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The scoring systems for critically ill patients were developed almost 40 years ago 
and have been updated several times since. It is essential that these scoring systems 
perform at the absolute highest level, and they must, therefore, be continuously 
re-evaluated and challenged to improve their performance. By testing promising 
variables and new methods, we can continue to secure the best possible prediction 
models for our critically ill patients overall and for specific diagnoses.



‘Logic will get you from A to Z; 

imagination will get you everywhere.’  

– Albert Einstein
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Background 

The intensive care unit 

History 
Intensive care medicine's true origin is difficult to distinguish. It is a continuum of 
events: different contributions from pioneers, medical and technological 
advancements, combined with the constant demand to cure or relieve human 
disease. It has been ongoing since Florence Nightingale segregated the most battle-
injured soldiers during the Crimean War in the 1850s (1). In the 1920s, Dr Walter 
Dandy organised a three-bed postoperative care unit at Johns Hopkins Hospital, 
staffed with specialised nurses (1). During World War II, similar specialised sites 
expanded rapidly when so-called 'shock units' were developed for the postoperative 
care of the severely injured (2, 3).  

In 1953, the Danish anaesthetist Bjørn Aage Ibsen initiated the first intensive care 
unit (ICU) in Europe after having treated patients during the Copenhagen polio 
epidemic the previous year (4). During that epidemic, a workforce of about 1500 
medical students, nurses and retired nurses treated bulbar poliomyelitis with 
overpressure ventilation, which reduced mortality rates from above 80% to less than 
40% (4-6).  

During the following two decades, intensive care medicine was founded and 
underwent rapid changes. By the end of the 1950s, a four-bed unit called the 'Shock 
Ward' at the University of Southern California became a prototype for future ICUs. 
It offered continuous monitoring of the patient’s electrocardiogram (ECG), pulse, 
breathing, central and peripheral temperatures, and arterial and central venous 
pressures (2).  

By 1962 the Shock Ward had a dedicated digital computer system and used 
algorithms to detect cardiac arrhythmias based on ECG heart rate and pulse rate (2). 
By today's standard, the system was relatively primitive, but it utilised the available 
technology in a way we should applaud. Computer technology has been an integral 
part of intensive care medicine ever since. Intensive care medicine has undergone 
immense changes since its establishment almost 70 years ago, and advancements in 
technology have played an essential role in its progress.    
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Modern intensive care medicine 
Today, intensive care medicine is not confined to the ICU as a specific ward. It is a 
level of care provided prehospital, using well-equipped ambulances and helicopters 
staffed with anaesthesiologists, and in the emergency department and the general 
wards before deteriorating patients are transferred to the ICU. The types of patients 
in the general ICU vary from those with commonly seen conditions, such as sepsis, 
post–cardiac arrest syndrome (PCAS), respiratory and/or cardiac failure, and 
trauma, to those with rare diagnoses.  

The level of care ranges from observation, based on precautionary principles (e.g. 
observation for potential airway obstruction), to treating life-threatening multiple 
organ failure. This care requires close monitoring of each patient 24 hours a day, 
seven days a week; consequently, the ICU has a higher density of staff and 
monitoring options compared to a general ward to ensure the safety of these high-
risk patients. 

The treatment and care are multidisciplinary; several specialities are often involved 
in the treatment discussion. The staff working in the ICU are specialist nurses and 
physicians, along with physiotherapists and assistant nurses. In larger hospitals, 
ICUs are often further subspecialised as paediatric, thoracic or infection ICUs and 
so forth, while smaller hospitals usually have only one ICU to handle a broad group 
of patients.  

Intensive care medicine in Sweden 
Intensive care medicine varies from country to country based on traditions, 
geographical challenges and healthcare funding. In Sweden, healthcare is mainly 
tax-funded, and ICU treatment is cost-free for patients. Compared to the rest of 
Europe, Sweden has a low number of ICU beds per capita, and this number is 
decreasing. In 2012, Sweden had 5.8 ICU beds per 100,000 inhabitants (7); by 2018, 
this number had been reduced to 5.1 ICU beds (8). The average in Europe in 2012 
was 11.5 ICU beds per 100,000 inhabitants, with Germany having the greatest 
number of ICU beds per capita with 29.2 per 100,000 inhabitants (9).  

The differences in what each country defines as an ICU bed makes direct 
comparison problematic; nevertheless, a decreasing number of ICU beds in Sweden, 
when numbers are already at the low end compared to other European countries, is 
eye-opening and warrants further evaluation. Additionally, because of geographical 
challenges, access to an ICU bed for the individual patient varies throughout 
Sweden (9). Healthcare in Sweden is also decentralised, meaning that regional 
councils are responsible for providing good-quality healthcare based on the central 
government's guidelines and principles. How this affects the number of ICU beds 
and care in various regions of Sweden is difficult to say. Differences in prehospital 
organisations may also affect the overall care of some critically ill patients. 



17 

Differences from other Scandinavian countries are notable, with Denmark and 
Norway having more heavily staffed prehospital setups that include physicians (10). 
Even within Sweden, there are marked differences in the prehospital organisation 
(10).  

Despite these challenges, the adjusted 30-day mortality for adult patients admitted 
to an ICU in Sweden has not changed in recent years: the observed mortality rate 
(OMR) after general ICU admission in Sweden has increased over the last few years, 
but so has the estimated mortality rate, or EMR (estimation based on the Simplified 
Acute Physiology Score 3; see below). These two trends balance out each other – 
patients admitted to a general ICU do not die at greater rates than expected (8). 

ICU prognostication 

Background 
The ability to predict patient outcome is an important pillar of medicine. Predicting 
outcome for the general ICU patient is a complicated matter given the wide 
spectrum of comorbidities, admission circumstances and acute physiological 
changes on admission. The case-mix of patients admitted to the ICU is very broad, 
but the common denominator is that they have severe or life-threatening conditions. 
As intensive care medicine has advanced, several severity scoring models have been 
developed to predict critically ill patients' outcomes – usually the risk of in-hospital 
mortality. These scoring systems are not recommended for personalised predictions 
because of the models' uncertainties at the level of individual patients (11).  

Numerous models have been developed to predict mortality after ICU admission 
(12). The most widely used models are the Acute Physiology and Chronic Health 
Evaluation (APACHE), the Mortality Probability Model (MPM) and the Simplified 
Acute Physiology Score (SAPS) (13). They all predict mortality within a specific 
timeframe but differ in which variables they include and the timeframe in which 
those variables are obtained. The term often used for the predicted probability of 
death is the EMR, and the corresponding observed outcome is called the OMR. 
Other scores, e.g. the Sequential Organ Failure Dysfunction (SOFA) score, are 
intended to describe the extent of organ dysfunction (14). APACHE, MPM and 
SAPS have been updated several times since their development almost 40 years ago 
(13). 

The first SAPS model was developed in 1984 based on 679 patients from eight ICUs 
in France (15). In 1993, SAPS 2 was developed using logistic regression analysis of 
data from 12,997 patients from 12 countries and 137 ICUs (16). In 2005, SAPS 3 
was created based on a complex statistical approach with data from almost 17,000 
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patients from 303 ICUs across 35 countries (17, 18). APACHE and MPM have 
undergone similar transitions (13). The latest versions use even more extensive 
databases than SAPS 3, yet they mainly include ICUs from North America (19, 20). 
SAPS and MPM remain relatively simple, whereas APACHE has grown 
increasingly complicated, with more than 100 variables included (19).  

SAPS 3 differs from the APACHE score in using data obtained within the time 
window starting one hour before and ending one hour after ICU admission. By 
contrast, APACHE uses the worst values recorded for each physiological measure 
during the first 24 hours after admission. MPM uses both approaches. SAPS 3 
further differs from other scoring systems by using a different calibration for 
predicting hospital mortality in each of seven geographical regions (17, 18). All 
models above were developed for adult patients admitted to the general ICU, and 
all predict in-hospital mortality (note that the SAPS 3 model used in Sweden 
predicts 30-day mortality). 

ICU prognostication in Sweden 
In Sweden, SAPS 3 is used for ICU prognostication for adults (≥16 years of age) 
admitted to the general ICU. The Paediatric Index of Mortality 3 (PIM3) and a 
modified Higgins' Intensive Care Unit Admission Score are used for paediatric 
patients and patients undergoing cardiac surgery, respectively (21, 22).  

SAPS 3 was introduced in Sweden in 2008, fully incorporated in 2012, and has been 
calibrated to predict 30-day mortality instead of in-hospital mortality. Furthermore, 
to assess the status of the patient’s central nervous system within SAPS 3, the 
Glasgow Coma Scale (GCS) was supplemented with the Reaction Level Scale 
(RLS) to fit medical practice in Sweden (23). SAPS 3 has been calibrated several 
times since its introduction to optimise its performance for the Swedish ICU 
population. 

The SAPS 3 model consists of three boxes; the total SAPS 3 score is the sum of all 
boxes (see figure 1): 

Box I: Patient characteristics before ICU admission: age, comorbidities, 
location before ICU admission, length of stay in the hospital before ICU 
admission and the use of major therapeutic options before ICU admission. 

Box II: Circumstances of ICU admission: reason(s) for ICU admission, 
anatomic site of surgery (if applicable), whether the ICU admission was 
planned or unplanned, surgical status and presence of infection at ICU 
admission. 

Box III: Presence and degree of physiologic derangement at ICU admission 
(within one hour before or after admission). 

 



19 

 

 
Figure 1. The third version of the Simplified Acute Physiology Score (SAPS 3). SAPS 3 consists of three boxes 
which represent different sets of characteristics. Each variable is transformed into a numeric value, and the sum of 
these values is the final SAPS 3 score, which can be transformed into a probability of death (the estimated mortality 
rate). 
 

Based on a score sheet, every variable is transformed into a numeric value: age 72 
is assigned 13 points, chronic heart failure (New York Heart Association [NYHA] 
class 4) is assigned 6 points, and so on. The sum of all these values represents the 
final SAPS 3 score, with a maximum score of 217 points. In the original SAPS 3 
model, the final score was then transformed to a probability of death before hospital 
discharge (in-hospital mortality). In Sweden, however, SAPS 3 has been calibrated 
to instead predict mortality within 30 days after ICU admission (30-day mortality), 
which has shown a good discriminative capability, with an area under the receiver 
operating characteristic curve (AUROC) of 85% (24-26). When SAPS 3 is 
calibrated to predict 90-day and 180-day mortality, the performance remains good, 
with AUROCs of 84% and 83%, respectively (26). How to interpret the receiver 
operating characteristic (ROC) curve is explained within the Methods and materials 
chapter.  
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Improving ICU prognostication 

Recalibration of current models 
Calibration of a model is the level of agreement between the model’s predictions 
and the observed outcome and is commonly defined as ‘having an event rate of X% 
among patients with a predicted risk of X%’ (27, 28). As changes in the case-mix 
of ICU patients and in treatment possibilities can affect the calibration over time, it 
is often necessary to recalibrate a prediction model periodically (29).   

Traditionally, a model can be recalibrated by either 1) recalibrating the final score 
to fit the outcome of choice (level 1 recalibration) or 2) reweighting each variable 
of the model to fit the outcome of choice (level 2 recalibration, traditionally using 
logistic regression) (17). The SAPS 3 model has been recalibrated several times 
(level 1 recalibration) since it was implemented in Sweden. See figure 2 for a 
visualisation of the latest calibration from 2016 (25). Calibration is further explained 
within the Methods and materials chapter. 

 
Figure 2. The latest Swedish SAPS 3 calibration from 2016. The figure shows how the SAPS 3 score is transformed 
into a probability of death within 30 days after ICU admission (EMR). The curve characteristics (intercept and slope) can be 
adjusted during calibration to better fit the current ICU population over time. EMR: estimated mortality rate. 

