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Abstract

In this paper we examine robustness of a recently developed panel data stochastic frontier
model that allows for both persistent and transient (also known as long-run and short-run or
time-invariant and time-varying) inefficiency along with random firm-effects (heterogeneity)
and noise. We address some concerns that the practitioners might have about this model.
First, given that there are two random time-invariant components (persistent inefficiency
and firm-effects) the concern is whether the model can accurately identify them, and if so
how precisely can the model estimate them? Second, there are two time-varying random
components (transient inefficiency and noise), and the concern is whether the model can
separate noise from transient inefficiency, and if so how precisely can the model estimate
transient inefficiency? Third, how well are persistent and transient inefficiency estimated
under different scenarios, viz., under different configurations of the variance parameters of
the four random components? Given that the model is quite complex, relatively new and
becoming quite popular in the panel efficiency literature, we feel that there is need for a
detailed simulation study to examine when, where and how one can use this model with
confidence to estimate persistent and transient inefficiency.
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1 Introduction

Now-a-days panel data models are extensively used in almost every area of microeconometric

applications. Efficiency modeling is not an exception to this trend. In efficiency estimation

panel models are increasingly used by the academicians (since the early 1980s) as well as in

regulatory agencies in more recent years. For example, the regulators in the UK not only use

panel data to increase number of observations and precision of the parameters in cases where

cross-sectional units are small, many of them also use state-of-the-art efficiency models. Office

of the Rail and Road in the UK use panel data models to examine both persistent and transient

inefficiency. Other UK regulatory agencies (Ofwat, Ofgem, Royal Mail, etc.) are also interested

in separating persistent inefficiency from firm-heterogeneity (often related to special factors), in

addition to examining time-varying inefficiency in both price setting and merger cases.

In examining efficiency regulators often give special allowance to some companies because of

their special production conditions, locations, etc. The allowance is somewhat ad hoc because

it is not estimated from any formal economic/econometric model and therefore there is no

way of knowing whether it captures firm heterogeneity or persistent inefficiency or both. It

is perhaps better to decide on the special factor allowance from a formal model so that it

becomes transparent to all the firms that are being regulated. Since the regulators all over the

world use carrots and stick principle, it is also desirable for both the regulators and the firms

being regulated to know whether carrots and sticks are equally applicable to persistent and

transient inefficiency. For this, one needs to know where and when persistent inefficiency can

be accurately estimated. The other important issue in regulatory cases is whether the regulated

firms are improving their efficiency over time to attain the benchmark (catch-up effect). In

doing so one has to estimate time-varying (transient) inefficiency and again it is important to

know that the transient component is estimated accurately, so that no undue burden is placed

on the firms being regulated in achieving a target that is not estimated accurately.

To address these issues the stochastic frontier model that was introduced recently (Colombi

et al. (2014), Kumbhakar et al. (2014), Tsionas and Kumbhakar (2014)) has four components,

viz., persistent and transient inefficiency, random firm-effects (firm heterogeneity) and noise.

Because of the complexity of the model different estimation methods are proposed. For example,

Colombi et al. (2014) used a full maximum likelihood method, Kumbhakar et al. (2014) used

a multi-step approach, Tsionas and Kumbhakar (2014) used a Bayesian approach and finally

Filippini and Greene (2016) used the simulated maximum likelihood (SML) approach. In our

simulations we use the SML method to estimate the models designed to address the concern

‘when, where and how one can use this model with confidence to estimate persistent and transient

inefficiency’.

Our results show that the reliability of estimation of persistent and transient technical ef-

ficiency critically depends on three estimated parameters, viz., (i) the ratio of the variance

parameter in persistent technical inefficiency to the variance parameter in random effects, (ii)
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the ratio of the variance parameter in transient technical inefficiency to the variance parameter

in noise, and (iii) the ratio of the the variance parameter in persistent technical inefficiency to

the the variance parameter in transient technical inefficiency. Specifically, the estimator does a

good job estimating persistent technical efficiency (transient technical efficiency) for relatively

large values of the first (second) ratio. The third ratio plays a corrective role in the accuracy of

the estimates.

It is important to note that in nearly all the cases the estimator can estimate either persistent

or transient technical efficiency reliably. Only in the first and second cases when the variance

parameters are relatively high (high variation of persistent technical inefficiency relative to ran-

dom effects and high variation of transient technical inefficiency relative to noise) the estimator

provides accurate technical efficiency estimates of both persistent and transient technical effi-

ciency. If both ratios are relatively low, the estimator cannot be trusted for estimating either

type of technical efficiency.

It is worth emphasizing that in practice the ratios are not known. Using four empirical

examples, we provide a simple guide on how to judge the reliability of the obtained estimates.

We show that the estimator is not consistent with some of the data sets which are used in

efficiency analysis using other restrictive models.

The rest of the paper is organized as follows: Section 2 provides a description of the estima-

tor. The third section gives the details of the Monte Carlo study as well as the results of the

simulations. In Section 4 we apply the estimator on eight data sets to see how it performs in

practice and relate the empirical results to those from simulations. The last section concludes.

2 Stochastic Frontier Model for Panel Data

The stochastic frontier (SF) model originally proposed by Aigner et al. (1977) and Meeusen and

van den Broeck (1977) has traveled a long way since its inception. The panel version of the

standard 1977 SF model (without any amendments) can be written as

yit = xitβ + vit − p · uit (1a)

= xitβ + εit, (1b)

where i = 1, · · · , n denotes observation and t = 1, · · · , Ti denotes time period. In a SF frontier

model, the outcome variable yit is the logarithm of output, xit is the row vector of a constant, log-

arithms of the input variables and possibly other observed covariates that include environmental

variables that are not primary inputs but nonetheless affect output. p is a known parameter to

distinguish between production and cost function models, viz.,

p =

1 for a stochastic production frontier model

−1 for a stochastic cost frontier model.
(2)
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The random noise term vit is assumed to be i.i.d. normal with zero mean and variance σ2v .

Similarly, uit ≥ 0 is the time-varying technical inefficiency term which is assumed to be i.i.d. as

half normal, that is, uit = |Uit|, where Uit is i.i.d. normal with zero mean and variance σ2u. Note

that this model is simply a pooled cross-sectional model with the additional subscript t which

is redundant because of the i.i.d. nature of both noise and inefficiency.

In several papers, Kumbhakar (1991), Kumbhakar and Heshmati (1995), Kumbhakar and

Hjalmarsson (1993, 1995) interpreted uit ≥ 0 as time-varying technical inefficiency and added

an extra component u0i ≥ 0 to represent persistent inefficiency (in addition to the noise term

vit). In other words, in the models used by Kumbhakar and coauthors in the 1990s inefficiency is

decomposed into two parts: persistent and time-varying, u0i and uit. The persistent component

is consistent with the models used in the 1980s (Pitt and Lee 1981, Schmidt and Sickles 1984,

Kumbhakar 1987, Battese and Coelli 1988), whereas the time-varying component is consistent

with the models developed in the 1990s (Kumbhakar 1990, Cornwell et al. 1990, Battese and

Coelli 1992) in which uit is allowed to vary over time either by assuming it to be i.i.d. over i

and t or making its mean/variance parameter a function of other exogenous variables varying

over i and t. Quantifying the magnitude of persistent inefficiency is important, especially in

short panels, because it reflects the effects of inputs like management (Mundlak 1961) as well

as other unobserved factors that vary across firms but not over time. Thus, unless there is a

change in something that affects the management practices at the firm level (such as changes in

ownership or new government regulations), it is unlikely that persistent inefficiency will change.

Alternatively, time varying efficiency can change over time without operational changes in the

firm.

There is, however, a philosophical question about interpreting u0i as persistent inefficiency.

Should one view it as the persistent inefficiency as in Kumbhakar (1991), Kumbhakar and Hesh-

mati (1995), Kumbhakar and Hjalmarsson (1993, 1995) or as firm-heterogeneity that captures

the effects of (unobserved) time-invariant covariates that has nothing to do with inefficiency?

Mester (1997) for example argues that the estimates of efficiencies in stochastic frontier model

are biased if heterogeneity is ignored. If one treats u0i, i = 1, · · · , N as a random variable repre-

senting firm heterogeneity and is uncorrelated with xit then the above three-component model

becomes the ‘true random-effects’ (TRE) model (Greene 2005).1 Bos et al. (2009) account for

sample heterogeneity by shifting the underlying technology. Lee (2010) also estimate different

frontiers, but this is not the same as accounting for unobserved heterogeneity. Thus, the differ-

ence between the TRE and the models proposed by Kumbhakar and coauthors mentioned above

is in the interpretation of the ‘time-invariant’ term, u0i, i.e., whether it is persistent inefficiency

or firm-effects.

1 Kumbhakar and Wang (2005) developed a similar model in which the firm-effects are treated as fixed but
they modeled time-varying inefficiency in more general terms by allowing factors that can affect it.
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2.1 Model that Accounts for Heterogeneity and Persistent Inefficiency

Recently Colombi et al. (2014), Kumbhakar et al. (2014), Tsionas and Kumbhakar (2014) in-

troduced a model that split the error term into four components. The first component captures

firms’ latent heterogeneity (Greene 2005) and the second component captures long-run (persis-

tent) inefficiency as in Kumbhakar and Hjalmarsson (1993), Kumbhakar and Heshmati (1995),

Kumbhakar and Hjalmarsson (1995), both of which are time-invariant. The third component

captures short-run/transient/time-varying inefficiency while the last component captures ran-

dom shocks. Both the third and fourth components are observation-specific (i.e., vary across

firms and over time).2 The model is formally expressed as

yit = xitβ + v0i − p · u0i + vit − p · uit (3a)

= xitβ + ε0i + εit, (3b)

where u0i > 0 and uit > 0 represent long-run and short-run inefficiency, respectively, while v0i

captures latent firm heterogeneity and vit is the classical random noise. We define, εit = vit−p·uit
and ε0i = v0i − p · u0i which decomposes the error term into two ‘composed error’ terms (both

of which contain an inefficiency and a noise term). This decomposition will be useful later when

we discuss estimation of the model.

The above decomposition might be desirable for policy purposes, especially in regulated

industries. Since u0i does not change over time, if a regulator wants to improve efficiency, then

some fundamental change in management or policy needs to occur. In regulated industry all

the firms might be operating under excess capacity which might be reflected in high values of

u0i but so long as u0i are similar among firms, relative persistent inefficiency among firms will

be small. In such a case ranking of firms based on relative values of u0i will be quite similar and

the regulator cannot punish some firms because all firms have high values of u0i. However, the

estimates of u0i provide useful information about the firms in the industry because high values of

u0i are indicators of non-competitive market condition. This is because in a competitive market

there is no persistent inefficiency, i.e., persistently inefficient firms will go out of business. The

short-run inefficiency can be adjusted over time without a major policy change. Thus, for

example, if the short-run inefficiency component for a firm is relatively large in a particular year

then it may be argued that inefficiency is caused by something which is unlikely to be repeated

in the next year. On the other hand, if the persistent inefficiency component is large for a firm,

then it is expected to operate with a relatively high level of inefficiency over time, unless some

changes in policy and/or management take place. Thus, a high value of u0i is of more concern

from a long term point of view because of its persistent nature than is a high value of uit.

2Yip et al. (2011) argue that heterogeneity needs to be separated from inefficiency, but they still estimate only
time-varying inefficiency similar to Greene (2005).
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2.1.1 Full Maximum Likelihood Method

To obtain a tractable likelihood function, Colombi et al. (2014) draw results from skew normal

and closed skew normal (CSN) distributions. Assuming vit is i.i.d. normal and uit is i.i.d. half

normal, εit in (3b) has a skew normal distribution. Using the same argument ε0i in (3b) has

a skew normal distribution when v0i is i.i.d. normal and u0i is i.i.d. half normal. Thus, the

composed error term ε0i + εit in (3a) has a CSN distribution (being the sum of two independent

skew normal distributions) which has a well defined pdf that is used to define the log-likelihood

function maximization of which gives MLE of all the parameters. This is the estimation strategy

used by Colombi et al. (2014).

The model in (3a) can be rewritten in a compact form, viz.,

yi = xiβ + 1Tiv0i +Aui + vi, (4)

where ui = (u0i, ui1, . . . , uiTi)
′ and vi = (vi1, . . . , viTi)

′ are vectors of length Ti, A = −p ×
[1Ti ITi ] is a matrix of dimension Ti × (Ti + 1), where 1Ti is the column vector of length Ti,

and ITi is the identity matrix of dimension Ti. Colombi et al. (2014) derive the joint density

function of the composed error term εi = 1Tiv0i +Aui +vi based on the result that εi follows a

CSN distribution. The resulting panel-level log-likelihood function of the four component model

is (see Colombi et al. (2014) for details):

logLi (β, σv,σu, σv0 , σu0) = (Ti + 1) log 2 + log φTi
(
εi,0,Σ +AV A′

)
+ log ΦTi+1 (Rεi,Λ) (5)

where εi = yi − xiβ, the diagonal elements of V are (σu0 ,σu),3 Σ = σ2vITi + σ2v01Ti1
′
Ti

, Λ =

V − V A′ (Σ +AV A′)
−1
AV =

(
V −1 +A′Σ−1A

)−1
, R = V A′ (Σ +AV A′)

−1
= ΛA′Σ−1,

φq (x,µ,Ω) is the density function of a q-dimensional normal variable with expected value µ

and variance Ω, and Φq (µ,Ω) is the probability that a q-variate normal variable of expected

value µ and variance Ω belongs to the positive orthant.

