible, they seem to be 
es-sentially located at triple junctions and grain boundaries, but note that locations 
corresponding to large equivalent stresses σeq do often not exhibit at the same time a large 
equivalent strain-rate

eq. In an attempt to quantify the concentration of stress at grain boundaries, we have computed 
for each voxel of the FFT microstructures the distance to the nearest grain boundary. We have 
carefully checked the behavior of many grains, and we show in Figure 6 representative results, for 
the two grains (#98 and #918) indicated in Figure 5. One can observe that there is a slightly smaller 
heterogeneity of the equivalent stress at grain interior for grain #918 compared to voxels close to



Figure 6. Effect of the distance (normalized by the grain size) to the closest grain boundary
on the normalized equivalent stress for (left) grain #98 and (right) grain #918 indicated in
Figure 5. Each dot correspond to a voxel of the grain.

Figure 7. Distribution of normalized equivalent stress σeq/σ̄eq in grains #98 and #918 for
(left) one microstructure and (right) average over 20 random microstructures. Mean values
and standard deviation are also indicated.

grain boundaries, but such trend is not observed in grain #98. The same analysis was performed 
at the polycrystal level, accounting for all grains and voxels. The results are not shown here for 
the sake of conciseness, but a similar trend is observed. What can be said is that the largest 
values of equivalent stresses are observed only within voxels close to grain boundaries, but this 
concerns only a very small volume fraction of the material. The global picture is similar to that 
shown in Figure 6 with no significantly larger stress heterogeneity close to grain boundary. A 
similar analy-sis was carried out in [36] in the case of cubic polycrystals, and a larger effect of the 
distance was found, probably due to the fact that the plastic anisotropy at the grain scale is 
much smaller in cubic materials than for wadsleyite. The authors also mentioned a different 
behavior for hexag-onal polycrystals, but without providing further details. A more detailed 
analysis of grain bound-ary effects and their dependence with the anisotropy and non-linearity 
of the local constitutive relation would be necessary and is left for future work.

To be more quantitative, the distribution of equivalent stress for grains #98 and #918 is shown 
in Figure 7. Figure 7a shows the stress distribution for these grains within a given random 
microstructure. One can observe that they are very different, with an intense narrow peak for 
grain #918 and a broad flat distribution for grain #98. None of these can be described by simple 
functions such as a log-normal. These are typical features encountered in many grains of the 
FFT computations. Stress heterogeneities in grains are due to the viscoplastic anisotropy of the 
grain of interest, related to its crystal orientation, and the mechanical interaction of the grain 
with its surrounding depending on the behavior of neighboring grains, the grain shape, and the 
overall polycrystal behavior. To estimate the relative importance of both sources, we have 
carried



Figure 8. (left) Average values of the local (voxel scale) equivalent stress 〈σeq〉(p)/σ̄eq

in individual grains, and (right) standard deviation of the equivalent stress√
〈σ2

eq〉(p) − (〈σeq〉(p))2/σ̄eq. Only 50 grains are shown out the 1000 grains of the mi-
crostructure.

out FFT computations on 20 microstructures, for which the grains size, shape, and location was
random (based on Voronoi tesselation) but keeping the same set of 1000 crystal orientations.
Doing so, it was possible to compute the stress distribution in grains #98 and #918 for those
20 realizations, in which those grains keep the same orientation but change size, shape, and
are embedded in various environments. Results are shown in Figure 7b. Stress distributions
become more similar in shape but still exhibit different mean and standard deviations. This
analysis was generalized for all grains of the microstructure, and the corresponding mean and
standard deviation of σeq are shown in Figure 8. In this figure, the red dots correspond to the
value obtained for a given random microstructure and the blue dots are the average over 20
microstructures. It is observed that the stress distribution in all the grains is very sensitive to the
specific microstructure considered. The stress fluctuation in a given grain due to microstructural
effects, indicated by the spread of the red dots, is of similar amplitude than the overall stress
fluctuation within the whole polycrystal. In the highly anisotropic and non-linear wadsleyite, the
local mechanical state of a grain is thus affected by its crystal orientation but also significantly by
the behavior of neighboring grains. A consequence of this is that special care should be taken
when interpreting experimental observation of grain deformation. The static bound (STAT in
Table 2), assuming a uniform stress within the whole polycrystal and in which grains deformation
can be estimated by the sole knowledge of grains orientation (or associated Schmid factor), is
therefore not adapted. An experimental illustration of this can be found in [37] in which, for 2D
polycrystalline ice (exhibiting only two easy slip systems), no correlation was found between the
grain Schmid factor and the local deformation.