Adding single predictors 
Numerous biomarkers are correlated to ICU mortality, and adding them to SAPS 3 and 
other scoring systems could potentially improve the predictive performance, overall or 
for specific diagnoses, of those models. The term ‘biomarker’ is broadly defined; 
biomarkers in the following are biochemical biomarkers unless stated otherwise. In this 
thesis, two biomarkers related to the cardiovascular system are investigated: lactate and 
high-sensitivity troponin T (hsTnT). Both are affected by the cardiovascular system's 
load and are easily accessible in the ICU. The levels of these biomarkers are often 
affected by comorbidities, which can complicate the interpretation. 
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When a biomarker is added to a prediction model, it is either added to the predicted 
outcome (EMR) using logistic regression or added to all variables of the original 
model, thereby creating a new model (often using logistic regression or more 
recently machine learning methods; see below). The first option is the faster and 
simpler method and is of an exploratory nature. Studies I and II are both examples 
of such an approach to adding a biomarker to a prediction model – in this case, 
SAPS 3. The second option aims to build a completely new model or scoring system 
from the ground up and is, therefore, more complicated. Studies III–V are examples 
of such model development (although the objective of these studies was not to 
investigate the prognostic performance of a specific biomarker). These studies use 
a machine learning algorithm called an artificial neural network (ANN) and are 
further explained in the Methods and materials chapter and below.  

Lactate 
Lactate is a well-known predictor of mortality and is routinely measured in the ICU, 
as it is included in blood gas analyses. An increased lactate value is a normal 
occurrence during exercise; a peak value of 15–25 mM can be observed during 'all-
out' maximal exercise and lasts 3–8 min post-exercise (30). Similar or lower values 
observed in the ICU are generally deemed to be highly pathological. The causes of 
increased lactate vary from disease to disease (31), and levels are affected by co-
existing conditions such as liver failure or metformin consumption (32, 33). In 
patients with seizures, high lactate values are not necessarily related to high 
mortality, whereas similar values in septic patients would be highly pathological 
(34). With the latest sepsis guidelines, lactate is now among the criteria for 
diagnosing septic shock (35), underlining its important role in sepsis. Although 
lactate values are ubiquitously available, they are not included in SAPS 3. 

High-sensitivity troponin T 
Cardiac troponin is composed of three subtypes, C, I and T, of which I and T (TnT) 
are suitable for detecting myocardial injury. It is mainly bound to myofilaments in 
the cardiomyocytes. The hsTnT assay allows the detection of very low levels of TnT 
and improves overall diagnostic accuracy in patients with acute myocardial 
infarction (AMI), which is the main indication for hsTnT (36). In the case of 
myocardial injury, troponin  will begin to rise within three to four hours and remain 
increased for up to two weeks (37). Increased cardiac troponin is also seen in healthy 
long-distance runners and is proportional to the distance they run (38, 39). The 
prognostic value of cardiac troponins for ICU patients seems to vary dependent on 
the reason for admission (40, 41). Furthermore, it is unclear whether cardiac 
troponin levels add valuable information when included in today's scoring systems 
(42-44). Cardiac troponins are not included in SAPS 3. 
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Machine learning 
Artificial intelligence (AI) has undergone a revolution over the last two decades. 
Improved algorithms and increased computational power have renewed AI, building 
on the basic ideas founded in the 1950s. AI is a broad term that can be described as 
using computers and technology to simulate intelligent behaviour and critical 
thinking comparable to that of a human being (45). The exact definition is the 
subject of much discussion and has changed over time due to the rapid developments 
(46). Two often-used classifications are general AI and narrow AI. General AI refers 
to machines exhibiting human-like behaviour in their capacity to understand and 
learn any intellectual task. Narrow AI, on the other hand, focuses on one specific 
task and is the only type of AI successfully realised today. Narrow AI applications 
range from autonomous vehicles to image recognition to search engines and much 
more. In medicine, AI methods have shown promising results in a variety of 
research fields, from cancer detection to identification of Parkinson’s disease to 
early detection of sepsis (47-49), however, there are still several obstacles before its 
application can become widespread in various parts of medicine (50, 51).  

Machine learning is a branch of AI that focuses on building computer algorithms 
that improve automatically through experience (52). Machine learning is often 
categorised as either supervised, unsupervised or reinforcement learning. In 
unsupervised learning, the algorithm has to find a structure in the input data without 
knowing the labels (outcome variables). In reinforcement learning, the computer 
algorithm interacts with an environment while having a specific goal (e.g. playing a 
game). These types of machine learning are used in critical care research, from 
investigating fluid treatment strategies in patients admitted with sepsis to 
discovering subgroups among ICU patients (53-55).  

In supervised machine learning (SML), the most widely used machine learning 
method and the focus of this thesis, the outcome is known to the algorithm (52). 
SML is designed to learn the relationships and dependencies between input 
variables (e.g. age or cancer status) and an output variable such as 30-day mortality 
(classification) or length of stay (regression).  

Methods such as support vector machines, the naive Bayes algorithm, the k-nearest 
neighbours algorithm, decision trees and ANNs are all SML algorithms (56, 57). 
Even traditional statistical methods used in medicine – logistic regression and linear 
regression – can be classified as SML algorithms (57, 58).  SML methods generally 
perform well, but performance may depend on the type of data they are interpreting 
(59). When the input variables have complex interactions between them, certain 
algorithms such as ANNs may work better based on their design. The ANN is one 
out of many SML methods, and sometimes ANNs are combined with other SML 
methods to improve prognostic performance (ensemble learning). ANNs are used 
in studies III–V and are briefly introduced in the Methods and materials chapter. 
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In recent years, numerous studies have investigated whether the various types of 
machine learning can improve mortality and morbidity predictions in the ICU. 
Studies have reported promising results in predicting length of ICU stay, instability 
in the ICU, risk of developing kidney injury, pulmonary emboli, and so forth using 
various SML methods (60). Deasy et al. showed how a dynamic model could 
improve mortality prediction over time after ICU admission (61). Similar findings 
were reported in a recent study by Thorsen-Meyer et al. (62). The designs of both 
studies differed from the approach used by the SAPS 3 model, as they used data 
obtained after ICU admission. To our knowledge, no published studies have used 
ANNs to interpret admission data based on the SAPS 3 variables and compared its 
performance to that of the SAPS 3 model in predicting 30-day mortality (which was 
the aim of study III).  

Diagnosis-specific predictions 
While overall scoring systems such as SAPS 3 have to perform well for general ICU 
populations, some ICU diagnoses might benefit from being managed independently. 
Studies IV and V focus on long-term neurological prognostication for comatose 
patients admitted to the ICU after out-of-hospital cardiac arrest. Similar diagnosis-
specific approaches could be used for other patient groups as well, such as patients 
with trauma, sepsis or respiratory failure. 

Post–cardiac arrest syndrome and prognostication 
Patients admitted post–cardiac arrest constitute a distinct group in the ICU and an 
epitome of when prognostication has direct consequences. When prognostication is 
necessary, these patients are still comatose and ventilated. Based on the 
prognostication, one of two things can happen: either treatment will continue, or a 
decision will be made to withdraw life-sustaining therapy (WLST). This means very 
accurate and secure prediction models are needed to avoid false-positive predictions 
(predicted poor outcome, reported good outcome). 

Cardiac arrest is the abrupt loss of heart function, which may be reversible or may 
lead to death. Cardiac arrest can be categorised as in-hospital or out-of-hospital 
cardiac arrest (OHCA). This thesis focuses on OHCA. In Europe and the United 
States, the incidence of OHCA with resuscitation attempted is between 50 and 110 
per 100,000 person-years (63, 64). Overall survival to hospital discharge is 10%–
12% in Europe and the United States, with wide variation among individual 
countries (63, 64). In Sweden, 30-day survival is approximately 11%, a rate which 
has more than doubled since 2000 (65). 
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The duration of resuscitation is an important determinant of survival and can be 
divided into two intervals: 1) no flow (from cardiac arrest to initiation of 
cardiopulmonary resuscitation [CPR]) and 2) low flow (from the start of CPR to 
return of spontaneous circulation [ROSC] or the termination of resuscitation) (66). 
It is fundamental to begin CPR as soon as possible and defibrillate if the rhythm is 
shockable to increase the possibility of a good outcome (67). Furthermore, the 
survival rate is better in patients with a shockable rhythm (65).  

Post–cardiac arrest syndrome 
The injuries from the periods of no flow (NF) and low flow (LF) are often not 
directly reversed by ROSC. The reperfusion may even cause damage on its own. 
The term PCAS is used to describe these complex processes; PCAS has four 
components (68): 

1) post–cardiac arrest brain injury,

2) post–cardiac arrest myocardial dysfunction,

3) systemic ischemia/reperfusion response and

4) persistent precipitating pathology.

The patient can wake up directly if the time to ROSC is very short (defibrillation 
within a few minutes). However, the general management of PCAS requires ICU 
admission for general ICU treatment and monitoring, including advanced cerebral 
and haemodynamic monitoring (68). The initial objectives are to initiate targeted 
temperature management (TTM), optimise mechanical ventilation and 
haemodynamics, and identify and treat acute coronary syndrome along with other 
causes of cardiac arrest, in addition to providing standard intensive care (69).  

Post–cardiac arrest prognostication 
Neurological outcome after cardiac arrest varies from no symptoms to a vegetative 
state. Both the Cerebral Performance Category scale (CPC; see table 1) (70, 71) and 
the modified Rankin Scale (mRS) (72) are frequently used to classify the 
neurological outcome. Both are often, furthermore, dichotomised into poor outcome 
or good outcome. This thesis focuses primarily on the CPC. 
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Table 1. Cerebral Performance Category scale (CPC). 

Dichotomised outcome 
in this thesis 

CPC 

Good outcome CPC 1: Good cerebral performance: Conscious, alert, able to work, might have a 
mild neurologic or psychologic deficit. 
CPC 2: Moderate cerebral disability: Conscious, sufficient cerebral function for 
independent activities of daily life. Able to work in a sheltered environment. 

Poor outcome CPC 3: Severe cerebral disability: Conscious, dependent on others for daily 
support because of impaired brain function. Ranges from ambulatory state to severe 
dementia or paralysis. 
CPC 4: Coma or vegetative state: Any degree of coma without the presence of all 
brain death criteria. Unawareness, even if the patient appears awake (vegetative 
state) without interaction with the environment; may have spontaneous eye-opening 
and sleep/wake cycles. Cerebral unresponsiveness. 
CPC 5: Brain death: Certified brain dead or dead by traditional criteria.  

Models such as the TTM risk score and the Miracle2 score aim to predict the six-
month neurological outcome at hospital admission following OHCA (73, 74). Both 
models base their predictions on information obtained prehospital and on hospital 
admission, and have reported good prognostic performance with AUROCs of 84% 
and 88%, respectively (74, 75). The TTM risk score is used for comparison in study 
IV.  

Among OHCA patients who die shortly after ICU admission, the main cause of 
death is cardiac failure, whereas neurological injury accounts for the majority of 
later deaths (76). Among OHCA patients, two-thirds of all deaths before hospital 
discharge are due to neurological injury (77). Most of these deaths occur after 
WLST as a consequence of prognostication. As mentioned above, this demands 
accurate prognostication, primarily to avoid false-positive predictions (predicted 
poor outcome, reported good outcome) and secondarily to ensure a low number of 
false-negative predictions (predicted good outcome, reported poor outcome).  

It is recommended that the prognostication of comatose post–cardiac arrest patients 
be delayed for at least 72 h post–cardiac arrest and that it be multimodal according 
to the current guidelines (78). The clinical neurological examination, neurological 
imaging, electroencephalogram (EEG), short-latency somatosensory evoked 
potentials (SSEP) and biomarkers are important methods for evaluating the extent 
of brain injury. The theory and evidence behind these techniques are complex and 
are mentioned here only briefly, as these are not the focus of this thesis.  
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- Neurological imaging such as computed tomography (CT) or magnetic
resonance imaging (MRI) can be a valuable tool. CT is often performed
within 24 h after cardiac arrest to exclude haemorrhages or other
pathologies. MRI is recommended two to five days after ROSC and is used
to detect whether the patient has cerebral oedema.

- EEG is frequently used in post–cardiac arrest prognostication. It can be
performed continuously (cEEG), producing less information, or as an
intermittent full examination. In the current ERC–ESICM guidelines (see
below), two EEG patterns are related to poor outcome (78): unreactive
burst-suppression (EEG patterns with intermittent periods of low-voltage
electric activity for more than 50% of the EEG alternating with irregularly
high-voltage electric activity) and unreactive status epilepticus (78, 79).