An additional interesting result in Colombi et al. (2014) is that on can predict technical/cost

efficiencies as follows:

E
(
exp

(
t′ui

)
|yi
)

=
ΦTi+1 (Rεi + Λt,Λ)

ΦTi+1 (Rεi,Λ)
× exp

(
t′Rεi + 0.5t′Λt

)
, (6)

where −t is a row of the identity matrix of dimension (Ti + 1). If −t is the τ -th row, Eq (6)

provides the conditional expected value of the τ -th component of the technical/cost efficiency

vector exp (−ui). In particular, for τ = 1, we get the conditional expected value of the persistent

technical/cost efficiency. For firm i at time t the overall efficiency is obtained as a product of

the persistent and transient technical efficiencies, TEoverall
it = TEpersistent

i ·TEtransient
it . Note that

3Note that σu = 1Tiσu becomes (σu1, . . . , σuTi) in heteroskedastic case.
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technical efficiency is defined as TEi = exp(−u0i) and TEit = exp(−uit).

2.1.2 A Simulated Maximum Likelihood Estimator

Although the CSN framework gives a closed form expression of the log-likelihood function,

implementing it in practice is a daunting task. Recently Filippini and Greene (2016) proposed a

simulation based optimization routine which circumvents many of the challenges associated with

brute force optimization in this setting. Using the insights of Butler and Moffitt (1982), Filippini

and Greene (2016) note that the density in Colombi et al. (2014) can be greatly simplified by

conditioning on v0i and u0i. In this case, the conditional density is simply the product over time

of Ti univariate skew normal densities. Thus, only a single integral, as opposed to Ti integrals

needs to be evaluated. Maximization of this simulated log likelihood is not more complicated

from the cross sectional case, aside from the additional parameters.

Recall that εit is a skew normal variate with parameters λ = σu/σv and σ = (σ2u + σ2v)
1/2.

Similarly, ε0i is a skew normal variate with parameters λ0 = σu0/σv0 and σ0 =
(
σ2u0 + σ2v0

)1/2
.

Thus, the conditional density of εi = (εi1, . . . , εiTi) is given by

f (εi|ε0i) =

Ti∏
t=1

2

σ
φ
(εit
σ

)
Φ

(
−p · εitλ

σ

)
. (7)

Integrate ε0i (distribution of which we know) out to get the unconditional density of εi

f (εi) =

∫ ∞
−∞

[
Ti∏
t=1

2

σ
φ
(εit
σ

)
Φ

(
−p · εitλ

σ

)]
× 2

σ0
φ

(
ε0i
σ0

)
Φ

(
−p · ε0iλ0

σ0

)
dε0i, (8)

The log-likelihood function for the i-th observation of the model (3b) is therefore given by

logLi (β, λ, σ, λ0, σ0)

= log

∫ +∞

−∞

 Ti∏
t=1


2

σ
φ

(
yit − xitβ − ε0i

σ

)
×Φ

(
−p · (yit − xitβ − ε0i)λ

σ

)

 2

σ0
φ

(
ε0i
σ0

)
Φ

(
−p · ε0iλ0

σ0

)
dε0i


(9a)

= log

[∫ +∞

−∞

(
Ti∏
t=1

{
2

σ
φ
(εit
σ

)
Φ

(
−p · εitλ

σ

)})
× 2

σ0
φ

(
ε0i
σ0

)
Φ

(
−p · ε0iλ0

σ0

)
dε0i

]
, (9b)

where εit = yit − xitβ − (v0i − p · u0i). Although, following CSN, one can derive the likelihood

function in closed form, we approximate the log-likelihood function and avoid using the classical

ML method which is quite complicated. We rely on the Monte-Carlo integration as a method to

approximate the integral (9b). For estimation purposes we write ε0i = σv0Vi− p · σu0 |Ui|, where

both Vi and Ui is standard normal random variable. The resulting simulated log-likelihood
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function for the i-th observation is

logLSi (β, λ, σ, σv0 , σu0)

= log

 1

R

R∑
r=1

 Ti∏
t=1


2

σ
φ

(
yit − xitβ − (σv0Vir − p · σu0 |Uir|)

σ

)
×Φ

(
−p · [yit − xitβ − (σv0Vir − p · σu0 |Uir|)]λ

σ

)


 (10a)

= log

[
1

R

R∑
r=1

(
Ti∏
t=1

{
2

σ
φ
(εitr
σ

)
Φ

(
−p · εitrλ

σ

)})]
, (10b)

where Vir and Uir are R random deviates from the standard normal distribution, and εitr =

yit−xitβ− (σv0Vir−p ·σu0 |Uir|). R is the number of draws for approximating the log-likelihood

function.

After estimating β and the parameters of the distributions of the random components, we use

the moment generating function of Colombi et al. (2014) in (6) which provide us the conditional

means of u0i, ui1, · · · , uiTi which are, in principle, similar to the Jondrow et al. (1982) estimator.

3 Simulations

In this section we examine the finite sample performance of the estimator that approximates the

integral in (9b) using the Monte-Carlo integration. Specifically, we first discuss the basic design

of the experiment. We define the data generating processes used, the distributional assumptions

on the data as well as the other parameters of the experiment. Next, we discuss the methods

to compare the performance of the efficiency estimators. We take several standard measures as

well as one that we propose just for this experiment. Third, we run our simulations and discuss

the relative performance of the estimators under various scenarios.

3.1 Design of the Experiment

We conduct simulations for a production process which employs two inputs (X1 and X2) to

produce a single output (Y ). We consider the following Cobb-Douglas (CD) production functions

Y = exp(a)·Xα
1X

γ−α
2 . Note that the uppercase letters are used for the input and output variables

in levels. We assume the output is generated via a constant returns to scale (CRS) technology

(γ = 1). Further, we set a = 0.3 and α = 0.4.

We assume that the true error term is distributed normally with mean zero and variance σ2v ,

i.e., vit ∼ N
(
0, σ2v

)
. We further assume that the true random effects component is distributed

normally with zero mean and variance σ2v0 , i.e., v0i ∼ N
(
0, σ2v0

)
. Next, we assume that the true

persistent technical efficiency is TEi = exp (−u0i), where u0i is assumed to be half-normally

distributed, i.e., u0i = |Ui| and Ui ∼ N
(
0, σ2u0

)
. We assume that the true transient technical

efficiency is TEit = exp (−uit), where uit = |Uit| and Uit ∼ N
(
0, σ2u

)
. We introduce the noise
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and technical inefficiency in the production process of unit i as

Yit = exp(a) ·Xα
1itX

γ−α
2it exp (v0i − u0i + vit − uit) (11)

To model various real-life scenarios, we have simulated 16 different combinations for the variation

of the error, random effects, and two technical inefficiency terms. Table 1 lists all possible

scenarios. One way to summarize the cases is in terms of ratios of the variance parameters,

viz., variance parameter of the technical inefficiency component to the noise component (λ0 =

σu0/σv0), and the ratio of the variance parameter of the transient technical efficiency to the

variance of the idiosyncratic error term (λ = σu/σv). Table 2 shows the matrix of chosen

combinations when σv0 , σu0 , σv, and σu all take values of 0.04 and 0.2. For example, scenario s1

is where all σv0 , σu0 , σv, and σu take the value 0.04. In scenario s2, the true variance parameter of

transient technical inefficiency component changes, σu = 0.2; in s3, the true variance parameter

of persistent technical inefficiency is changed: σu0 = 0.2 etc.

Table 1: Combinations of λ and σ values used in the Monte Carlo simulations

σu0 σu σv0 σv λ0 λ Λ

s1 0.04 0.04 0.04 0.04 1 1 1
s2 0.04 0.2 0.04 0.04 1 5 0.2
s3 0.2 0.04 0.04 0.04 5 1 5
s4 0.2 0.2 0.04 0.04 5 5 1
s5 0.04 0.04 0.04 0.2 1 0.2 1
s6 0.04 0.2 0.04 0.2 1 1 0.2
s7 0.2 0.04 0.04 0.2 5 0.2 5
s8 0.2 0.2 0.04 0.2 5 1 1
s9 0.04 0.04 0.2 0.04 0.2 1 1

s10 0.04 0.2 0.2 0.04 0.2 5 0.2
s11 0.2 0.04 0.2 0.04 1 1 5
s12 0.2 0.2 0.2 0.04 1 5 1
s13 0.04 0.04 0.2 0.2 0.2 0.2 1
s14 0.04 0.2 0.2 0.2 0.2 1 0.2
s15 0.2 0.04 0.2 0.2 1 0.2 5
s16 0.2 0.2 0.2 0.2 1 1 1

Table 2 summarizes the information in Table 1 in terms of the ratios of the variance param-

eters. The first row of the Table 2 corresponds to the cases where the variance parameter of the

random effects prevails over persistent technical inefficiency. In this case, we say, the decision

making units are relatively efficient in the long-term. The third row of the table represents the

cases where variance of persistent technical inefficiency is relatively high compared to random

effects. The first column shows the cases where short-term technical inefficiency parameter is low

relative to that of the noise term. The third column is for cases where the data have relatively
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Table 2: Combinations of λ0 and λ values used in various simulation scenarios

λ = 0.2 λ = 1 λ = 5

λ0 = 0.2 s13 s9, s14 s10
λ0 = 1 s5, s15 s1, s6, s11, s16 s2, s12
λ0 = 5 s7 s3, s8 s4

little noise, but the units under consideration are relatively inefficient in the short-term. Thus,

the upper-left cell in the table where λ0 = 0.2 and λ = 0.2 represents the case where decision

making units are efficient both in long- and short-term. As we move to the right (bottom), the

short- (long-) term technical inefficiency get relatively larger. Although the variance parameter

of four components are equably mixed, this does not result in equably filled Table 2. Four of

nine cells have only one scenario, the other four have two scenarios, and the middle cell has

four scenarios. Some scenarios might seem redundant, but all these cases are needed to empha-

size that the results of the experiment depend upon three ratios, viz., (i) λ, (ii) λ0, and (iii)

Λ = σu0/σu – not on the magnitudes of the four variance parameters.

All experiments consist of 1000 Monte Carlo trials. Within each set of experiment, we

analyze three sample sizes, n = 50, 100 and 500 and t = 3, 6, and 10. For each Monte Carlo trial,

we simulate a DGP by drawing observations for inputs from the following density: f(b)(X) =

(b− 1)−1 exp [log (b)−X], for 0 < X < log (b).4 For X1 we set b = 2 and for X2 we set b = 10.

For each of the 16 combinations of σv0 , σu0 , σv, and σu, we then compute the “observed” output

observations as in Eq. (11). We thus have 16 base scenarios for the assumed production function.

3.2 Comparative measures

To compare the finite sample performance of our estimators we consider the following mean

(over the 1000 simulations) measures

Relative Bias(TE) =
1

B

B∑
b=1

1

nt

nt∑
i=1

(
T̂Eib − TEib

TEib

)

Upward Bias(TE) =
1

B

B∑
b=1

1

nt

nt∑
i=1

1
T̂Eib>TEib

Pearson Correlation Coefficient =
1

B

B∑
b=1

∑nt
i=1

(
T̂Eib − T̂Eb

) (
TEib − TEb

)√∑nt
i=1

(
T̂Eib − T̂Eb

)2√∑nt
i=1

(
TEib − TEb

)2
4The deviates from the f(b) are drawn as log (b) − log (U(1, b)).
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For persistent technical efficiency, nt changes to n. 1D denotes the indicator function that

the event D is true, T̂Ei is the estimate of technical efficiency of unit i in a given Monte

Carlo replication and TEi is the true efficiency score (determined by the DGP). In addition to

the mean bias, we also consider an alternative approach to compare across estimation methods.

Specifically, we give an estimate of upward bias. The upward bias measure shows the percentage

of points for which technical efficiency has been overestimated. The measure checks whether an

estimate is larger than the true value. If so, the indicator function returns a value of 1. If not,

then a zero value is given. The number of estimates above the true value is then divided by

the sample size to give the percentage of estimates which were overestimated. Values near 0.5

are ideal for this measure. Anything in excess of 0.5 suggests an upward bias and anything less

than 0.5 suggests downward bias.

We are also interested in comparing the density estimates of technical efficiency across the

Monte Carlo draws. Looking at only the mean (over the simulations) may conceal interesting

results. Specifically, for each draw, we sort the data by the relative value of the true efficiency.

We are interested in comparing the true distribution of technical efficiency for a percentile

across all Monte Carlo simulations. We therefore report mean of the relative deviation for the

α−percentile (αn), the mean (n/2) and the (1−α)−percentile ((1−α)n) of the efficiency scores.5

These show us how well each of the estimators perform at estimating particular portions of our

sample. For example, if interest lies in estimating the benchmark firms, then we would be

interested in knowing which estimator does the best job at estimating the (1−α)−percentile of

the efficiency distribution.

We note that the results include sampling variation apart from what we would find for

individual, fixed points that do not change from one trial to the next. Put differently, the

α−percentile of firms in trial 1 is likely to be different from the α−percentile of firms in trial 2,

and so on. An alternative approach could be to focus on one or perhaps a small set of fixed points

in the input-output space that are held constant over Monte Carlo trials. We have conducted

limited simulations which show that these two approaches lead to qualitatively similar results

and these results are available upon request. We note that most studies surrounding efficiency

scores essentially look at average behavior. We uncover different findings depending upon which

percentile is being estimated. In other words, the relative performance of our estimators are

heterogeneous across the sample.

3.3 Simulation results

Tables 3–5 and 8-10 show the performance measures of the technical efficiency estimates for

various values of λ0. The GTRE model performs differently depending not only on the “amount”

of persistent and transient technical inefficiency, but also on the relationship between persistent

and transient technical inefficiency. For different combinations of λ0 = σu0/σv0 , λ = σu/σv,

5Mean relative deviation is defined as
1

nt

nt∑
i=1

(
T̂E

α−percentile
i −TE

α−percentile
i

TE
α−percentile
i

)
.
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and Λ = σu0/σu we discuss statistical properties of persistent, transient, and overall technical

efficiency estimates separately. We first look at the ‘average’ performance of the estimator

(Tables 3–5) and then present the goodness of the estimator at various cut-offs of the distribution

(Tables 8-10).