Coming back to the efficiency of FOSO-SC, a challenge for mean-field homogenization mod-
els is the accurate estimation not only of the effective behavior but also of the spread of the me-
chanical states at the various scales, so that good results at the polycrystal scale are obtained for
good reasons. The distribution of normalized stress and strain-rate over the whole polycrystal,
computed with the FFT homogenization using the 20 random realizations, is given in Figure 9.
Long tails are observed up to values as high as ∼5. We have computed the associated standard
deviations as these quantities can be also computed by mean-field models. They are defined as

SD(σeq) =
√
〈σ2

eq(x)− σ̄2
eq〉, SD(ε̇eq) =

√
〈ε̇2

eq(x)− ˙̄ε2
eq〉. (21)

Numerical values are indicated in Table 2. It is found that results obtained with FOSO-SC are in 
very good agrement with the FFT reference ones, the difference being ∼10% for the stress 
heterogeneity and ∼15% for strain-rates. This is an important result as the partially optimized 
version (POSO) of the SC scheme, which was the best available method since 2002, yields



Figure 9. Probability densities of (left) normalized equivalent stress σeq/σ̄eq and (right)
normalized equivalent strain-rate ε̇eq/˙̄εeq predicted by for the whole 3D microstructure (20
random realizations) at 1700 K.

results that are clearly not as good. The variational bound (VAR) of [23] predicts stress and 
strain-rate heterogeneities that are here relatively close to the FFT reference but, as expected, 
overestimates the effective stress. Other methods not using the intraphase stress heterogeneities 
for the definition of the linear comparison polycrystals, i.e. the tangent (TGT) approach of [19] 
and the affine (AFF) one [20] significantly depart from the FFT results, both for the effective 
behavior and the field heterogeneities. Finally, the static uniform stress bound (STAT) 
completely discards stress fluctuations and underestimate the flow stress by a factor of ∼2, while 
the Taylor uniform strain-rate bound (TAYLOR) cannot apply here due to the lack of 5 
independent slip systems.

The effective response and associated stress and strain-rate heterogeneities in polycrystalline 
aggregates lacking 5 independent slip systems have been studied mostly in HCP materials. 
Hutchinson [33] has shown that in the framework of the linear SC scheme, used in this study to 
compute the linear comparison polycrystal, overall polycrystal deformation is possible with only 
4 independent systems. This result has been shown to apply also for non-linear polycrystals by 
Nebozhyn et al. [26]. The same authors also showed that in ionic polycrystals with only 3 
independent systems, the variational estimate of [23] predicts a flow stress that is proportional 
to the square-root of the mechanical contrast between the slip systems, whereas it 
unrealistically reaches a plateau at high contrasts for the earlier tangent approach of [19]. A very 
good match between the FOSO-SC approach and FFT reference results has been obtained in [1] 
in the case of HCP polycrystals at modest non-linearity (n = 3). The present study shows that 
excellent results are also obtained at a significantly larger non-linearity.