- When using SSEP, the N20 potential is the contralateral response in the
primary somatosensory cortex to stimuli of the median nerve. When absent
bilaterally, this is considered a robust predictor of poor outcome (80).

- Biomarkers are described later in the chapter.

The latest prognostication guidelines from the European Resuscitation Council and 
European Society of Intensive Care Medicine (ERC–ESICM), from 2015, 
recommend a four-step model used at least 72 h after ROSC (78). It focuses only on 
patients with no motor response or extension from pain (Glasgow Coma Scale motor 
response score [GCS-M] ≤ 2) after confounders are excluded (particularly residual 
sedation). If the patient has no pupillary and corneal reflexes or if the N20 potential 
on the SSEP is absent (bilateral examinations), a poor outcome is very likely. 
Otherwise, the next step is to re-evaluate the patient after 24 h. If the patient then 
still has a GCS-M ≤ 2, the prognostication should continue, and if two or more of 
the following are present, a poor outcome is likely: status myoclonus ≤48 h after 
ROSC, high neuron-specific enolase (NSE) values, unreactive burst-suppression or 
status epilepticus on EEG, and diffuse anoxic injury on brain CT or MRI. If none or 
only one of these criteria is present, then the patient should be observed and 
evaluated later. 

Three studies have recently assessed the accuracy of the ERC–ESICM guidelines, 
and all three reported a 0% false-positive rate (FPR) (81-83). The consistency is 
reassuring and naturally leads to these questions: how to decrease the false-negative 
rate (FNR) and how to broaden the inclusion criteria while retaining a 0% FPR (84). 
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Biomarkers in cardiac arrest prognostication 
Numerous biomarkers have been investigated for use in improving post-cardiac 
prognostication. These biomarkers focus on one of the following components of 
PCAS: 

- Brain injury: NSE, neurofilament light (NFL), S100 calcium-binding
protein B (S100B), tau protein (tau), glial fibrillary acidic protein (GFAP)
and ubiquitin carboxy-terminal hydrolase L1 (UCHL1) (85-91).

- Cardiac injury: TnT, N-terminal pro–B-type natriuretic peptide (BNP) and
copeptin (92, 93).

- Systemic inflammation: Procalcitonin (PCT) and interleukin-6 (IL-6) (94,
95).

This list of biomarkers represents the biomarkers used in this thesis. Their predictive 
abilities vary, and little is known about their prognostic values when combined (96). 
As a single biomarker, NFL is the most promising, with an AUROC of 94%–98% 
when predicting a poor neurological outcome as early as 24 h post-OHCA (97, 98). 
NFL is a protein highly expressed in large-calibre myelinated axons and has shown 
promising results in detecting the degree of axonal damage in various neurological 
disorders (97).  

NSE is a highly specific marker for neurons and peripheral neuroendocrine cells and 
can be used in cancer diagnosis (neuroendocrine tumours) and in estimating the 
extent of brain injury (99). It is important to acknowledge that haemolysis can result 
in false-high NSE values due to the high NSE concentration in erythrocytes (100). 
NSE is not reliable as a prognostic biomarker 24 h post–cardiac arrest, but its 
accuracy improves after 48 h and 72 h (101, 102). NSE is the only biomarker 
recommended in the current guidelines (78).  
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Aims of the thesis 

I. To investigate the prognostic value of lactate obtained on admission
when combined with SAPS 3 (Swedish modification) for ICU patients
overall and for patients with the five most common primary ICU
diagnoses.

II. To investigate whether hsTnT obtained on ICU admission improves the
prognostic accuracy of SAPS 3 (Swedish modification) for 1) ICU
patients in general, 2) cardiac arrest patients and 3) non–cardiac arrest
patients, particularly patients with the three most common diagnoses in
this group.

III. To improve 30-day mortality prognostication by using ANNs to
interpret the variables used in the SAPS 3 model (Swedish
modification) and to identify the smallest possible subset of SAPS 3
variables which can retain the same performance as the full SAPS 3
model.

IV. To use ANNs to create a model for early prediction of long-term
neurological outcome for comatose survivors of OHCA admitted to the
ICU, and to use this model to investigate the intervention effect in
cardiac arrest patients treated with TTM.

V. To investigate whether cumulative information obtained during the first
three days of intensive care can, when processed with ANNs, produce
a reliable model for predicting neurological outcome post-OHCA with
and without clinically accessible and research-grade biomarkers.
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Methods and materials 

The first and second papers incorporated into this thesis are based on data from the 
general ICU at Skåne University Hospital in Lund, Sweden, and PASIVA, a patient 
administration system which collects data from ICUs. The third paper is based on 
national data from the Swedish Intensive Care Registry (SIR) only, while the fourth 
and fifth papers are post hoc analyses of the Target Temperature Management trial 
(TTM-trial) (103). This chapter summarises the materials and methods described in 
papers I–V. Detailed descriptions of the methods and materials used in the five 
papers are presented in the respective papers. These methods and materials are 
summarised in table 2, which also includes the number of participants for the final 
analysis in each study. 

Table 2. Overview of the five studies included in the thesis.  
Intensive care unit (ICU), Cerebral Performance Category scale (CPC), estimated mortality rate (EMR), high-sensitivity 
troponin T (hsTnT), Simplified Acute Physiology Score 3 (SAPS 3). *Participants for final analysis. **The number of 
participants in study V varied based on the time point and biomarkers of interest. 

Paper   I II III IV & V 

Design 

A single centre 
retrospective study 

A single centre 
retrospective study 

A national 
multicentre 
retrospective study 

Post hoc analysis of 
an international 
randomised 
multicentre trial 

Study 
population 

General ICU 
population 

General ICU 
population 

General ICU 
population 

Specific ICU 
population: Comatose 
survivors of out-of-
hospital cardiac arrest 
from a presumed 
cardiac cause  

Adults Adults Adults Adults

January 2008 – 
June 2017 

February 2010 –  
June 2017 

2009–2017 2010–2013

Participants* n = 3039 n = 856 n = 217,289 n = 932** 

Variables 

SAPS 3 EMR + 
lactate on ICU 
admission 

SAPS 3 EMR + 
hsTnT on ICU 
admission 

SAPS 3 variables Study IV: Background, 
prehospital and 
admission variables. 
Study V: Similar to 
study IV and at days 
1, 2 and 3 after ICU 
admission. 

Outcome 
30-day mortality 30-day mortality 30-day mortality Binary 6-month 

neurological outcome: 
CPC 1–2 or CPC 3–5 

Method Logistic regression Logistic regression Artificial neural 
networks 

Artificial neural 
networks 
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Sources of data 

PASIVA 
PASIVA (Patientadministrativt system för Intensivvårdsavdelningar) is a patient 
administration system which collects data from 61 out of 84 ICUs in Sweden. 
Originally, PASIVA was designed to forward data to SIR, but it later evolved to 
also provide feedback to end users (the ICUs) as a tool to improve and plan the care 
of patients.  

Swedish Intensive Care Registry 
SIR is a non-profit organisation which prospectively collects patient-level data for 
all patients admitted to an ICU in Sweden. The members of SIR are the Swedish 
ICUs and represent a wide array of ICUs: general, neurosurgical, thoracic surgical, 
burn, infection and paediatric ICUs, and one extracorporeal membrane oxygenation 
(ECMO) centre. Since SIR was established in 2001, it has gradually grown in size; 
in 2020 all of the 84 ICUs in Sweden were members of SIR. Sweden has 526 ICU 
beds (5.1 ICU beds per 100,000 citizens) and has approximately 45,000 ICU 
admissions every year. The main purpose of SIR is to utilise data to improve the 
care of ICU patients (8).  

The data we used from SIR contained basic information about each admission and 
patient, SAPS 3 input, survival data (originally from the Swedish National 
Population Register), and a primary diagnosis for each admission, which was based 
on a subset of the Swedish version of the 10th revision of the International 
Classification of Diseases (ICD-10). Note that this subset of ICD-10 diagnoses is 
no longer being used for primary diagnoses. 

The Target Temperature Management trial 
The TTM-trial was an international randomised multicentre trial designed to find a 
difference in survival among comatose cardiac arrest survivors treated with different 
target temperatures after ICU admission. Patients were enrolled from November 
2010 to January 2013 from 36 ICUs across Europe and Australia (103). The fourth 
and fifth papers are post hoc analyses of the TTM-trial.  

Trial design 
The inclusion criteria allowed participation of comatose (GCS ≤ 8) adults (≥18 years 
of age) with a sustained ROSC after resuscitation from OHCA of a presumed 
cardiac cause.  
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Exclusion criteria were  

- limitations in therapy, including do-not-resuscitate orders, or known illness 
making survival to 180 days unlikely  

- suspected or known acute intracranial haemorrhage or stroke 

- pre-existing neurological disability (CPC 3–4) 

- unwitnessed cardiac arrest with asystole as the initial rhythm 

- persistent cardiogenic shock despite medical interventions and mechanical 
assist 

- a body temperature of less than 30°C 

- previous bleeding diathesis 

- pregnancy 

- more than 240 minutes from ROSC to screening (104).  

Patients were randomised to a target temperature of either 33°C or 36°C for a total 
of 28 h of temperature management using invasive or surface cooling, followed by 
gradual warming to 37°C at 0.5°C/h and avoidance of a body temperature above 
37.5°C until 72 h after OHCA. According to the study protocol, the neurological 
prognostication was performed at least 108 h post–cardiac arrest (72 h after 
rewarming). 

The primary outcome was all-cause mortality until the end of the trial, and the 
secondary outcome was the neurological outcome (including death) at six months 
measured by the mRS and the CPC scale (assessor-blinded) (104). 

Results 
No difference was found in the two treatment arms in terms of all-cause mortality 
(primary outcome) or neurological outcome (secondary outcome) (103). 
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Methods 
The methods for all studies are briefly described in this section. The concepts of 
training, validation and test datasets; ANNs; and performance measures used in this 
thesis are introduced briefly here to provide a better understanding. 

Performance measures 
Because in-hospital mortality and 30-day mortality are indicated with yes or no 
answers, where survival can be classified as 0 and death as 1, predicting this type of 
outcome is called binary classification. A prediction model does not give a yes 
(deceased) or no (survived) prediction but provides a probability between 0 
(survived) and 1 (deceased): for example, a patient may have a 30% probability of 
dying within the next 30 days. As mentioned earlier, this prediction is called the 
EMR. 

There are numerous performance measures for binary classification, some of which 
are introduced here. When examining the performance of these predictive models, 
both discrimination and calibration are essential.  

Discrimination 
Discrimination describes the ability of the model to distinguish between two outcomes 
– for example, survivor and non-survivor – and is measured using the AUROC as
exemplified in figure 3. The AUROC has a value between 0 and 1; the closer the
AUROC is to 1, the better the model can classify whether a patient will survive or die.
If the AUROC is 50%, the prediction is no better than a completely random selection.
An AUROC of 70%–80% can be classified as fair, 80%–90% as good and 90%–100%
as excellent, even though the ranges of these labels vary (105). Moreover, when
evaluating discrimination, it is important to look at the layout of the ROC curve as well
to inspect the specificity and sensitivity of the model (see below). Even if the AUROC
is high, the model might not work as intended.

The ROC curve describes the model’s classification capability at different 
thresholds; the true-positive rate (TPR) and the false-positive rate (FPR) are 
calculated at various thresholds and plotted as in figure 3. The TPR is also called 
sensitivity (and recall) and is plotted on the y-axis. The x-axis in the figure displays 
1 - FPR, also called specificity. The ROC curve provides additional information 
beyond the AUROC, as it describes the trade-off between specificity and sensitivity. 
In the example in figure 3, the sensitivity is approximately 70% when the specificity 
is at 100%. 
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Figure 3. The receiver operating characteristic (ROC) curve. The sensitivity (%) is plotted on the y-axis, and the 
specificity (1 - false-positive rate) is plotted on the x-axis. The area under the receiver operating characteristic curve 
(AUROC) in this example is 95.2%. 