3.3.1 Estimation of technical efficiency

We split discussion of the results into three cases, determined by the relationship between σu0

and σv0 , viz., λ0. We first focus on the case when σu0 is low compared to σv0 , that is, when

persistent technical inefficiency is almost nonexistent. The results appear in Table 3. It is

worthwhile to discuss the results by relative importance of the transient technical inefficiency

(λ) and the relationship between persistent and transient technical inefficiency (Λ).

Table 3: Finite Sample Performance of the Technical Efficiency Estimates. σu0 is lower than
σv0 , i.e., λ0 = 0.2.

Persistent TE Transient TE Overall TE

n t R Bias U Bias Corr R Bias U Bias Corr R Bias U Bias Corr

s13: λ0 = 0.2, λ = 0.2, Λ = 1 (σu0 = 0.04 σu = 0.04, σv0 = 0.2, σv = 0.2)
50 3 −2.1e−2 0.51 0.09 −4.1e−2 0.48 0.10 −6.1e−2 0.34 0.10
100 3 −1.7e−2 0.53 0.10 −3.2e−2 0.49 0.10 −4.9e−2 0.36 0.10
500 3 −9.1e−3 0.55 0.10 −2.0e−2 0.49 0.10 −2.9e−2 0.39 0.10

50 6 −1.4e−2 0.52 0.10 −2.8e−2 0.51 0.11 −4.2e−2 0.38 0.09
100 6 −1.2e−2 0.54 0.11 −2.2e−2 0.51 0.11 −3.3e−2 0.40 0.10
500 6 1.2e−3 0.62 0.11 −1.1e−2 0.51 0.11 −1.0e−2 0.46 0.09

50 10 −1.1e−2 0.51 0.11 −2.3e−2 0.50 0.11 −3.4e−2 0.39 0.09
100 10 −7.7e−3 0.53 0.11 −2.0e−2 0.49 0.11 −2.7e−2 0.39 0.09
500 10 3.8e−3 0.62 0.11 −9.1e−3 0.50 0.11 −5.2e−3 0.48 0.09

s14: λ0 = 0.2, λ = 1, Λ = 0.2 (σu0 = 0.04 σu = 0.2, σv0 = 0.2, σv = 0.2)
50 3 −2.6e−2 0.52 0.09 5.0e−2 0.60 0.45 2.3e−2 0.53 0.39
100 3 −2.2e−2 0.52 0.10 5.0e−2 0.59 0.46 2.7e−2 0.53 0.40
500 3 −1.2e−2 0.55 0.10 2.9e−2 0.52 0.46 1.7e−2 0.49 0.43

50 6 −1.7e−2 0.52 0.11 4.6e−2 0.57 0.48 2.8e−2 0.53 0.41
100 6 −1.2e−2 0.54 0.10 3.3e−2 0.53 0.49 2.0e−2 0.50 0.43
500 6 −4.7e−3 0.58 0.11 1.5e−2 0.47 0.49 9.9e−3 0.47 0.47

50 10 −1.4e−2 0.51 0.11 3.3e−2 0.53 0.50 1.8e−2 0.50 0.43
100 10 −1.1e−2 0.52 0.11 2.0e−2 0.49 0.50 8.8e−3 0.47 0.46
500 10 6.2e−5 0.59 0.11 1.0e−2 0.46 0.50 1.0e−2 0.47 0.49

s9: λ0 = 0.2, λ = 1, Λ = 1 (σu0 = 0.04 σu = 0.04, σv0 = 0.2, σv = 0.04)
50 3 −5.8e−3 0.42 0.12 9.0e−3 0.62 0.42 3.1e−3 0.52 0.24
100 3 −1.5e−3 0.48 0.12 7.2e−3 0.58 0.43 5.6e−3 0.54 0.25

(continued on next page)
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Table 3 (Continued)

Persistent TE Transient TE Overall TE

n t R Bias U Bias Corr R Bias U Bias Corr R Bias U Bias Corr

500 3 1.2e−2 0.67 0.12 5.7e−3 0.54 0.43 1.8e−2 0.65 0.29

50 6 −3.5e−3 0.43 0.12 4.8e−3 0.54 0.48 1.3e−3 0.49 0.29
100 6 2.0e−4 0.48 0.12 4.6e−3 0.52 0.48 4.7e−3 0.52 0.31
500 6 1.2e−2 0.66 0.12 8.7e−4 0.45 0.49 1.3e−2 0.62 0.34

50 10 −2.0e−3 0.44 0.12 3.2e−3 0.50 0.50 1.1e−3 0.48 0.32
100 10 1.8e−3 0.49 0.12 2.4e−3 0.48 0.50 4.2e−3 0.52 0.34
500 10 1.4e−2 0.70 0.12 2.8e−4 0.44 0.50 1.5e−2 0.64 0.36

s10: λ0 = 0.2, λ = 5, Λ = 0.2 (σu0 = 0.04 σu = 0.2, σv0 = 0.2, σv = 0.04)
50 3 −8.6e−3 0.52 0.10 2.8e−2 0.56 0.81 1.9e−2 0.54 0.77
100 3 −4.3e−3 0.54 0.11 1.4e−2 0.51 0.82 1.0e−2 0.51 0.80
500 3 2.4e−3 0.59 0.11 3.2e−3 0.46 0.83 5.5e−3 0.49 0.81

50 6 −1.0e−2 0.43 0.12 −3.5e−3 0.43 0.89 −1.4e−2 0.40 0.86
100 6 −4.7e−3 0.48 0.12 −7.1e−3 0.41 0.89 −1.2e−2 0.41 0.87
500 6 6.3e−3 0.61 0.11 −8.0e−3 0.40 0.89 −1.8e−3 0.47 0.87

50 10 −6.6e−3 0.42 0.12 −1.4e−2 0.37 0.91 −2.0e−2 0.35 0.89
100 10 −2.4e−4 0.50 0.12 −1.4e−2 0.36 0.91 −1.5e−2 0.39 0.89
500 10 9.8e−3 0.65 0.12 −1.5e−2 0.35 0.91 −5.4e−3 0.45 0.89

In the cases where transient technical inefficiency is low relative to idiosyncratic error term,

λ = 0.2, GTRE estimator is very bad in predicting both persistent and overall technical effi-

ciency. The relative bias is small and declines very slowly as t and n increase. The upward

bias is small meaning that the estimator tends to underestimate more than overestimate. The

correlation coefficient is only 0.1 and does not get better as the sample size increases. The

transient technical efficiency is underestimated, but the size of underestimation is very small,

ranging from 4.1% for n = 50, t = 3 to 0.91% for n = 500, t = 10. The upward bias is virtually

at the desired level of 0.5. The correlation coefficient is very low and is at par with that for

persistent and overall technical efficiency.

λ = 1: Here the performance of the estimator for all three types of technical efficiency is

about the same. In terms of correlation the estimation of transient technical efficiency becomes

better. In terms of relative bias, the GTRE estimator performs better in the case of Λ = 1 (s9)

than Λ = 0.2 (s14). Although the prediction of transient technical efficiency when Λ = 1 is very

good even for small n and t, the relative bias of persistent technical efficiency becomes small

only when sample size increases. The relative bias of transient technical efficiency is fairly small

when Λ = 0.2. If not for correlation of 0.5, the estimation of transient technical efficiency would

be good.

Finally, if λ = 5 (s10), the performance of the estimator for transient technical efficiency gets

even better, although GTRE estimator tends to underestimate more when sample size grows.
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Whereas relative bias and upward bias remain virtually the same, the correlation increases from

about 0.5 to 0.9. Similarly to s9, the relative bias of persistent technical efficiency is quite small.

The overall technical efficiency is estimated relatively precisely only when sample size is very

large. The correlation between true and estimated overall technical efficiency is up to 0.9 due

to high correlation between true and estimated transient technical efficiency.

In sum, Table 3 results suggest that when σu0 is low relative to σv0 , the GTRE estimator

performs very poorly in terms of predicting persistent technical efficiency when taking all three

criteria into account. The relative bias decreases slowly when sample size increases, whereas the

correlation stays about 0.1 no matter what scenario we are looking at. The transient technical

efficiency is estimated much better. The relative bias is small even in small sample, the upward

bias is approximately 0.5, while correlation increases when there is “more” transient technical

inefficiency.

Table 4 presents the comparative measures when σu0 equals σv0 . As before, it is worthwhile

to split discussion of the results by λ and Λ.

Table 4: Finite Sample Performance of the Technical Efficiency Estimates. σu0 equals σv0 , i.e.,
λ0 = 1.

Persistent TE Transient TE Overall TE

n t R Bias U Bias Corr R Bias U Bias Corr R Bias U Bias Corr

s5: λ0 = 1, λ = 0.2, Λ = 1 (σu0 = 0.04 σu = 0.04, σv0 = 0.04, σv = 0.2)
50 3 8.3e−3 0.68 0.19 −2.9e−2 0.51 0.11 −2.1e−2 0.48 0.17
100 3 6.4e−3 0.64 0.20 −2.5e−2 0.49 0.11 −1.9e−2 0.46 0.17
500 3 3.1e−3 0.56 0.19 −1.2e−2 0.52 0.12 −8.4e−3 0.48 0.17

50 6 4.7e−3 0.61 0.25 −2.7e−2 0.49 0.12 −2.2e−2 0.45 0.18
100 6 4.6e−3 0.59 0.25 −2.0e−2 0.50 0.12 −1.5e−2 0.46 0.19
500 6 2.3e−3 0.53 0.26 −9.4e−3 0.51 0.12 −7.1e−3 0.46 0.19

50 10 4.5e−3 0.58 0.30 −2.2e−2 0.49 0.12 −1.7e−2 0.45 0.20
100 10 3.0e−3 0.55 0.31 −1.4e−2 0.52 0.12 −1.1e−2 0.46 0.20
500 10 6.2e−3 0.58 0.31 −6.1e−3 0.52 0.12 6.7e−5 0.51 0.20

s15: λ0 = 1, λ = 0.2, Λ = 5 (σu0 = 0.2 σu = 0.04, σv0 = 0.2, σv = 0.2)
50 3 3.4e−2 0.56 0.46 −3.9e−2 0.49 0.10 −6.1e−3 0.46 0.37
100 3 3.0e−2 0.54 0.47 −2.9e−2 0.50 0.10 −4.6e−4 0.46 0.39
500 3 3.9e−2 0.55 0.47 −1.9e−2 0.50 0.10 1.9e−2 0.50 0.40

50 6 2.9e−2 0.54 0.49 −3.1e−2 0.48 0.11 −2.9e−3 0.46 0.39
100 6 2.7e−2 0.53 0.49 −2.3e−2 0.49 0.11 3.7e−3 0.47 0.41
500 6 3.3e−2 0.53 0.49 −1.4e−2 0.50 0.11 1.9e−2 0.50 0.42

50 10 2.0e−2 0.51 0.50 −2.5e−2 0.49 0.11 −5.5e−3 0.45 0.42
100 10 2.7e−2 0.52 0.50 −2.0e−2 0.49 0.11 7.4e−3 0.47 0.43
500 10 2.9e−2 0.52 0.51 −9.3e−3 0.50 0.11 1.9e−2 0.50 0.44

(continued on next page)
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Table 4 (Continued)

Persistent TE Transient TE Overall TE

n t R Bias U Bias Corr R Bias U Bias Corr R Bias U Bias Corr

s6: λ0 = 1, λ = 1, Λ = 0.2 (σu0 = 0.04 σu = 0.2, σv0 = 0.04, σv = 0.2)
50 3 2.1e−3 0.65 0.17 4.6e−2 0.58 0.51 4.8e−2 0.58 0.49
100 3 6.5e−3 0.66 0.16 4.2e−2 0.56 0.51 4.8e−2 0.58 0.50
500 3 1.9e−3 0.56 0.17 1.8e−2 0.49 0.52 2.0e−2 0.50 0.52

50 6 5.4e−3 0.63 0.22 3.9e−2 0.56 0.51 4.5e−2 0.57 0.48
100 6 5.0e−3 0.61 0.22 2.8e−2 0.52 0.52 3.3e−2 0.54 0.50
500 6 3.7e−3 0.56 0.23 1.4e−2 0.47 0.52 1.8e−2 0.49 0.52

50 10 5.1e−3 0.60 0.28 3.3e−2 0.53 0.51 3.8e−2 0.55 0.49
100 10 3.7e−3 0.57 0.28 2.1e−2 0.50 0.52 2.5e−2 0.51 0.50
500 10 3.6e−3 0.55 0.28 1.2e−2 0.47 0.52 1.6e−2 0.49 0.52

s1: λ0 = 1, λ = 1, Λ = 1 (σu0 = 0.04 σu = 0.04, σv0 = 0.04, σv = 0.04)
50 3 1.8e−3 0.52 0.45 7.7e−3 0.60 0.45 9.4e−3 0.58 0.47
100 3 3.3e−3 0.53 0.45 6.7e−3 0.57 0.45 1.0e−2 0.58 0.47
500 3 5.0e−3 0.54 0.46 3.8e−3 0.51 0.46 8.8e−3 0.57 0.49

50 6 2.5e−3 0.52 0.48 7.0e−3 0.57 0.48 9.6e−3 0.58 0.46
100 6 3.2e−3 0.52 0.49 5.0e−3 0.53 0.49 8.2e−3 0.56 0.47
500 6 4.0e−3 0.52 0.49 1.1e−3 0.46 0.49 5.1e−3 0.53 0.49