In Figure 4, our numerical results are compared to the available experimental data in the 
literature [38–41]. These experiments take advantage of the latest developments of experimental 
deformation at high P , T conditions. Pressure is created by compressing the sample assembly 
between two opposed anvils. This assembly contains an internal resistive heater to achieve high 
temperature conditions. Deformation in torsion is produced by rotating one anvil. Stress 
measurements are performed by X-ray diffraction using synchrotron radiation by measuring the 
orientation dependence and changes in lattice spacing for several diffracting planes. To ensure 
acquisition of a proper diffraction pattern, the grain size must be maintained small. In all these 
experiments, the grain size was in the range 1–5 µm. Although the dispersion of this 
experimental data set is significant, it concludes consistently that wadsleyite is very strong since, 
despite the high temperature involved (ca. 1500–2000 K), the stress level remains very high: 
several GPa. Our modeling results are in excellent agreement with these observations. It must be 
recalled that our multiscale model relies on the strong assumption that strain is produced by 
dislocation glide only. The Peierls Nabarro model has shown that lattice friction is strongly 
affected by pressure



in this range, partly due to the strong increase of the elastic constants under pressure. Despite 
the small grain size, TEM observations [39–41] agree that dislocation activity is pervasive with 
densities of the order of 1013 m−2 and dislocation configurations which emphasize the key role 
played by glide under high lattice friction (straight dislocations well-confined in glide planes). In 
our dislocation based model, glide overcoming high opposed lattice friction leads to a strongly 
non-linear viscoplastic behavior. Experiments provide limited constraints on stress sensitivity so 
far, but preliminary estimates from [40, 41] suggest stress exponents in the order of 5–6, i.e. 
smaller than predicted here. Although this evidence needs to be consolidated, we can tentatively 
invoke the role played by grain boundaries. As underlined above, the grains sizes in these high-
pressure experiments need to be maintained in the micrometer range. At the high temperature 
investigated, it is likely that some accommodation processes operate at grain boundaries. 
Indeed, evidence for grain boundary sliding and migration was suggested by [39]. In our 
polycrystalline models, the grain size is not taken into account explicitly, but grain boundaries 
are present and act only as barriers to dislocations glide, leading to strain localizations which 
cannot be accommodated by specific grain boundary relaxation mechanisms. It has been 
demonstrated in [13] that these accommodation mechanisms can very efficiently decrease the 
stress exponent. This might reconcile our numerical values to the few experimental data 
available.

To finish with, we would like to come back to possible geophysical implications for in situ 
mantle deformation, in which strain-rates are many orders of magnitude smaller than the one 
considered here. Ritterbex et al. [6] have provided evidence that dislocation glide controls the 
mechanical behavior of wadsleyite at lab conditions, and this allows us, in the present paper, to 
make the link between atomic and grain scales without the need to handle atomic diffusion. In 
contrast, a recent study of Ritterbex et al. [42] handles deformation of wadsleyite at appropriate 
mantle strain-rates and show that climb-controlled deformation is expected to operate rather 
than glide-controlled deformation as treated in this work. Therefore, the current results cannot 
be simply extrapolated to mantle conditions. The present work rather aims to provide a 
theoreti-cal framework which enables to explain the high stress data of deformation 
experiments of poly-crystalline wadsleyite at lab conditions. The same procedure could however 
be applied to these new rheological data, but this is left for future work.

5. Conclusion

This work provides the very first estimation of the rheology of a constituent of the Earth’s mantle 
at relevant pressure and temperature in which scales from the atomistic up to polycrystalline ag-
gregate are bridged together using state-of-the-art scale transition models. Here, the dislocation 
resistance to shear has been computed relying on generalized stacking faults energies incorpo-
ration the strong influence of pressure on atomic bonding, combined with Peierls–Nabarro ap-
proach. The constitutive equation of a slip system involving these dislocations is then obtained 
from the Orowan equation. It shows that, at high temperature and strain-rates representative of 
laboratory experiments (10−5 s−1), the rheology at the slip system level is highly non-linear due 
to the high lattice friction opposed to dislocation glide. The obtained constitutive relation at the 
slip system level has been introduced in the recent Fully Optimized Second Order Self-