Both FPR and TPR are calculated based on the confusion matrix for the chosen 
threshold. The confusion matrix for a binary classification problem is a 2x2 table 
which displays the performance of a prediction model at a specific threshold 
between 0 and 1. 

Table 3. The confusion matrix. The rows represent the prediction, and the columns represent the observed outcome. 

Observed 
Positive 

Observed 
Negative 

Predicted 
Positive 

True 
positives 

(TP) 

False 
positives 

(FP) 

Predicted 
Negative 

False 
negatives 

(FN) 

True 
negatives 

(TN) 

As seen in table 3, each prediction can be either a true positive (TP), a false positive 
(FP), a false negative (FN) or a true negative (TN). These four measures are the 
foundation for calculating numerous other performance measures for binary 
classification which are not used in this thesis. 

Calibration 
As mentioned previously, calibration is the level of agreement between the 
predictions and the observed outcome. A calibration plot is often used to describe 
the calibration, with the prediction on the x-axis and the outcome on the y-axis. As 
the outcome is binary, the predictions are usually plotted by decile on the x-axis, 
with the corresponding observations on the y-axis (106). The diagonal of a 
calibration plot represents the perfect calibration, where the prediction on the x-axis 
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correlates perfectly with the corresponding observation. Finazzi et al. developed this 
measure even further, adding a calibration belt with a confidence interval (CI; e.g. 
95%), as seen in figure 4 (107). This GiViTI (Italian Group for the Evaluation of 
Interventions in Intensive Care Medicine) calibration belt also reveals when the 
model is under- or overestimating the risk (under or over the bisector). Data from a 
sufficient number of patients is required to create a precise calibration curve; a 
minimum of 200 patients with and without the outcome has been suggested (28). 
The example in figure 4 uses only 145 patients (study V), which is why it was not 
included in the original paper and why the CIs are wide. 

Standardised mortality ratio (SMR) is an often-used overall measure, defined as the 
ratio between the observed and the expected numbers of deaths (OMR/EMR). As a 
result, if the SMR is equal to 1, the observed number of deaths is as expected; if the 
SMR is greater than 1, the mortality is higher than expected and vice versa (108). 
Other measures of calibration, such as the Cox calibration test and the Hosmer–
Lemeshow test, are not used in this thesis.  

Figure 4. Calibration plot. An example of a calibration plot (from study V) with the GiViTI  (Italian Group for the 
Evaluation of Interventions in Intensive Care Medicine) calibration belt. 

Others measures 
The Brier score is used to describe the overall model performance. It is a calculation 
of the squared difference between the predicted probabilities and the actual 
outcomes. The best possible score is 0, the worst is 1 (totally inaccurate), and a score 
of 0.25 can be expected to occur by chance (109). 
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Artificial neural network (ANN) – A brief introduction 
The theory behind ANN is complex. The basic idea is to mimic the structure of the 
neurons in the human brain. As in the human nervous system, the nodes (the neurons 
of an ANN) are linked together and can receive, transform and send information 
forward. An ANN consists of an input layer, a number of hidden layers and an 
output layer, as illustrated in figure 5.  

Figure 5. Artificial neural network (ANN). A schematic ANN with an input layer with four nodes, two hidden layers 
with five and four nodes and an output layer with one node. All nodes are connected to the previous and next layers by 
weights. In total, an ANN as seen above will have 54 weights when the bias nodes (not shown) are included. 

The number of nodes in the input layer is equal to the number of variables chosen 
for the model. The numbers of nodes in the hidden layers can vary, and the output 
layer consists of one node (when the ANN is performing binary classification). 

Weights link each node to all nodes in the previous layer and the next layer. As the 
model is trained to learn the relationships and patterns between the input and output 
variables, these weights are adjusted to optimise the prediction. The goal is to 
minimise the difference between the ANN prediction and the actual outcome during 
training, also called error.  

Two concepts, ‘gradient descent’ and ‘backpropagation’, are important to be able to 
understand how the weights are adjusted. Gradient descent is an optimisation 
algorithm in which the error is gradually minimised. To minimize the error, the 
weights throughout the ANN are simply increased or decreased based on the 
gradient of each individual weight. Backpropagation is a method that allows for an 
efficient calculation of the gradients, starting with the output layer and then moving 
backwards. 
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It is important to understand that the weights are adjusted only by the algorithm; this 
adjustment is the way the computer learns the patterns between the input and output 
variables. The parameters controlled by the user are called hyperparameters and 
include the number of hidden layers, the number of nodes in each layer, how each 
node handles the information from the previous layer (activation function) and how 
many times the dataset passes through the network (number of epochs) and more. 
Selecting the optimal hyperparameters is essential to ensuring the best possible 
conditions to achieve the best prediction model. The search to find the best possible 
value for a hyperparameter can be done manually or can be automated using a grid 
search, random search or Bayesian optimisation.  

An ANN differs from logistic regression by being highly adaptable when finding 
patterns in the data. This property of ANNs is both a strength and a weakness, as it 
can lead to overfitting. When a model is overfitted to the training data used for 
model development, it exhibits poor generalisability when tested on other patient 
populations. There are several tools to avoid overfitting; a fundamental one is 
splitting the dataset into a test set and training set.  

Figure 6. Training, validation and test sets. The figure illustrates how the data is split into a training set and a test 
set, and how the training set can be split into different validation sets (k-fold cross-validation). 

The dataset is divided into a training set for model development and a test set for 
use in an unbiased evaluation of the final model (see figure 6). Furthermore, a part 
of the training set can be allocated as a validation set. A validation set is a sample 
of the training set held back when training the model; it is then used to give an 
estimate of model performance while determining the best possible hyperparameters 
(also called hyperparameter tuning). The validation set may be used to stop training 
(after a number of epochs) so that overfitting does not occur. In this way, the 
validation set is a part of the model development and can, therefore, not be used for 
an unbiased evaluation. The test set, by contrast, is not used during model 
development and is set aside for an unbiased performance evaluation of the final 
model. 
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Changing the validation set during training based on predefined splits – so-called k-
fold cross-validation – is commonly employed (see figure 6). Before the final model 
is implemented as a prediction model, it should be validated on an entirely new set 
of patients (external validation), as the test dataset is associated with the data used 
for model development. 

The complexity of ANNs (i.e. their large numbers of parameters) makes 
interpretation difficult. Although all information about the structure and the weights 
of the ANN can be extracted, it is far too complicated for the human mind to 
comprehend. This complexity has raised concerns about using black-box models. 
However, new methods such as Shapley additive explanations (SHAP) can help 
explain the output of various SML algorithms, including ANNs (110, 111).  

Value of additional biomarkers (studies I and II) 
In these studies, we investigated the prognostic performance of SAPS 3 when 
biomarkers were added. Both studies used the Swedish SAPS 3 calibration from 
2016 to calculate the EMR: 𝐸𝑀𝑅 =  𝑒(1 + 𝑒 ) , 

where 𝐿𝑜𝑔𝑖𝑡 = −32.06302 + ln(𝑆𝐴𝑃𝑆 3 𝑠𝑐𝑜𝑟𝑒 + 10.34171) ∗ 7.199704. 

See the Background chapter for a visualisation of the EMR calculation shown 
above.  

Study I 
In this retrospective study, we investigated all adult admissions to the general ICU 
at Skåne University Hospital in Lund, Sweden, between 1 January 2008 and 30 June 
2017. The highest lactate value within one hour of ICU admission was obtained 
from medical records. Our ICU used a regularly calibrated Radiometer ABL 800 
Flex blood gas machine (Radiometer, Copenhagen, Denmark) to measure lactate 
concentrations. 

Statistical analysis: We included the lactate value and the SAPS 3 EMR as variables 
in a multivariate logistic regression on 30-day mortality. To quantify the 
discrimination capability of SAPS 3 when lactate was added, we calculated the 
AUROC for diagnoses with significant odds ratios. The AUROCs were compared 
using DeLong’s test (112). 



40 

Study II 
In this retrospective study, we investigated all adult admissions to the general ICU 
at Skåne University Hospital in Lund, Sweden, between 25 February and 30 June 
2017. The highest hsTnT value within 1.5 h of ICU admission was obtained from 
medical records. A Cobas 8000 analyser (Roche, Germany) was used to measure 
hsTnT. 

Statistical analysis: We included hsTnT and SAPS 3 EMR as variables in a 
multivariate logistic regression on 30-day mortality. To quantify changes in 
discrimination caused by adding hsTnT to SAPS 3, we calculated the AUROCs for 
the following groups of diagnoses: overall, cardiac arrest and non–cardiac arrest 
(sepsis, heart failure and respiratory failure). DeLong’s test was used to compare 
the AUROCs. 

Using ANNs to short-term predict mortality (study III) 
From SIR we identified all first-time adult ICU admissions with at least 30 days of 
follow-up data during the period of 2009–2017. Cardiothoracic admissions were 
excluded, as they use a different scoring system. All variables used to calculate 
SAPS 3 and 30-day mortality were used in this study.  

Model development: One-sixth of the dataset was selected at random and set aside 
for independent validation purposes (the test set), and the rest of the dataset (5/6) 
was used for model development. We used a grid search of 200 ANNs using two 
hidden layers and varying numbers of nodes (between 5 and 400) for each ANN to 
find the best possible structure to predict 30-day mortality. Batch normalisation was 
used to improve training speed and accuracy. The loss function was optimised using 
the Adam implementation of stochastic gradient descent, using a learning rate of 
0.001. To increase generalisability, we used drop-out in the input and the hidden 
layers, and used five-fold cross-validation during model development. We used 100 
epochs during training for each network with a batch size of 512 using the rectified 
linear unit (ReLU) function in the hidden layers. We used mean and mode to impute 
missing values and measured model performance using the AUROC, calibration 
curve and Brier score. DeLong’s test was used to compare the AUROCs of the two 
models. As a final step, we used ANNs to identify the smallest possible subset of 
SAPS 3 variables which could retain the same level of AUROC performance as the 
full SAPS 3 model. 
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Predicting neurological outcome after out-of-hospital cardiac arrest 
(studies IV and V) 
For studies IV and V, we included all patients from the primary analysis of the TTM-
trial (n = 939) (103). In both studies, we excluded patients with missing six-month 
neurological outcomes and patients with a large number of missing values (>40 
missing values at hospital admission). Hence, the initial patient population in both 
studies was the same. In study V, the patient population subsequently changed 
depending on the time point after ICU admission; at time points 24 h, 48 h and 72 
h, patients who had awoken or died were excluded. The outcome in both studies 
was the neurological outcome at six months, including survival, using a 
dichotomised CPC scale, with CPC 1–2 categorised as a good functional outcome 
and CPC 3–5 as a poor functional outcome.  

Study IV 
We created a prediction model for comatose OHCA patients that was based on 
information available at ICU admission: background, prehospital and admission 
data.  

Model development: We randomly set aside 10% of the dataset to test the 
performance of the final model (the test set) and used the remaining data (90%) for 
model development. We used drop-out and five-fold cross-validation during model 
development, and we used a Bayesian optimisation approach to find the best 
network structure (hyperparameters). See table 4 for the limits used during the 
search for the best hyperparameters. All networks were trained with early stopping 
with a patience of 50 epochs. The final model was chosen based on the AUROC of 
the cross-validations. The AUROC was reported using the test set data and was then 
compared to a logistic regression-based model’s AUROC (after removing patients 
who originally had missing values) using DeLong’s test. The final model was also 
used to investigate the effect of TTM at 33°C vs 36°C based on patients’ risk 
stratification. 

In the search for a simplified model, we ranked all input variables by subtracting 
one variable at a time from the developed model and calculating the AUROC. We 
then started with the most important variables from this ranking and added one 
variable at a time back to the model, recalculating the AUROC based on the training 
set at each step. 
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Table 4. Hyperparameters during model development in study IV. The predefined limits for hyperparameter tuning 
during development to find the best possible model using Bayesian optimisation. 