50 10 2.2e−3 0.50 0.50 4.4e−3 0.52 0.50 6.6e−3 0.55 0.47
100 10 2.8e−3 0.51 0.50 2.3e−3 0.48 0.50 5.1e−3 0.53 0.48
500 10 4.0e−3 0.52 0.51 6.7e−4 0.45 0.51 4.7e−3 0.52 0.50

s16: λ0 = 1, λ = 1, Λ = 1 (σu0 = 0.2 σu = 0.2, σv0 = 0.2, σv = 0.2)
50 3 2.3e−2 0.53 0.45 4.9e−2 0.59 0.44 7.2e−2 0.59 0.45
100 3 3.1e−2 0.54 0.45 5.0e−2 0.59 0.45 8.2e−2 0.61 0.46
500 3 4.3e−2 0.56 0.45 2.5e−2 0.50 0.46 6.9e−2 0.59 0.48

50 6 2.4e−2 0.52 0.48 4.2e−2 0.57 0.48 6.7e−2 0.58 0.46
100 6 3.2e−2 0.54 0.48 3.4e−2 0.54 0.49 6.6e−2 0.58 0.47
500 6 4.0e−2 0.55 0.49 1.7e−2 0.48 0.49 5.7e−2 0.57 0.48

50 10 2.1e−2 0.51 0.49 3.5e−2 0.54 0.50 5.6e−2 0.56 0.47
100 10 2.4e−2 0.51 0.50 2.3e−2 0.50 0.50 4.7e−2 0.55 0.48
500 10 3.0e−2 0.52 0.50 1.1e−2 0.46 0.50 4.1e−2 0.54 0.49

s11: λ0 = 1, λ = 1, Λ = 5 (σu0 = 0.2 σu = 0.04, σv0 = 0.2, σv = 0.04)
50 3 1.1e−2 0.47 0.52 1.0e−2 0.63 0.42 2.1e−2 0.51 0.51
100 3 9.2e−3 0.46 0.52 7.9e−3 0.60 0.43 1.7e−2 0.49 0.51
500 3 1.2e−2 0.47 0.52 4.8e−3 0.53 0.43 1.7e−2 0.49 0.51

50 6 1.1e−2 0.47 0.52 5.4e−3 0.54 0.48 1.6e−2 0.49 0.51
100 6 9.0e−3 0.46 0.53 4.0e−3 0.51 0.48 1.3e−2 0.48 0.52
500 6 7.7e−3 0.45 0.53 1.3e−3 0.46 0.48 9.0e−3 0.46 0.52

50 10 1.2e−2 0.47 0.52 4.2e−3 0.52 0.50 1.7e−2 0.49 0.51

(continued on next page)
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Table 4 (Continued)

Persistent TE Transient TE Overall TE

n t R Bias U Bias Corr R Bias U Bias Corr R Bias U Bias Corr

100 10 7.2e−3 0.45 0.52 2.9e−3 0.49 0.50 1.0e−2 0.46 0.52
500 10 5.5e−3 0.45 0.52 5.3e−4 0.45 0.50 6.0e−3 0.45 0.51

s2: λ0 = 1, λ = 5, Λ = 0.2 (σu0 = 0.04 σu = 0.2, σv0 = 0.04, σv = 0.04)
50 3 1.6e−3 0.55 0.29 1.0e−2 0.53 0.90 1.1e−2 0.55 0.90
100 3 −1.8e−3 0.50 0.30 5.3e−3 0.51 0.90 3.0e−3 0.50 0.91
500 3 2.1e−3 0.51 0.30 4.0e−3 0.50 0.91 5.7e−3 0.52 0.91

50 6 −3.5e−4 0.51 0.37 2.9e−3 0.49 0.91 2.3e−3 0.50 0.91
100 6 1.7e−3 0.52 0.38 1.8e−3 0.48 0.92 3.2e−3 0.51 0.91
500 6 4.9e−3 0.54 0.38 1.5e−3 0.48 0.92 6.1e−3 0.53 0.92

50 10 3.0e−3 0.55 0.42 −1.7e−3 0.46 0.92 1.1e−3 0.49 0.92
100 10 1.7e−3 0.52 0.42 −2.1e−3 0.45 0.93 −6.8e−4 0.48 0.92
500 10 5.7e−3 0.55 0.42 −2.8e−3 0.45 0.93 2.7e−3 0.50 0.92

s12: λ0 = 1, λ = 5, Λ = 1 (σu0 = 0.2 σu = 0.2, σv0 = 0.2, σv = 0.04)
50 3 1.8e−2 0.50 0.50 3.6e−2 0.59 0.81 5.3e−2 0.59 0.67
100 3 1.8e−2 0.50 0.50 1.8e−2 0.53 0.82 3.6e−2 0.55 0.69
500 3 2.6e−2 0.51 0.50 4.6e−3 0.46 0.82 3.0e−2 0.53 0.70

50 6 1.9e−2 0.50 0.51 −5.6e−3 0.42 0.88 1.3e−2 0.48 0.73
100 6 1.8e−2 0.49 0.51 −9.1e−3 0.40 0.88 8.7e−3 0.47 0.73
500 6 2.3e−2 0.50 0.51 −1.0e−2 0.39 0.89 1.2e−2 0.48 0.73

50 10 1.9e−2 0.49 0.50 −1.6e−2 0.35 0.90 1.7e−3 0.45 0.74
100 10 2.0e−2 0.50 0.51 −1.7e−2 0.34 0.91 2.6e−3 0.45 0.74
500 10 2.2e−2 0.50 0.52 −1.7e−2 0.34 0.91 4.3e−3 0.45 0.74

If λ = 0.2 and Λ = 1 (s5), the correlation between the true and estimated technical efficiency

is very low for all types of technical efficiency, 0.1− 0.3. The upward bias is though about the

desired level of 0.5. Transient and overall technical efficiency are generally underestimated, while

persistent technical efficiency is overestimated. As expected, the relative bias gets smaller with

larger sample size. Estimation of transient technical efficiency is fair for both Λ = 1 (s5) and

Λ = 5 (s15).

When λ = 1 and Λ = 0.2 (s6), the relative biases of the estimated transient and overall

technical efficiency are small and decreasing in both n and t. The upward bias and correlation

is about 0.5. The relative bias of persistent technical efficiency is on ‘average’ even smaller than

that of transient technical efficiency. Persistent technical efficiency is underestimated by only

0.2− 0.6%. For all three types of technical efficiency, the upward bias achieves the 0.5-mark.

If λ = 1 and Λ = 1 (s1, s16), the upward bias and correlation are nearly identical for all

types of technical efficiency for each n and t, and both reach approximately 0.5. In terms of

relative bias, all types of technical efficiency are estimated a little better in scenario s1. This is
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because in scenario s16 the true technical efficiency vary by much more.

If λ = 1 and Λ = 5 (s11), the performance of GRTE estimator is very similar to that of

Λ = 1 (s16) except for an improved relative bias for transient technical efficiency, especially for

large nt.

When λ = 5 and Λ = 0.2 (s2), transient technical efficiency is estimated to be very good by

any measure. The correlation coefficient reaches 0.9, something we have observed in scenario

s10, where λ = 5. Interestingly, transient technical efficiency is overestimated for t = 3, 6

but underestimated for t = 10 (the level of under- or overestimation is about 0.2%). Overall

technical efficiency preserves very high correlation coefficient from transient technical efficiency.

For all types of technical efficiency, the performance of the GTRE estimator of is marked by

a very small relative bias. The relative bias of persistent technical efficiency is in fact slightly

increasing in sample size.6 The explanation for this phenomena will be become apparent in

the next section. The correlation for persistent technical efficiency reaches only 0.4, while for

transient and overall technical efficiency it is over 0.9.

Finally, if λ = 5 and Λ = 1 (s12), persistent and overall technical efficiency are estimated

worse than transient technical efficiency in terms of relative bias. Besides, as we observed

before, the relative bias tends to increase with sample size. The correlation is about 0.5 and 0.7

respectively. The upward bias is close to 0.5 for large nt. The performance of the estimator for

transient technical efficiency is much better. The correlation, as in previously discussed scenario

s11, is about 0.9. Similar to s2, the transient technical efficiency is overestimated for small t but

underestimated for larger ts.

Table 5 presents the comparative measures when σu0 is bigger than σv0 , λ0 = 5. We observe

three cases of λ. In all three cases, the performance of persistent technical efficiency is good by

all chosen measures. The relative bias is small even for small values of n and t and decreases

even further as n and t grow. The representative level of misestimation is 1%, but can be as low

as 0.034% for large nt or as high as 4% for low nt. The correlation between true and estimated

persistent technical efficiency ranges from 0.7 to 0.9. As n (irrespective of t) increases, upward

bias achieves the desired level of 0.5.

Table 5: Finite Sample Performance of the Technical Efficiency Estimates. σu0 > σv0 , i.e.,
λ0 = 5.

Persistent TE Transient TE Overall TE

n t R Bias U Bias Corr R Bias U Bias Corr R Bias U Bias Corr

s7: λ0 = 5, λ = 0.2, Λ = 5 (σu0 = 0.2 σu = 0.04, σv0 = 0.04, σv = 0.2)
50 3 4.9e−2 0.61 0.69 −3.9e−2 0.47 0.11 7.7e−3 0.49 0.60
100 3 3.5e−2 0.56 0.71 −3.4e−2 0.46 0.11 −5.8e−4 0.46 0.63
500 3 1.3e−2 0.49 0.71 −1.8e−2 0.49 0.11 −5.4e−3 0.44 0.69

(continued on next page)
6Note that relative MSE (not reported here) is decreasing as expected.
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Table 5 (Continued)

Persistent TE Transient TE Overall TE

n t R Bias U Bias Corr R Bias U Bias Corr R Bias U Bias Corr

50 6 2.7e−2 0.55 0.80 −2.9e−2 0.48 0.11 −3.2e−3 0.47 0.72
100 6 1.8e−2 0.52 0.80 −2.4e−2 0.48 0.11 −6.8e−3 0.45 0.75
500 6 6.5e−3 0.49 0.81 −1.2e−2 0.49 0.11 −5.9e−3 0.45 0.78

50 10 2.3e−2 0.55 0.85 −2.1e−2 0.51 0.11 1.3e−3 0.49 0.78
100 10 1.3e−2 0.52 0.85 −1.6e−2 0.52 0.12 −3.7e−3 0.47 0.81
500 10 3.6e−3 0.48 0.85 −7.2e−3 0.51 0.12 −3.6e−3 0.46 0.83

s8: λ0 = 5, λ = 1, Λ = 1 (σu0 = 0.2 σu = 0.2, σv0 = 0.04, σv = 0.2)
50 3 5.8e−2 0.62 0.65 4.4e−2 0.58 0.47 0.1015 0.66 0.62
100 3 4.4e−2 0.58 0.65 3.7e−2 0.55 0.48 8.0e−2 0.63 0.64
500 3 1.9e−2 0.51 0.66 1.9e−2 0.49 0.48 3.5e−2 0.55 0.67

50 6 3.8e−2 0.58 0.76 3.9e−2 0.56 0.49 7.7e−2 0.63 0.65
100 6 2.5e−2 0.54 0.76 3.2e−2 0.53 0.49 5.7e−2 0.59 0.67
500 6 8.6e−3 0.49 0.77 1.4e−2 0.47 0.50 2.1e−2 0.51 0.71

50 10 2.6e−2 0.56 0.82 3.3e−2 0.54 0.50 6.0e−2 0.60 0.68
100 10 1.5e−2 0.52 0.83 2.3e−2 0.50 0.50 3.7e−2 0.55 0.70
500 10 6.3e−3 0.49 0.83 1.2e−2 0.46 0.51 1.7e−2 0.50 0.72

s3: λ0 = 5, λ = 1, Λ = 5 (σu0 = 0.2 σu = 0.04, σv0 = 0.04, σv = 0.04)
50 3 5.9e−3 0.51 0.92 8.3e−3 0.61 0.43 1.4e−2 0.57 0.92
100 3 2.6e−3 0.49 0.93 7.0e−3 0.58 0.43 9.5e−3 0.55 0.92
500 3 −1.7e−3 0.46 0.93 3.9e−3 0.51 0.44 2.0e−3 0.50 0.92

50 6 4.4e−3 0.51 0.94 6.5e−3 0.56 0.48 1.1e−2 0.56 0.92
100 6 2.1e−3 0.49 0.94 4.2e−3 0.52 0.49 6.3e−3 0.52 0.93
500 6 −3.8e−3 0.44 0.94 1.7e−3 0.47 0.49 −2.2e−3 0.46 0.93

50 10 4.9e−3 0.51 0.94 4.9e−3 0.53 0.50 9.7e−3 0.55 0.93
100 10 1.5e−3 0.49 0.94 3.5e−3 0.50 0.50 4.9e−3 0.52 0.93
500 10 −3.2e−3 0.45 0.94 5.6e−4 0.45 0.51 −2.7e−3 0.45 0.93

s4: λ0 = 5, λ = 5, Λ = 1 (σu0 = 0.2 σu = 0.2, σv0 = 0.04, σv = 0.04)
50 3 1.8e−2 0.55 0.83 2.0e−2 0.55 0.83 3.5e−2 0.64 0.92
100 3 9.7e−3 0.52 0.84 1.1e−2 0.51 0.84 1.8e−2 0.58 0.93
500 3 1.2e−3 0.49 0.85 6.3e−3 0.49 0.84 4.9e−3 0.52 0.94

50 6 1.3e−2 0.55 0.89 9.2e−5 0.47 0.89 1.2e−2 0.54 0.93
100 6 7.6e−3 0.52 0.89 −8.0e−4 0.46 0.89 5.4e−3 0.52 0.94
500 6 1.8e−3 0.49 0.90 1.6e−3 0.48 0.90 2.1e−3 0.50 0.95

50 10 1.6e−2 0.58 0.90 −1.1e−2 0.42 0.89 3.5e−3 0.51 0.93
100 10 9.9e−3 0.54 0.91 −8.4e−3 0.42 0.90 2.9e−4 0.49 0.94
500 10 2.5e−3 0.49 0.91 −2.4e−3 0.46 0.91 −8.9e−4 0.48 0.94

The finite sample properties of transient and overall technical efficiency vary by λ and Λ.
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When λ = 0.2 (s7), the correlation between true and estimated transient technical efficiency

is very low, 0.1. The relative biases of both persistent and transient technical efficiency are

small, but decrease only very slowly in both n and t. Relative bias of overall technical efficiency

is in fact slightly increasing. Transient technical efficiency is underestimated on ‘average.’