Consistent scheme (FOSO-SC) of Ponte Castañeda [1, 28] which allows computing the effective 
viscoplastic behavior at the polycrystal scale. Predictions of the latter approach have been com-
pared with the FFT computational homogenization method [3] that provides reference results, 
in which the same slip system behavior has been introduced. We found that the obtained flow 
stress of wadsleyite polycrystals at 15 GPa matches very well with the available experimental 
results from the literature and lies within experimental uncertainties at least for temperatures 
ranging between 1500 K and 2100 K. This could be obtained thanks to the fast computation 
provided by



the FOSO-SC method. Micromechanical modeling indicates that the stiff slip system [100](010)
is not activated at all and has no effect on polycrystal deformation. Wadleyite therefore deforms
with only the 4 independent systems of the 1/2〈111〉{101} family. The FFT results show that the
deformation of individual grains (mean and standard deviation) in the polycrystalline agregate
is significantly influenced by the behavior of neighboring grains. Finally, comparison with ear-
lier mean-field approaches demonstrates the superior estimations provided by the FOSO-SC
scheme, not only for the effective behavior but also for the overall stress and strain-rate hetero-
geneities.
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Appendix A. Determination of the number of independent slip systems

Cotton and Kaufman [43] proposed a method for determining the number of independent slip
systems in cubic crystals. Here we extend this method to any lattice symmetry. In that case, the
number of independent slip systems not only depends on the Bravais lattice and slip system
indexes, but also on the lattice parameters. For example, out of the six individual slip systems
of the family 1/2〈110〉{110}, only two are independent in the case of a cubic crystal lattice, four
are independent in the case of an orthorhombic crystal, but five for a tetragonal crystal.

Consider a crystal lattice with lattice vectors a, b and c. The reciprocal lattice vectors a∗, b∗

and c∗ are given by

a∗ = b×c

V
, b∗ = c×a

V
, c∗ = a×b

V
, (22)

where V = (a, b, c) is the lattice volume. The vector n normal to a plane of indexes (hkl ) and the
vector b parallel to the Burgers vector of indexes [uv w] are given by

n = ha∗+kb∗+ l c∗, b = ua+ vb+wc. (23)

The strain-rate tensor resulting from dislocations glide on (hkl )[uv w] is proportional to the
Schmid tensor S associated to that system

S = 1
2

(
n̂⊗ b̂+ b̂⊗ n̂

)
(24)

where n̂ and b̂ denote the unit vectors parallel to n and b, respectively. Tensor S is symmetric and 
traceless (S11 + S22 + S33 = 0) since plastic deformation due to dislocation glide is isochoric. 
Therefore, it has only five independent components, S11, S22, S23, S13 and S12.

The number of independent slip systems in the crystal is the rank of the matrix [M ] containing 
as many rows as individual slip systems available in the crystal and five columns filled with the 
five independent components of S for each slip system. When decomposing [M ] in a row echelon 
form [M ]r , for example using the method rref of the python package sympy, the number of 
independent slip systems corresponds to the number of nonzero rows (rows with at least one 
nonzero element) of [M ]r .

Appendix B. Numerical method for FOSO-SC

In this section, we present the numerical method used in this work to solve for the FOSO-SC 
model. It relies on a linearization step to define the LCC, and an inner loop to solve for the LCC.



For the sake of comparison with [1] (their Figure 6), we have computed texture development in
an ice polycrystal made of 500 grain orientations deformed under uniaxial compression up to an
overall strain of 150% (in 300 steps), accounting for the evolution of grain shape, and a rheology at
the grain level with n = 3 and reference shear stresses τ0 for prismatic and pyramidal slips taken
60 times larger than for basal slip. Computation with the algorithm below (Fortran90 code) lasts
20 min using a standard laptop, compared to 20 h as indicated in [1]. This was obtained using a
convergence rate parameter κ= 0.5 (step 6 below) and an accuracy er r = 10−4.

For Wadsleyite, the convergence is a little more delicate because of the high non-linearity and
grain anisotropy. We had to use values of κ ranging between 0.1 and 0.005 while increasing the
stress sensitivity incrementally (steps of ∆n ∼ 5).

B.1. Iterative linearization of the non-linear polycrystal

The outer loop of the numerical method works as follows.

(1) Initial guess: start computing the uniform stress (static) bound, and use this solution as
initial guess for the affine SC model, with the same method as described below but using
the appropriated linearization (see Section 3.1). Then compute the intraphase first 〈σ〉(p)

and second 〈σ⊗σ〉(p) moments of the stress field associated to the affine model (see
Section B.2).