Hyperparameters Limits during model development 

Number of hidden layers 1–4 

Nodes in each layer 5–400 

Batch size 1–128 

Drop-out rate 0–0.3 for the input layer and 0–0.5 for the hidden layers 

Norm regularisation L1, L2 or Max-norm 

Activation function for the hidden layers Rectified linear unit (ReLU) or hyperbolic tangent function 

Optimisation Adam implementation of stochastic gradient descent or a slightly 
different version called Adam AMSgrad 

Finally, to investigate whether the patient's risk group would determine whether one 
of the two target temperatures would be beneficial, the cohort was divided into five 
classes of poor outcome risk.  

Study V 
This study was a sequel to study IV that used cumulative clinical variables along 
with clinically accessible and research-grade biomarkers gathered during the first 
three days after ICU admission. We used biomarkers from the TTM-trial biobank, 
which had collected blood samples from 29 of the 36 trial sites, and categorised 
them into additional levels of biomarkers beyond the level of the clinical variables 
already available from the TTM-trial database:  

- Level A: Clinical variables only

- Level B: Level A plus clinically accessible biomarkers: NSE, S100B, TnT,
BNP and PCT

- Level C: Level B plus research-grade biomarkers: NFL, copeptin, IL-6, tau,
GFAP and UCHL1.

In total, nine datasets were created: three levels of biomarkers each from 24 h (day 
1), 48 h (day 2) and 72 h (day 3) after ICU admission.  

The datasets were randomly divided into a training set for model development 
(80%) and a test set for internal validation (20%). The randomisation key was 
created at the time of hospital admission; hence the split was the same for all models. 
The number of variables were reduced in each dataset by using a correlation 
threshold of 98%, a missing values threshold of 20%, a minimum incidence of 2% 
for unique binary variable events, and a wrapper variable selection method which 
combined the feature selection algorithm with Shapley values. Missing values were 
imputed using median and mode imputation for continuous and binary variables, 
respectively. More advanced imputation methods such as ‘missforest’ did not 
outperform median/mode imputation (data not shown). 
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Model development: An ANN model was developed for each of the nine datasets. 
Similar to study IV, we again used five-fold cross-validation and a Bayesian 
optimisation algorithm to find the most suitable hyperparameter values (see table 
5). Early stopping was applied with a patience of 30 epochs to avoid overfitting, and 
we used a fixed learning rate of 10-3. Model performance was reported by 
calculating the AUROC for the test set data and displaying the ROC curve for all 
models. 

To find the optimal probability threshold for cardiac arrest prognostication, we 
based the threshold on 100% specificity in the training set. We then reported the 
distribution of the confusion matrix based on the test set.  
Table 5. Hyperparameters during model development in study V. The predefined limits for hyperparameter tuning 
during development to find the best possible model using Bayesian optimisation. 

Hyperparameters Limits during model development 

Number of hidden layers 1–3 

Nodes in each layer 5–250 

Batch size 4–128 

Drop-out rate 0–0.5 for the input layer and 0–0.5 for the hidden layers 

Norm regularisation L1, L2 or Max-norm 

Activation function for the hidden layers ReLU or hyperbolic tangent function 

Shapley additive explanations algorithm 
The complexity of ANNs and other advanced machine learning algorithms can be a 
barrier to implementation in a clinical setting. In study V, we applied the SHAP 
algorithm to explain how the individual predictions were attained (110, 111). The 
SHAP algorithm is based on Shapley values, which originate from game theory.  

The basic idea is to explain how much a single variable contributes to the final 
prediction based on that variable’s effect on the difference between the actual 
prediction and the mean of all predictions. Each prediction starts at the mean value 
of all predictions (the baseline). Each variable either increases or decreases the risk. 
These SHAP values, also called ‘forces’, balance each other out in the actual 
prediction (113).  

Figure 7. SHAP explanation force plot. The patient in this example was predicted to have a 13% risk of a poor 
outcome. The patient’s age was the factor that contributed most to increasing the risk (marked with red), and modest 
levels of NFL and NSE contributed most to decreasing the risk (marked with blue). NFL: neurofilament light (ng/L); NSE: 
neuron-specific enolase (ng/mL); SHAP: Shapley additive explanations algorithm. 
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Figure 7 is an example of a ‘SHAP explanation force plot’. The base value, the mean 
of all predictions, is approximately 0.5, and the patient’s predicted risk of a poor 
outcome (in this case, poor neurological outcome after six months) is 0.13. 
Biomarkers such as NFL and NSE (marked with blue) decrease this particular 
patient’s risk of poor outcome, and the patient’s age is the most important factor that 
increase that risk (marked red). 

The SHAP algorithm can also help to explain how the entire prediction model 
works. By calculating Shapley values for all patients (and thereby creating a matrix 
of Shapley values), we can further interpret the prediction model. In study V, we 
used the ‘SHAP feature importance’ to rank the most important variables as 
measured by the mean absolute Shapley values. 

Software 
The statistical analysis was performed using R, version 3.2.3–4.0.0 (R Foundation 
for Statistical Computing), and Python, version 3.6.4–3.8.3 (Python Software 
Foundation) (114, 115). All ANN models in the thesis were developed using 
Tensorflow, an open-source framework developed by Google (116).  

The ‘tableone’ package was used to calculate the differences in the study 
populations (117). The ‘forestplot’ package in R was used to display the odds ratio 
(118). ROC curves and AUROC calculations were performed using the ‘pROC’ 
package in R (119). The ‘Optimalcutpoints’ package in R was used for calculating 
thresholds for the confusion matrix in study V (120). The ‘Boruta–Shap’ and ‘shap’ 
packages in Python were used for variable selection and explanation of the ANN 
model in study V, respectively (110, 121). The schematic ANN figure was created 
using the ‘TikZ’ package (122). 

Ethics 
Studies I–III were approved by the Regional Ethical Review Board, Lund, Sweden, 
with registration number 2016/464. This ethical application permitted us to study 
mortality retrospectively using data from the SIR database and additionally to study 
laboratory findings and vital parameters obtained during admission to the general 
ICU at Skåne University Hospital in Lund, Sweden. All patients in SIR are entitled 
to have their data removed from the register or to opt not to be registered. In studies 
I and II, lactate and hsTnT were measured on clinical indications only.  

For studies IV and V, the TTM-trial protocol was approved by the ethics committees 
in each participating country, and informed consent was either waived or obtained 
from all participants or their relatives according to the national legislation, in line 
with the Helsinki Declaration. 
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Results 

Value of additional biomarkers (studies I and II) 

Study I – The prognostic value of lactate 
We identified 3039 patients who had their lactate concentration measured within 
one hour of ICU admission. Lactate was, as expected, positively correlated with 30-
day mortality, as shown in figure 8.  

Figure 8. The relation between lactate levels and 30-day mortality. 30-day mortality as a function of lactate 
concentration (with 95% confidence interval band) on ICU admission. Based on all 3039 patients with lactate 
concentration measured on ICU admission. 

Using multivariate logistic regression, we found lactate to be a predictor of 30-day 
mortality independent of the SAPS 3 model (odds ratio [OR] 1.08, 95% CI: 1.05–
1.11, p < 0.001). Among the top five primary ICU diagnoses, we found lactate to be 
an independent predictor for the specific diagnoses ‘cardiac arrest’ (OR 1.17, 95% 
CI: 1.08–1.28, p < 0.001) and ‘sepsis’ (OR 1.14, 95% CI: 1.05–1.25, p < 0.01), 
whereas no significant results were found for ‘malignancy’ (OR 1.01, 95% CI: 0.63–
1.50), ‘trauma’ (OR 1.08, 95% CI: 0.89–1.45) or ‘respiratory failure’ (OR 1.13, 95% 
CI: 1.91–1.42). 
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Figure 9. Prognostic performance when adding lactate to the SAPS 3 model. The area under the receiver 
operating characteristic curve (AUROC) for SAPS 3 and SAPS 3 with lactate for ‘all diagnoses’, ‘cardiac arrest’ and 
‘sepsis’. 

As seen in figure 9, lactate did not add overall prognostic power to the SAPS 3 
model as measured by the AUROC (78.9% vs 78.7%, p = 0.053). When looking at 
specific diagnoses, lactate improved the prognostication for patients after cardiac 
arrest (AUROC 79.6% vs 76.4%, p < 0.01) and for patients with sepsis (AUROC 
75.1% vs 72.7%, p < 0.05). 

Study II – The prognostic value of high-sensitivity troponin T 
Of 4185 first-time admissions, 856 patients (20.5%) had their hsTnT measured 
within 90 min of ICU admission. Figure 10 shows that hsTnT was strongly 
correlated with 30-day mortality for hsTnT values up to 125 ng/L. For hsTnT values 
above 125 ng/L, the 30-day mortality remained stable at around 45%–50% up to 
1000 ng/L. A more linear relationship was found between the logarithm of hsTnT 
up to 10,000 ng/L and 30-day mortality. 

Figure 10. The association between hsTnT values and 30-day mortality. hsTnT values of 0–1000 ng/L are shown 
on the left panel to illustrate the rapidly increasing mortality rate with an increasing hsTnT value from <5 ng/L to 125 
ng/L. hsTnT values <5 ng/L were replaced with 1 ng/L. On the right panel, hsTnT values up to 10,000 ng/L are shown 
on a logarithmic scale. The right panel is based on all 856 patients with hsTnT measured on admission. high-
sensitivity troponin T: hsTnT. 
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Using a multivariate logistic regression on 30-day mortality, we found hsTnT to be 
a predictor of 30-day mortality independent of the SAPS 3 model for all diagnoses 
(OR 1.27, 95% CI: 1.15–1.41, p < 0.001), for non–cardiac arrest (OR 1.37, 95% CI: 
1.20–1.58, p < 0.001) and for sepsis (OR 2.64, 95% CI: 1.63–4.75, p < 0.001). 
hsTnT used as a univariate logistic regression showed good prognostic value for 
predicting 30-day mortality in patients with sepsis (AUROC 79.3%) and 
intermediate prognostic value for the overall ICU population (AUROC 65.3%) and 
for non–cardiac arrest patients (AUROC 68.3%). The results of the regression 
analyses and AUROC calculations are shown in Table 6.  

Table 6. Odds ratio and AUROC for hsTnT alone and hsTnT combined with SAPS 3 for predicting 30-day 
mortality. hsTnT: high-sensitivity troponin T; AUROC: area under the receiver operating characteristic curve; SAPS 3: 
the 3rd version of Simplified Acute Physiology Score; CI: confidence interval. All hsTnT calculations were performed 
using the natural logarithm. 

hsTnT alone Odds ratio (95% CI) p-value AUROC hsTnT alone, % 
All 1.36 (1.25–1.49) <0.001 65.3 
Cardiac arrest 0.97 (0.83–1.12) 0.64 52.1 
Non–cardiac arrest 1.51 (1.34–1.72) <0.001 68.3 
– Sepsis 2.72 (1.70–4.82) <0.001 79.3 
– Heart failure 0.94 (0.55–1.53) 0.8 53.2 
– Respiratory failure 1.13 (0.54–2.43) 0.74 51.9 

SAPS 3 & hsTnT Odds ratio (95% CI) p-value AUROC SAPS 3 
alone, % 

AUROC SAPS 3 
+ hsTnT, % p-value 

All 1.27 (1.15–1.41) <0.001 78.3 79.3 0.15
Cardiac arrest 1.07 (0.90–1.27) 0.46 78.9 78.8 0.59
Non–cardiac arrest 1.37 (1.20–1.58) <0.001 76.1 77.6 0.16
– Sepsis 2.64 (1.63–4.75) <0.001 71.2 83.1 <0.01
– Heart failure 0.81 (0.42–1.41) 0.48 75.3 76.8 0.57
– Respiratory failure 1.03 (0.44–2.36) 0.95 64.1 64.3 0.34

Adding hsTnT to SAPS 3 for patients with sepsis increased the AUROC by >10 
percentage points (83.1% vs 71.2%, p < 0.01), but it did not improve discrimination 
in the other categories. The prognostic value of hsTnT, when added to SAPS 3, for 
patients admitted with sepsis is shown in figure 11. 
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Figure 11. Prognostic performance when adding hsTnT to the SAPS 3 model. Comparing the areas under the 
receiver operating characteristic curve (AUROCs) for SAPS 3 alone and SAPS 3 with hsTnT for patients admitted to 
the ICU with sepsis.  