λ = 1. In case of Λ = 1 (s8) the performance of overall technical efficiency estimates is

even worse than in s7. Properties of transient technical efficiency are in contrast slightly better:

the correlation is 0.5. Switching to Λ = 5 (s3) makes transient and overall technical efficiency

estimates better in terms of relative bias. Transient technical efficiency is overestimated on

‘average.’ The correlation for overall technical efficiency gets better mostly due to astonishing

correlation for persistent technical efficiency of 0.94.

It is safe to say that by all chosen measured the case of λ = 5 and Λ = 1 (s4) is by far

the best in terms of performance of all three types of technical efficiency. The relative bias is

small and decreasing in both n and t. The upward bias reaches 0.5 for large sample size and

correlation is over 0.9, being 0.95 for overall technical efficiency.

It is early to make generalization at this point, but it is worth noting that if we consider the

comparison measures jointly, the persistent technical efficiency and transient technical efficiency

can be estimated reliably (consistent, not overly overestimated, and correlated) on ‘average’ in

some scenarios. Table 6 provides a list for such scenarios. Note that good implies that all three

measures including correlation between the true and estimated technical efficiency are decent.

If correlation coefficient is only 0.5, the reliability is labeled only “fair.”

The transient technical efficiency can be estimated relatively reliably more often than the

persistent technical efficiency. Further, for persistent technical efficiency λ0 should be at least 1,

meaning that the model cannot deal with situation where persistent technical inefficiency is

virtually nonexistent relative to random effects. The reliability is only fair for λ0 = 1 and it

gets good when λ0 = 5. Finally, the reliability gets better when persistent technical efficiency

prevails over transient technical efficiency (Λ getting bigger). For example, persistent technical

efficiency is estimated better in scenario s11 than in scenario s16. By the same token, persistent

technical efficiency is estimated better in scenario s3 than in scenario s8.

Almost symmetrically, for reliable transient technical efficiency estimates λ should be at

least 1. For example s10, s9, and s6 are absolutely symmetric to s7, s5, and s11, respectively. If

λ = 1, transient technical efficiency is estimated to be fair. The estimation of transient technical

efficiency becomes good when λ increases. As before, the reliability gets better when transient

technical efficiency prevails over persistent technical efficiency (Λ getting smaller). The finite

sample properties of transient technical efficiency in scenario s1 are better than in s11, in s6 –

better than in s16, in s2 – better than in s12.

Table 7 summarizes the results and tells us which scenarios give reliable estimates of technical

efficiency. It is clear that in none of the scenarios both persistent technical efficiency and

transient technical efficiency can be estimated reliably simultaneously, except for s4, where the

‘amount’ of noise and random effects is negligible. This is a situation that is next to impossible
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Table 6: Reliability of Efficiency Estimates based on Joint Goodness of all four Comparison
Measures

Persistent technical efficiency Transient technical efficiency

Scenario λ0 λ Λ Reliability Scenario λ0 λ Λ Reliability

λ0 = 0.2
s9: 0.2 1 1 fair
s10: 0.2 5 0.2 good

λ0 = 1
s5: 1 0.2 1 fair
s6: 1 1 0.2 fair s6: 1 1 0.2 fair
s1: 1 1 1 fair s1: 1 1 1 fair
s16: 1 1 1 fair s16: 1 1 1 fair
s11: 1 1 5 fair s11: 1 1 5 fair
s2: 1 5 0.2 fair s2: 1 5 0.2 good
s12: 1 5 1 fair s12: 1 5 1 good

λ0 = 5
s7: 5 0.2 5 good
s8: 5 1 1 good s8: 5 1 1 fair
s3: 5 1 5 good s3: 5 1 5 fair
s4: 5 5 1 good s4: 5 5 1 good

to get in real life. Other than scenario s4, one can hope to estimate either persistent technical

efficiency or transient technical efficiency relatively reliably.

Table 7 also suggests that judging the reliability of the estimator cannot be based only on

two parameters λ0 and λ. Parameters lambda (λ0 for persistent technical efficiency and λ for

transient technical efficiency) help in determining the finite sample properties of the estimator.

Finally, the practitioner should place relatively little confidence in efficiency estimates from

either technical efficiency estimator when respective lambda values are relatively small.

3.3.2 Percentiles of technical efficiency

It is difficult to conclude from the tables whether or not the estimator underestimates more

or less, and how it performs away from the middle of the distribution. Therefore, we look at

other percentiles of the efficiency distribution as well. Specifically, we report the mean of the

relative deviation between the 5th, 50th and 95th percentiles of the estimated and true technical

efficiency. For tractability, we break down the results by λ0 and report mean relative deviation

for the 5th, median, and 95th percentiles of the technical efficiency estimates in Tables 8-10.

We discuss only scenarios where technical efficiency is estimated to be at least fair according to

Table 6.

19



Table 7: Scenarios with Reliable Efficiency Estimates on ‘Average’

λ = 0.2 λ = 1 λ = 5

λ0 = 0.2 s13 [s9], s14 [[s10]]
λ0 = 1 (s5), s15 [(s6)], [(s11)], [(s1, s16)] [[(s2)]], [[(s12)]]
λ0 = 5 ((s7)) ((s3)), ((s8)) [[((s4))]]

Parentheses denote reliable persistent technical efficiency estimates; brack-

ets denote reliable transient technical efficiency estimates. No parentheses

or brackets imply scenario without reliable estimates of either technical

efficiency.

Table 8: The Mean of the Relative Deviation Between the 5th, 50th and 95th Percentiles of the Estimated
and True Technical Efficiency. σu0

< σv0 , i.e., λ0 = 0.2.

Persistent TE Transient TE Overall TE

n t 5th 50th 95th 5th 50th 95th 5th 50th 95th

s13: λ0 = 0.2, λ = 0.2, Λ = 1 (σu0 = 0.04 σu = 0.04, σv0 = 0.2, σv = 0.2)
50 3 −1.2e−2 −2.3e−2 −2.7e−2 −5.3e−2 −4.0e−2 −3.5e−2 −8.7e−2 −5.7e−2 −5.3e−2
100 3 −2.2e−3 −1.9e−2 −2.6e−2 −3.2e−2 −3.3e−2 −3.4e−2 −5.8e−2 −4.7e−2 −5.1e−2
500 3 1.8e−2 −1.3e−2 −2.5e−2 −2.4e−3 −2.3e−2 −3.1e−2 −1.3e−2 −3.1e−2 −4.6e−2

50 6 6.6e−4 −1.6e−2 −2.4e−2 −2.5e−2 −2.9e−2 −3.1e−2 −4.7e−2 −4.1e−2 −4.7e−2
100 6 9.4e−3 −1.4e−2 −2.4e−2 −1.0e−2 −2.4e−2 −3.0e−2 −2.5e−2 −3.4e−2 −4.5e−2
500 6 3.5e−2 −2.9e−3 −1.9e−2 1.5e−2 −1.5e−2 −2.7e−2 2.1e−2 −1.3e−2 −3.6e−2

50 10 1.0e−2 −1.4e−2 −2.4e−2 −1.1e−2 −2.5e−2 −3.0e−2 −2.5e−2 −3.4e−2 −4.6e−2
100 10 1.8e−2 −1.1e−2 −2.3e−2 −2.2e−3 −2.2e−2 −3.0e−2 −1.0e−2 −2.8e−2 −4.5e−2
500 10 4.1e−2 −6.1e−4 −1.8e−2 2.1e−2 −1.3e−2 −2.6e−2 3.3e−2 −8.3e−3 −3.5e−2

s14: λ0 = 0.2, λ = 1, Λ = 0.2 (σu0 = 0.04 σu = 0.2, σv0 = 0.2, σv = 0.2)
50 3 −2.3e−2 −2.7e−2 −2.8e−2 1.9e−1 3.0e−2 −4.3e−2 1.2e−1 6.0e−3 −5.3e−2
100 3 −1.0e−2 −2.3e−2 −2.8e−2 2.0e−1 2.8e−2 −4.6e−2 1.5e−1 8.8e−3 −5.7e−2
500 3 1.3e−2 −1.5e−2 −2.6e−2 1.7e−1 8.1e−3 −6.2e−2 1.5e−1 −2.6e−3 −7.0e−2

50 6 −3.2e−3 −1.9e−2 −2.6e−2 1.9e−1 2.6e−2 −4.8e−2 1.5e−1 1.1e−2 −5.7e−2
100 6 8.8e−3 −1.5e−2 −2.5e−2 1.7e−1 1.3e−2 −5.7e−2 1.4e−1 2.6e−3 −6.5e−2
500 6 2.5e−2 −8.5e−3 −2.2e−2 1.4e−1 −4.0e−3 −6.8e−2 1.3e−1 −8.0e−3 −7.4e−2

50 10 3.3e−3 −1.7e−2 −2.5e−2 1.7e−1 1.4e−2 −5.6e−2 1.4e−1 5.4e−4 −6.6e−2
100 10 1.1e−2 −1.5e−2 −2.5e−2 1.5e−1 2.1e−3 −6.3e−2 1.3e−1 −8.5e−3 −7.3e−2
500 10 3.4e−2 −4.2e−3 −2.0e−2 1.3e−1 −7.5e−3 −6.9e−2 1.3e−1 −7.0e−3 −7.3e−2

s9: λ0 = 0.2, λ = 1, Λ = 1 (σu0
= 0.04 σu = 0.04, σv0 = 0.2, σv = 0.04)

50 3 2.7e−2 −1.0e−2 −2.6e−2 3.5e−2 6.4e−3 −9.0e−3 3.7e−2 1.2e−3 −2.6e−2
100 3 3.5e−2 −6.2e−3 −2.3e−2 3.3e−2 4.7e−3 −1.0e−2 4.2e−2 3.5e−3 −2.5e−2
500 3 5.5e−2 7.1e−3 −1.4e−2 3.4e−2 2.5e−3 −1.3e−2 6.1e−2 1.5e−2 −1.7e−2

50 6 3.2e−2 −8.0e−3 −2.5e−2 2.9e−2 2.4e−3 −1.1e−2 3.7e−2 −6.7e−4 −2.8e−2
100 6 3.8e−2 −4.5e−3 −2.3e−2 3.0e−2 1.8e−3 −1.2e−2 4.3e−2 2.3e−3 −2.7e−2
500 6 5.6e−2 7.1e−3 −1.4e−2 2.5e−2 −1.9e−3 −1.5e−2 5.3e−2 1.1e−2 −2.0e−2

(continued on next page)
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Table 8 (Continued)

Persistent TE Transient TE Overall TE

n t 5th 50th 95th 5th 50th 95th 5th 50th 95th

50 10 3.5e−2 −6.7e−3 −2.4e−2 2.7e−2 6.7e−4 −1.3e−2 3.7e−2 −9.9e−4 −2.9e−2
100 10 4.1e−2 −3.1e−3 −2.2e−2 2.7e−2 −2.2e−4 −1.3e−2 4.3e−2 1.8e−3 −2.8e−2
500 10 5.8e−2 9.1e−3 −1.3e−2 2.4e−2 −2.3e−3 −1.5e−2 5.4e−2 1.2e−2 −1.8e−2

s10: λ0 = 0.2, λ = 5, Λ = 0.2 (σu0 = 0.04 σu = 0.2, σv0 = 0.2, σv = 0.04)
50 3 1.5e−2 −1.2e−2 −2.3e−2 9.7e−2 2.6e−2 −3.8e−2 8.1e−2 1.7e−2 −4.4e−2
100 3 2.5e−2 −8.1e−3 −2.2e−2 6.1e−2 1.7e−2 −4.1e−2 5.5e−2 1.2e−2 −4.6e−2
500 3 3.9e−2 −2.1e−3 −1.9e−2 2.9e−2 9.5e−3 −4.2e−2 3.3e−2 1.2e−2 −4.3e−2

50 6 1.7e−2 −1.4e−2 −2.7e−2 1.6e−2 1.8e−5 −3.6e−2 5.5e−3 −1.0e−2 −4.8e−2
100 6 2.8e−2 −9.0e−3 −2.4e−2 8.3e−3 −3.4e−3 −3.6e−2 4.4e−3 −8.3e−3 −4.4e−2
500 6 4.6e−2 1.5e−3 −1.7e−2 7.3e−3 −3.6e−3 −3.7e−2 1.6e−2 3.0e−3 −3.7e−2

50 10 2.5e−2 −1.1e−2 −2.6e−2 −4.9e−3 −1.0e−2 −3.5e−2 −9.8e−3 −1.7e−2 −4.7e−2
100 10 3.6e−2 −4.8e−3 −2.2e−2 −5.2e−3 −1.0e−2 −3.7e−2 −3.5e−3 −1.0e−2 −4.3e−2
500 10 5.2e−2 4.9e−3 −1.5e−2 −5.3e−3 −1.1e−2 −3.8e−2 6.9e−3 −9.1e−4 −3.6e−2

Table 8 suggests that for scenario s9 (λ0 = 0.2, λ = 1, Λ = 1), GTRE can predict the

median of the transient technical efficiency to be very good, overestimating it by less than 1%.