(2) With the guess values of 〈σ〉(p) and 〈σ⊗σ〉(p), compute the local compliance M(p) and
stress-free strain-rate ε(p)

0 of the LCC, Equation (14), according to (3), (6) and the FOSO
linearization (18)–(20).

(3) Solve for the effective behavior (M̃, ε̃0) of the LCC, Equation (15), using the method
described in Section B.2, and compute the associated new moments 〈σ〉(p)

LCC and 〈σ⊗
σ〉(p)

LCC.
(4) Invert (15) to compute the effective stress σ̄ associated to the prescribed strain-rate ˙̄ε.
(5) Computed the following four errors:

max
i , j

|〈σi j 〉(p) − σ̄i j |/max
k,l

(σ̄kl ),max
i , j

|〈ε̇i j 〉(p) − ˙̄εi j |/max
k,l

( ˙̄εkl ),

max
i , j

|〈σi j 〉(p)
LCC −〈σi j 〉(p)|/max

k,l
(σ̄kl ),

and

max
i , j ,k,l

|〈σi jσkl 〉(p)
LCC −〈σi jσkl 〉(p)|/max

m,n
(σ̄2

mn).

(6) If the largest of the above errors is larger than er r , then compute new guesses as
κ〈σ〉(p)

LCC + (1−κ)〈σ〉(p) and κ〈σ⊗σ〉(p)
LCC + (1−κ)〈σ⊗σ〉(p) by mixing the initial guess and

the estimation for the LCC, and start again with step 2 above.

B.2. Solving for the thermo-elastic self-consistent LCC

Following e.g. [44] and references therein, for given M(p) and ε(p)
0 , the effective compliance of the

LCC is given by the implicit equation

M̃+M∗ = 〈(M(p) +M∗)−1〉−1 (25)

which is solved by a standard fixed-point iterative method. When all grains exhibit the same
average shape, the Hill influence tensor M∗ is defined as

M∗ = E : M̃, E = (S−1
E − I)−1 (26)



with I the identity tensor and SE the Eshelby tensor

SE = P : M̃−1, P = 1

2π|Z|
∫ π

0

∫ π

0
H(ξ)‖Z−1 ·ξ‖−3 sinθdθdφ (27)

with Hi j kl = (1/2)(K −1
i k ξ jξl + K −1

j k ξiξl ) related to the acoustic tensor K = ξ · M̃−1 · ξ and ξ =
(sinθcosφ, sinθ sinφ,cosθ). Z is a symmetrical second order tensor describing the shape of the
ellipsoidal inclusion. Here, integration of P is performed at each iteration of (25) using a gaussian
quadrature method with an increasing number of Gauss points (as in [44]) until an accuracy of
er r /10 is reached. The implicit equation (25) is solved iteratively until a precision of er r /10. Once
M̃ has been solved, one computes the stress concentration tensor of the purely elastic problem

〈B〉(p) = (M(p) +M∗)−1 : (M̃+M∗), (28)

the effective stress-free strain-rate
˙̃ε0 = 〈ε̇(p)

0 : B〉 (29)

and the phase-average residual stress

〈σres〉(p) = (M(p) +M∗)−1 : (˙̃ε0 − ε̇(p)
0 ). (30)

The intraphase first moment of the stress field is

〈σ〉(p) = 〈B〉(p) : σ̄+〈σres〉(p). (31)

The second moment is given by

〈σi jσkl 〉(p) = 1

fp

(σ̄⊗ σ̄) ::
∂M̃

∂M (p)
i j kl

+2
∂˙̃ε0

∂M (p)
i j kl

: σ̄+
〈
ε̇

(p)
0 :

∂〈σres〉(p)

∂M (p)
i j kl

〉 (32)

where expressions for the derivatives can be found e.g. in [44–46]. Integration of the derivative of
the Eshelby tensor entering in (32) is done using a gaussian quadrature method.
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