Using ANNs to predict short-term mortality (study III) 
In total, 217,289 first-time admissions were identified. Of these, 181,075 patients 
were randomised for model development (training set), and 36,214 patients were 
allocated for internal validation (test set). All performance measures were based on 
the test set. The ANN model outperformed the SAPS 3 model (Swedish 
modification) according to both the AUROC (0.889 vs 0.850, p < 10-15) and the 
Brier score (0.096 vs 0.110, p < 10-5) in predicting 30-day mortality (see figure 12). 

Figure 12. The prognostic performance of the ANN model and the SAPS 3 model. The area under the receiver 
operating characteristic curve (AUROC) for the artificial neural networks (ANN) model and the Simplified Acute 
Physiology Score 3 (SAPS 3; Swedish calibration 2016) model for predicting 30-day mortality. All calculations were 
based on the test set (n = 36,214). 
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As seen in figure 13, the calibration error (the difference between the OMR and 
EMR) in the high-EMR range was reduced in the ANN model.  

The performances of the ANN model and the SAPS 3 model for different primary 
diagnoses can be compared in table 7. The ANN model outperformed the SAPS 3 
model for all top primary diagnoses. 

Figure 13. Calibration curves. Observed mortality rate (OMR) vs estimated mortality rate (EMR). On the left, EMR is 
calculated based on the Swedish calibration of the Simplified Acute Physiology Score (SAPS 3) from 2016. On the right, 
EMR is calculated based on the ANN model. Note the difference between OMR and EMR for the SAPS 3 model in the 
high-EMR range. All calculations were based on the test set (n = 36,214). 

Table 7. Prognostic capability for different primary ICU diagnoses. 
The performance of the Simplified Acute Physiology Score (SAPS 3) model and the artificial neural network (ANN) 
model for different primary ICU diagnoses. All calculations were based on the test set (n = 36,214). The area under the 
receiver operating characteristic curve (AUROC) is presented, with a 95% confidence interval in brackets. SIRS: 
Systemic Inflammatory Response Syndrome. 

Number of 
patients 

AUROC of SAPS 3 AUROC of ANN p-value 

Test set 36,214 0.850 (0.846–0.855) 0.889 (0.885–0.893) <10−15 

Cardiac arrest 1,651 0.858 (0.835–0.881)  0.893 (0.875–0.912) <10−7 

Septic shock 1,481 0.846 (0.821–0.870) 0.889 (0.869–0.909) <10−8 

Respiratory failure 1,467 0.830 (0.804–0.856) 0.878 (0.855–0.900) <10−8 

Gastrointestinal haemorrhage 1,324 0.878 (0.858–0.900) 0.910 (0.892–0.927) <10−5 

SIRS 1,320 0.836 (0.811–0.862) 0.884 (0.863–0.906) <10−8 

Trauma 1,301 0.844 (0.820–0.869) 0.882 (0.860–0.903) <10−5 

Bacterial pneumonia 1,173 0.856 (0.830–0.882) 0.895 (0.874–0.916) <10−7 

Seizures 797 0.847 (0.814–0.880) 0.892 (0.865–0.918) <10−4 

Head injury 760 0.833 (0.796–0.869) 0.888 (0.860–0.916) <10−5 
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After ranking all SAPS 3 variables and then adding one variable at a time to the 
model, we found that using ANNs to interpret eight variables produced a model that 
achieved performance similar to that of the SAPS 3 model. The eight variables were 
(in order of importance for improving the AUROC) age, level of consciousness, 
neurological cause, cardiovascular cause, cancer, temperature, pH and leukocytes. 
The eight-variable model had an AUROC of 0.851 (95% CI: 0.845–0.857) and a 
Brier score of 0.106 (95% CI: 0.106–0.107). 

Figure 14. Age and the standardised mortality ratio (SMR). The SMR is the observed mortality rate (OMR) divided 
by estimated mortality rate (EMR): an OMR above 1 represents higher mortality than expected and vice versa. The 
SMR is displayed as a function of age (which is the single most prognostic factor in SAPS 3) for the Simplified Acute 
Physiology Score (SAPS 3) model (left panel) and the artificial neural network (ANN) model (right panel) for the test set 
(n = 36,214). SMR is shown with a 95% confidence interval.  

As can be seen in figure 14, the ANN model was superior to the SAPS 3 model in 
correcting for age, which is the most important variable in SAPS 3. The SAPS 3 
model underestimated 30-day mortality in the elderly ICU population and 
overestimated 30-day mortality in the younger ICU population. 
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Predicting neurological outcome after out-of-hospital 
cardiac arrest (studies IV and V) 

Study IV – Cardiac arrest prognostication on admission 
In study IV, a total of 932 patients and 54 variables were included for final analysis. 
We randomly selected 839 patients (90%) for model development (training set) and 
93 patients (10%) to evaluate the model's prognostic performance (test set). The 
cross-validated AUROC (for the training set) was 85.2%, and the AUROC when 
evaluating performance using the test set was 89.1%. 

Figure 15. Performance comparison of the TTM risk score and the ANN model. Comparison between the 
performance of the TTM risk score and our ANN model based on the 80 patients in the test set. TTM: targeted 
temperature management; ANN: artificial neural network. 

We compared the performance of our ANN model with that of a similar prediction 
model, the ‘TTM risk score’ as described in the Background chapter (74). The ANN 
model performed significantly better (AUROC 90.4% vs 83.9%, p = 0.029), as 
shown in figure 15. Note that 13 patients were removed from the test set before 
comparing the two models, as the TTM risk score model could not handle missing 
values. This change in the test set explains the difference between the ANN model 
AUROC determined here of 90.4% and the 89.1% reported above. 
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Figure 16. Model performance as variables are added. In the search for a simplified model, we ranked all input 
variables by subtracting one variable at a time from the developed model and calculating the AUROC. We then started 
with the most important variables from this ranking and added one variable at a time back to the model, calculating the 
AUROC at each step based on the training set. The AUROC (AUROC = AUC in figure 16) is based on the cross-
validation (training), represented by the blue line with its corresponding CI. The best performing model, with 54 variables, 
is represented by the dotted line with its corresponding CI. The CIs overlapped after five variables had been added; this 
is marked with a red X to indicate the point after which no significant difference was found between the two models. 
AUROC: area under the receiver operating characteristic curve; CI: confidence interval. 

Table 8. Model performance as variables are added. All variables were ranked and then added one at a time, starting 
with age, to build a model from the ground up. The model performance is shown as the AUROC with the corresponding 
CI based on the cross-validation (training; see figure 16), and the corresponding test set performance is also shown. 
For comparison, the performance of the final model with all 54 variables is shown as well. AUROC: area under the 
receiver operating characteristic curve; CI: confidence interval; ROSC: return of spontaneous circulation; GCS: Glasgow 
Coma Scale; AMI: acute myocardial infarction; CV: cross-validation. 

No. of variables Variables AUROCCV AUROCtest 

1 Age 0.708 (±0.0286) 0.657 
2 + Time to ROSC 0.780 (±0.0113) 0.799 
3 + First monitored rhythm 0.820 (±0.0106) 0.852 
4 + Previous cardiac arrest 0.822 (±0.0169) 0.861 
5 + GCS motor score 0.832 (±0.0229) 0.863 
6 + Dose of adrenaline 0.839 (±0.0170) 0.826 
7 + Creatinine 0.846 (±0.0117) 0.837 
8 + Cardiac arrest location 0.854 (±0.0119) 0.857 
9 + Previous AMI 0.843 (±0.0129) 0.835 
10 + Diabetes 0.840 (±0.0182) 0.844 
11 + Length 0.848 (±0.0173) 0.869 
12 + Time to Advanced CPR 0.853 (±0.0142) 0.870 
13 + pH 0.851 (±0.0266) 0.880 
14 + Platelets 0.849 (±0.0079) 0.875 
15 + Bystander witnessed arrest 0.852 (±0.0188) 0.886 
54 All variables 0.852 (±0.0172) 0.891 
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We ranked all 54 variables based on the size of the effect on the AUROC when they 
were removed from the model. We then added one variable at a time, starting with 
the most important variable according to the ranking, and calculated the AUROC 
based on the training set at each step. The AUROC calculations for the 15 most 
important variables are shown in figure 16 and described in further detail in table 8. 

After hospital admission, patients in the TTM-trial were randomised to a target 
temperature of 33°C or 36°C for 28 h. By dividing the cohort into five risk groups 
based on the ANN model predictions, we could investigate whether one of the two 
treatments would benefit certain risk groups more than others. We found that no 
specific risk group benefitted from a specific target temperature, as shown in figure 
17. 

Figure 17. Treatment effect based on the ANN-model-stratified risk groups. Patients were divided into five groups 
based on their probability of a poor outcome at hospital admission using the ANN model. An odds ratio over 1 indicates 
a better functional outcome when treated with 36°C compared to with 33°C and vice versa. 
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Study V – Cardiac arrest prognostication during the first three days 
after ICU admission 
As in study IV, 932 patients were included for further analysis after six patients had 
been removed due to missing outcomes and one patient due to missing values. As 
detailed in figure 18, patients who had either awakened or died during the time 
windows 0–24 h (day 1), 24–48 h (day 2) and 48–72 h (day 3) after ICU admission 
were removed accordingly.  

Figure 18. Flowchart. Flowchart for the study populations at days 1 (24 h), 2 (48 h) and 3 (72 h) after ICU admission. 
After each day, patients who had died or awakened were removed from further analysis to focus on the prognostication 
of comatose patients. Furthermore, on each day, three datasets were created that reflected the levels of biomarkers 
included in the model (not shown here). Population characteristics are based on ‘Patients included for further data 
analysis (n = 932)’ (see table 1A–D under supplements in study V). TTM: targeted temperature management; ICU: 
intensive care unit. 
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As described in the Methods and materials chapter, for each day, three datasets were 
created that included three different levels of biomarkers. The datasets varied based 
on the number of patients with missing values. The variable counts before and after 
variable selection and the number of patients in each dataset are given in table 9. 

Figure 19. Prognostic performance for all nine models. Model performance predicting poor neurological outcome 
after six months based on the corresponding test set. The columns represent the timeline after ICU admission. The 
rows represent the different levels of biomarkers added to the available clinical variables from the TTM-trial: none (level 
A), clinically accessible biomarkers (level B) and research-grade biomarkers (level C). The CI for the AUROC is 
calculated for each model. Furthermore, the CI for the specificity at different levels of sensitivity is displayed as a blue 
CI band. AUROC: area under the receiver operating characteristic curve; CI: confidence interval.  
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ROC curves indicating prognostic performance are illustrated in figure 19. For the 
level A model, without added biomarkers, prognostic performance remained under 
90% during the three days after ICU admission. For the level B model, which 
included accessible biomarkers, the prognostic performance improved significantly 
from day 1 to day 3 (from 81.8% to 94.1%, p < 0.01). For the level C model, with 
research-grade biomarkers included, the performance was excellent from day 1 
through day 3.  

A notable finding was that level C at all time points, and level B at 72 h, had a 
sensitivity above 60% while retaining a 100% specificity. When we investigated 
this further, by using a threshold of 100% specificity (in the training set) to predict 
the outcome in patients within the test set, two models generated false-positive 
predictions (predicted poor outcome, reported good outcome). Most of the models 
had a high rate of false-negative predictions (predicted good outcome, reported poor 
outcome), but that rate remained under 25% when using research-grade biomarkers 
(level C). Model performance details are shown in table 9. 

Figure 20. The Shapley additive explanations (SHAP) algorithm used to explain how patient-specific predictions 
were generated. The patient in this example was predicted to have a risk of a poor outcome of 23% on day 1, 18% on 
day 2 and 13% on day 3 (using the level C model). On all three days, the patient’s age was the factor that contributed 
most to increasing the risk, and modest levels of NFL and NSE contributed most to decreasing the level of risk overall. 
TNT: troponin-T (ng/L); NFL: neurofilament light (ng/L); UCHL1: ubiquitin carboxy-terminal hydrolase L1 (ng/L); NSE: 
neuron-specific enolase (ng/mL); GFAP: glial fibrillary acidic protein (ng/L). 
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The SHAP algorithm was applied to all models to explain how each prediction had 
been generated. A patient example is illustrated in figure 20, where predictions of 
the ANN model that uses research-grade biomarkers (level C) are explained using 
the SHAP algorithm on days 1, 2 and 3. The patient’s age adds to an increase in the 
risk of poor outcome, while the low levels of the biomarkers decrease the risk. 