While 95th percentile of transient technical efficiency is underestimated by slightly more than

1%, the 5th percentile is overestimated by more than 3%. Thus, transient technical efficiency

can be estimated quite precisely in the middle, but the estimation is only fair for least and most

efficient observations.

We noted previously that ‘good’ estimation of the ‘average’ transient technical efficiency in

scenario s10, where λ = 5. This is confirmed in Table 8. For very large values of nt the smallest

transient technical efficiency are also predicted to be good, but the largest transient technical

efficiency are predicted to be only fair.

Table 9: The Mean of the Relative Deviation Between the 5th, 50th and 95th Percentiles of the Estimated
and True Technical Efficiency. σu0 = σv0 , i.e., λ0 = 1.

Persistent TE Transient TE Overall TE

n t 5th 50th 95th 5th 50th 95th 5th 50th 95th

s5: λ0 = 1, λ = 0.2, Λ = 1 (σu0
= 0.04 σu = 0.04, σv0 = 0.04, σv = 0.2)

50 3 3.8e−2 4.8e−3 −1.1e−2 −3.2e−2 −2.9e−2 −2.9e−2 −2.1e−2 −2.0e−2 −3.0e−2
100 3 3.8e−2 2.6e−3 −1.3e−2 −1.9e−2 −2.6e−2 −2.9e−2 −8.7e−3 −1.9e−2 −3.3e−2
500 3 3.6e−2 −9.6e−4 −1.7e−2 1.3e−2 −1.5e−2 −2.6e−2 2.1e−2 −1.1e−2 −3.3e−2

50 6 3.0e−2 2.0e−3 −1.2e−2 −2.3e−2 −2.8e−2 −3.0e−2 −1.8e−2 −2.1e−2 −3.3e−2
100 6 3.3e−2 1.3e−3 −1.3e−2 −5.3e−3 −2.2e−2 −2.8e−2 1.3e−3 −1.6e−2 −3.3e−2
500 6 3.1e−2 −1.2e−3 −1.6e−2 1.8e−2 −1.3e−2 −2.5e−2 2.2e−2 −9.3e−3 −3.2e−2

50 10 2.8e−2 1.8e−3 −1.2e−2 −9.3e−3 −2.3e−2 −2.9e−2 −5.8e−3 −1.7e−2 −3.2e−2
100 10 2.7e−2 3.8e−4 −1.3e−2 6.7e−3 −1.7e−2 −2.6e−2 8.2e−3 −1.2e−2 −3.1e−2
500 10 3.6e−2 2.7e−3 −1.3e−2 2.5e−2 −1.0e−2 −2.4e−2 3.4e−2 −2.4e−3 −2.7e−2

(continued on next page)
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Table 9 (Continued)

Persistent TE Transient TE Overall TE

n t 5th 50th 95th 5th 50th 95th 5th 50th 95th

s15: λ0 = 1, λ = 0.2, Λ = 5 (σu0
= 0.2 σu = 0.04, σv0 = 0.2, σv = 0.2)

50 3 1.5e−1 1.6e−2 −4.4e−2 −5.0e−2 −3.8e−2 −3.4e−2 6.9e−2 −2.0e−2 −6.3e−2
100 3 1.5e−1 1.2e−2 −5.0e−2 −2.6e−2 −3.0e−2 −3.2e−2 9.0e−2 −1.5e−2 −6.7e−2
500 3 1.9e−1 1.8e−2 −5.3e−2 5.8e−5 −2.2e−2 −3.0e−2 1.5e−1 −1.3e−4 −6.7e−2

50 6 1.5e−1 1.2e−2 −4.8e−2 −3.0e−2 −3.2e−2 −3.3e−2 8.5e−2 −1.7e−2 −6.7e−2
100 6 1.4e−1 9.9e−3 −5.1e−2 −1.1e−2 −2.5e−2 −3.0e−2 1.1e−1 −1.2e−2 −6.8e−2
500 6 1.7e−1 1.3e−2 −5.5e−2 1.2e−2 −1.7e−2 −2.8e−2 1.5e−1 5.5e−4 −6.7e−2

50 10 1.2e−1 4.8e−3 −5.2e−2 −1.6e−2 −2.7e−2 −3.1e−2 8.4e−2 −2.0e−2 −7.1e−2
100 10 1.5e−1 9.9e−3 −5.3e−2 −2.5e−3 −2.2e−2 −3.0e−2 1.2e−1 −8.9e−3 −6.9e−2
500 10 1.6e−1 1.0e−2 −5.6e−2 2.0e−2 −1.3e−2 −2.6e−2 1.5e−1 1.2e−3 −6.6e−2

s6: λ0 = 1, λ = 1, Λ = 0.2 (σu0
= 0.04 σu = 0.2, σv0 = 0.04, σv = 0.2)

50 3 2.7e−2 −9.9e−4 −1.4e−2 1.8e−1 2.8e−2 −4.1e−2 1.7e−1 3.2e−2 −3.6e−2
100 3 3.9e−2 2.6e−3 −1.3e−2 1.8e−1 2.3e−2 −4.7e−2 1.8e−1 3.1e−2 −4.1e−2
500 3 3.5e−2 −2.2e−3 −1.8e−2 1.4e−1 3.3e−4 −6.2e−2 1.3e−1 3.1e−3 −6.1e−2

50 6 3.2e−2 2.2e−3 −1.2e−2 1.7e−1 2.1e−2 −4.7e−2 1.7e−1 2.8e−2 −4.2e−2
100 6 3.4e−2 1.5e−3 −1.3e−2 1.5e−1 1.0e−2 −5.5e−2 1.5e−1 1.6e−2 −5.1e−2
500 6 3.5e−2 −1.7e−4 −1.5e−2 1.3e−1 −3.6e−3 −6.4e−2 1.3e−1 8.7e−4 −6.2e−2

50 10 3.0e−2 2.3e−3 −1.2e−2 1.6e−1 1.5e−2 −5.3e−2 1.6e−1 2.1e−2 −4.8e−2
100 10 3.0e−2 5.8e−4 −1.3e−2 1.4e−1 3.5e−3 −6.0e−2 1.4e−1 8.0e−3 −5.7e−2
500 10 3.3e−2 1.4e−4 −1.4e−2 1.3e−1 −5.0e−3 −6.5e−2 1.3e−1 −8.3e−4 −6.3e−2

s1: λ0 = 1, λ = 1, Λ = 1 (σu0
= 0.04 σu = 0.04, σv0 = 0.04, σv = 0.04)

50 3 1.8e−2 −3.2e−5 −1.0e−2 3.2e−2 5.3e−3 −8.9e−3 2.7e−2 9.4e−3 −1.0e−2
100 3 2.4e−2 1.2e−3 −1.1e−2 3.2e−2 4.0e−3 −1.0e−2 3.2e−2 9.4e−3 −1.2e−2
500 3 3.1e−2 2.1e−3 −1.2e−2 3.0e−2 7.2e−4 −1.3e−2 3.7e−2 7.3e−3 −1.6e−2

50 6 2.1e−2 6.3e−4 −1.0e−2 3.3e−2 4.3e−3 −1.0e−2 3.1e−2 9.0e−3 −1.2e−2
100 6 2.4e−2 9.9e−4 −1.1e−2 3.0e−2 2.2e−3 −1.2e−2 3.3e−2 7.3e−3 −1.5e−2
500 6 2.8e−2 1.3e−3 −1.2e−2 2.5e−2 −1.6e−3 −1.4e−2 3.3e−2 3.6e−3 −1.9e−2

50 10 2.0e−2 1.8e−4 −1.1e−2 2.9e−2 1.9e−3 −1.2e−2 3.0e−2 5.9e−3 −1.6e−2
100 10 2.3e−2 5.9e−4 −1.1e−2 2.6e−2 −2.5e−4 −1.3e−2 3.0e−2 4.1e−3 −1.8e−2
500 10 2.9e−2 1.2e−3 −1.2e−2 2.4e−2 −2.0e−3 −1.4e−2 3.3e−2 3.1e−3 −2.0e−2

s16: λ0 = 1, λ = 1, Λ = 1 (σu0
= 0.2 σu = 0.2, σv0 = 0.2, σv = 0.2)

50 3 1.2e−1 6.8e−3 −4.6e−2 1.9e−1 3.0e−2 −4.2e−2 1.8e−1 5.9e−2 −4.4e−2
100 3 1.5e−1 1.3e−2 −4.9e−2 2.0e−1 3.0e−2 −4.6e−2 2.2e−1 6.6e−2 −5.0e−2
500 3 2.0e−1 2.1e−2 −5.3e−2 1.7e−1 5.0e−3 −6.3e−2 2.3e−1 5.0e−2 −7.3e−2

50 6 1.3e−1 8.2e−3 −4.9e−2 1.8e−1 2.3e−2 −4.9e−2 1.9e−1 5.3e−2 −5.9e−2
100 6 1.6e−1 1.4e−2 −5.0e−2 1.7e−1 1.4e−2 −5.5e−2 2.1e−1 5.0e−2 −6.7e−2
500 6 1.9e−1 1.9e−2 −5.3e−2 1.5e−1 −1.8e−3 −6.7e−2 2.2e−1 3.8e−2 −8.3e−2

50 10 1.2e−1 5.3e−3 −5.0e−2 1.7e−1 1.5e−2 −5.5e−2 1.9e−1 4.1e−2 −7.1e−2
100 10 1.4e−1 6.7e−3 −5.4e−2 1.5e−1 4.3e−3 −6.2e−2 1.9e−1 3.1e−2 −8.2e−2
500 10 1.6e−1 1.1e−2 −5.6e−2 1.3e−1 −6.4e−3 −6.8e−2 1.9e−1 2.3e−2 −9.1e−2

s11: λ0 = 1, λ = 1, Λ = 5 (σu0 = 0.2 σu = 0.04, σv0 = 0.2, σv = 0.04)
50 3 1.2e−1 −5.1e−3 −6.1e−2 3.7e−2 7.4e−3 −8.5e−3 1.3e−1 5.1e−3 −5.5e−2
100 3 1.2e−1 −6.8e−3 −6.4e−2 3.4e−2 5.3e−3 −9.9e−3 1.3e−1 1.4e−3 −6.0e−2

(continued on next page)
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Table 9 (Continued)

Persistent TE Transient TE Overall TE

n t 5th 50th 95th 5th 50th 95th 5th 50th 95th

500 3 1.3e−1 −6.1e−3 −6.6e−2 3.3e−2 1.8e−3 −1.3e−2 1.4e−1 −8.8e−4 −6.5e−2

50 6 1.2e−1 −5.0e−3 −6.2e−2 3.0e−2 2.8e−3 −1.1e−2 1.3e−1 6.0e−4 −6.1e−2
100 6 1.2e−1 −7.6e−3 −6.5e−2 2.9e−2 1.3e−3 −1.2e−2 1.3e−1 −3.3e−3 −6.5e−2
500 6 1.3e−1 −1.1e−2 −7.0e−2 2.6e−2 −1.5e−3 −1.5e−2 1.3e−1 −8.9e−3 −7.2e−2

50 10 1.2e−1 −4.4e−3 −6.4e−2 2.8e−2 1.6e−3 −1.2e−2 1.3e−1 −3.0e−4 −6.4e−2
100 10 1.2e−1 −9.9e−3 −6.7e−2 2.7e−2 1.7e−4 −1.3e−2 1.3e−1 −6.8e−3 −6.8e−2
500 10 1.3e−1 −1.3e−2 −7.2e−2 2.4e−2 −2.2e−3 −1.5e−2 1.3e−1 −1.2e−2 −7.5e−2

s2: λ0 = 1, λ = 5, Λ = 0.2 (σu0
= 0.04 σu = 0.2, σv0 = 0.04, σv = 0.04)

50 3 2.4e−2 −2.1e−3 −1.1e−2 3.3e−2 1.2e−2 −2.1e−2 2.7e−2 1.3e−2 −1.5e−2
100 3 2.0e−2 −5.8e−3 −1.2e−2 2.2e−2 7.6e−3 −2.2e−2 1.3e−2 4.5e−3 −1.7e−2
500 3 3.2e−2 −2.5e−3 −1.3e−2 1.9e−2 6.3e−3 −2.2e−2 1.8e−2 7.8e−3 −1.8e−2

50 6 1.6e−2 −2.8e−3 −1.0e−2 1.6e−2 5.8e−3 −2.3e−2 1.2e−2 3.7e−3 −1.9e−2
100 6 2.3e−2 −1.3e−3 −1.1e−2 1.3e−2 4.9e−3 −2.3e−2 1.2e−2 5.5e−3 −1.9e−2
500 6 3.4e−2 1.1e−3 −1.2e−2 1.3e−2 4.6e−3 −2.4e−2 1.7e−2 9.1e−3 −2.0e−2

50 10 2.1e−2 9.2e−4 −9.1e−3 8.9e−3 1.6e−3 −2.6e−2 1.0e−2 3.7e−3 −2.2e−2
100 10 2.1e−2 −3.6e−4 −1.1e−2 8.6e−3 1.2e−3 −2.6e−2 8.4e−3 1.9e−3 −2.4e−2
500 10 3.3e−2 2.5e−3 −1.1e−2 7.5e−3 9.1e−4 −2.8e−2 1.4e−2 6.3e−3 −2.5e−2

s12: λ0 = 1, λ = 5, Λ = 1 (σu0 = 0.2 σu = 0.2, σv0 = 0.2, σv = 0.04)
50 3 1.2e−1 2.8e−3 −5.1e−2 1.2e−1 3.2e−2 −3.8e−2 1.5e−1 4.7e−2 −5.2e−2
100 3 1.3e−1 1.8e−3 −5.5e−2 6.7e−2 2.1e−2 −4.2e−2 1.1e−1 3.2e−2 −6.0e−2
500 3 1.6e−1 6.9e−3 −5.7e−2 2.7e−2 1.2e−2 −4.4e−2 1.0e−1 2.8e−2 −6.4e−2

50 6 1.3e−1 2.4e−3 −5.6e−2 1.3e−2 −1.5e−3 −3.7e−2 7.5e−2 9.1e−3 −6.5e−2
100 6 1.3e−1 1.9e−3 −5.7e−2 5.2e−3 −4.8e−3 −3.7e−2 6.8e−2 5.0e−3 −6.7e−2
500 6 1.5e−1 4.5e−3 −6.0e−2 2.6e−3 −5.3e−3 −3.8e−2 7.7e−2 8.4e−3 −6.9e−2

50 10 1.2e−1 2.5e−3 −5.5e−2 −8.7e−3 −1.3e−2 −3.7e−2 5.6e−2 −1.7e−3 −7.1e−2
100 10 1.3e−1 3.1e−3 −5.8e−2 −8.7e−3 −1.3e−2 −3.8e−2 6.2e−2 −1.1e−3 −7.3e−2
500 10 1.5e−1 2.9e−3 −6.1e−2 −7.8e−3 −1.3e−2 −3.9e−2 6.9e−2 5.3e−4 −7.6e−2

When λ0 = 1, the results for the 5th, median, and 95th percentiles are different. In case

λ = 0.2 (s5), the estimation of 5th and 95th percentiles of persistent technical efficiency are good

as before (the 5th percentile is overestimated, while the 95th percentile is underestimated), but

the relative deviation of median is even smaller, implying very good estimation of persistent

technical efficiency in the middle of the distribution.