Moreover, we used the SHAP algorithm to rank all variables for each model, as 
illustrated in figure 21, which displays all three levels for day 2. As seen in this 
figure, the list of the top 10 most important variables changes when clinically 
accessible and research-grade biomarkers are added. Age and the dose of adrenaline 
given are the two most important variables in level A. The importance of these 
variables is reduced in levels B and C, and in level C the dose of adrenalin is not 
included in the top 10 variables, while age remains the third most important variable. 

Figure 21. SHAP variable importance on day 2. The global importance of each variable in each model illustrated with 
the SHAP variable importance. The most important variable has the highest mean of absolute SHAP values. The left 
panel shows level A, the middle panel shows level B (adding clinically accessible biomarkers), and the right panel shows 
level C (adding research-grade biomarkers). Similar figures for day 1 and 3 can be found in study V under supplements. 
CA: cardiac arrest; ROSC: return of spontaneous circulation; NSE: neuron-specific enolase; BNP: brain natriuretic 
protein; S100B: S100 calcium-binding protein B; NFL: neurofilament light; GFAP: glial fibrillary acidic protein; UCHL1: 
ubiquitin carboxy-terminal hydrolase L1. 
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Discussion 

The most commonly used ICU scoring systems have continuously developed, along 
with intensive care medicine, over the last four decades. This thesis is another step 
in the search for better prognostication for our most critically ill patients. We first 
investigated the effects of adding single biomarkers to our current scoring system 
and then focused on using ANNs to develop prediction models for both critically ill 
patients in general and in comatose patients post-OHCA. This chapter merges the 
overall points from the discussions in the five studies. 

In the first two studies, we used rather simple techniques to investigate whether 
inclusion of a biomarker added value to the current SAPS 3 model. We removed 
patients with missing values and used logistic regression on 30-day mortality and 
found significant associations (odds ratios) for both lactate and hsTnT. Even though 
the odds ratios were significant, neither lactate nor hsTnT added prognostic value 
to SAPS 3 as measured by the AUROC. We were, however, able to show added 
prognostic value in sepsis and in cardiac arrest (lactate only).  

In the third study, we developed an ANN using the SAPS 3 variables. The results 
of the ANN were distinctly better than the SAPS 3 model, especially the way the 
ANN model corrected for age (the single most important prognostic variable). We 
were also able to design an ANN using only eight SAPS 3 variables that provided 
performance similar to that achieved by SAPS 3. ANNs also showed promising 
results in study IV. Even though the number of patients represented in the data used 
for model development was much lower, the ANN model outperformed the TTM 
risk score – a logistic regression-based model.  

Studies IV and V both predicted long-term neurological outcome post-OHCA based 
on either admission data (study IV) or data obtained during the first three days after 
ICU admission (study V). The black-box nature of ANNs was addressed in study V 
with the SHAP algorithm. It is important to note that the SHAP algorithm, powerful 
as it is, does not improve the model performance; rather, it explains the reason 
behind each prediction. Studies III and V in particular illustrate how machine 
learning could aid intensive care medicine in the future.  
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Value of additional biomarkers (studies I and II) 
We investigated the predictive capabilities of lactate and hsTnT in studies I and II. 
Although both biomarkers were found to be associated with 30-day mortality 
independently of the SAPS 3 model for all diagnoses, the prognostic value of the 
biomarkers was not sufficient to impact the model’s overall AUROC. When 
investigating the prognostic performance for specific diagnoses, however, we found 
both biomarkers added substantial value to SAPS 3 for patients admitted with sepsis. 
Lactate also added value to SAPS 3 for patients admitted after cardiac arrest. The 
greatest effect was found upon adding hsTnT to SAPS 3 for patients with sepsis, 
improving the SAPS 3 AUROC by more than 10% (from 71.2% to 83.1%, p < 0.01). 
Even as a single biomarker, hsTnT had an AUROC of 79.3% for patients with 
sepsis.  

Other studies investigating TnT have also found similar effects for critically ill 
patients with sepsis (40, 123). However, Røsjø et al. (124) did not find that the 
hsTnT level at admission added value to their scoring system (SAPS 2, the 
predecessor to SAPS 3), and hsTnT alone had a lower AUROC than reported in our 
study. Our study design had limitations which could explain some of the differences 
between our findings and those of Røsjø et al.’s study. In our study, patients had 
hsTnT measured only on clinical indication, making them a subgroup of sepsis 
patients with a clinical suspicion of cardiac injury. The EMR was significantly 
higher in the group that had hsTnT measured (hsTnT group) compared to the group 
that did not (non-hsTnT group). 

Moreover, we did not have ECG records which could have clarified the cause of the 
elevated hsTnT. Despite the limitations of study II, the prognostic value of hsTnT 
as a biomarker for patients with sepsis is noteworthy and should be investigated 
further in a prospective study. Another possible weakness (of both studies I and II) 
is the possible variance among physicians when deciding the primary diagnosis for 
the ICU admission, as this could add noise to the model. Lengquist et al. found large 
discrepancies in diagnosing sepsis as a primary diagnosis compared to using the 
Sepsis 3 criteria in a retrospective comparison (125).  

It is important to find strong predictors of ICU mortality to simplify ICU 
prognostication and improve the prognostication for specific diagnoses. However, 
for future studies, it would be better if the biomarkers, such as lactate or hsTnT, 
were included in the model development, so that they can compete on equal terms 
with the other variables included in the model. This requires prospective studies and 
larger datasets to avoid the limitations mentioned here. Furthermore, an external test 
set should be used to validate any findings. Neither study I nor study II used an 
independent test set. 



61 

Using ANNs to predict short-term mortality (study III) 
In study III, we investigated whether the SAPS 3 prognostication could be improved 
by using ANNs trained on the SAPS 3 variables. We found ANNs to be superior to 
the SAPS 3 model (Swedish modification) in predicting 30-day mortality measured 
by the AUROC and the Brier score. A 4% increase in the AUROC from 85% to 
89% may not sound substantial, but as the AUROC approaches a perfect score of 
100%, this degree of improvement becomes increasingly difficult. As an example, 
when we analysed how well-calibrated age (the single most important predictive 
variable) was in both models, the difference between the ANN model and the SAPS 
3 model become apparent (see figure 14).  

The SAPS 3 model is a logistic-regression-based model which has been calibrated 
over time using three parameters, as described in the Background chapter. This 
means that SAPS 3, powerful as it is, has a rigid structure which theoretically could 
have drawbacks when variable interactions are complex. In comparison, the ANN 
model developed in study III, a non-linear model, incorporated more than 10,000 
weights (adjustable parameters). A direct comparison of the number of parameters 
used by the two models, however, is of limited use, as the SAPS 3 model also uses 
a predefined scoresheet when calculating the SAPS 3 score, which is then converted 
into the EMR. All things considered, when the two methods were compared, we 
found the ANN approach to be superior in predicting 30-day mortality. Our results, 
however, differ from those of a recent systematic review, which did not find 
machine learning models superior to logistic regression models (126). 

To our knowledge, only one other study has applied similar AI methods to predict 
mortality based on SAPS 3 variables. Thorsen-Meyer et al. used a subset of the 
SAPS 3 variables with a recurrent neural network to predict 90-day mortality in a 
Danish ICU cohort (62). Their predictive performance measured by AUROC on 
admission was around 75%. As a comparison, Engerström et al. found the SAPS 3 
model could predict 90-day mortality in a Swedish population with an AUROC of 
84% (26). However, as their study’s variables, study population, and outcome 
differed from those used in study III, a direct comparison of the studies is 
meaningless. Nevertheless, the difference between Thorsen-Meyer et al.’s findings 
and ours seems larger than expected. 

When developing prediction models, there is often a threshold between complex yet 
high-performing prediction models and simpler models with more moderate 
performance. For each model, this trade-off between simplicity and performance 
has to be considered. In study III, we developed a simple eight-variable model with 
performance similar to that of SAPS 3, which underlines the strength of ANNs.  

Study III had two main limitations which could be improved on in future studies. If 
the test set had been comprised of data from the latest year (e.g. 2017 in study III) 
instead of data chosen completely at random, the performance measure would 
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reflect a more recent patient population. Second, as with all ANN models, there are 
black-box concerns, meaning that it is very difficult to understand how the model 
works. Applying the SHAP algorithm after model development can reduce some of 
these black-box concerns. This is discussed later in this chapter. 

When we investigated specific diagnoses, the ANN model was superior for the most 
common primary diagnoses, from cardiac arrest to septic shock. The ANN model 
achieved a near-excellent AUROC of 89.3% when predicting for patients admitted 
after cardiac arrest (non-specific).  

Predicting neurological outcome after out-of-hospital 
cardiac arrest (studies IV and V) 
While study IV focused on prognostication at admission to the hospital, study V 
focused on daily prognostication until day 3 (72 h), the earliest time point to start 
prognostication according to the current guidelines (78). The designs of these two 
studies could give insight into how these models’ prognostic performance evolves 
during the first 72 h after ICU admission. Both study IV and study V are post hoc 
analyses of the TTM-trial, which enrolled only patients admitted to the hospital after 
OHCA of presumed cardiac cause. Moreover, the study had several exclusion 
criteria (such as limitations in therapy, including do-not-resuscitate orders, or 
known illness making survival to 180 days unlikely) which must be considered 
when interpreting the results.  

In study IV, the ANN model using 54 variables outperformed the TTM risk score, 
a logistic-regression-based model developed on the same dataset. Even when the 
ANN model used only three to five variables, its prognostic performance was good 
when evaluated on the test set. This leads to the question of how many variables we 
should include in our models. In both study III and study IV, we primarily used all 
accessible variables and secondarily created a simplified model. These two models 
had different aims; the simplified model is easy to use bedside but is not as accurate 
as the model with more variables, which is better suited for use as an integrated part 
of electronic medical records. In study V, we used a variable selector to reduce the 
number of variables for each model, in some cases by 90%. Which method to choose 
depends on the situation, the prognostic strength of the biomarkers and the aim of 
the prediction. Figure 16 (study IV) illustrates this.  

Study V showed how important research-grade biomarkers such as NFL are, 
reporting an AUROC of around 95% only one day (24 h) after ICU admission. This 
prognostic performance remained at the same level after day 2 (48 h) and day 3 (72 
h). These findings correspond well with previous findings; the only difference 
between those earlier studies and ours is that our study focused solely on comatose 
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patients (88, 98). When only clinically accessible biomarkers such as NSE were 
added, the prognostic performance improved significantly from day 1 to day 3. 
When using clinically accessible biomarkers on day 3, the performance was similar 
to the performance using research-grade biomarkers (level C) on all three days. 
Analysing the ROC curves reveals that these four models had performances 
comparable to that of the ERC–ESICM guidelines as reported by Moseby-Knappe 
et al. (81). This is interesting, as our models did not have access to crucial prognostic 
information such as EEG, SSEP or neurological imaging. When we investigated this 
even further by using a threshold based on 100% specificity on the training data 
(cross-validations) to predict the outcome in the test sets, the model with research-
grade biomarkers (level C) on day 1 (24h) had one false-positive prediction.  

The ERC–ESICM guidelines are used only for a subset of patients on day 3 (after 
72 h), as the patients must have a GCS-M ≤ 2 before the prognostication can be 
initiated. Otherwise, the prognostication will be postponed. The setup in study V, 
by contrast, created predictions for all comatose patients. 

It is essential to acknowledge the uncertainty present when using datasets that are 
the size of the TTM-trial dataset. The performance of models using such datasets 
can be too dependent on the train/test set split and vulnerable to outliers in general. 
For example, the model performance was presumably better at the time of hospital 
admission (study IV) than after 24 h without the use of biomarkers (study V). This 
difference is noteworthy and must be kept in perspective when discussing this 
approach to cardiac arrest prognostication.  

Both studies IV and V used a dichotomised CPC score as the outcome of the 
prediction models. Simplified as it is, this score gives information about the 
neurological outcome. Optimally the model would instead predict the specific CPC 
score. However, given the size of the TTM-trial dataset, an attempt to predict a 
specific score would probably lead to prediction uncertainties. Our hope is that data 
from the 1900 patients enrolled in the TTM2-trial will soon make such multiclass 
predictions meaningful and allow valuable predictions to be made at different time 
points: mRS and CPC score at ICU discharge, hospital discharge, after six months 
and after 24 months.  

Improving ICU prognostication 
The ICU is a very data-rich environment. For the most critically ill patients, 
hundreds of different variables are gathered daily, from basic vital parameters, 
laboratory findings and various radiological imaging to continuous information 
streams such as ECGs, EEGs and arterial pressure curves in high resolution. 
Moreover, information from the technical equipment used in the ICU, such as 
ventilators, infusion pumps (medicine and fluid infusion) and dialysis machines, 
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still largely remains unused in prognostication. Today, the ICU physician interprets 
this highly complex matrix of information to plan the best possible treatment for the 
individual patient. The goal is to ensure the patient will receive state-of-the-art care, 
survive and get safely through their ICU stay without treatment complications. AI 
algorithms could support ICU physicians in reaching this goal by continuously 
predicting the risk of mortality and morbidity as the critically ill patient is being 
treated.  

In recent years, numerous publications have focused on predictive modelling for 
critically ill patients, some focusing on the deterioration in the patient’s condition 
outside the ICU while others focus on patients admitted to the ICU. Lauritsen et al. 
achieved high predictive performance using a machine learning algorithm to predict 
acute critical illness based on electronic health records (127). Focusing on patients 
after admission to the ICU, several studies have shown how predictive performance 
improved over the course of an ICU stay (61, 62, 128). These studies incorporated 
modern machine learning algorithms and data from electronic health records into 
their predictions. 

The next natural step for ICU prognostication will be to follow critically ill patients 
before any possible ICU admission and after discharge to ensure the best possible 
long-term outcome. As shown above, this is possible using modern computer 
algorithms. The challenges will be in handling missing values and noise in a 
sophisticated manner and in the subsequent implementation. In this thesis, missing 
values were either excluded, as in studies I and II, or imputed using simple median 
or mode substitution for continuous and binary variables, respectively. As ANNs 
cannot handle missing values by themselves, it is important to use imputation 
methods to replace missing values. During model development, more advanced 
imputation methods such as autoencoders (study III) and missforest (study V) did 
not improve model performance. If imputation techniques are needed, we 
recommend a grid search of imputation methods to find the best possible one.  

Sixty years since the establishment of the ‘first ICU prototype’ at the University of 
Southern California and we have barely started to integrate AI methods into the care 
of critically ill patients. We are in a transition period in which our surroundings are 
utilising data in a manner never seen before, yet this revolution has not yet fully 
reached the healthcare system. There is a need to further develop these methods and 
move them into our clinical practices for the future well-being of our patients. 
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Conclusions 

Lactate was found to be an independent predictor of 30-day mortality in addition to 
SAPS 3. The addition of lactate to SAPS 3 improved the AUROC for patients 
admitted with sepsis or cardiac arrest as their primary diagnoses, although not for 
all diagnoses.  

High-sensitivity TnT (hsTnT) was also found to be an independent predictor of 30-
day mortality when added to SAPS 3. For patients admitted with sepsis as their 
primary diagnosis, hsTnT improved the prognostic performance measured by 
AUROC by more than 10%. Further studies are needed to validate the strength of 
hsTnT in sepsis prognostication.  

By using ANNs to interpret the variables used in the SAPS 3 model the prognostic 
performance improved noticeably. The ANN model outperformed the SAPS 3 
model (Swedish modification), measured by the AUROC, the Brier score and 
calibration plots, in predicting 30-day mortality when evaluating the model based 
on more than 36,000 patients (internal validation). The ANN model was superior to 
SAPS 3 in correcting for age. Furthermore, an ANN model developed using only 
eight variables showed similar performance as the full SAPS 3 model.  

For comatose patients admitted to the ICU post-OHCA, our ANN model was 
superior to a logistic-regression-based model in predicting the neurological outcome 
based on information available at hospital admission. No specific risk groups 
benefitted from a TTM of neither 33° C nor 36 ° C. 

When using clinical variables with and without clinically accessible and research-
grade biomarkers during the first three days after ICU admission, ANN models 
showed good to excellent prognostic performance in predicting the neurological 
outcome in comatose patients post-OHCA. Especially, the models which included 
NSE after 72h and NFL on all days showed promising prognostic performance. 
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Future perspectives 

Continuing to improve early ICU prognostication 
SAPS 3 uses background information and information obtained within the first hour 
after ICU admission. This makes SAPS 3 a useful tool for benchmarking and 
research. We should utilise the prognostic information available from other 
healthcare registries on information about previous diagnoses, prescriptions and so 
on. Moreover, data science is constantly evolving; new methods for imputing 
missing values, new feature selection methods and new supervised machine learning 
algorithms should continuously be tested to improve early ICU prognostication.  

Developing dynamic models 
On a regional level, it is possible to create and implement dynamic models, based 
on time-series data, that continuously predict the patient’s risk of deterioration. The 
time resolution can range from daily for variables such as biomarkers to 
milliseconds for variables such as ECG and EEG. A complicating factor is how to 
utilise the national registries information mentioned above so that the prognostic 
performance for patients at ICU admission would be comparable with national 
standards. Otherwise, training AI models on smaller datasets could result in 
significantly lower performance. 

Morbidity prognostication 
After development, these prediction models (early and dynamic models) can 
relatively easily be retrained to predict various morbidity indicators (direct or 
indirect measures) such as kidney failure, depression or level of assistance provided 
by the government. In this way, we can create models for other short-term and long-
term outcomes after ICU admission in addition to the standard mortality predictions. 
This would be valuable information for physicians, researchers, patients and 
patients’ family. 
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Prediction on an individual level 
All of the above goals require large datasets to be able to give meaningful 
predictions on an individual level. The current ICU scoring systems are regarded as 
too uncertain to be used for individual predictions. To be able to use future 
prediction models on an individual level, we should test methods which can detect 
outliers or can, in another way, explain the uncertainty in each prediction. 

Improving post–cardiac arrest prognostication 
With almost 2000 post-OHCA patients, the upcoming TTM2-trial (the sequel to the 
TTM-trial) database could be used to overcome some of the limitations of studies 
IV and V. Hopefully, we will be able to improve prognostic performance by adding 
prognostic information such as EEGs, SSEP and neuroimaging to our models to 
predict specific mRS or CPC scores.  
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Populärvetenskaplig sammanfatning 

På intensivvårdsavdelningar (IVA) vårdas patienter med akuta och livshotande 
tillstånd såsom svår blodförgiftning, efter trafikolyckor eller vård efter hjärtstopp. 
Patienter på intensivvårdsavdelningar kräver noggrann observation och behandling 
dygnet runt. Behandling på IVA består i att stötta eller ersätta vissa organfunktioner 
tills patientens tillstånd förbättras eller en specifik behandling har haft effekt. 
Avhandlingen handlar om hur riskbedömningen av kritiskt sjuka patienter som 
läggs in på en intensivvårdsavdelning kan förbättras genom att inkludera 
information från blodprover och med hjälp av artificiell intelligens (AI). 

Trots moderna behandlingsmetoder så har patienter på intensivvårdsavdelning en 
hög dödlighet - faktiskt dör en av sex inom 30 dagar från inläggning. För vissa 
patientgrupper, t.ex. patienter som är medvetslösa efter ett hjärtstopp, så är 
dödligheten hela 50%. För att kunna följa upp effekten av behandlingar så behövs 
ett bra verktyg för riskbedömning vid inläggning på IVA. Den modell som används 
i Sverige idag heter the Simplified Acute Physiology Score 3 (SAPS 3). Modellen 
använder sig av information om patientens medicinska bakgrund, inläggningsorsak, 
fysiologiska mätvärden som t.ex. blodtryck och blodprover som avspeglar olika 
organfunktioner. Med hjälp av de här värdena räknar den ut risken för att patienten 
avlider inom 30 dagar. Sedan modellen skapades 2005 så har den grundläggande 
strukturen varit densamma och inga nya blodprover har lagts till för att försöka 
förbättra riskbedömningen.  

I de första två studierna undersökte vi om två olika blodprover kunde tillföra viktig 
information till SAPS 3-modellen. De två blodproverna var mjölksyra (laktat) och 
"högkänsligt troponin T" (hsTnT) som används för att påvisa blodpropp i hjärtat. 
Våra resultat visar att laktat och hsTnT förbättrar riskbedömningen för patienter 
med sepsis (blodförgiftning) och hjärtstopp (enbart laktat). 

Förbättrade algoritmer och större datorkraft har ökat möjligheterna att använda AI 
inom medicinsk forskning. I denna avhandling användes en AI-metod som heter 
artificiellt neuralt nätverk (ANN). Förenklat kan man säga att metoden på digital 
väg försöker efterlikna biologiska nätverk med nervceller (som i hjärnan), där 
enskilda "celler" tar emot och skickar information till varandra. Denna struktur kan 
vara en fördel när man ska hitta komplexa samband mellan många olika variabler 
såsom ålder, blodprover, samsjuklighet och utfall som t.ex. död eller dålig 
funktionsnivå. 
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I den tredje studien undersökte vi om just ANN kan förbättra riskbedömningen vid 
patientens ankomst till IVA genom att använda sig av samma variabler som i SAPS 
3-modellen. Vi använde anonymiserade data från mer än 180 000 patienter till att 
bygga vår modell och 36 000 patienter för att utvärdera hur bra den fungerar. Med 
hjälp av ANN blev riskbedömningen av intensivvårdspatienter i Sverige bättre på 
alla sätt vi undersökte. Neurala nätverk kan bland annat hantera patientens ålder på 
ett bättre sätt, då äldre och yngre patienters dödlighet under- respektive överskattats 
av SAPS 3-modellen. Metoden var dessutom bättre i riskbedömningen av alla de 
vanligaste diagnoserna på intensivvårdsavdelningar.  

Patienter som överlever hjärtstopp utanför sjukhuset och är i koma efteråt utgör en 
speciell patientgrupp på intensivvårdsavdelningen. Ofta ses en komplex 
sjukdomsbild p.g.a syrebrist under hjärtstoppet som bland annat påverkar hjärnan, 
hjärtat och ger en inflammationsreaktion. Idag används riktlinjer från europeiska 
sällskapet för intensivvård och från det europeiska förbundet för hjärt-lung-räddning 
för att bedöma den enskilda patientens risk för ett dåligt neurologiskt utfall t.ex. 
svåra bestående hjärnskador. Bedömningen bygger på neurologiska undersökningar 
av patienten, röntgenundersökning av hjärnan, olika metoder för att testa hjärnans 
elektriska impulser och specifika blodprover.  

I studie 4 och 5, undersökte vi om ANN kan förutsäga långtidsföljderna efter 
hjärtstopp. Redan vid inläggningstidpunkten kunde vi se att neurala nätverk 
förbättrade riskbedömningen jämfört med tidigare utvecklade modeller (studie 4). 
För de patienter som inte vaknade de första tre dagarna efter hjärtstoppet gav 
kombinationen av neurala nätverk och blodprover i form av specifika 
hjärnskademarkörer lovande resultat (studie 5). Även om vi inte hade tillgång till 
röntgenundersökningar eller undersökningar av hjärnans elektriska impulser, så var 
resultaten så bra att vissa av våra modeller var jämförbara med nuvarande metoder.  

Ett problem med ANN-modeller är att de är mycket komplicerade. I den femte 
studien använde vi därför en metod som kallas Shapley additive explanations för att 
förklara orsaken till modellens bedömningar. På så vis fick vi en bättre inblick i hur 
ANN fungerar. Sammanfattningsvis har vår forskning med neurala nätverk visat 
lovande resultat för att kunna förbättra riskbedömningen av IVA-patienter, både 
generellt och för patienter inlagda efter hjärtstopp. 
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