If λ = 1 (s6), the median of both persistent and transient technical efficiency are estimated

with a very small relative bias. As in scenario s5, the 5th percentile of persistent technical

efficiency is overestimated, while the 95th percentile is underestimated with a small relative

error. Transient technical efficiency is estimated to be good for large values, but quite poorly

for small values of technical efficiency.

When λ = 1 and Λ = 1 (s1 and s16), the median of both transient and persistent technical

efficiency are estimated to be good to very good. In both s1 and s16 the 5th (95th) percentile

of persistent technical efficiency are overestimated (underestimated) by more than the median.
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The same is true for transient technical efficiency. The GTRE estimator overestimates the 5th

and underestimate the 95th percentile of transient technical efficiency. Similar to Table 4, the

lowest levels of persistent technical efficiency are estimated in s16 slightly poorer than those in

s1.

The case where λ = 1 and Λ = 5 (s11) is comparable to the case where λ = 1 and Λ = 0.2

(s6). However, now transient technical efficiency is estimated better than persistent technical

efficiency. This is expected since other things being equal, small Λ generally favors persistent

technical efficiency, while large Λ generally favors transient technical efficiency.

Finally, when λ = 5 (s2 and s12), transient technical efficiency is estimated to be very good

in the middle, and only slightly worse at low and high level of technical efficiency (0.1% against

1% misestimation). In scenario s12 persistent technical efficiency is estimated to be good for the

median and 95th percentile of technical efficiency, as it was the case with ‘average’ performance

analysis.

Recall that in scenarios s2 and s12 relative bias has been increasing in n. This happens

mainly because of the poor estimate of technical efficiency at the lowest percentile. At the lower

end, technical efficiency is overestimated by more than it is underestimated at the upper end

of the distribution. While relative mean deviation of the median and the 95th percentile is

behaving as expected, it is increasing for the 5th percentiles of persistent technical efficiency.

The mean squared deviations (not reported here) are decreasing as expected.

Table 10 presents the results when λ0 = 5. In all four scenarios, s7, s8, s3, and s4, the median

of persistent technical efficiency is predicted very accurately. The 5th and 95th percentiles are

predicted with an error of only about 1−3%. In scenario s4, where both λ0 and λ = 5, estimation

of persistent technical efficiency is excellent.

Table 10: The Mean of the Relative Deviation Between the 5th, 50th and 95th Percentiles of the Estimated
and True Technical Efficiency. σu0

is high relative to σv0 , i.e., λ0 = 5.

Persistent TE Transient TE Overall TE

n t 5th 50th 95th 5th 50th 95th 5th 50th 95th

s7: λ0 = 5, λ = 0.2, Λ = 5 (σu0
= 0.2 σu = 0.04, σv0 = 0.04, σv = 0.2)

50 3 1.6e−1 3.8e−2 −3.1e−2 −5.2e−2 −3.9e−2 −3.3e−2 7.3e−2 −5.6e−4 −4.8e−2
100 3 1.3e−1 2.4e−2 −3.8e−2 −3.6e−2 −3.5e−2 −3.4e−2 6.7e−2 −9.8e−3 −5.6e−2
500 3 8.3e−2 6.0e−3 −4.5e−2 1.9e−3 −2.1e−2 −2.9e−2 5.3e−2 −1.2e−2 −5.8e−2

50 6 9.0e−2 2.3e−2 −2.9e−2 −2.7e−2 −3.0e−2 −3.1e−2 3.8e−2 −6.9e−3 −4.7e−2
100 6 7.3e−2 1.5e−2 −3.4e−2 −1.2e−2 −2.6e−2 −3.1e−2 3.9e−2 −1.0e−2 −5.0e−2
500 6 4.4e−2 5.6e−3 −3.6e−2 1.4e−2 −1.6e−2 −2.7e−2 3.0e−2 −7.1e−3 −4.8e−2

50 10 7.1e−2 2.1e−2 −2.5e−2 −8.5e−3 −2.3e−2 −2.9e−2 4.0e−2 −1.2e−3 −4.1e−2
100 10 5.0e−2 1.3e−2 −2.8e−2 3.0e−3 −1.9e−2 −2.8e−2 3.2e−2 −4.3e−3 −4.3e−2
500 10 2.7e−2 5.1e−3 −3.0e−2 2.3e−2 −1.1e−2 −2.5e−2 2.0e−2 −2.3e−3 −4.0e−2

s8: λ0 = 5, λ = 1, Λ = 1 (σu0 = 0.2 σu = 0.2, σv0 = 0.04, σv = 0.2)
50 3 1.8e−1 4.2e−2 −3.2e−2 1.7e−1 2.6e−2 −4.2e−2 2.3e−1 9.2e−2 −2.7e−2

(continued on next page)

24



Table 10 (Continued)

Persistent TE Transient TE Overall TE

n t 5th 50th 95th 5th 50th 95th 5th 50th 95th

100 3 1.6e−1 3.0e−2 −3.9e−2 1.7e−1 1.7e−2 −4.9e−2 2.0e−1 6.9e−2 −4.3e−2
500 3 1.1e−1 7.2e−3 −4.8e−2 1.5e−1 −6.6e−4 −6.3e−2 1.4e−1 2.6e−2 −6.9e−2

50 6 1.2e−1 3.1e−2 −3.0e−2 1.7e−1 2.1e−2 −4.9e−2 1.8e−1 7.1e−2 −3.8e−2
100 6 9.9e−2 1.9e−2 −3.5e−2 1.7e−1 1.3e−2 −5.4e−2 1.6e−1 5.0e−2 −5.1e−2
500 6 5.7e−2 5.3e−3 −3.9e−2 1.4e−1 −4.5e−3 −6.6e−2 1.0e−1 1.5e−2 −7.0e−2

50 10 8.1e−2 2.4e−2 −2.7e−2 1.7e−1 1.5e−2 −5.4e−2 1.5e−1 5.4e−2 −4.4e−2
100 10 5.9e−2 1.5e−2 −3.1e−2 1.5e−1 4.6e−3 −6.0e−2 1.2e−1 3.2e−2 −5.7e−2
500 10 3.9e−2 6.8e−3 −3.3e−2 1.3e−1 −6.2e−3 −6.7e−2 9.2e−2 1.1e−2 −6.8e−2

s3: λ0 = 5, λ = 1, Λ = 5 (σu0
= 0.2 σu = 0.04, σv0 = 0.04, σv = 0.04)

50 3 2.2e−2 7.4e−3 −1.5e−2 3.2e−2 5.9e−3 −8.8e−3 2.8e−2 1.5e−2 −9.1e−3
100 3 1.5e−2 4.2e−3 −1.8e−2 3.2e−2 4.4e−3 −1.0e−2 2.4e−2 1.1e−2 −1.3e−2
500 3 6.4e−3 1.1e−4 −1.9e−2 3.0e−2 8.3e−4 −1.3e−2 1.1e−2 3.9e−3 −1.8e−2

50 6 1.6e−2 5.7e−3 −1.4e−2 3.2e−2 3.9e−3 −1.0e−2 2.3e−2 1.3e−2 −1.1e−2
100 6 1.3e−2 3.8e−3 −1.6e−2 2.9e−2 1.5e−3 −1.2e−2 2.0e−2 8.0e−3 −1.6e−2
500 6 2.8e−3 −2.3e−3 −1.8e−2 2.6e−2 −1.2e−3 −1.4e−2 5.7e−3 −3.9e−4 −2.0e−2

50 10 1.5e−2 7.3e−3 −1.4e−2 3.0e−2 2.2e−3 −1.2e−2 2.1e−2 1.2e−2 −1.4e−2
100 10 1.1e−2 3.6e−3 −1.6e−2 2.8e−2 7.3e−4 −1.3e−2 1.7e−2 7.5e−3 −1.7e−2
500 10 3.7e−3 −1.5e−3 −1.8e−2 2.4e−2 −2.1e−3 −1.4e−2 5.8e−3 −8.2e−4 −2.2e−2

s4: λ0 = 5, λ = 5, Λ = 1 (σu0
= 0.2 σu = 0.2, σv0

= 0.04, σv = 0.04)
50 3 6.0e−2 1.4e−2 −2.0e−2 6.6e−2 2.0e−2 −3.2e−2 6.8e−2 3.7e−2 −1.3e−2
100 3 4.3e−2 6.8e−3 −2.1e−2 4.2e−2 1.4e−2 −3.3e−2 3.9e−2 2.0e−2 −1.6e−2
500 3 2.6e−2 −1.7e−3 −2.1e−2 2.8e−2 1.1e−2 −3.4e−2 1.7e−2 5.5e−3 −1.8e−2

50 6 3.5e−2 1.4e−2 −1.3e−2 1.3e−2 3.8e−3 −2.8e−2 2.6e−2 1.3e−2 −1.7e−2
100 6 2.5e−2 8.2e−3 −1.5e−2 1.0e−2 3.3e−3 −2.7e−2 1.7e−2 6.0e−3 −1.9e−2
500 6 1.5e−2 3.3e−3 −2.1e−2 1.5e−2 5.4e−3 −2.4e−2 1.3e−2 2.5e−3 −1.9e−2

50 10 2.9e−2 1.7e−2 −6.0e−3 −1.3e−2 −6.0e−3 −2.7e−2 1.4e−2 4.8e−3 −2.1e−2
100 10 2.2e−2 1.2e−2 −1.1e−2 −6.9e−3 −3.9e−3 −2.6e−2 1.3e−2 1.2e−3 −2.4e−2
500 10 1.1e−2 5.6e−3 −1.9e−2 2.6e−3 1.6e−3 −2.2e−2 9.7e−3 −2.5e−4 −2.3e−2

The median of transient technical efficiency is estimated to be good to very good in all

scenarios with only a small error. When λ = Λ = 1 (s8), technical efficiency at the lower end is

estimated very poorly, while at the higher end it is estimated with a relative bias of about 10%.

When λ = 1, Λ = 5 (s3), the 5th and 95th percentiles are over- and underestimated, but the

misestimation is rather small. Finally, in the most favorable scenario where λ = 5, Λ = 5 (s4),

both the 5th percentile and the median are estimated very accurately and are overestimated,

except for very large samples, where they are underestimated, while 95th percentile is estimated

less precisely and is underestimated throughout.

In sum, Tables 8-10 reveal several very interesting features of efficiency estimators in the

GTRE model. First, the biases of lower and higher levels of technical efficiency estimates have

mostly opposite signs. For a practitioner this means that by just knowing the direction of bias

of the estimator on ‘average’ might not be informative when the interest lies in estimating the
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benchmark firms or the least efficient firms. Second, even if the technical efficiency is estimated

accurately in the middle, there is good chance that lower and higher levels of technical efficiency

are estimated quite poorly. Third, in most scenarios the estimator becomes good for all levels

of technical efficiency when nt is quite large. We illustrate how to make use of these tables in

the next section when we report results based on several real data sets.

4 Empirical Applications

We have shown the performance of the estimator in Monte Carlo simulations, but it is also

worthwhile to show how the estimator works in practice. Here we consider four separate data

sets used in empirical papers which correspond to different scenarios based on the estimated

values of λ0, λ, and Λ. We report the estimated parameters λ̂0, λ̂ , Λ̂, σ̂u0 , σ̂u, σ̂v0 and σ̂v,
7

the description of the panel data structure in Table 118 as well as the summary statistics of

the technical or cost efficiencies in Table 12. In practice, we would not get the estimated values

of lambdas to be equal to 0.2, 1, and 5 which we used in the simulation study. If we roughly

consider the value above 2 as 5 (well above unity), value below 0.5 as 0.2 (well below unity), and

the values between 0.5 and 2 as 1, we can crudely classify the empirical results into scenarios

that we have seen in the MC study.

4.1 Swiss Railway Data

These data come from Filippini and Greene (2016), who estimate a cost function for 50 Swiss

railroads over the period 1985-1997. They model total costs as a function of input prices (labor,

capital and energy), outputs (numbers of passenger-kilometers and freight ton-kilometers), the

length of network, and the number of stops. They also include time dummies to account for

technological progress. Here we estimate exactly the same model. The total costs and prices

of labor and capital are normalized by price of energy to linear homogeneity (in input prices)

property of the cost function.

Railroads are observed for 12.1 years on average, which approximates the setup where n = 50

and t = 10. The estimated parameters of interest in Table 11 (and their standard errors in

parentheses) are λ̂0 = 3.6(0.22), λ̂ = 1.5(0.39), and Λ̂ = 7.2(1.1). These put us into scenario s3.

Table 11 presents the summary statistics of the estimated cost efficiency scores. Persistent cost

efficiency are estimated to be good on ‘average’ while estimation of transient cost efficiency is

only fair. Further, Table 10 suggests that persistent cost efficiency (first row in Table 12) is over-

estimated by 1.5% at the lower end, overestimated by 0.7% in the middle, and underestimated

by about 1.4% at the upper end of the cost efficiency distribution. The signs of misestimation of

transient (second row) and overall (third row) cost efficiency at different portions of distribution

7Note that λ0 = σu0/σv0 , and Λ = σu0/σu =
√

1 + 1/λ2σu0/σ. The standard errors are obtained using Delta
method.

8Since our interest lies in estimation of technical efficiencies, the parameters of the respective production or
cost function are not reported to conserve space. They are available from authors upon request.
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Table 11: Parameter Estimates

Parameter Data11 Data22 Data33 Data44

λ̂0 3.6 (0.22) 1.8 (0.28) 0.93 (0.05) 0.0019 (1.4)

λ̂ 1.5 (0.39) 1.3 (0.21) 2.3 (0.32) 0.82 (0.45)

Λ̂ 7.2 (1.1) 1.9 (0.26) 3.4 (0.32) 0.00092 (0.67)
σ̂u0 0.56 (0.015) 0.15 (0.012) 0.36 (0.021) 0.00021 (0.16)
σ̂u 0.078 (0.012) 0.078 (0.0085) 0.11 (0.0064) 0.23 (0.1)
σ̂v0 0.16 (0.01) 0.083 (0.0086) 0.39 (0.012) 0.11 (0.015)
σ̂v 0.052 (0.0059) 0.062 (0.0038) 0.046 (0.0039) 0.28 (0.032)

T i 12.1 6 12.99 6
N 50 247 82 171
NT 605 1482 1065 1026

Standard errors in parentheses;
1 Swiss Railway data, 1985-1997;
2 Spanish dairy farms, 1993-1998;
3 US Fossil-fuel-fired steam electric power-generating plants, 1986-1999;
4 Indonesian rice farms, 1971-1986

Table 12: Summary Statistics for Different Types of Cost/Technical Efficiency

Min 5% Mean 50% 95% Max

Data1 Persistent 0.18 0.34 0.64 0.64 0.90 0.93
Residual 0.74 0.88 0.94 0.95 0.97 0.98
Overall 0.17 0.32 0.60 0.60 0.85 0.90

Data2 Persistent 0.69 0.77 0.89 0.91 0.95 0.97
Residual 0.73 0.89 0.94 0.95 0.97 0.98
Overall 0.57 0.71 0.84 0.85 0.91 0.95

Data3 Persistent 0.62 0.67 0.77 0.78 0.86 0.89
Residual 0.58 0.83 0.91 0.93 0.96 0.99
Overall 0.42 0.59 0.71 0.72 0.81 0.86

Data4 Persistent 1.00 1.00 1.00 1.00 1.00 1.00
Residual 0.63 0.75 0.84 0.85 0.90 0.95
Overall 0.63 0.75 0.84 0.85 0.90 0.95

are the same as those of persistent cost efficiency, the magnitudes are twice as large for lower

levels and about the same for higher levels of cost efficiency.

4.2 Dairy Farms Data

This data set is on Spanish dairy farms (Alvarez et al. 2004). Output produced (milk in liters)

is specified as a function of number of milking cows, size of the land devoted to pasture and

crops (in hectares), labor (man-equivalent units), feeds (in tons), time trend, and time trend
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squared. The data are balanced panel with t = 6 years (1993-1998) and n = 247 farms, which

is crudely n = 500 and t = 6 in our simulation study.

The estimate of λ is equal 1.26 (0.21) is roughly unity. The estimates of λ0 and Λ are

1.79 (0.28) and 1.902 (0.26). We cannot clearly classify this case in terms of lambdas from

simulation study, but if we consider 1.79 closer to unity and 1.902 closer to 5, this puts us into

scenario s11.9 Recall that in this scenario all types of technical efficiency are estimated to be fair

at best considering the three criteria we used. The transient technical efficiency estimates can

only be trusted in the middle of the distribution, where they are underestimated by only 0.02%,

while other types of technical efficiency are underestimated by about 1%. Given the results of

the Monte-Carlo study, it would be difficult to put any faith in the technical efficiency estimates

for Spanish dairy farms at the low and upper end of persistent and overall technical efficiency

distribution, where they are misestimated by 6− 12%.

4.3 US Electric Utilities Data

These data come from Kumbhakar and Tsionas (2011), who use data 82 fossil-fuel-fired steam

electric power-generating plants in the USA over the period 1986-1999 (case corresponds to

n = 100 and t = 10). Here we estimate a cost function that is specified as a function of output

(net steam electric power generation in megawatt-hours), prices of labor, fuel, capital, and time

trend.

The first thing to notice in Table 11 is that estimates λ̂0 = 0.93 (0.05), λ̂ = 2.29 (0.32),

and Λ̂ = 3.43 (0.32) do not put us directly into any of the scenarios in our simulations. This

constellation of lambdas resembles that of scenario s12, where λ0 = 1, λ = 5, and Λ = 1, except

that Λ̂ is about 5. We call this scenario s12′ since Table 6 suggests that this would be the next

scenario after s2 and s12, and the estimation would supposedly possess the same properties,

namely that persistent cost efficiency estimates are fair, whereas transient cost efficiency are

reliable. Indeed, according to scenario s12 in Table 9 for s12, average and large transient cost

efficiency are underestimated by about 1.5%, whereas the small transient cost efficiency are

underestimated by only 0.8%. Conversely, the low persistent cost efficiency are overestimated

by staggering 13%, while persistent cost efficiency are estimated quite precisely in the middle.

Taking into account all criteria that we reported in the MC study, it would be difficult to trust

the estimated persistent cost efficiency.

4.4 Indonesian Rice Farm Data

The data on 171 Indonesian Rice Farms for 6 growing seasons come from Horrace and Schmidt

(2000). The authors specify the production of output (rough rice) in kilogram as a function of

seed in kilogram, urea in kilogram, total labor (excluding harvest labor), total area that farmers

9If we consider all lambdas being closer to unity, this puts us into s16, where the goodness of GTRE estimator
according to Tables 4 and 6 is similar to that of s11.
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Table 13: Likelihood Values and Likelihood-Ratio Tests

Model Parametersa data 1 data 2 data 3 data 4

σv0 σu0
σu logL LRb logL LRb logL LRb logL LRb

M1 1 1 1 603.06 1346.01 982.81 −322.40
M2 1 1 0 595.87 14.38 1340.45 11.11 955.01 55.60 −322.67 0.55
M3 1 0 1 600.70 4.71 1340.13 11.74 982.67 0.27 −322.40 0.00
M4 0 1 1 602.19 1.74 1324.47 43.08 953.37 58.89 −327.76 10.74
M5 0 1 0 596.39 13.34 1323.44 45.12 930.23 105.15 −327.76 10.74
M6 0 0 1 −116.06 1438.24 813.59 1064.83 67.73 1830.16 −333.59 22.39

a Zero means that the respective variance parameter is restricted to zero;
b LR = −2(logL− logLGTRE).

cultivated with rice, measured in hectares, and three dummy variables representing the varieties,

use of pesticide/herbicide, time trend, and time trend squared.

For this data the results in Table 11 suggests that estimates λ̂0 and Λ̂ are statistically

insignificant since the estimated standard errors are quite big. This implies that that persistent

technical inefficiency is absent. Unlike before, the estimated Λ is close to one, putting the results

in s14, where λ0 = 0.2, λ = 1, and Λ = 0.2. This is worse than s10, because according to the

summary in Table 6 even transient technical efficiency estimates are not reliable. Thus, the

estimator does not estimate any type of technical efficiency reliably for any observation for the

Indonesian rice farms.

Interestingly, the results suggest that persistent technical inefficiency is absent. Transient

technical inefficiency definitely exists, but it cannot be reliably estimated. Transient technical

inefficiency is quite large for some farms. These findings maybe due to the fact that rice pro-

duction has a very long tradition/history. Consequently, persistent technical inefficiency has

been eliminated, while short-run technical inefficiency is present due to possibly weather and/or

climate related conditions.

4.5 Appropriateness of the GTRE Model in the applications

The GTRE model provides estimates of two types of inefficiency while taking firm-effects and

noise into account. From a practitioner’s point of view the issue is whether such a model is

consistent with the data. Our goal therefore is to check the performance of the GTRE model to

the models where one or more of the error components (their variances) are restricted to zero.

Table 13 provides the values of log-likelihood function for different combination of restric-

tions put on the variance parameters. This gave us six different models. First three columns

describe restrictions imposed on the model. A value of unity means the corresponding variance

parameter is free and a value of zero means the parameter is restricted to zero. First three mod-
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els (M1, M2 and M3) include random firm-effects (heterogeneity). M1 corresponds to GTRE

model where none of the variance parameter is restricted to zero. M2 does not include transient

technical inefficiency, while M3 does not include persistent technical inefficiency. Models M4,

M5, and M6 exclude firm-heterogeneity. Model 4 considers both persistent and transient persis-

tent technical efficiencybut firm-effects are excluded. Thus in comparison to M1, M2, M3, M4

restricts parameter (firm-effects component) to zero. M5 accounts only for persistent technical

inefficiency, while M6 accounts only for transient technical inefficiency. M5 and M6 restrict two

variance parameters (error components) to zero. For each data set, the second column shows

the LR statistic that can be used to test appropriateness of the GTRE model. Given that the

zero restrictions are on the boundary of the parameter values, the LR statistics has a mixed

χ2 distribution (see Coelli 1995). The critical values of the mixed χ2 distribution can be found

in Kodde and Palm (1986). With 2 degrees of freedom the critical values from the mixed χ2

distribution are 8.273 and 5.138 for significance levels 0.01 and 0.05, respectively. The critical

values of the mixed χ2 distribution with 1 degree of freedom for significance levels 0.01 and 0.05

are 5.412 and 2.705, respectively. Models with two restrictions (M5 and M6) are rejected at the

1% level in all data sets.

Statistical significance of restriction on a single variance parameter differs across data sets.

Table 13 suggests that for data 1, it is important to account for both types of cost inefficiency,

but not random firm heterogeneity (Kumbhakar and Heshmati (1995) type of the model). If one

accounts for random firm heterogeneity, then at least transient technical inefficiency needs to

be modeled (4.71 is only statistically significant at 5%). For data set 2, none of the restriction

is justified, so that GTRE model is appropriate. For data set 3, both GTRE and TRE models

that account for firm heterogeneity and transient technical inefficiency are appropriate. As long

as heterogeneity and one of two types of technical inefficiency is modeled for data set 4, the

GTRE does not seem any better.

In sum, Table 13 suggests that the GTRE model is not always the best (most appropriate)

model for any data set. Some more parsimonious model might also be consistent with the data.

5 Conclusion

In this paper we consider estimation of both persistent and time-varying (long-run and short-

run/transient) inefficiency in a panel data model that also allows for random firm-effects (het-

erogeneity) and noise. In order to do so we had to make distributional assumption on each of

the error components which are assumed to be random. We used simulated maximum likelihood

approach to estimate parameters of the model, and then used the expected values of conditional

means of the efficiency components conditional on the residuals to predict persistent and tran-

sient efficiency components. Given that the model is complex and relatively new, our main goal

is to address three main concerns. The first concern is whether the model can accurately identify

all the four components, and if so how precisely can the model estimate them? Second, there are
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two time-varying random components (time-varying inefficiency and noise), and the concern is

whether the model can separate noise from transient inefficiency, and if so how precisely can the

model estimate transient inefficiency? Third, how well are persistent and transient inefficiency

estimated under different scenarios, viz., under different configurations of the variances of the

four random components?

We address these concerns in terms of a series of simulated models. We found that the

goodness of the technical efficiency estimates hinges on how the variance parameters of the four

error components are related. Two comments are worth emphasizing. First, except for the

case where both random effects and noise are virtually nonexistent, the estimator can provide

reliable technical efficiency estimates of at most one type of technical efficiency. The other type,

or in some scenarios, both types are estimated so poorly that we do not recommend performing

efficiency analysis. Second, even if technical efficiency estimates can be trusted in the middle

part of the distribution, very often the smallest and the largest technical efficiencies (which are

at the ends of the distribution) are estimated quite imprecisely.

We have also evaluated the performance of the estimator using real data. We could not

confirm a single case where both types of technical efficiency are estimated reliably from the

statistical point of view. For most data sets, only one type of technical efficiency estimates can

be trusted (statistically). In one case, the method cannot be trusted for estimating any type of

technical efficiency. We also show that the GTRE model does not uniformly and overwhelmingly

outperform simpler models.

Our hope is that the information that provided here will be useful to the practitioners. We

do not discourage performing efficiency analysis altogether, but we rather suggest treating the

obtained estimates with care since failure to do so might lead to technical efficiency estimates

that are in essence useless.
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